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Modelling of Non-Linear of Stress-Strain Relations of Soils and Rocks
——Part 2, New Equation——
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INTRODUCTION

In the first part (Tatsuoka and Shibuya, 1991), itis
shown that the original hyperbolic (OH) relation and
other forms of hyperbolic relation with constant
parameters of strength and initial stiffness can simu-
late only a part of a given observed stress-strain
relation, or even cannot utterly. It is expected, there-
fore, that the hyperbolic relation with the coefficients
of correction ¢, and ¢, either or both of which is (are)
a function of strain x may simulate better a given
observed stress-strain relation. In this second and last
part, this point will be examined. In particular, a new
form of hyperbolic equation is proposed, which can
model most stress-strain relations of soils and rocks
from very small strain levels to the peaks stress
condition. In addition, modified forms of hyperbolic
equation and other functions are also discussed.

HYPERBOLIC MODELS USING
NON-CONSTANT PARAMETER(S)
(2-1) Method using the strength paramater as a
function of strain:

Hardin and Drnevich (1972) has noticed that for a

better degree of fitting, Eq. (5) is to be modified as:
Geo/Grax=1/(1+ ),
m=x+{1+a-exp(-b*x)}, x=d(9)sa/ %
(10)
, which is equivalent to use Eq. (6): y=x/(1/c,+x/
c;)with ¢,=1.0 and c,=1/{1+a-exp(—b+x)}. This
relation with a=—0.5 and b=0.16, which were
obtained for air-dried clean sands by Hardin and
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Drnevich (1972), is denoted as (4, —1) in Figs. 1
through 6. Obviously, this relation is even worse than
the OH relation in simulating the ML PSC test data.

However, a much better degree of the fitting of Eq.
(10) to the observed relation may be obtained by
selecting more appropriate values for the parameters
‘a’ and ‘b’. Namely, in Fig. 7, at the point A, the
diagonal from the top right corner to the bottom left
corner intersects with the observed relation of the ML
PSC test. Note that this diagonal means x=1.0.
When the relation of Eq. (10) passes the point A, we
obtain y(x=1)=1/{2+a*exp(—b)}, or a*exp(—b) =
1/y(x=1) —2. For the ML PSC data, y(x=1) is equal
to 0.215 and this value gives a*exp(—b)=2.651. On
the other hand, the initial linear part of the observed
(y/x—y) relation seen in Fig. 7 can be expressed by
y/x=1/{14%/c,(0)}, or y/x=1—y/c,(0) . The value
of ¢;(0) by Eq. (10) is 1/(1+a), which is 0.142 for the
ML PSC data. Then, a=6.04 and b=0.824 are
obtained. The relation of Eq. (10) with these values of
‘a’ and ‘D’ are denoted as (y,—2) in Figs. 1 through 6.
It may be seen that even this relation can model only
the very initial part of the observed relation. Note
particularly that, at large values of %, Eq. (10) with
a=6.04 and b=0.824 collapses into the OH relation.
Since the ML PSC test data is typical of the
monotonic loading stress-strain relations of un-
cemented soils, it can be said that Eq. (10) is not able
to model various stress-strain relations for a wide
range of strain of uncemented soils.
(2-2) Method using the two parameters as a func-

tion of strain:

Letting y. be the stress at the elastic limit, the

equation with ¢, and ¢, as a function of x for y=y,.

becomes:
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‘When the term vy, is ignored for simplicity in model-

an

ling a siress-strain relation excluding the very initial
parts at very small sirains, we obtain:
X
=1, ) +x/c;®)
From the condition that dy/dx=1.0 at x=0.0, we
obtain that ¢,(0)=1.0, and from the condition that
dy/dx=0 at x — o, we obtain that dc,/dx (x — ) =
0. Among various other possible functions which

(12)

satisfy these conditions, the following functions will
be examined:
1+ C (X = OO)

¢ (x)= 2 +
1—¢, (x=00) 7
2 cos{ (a/x)“’+1} (13)
2 (x) G0 ¢ (x=0) +sz (x=c0) +
¢2(0) —c, (x=00) 7
2 cos{ (ﬁ/x)"+1} or))

