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Ant ónio Rui Ferreira Rebord ão,
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An adaptive Speech Denoising System based on ICA with

Voice Activity Detection

António Rui Ferreira Rebordão, MSc
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Supervisor: Professor Keikichi Hirose

This contribution presents an innovative system for adaptive speech denoising us-

ing Independent Component Analysis (ICA) and Voice Activity Detection (VAD) in

low dB-SNR environments. The implemented experiments consider instantaneous

mixtures (two sources and two microphones) where the proposed system identi-

fies the noise contained in each noisy mixture, applies the most suitable block ICA

method among 3 methods (FastICA, Kernel ICA and JADE) and, after source sep-

aration, automatically identifies the estimated speech signal. The ICA suitability is

in accordance with the detected noise, the signal mixtures are non-linear and the

proposed system extracts information that can be used for further pre and/or post-

processing and for improving the block ICA’s output. The process is completely

automatic from the source recording to its output and such system has a wide

range of applications and significant potential over the conventional approaches.
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Chapter 1

Introduction

1.1 General introduction

For Huang (2001) since human prehistory that speech communication has

been and will be the dominant mode of human social bonding and information ex-

change. The spoken word is now extended, through technological mediation such

as telephony, movies, radio, television, and the Internet. This trend reflects the pri-

macy of spoken communication in human psychology. In addition to human-human

interaction, this human preference for spoken language communication finds a re-

flection in human-machine interaction as well. Most computers currently utilize a

graphical user interface (GUI), based on graphically represented interface objects

and functions such as windows, icons, menus, and pointers and their operating

systems also depend on a users keyboard strokes and mouse clicks, with a display

monitor for feedback. It is easily seen that todays computers lack the fundamental

human ability to speak, listen, understand, and learn. However, speech, supported

by other natural modalities, will be one of the primary means of interfacing with

computers, changing the way we live and work [1].

In some environments (e.g. inside a car, public mobile phone usage, etc.),

higher flexibility and safety standards can be achieved by using human voice com-

mands to retrieve information from navigation systems or execute simple command

tasks [2]. A number of commercial speech recognition systems are already avail-

able (e.g. speech support in Microsoft Office 2007). However the performance

of those systems degrade substantially under real-world conditions because the
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physical channels used in the process are prone to signal distortion and musical

noise. Consequently the speech signal is recorded as a mixture of several signals

mixed together and so it arises the need for speech enhancement.

1.2 Speech enhancement overview

Speech enhancement aims at improving the performance of speech com-

munication systems in noisy environments by suppressing the noise and improving

the perceptual quality and intelligibility of the speech signal [3], mainly through

noise reduction algorithms. Such types of processes may be applied to a mobile

radio communication system, a speech recognition system, a set of low quality

recordings, or to improve the performance of aids for the hearing impaired.. This

problem remains a challenging task in real-world environments [4] and to solve it

several approaches were made. However, such approaches can be significantly

improved if they take into account some factors [5] related with the nature and

properties of noise.

For extracting information about the noise contained by the noisy mixture it

is important to identify the noise source(s) and how they behave through time. For

such aim it is possible to use techniques like Voice Activity Detection algorithms that

allow the identification of the voiceless components contained in the noisy mixtures

and by analyzing them is possible to extract valuable information that can be used

for effective speech enhancement.

Due to its significant importance in todays information technology, the topic

is widely researched. The performance of such systems is mainly evaluated ac-

cording to the quality and intelligibility. The quality of the enhanced signals refers

to its clarity, distorted nature and the level of the residual noise in that signal. Most

speech enhancement methods improve the quality of the signal however degrades

its intelligibility, which refers to the understandability of the enhanced speech; the

percentage of words that could be correctly identified by the listener. Human lis-

teners can usually extract more information from the noisy signal than from the

enhanced signal by careful listening. Since quality and intelligibility require live lis-

tening sessions, they are both time consuming and expensive to measure. That

is why; researchers mostly use some mathematical measures which are believed

to be correlated with the quality and intelligibility of the enhanced speech. For this
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purpose, signal-to-noise ratio (SNR) and perceptual evaluation of speech quality

(PESQ) tests are widely used to show the performance of the proposed algorithms

in terms of their quality. For assessing the intelligibility of the enhanced signal,

automatic speech recognition tests are commonly used.

1.3 Speech enhancement methods

Speech enhancement schemes currently available can be subdivided into

single microphone and multiple microphone methods. Single-microphone algo-

rithms are most commonly encountered and are based on temporal-spectral infor-

mation about the recorded signals [6]. A variety of schemes combining different

time-spectral and cepstral domain based speech processing methods have been

proposed for robust speech recognition purposes [7, 8]. The traditional framework

used in single-microphone enhancement techniques is a probabilistic one with sta-

tistical models of a speech signal corrupted by additive Gaussian noise [9]. The

noise signal estimate is commonly adapted from the most recent recording, i.e. a

few seconds before the command is spoken, or voice activity detection algorithms

are used to estimate noise power from noisy speech silence intervals. This ap-

proach works well when the noise signal is reasonably stationary. Perceptually

inspired processing techniques [10] and variations of cepstral mean subtraction

approaches for speech recognition [11] have been successfully applied to handle

convolutional noise and speech reverberation as well. However performance is un-

satisfactory when strongly reverberated speech signals recorded in non-stationary

noise environments are considered or the desired speaker signal is corrupted by

highly interfering speech sources [6].

To overcome the limitations of single microphone temporal processing meth-

ods, spatial information can be exploited by using multiple microphones. In beam-

forming [12, 13] for example, an array of microphones with a known geometry en-

abling both spatial and temporal measurements of sounds is used to suppress

interfering signals. Acoustic room modeling and source localization can be per-

formed as well as reverberation be handled to some extent with adaptive algorithms

[12, 13].

Multiple-microphone configurations for speech processing play an ever in-

creasing role in multimedia systems, video-conferencing facilities, computer inter-
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faces, etc. [12, 14, 15, 16]. Probabilistic denoising approaches using multiple

models for both speech and noise sources [17] would require a very large model

database to work reliably in such unknown and challenging acoustic environments.

In these cases we could achieve good performance with large microphone arrays

but its implementation is difficult and expensive. However, the number of micro-

phones can be reduced by using second or higher-order decorrelation based, Blind

Source Separation algorithms [18, 19, 20]. These signal processing algorithms

exploit spatial information about signal mixtures recorded at a limited number of

microphone locations to explicitly separate interfering noise signals from the de-

sired source signal. Since they assume no a priori information about the interfering

sources, they are particularly suited for environments where the number of distur-

bance scenarios is virtually unlimited (e.g. The Cocktail Party problem) [21]. This

thesis focus on ICA methods that aim at speech denoising based on noise identifi-

cation.

