修士論文

マイクログリッドの制御可能電源による 系統需給制御への貢献に関する研究

A Fundamental Study on Contribution of Controllable Distributed

Generators in Microgrid to Power System Frequency Control

2008年2月4日 提出

指導教官 横山 明彦

東京大学 工学系研究科 電気工学専攻 66428 大屋 慎次

内容梗概

地球環境保護やエネルギーセキュリティの観点から、太陽光、バイオマス、風力などの自然エネルギーの導入が世界的に進んでいる。しかしこれらの自然エネルギーは供給の安定性に問題を抱えており、今後こうした電源の普及が進めば、電力ネットワーク全体の安定性をいかに維持していくかが重要な課題となる。こうした状況下で、分散型電源を統合的に制御するマイクログリッドが注目されており、新エネルギーの普及を図る有効な手段としても考えられている。

また,電力の規制緩和が進み新規参入業者が増加することで設備投資が減少し,系統の需給制御のための十分な予備力が確保されなくなることも懸念されている。このためコージェネレーションシステムや二次電池などの制御可能分散型電源を系統全体の予備力として活用することで,系統の安定化に貢献する新たなエネルギーシステムとなる可能性もある。

そこで本研究では、系統に多数のマイクログリッド化した分散型電源が導入され、系統容量の大きな割合を占めていると仮定し、このマイクログリッドが系統需給制御に貢献可能であるかについての検討を行った。ステップ状の大外乱が系統の周波数変動に及ぼす影響について解析し、マイクログリッドが集中制御、分散制御のいずれでも、LFC 火力機の代わりに周波数変動を抑制することが可能であることを示した。また、正弦波状の外乱に対する系統の周波数変動を解析し、特に短周期の正弦波外乱に対する制御能力が高いことを明らかにした。

このようなマイクログリッドの制御性の良さを活用するには、分散制御によって需給制御に参加させる ことが望ましいことをあきらかにした。

さらに、大容量の風力発電が導入されたと仮定し、LFC 火力機とマイクログリッドで制御をおこなった場合の制御能力の評価を行った。1時間あたりのAR および周波数の標準偏差によって制御能力を評価し、系統の予備力削減可能量を算出した。これに基づいて、マイクログリッドの容量と系統に加わる最大の変動の大きさを元に、予備力削減量をできる限り大きくとれる信号の分配方法の指針を示した。

目次

第:	1 章	序論	1
1.1.	研名	究の背景と目的	1
1.1.	1917	□・日本○日本	±
1.2.	本語	倫文の構成	1
第:	2 章	マイクログリッド	2
2.1.	マノ	イクログリッド	2
2.2.	制征	卸で考慮すべき分散型電源	3
2.	2.1.	風力発電	
2.	2.2.	コージェネレーションシステム	5
第:	3 章	周波数制御と解析モデル	7
3.1.	雷力	力系統における周波数制御	7
3.2.	負荷	岢変動	7
3.	2.1.	制御分担	8
3.3.	制征	卸分担	9
3.	3.1.	ガバナフリー運転	9
3.	3.2.	負荷周波数制御 LFC	10
3.	3.3.	経済負荷配分制御 EDC	10
3.4.	制征	軍系モデル	12
3.	4.1.	発電機モデル	12
3.	4.2.	火力機ガバナ制御系モデル	13
3.	4.3.	LFC システムモデル	13
3.	4.4.	マイクログリッドモデル	14
3.	4.5.	負荷変動モデル	14
3.5.	モラ	デル系統	14
26	373	ミュレーションタが	15

第 4 章	発電出力応答と周波数変動	17
4.1. 集中	中制御と分散制御	17
4.2. スラ	- ップ入力	18
4.2.1.	火力機応答	18
4.2.2.	集中制御(LFC 信号)	19
4.2.3.	分散制御(周波数)	23
4.3. 正弦	x波入力	26
第 5 章	配電系統電圧	31
5.1. マイ	「クログリッドが配電系統に与える影響	31
5.2. 連系	《線潮流と配電線電圧	31
5.3. 東北	と地域(Area2)における電圧変動の試算	33
第 6 章	予備力削減効果	34
6.1. ラン	/ダム変動波形	34
6.2. 周波	b数および地域要求量偏差	35
6.3. マイ	「クログリッド集中制御による予備力削減効果	36
第7章	結論と今後の課題	47

