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1. Introduction

The objective function and constraint conditions

employed in structural optimization are nonlinear by

nature. Most of the optimization techniques devell

oped so far make use of variability of the objective

function and its first-Order derivatives with respect to

design variables only, while the secondl0rder deriva･

tives are set aside. Hessian matrix, which is fomed

by the second-Order derivatives or sensitivities a汀an一

ged in a square matrix, has been used in the variable

metric methodl). The entities of the Hessian matrix

are not evaluated rigorously but are approximated on

the basis of changes of the firs卜order derivatives, in

usual, however. Such approximation of the Hessian

matrix tends to lose useful information , which can be

derived from the objective function, So that optimiza-

tion design has been prone to be inert and laborious so

far.

This note shows that constrained optimization

problems can be made straightforward and efficient

by the use of accurately evaluated Hessian matrix,

which is applied to standardization of the quadratic

approximation of the objective function into a cir-

cumscribed hyper-sphere. The circumscribed hyper-

sphere enaもles us to search the minimal objective

function systematically. A fomulation is presented

to find the minimalValue of the objective function

under linear inequality conditions and is discussed

with a simple but typical numerical example.

2. Eigenvalue Analysis of Hessian Matrix

Suppose that we have a prototype design, N stmc-
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tural parameters of which are indicated by upper bars

and to be changed to obtain the minimal objective by

use of design variables an asgiven in Eq. ( 1).

xn-xn(1+an), n-1-N (1)

The second-order approximation of change of any

objective function メ near the prototype design is

expressed by Eq. ( 2 ) , where iF)T stands for a row

vector consisting of the first-order sensitiveities, and

lH] the Hessian matrix of the second-order sensitiv-

ities. Superfix T denotes transpose hereafter.

f(xn)-f(-xn)+(F)T(αn〉+〈αn)T[H](αn) (2)

The first and second-Order sensitivities of the finite

element analysis are evaluated for the prototype

design by means of perturbation technique2). The

Hessian matrix furnishes us with N eigenvalues An

and modalmatrix lQ ]. The result of such eigenvalue

analysis can be used for linear transformation

between the basic design variables αn and standard-

ized design variables En in the form of Eq. ( 3 ) ,

(αn)-[T]〈£n) (3)

where lT] is a transformation matrix defined as

follows,

[T]-lQ]T diLq ll/花][¢]　　　　(4)

in cases that the Hessian matrix is positive-definite.

3. llypersphere Derived from Quadratic Function

The transformation matrix lT] enables us to re-

write the objective function in the form of Eq. ( 5 ) ,

f(xn) -i(-xn) +(B)T〈en)+(en)T[Z](sn)　( 5 )

where lI] is unit matrix, and (BP is equal to
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(F)TlT]. This procedure means that the original

quadratic of the objective function is expressed as a

hypersphere in the standardized design variable

space. The hypersphere has a center and features

that the magnitude of the objective function is related

unlquely to the distance from the center. This means

that the objective function which satisfies the con-

straint conditions takes minimal value on the surface

of the feasible domain when the center is outside the

domain. Then it can be devised to find a hypersphere

which touches the hyperplanes from the outside for

the search of the minimal objective funcuion. This

hypersphere is called circumscribed hyperesphere

hereafter. The transformation can be applied also to

constraint conditions, So that ∫ linear inequality

constraint conditions are expressed as given below,

where sj,z and dj indicate the sensitivity of the i-th

responsewith respect to the n-th design variable and

the deviation between the prototype structural

response and its limiting value, respectively.

.〟

∑ sjngn-di≦ 0, i-i-I
n-1

(6)

This expression implies that the feasible domain of

the design variables is confined by the hyperplanes.

4. MiI一imi2;ation Using Circumscribed

Hyp erspll ere

Equation ( 5 ) simply determines the center of the

hypersphere as (sn)--〈B)/2 in any case. In case if

this center falls in the feasible domain defined by Eq.

( 6) , the constraint minimization problem can be

solved very easily and straiqhtforwardly, that is, the

center gives rise to the basic disign variables that

minimize the objective function after the inverse

transfomation of Eq. ( 3 ). Such trivial cases are

omitted from the following discussion.

In cases that the center is outside the feasible

domain, namely , the stationary point of the objective

function does not result in the minimal point because

of the inequality constraint conditions, We make use

of the feature of the hypersphere. In these cases, the

design variables corresponding to the minimal objec-

tive function are located on the hyperplane, and can

be searched by means of the circumscribed hyper-

sphere having the largest distance from the center.