Many Speech Enhancement techniques go beyond the scope of this thesis

but some popular approaches are as follows:

• Spectral subtraction (a traditional method for single mixtures)

• Independent Component Analysis (ICA is one of the popular approaches to

BSS)

• ICA with reference (an interesting approach that combines ICA and EMD)

1.4 Speech enhancement applications

In the current information technology, there are many areas that speech

enhancement is used in order to improve the performance of the system:

• Robust Automatic Speech Recognition (RASR): The accuracy of automa-

tion speech recognition degrades in the presence of background noise or

other interfering sources. Noise reduction for speech signals has therefore

critical importance as a pre-process of such types of systems, including human-

computer interactions, robotics and audio driven systems, etc.
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• Telecommunication: Background noise is a common problem which de-

grades the quality of the communication for the human listener. Speech en-

hancement may be applied to such systems in order to remove the unwanted

noise sources. Another problem in telecommunication is the channel noise.

By enhancing the speech signal before it goes into the channel, it is also

possible to reduce the effect of the channel noise.

• Digital Hearing Aids: The digital hearing aid users often complain of diffi-

culty in understanding speech in the presence of background noise. There-

fore, speech enhancement is an important process to improve the speech

perception in a noisy environment for the human listener.

1.5 Thesis overview

This research presents an innovative system for adaptive speech denoising

using ICA and Voice Activity Detection (VAD) and it is described in fig. 5.1.

Designed for instantaneous speech mixtures with two sources and two mi-

crophones the proposed system identifies the noise contained in each noisy mix-

ture, applies the most convenient block ICA method among 3 methods (JADE,

KERNEL ICA and FastICA) and, after source separation, identifies the estimated

speech signal. The ICA suitability is in accordance with the detected noise.

The mixing process is non-linear and the information extracted on the first

stage can be used for later post-processing and further system extension with sig-

nificant potential over the conventional approaches. The process is completely au-

tomatic from the source recording to its output and such system has a wide range

of applications. This approach and its experimental data significantly provides aus-

picious potential over the systems currently available.

1.5.1 Problem statement

In many speech related systems, the desired signal is not easily available;

usually is contaminated with some interference sources. These background noise

signals degrade the quality and intelligibility of the original speech, resulting in a

severe drop in the performance of the applications. There are different types of
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Figure 1.1: The proposed system

noise signals which affect the quality of the original speech. It may be a wide-band

noise in the form of a white or colored noise, a periodic signal such as in hum noise,

room reverberations, or it can take the form of fading noise. It is also possible that

the speech signal may be simultaneously attacked by more than one noise source.

The most common type of noise in time series analysis and signal processing is

the white noise, pink noise and other noises contained by Noisex. That is why; this

thesis is mainly concerned with these type of noises.

The degradation of the speech signal due to the background noise is a se-

vere problem in speech related systems and therefore should be eliminated through

speech enhancement algorithms. Speech enhancement aims at improving the per-

ceptual quality and intelligibility of a speech signal in noisy environments, mainly

through noise reduction algorithms. Such types of processes may be applied to

a mobile radio communication system, a speech recognition system, a set of low

quality recordings, or to improve the performance of aids for the hearing impaired.

Figure 1.1 shows an illustration of the usage of speech enhancement. It can be ob-

served that enhancement may also be applied directly to the clean speech signal

in order to reduce the effect of the channel noise in communication systems.
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1.5.2 Motivation

The degradation of the speech signal due to the background noise is a se-

vere problem in speech related systems and therefore should be eliminated through

speech enhancement algorithms. Combining such methods with BSS methods can

improve the existence of the existing systems. This is our main goal and motivation.

1.5.3 Outline of the thesis

This research presents an innovative system for adaptive speech denois-

ing aimed for blind noisy environments (the ones where both the sources and the

mixing process are unknown and only recordings of the mixtures are available).

The proposed system extracts information that can be used for ICA’s automatic

suitability and further pre and/or post-processing. Such approach improves the

performance of the current available methodologies.

The structure of this thesis is organized as follows:

• Chapter 1 is an overview of our research, motivation and outline.

• Chapter 2 introduces Voice Activity Detection (VAD), its problem analysis,

algorithms and some generalities about additive noise.

• Chapter 3 briefly explains Blind Source Separation (BSS) and its applica-

tions.

• Chapter 4 describes a popular BSS methodology used in our research.

• Chapter 5 presents our research, its setup, experimental data and its analy-

sis.

• Chapter 6 concludes the paper.

1.6 Publications derived from this work

Peer-reviewed conference papers:

[22] António R. F. Rebordão; M. K. Islam Molla; Keikichi Hirose; Minematsu Nobuaki

”A Speech Denoising System based on ICA and Voice Activity Detection”, Proc.
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of Acoustical Society of Japan (ASJ 2008 Spring Meeting), Chiba, Japan; 17-19

March, 2008.

[23] António R. F. Rebordão; M. K. Islam Molla; Keikichi Hirose; Minematsu Nobuaki

”An adaptive Speech Denoising System based on ICA and Voice Activity Detec-

tion”, Proc. of International Workshop on Nonlinear Circuits and Signal Processing

(NCSP08), Gold Coast, Australia; 6-8 March, 2008.

Conference papers waiting for acceptance:

[24] António R. F. Rebordão; M. K. Islam Molla; Keikichi Hirose; Minematsu Nobuaki

”Adaptive ICA usage for signal enhancement”, International Conference on Audio,

Language and Image Processing 2008 (ICALIP 2008), Shangai, China; 7-9 July,

2008.

8



Chapter 2

Voice Activity Detection

For [25], in speech communications, noise is fluctuations and the addition

of external factors to the stream of target information (signal) being received at a

sensor. It may be deliberate as for instance jamming of a radio or video signal,

but in most cases it is assumed to be merely undesired interference with intended

operations. Many speech processing systems users are familiar with the amount

of background noise present in loud environments. This is because their hands

free instruments amplify environment noise just as much as the conversation that

they are trying to follow. Work is ongoing to suppress background noise as much as

possible to positively influence the intelligibility of the speech in noisy environments.

Although speech processing in artificially constrained conditions has re-

cently reached high levels of performance, problems still remain in the deployment

of speech recognition technology in the real world. One of the problems is the

performance degradation of speech detection when they are used in noisy envi-

ronments such as offices, automobile cabins, streets and computer rooms. Many

reasons account to eliminate or reduce noise from speech signals. However one of

the biggest challenges is to avoid removal of speech components in this process.

Speech or Voice Activity Detector (VAD), aims to distinguish between speech

and several types of acoustic background noise even with low signal-to-noise ratios

(SNRs). In the field of multimedia applications, a VAD permits simultaneous voice

and data applications. Similarly, in Universal Mobile Telecommunications Systems

(UMTS), it controls and reduces the average bit rate and enhances overall cod-

ing quality of speech. In cellular radio systems (GSM and CDMA systems) based
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on Discontinuous Transmission (DTX) mode, this facility is essential for enhancing

system capacity by reducing co-channel interference and power consumption in

portable digital devices.