第 1 章 序論

1.1. 研究の背景と目的

地球環境保護やエネルギーセキュリティの観点から、太陽光、バイオマス、風力などの自然エネルギーの導入が世界的に進んでいる。しかしこれらの自然エネルギーは供給の安定性に問題を抱えており、今後こうした電源の普及が進めば、電力ネットワーク全体の安定性をいかに維持していくかが重要な課題となる。こうした状況下で、分散型電源を統合的に制御するマイクログリッドが注目されており、新エネルギーの普及を図る有効な手段としても考えられている。

また,電力の規制緩和が進み新規参入業者が増加することで設備投資が減少し,系統の需給制御のための十分な予備力が確保されなくなることも懸念されている。このためコージェネレーションシステムや二次電池などの制御可能分散型電源を系統全体の予備力として活用することで,系統の安定化に貢献する新たなエネルギーシステムとなる可能性もある。

本研究では、マイクログリッドの制御可能電源としてガスエンジンコジェネレーションシステムが系統に大量に導入された場合において、系統に変動が加わった場合の周波数変動を解析し、マイクログリッドによって周波数調整用発電所の代わりに周波数制御をおこなうことを試みる。本論文では、マイクログリッドが系統の需給制御に協調し、周波数変動を抑制する能力を評価することを目的としている。

1.2. 本論文の構成

本論文の構成を以下に示す。

第2章では、研究対象であるマイクログリッドの特徴や現状について述べる。

第3章では、電力系統における周波数制御と、解析のために本研究で用いたシミュレーションモデルについて述べる。

第4章では、系統の周波数変動を解析し、マイクログリッドの需給制御参加方式について述べる。

第5章では、マイクログリッドの電力潮流が配電系統の電圧に与える影響を解析する。

第6章では、マイクログリッドによる系統の予備力削減効果を評価する。

第7章では、本論文の結論と今後の課題について述べる。

第2章 マイクログリッド

2.1. マイクログリッド

近年,技術革新や電力自由化を受けて小型発電機の導入が容易になったことから,電力を必要とする場所の近くに小型発電機を設置し,発電する試みが行われている。また,地球温暖化問題への関心の高まりから,太陽光発電や風力発電などの二酸化炭素を排出しない自然エネルギーの導入が積極的に進められている。これらの発電機は電力を必要とする場所ごとに分散して設置されるので,まとめて「分散型電源」と呼ばれている。

この分散型電源と言う概念は、既存系統の大規模集中型の発電所に対する新しいエネルギー供給システムとして位置づけられており、これらの分散型電源を用いてエネルギーを供給するシステムのことを、「分散型エネルギーシステム」と呼ぶ。分散型電源には、自然エネルギーは出力変動が大きいため、出力平準化のための蓄電池による設備費用がかかること、コージェネレーションシステムは電力需要と熱需要を同時に有効利用することが難しいなどそれぞれ普及に向けて固有の課題がある。このような課題を複数の分散型電源や電力貯蔵装置を組み合わせ、解決することが期待されている。

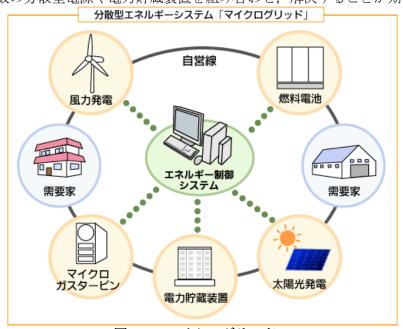


図 2.1 マイクログリッド

このように、需要地内で複数の分散型電源や電力貯蔵システムを組み合わせ、分散型電源の発電量を需要状況に合わせて制御し、電力の地域自給を可能とする小規模の電力供給網のことを「マイクログリッド」と呼ぶ。マイクログリッドは、分散型電源一つ一つが系統に連系するのではなく、複数の分散型電源や需要設備で構成された一つの集合体として電力系統に連結する発電方式である。

