ラウンド〜オーバル2ロールおよび3ロール方式による 張力付与時の棒・線材圧延の変形・負荷特性 一数値圧延機の応用技術に関する研究 III――

Characterization of Round~Oval Bar and Wire Rolling with Front and Back tensions by 2-Roll and 3-Roll Mills ——Application of Computational Rolling Mill III——

> 柳本 潤*•木內 学*•井上 幸雄** Jun YANAGIMOTO, Manabu KIUCHI and Yukio INOUE

1.はじめに

棒線材の連続圧延の工程設計・孔型設計に際しては, スタンド間張力と各パスの塑性変形特性との関係を系統 的に解明することが必須の条件となる。従来、2 ロール 圧延を対象とした、張力付与時の圧延特性に関する研究 が行われてきたがい,各種の圧延条件因子の変化に対応 した圧延特性の変化を,系統的にまとめたものは見あた らない.加えて,近年盛んに導入がはかられている3ロー ル圧延については、張力付与時の圧延特性に関する研究 そのものが非常に少ない。また、従来とられてきた実験 的手法では、各パスの前後に安定して張力を付与するこ とが困難であるため, 張力付与時の圧延特性を系統的に 解明していく事は容易ではない. しかしながら, 剛塑性 有限要素法・複合要素法等による3次元解析では,張力 を付与した条件での解析を容易に実行することができ、 また、張力を付与することに伴う応力・ひずみ分布等の 変化を精密に求めることができる。すなわち筆者らが開 発したラグランジェ乗数法3次元剛塑性有限要素法に基 づく解析システムCORMILL (Computational Rolling Mill) System²⁾のごとき数値実験装置は、張力付与時の 圧延特性に関する研究を遂行する上で大きな役割を担っ ている,ということができる.

前報³⁰では,無張力時のラウンド〜オーバルパスをと りあげ,圧延方式(2ロールあるいは3ロール圧延)・孔 型半径・圧下率・ロール径等の圧延条件因子が,幅広が り率・圧延荷重・圧延後相当ひずみ分布等におよぼす影 響を明らかにした.本報では,前報³⁰の結果をふまえつ つ,さらに前後方張力を付与した場合の,圧延方式(2 ロールあるいは3ロール圧延)・孔型半径・圧下率・ロー ル径等の圧延条件因子が,変形・負荷特性ならびに圧延 後の相当ひずみ分布におよぼす影響について検討した結 果を示す.

*東京大学生産研究所 第2部 **愛知製鋼㈱

2. 解析方法および条件

表1に計算条件を示す。解析において付与する前後方 張力の大きさは、以下の方法により決定した。まず前報³⁹ の解析結果をもとに無張力圧延時のロールバイト内での 平均変形抵抗 $\overline{\sigma}_{ave}$ を各条件につき求めたところ, 8.3~11.4kgf/mm²の範囲であった。そこで、平均変形抵抗の基準値を10kgf/mm²と仮定し、付与する前方、後方 張力(それぞれ σ_{r} , σ_{b} と表す)の大きさは、 $\overline{\sigma}_{ave}$ の基準値 10kgf/mm²の10%、すなわち1.0kgf/mm²とした。表1に 示した変形抵抗式の定数 σ_{0} (=4.5kgf/mm²)に対する比 としては、以下のようになる。

 $\sigma_f \pm t \sigma_b = 1.0 \text{kgf/mm}^2$

0327C1206-1.0Kg1/11111

σ_f/σ₀またはσ₀/σ₀=0.222, σ₀=4.5kgf/mm² また, 必要に応じて

 σ_f/σ_0 , $\sigma_b/\sigma_0=0.5$ (σ_f または $\sigma_b=2.25$ kgf/mm²)

表1 計算条件

ロール	ν径¢	BD [mm]	300, 50	0	
ロール周速 V [MPM]			PM]	180		
ロールバレル長L [mm]			[mm]	200		
初期線半径r _o [mm]			n]	25		
孔型半径 r_g [mm]				40, 60,∞		
公称圧下率R [%]				10, 20, 30		
変形抵抗 [kgf/mm²]			n²]	$\overline{\sigma} = 4.5(1+2\overline{\epsilon})^{0.21} \overline{\epsilon}^{0.31}$		
まさつ係数				$\mu = 0.25$		
FEM要素分割				$2 \square - \mathcal{N}$: 11×4×(4+8+2)		
$(N_X / N_Y / N_Z)$				$3 \Box - \nu : 8 \times 4 \times (4 + 8 + 2)$		
		公称圧	下率R	[%]		
rg	$\overline{\ }$	10	20	30		
孔型	40	Х/О	0/0	0/X	0	
半径	60	X/O	0/0	0/X		
[mm]	∞	Х/О	0/0	0/X	〇印衆作時初	
	前	方張力	σ_1/σ_0	=0.222	(0.5)	
張力	後	方 張 力	$\sigma_{\rm b}/\sigma_{\rm 0}$	=0.222	(0.5, 0.111)	
	前征	後方張力				