It is very difficult to distinguish between noise and silence, in the presence

of background noise, so more efficient and self-sustaining algorithms are needed

for speech activity detection and noise reduction is changing and adverse noise

acoustic background. There are different metrics used for speech detection in VAD

algorithms, but recently Higher-order statistics (HOS) have shown potential results

in a number of signal processing applications, and are of particular value when

dealing with a mixture of Gaussian and non-Gaussian processes and non linear

systems [25].

The system presented in this research is variance based (instead of HOS)

and the results are satisfactory enough for the intended aim. Thus, our approach

deviated from HOS to VAD’s Variance Based because this approach can deal per-

fectly well with the noise types considered (NOISEX database).

2.1 Problem Analysis

The main question for this section is to explain how additive noise (in the

form of gaussian noise) corrupted with clean speech can be suppressed or isolated.

The process of separating conversational speech and silence is called the

voice activity detection (VAD). It was first investigated for use on Time Assigned

Speech Interpolation (TASI) systems. VAD is an important enabling technology for

a variety of speech-based applications including speech recognition, speech en-

coding, and hands-free telephony. For these purposes, various types of VAD algo-

rithms were proposed that trade off delay, sensitivity, accuracy and computational

cost.

The primary function of a voice activity detector is to provide an indication

of speech presence in order to facilitate speech processing as well as possible pro-

vide delimiters for the beginning and end of a speech segment. For a wide range

of applications such as digital mobile radio, Digital Simultaneous Voice and Data

(DSVD) or speech storage, it is desirable to provide a discontinuous transmission

of speech-coding parameters. The advantage can be a lower average power con-

sumption in mobile handsets, or a higher average bit rate for simultaneous services
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like data transmission or even a higher capacity on storage chips. However, the im-

provement depends mainly on the percentage of pauses during speech and the

reliability of the VAD used to detect these intervals. On on hand, is advantageous

to have a low percentage of speech activity but, on the other hand, clipping of ac-

tive speech should be avoided to preserve the quality. This is a crucial problem for

a VAD algorithm under heavy noise conditions.

Voice activity detection is important for speech transmission, enhancement

and recognition. The variety and the varying nature of speech and background

noise makes it challenging. Earlier algorithms for VAD are based on the Itakura

LPC distance measure, energy levels, timing, pitch and zero crossing rates, cep-

stral features, adaptive noise modeling of voice signals and the periodicity measure.

Unfortunately, these algorithms have some problems for low SNR values, espe-

cially when the noise is non-stationary. Consistent accuracy cannot be achieved

since most algorithms rely on a threshold level for comparison. This threshold

level is often assumed to be fixed or calculated in the silence intervals. During

the last decade numerous researchers have studied different strategies for detect-

ing speech in noise and the influence of the VAD decision on speech processing

systems.

2.2 VAD Algorithm: The Principle

The basic function of a VAD algorithm is to extract some measured features

or quantities from the input signal and to compare these values with threshold, usu-

ally extracted from the characteristics of the noise and the speech signals. Voice-

active decision is made if the measured values exceed the thresholds. VAD in

non-stationary noise requires a time-varying threshold value. This value is usually

calculated in the voice-inactive segments.

A representative set of recently published VAD methods formulates the deci-

sion rule on a frame by frame basis using instantaneous measures between speech

and noise. The different measures which are used in BAD methods include spec-

tral slope, correlation coefficient, log likelihood ratio, cepstral, weighed cepstral,

and modified distance measures.

A VAD can be decomposed in two steps: the computation of metrics and

the application of a classification rule. Independently from the VAD method, the
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operation is a compromise between having voice detected as noise or noise de-

tected as voice. A VAD operating in a mobile environment must be able to detect

speech in the presence of a range of very diverse types of acoustic background

noises. In these difficult detection conditions it is vital that a a VAD should ”fail-

safe”, indicating ”speech detected” when the decision is in doubt so that no clipping

is introduced. The biggest difficulty in the detection of speech in this environment

is the very low signal-to-noise ratios (SNRs) that are encountered. It is impossible

to distinguish between speech and noise using simple level detection techniques

when parts of the speech utterance are buried below the noise.

Robust voice activity detection algorithms are required, as traditional solu-

tions present a high misclassification rate in the presence of the background noise

typical of mobile environments. One important aspect of recent digital cellular sys-

tems is the robustness of the speech coding algorithms needed for the channel to

be used efficiently. They have to be robust, not only to channel degradation, but

also to the background noise typical of mobile environment. The underlying defi-

nition of the robustness can be formulated as ”a VAD is robust if it gives decisions

close to a reference in quiet as well as in adverse environments. There is intro-

duced a new definition claiming that a VAD is robust when it gives similar decisions

for clean speech and noisy speech. The robustness can be estimated by taking

the VAD’s decision on clean speech as a reference and computing error statistics

of the same VAD applied to noisy speech. The more robust the VAD, the scarcer

the errors.

2.3 Generalities about Noise

Noise can be defined as the contamination of the desired signal or the un-

wanted signal. Natural and deliberate noise sources can provide both or either of

random interference or patterned interference. Only the latter can be cancelled

effectively in analog systems; however, digital systems are usually constructed in

such a way that their quantized signals can be reconstructed perfectly, as long as

the noise level remains below a defined maximum, which varies from application to

application. There are many forms of noise with various frequency characteristics

that are classified by ”color”.

White noise is a signal (or process) with a flat frequency spectrum. In other
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words, the signal has equal power in any band, at any frequency, having a given

bandwidth. In practice a signal can be ”white” with a flat spectrum over a defined

frequency band. A signal that is ”white” in the frequency domain must have zero

autocorrelation with itself over time, except at zero time shift. The figures 2.1 and

2.2 show that car noise taken for 10000 samples is not white. The periodogram

shows that the spectrum is not uniform where as the randomly generated Gaus-

sian noise has a uniform distribution. The power spectral density is the smoothed

version of the periodogram.

Noise having a continuous distribution, such as a normal distribution, can

be white. Gaussian noise is sometimes misunderstood to be white gaussian noise,

but this is not so. Gaussian noise only means noise with pdf of the Gaussian dis-

tribution, which says nothing to correlation of the noise in time. Labeling Gaussian

noise as white describes the correlation of the noise.

The next most commonly used colored noise is pink noise. Its frequency

spectrum is not flat, but has equal power in bands that are proportionally wide.

Pink noise is perceptually white. That is, the human auditory system perceives

approximately equal magnitude in all frequencies. The power density decreases by

-3 dB per octave with increase in frequency (density proportional to 1
f ). There are

also many ”less official” colors of noise such as brown, blue, purple, violet, grey,

red, orange, green and black.

