MINARA MARKET (1997) MINARA MARKET (1997)

地上基準点が少ないときのNOAA AVHRR画像の幾何補正(3)

Geometric Correction of NOAA AVHRR Imagery with Few GCPs (3)

橋本 俊 昭*•村 井 俊 治* Toshiaki HASHIMOTO and Shunji MURAI

1.はじめに

前報^{11,20}において,写真測量で用いられる共線条件を利 用して衛星の位置および姿勢を求める方法を提案した。 幾何補正における次の処理は,未補正の画像を特定の地 図座標系へ並び変える再配列処理である。本報では,こ うして得られた衛星の位置および姿勢の情報から効果的 に再配列を行う方法を検討する。出力座標系としては, AVHRR画像の利用者がよく用いる等緯度経度座標系, メルカトール図法およびポーラーステレオ図法の3種と した。

一般に、衛星画像の幾何補正では、出力するべき地図 座標(x, y)に対応する原画像の座標(u, v)を求 め、その画素を出力画像へ並べる方法がとられる.この (x, y)から(u, v)への座標変換式は一般に複雑で あり解析的に求めるのはできない.そこで、集束計算が よく利用される.そのため、計算速度が非常に遅くなる. 再配列処理の高速化のためにいくつかの方法が報告され ているが、それらは4点補間法と走査関数法とに大別さ れる.前者は出力画像を矩形の小領域に分割し、小領域 の4隅の(u, v)のみを計算し、内部の座標は内挿法 で求めるものである³⁰.一方、後者は出力画像の1ライン に注目し、そのラインに対応する(u, v)を簡単な関 数形で表現するものである^{40.50}.本研究では、この両方法 の得失を明らかにし、AVHRR画像の補正法としての有 効性を処理速度の面から評価する.

2. 共線条件式の線形化

出力座標系における各点の座標が原画像上のどの位置 に対応しているかは,前報で得られた標定要素を用いて 次のように求められる.

ある地点の地図座標に対する画像座標を求めるには, その地点がいつ走査されたか,すなわち走査時点でのラ イン番号Lがわかればよい。そこで,共線条件式を未知 *東京大学生産技術研究所 第5部 変量Lの回りにテーラー展開して線形化すると以下のようになる。

$$Gx^{\circ} + \frac{\partial Gx}{\partial x} \Delta x + \frac{\partial Gx}{\partial L} \Delta L = 0$$
$$Gy^{\circ} + \frac{\partial Gy}{\partial y} \Delta xy + \frac{\partial Gy}{\partial L} \Delta L = 0$$

線形化した共線条件式を変形すると次式を得る.

 $(:: \partial Gx/\partial x = 0, \partial Gy/\partial y = -1)$

 $\Delta L = -Gx^{\circ} / (\partial Gx / \partial L)$

 $\Delta y = Gy^{\circ} + (\partial Gy/\partial L) \cdot \Delta L$

これらを用いて、逐次近似法により集束解Lおよび y を求める。得られた集束解より、画像座標値(u, v)= (Pixel, Line) は以下のように求められる。

 $u = tan^{-1}(y/f)/\Delta\theta + 2049/2$

$$\mathbf{v} = \mathbf{I}$$

以上の処理を,全出力点に対して行うと膨大な時間が かかる.そこで,高速化のために次に述べるような方法 がとられる.

3. 再配列の方法

3.1 4 点補間法

4点補間法において,最も問題になるのは分割する小 領域の大きさである.小領域が小さいと処理速度は遅く なり,小領域が大きすぎると内挿処理での誤差が大きく なる.また,一般に小領域は出力画像全体にわたって同 じサイズがとられるが,AVHRR画像のように歪みの大 きい画像では地図の投影法や地図化する地域により最適 な小領域サイズが異なると考えられる.そこで,等緯度 経度座標系とポーラーステレオ図法に対し,小領域サイ ズと内挿による誤差の関係を調べた.(メルカトール図法 は等緯度経度座標系と同等に扱える)誤差の検討点は, 一般に内挿により最も誤差が大きくなる中央点とし,最 大誤差が0.5画素未満であればよいとした.

