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1. INTRODUCTION

As the FRP rods are coming into greater use in the
field of concrete structures, the evaluation of their
optimum strength becomes more important. It leads,
through comparison with experimental results, to the
determination of the effects of different parameters
on their strength. Such parameters includes manufac-
turing defects, gripping methods. . etc.. The predic-
tion of the strength was carried out using the rule of
mixture that does not specify the characteristic value
of fibers strength or at which fiber length it should be
measured. Another approach is the bundle theory
that specifies the significant fiber length as the trans-
fer length, but assumes the matrix so rigid that it can
distribute the loads of the cut fibers equally to all the
sound fibers in the damaged section. On the con-
trary, in practical cases, the matrix is not a rigid
medium, and usually possesses very small young's
modules compared with that of the fibers. This limits
the effect of the cut fibers to only one layer of the
surrounding fibers. Hence, the effect of the relative
positions of the fibers in the section becomes a gov-
erning factor for the damage accumulation of the
fibers, and consequently composite strength.

In this research, the aforementioned effect is stud-
ied for the case of CFRP rods. A Monte Carlo work
is done for the evaluation of rod strength and compar-
ed with the mean values available in the literature
and with the predictions from the bundle theory.
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2. MAIN APPROACH

The fibers are distributed uniformly in a section
that is considered the most critical section along the
rod. Each fiber is assigned, at random, a strength
and modulus according to the experimental results of
the tensile testing of the actual fibers®. A strain
increment is applied to the section and the resulting
stresses in the fibers are calculated according to their
moduli. The resulting stresses are compared with
fibers strengths. Fibers with stresses higher than
their strengths are coded as cut fibers and their loads
are distributed to the surrounding, first layer of,
fibers. Stresses after distribution are again compared
with fibers strengths and the process is repeated till
the stability of the number of damaged fibers is
reached. Then, additional strain increment is applied
and the above procedure is repeated. Rod failure is
attained when fibers failure extends in unstable
manner, and the critical percentage of failed fibers is
taken, for certainty, 909%. The summation of the
loads in the sound fibers, at the last strain increment,
divided by the total section area is the strength. This
is based on the assumption of neglected matrix
stress. A computer program for the above process
was developed and its flowchart is shown in Fig. 1.

3. CALCULATION OF NUMBER OF FIBERS
INSIDE THE ROD

In order to have the fibers uniformly distributed in
the rod section, equal spacings between them should
be assured. The geometry of a hexagon suggests that
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Fig. 1 Flow chart of Simulation Program
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the arrangements of the fibers at its corners and
center will fulfill this requirement, see Fig. 2. Repeti-
tion of this hexagon will give the fibers array in the
rod. It also provides useful mean for the description
of the relative positions of the fibers in the array.
As the basic unit of this array is the hexagon, then
the fiber volume fraction (V) becomes the tatio of
the area of the fibers in the hexagon to the area of the

hexagon
2
3”?
Vf:3—1/?az (1)
2

where dy={fiber diameter
a=hexagon side length (fibers spacing)
(The number of fibers belonging to each hexagon is
F*6+1)
Hence, fibers spacing « is expressed as

_ /4
e A (2)

In order to avoid fibers overlap, the geometric
condition a<d; should be fulfilled. However, sub-
stituting = d in the above equation yields V,=0.907
which is larger than the practical maximum of V. In

A—df—p
-3y
s\ J/ \

\ /‘T: \ ¢\

\ , \v) /

kg

N N/
. _@ . {;@ _
\ \
Fig. 2 Hexagon, the basic Unit in Uniform fiber Array

this research, the value of V; is taken as 0.66 for
later use in assessing the actual performance of the
available rods. However, the application to any
volume fraction is straight forward.

4 . FIBERS STRENGTH AND MODULUS DIS-
TRIBUTIONS

The distributions used for fibers sirength and
modulus are obtained from experiments conducted on
individual PAN type carbon fibers each of length 25
mm®. When a fiber is cut at a certain section, it
needs a transfer length /. to retrieve its effectiveness
in strengthening the section, and along this length its
load is transmitted to the surrounding fibers. Hence,
the strength distribution used should be that of the
fibers of length=1/.. The length /. can be calculated
from the following formula

zrz:%lf (3)
where oy=normal stress in the fiber
7=matrix shear strength
d; =fiber diameter

The above equation yields /,=0.350mm, using
appropriate values for its parameters. The strength
distribution of fibers with 0.35mm long can be
predicted using the concept of weakest link described
by Weibull®. Weibull distribution in the form