Figure 2.1: Test for Whiteness of Noise in the CAR Noise
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Figure 2.2: Test for Type of Noise in the CAR Noise

Figure 2.3: Representation of Additive Noise

2.3.1 Additive Noise

There are many sources of acoustic distortion that can degrade the perfor-

mance of speech recognition systems. For many speech recognition application

the most important source of acoustical distortion is the additive noise. Much re-

search effort in robust speech recognition has been devoted to compensate the

effects of additive noise.

Is the speech signal s(k) affected by uncorrelated noise n(k), then the ob-

served signal in the frequency domain can be expressed as

Y (ejw) = X(ejw) + N(ejw) (2.1)

If s(t) is the original clean speech signal, the received speech signal y(t) in time

domain can be represented as

y(t) = s(t) ∗ h(t) + n(t) = x(t) + n(t) (2.2)
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where h(t) is the impulse response of channel distortion and n(t) the ambient

noise. (*) denotes the convolution operation, and x(t) the noise-free speech as

shown in the figure XXX. Typical structural models for adaptation to variability as-

sume that speech is corrupted by a combination of additive noise and linear filter-

ing.

In speech processing, the speech is considered as useful data and all other

signals are assumed to be noise. Many algorithms and applications are created to

reduce or eliminate noise from signals, such as Voice Activity Detector.

2.4 Choice of VAD’s Variance Based

A VAD’s Variance Based is an early approach to VAD algorithms as others

like short-term energy, zero-crossing rate and LPC coefficients. All of them can

be used for speech detection even if more recent metrics can also be used (like

cepstral features, formant shape and least-square periodicity measures).

The short-time energy or spectral energy has been conventionally used as

the major feature parameters to distinguish the speech segments from other wave-

forms. However, these features become less reliable and robust in noisy environ-

ments, especially in the presence of non-stationary noise and sound artifacts such

as lip snacks, heavy breathing and mouth clicks, etc.

HOS has shown good results in a number of signal processing applica-

tions and are of particular value when dealing with a mixture of Gaussian and non-

Gaussian processes and system nonlinearity. Its application in speech processing

is Gaussian suppression and phrase preservation properties.
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Chapter 3

Blind Source Separation

We all know the problem: we are in a party, people are talking and it is quite

hard to understand each other because of all the interference. You can imagine,

it is even harder for a machine to separate individual speeches. This is the well

known problem often referred to as the ”Cocktail Party Problem”.

The solution to these kinds of problems is called ”Blind Source Separation”

(BSS). Blind source separation attempts, as the name states, to separate a mixture

of signals into their different sources. The word ”blind” is used because we have no

prior knowledge about the statistics of the source in general.

In this project we take an information theoretical approach and make use of

the recently popularized statistical method called the independent component anal-

ysis. Our inspiration for this choice is of course the success of human brain to solve

the problem. It has been hypothesized that brain is a ultimately a sophisticated sta-

tistical engine, where thought is modeled by statistical inference rather than logic

and learning results from accumulation of massive date from interactions with the

world. So a statistical method that claims to model information decomposition and

encoding in the brain is certainly worthy of examination.

3.1 Different Approaches for BSS

There exist different approaches for ”Blind Source Separation”:

• Bayesian Approach. Basic idea: forming a model that describes a particular
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source separation problem. The result is a mixing matrix. This approach can

lead to algorithms known from ICA.

• TDSEP (Temporal Decorrelation source separation) nd It uses the temporal

structure of signals in order to compute the time-delayed 2 order correlation

for the source separation. The best results are achieved if the autocorrela-

tions are as different as possible. The goal is to minimize the cost function:

ℓ(Cij) =
∑
i ̸=j

[yi(t)yj(t)]
2 +

∑
k

∑
i̸=j

[yi(t)yj(t + τk)]
2

(y will be pre-whitened). Algorithm makes a rotation in order to simultane-

ously diagonalize the set of time-lagged correlation matrices. This algorithm

sometimes delivers better results than ICA, especially with respect to Gaus-

sian signals. Compared to ICA, it is computationally less expensive.

• Blind Separation of disjoint orthogonal signals. It uses only 2 mixtures of

N sources, but the sources have to be pair-wise disjointly orthogonal. The

algorithms are based on the Short Time Fourier Transform.

• Principal component analysis (PCA). Use of second-order methods in order

to reconstruct the signal in the mean-square error sense. The results are

independent in the second order statistics. In some areas, this is called KL-

transform. PCA basis vectors are mutually orthogonal.

• Independent Component Analysis (ICA)

3.2 What is difficult in BSS

Before starting to discuss measures that indicate the degree of separation

achieved we will discuss what conditions could increase the difficulty of a BSS task.

These conditions will thus be candidates for parameters to vary when constructing

the test cases.

Convolutive mixing of the sources is inherent in al most all imaginable audio

and acoustic BSS applications. In addition, we also enumerate some aspects that

are related to instantaneous mixing. As the whole paper, the enumerated condi-

tions are geared towards audio situations:
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1. The closer the mixing is to a singular matrix the harder the separation task is

for algorithms that do not exhibit the equivariant behavior. In the presence of

noise the task becomes harder also for equivariant algorithms. The level of

difficulty can be controlled by adjusting the eigen value spread of the mixing

filter matrix.

2. There is a continuum from instantaneous mixing to delayed mixing, i.e. con-

volutive mixing with only one nonzero coefficient per filter. This can be used

to measure the ability of an algorithm to deal with simple convolutive mixing.

3. There is also a continuum from delayed mixing to real world convolutive mix-

ing, which can be explored by changing the sparseness and the du ration of

the mixing filters. This, tested, can rate an algorithm’s ability to deal with in-

creasingly complicated mixing filters. In real recordings these aspects can be

controlled to some extent by changing the positions of the microphones and

sources. The easiest cases are in general when the mixing matrix has strong

direct paths with little crosstalk; i.e. every source is close to it’s microphone.

Also the acoustical characteristics of the recording room can be con trolled

(anechoic vs. hard walled chamber). Introducing more reverberation makes

the separation task more difficult in general.

4. In any kind of a mixing situation the probability density functions (pdf) of the

sources have an effect. Usually the closer they are to Gaussians, the harder

the separation gets.

5. The spectra of the sources may vary from narrow-band to wide-band which

can have great influence on the performance of the algorithm. Tests should

include sounds of both classes since some algorithms might rely on these

qualities.

6. Some algorithms make use of the difference of the spectra of different source

signals. Therefore it is useful to include test cases with distinct source spectra

and test cases with similar source spectra.

7. Also in any kind of mixing the available amount of data needed to successfully

learn to separate a static mixing situation characterizes how well the algorithm

might perform in dynamic mixing circumstances. There is a continuum from

18



static mixing to rapidly varying mixing. This can be used to vary the level of

difficulty when test ing an algorithm’s tracking capabilities. When there is no

comprehensive data set available with dynamic mixtures tracking capabilities

can be judged from the convergence of the algorithm on static mixtures.