マイクログリッドは米国で考案された概念で, 究極的には電力系統から独立した運転や他のマイクログリッドと連携した運転をめざしたシステムである。

マイクログリッドによってネットワーク化された分散型エネルギーシステムには、下記のメリットが考えられる。

1.設備投資

電気や熱を使う場所の近くで発電するので、送電線で長い距離を運ぶ必要がなく、送電設備投資などの大規模なインフラ投資が必要ない。また、計画から稼働までに通常十年以上必要な大規模発電所に比べてリードタイムが短く、過剰な設備投資のリスクを防ぐことができる。

2.環境·効率

需要地での発電のため、発電の際に発生する膨大な排熱を極力自然界へ放出せずに活用できる。また送電損失も小さくなるため、エネルギー効率面と併せて地球環境面からも望ましい。

3.災害リスク

送電網が寸断されて大規模停電に繋がらないよう,災害リスク分散型のシステムとして,社会活動の機能停止に至る災害リスクを防止する。

4.安全性

新エネルギー等の活用を図り、エネルギー源をできるだけ多様化することにより、特定エネルギー源への依存度を下げることが可能となり、エネルギー供給の安定性が向上する。

とくに、分散型電源として新エネルギーの利用が注目されている。なかでも風力や太陽光といった自然エネルギーは、化石燃料を使用しないため環境問題・エネルギー問題の期待が大きい反面、自然環境や季節間、昼夜間などの影響を受け出力変動が生じる。現状では多くの場合、分散型エネルギーシステム内の電力需給のバランスや電力品質の維持は電力系統に依存しており、これを系統連携方式という。需要と供給のバランスが崩れると、電圧や周波数といった電力品質も変動し電気機器に悪影響を及ぼす。

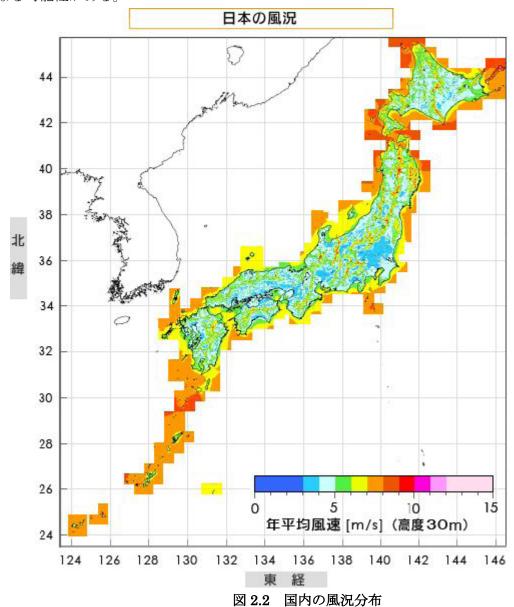
マイクログリッドは、このような悪影響の原因となる変動電源の自然エネルギーと、その他の新エネルギーを適切に組み合わせ、これらを制御するシステムを開発することにより、特定地域内で安定した電力・熱供給を行うことを目標としている。

マイクログリッドによって、新エネルギーと他の分散型電源や電力貯蔵装置をネットワークし、電力変動の波を極力平準化して電力品質を制御できれば、系統側の負担を軽減することが可能である。また、電力系統との連携により、分散型電源の故障やメンテナンス時には電力系統をバックアップとして利用でき、また電力系統の停電時には分散型電源を非常用として利用するなど、信頼性が向上する。

本研究ではマイクログリッドの制御により系統の負担を軽減するだけではなく, 積極的にコージェネレーションシステムなどの制御可能分散型電源を系統全体の予備力として活用することを提案する。

2.2. 制御で考慮すべき分散型電源

近年,風力発電や太陽光発電,バイオマス発電などの新エネルギーは,著しい進展を見せている。また,コージェネレーションシステムの普及に加え,燃料電池など小規模向きの新技術も急速に発展してきており,こうした分散型電源の社会的なニーズも高まっている。ここでは現在最も実用化が進んでいる自然エネルギーの風力発電と,コージェネレーションシステムについて説明する。