結果を表1に示す。

 *東京大学生産技術研究所第5部
 等緯度経度座標系の場合,小領域の面積を緯度差と経

生産研究

(1) 緯度・維度/空禄术										
断 面 -		緯·約	経度差		ピクセルの誤差		ラインの誤差			
	緯度	経度	縦横比	面積	εS.D.	Emax	εS.D.	Emax	適省	
A	1.1°	0.5°	2.2	.55	.3662	.5422	.0126	.0251	X	
	1.3°	0.43°	3.0	.56	.3184	.4692	.0176	.0397	0	
	1.4°	0.4°	3.45	.56	.3167	.4707	.0215	.0454	0	
	1.51°	0.37°	4.1	.56	.3192	.4518	.0237	.0497	O	
	1.6°	0.35°	4.57	.56	.3214	.4617	.0263	.0573	0	
в	1.3°	0.43°	3.0	.56	.3169	.4752	.0146	.0347	0	
	1.4°	0.4	3.45	.56	.3151	.4700	.0166	.0383	O	
	1.51°	0.37°	4.1	.56	.3149	.4743	.0210	.0517	0	
С	0.93°	0.6°	1.55	.56	. 2588	.4612	. 0255	.0451	0	
	1.1°	0.5°	2.2	.55	.2795	.4469	.0217	.0426	O	
	1.19°	0.47°	2.53	.56	.2851	.4547	.0212	.0423	0	
	1.3°	0.43°	3.0	.56	.2871	.4615	.0211	.0423	0	
	1.4°	0.4°	3.45	.56	.2943	.4851	.0239	.0480	0	
n	0.6°	0.93°	0.65	.56	.2776	.4582	.0690	.0901	0	
	0.75°	0.75°	1.0	.56	.2493	.4260	.0429	.0613	O	
-	0.93°	0.6°	1.55	.56	.2588	.4612	.0255	.0451	0	
1	1.1°	0.5°	2.2	.55	.2978	.5455	.0216	.0397	×	
	0.6°	0.93°	0.65	.56	.1005	.2159	.0261	.0386	O	
Е	0.75°	0.75°	1.0	.56	.1514	.3290	.0201	.0325	0	
	0.93°	0.6°	1.55	.56	.2278	.5256	.0186	.0337	ΙX	

度差の積で考えると全地域にわたってほぼ0.55にとるこ とができる。最適な小領域の縦横比は地域差が見られ, 低緯度の約4から高緯度の約1までほぼ線形に変化して いる。計算機処理においては,小領域の面積を一定とし 矩形の縦横比を緯度によって可変なものとした。

ポーラーステレオ図法の場合は全地域にわたって小領 を緯度によって可変なものとした.なお,表2では衛星

域の縦横比を3前後に選ぶのがよいことがわかる.また, 小領域の面積について縦・横を半径に対する千分率で表 した単位を用いて考えると,緯度60°以上では約40,40°付 近で約50,20°付近で約60にとれば効果的である.計算機 処理においては,矩形の縦横比を一定とし小領域の面積 を緯度によって可変なものとした.なお,表2では衛星

.1385

.0097

.0653

.0780

.0082

.0079

.0346

.0415

.0069

0

Ο

Ο

 $^{\odot}$

 \times

Х

0

O

Ο

11.8

5.

11.

11.8

5.

11.

11.8

4.5

4.5

D

Ε

断面		小領域	のサイズ		ピクセルの誤差		ラインの誤差		** *
	縦*	横*	縦横比	面積	εS.D.	€ _{max}	εS.D.	€ _{max}	週召
	10.	5.	2.0	50.	. 3328	. 4963	.0645	.0846	0
Δ	11.	4.55	2.4	50.	.3149	.4806	.0915	.1118	
п	12.5	4.	3.1	50.	.3107	.4775	.1289	.1557	O
	13.2	3.8	3.5	50.	.3160	. 4833	.1454	.1760	0
В	12.2	4.9	2.5	60.	.2821	. 4389	.0956	.1005	0
	13.3	4.5	3.0	60.	.2857	. 4485	.1204	.1216	O
	14.6	4.1	3.6	60.	. 3035	.4808	.1516	.1570	0
	12.5	4.	3.1	50.	. 3258	.5434	.1100	.1521	X
	13.2	3.8	3.5	50.	.3196	.5288	.1252	.1720	×
c	11.	3.65	3.0	40.	.2658	.4290	.0830	.1169	0

40.

25.

40.

40.

25.

20.

40.

40.

20.

.4320

.4861

.4333

.4195

.5498

.4481

.4192

.4019

.4510

.2542

.3197

.2588

.2379

.3682

.2999

.2350

.2183

.2958

.0991

.0034

.0387

.0451

.0027

.0027

.0132

.0171

.0022

*)縦・横の長さは半径に対する千分率で表現

3.4

5.

3.65

3.4

5.