Using m=n=1.0 as the first approximation, the other
parameters ¢, (k=) , ¢;(0), ¢;(x=00), # and g can
be determined as follows. For the y/x—y plot of the
data shown in Fig. 7, c;(0) is the intersect at the y
axis of the linear relation fitted to the initial part of
the observed relation. ¢, (x=00) and c,(x=0) are the
intercepts at the y/x axis and the y axis, respectively,
of the linear relation fitted to the observed stress-
strain relation at large strains, which can be obtained
from the linear fitting as shown in Fig. 5. In Fig. 7,
at the point A, the diagonal for which x=1 intersects
with the observed relation. Next, draw the line which
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Fig. 7 Parameters for hyperbolic relation using
coefficients as a function of x

is tangent to the observed relation at the point A. The
intersects of this line with the y/x axis and the v axis
are ¢, (x=1) and c,(x=1), respectively. The values
of # and g8 are obtained by substituting these values
of ¢;(x=1) and ¢, (x=1) together with x=1 into Egs.
(13) and (14) . Fig. 8 shows the functions ¢, (x) and c,
(x) with the parameters obtained by these procedures
described in the above. This modified hyperbolic
relation is denoted as (MH) in Figs. 1 through 6 in the
first part (Tatsuoka and Shibuya, 1991). It may be
seen that this relation fits very well the ML PSC test
data for a range from very small to large strains. It
has been found that this equation can model satisfac-
torily all the stress-strain relations which have been
obtained so far in the authors’ laboratory.

The value of y at the point A, which isy at x=1.0,
is the important parameter which determines the
value of « and B. Since the value of y(x=1)
increases as the linearity of stress-strain relation
increases, this parameter can be called the linearity
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Fig. 8 Coefficients ¢, and ¢, as a function of x
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index. For example, the value of y(x=1) is 1.0 and
0.5 for the linear relation and the OH relation, respec-
tively. Fig. 9 shows the relationship between the
linearity index and the ratio Eso/Emax for a wide
variety of geotechnical materials. The value of E,
can be obtained from the conventional testing method
using undisturbed sample and the in situ value of Eyax
can be obtained from the in situ shear wave velocity.
MODIFIED FORMS OF HYPERBOLIC
EQUATION AND OTHER FUNCTIONS

Prevost and Keane (1989) and Griffiths and Prevost
(1990) proposed a modified version of hyperbolic
equation which satisfies the condition that the stress
-strain relation has zero tangent modulus at the peak
stress at a finite strain x: i.e., dy/dx (x;) =0. It can be
shown readily that for their proposed equation, y is
always larger than x/(1+x). Therefore, referring to
Figs. 1 through 6, it is obvious that their equation
does not simulate utterly the ML PSC test data, even
worse than the OH relation, except in simulating the
stress-strain relation at and near the peak.

One may consider that the other forms of equation
rather than the hyperbolic may be used. One of the
functions which satisfy the conditions: y(x=0)=0,
dy/dx (x=0) =1, dy/dx>0 and d?y/dx?*<0 for y=
0~1, and ymax=1.0 is:

dy/dx= (1—y/c,)™*+ (15)
, in which ¢, =1 and the condition dy/dx=0at y=1.0
is satisfied only when c,= 1. Eq. (15) becomes the
original hyperbolic when c,=1 and m=1. By inte-
grating Eq. (15), we obtain the following equations,
each of which is valid up to y=1:
(@) When m=—1, the material is linear elastic;

y=x (16)

() When—1<m<0; y=c,{1— (m*x/c,+1) }-¥™ (17)

in which y=c, when x=—c,/m.
(¢) When m=0; y=c,{1—exp(—x/c,)} (18)
(d) When 0<m; y=c,[1—{c./ (m-x+c,) }¥™]  (19)
It has been found that even when the appropriate
value is selected for m, Eq. (15) can model a given
stress-strain relation only in an approximated way.

For a better fitting, particularly at small strain
levels, one may introduce a correction function in the
form of derivative, dr(x)/dx, as:

dy/dx= (1—y/cy)™+dr (x)/dx (20)
in which dr(x)/dx is 1.0 when x=0, has a large rate
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of change at a small value of y and converges to 1.0
when x — oo, For example, the following function, r
(x), satisfies these conditions:

rx)=x+ (c¢/b) {1—exp(—b/x)« (bx+1)}

dr(x)/dx=1+c-x*exp(—b/x) 21)
in which b and ¢ are the specimen constants. Then,
the integrated equations of Eq. (20) are obtained
from Eqgs. (16) through (19) by replacing x with r(x).
One of disadvantages of this method is that it has
many parameters which can be determined only by
the method of try and error. It has also been found
that Eq. (20) cannot be better than the newly
proposed model (ie, Eq. (12) with Egs. (13) and
(14)).

SUMMARY

The modified hyperbolic equation proposed by
Hardin and Drnevich (1972), for which the strength
parameter is a function of strain, was found not able
to model the overall stress-strain relation of sand
similarly to other versions of hyperbolic equation
having constant parameters. Some other models also
were found unsatisfactory. A new form of hyperbolic
equation, which has the parameters of initial stiffness
and strength as a function of strain, is proposed. It
was found that this new model can simulate a given
stress-strain relation very well.

(Manuscript received, June 25, 1991)
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