8. The ability to deal with silences is also needed, at least for static algorithms.

Sections of silence from a source should not cause the algorithm to diverge.

For example a case with a speaker with background noise little sections of

silence should not cause a wildly different estimate so that re convergence is

necessary when the speaker ap pears again.

9. Increasing the number of sources together with the number of mixtures in-

creases the degree of difficulty significantly. For example, algorithms that

work well in the 2by2 case might fail miserably in the 4by4 case. At the limit

of convolved unmixing we have a 1by1 case which corresponds to blind de-

convolution.

10. Keeping the number of sources fixed but vary ing the number of available mix-

tures can greatly influence the behavior of the algorithm. In general, at least

the same number of mixtures as the number of sources is required. If there

is further information available lesser number might suffice. By using more

mixtures than there are sources, the capabilities of the algorithm to tolerate

noise or to improve the separation performance could be characterized.

11. The amount and the quality of noise in the mixtures can be controlled using:

• A single noise signal independent of all sources mixed to each sensor

signal.

• Different noise components, independent of all sources and each other,

mixed to each sensor signal.

• Similarity of the noise pdf/spectrum to the source signals.

The chosen BSS approach for our research is ICA and it is explained in the next

chapter.
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Chapter 4

Independent Component
Analysis

4.1 Basics of ICA

Usually sensors record mixtures of different signals and, under certain con-

ditions, those underneath signals can be recovered by making use of ICA [26].

ICA is a statistical technique that represents a multidimensional random vector as

a linear combination of non-Gaussian random variables and is sought as a linear

transformation of the original data [27]. It can be applied to Biological data, Speech,

Image processing, EEG and functional magnetic resonance imaging (fMRI).

This methodology separates signals that are mixed together without pos-

sessing significant information about the nature of the signals (only relying on their

statistical independence) [28]. ICA’s model is as follows:

Figure 4.1: A graphical illustration of ICA for 2 sources and 2 microphones
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X = A(t)S (4.1)

S corresponds to the source signals, A(t) is the mixing matrix and X is the recorded

signals.

Basically, ICA’s approach consists in finding an unmixing matrix W (t) such

that Y represents the estimation of S and W (t) is an approximated inverse of the

matrix A(t) of equation (4.1). W (t) is chosen so that the output signals Y are as

statistically independent as possible.

Y = W (t)X (4.2)

• Matrix A(t) in equation (4.1) must be full rank, invertible and its columns lin-

early independent;

• As maximum, only one element of S(t) can be gaussian.

Non-Gaussianity, motivated by the central limit theorem, is one method for

measuring the independence of the sources and it can be measured, for instance,

by kurtosis or negentropy [29]. Mutual information is another popular criteria for

measuring statistical independence of signals. The later is not discussed in this

paper.

In a certain sense ICA can be divided into two parts: an objective function

plus an algorithm that maximizes it.

4.1.1 General definition

Let us consider the instantaneous case of equation equation (4.1). The

task is to transform the observed data x(t), using a linear transformation y(t) =
W (t)x(t), into maximally independent components y(t) measured by some function

F (y1, . . . , yn) of independence. The estimation of the data model of ICA is usually

performed by formulating an objective function and then minimizing or maximing

it [29]. Such function is called a contrast function and its optimization enables the

estimation of the independent components. Thus

ICA method = objective function + algorithm optimization
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4.1.2 Definition of statistical independence

Pierre Comon (1994) [30] define the concept of independence as follows.

Two random variables y1 and y2 are said to be independent if information on y1

does not give any information on the value of y2 and vice versa. This indepen-

dence can be defined by the probability densities. If we denote p(y1, y2) the joint

probability density function (pdf) of y1 and y2 and p1(y1) the marginal pdf of y1 (i.e.

the probability of y1 when it is considered alone), we define

p1(y1) =
∫

p(y1, y2)dy2, (4.3)

and similarly for y2. Then we define that y1 and y2 are independent, if and only if,

the joint pdf is factorizable in the following way:

p(y1, y2) = p1(y1)p2(y2). (4.4)

This definition extends naturally for any number n of random variables, in which

case the joint density must be a product of n terms. By deriving such definition

we can obtain an important property of independent random variables. Given two

functions, h1 and h2, we have

E {h1(y1)h2(y2)} = E {h1(y1)}E {h2(y2)} (4.5)

Aapo Hyvarinen and Erkki Oja (2000) [31] assure that the key to estimate the ICA

model is nongaussianity. Without nongaussianity the estimation is not possible at

all. Is by maximizing nongaussianity that we find the independent components. The

optimization landscape for nongaussianity in the n-dimensional space of vectors

w has 2n local maxima, two for each independent component. To find several

independent components, we need to find all these local maxima [31].

4.2 Contrast Functions for ICA

To use nongaussianity in ICA estimation, we must have a quantitative mea-

sure of nongaussianity of a random variable y (with zero mean and variance equal

to one). For measuring nongaussianity we have two popular functions:
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• Kurtosis

• Negentropy

Kurtosis

The classical measure of nongaussianity is kurtosis or the fourth-order cu-

mulant. The kurtosis of y is classically defined by

kurt(y) = E
{
y4

}
− 3

(
E

{
y2

})2
(4.6)

Kurtosis is zero for a gaussian random variable and for almost all nongaussian ran-

dom variables, kurtosis is nonzero [29]. Kurtosis can be both positive or negative.

Random variables that have a negative kurtosis are called subgaussian (usually

with a flat pdf), and those with positive kurtosis are called supergaussian (these

ones usually have a spiky pdf with heavy tails). Typically nongaussianity is mea-

sured by the absolute value of kurtosis and has been widely used as a measure

of nongaussianity in ICA and related fields. It is simple, both computationally and

theoretically. Computationally, kurtosis can be estimated simply by using the fourth

moment of the sample data [31]. Theoretical analysis is simple because of the

following linearity property. If x1 and x2 are two independent random variables, it

holds kurt (x1 + x2) = kurt (x1)+ kurt (x2) and kurt (αx1) = α4kurt (x1), where α

is a scalar

example in [31]

Let us look at a 2-dimensional model x = As. Assume that the independent

components s1 and s2 have kurtosis values kurt (s1)) and kurt (s2)), both different

from zero. We seek for one of the independent components as y = W T x. Let us

make the transformation z = AT x. Then we have y = wT x = wT As = zT s = z1s1+
z2s2. Thus kurt (y) = kurt (z1s1)+kurt (z2s2) = z1

4kurt (s1)+ z2
4kurt (s2). As the

variance of y is equal to 1, this implies a constraint on z and E
{
y2

}
= z1

2+z2
2 = 1.