4.5

3.65

3.4

4.5

3.5

1.0

3.0

3.5

1.0

1.0

3.0

3.5

1.0

の航跡が図中のほぼ鉛直方向の場合であるが、南極大陸 のモザイクを作成するときのように種々の方向の画像を 用いることもある。このような場合は、縦横比を1とし 小領域の面積を約20とすればよい。

3.2 走查関数法

本研究では文献⁵に準じた方法を検討する.まず,出力

座標系上に縦横の格子線を考える.その中の1横線に注 目し、その線上の点(x, y)に対応する(u, v)を 多項式で表現する.このときyは一定値となるので, x のみの関数で次のように表現できる.

$$u = P_0 + P_1 x + P_2 X^2 + P_3 X^3 + \cdots$$

$$v = R_0 + R_1 x + R_2 X^2 + R_3 X^3 + \cdots$$

12 44巻1号(1992.1)

研

.

生產研究

				表 2	画素関数,	ライン関数によ	る残差(等緯	度経度座標系)		
내 너라	関数の次数*				緯・経度差		ピクセルの残差		ラインの残差		~ 不
শন্ত শহ	Р	Q	R	S	緯度	経度	εS.D.	ϵ_{\max}	εS.D.	€ _{max}	
	2				12.5°	10.0°	.0151	.0732	.0256	.1280	0
		2	2	2	15.0°	12.0°	.0321	.1477	.0390	.1940	0
					20.0°	16.0°	.1116	.6032	.0821	. 3906	
曲	3	2	3	2	20.0°	16.0°	.1051	.5422	. 0590	.3616	X
丁					25.0°	20.0°	.0146	.0387	.0192	.0708	0
市平	2	3	3	3	30.0°	24.0	.0199	.0662	.0386	.1546	0
度	5	5	5	5	40.0°	32.0°	.0580	.1803	.1021	.3916	0
地					45.0°	36.0	.0918	.4423	.1396	.5197	
域	4	2	4	2	45.0°	36.0°	.0772	.3479	.0838	.4345	0
	4	3	4	3	50.0	40.0°	.1301	.6279	.1287	.6665	\times
	5	3	5	3	50.0°	40.0°	.1239	.5001	.1330	.6795	X
					50.0°	40.0°	.0375	.1764	.0182	.1013	0
		4	4	4	55.0°	44.0°	.0440	.2215	.0299	.2301	0
	4				55.0°	48.0°	.0509	.2482	.0340	.3324	0
					55.0	52.0	.0482	.2460	.0340	.3518	0
低	2		2	2	12.5°	10.0°	. 1521	. 4089	.0233	.0866	0
		2			15.0°	12.0°	.2617	.7050	.0369	.1395	X
					20.0°	16.0	.4371	1.5743	.1471	.5363	\times
緯		0	 ^	0	40.0°	32.0°	.0633	.2516	.0641	.2415	0
度	3	3	3	3	45.0°	36.0°	.0692	.2701	.0998	.4173	0
地		•		0	45.0°	36.0°	.0541	.2677	.0746	.2789	0
域	4	3	4	3	50.0°	40.0°	.0634	. 3300	.0124	.6290	×
					50.0°	40.0°	.0490	.1460	.0150	.0507	0
	4	4	4	4	55.0°	40.0°	.0707	.2941	.0225	.0555	0
		<u> </u>			15.0°	12.0°	.0175	.0843	.0487	.1336	0
		2	Z	Z	20.0°	16.0°	.0497	.3572	.1063	. 3582	0
					40.0°	32.0°	.0392	.1454	.0791	.2857	0
	3	3	3	3	45.0°	36.0°	.0525	.2299	.1202	.4432	0
					50.0°	40.0°	.0753	.1982	. 1598	.5906	$ \times$
高	4	3	4	3	50.0°	40.0°	.0570	.1938	.1184	.3041	0
44					55.0°	44.0°	.0360	.1647	.0240	.1268	0
凝					55.0°	48.0°	.0524	.3838	.0305	.2006	0
度	4	4	4	4	55.0°	52.0°	.0637	.5501	.0416	.4123	$ \times$
110					55.0°	60.0°	.1270	1.5826	.0831	1.1136	$ \times$
					25.0°	60.0°	. 0269	.1611	.0199	.1448	0
域					55.0°	52.0°	.0331	1843	.0213	. 1205	0
	5	4	5	4	55.0°	60.0°	.0652	1.0393	.0306	.2949	$ \times$
					55.0°	80.0°	. 4478	.9.3949	.1666	3.0002	\times
		E	E	5	55.0°	60.0°	.0339	.3676	.0111	.1665	0
	⁵	5	Э	Ð	55.0°	80.0°	.1410	2.7645	.0200	.3466	$ \times$
*)	 *) P: 画素関数の係数 Q: Pの緯度に対する係数 										

究 速

- ÷.