226 44巻5号(1992.5)

研

生産研究

究 谏

図1 諸変数の定義

の条件でも解析を行った。なお、ロール径 $\phi D=300$ mm, $\sigma_b/\sigma_0=0.222$ の後方張力のみを付与した条件では、被圧 延材がロールにかみ込みにくく解析が困難であったので, $\sigma_b/\sigma_0=0.111$, $\sigma_b=0.5 \text{kgf/mm}^2$ と仮定して解析をおこ なった. 公称圧下率Rは, 20, 30% (2 ロール圧延), 10, 20% (3 ロール圧延)の2 水準, 孔型半径 rg=40, 60 mm,∞(フラット)の3水準,ロール径 *φ*D=300,500mm の2水準,張力に関する条件は、前方張力のみ付与した 場合,後方張力のみ付与した場合,前後方張力を同時に 付与した場合, 無張力の4水準に変化させて解析を行い, 張力を付与することに伴う被加工材の塑性変形・負荷特 性, 圧延後の相当ひずみ分布の変化につき検討を行った. 解析結果を図・表にまとめるに際し導入した記号ならび に定義を以下に示す。(図1参照)

素線半径: r_0 [mm];孔型半径: r_g [mm] 素線中心よりロール表面までの距離: Yo [mm] 孔型比: r_0/r_g ; ロール径比: $\phi D/2r_0$ 公称圧下率: $R = (1 - Y_0 / r_0) \times 100$ [%] 幅広がり量: ΔB [mm]; 圧延荷重: P [ton] 幅広がり率: $\beta = (\Delta B/r_0) \times 100$ [%] 実 減 面 率: Re [%]

平均相当ひずみ:
$$\overline{\epsilon}_{ave} = \frac{\sum A^{(i)} \epsilon^{(i)}}{\sum A^{(i)}}$$

相当ひずみの標準偏差:

2

$$\overline{\varepsilon}_{SD} = \sqrt{\frac{\sum A^{(i)} (\overline{\varepsilon}^{(i)} - \overline{\varepsilon}_{ave})^2}{\sum A^{(i)}}}$$

ただし A⁽¹⁾:製品横断面内での各要素の面積

ε⁽ⁱ⁾:製品横断面内での各要素の相当ひずみ 平均相当ひずみ Eaveは, 圧延終了時の相当ひずみの製 品横断面内での平均値であり,相当ひずみの標準偏差 εspは、この相当ひずみの圧延後横断面内でのばらつき を評価するために導入したパラメータである。

3. 解 析 結 果

以後の説明では,幅方向をx軸,厚さ方向をy軸,圧延 び前後方張力付与時の孔型比応/なに対する幅広がり率

重り	工研条件の比較	
AX L		

	計算(CORMILL)	実験(野口)4)
公称圧下率 R (%) 孔型半径 r_{g} (mm) ロール角速度 ω (rad/s)	30 40 12.0	35 35.4 1.5
ロール径比 <i>φD/2r</i> ₀ 張力 <i>σ₅</i> / <i>σ₀、σ₅</i> /σ₀	$\begin{array}{c}10.0\\0.222\end{array}$	8.3 0.2

	表 3	計算	と実	験の	比較
--	-----	----	----	----	----

	幅広がり率β(%)		圧延荷重P(ton)	
前方張力	11.9	16.1	31.7	28.9
後 方 張 力	10.1	—	30.8	—
前後方張力	6.4	5.4	25.7	28.3

図2 張力付与時の公称圧下率と実減面率との関係

方向をz軸とする。また,張力の付与方法の記述方法とし て,前方張力のみを付与した場合を「前方(図中ではf -ts)」,後方張力のみを付与した場合を「後方 (b-ts)」, 前後方張力を同時に付与した場合を「前後方 (f, b-ts)」, 張力を付与しない場合を「無張力 (n-ts)」とする.