Geometrically, this means that vector z is constrained to the unit circle on the 2-

dimensional plane. The optimization problem now is to find the maxima of the

function ∥kurt (y)∥ =
∥∥z1

4kurt (s1) + z2
4kurt (s2)

∥∥ on the unit circle. The maxima

are at the points when exactly one of the elements of the vector z is zero and the

other nonzero; because of the unit circle constraint, the nonzero element must be

equal to 1 or -1. But these points are exactly the ones when y equals one of the

independent components and the problem is solved.
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However following Hyvarinen (2000) kurtosis is not a robust measure of non-

gaussianity because kurtosis is very sensitive to outliers and if its value depends

on only a few observations in the tails of the dsitribution, then it may be erroneous

or irrelevant.

Negentropy

A second very important measure of nongaussianity is given by negentropy.

It is based on the information theoretic quantity of differential entropy.

Entropy is the basic concept of information theory. The entropy of a random

variable can be interpreted as the degree of information that the observation of the

variable gives. The more random, i.e., unpredictable that the variable is, the larger

its entropy. The differential entropy H of a random vector y with density f (y) is

defined as:

H (Y ) = −
∫

f (y) logf (y) dy (4.7)

A fundamental result of information theory is that a gaussian variable has the

largest entropy among all random variables of equal variance. This means that

entropy could be used as a measure of nongaussianity [31].

To obtain a measure of nongaussianity that is zero for a gaussian variable

and always nonnegative, one uses a modified version of the definition of differential

entropy, called negentropy. Negentropy J is defined as follows:

J (y) = H (ygauss) − H (y) (4.8)

A problem with negentropy consists of the difficulties that arise to compute

it [29].

Previously we introduced objective functions for the ICA estimation. But we

also need an algorithm for its implementation (maximizing the contrast function)

Thus after choosing an objective function for ICA we have to optimize it [31]. Are

several algorithms on the market with different characteristics but this paper just

focus on the FastICA. It is as follows: It finds a unit vector w such that the projection

wT x maximizes nongaussianity (measured by negentropy). Basically is a fixed-

point iteration that finds the maximum of the nongaussianity of wT x [31].
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4.3 ICA’s algorithms

After having a metric for measuring the nongaussianity, i.e. objective func-

tions for ICA estimation we also need an algorithm for maximizing the contrast

function. In the next subsections, we introduce some methods of maximization

suited for this task.

Typical algorithms for ICA use centering, whitening and dimensionality re-

duction as preprocessing steps in order to simplify and reduce the complexity of

the problem for the actual iterative algorithm. Whitening and dimension reduction

can be achieved with Principal Component Analysis (PCA) or Singular Value De-

composition (SVD) [31]. Popular algorithms for ICA include Infomax, FastICA (that

operates in the time-domain), Kernel ICA and JADE.

4.3.1 FastICA

The fast fixed point algorithm (FastICA) is a computational efficient method

for performing the estimation of ICA, e.g., separates linearly mixed independent

source signals and it was presented by Hyvärinen and Oja [32]. It is a fixed-point

iteration algorithm and it has been found by independent experiments to be 10-100

times faster than conventional gradient descent methods for ICA. Another advan-

tage of the FastICA algorithm is that it can be used to perform projection pursuit as

well, thus providing a general-purpose data analysis method that can be used both

in an exploratory fashion and for estimation of independent components (individual

signals) [27].

FastICA can be used for finding a unit vector w such that the projection wT x

maximizes the non-Gaussianity (measured by negentropy) of wT x [33].

Let us denote the function g by the derivative of a non-quadratic nonlinearity.

Then the basic form of FastICA is as follows [33]:

1. Choose a initial (e.g. random) weight vector w

2. Let w+ = E
{
xg

(
wT x

)}
− E

{
g
′ (

wT x
)}

w

3. Let w = w+/∥w+∥

4. If not converged, go back to 2
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Note: Here convergence means that the old and new values of w point in the same

direction.

Properties of the FastICA Algorithm

The FastICA algorithm and the underlying contrast functions have a number

of desirable properties when compared with existing methods for ICA.

• The convergence is cubic (or at least quadratic), under the assumption of

the ICA data model. This is in contrast to ordinary ICA algorithms based on

(stochastic) gradient descent methods, where the convergence is only linear.

This means a very fast convergence, as has been confirmed by simulations

and experiments on real data.

• Contrary to gradient-based algorithms, there are no step size parameters to

choose. This means that the algorithm is easy to use.

• The algorithm finds directly independent components of (practically) any non-

Gaussian distribution using any nonlinearity g. This is in contrast to many

algorithms, where some estimate of the probability distribution function has

to be first available, and the nonlinearity must be chosen accordingly.

• The performance of the method can be optimized by choosing a suitable non-

linearity g. In particular, one can obtain algorithms that are robust and/or of

minimum variance. In fact, the two nonlinearities in have some optimal prop-

erties; for details see.

• The independent components can be estimated one by one, which is roughly

equivalent to doing projection pursuit. This es useful in exploratory data anal-

ysis, and decreases the computational load of the method in cases where

only some of the independent components need to be estimated.

• The FastICA has most of the advantages of neural algorithms: It is paral-

lel, distributed, computationally simple, and requires little memory space.

Stochastic gradient methods seem to be preferable only if fast adaptivity in

a changing environment is required.

A Matlab implementation of the FastICA algorithm is available on the World Wide

Web free of charge.
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4.3.2 Kernel ICA

Kernel ICA works by defining a contrast function on reproducing kernel

Hilbert space. This essentially means that mixtures (or observations) are projected

to a higher dimensional space (even infinite dimensional space) and then we try to

find the mixing matrix such that pair wise correlations are minimized in this space

because once this is achieved it can be proven that for reproducing kernel Hilbert

spaces based on Gaussian kernels this ensures that the sources are independent.

Figure 4.2: Preliminary results. The first column shows the two sources, the next
column shows the mixture and the last column shows the separated channels.
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4.3.3 JADE

JADE ICA was presented by Jean Francois Cardoso [34] and this subsection

outlines its main characteristics. Basically JADE can se seen as a statisticbased

technique and summarized as follows:

• Initialization. Estimate a whitening matrix W and set Z = WX.

• Form statistics. Estimate a maximal set Q Z i of cumulant matrices.

• Optimize an orthogonal contrast. Find the rotation matrix V such that the

cumulant matrices are as diagonal as possible, that is, solve V = arg min P i

Off(V Q Z i V).

• Separate. Estimate A as A = V W -1 and/or estimate the components as S

= A -1 X = V Z.

This is a Jacobi algorithm because the joint diagonalizer at step 3 is found

by a Jacobi technique. However, the plane rotations are applied not to the data

(which are summarized in the cumulant matrices) but to the cumulant matrices

themselves; the algorithm updates not data but matrixvalued statistics of the data.

As with MaxKurt, the Givens angle at each step can be computed in closed form

even in the case of possibly complex matrices.