2.2.1.風力発電

風力発電は、風の力で風車を回し、その回転運動を発電機に伝えて電気を起こす発電方法であり、設備運用に関してわずかな二酸化炭素を発生するのみで、火力発電のように化石燃料による二酸化炭素の発生が全くないクリーンなエネルギーである。

風力エネルギーは、風を受ける面積に比例し、風速の3乗に比例する。したがって、風速が2倍になれば、風力エネルギーは8倍になり、風速が1/2になれば、風力エネルギーは1/8になる。このため、気象条件によって風力発電は大きな出力変動が起きるという特徴がある。

また、国内の風資源は地域によって偏りがあり、年間を通じて風速の強い北海道、東北、九州 地方で風力発電設備の導入が進んでいる。電力系統へ連系する風力発電設備の容量が増大するに つれて、電圧や周波数などの電力品質の維持に支障をきたす可能性が大きい。このため本研究で は後述のモデル系統として東北地域を想定している。

特に問題となるのが系統周波数の維持で、風力発電はガバナフリーや LFC による調整容量が 小さくなる夜間においても出力が変動するため、周波数を管理目標値内に維持することが困難と なる可能性がある。

周波数の維持のためには、風力発電出力に対する平滑化や貯蔵など、何らかの対策を講じる必要があり、これが風力発電導入拡大の課題となっている。

日本における風力発電は、補助金制度や電力会社による電力購入時の優遇制度により、近年導入が急速に進んでいる。2007年3月現在での日本における導入量は149万kWに達しており[1]、国策として2010年には300万kWの導入が目標として掲げられている。日本における風力発電導入量の推移を図2.3に示す。

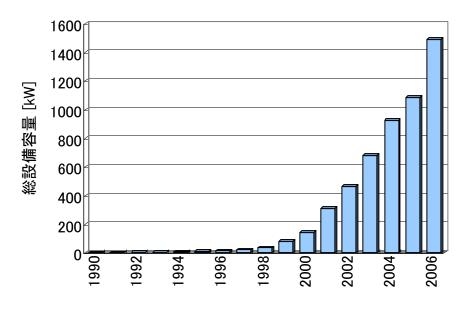


図 2.3 風力発電導入量の推移

2.2.2.コージェネレーションシステム

コージェネレーション(cogeneration, 英語では combined heat and power ともいわれる)とは、内燃機関、外燃機関等から動力とその排熱を利用し、総合エネルギー効率を高めるエネルギー供給システムである。通常は動力から電気出力を取り出し、排熱を高温の蒸気や温水の形で、あるいは空調などに利用する。

発電方式にはガスタービン,ガスエンジン,ディーゼルエンジン等のシステムがある。かつてはディーゼルエンジンが主流であったが,天然ガスは燃焼時にNOxやCO2の排出が少なくSoxも排出しないこと,原油価格の高騰でディーゼル燃料価格が上昇したことなどからガスエンジンの需要が伸びている。

これらのうち小型のガスエンジン等は特に制御性がよく、出力指令に対して約2秒での応答が可能である。本研究ではこの負荷追従性の高さに着目し、系統の負荷変動の抑制に協力することを検討した。

コージェネレーションシステムの導入量は産業用を中心に着実に増加しており、2007年現在で879万kW、発電容量の約3%をしめている。(社)日本ガス協会の予測では、2030年のコージェネ潜在需要量は6,120万kWであり、これは2001年発電容量の23%に相当すると試算されている。(現実的なコージェネ導入予想量は1,102万kW)