3.1 計算結果と実験結果の比較

計算結果と野口ら^{1),4)}による実験結果の比較検討を 行った。野口らの実験条件と今回導入した計算条件とは 完全には一致していない(表2)が,表3より,解析結 果は実験値に近くなっていることがわかる。

3.2 張力付与時の塑性変形特性

図2に、孔型半径 r_g が、 ∞ (フラット)と40mmにおけ る、前後方張力を同時に付与した時の、公称圧下率に対 する実減面率の関係を示す。前後方に張力を付与するこ とにより2ロール,3ロール圧延とも減面率が増加する が、3ロール圧延は、2ロール圧延に比べ、無張力時に 対する前後方張力付与時の実減面率の増加の割合が小さ いことがわかる.

図3は、公称圧下率R一定の条件の下で2ロール圧延 および3ロール圧延する際,無張力時,前方,後方およ

図 3 張力付与時の孔型比と幅広がり率との関係

の変化を、 ϕ D=500mmと300mmにつき示す。 無張力時 の幅広がり率に関する検討については、前報3)を参照さ れたい.本解析においては,公称圧下率R一定の下で孔型 比 r_0/r_g を増加させているため、実減面率Reは孔型比 r_0/r_g の増加とともに増加していることに注意されたい. なお, 2 ロールは公称圧下率Rが30%, 3 ロールは20%の場合 につき示してあるが、この理由は、本条件で、2ロール および3ロール方式による無張力圧延時の実減面率が, ロール径 ϕD =500mm, r_g = ∞ (フラット)の場合は, 12.0% (2ロール), 14.5% (3ロール), r_g =40mmの場 合は、21.3%(2ロール)、22.9%(3ロール)と、ほぼ 等しくなるためである。2ロールおよび3ロール圧延し た時の無張力時に対する前方,後方および前後方張力付 与時の幅広がり率の減少の割合は,孔型比,ロール径, 圧延方式によらずほぼ一様であることがわかる.また, $ロール径 \phi D$ が500mmから300mmになると、張力付与時 の無張力時に対する減少の割合は大きくなっているが、 これはロール径の小径化に伴い圧延荷重が減少するため, 前後方面の合張力値が圧延荷重と比較して相対的に大き くなることに起因している.

3.3 張力付与時の負荷特性

図4は、図3と同じ条件での前方、後方および前後方

図4 張力付与時の孔型比と圧延荷重との関係

張力を付与した場合の孔型比に対する圧延荷重の変化を, $\phi D = 500$ mmと300mmにつき示す。孔型比の増加あるい はロール径の減少に対する張力付与時の圧延荷重の変化 も、前述した幅広がり率と同じ傾向になっていることが わかる。

3.4 張力の影響係数

図5は、前方、後方、前後方張力が幅広がり率および 圧延荷重におよぼす効果について示す. 2 ロールおよび 3 ロール圧延の公称圧下率Rは、それぞれ30%、20%であ り,前述のように、この条件で無張力時の実減面率Reは ほぼ等しい。2ロール圧延、3ロール圧延ともに幅広が り率、圧延荷重は張力の大きさに対し線形に変化するこ とがわかる.また,幅広がり率および圧延荷重に関して は、前方張力および後方張力の効果の重ね合わせの関係 がほぼ成立しているようすがわかる. すなわち以下に示 す野口らの仮定1).4).5)が近似的に成立していることがわ かる

①幅広がり率もしくは圧延荷重に対して,前方張力お よび後方張力の効果の重ね合わせが成立する.

②幅広がり率もしくは圧延荷重が張力に対して線形に 変化する.

この仮定のもとでは,幅広がり率βあるいは圧延荷重

図5 張力が幅広がり率・圧延荷重におよぼす効果

Pは,次式のように表される^{1),4)}.

$$\beta = \beta_0 \times (1 + \alpha_f^{\beta} \times \frac{\sigma_f}{\sigma_0} + \alpha_b^{\beta} \times \frac{\sigma_b}{\sigma_0}) \tag{1}$$

$$P = P_0 \times (1 + \alpha_f^p \times \frac{\sigma_f}{\sigma_0} + \alpha_b^p \times \frac{\sigma_b}{\sigma_0})$$
(2)