A key issue is the selection of the cumulant matrices to be involved in the

estimation. As explained in section 3.2, the joint diagonalization criterion P i Off(V

+ Q Z i V) is made identical to the contrast function, equation 3.11, by using a

maximal set of cumulant matrices. This is a bit surprising but very fortunate. We do

not know of any other way for a priori selecting cumulant matrices that would offer

such a property (but see the next section). In any case, it guarantees equivariant

estimates because the algorithm, al though operating on statistics of the sphered

data, also optimizes implicitly a function of Y = V Z only.

Before proceeding, we note that true cumulant matrices can be exactly

jointly diagonalized when the model holds, but this is no longer the case whenwe

process real data. First, only sample statistics are available; second, the model X =

AS with independent entries in S cannot be expected to hold accurately in general.

This is another reason that it is important to select cumulant matrices such that P i

Off(V Q Z i V) is a contrast function. In this case, the impossibility of an exact joint
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diagonalization corresponds to the impossibility of finding Y = BX with independent

entries. Making a maximal set of cumulant matrices as diagonal as possible coin-

cides with making the entries of Y as independent as possible as measured by (the

sample version of) criterion 3.11.

There are several options for estimating a maximal set of cumulant matrices.

Recall that such a set is defined as Q Z (M i )—i = 1, n 2 where M i i = 1, n 2 is

any basis for the n 2 dimensional linear space of nn matrices. A canonical basis for

this space is e p e q —1 p, q n, where e p is a column vector with a 1 in pth position

and 0’s elsewhere. It is readily checked that [Q Z (e p e q )] ij = Cum(Z i , Z j , Z p ,

Z q ). (4.6)

In other words, the entries of the cumulant matrices for the canonical basis

are just the cumulants of Z.Abetter choice is to consider a symmetric/skew sym-

metric basis. Denote M pq an n n matrix defined as follows: M pq = e p e p if p =

q, M pq = 2 -1/2 (e p e q +e q e p ) if p ¡ qand M pq = 2 -1/2 (e p e q -e q e p ) if p

¿ q. This is an orthonormal basis ofR nn . Wenote that because of the symmetries

of the cumulants Q Z (e p e + q ) = Q Z (e q e + p ) so that Q Z (M pq ) = 2 -1/2

Q Z (e p e + q ) if p ¡ q and Q Z (M pq ) = 0 if p ¿ q. It follows that the cumulant

matrices Q Z (M pq ) for p ¿ q do not even need to be computed. Being identically

zero, they do not enter in the joint diagonalization criterion. It is therefore sufficient

to estimate and to diagonalize n+n(n-1)/2(symmetric) cumulant matrices.

There is another idea to reduce the sizeof the statistics needed to represent

exhaustively the fourthorder information. It is, however, applicable only when the

model X = AS holds. In this case, the cumulant matrices do have the structure

shown at equation 3.18, and their sample estimates are close to it for large enough

T. Then the linear mapping M Q Z (M) has rank n (more precisely, its rank is equal

to the number of components with nonzero kurtosis) because there are n linear

degrees of freedom for matrices in the form UU +, namely, the n diagonal entries

of . From this fact and from the symmetries of the cumulants, it follows that it exists

n eigenmatrices E 1 , . . . , E n , which are orthonormal, and satisfies Q Z (E i )

= i E i where the scalar is the corresponding eigenvector. These matrices E 1 , .

. . , E n span the range of the mapping M Q Z (M), and any matrix M orthogonal

to them is in the kernel, that is, Q Z (M) = 0. This shows that all the information

contained in Q Z can be summarized by the n eigenmatrices associated with the n

nonzero eigenvalues. By inserting M = u i u i in the expressions 3.18 and using the
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orthonormality of the columns of U (that is, u i u j = ij ), it is readily checked that a

set of eigenmatrices is E i = u i u i .

The JADE algorithm was originally introduced as performing ICA by a joint

approximate diagonalization of eigenmatrices in Cardoso and Souloumiac (1993),where

we advocated the joint diagonalization of only the n most significant eigenmatrices

of Q Z as a device to reduce the computational load (even though the eigenmatri-

ces are obtained at the extra cost of the eigen decomposition of an n 2 n 2 array

containing all the fourthorder cumulants). The number of statistics is reduced from

n 4 cumulants or n(n + 1)/2 symmetric cumulant matrices of size nn to a set of

n eigenmatrices of size nn. Such a reduction is achieved at no statistical loss (at

least for large T) only when the model holds. Therefore, we do not recommend re-

duction to eigen matrices when processing data sets for which it is not clear a priori

whether the model X = AS actually holds to good accuracy. We still refer to JADE

as the process of jointly diagonalizing a maximal set of cumulant matrices, even

when it is not further reduced to the n most significant eigenmatrices. It should also

be pointed out that the device of truncating the full cumulant set by reduction to the

most significant matrices is expected to destroy the equivariance property when

the model does not hold.
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Chapter 5

Proposed System

This research presents an innovative system for adaptive speech denoising

using ICA and Voice Activity Detection (VAD) and it is described in fig. 5.1.

Designed for instantaneous speech mixtures with two sources and two mi-

crophones the proposed system identifies the noise contained in each noisy mix-

ture, applies the most convenient block ICA method among 3 methods (JADE,

KERNEL ICA and FastICA) and, after source separation, identifies the estimated

speech signal. The ICA suitability is in accordance with the detected noise.

The mixing process is non-linear and the information extracted on the first

stage can be used for later post-processing and further system extension with sig-

nificant potential over the conventional approaches. The process is completely au-

tomatic from the source recording to its output and such system has a wide range

of applications. This approach and its experimental data significantly provides aus-

picious potential over the systems currently available.

5.1 Setup

As it can be observed the system considers 2 sources and 2 microphones.

The source signals are 3 seconds in length and one of them is a speech signal

extracted from TIMIT and the other is a noise signal from NOISEX (it can be White

Noise, Pink Noise, HF Channel Noise, Car Noise, Tank Noise, Factory Noise, etc.).

All signals are sampled with 16KHz sampling frequency. Our mixing process sim-

ulates fig. 5.2 where the sources’ properties change through time. The mixing
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Figure 5.1: The proposed system

Figure 5.2: The proposed model

process follows eq. 5.1 where S corresponds to the source signals, Aα are the

mixing matrices and m1 and m2 are the noisy mixtures (with respective mixing ma-

trices A2 and A1). The sources’ contribution to each microphone evolve through

time alternating every 400ms. In a formal way:(
m1

m2

)
= Aα

(
s1

s2

)
∧ Aα =

(
1 d11

d21
d11
d12

d11
d22

)
(5.1)

and

A1 =

(
5.4 0.5
2.4 0.4

)
∧ A2 =

(
4.5 0.2
3.4 0.002

)
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and the noisy mixtures are:

X =

{
m1

m2
=

{
m1

1, m
1
2, ...,m

1
n

m2
1, m

2
2, ...,m

2
n

m1
i =

{
A1Si for (400j − 399) ≤ i ≤ 400j, j = 1, 3, ..., 2p + 1

A2Si for (400j − 399) ≤ i ≤ 400j, j = 1, 2, ..., 2p

and

m2
i =

{
A2Si for (400j − 399) ≤ i ≤ 400j, j = 1, 3, ..., 2p + 1

A1Si for (400j − 399) ≤ i ≤ 400j, j = 1, 2, ..., 2p

Where (2p + 1) ≤ n, for i, j, p ∈ N.