R:ライン関数の係数 S:Rの緯度に対する係数

画像のカバレッジは以下のとおり, 中緯度地域:(N60.2°, E110.2°) -(N68.3°, E155.1°), (N 7.5°, E104.5°) -(N 3.6°, E129.2°) 低緯度地域:(N35.0°, E 75.2°) -(N40.0°, E107.3°), (S13.0°, E 90.2°) -(S 8.3°, E116.4°) 高緯度地域:(N86.0°, E 7.2°) -(N68.3°, W143.1°),

(N38.6°, E109.4°) -(N34.1°, E140.1°)

1.14

緯経度差		出力	干法	処理時間	CPU時間	~ 一 一		
緯度	経度	サイズ	ŢД	(秒)	(秒)	四 安		
50°	40°	2500L x	4 点補間	460.	98.	小 領 域 数 3,525		
		2000P	走査関数	655.	113.	次数はすべて4次		
10°	10°	500L x	4 点補間	46.3	11.5	小 領 域 数 200		
		500P	走查関数	54.8	12.1	次数はすべて2次		

両式のうち,前者を画素関数,後者をライン関数と呼ぶ ことにする.この処理を全横線について行う.次に,多 項式の各係数(P_i, R_i)を縦方向に再び多項式表現する.

この方法では、多項式の次数が補正精度および処理速 度に影響する。最適な次数は地図の投影法や地図化する 地域により異なると考えられるので、3.1と同様に等緯 度経度座標系に対して、多項式の次数と残差の関係を調 べた。(3で述べるように走査関数法は4点補間法よりも 処理速度が多少劣るのでポーラーステレオ図法の検討は 省略)検討地域は緯度に応じて3種類行った。

結果を表2に示す.中低緯度地域では、対象地域が大 きくなるにつれて多項式の次数を上げてやればよいが、 高緯度地域では経度差が非常に大きくなるので、次数を 上げてもあまり効果がない.むしろ領域を分割して低い 次数の多項式を利用すべきである.多項式の最適な次数 を考える場合,たとえば、PとQの次数が共に3で残差 が大きい場合,(P,Q)=(4,3)または(5,3) とするよりも(4,4)とする方が効果的である.そこ で、計算機処理にあたっては、低い次数からはじめて残 差をチェックし、残差が大きい場合はPもQも共に次数 を1次上げて再度チェックする.(RとSについても同 様)これを繰り返し、5次式でも不満足の場合は、領域 を分割して再び同様の処理を行うようにした.

4. 処理速度の評価

再配列の両手法を処理速度の面から比較した.4点補 間法の場合は小領域の大きさ,走査関数法の場合は多項 式の次数を対象地域に応じて変化させる必要があるが, この判断に人間が介在するのは処理速度の低下になる. そこで,2で示したようにすべて計算機処理による判断 とした.

検討に使用した計算機は、SUN SPARC STATION 379GXPである。フルシーンとサブシーンについて等緯 度経度座標系に図化したときの処理時間を求めた。結果 は表3のとおりである。いずれの場合も、4点補間法の 方が走査関数法よりも処理速度が優っている。

5.結 論

AVHRR画像の幾何補正における再配列処理として 4 点補間法と走査関数法を検討した.処理速度に大きく 影響する要素である4 点補間法の小領域の大きさ,走査 関数法における多項式次数について,補正精度を落とさ ずに最も高速処理が可能な値を見いだした.この最適値 を用いて実際の処理速度を比較したところ4 点補間法の 有効性が確認された. (1991年9月20日受理)

参考文献

- 橋本,村井「地上基準点が少ないときのNOAA AVHRR画像の幾何補正」,生産研究,1991,43巻8 号,pp44-47
- 橋本,村井「地上基準点が少ないときのNOAA AVHRR画像の幾何補正(2)」,生産研究, 1991, 12 号, pp1-5
- 高木,桧山,曽根,尾上「気象衛星NOAA画像における 幾何学的ひずみの自動補正法」,電子情報通信学会論文 誌,1988, Vol. J71-D No. 5, pp883-893
- 前田「地球資源衛星(LANDSAT) MSSデータの地理 的補正に関する研究」,東京大学学位論文,1979
- 5) 細村,下田,坂田「NOAA AVHRR画像の高速幾何補 正の一方法」,第17解画像工学コンファレンス,1986, pp247-250

###