ここで、 β_0 、 P_0 は、それぞれ無張力時の幅広がり率、圧延 荷重を表す.また α_r^{β} 、 α_r^{ρ} 、 α_b^{β} 、 α_b^{ρ} はそれぞれ前方張力 および後方張力の幅広がり率、圧延荷重に対する影響係 数である.以下この影響係数 α_r^{β} 、 α_r^{ρ} 、 α_b^{ρ} 、 α_b^{ρ} におよぼ すロール径の影響について考察する.図5とロール径 $\phi D=300$ mmの解析結果をもとに、式(1)、(2)より前方 張力および後方張力の影響係数 α_r^{β} 、 α_r^{ρ} 、 α_b^{ρ} を求め た結果を図6に示す.のこの図よりロール径比 $\phi D/2r_0$ が

4

図6 影響係数におよぼすロール径比の効果

 $\frac{\phi D}{2r_o}$

10

5

-0.6

増加しても前方張力の影響係数 α^{β} , α^{ρ} はほとんど変化 しないが,後方張力の影響係数 $\alpha_{b}{}^{\beta}$, $\alpha_{b}{}^{\rho}$ は明らかに増加す る傾向にある.幅広がり率および圧延荷重におよぼす張

報

図9 張力付与時の実滅面率と相当ひずみの標準偏差との関 係(3ロール圧延)

力の影響は、前方張力による効果よりも後方張力の効果 が大きい(図5)ので、全体としてロール径比が増大す ると幅広がり率、圧延荷重は増加することがわかる.見 方を変えれば、小径ロールの場合の方が、張力のおよぼ す影響が大きい。また、3ロール圧延は、2ロール圧延 に比べ、張力を付与したときの幅広がり率、圧延荷重の 変化の割合が小さいことがわかる.

3.5 張力付与時の実減面率に対する相当ひずみ分布の変化

本節では,張力付与時の,実減面率*Re*の変化に対する 相当ひずみ分布の変化につき検討を加える.

前報³⁾では,圧延後の製品品質・特性を評価する基準と して圧延後の製品横断面内に分布する相当ひずみの平均 値ならびに標準偏差を取り上げた.本報では,前方,後 方,前後方張力を付与したときの各種圧延条件因子がこ れらの特性値の変化におよぼす影響について検討した.

図7は、2ロールおよび3ロール圧延の場合の前方、 後方,前後方張力を付与した時に実減面率*Re*と平均相当 ひずみ*Eave*の関係をまとめて示す.

図8,9は、前方、後方、前後方張力を付与した場合 の、実滅面率に対する相当ひずみの標準偏差 $\overline{\epsilon}_{sp}$ の変化 を2ロール圧延と3ロール圧延別々に示す。無張力時の 相当ひずみの標準偏差 $\overline{\epsilon}_{sp}$ に関する詳細な検討について は、前報³⁾を参照されたい。前方、後方、前後方張力を付 与すると、圧延条件因子(圧延方式、公称圧下率、孔型 比、ロール径)に関係なく、無張力で圧延した場合 $\overline{\epsilon}_{sp}$ よ り減少することがわかる。

●:影響度が高い。
△:影響度が低い

4.まとめ

本報では、ラウンド〜フラット、ラウンド〜オーバル 2ロールならびに3ロール圧延における、張力付与時の 種々の圧延特性につき系統的に明らかにした。得られた 結果を要約すると表4のようになる。表4左側は、前後 方張力を同時に付与して圧延した時の、無張力圧延時に 対する種々の圧延特性の変化を矢印で示す。表4右側は、 前後方張力を同時に付与して圧延した時の各種圧延条件 因子の変化(公称圧下率Rが増加、孔型半径 r_8 が減少、 ロール径 ϕD が減少)の圧延特性への影響度を示す。影響 度の高いものは●印で、低いものは△印で示す。

また,今回の解析でわかった特徴的事項を以下に述べる。 1) 3ロール圧延の張力付与時の圧延特性の変化は,

2 ロール圧延とほぼ同様の傾向にある。また、幅広がり 率および圧延荷重については、前方張力および後方張力 の効果の重ね合わせが成立する。また、幅広がり率およ び圧延荷重は張力に対し線形に変化する。

2) 2ロールおよび3ロール圧延において,各種圧延 条件因子の中で,ロール径が張力付与時の幅広がり,圧 延荷重に最も影響を与える. (1992年1月7日受理)

参考文献

1)	野口ほか:30回塑加連講論,	(1981),	29.
2)	柳本ほか:41回塑加連講論,	(1990),	351.
3)	柳本ほか:生産研究,44-4	(1992),	35.
4)	野口ほか:36回塑加連講論,	(1985),	45.

5) 小森ほか:塑性と加工, 31-350, (1990), 364.

####