F(x)=bmx" e " (4)
considers the effect of the length in the parameter &
where for two sets of specimens with lengths /, and £,

the parameters &, and 5, are related by A=%, and
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Fig. 3 Strength Distributions for Carbon Fibers at Stan-

dard Testing length

(25mm) and at Transfer Length (0.35mm)
Weibull modulus m is a material constant indepen-
dent of the length, Thus, the strength distribution at
length 0.35mm can be obtained from that of 25mm
long fibers. Both distributions are shown in Fig. 3.
The modulus distribution is taken the same as that of
25mm long fibers as it is not affected by the length.

5. RANDOM NUMBERS GENERATION

In order to assign, randomly, each fiber a strength
and modulus according to the experimental distribu-
tions obtained®, uniform random numbers need be
generated first. Uniform random numbers in the
range (0—1) were generated using a computer
routine?. The long cycle and randomness of these
numbers were assured through their plot in 2D space.
Fig. 4 shows a photograph for the generated numbers
and, for comparison, another one for a short cycle
random numbers. The randomstrengths and moduli
can, then, be obtained by using the formula

X=F%y) (5)
where X =required strength or modulus
y=generated uniform random number
F=cumulative probability function accord-
ing to which the value of X is to be
generated

The employed distribution for both strength and
modulus was Weibull distribution as its inverse, F!,
can be easily obtained. Besides, it represents, conce-
ptually, the variation of the strength.

6. RESULTS AND COMMENTS

The approach described above was applied to many
sets of random numbers in order to get the strength
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Fig. 4 upper) Generated Uniform Random Numbers.
lower) Uniform Randon Numbers with Short
Cycle.
distribution of the rods. The fiber volume fraction
was taken as 0.66. The effect of the number of the
fibers in the rod, for the same fiber volume fraction,
was studied. This corresponds to the effect of chang-
ing the rod diameter. The simulation was made for
five different fibers samples (number of fibers). For
each, at least 100 runs were executed and the
strength distributions were obtained. Those distribu-
tions are shown in Fig. 5 where the mean value and
the standard deviation of the strength decreases with
the increase of the number of fibers inside the rod.
For the biggest three samples, the distribution seems
to become insensitive to the number of fibers; where
at this point the number of fibers constitute a sample
representative to the fibers population. The stable
mean strength (217kg/mm?) agrees well with that
obtained from the rule of mixture, employing the
mean strength of the fibers at length 25mm, which is
220kg/mm?. It is well accepted that the rule of
mixture, as applied above, represents the actual
strength of carbon fibers composites (in standard
specimens) ¥,
When the bundle theory is applied”, the formula
for rods mean strength becomes
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Fig. 5 Simulated Strength Distributions for CFRP Rods
with Different Fibers Content

o=V {belme) (6)
where m =Weibull modulus
b,.=Weibull distribution constant for fibers
of length=1,
e=natural logatithm base (~2.7)
Equation (6) yields for carbon fibers the value of
281 kg/mm? that is about 309% higher than the actual
one. This overestimate is a direct consequence of the
assumption of rigid matrix assumed in this theory.
The randomness of the failure evolution in the
simulated rods was assured by developing graphics
program that takes the output of the simulation
program at each loading step and plots it on the
screen to show the damage accumulation in the sec-
tion. The output of this program is shown in Fig. 6
for four different cases, and it is obvious that the
failure evolutes from different positions in the section
which confirms the randomness of the results.

7. CONCLUSIONS

1. The optimum strength of FRP rods can be esti-
mated by simulating the accumulation of fibers
failures within rod section. This needs knowl-
edge of the fibers strength and modulus distribu-
tions in order to carry out a Monte Carlo work.

2 . The above concept was applied for the case of
CFRP rods and showed efficiency as it agreed
well with the known strength of such composites.

3. The simulation approach is an improvement for

Fig. 6 Randomness of Failure Evolution in the Simulated
Rods.
(Photographs Taken at Instability Stage)

the bundle theory that assumes the matrix as
rigid medium capable of distributing the loads of
the cut fibers equally to all the sound ones. Here,
the load can be distributed only to the first layer
of fibers surrounding the cut fibers. This is
because of the big diffrence between the moduli
of the fibers and the matrix that prevents the cut
fibers loads from further traveling.

4 . The same work is intended to be done for other
types of FRP rods too.

(Manuscript received, November 27, 1991)
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