5.2 Implementation

As it can be observed in fig. 5.2 the first step is the identification of the noise

contained in the noisy mixtures and, after that, performing source separation based

on ICA and speech signal identification. This approach paves the way for further

post processing before and after ICA’s application.

The main novelty of this approach is that extracts information that can be

used for additional system module implementation. Such information allow us to

implement effective speech enhancement for the aimed goal.

5.2.1 Detection of the noisy Frames using VAD’s Variance Based

The noisy sources recorded by the microphones may contain a wide-band

noise in the form of a white or colored noise, a periodic signal such as in hum noise,

room reverberations or it can take the form of fading noise. The first two examples

represent additive noise sources, while the other two examples represent convo-

lutional and multiplicative noise sources, respectively [5]. The system presented

by this paper refers to the first two examples and other types that share common

features (all files contained by NOISEX).

Sometimes à priori information about the signals is not available but know-

ing such information can be extremely valuable for some pre and/or post-processing.
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With this aim and based on the proposed model of fig. 5.2 a VAD was

made and furthermore optimized for efficient recognition. The goal is to identify

the speechless components of a noisy mixture. Concatenating all detected noise-

dominant frames allows the extraction of its spectrum and its comparation with a

system built database of template noises based on NOISEX. Following such com-

paration, the nature of the noise can be robustly asserted and is possible to apply

automatic processing that suits such type of noise.

5.2.2 Estimation of the spectrum of the speechless detected compo-
nents

The Voice Activity Detection that was built is as follows: the noisy speech

is segmented into 42 ms frames. For each frame its variance is calculated and

all of them are sorted by crescent order. Such vector provides us with an refer-

ence value in the form of the mean of the first 60 values. Such reference value

is used for adaptive thresholding aiming at frame classification as either signal or

noise-dominant frame. All speechless frames are merged together, its spectrum

calculated and compared by Euclidean distance with the spectrums of the noise

database.

5.2.3 Noise identification

For the considered setup this approach allows the identification of the noise

contained in the noisy mixture. Consequently, it is possible to know the noise’s

behavior and to perform effective speech denoising or adaptive use of ICA.

On figure 5.3, for some noise types, it is possible to analyze the perfor-

mance of the VAD (variance based) that is made for this research. This VAD works

efficiently for all noise types contained by NOISEX.

5.2.4 Source Separation - ICA based

After identifying the noise contained in the noisy mixture, the noise signal

and the speech signal are separated by applying block ICA. The ICA method used

can be FastICA, Kernel ICA or JADE. Such choice is up to the noise that is detected

in the noisy mixture and follows table 6.1.
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(a) White Noise (b) Pink Noise

(c) HF channel Noise (d) Car Noise

Figure 5.3: Spectrum of the Speechless Detected Components (black), White
Noise (red), Pink Noise (green), HF channel Noise (yellow) and Car Noise (ma-
genta)’
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Figure 5.4: ICA’s application

Table 5.1: ICA suitability per type of noise
WN PN HF Car Factory1

KERNEL ICA 73% 19% 0% 86% 78%

FAST ICA 27% 53% 76% 14% 22%

JADE 0% 28% 24% 0% 0%

5.2.5 Speech Signal Identification

With the information extracted in the first stage it is possible to identify the

estimated noise signal and consequent identification of the speech signal. For

this goal is only necessary to compare the spectrum of the speechless detected

components with ICA’s output. Such comparation is possible by using a metric as

Euclidean distance.

Note: The Euclidean distance between points (p1, p2, ..., pn) and (q1, q2, ..., qn) in

Euclidean n-space, is defined as:√
(p1 − q1)2 + (p2 − q2)2 + ... + (pn − qn)2

5.3 Analysis of the results

Through extensive experiments it come out that the VAD that was built pro-

vides an accurate and reliable output (see fig 5.3). The major problem in this algo-

rithm is that it is not robust if the speech signal is simultaneously attacked by more

than one noise source and this still stands as a challenge that it is going to be taken
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into account in further extensions of the proposed system.

Decurrent from the way the reference value is obtained, not all speechless

frames are correctly identified as noise dominant. However, this does not interfere

with the current goal for the VAD in the proposed system.

The input dB-SNR is 10dB and 5dB for mixture 1 and mixture 2, respec-

tively and the Source Separation is made by applying FastICA for the separation of

a speech signal (that is the phrase ”Ducks have colorful feet and white feathers” )

from a noise signal extracted from NOISEX. For different block FastICA length val-

ues values the achieved dB-SNR improvement can be seen at table 5.2. The best

output db-SNR are for divisors (200 and 400 ms) of the chosen mixing length inter-

val (400 ms) and show enough potential data for further developments. The SNR is

measured by Average Segmental SNR and those values are obtained by running

FastICA method 16 times, ignoring the tail values (the first and last two values) and

calculating their mean.

A problem that needs to be solved is finding a method of detecting auto-

matically where the mixing process changes. Knowing those points means that it is

possible to ignored them for evaluation purposes and for defining block ICA’s length

frame.

In fig. 5.5 it is possible to compare the system ICA’s output and input.

Table 5.2: dB-SNR improvement for several noisy mixtures (for these cases the speech

signal is corrupted with a noise signal and WN, PK, HF and Car means White Noise, Pink Noise, HF Channel

Noise and Car Noise, respectively) and different block ICA frame lengths.
WN PN HF Car

135 ms 15.85 14.80 16.31 11.13

200 ms 27.04 21.34 22.55 19.19

400 ms 29.07 29.58 32.31 18.69
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Figure 5.5: Spectrogram of a) clean speech, b) noisy speech corrupted with White
Noise at 10dB SNR, c) the estimated speech signal after ICA.
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Chapter 6

Conclusion

The core system was developed and its main current advantages are the

blind extraction of information about the sources that can be used for adaptive

denoising and ICA’s automatic suitability, and for improving the ICA’s output-SNR.

The proposed method is also suitable for further post-processing based on the

information extracted on the first stage.

The ICA’s suitability is accordingly to the noise that is detected in the noisy

mixture and follows table 6.1.

Table 6.1: ICA suitability per type of noise
WN PN HF Car Factory1

KERNEL ICA 73% 19% 0% 86% 78%

FAST ICA 27% 53% 76% 14% 22%

JADE 0% 28% 24% 0% 0%

Future work aims at automatic identification of the points where the mix-

ing process changes; system robustness for the occurrence of simultaneous noise

types and ICA’s modification for the cases when the sources/microphones are too

close to each other.
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