4. 1　Circumscribed hypersphere decided by a

hyperplane

Figure 1 illustrates the circumscribed hypersphere

touching a hyperplane in a simple case of 〟-2 and

∫-3, the feasible domain being expressed by mat-

ting. The point 0 denotes the aforementioned center

of the hypersphere outside the feasible domain. The

design variables corresponding to the center are in-

dicated by asterisk. The radius of a hypersphere

touching the j-th hyperplane Rj isgiven by the fol-

lowing formula ( 7).

Rj- (n等1 Sjnen･-dj) /ノ
.〟

∑　sjn2

n-1

(7)

It is easy to find the circumscribed hypersphere to the

feasible domain by means of combing out the largest

radius Rm ofEq. (7). Thepoint A in Fig. 1gives

rise to the largest radius. The design variables at the

touch are obtained as the foot of the perpendicular

from the center to the hyperplane as follows, being

indicated by prime.

e'l-e亨-Rmsml

ヽ　テ
∑　smn2, l-1-N　(8)

)Z=1

It is also easy to examine whether the design vari-

ables corresponding to the foot satisfy all the con-

straint conditions or not. It turns out that the design

varibles that minimize the objective function can be

Fig. 1 Circumscribed circle in contact with a line
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determined by the circumscribed hyperplane having

the largest radius and the foot on the hyperplane.

The radii of ｡A and OB are positive, while the radius

of OC is negative. The center 0 falls in a domain

where the inequality constraint condition relating to

the point C is satisfied. If the foot of the circum･

scribed hypersphere is found to be outside the feasible

domain, we should proceed to the search described in

the following.

4. 2　Circumscribed hypersphere decided by inter･

section of hyperplanes

The circumscribed hypersphere is likely to be

searched on the intersection of the hyperplanes in the

cases of more inequality constraint conditions than

design variables. Figure 2 illustrates the situation in

the case of 〟-2 and ∫-3, when an inequality

condition is made idle. In this case of Fig. 2, the

point A correspoinding to the largest radius described

in the preceding section is found to be outside the

feasible domain. Then we shift the point of interest

to the point A and look for the foot on the other

hyperplanes, to which the perpendicular from the

point A becomes positive and longest. Suppose that

the foot is found to be the point B, to which the point

of interest is shifted further. When the point B is

outside the feasible domain, the above mentioned

procedure is to be repeated to trace the points C, D

and so forth. It is not necessary to reiterate the

procedure until the successive points are converged to

an intersection of two hyperplanes, because we can

know a set of the decisive hyperplanes specifying the

intersection on which the circumscribed hypersphere

should be searched, when the procedure is repeated J

times at most. Then the circumscribed hypersphere

can be detemined as the hypersphere having the

smallest radius from the center 0, for wihich the

dicisive constraint conditions are taken as equality

conditions. The determination can be done by means

of the sift synthesis solution3) Or the Moore-Penrose

α2

Fig. 3　Circumscribed ellipse in contact with an apex

Fig. 2　Successive shift of points of interest Fig. 4　Circumscribed circle in contact with an apex
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generalized inverse solution4).

5. Numerical Example

Equations ( 9 ) and (10) are the objective function

to be minimized and associated linear inequality

constraint condtions, as shown in Fig. 3.

f(αn) - - γ々(α1+a2) +2.5α1213.0α1α2+2.5α22

(9)

-α1-a2+2≦0

-0.25α1-a2+ 1 ≦ 0

-α1+α2+2≦0

(10)

The ellipse in Fig. 3 is transfomed into the circle

in Fig. 4 by virtue of the standardization due to the

Hessian matrix. Figure 4 shows the circumscribed

hypersphere searched on the intersection. The basic

design variables of the point Q in Fig. 3 can be

obtained easily by the inverse transfomation of the

point Q′ in Fig. 4.

6. Concluding Remarks

The present formulation is able to search the design

variables that minimize the objective function inside

the feasible domain in a straightforward way which

requlreS Simple arithmetic only , once the transforma-

tion matrix is generated on the basis of the Hessian

matrix.

When the Hessian matrix is lack of definiteness,

we had better omit some of the design variables so

that all the eigenvalues are turned to positive. In case

of such omission taken, it is meant that the minimiza-

tion is done approximately by means of reduced

number of the design variables. The present formula-

tion should be sophisticated to compensate the

approximation.

(Manuscript received, October 1, 1991)
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