本研究ではこの試算値をもとに、制御可能なコージェネレーションシステムを持つマイクログリッド導入量が、系統容量の20%に相当する場合を仮定している。

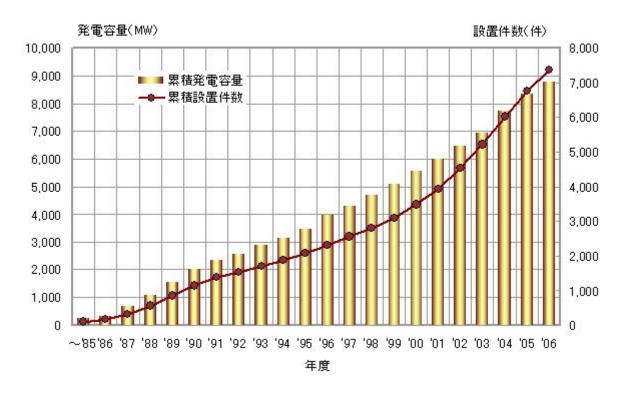


図2. 4コージェネレーションシステムの導入推移[2]

第3章 周波数制御と解析モデル

3.1. 電力系統における周波数制御

電力系統の周波数は、電力系統全体の需要と供給のバランスによって決まる。電力消費者からの需要要求は、瞬時に配電線、送電線を経由して発電機へと伝わるため、電力系統における需要とは、発電機の電気的出力 P_e そのものである。一方、電力系統における供給とは、蒸気タービンや水車などの回転力(発電機への機械的入力 P_m)である。1台の発電機と1つの負荷から構成される単純な電力系統を考えた場合、電力系統における需要と供給の関係は、次式で表現することができる。

$$P_{m} = P_{e} + M \frac{d\omega}{dt} \tag{3.1}$$

ただし, ω は発電機の回転速度,Mは慣性定数である。ここで,電力系統に並列している前発電機が完全な同期運転をしていると仮定すると, P_m を全発電機の機械的入力の総和, P_e を全発電機の電気的出力の総和,Mを全発電機の慣性定数の総和とみなすことにより,電力系統全体の需要と供給の関係を(3.1)式で表すことができる。

(3.1)式は、電力系統全体の需要と供給が同量でなければ、系統周波数(回転速度 ω と等価な量)が変動することを示している。発電量が負荷の消費量を上回る場合は、その余剰エネルギーが発電機の回転エネルギーとして蓄えられるため、周波数が上昇する。逆に発電量が負荷の消費量を下回る場合には、発電機が回転エネルギーを放出しようとするため、周波数は低下する。つまり、

発電電力 > 消費電力 → 周波数上昇発電電力 < 消費電力 → 周波数低下

となる。

周波数が変動すると、周波数を利用した回転機を用いて製造する製品の品質が不均一となったり、電気時計の狂いなどが生じるほか、電力系統の電圧制御、安定度にも悪影響が生じる。そのため各電力会社によって基準周波数からの変動管理目標値が設定されている。本報告所でモデル系統として使用した東北地域では、基準周波数 50Hz、周波数変動の最大偏差を±0.2Hz としている。

3.2. 負荷変動

電力系統へ入力される外乱である負荷変動は、図3.1の曲線Aのように一見でたらめであるが、実際は種々の変動周期成分が含まれており、曲線B,C,Dのような変動周期成分の合成とみなせる[4]。

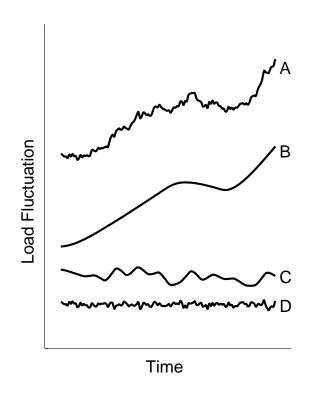


図 3.1 負荷変動の周期成分

3.2.1.制御分担

周波数を基準値に保つためには、時々刻々と変化する負荷に対して、発電力を追従させる必要がある。負荷変動は図 3.1 に示したように各種の周期成分の合成となっているが、発電機の出力制御もその制御特性との関連から、負荷の変動周期に応じて、ガバナフリー運転、負荷周波数制御 (LFC)、経済負荷配分制御 (EDC) などに分けられている^{[3][4][5]}。

周期数分以下の負荷変動のうち 20 秒程度までのきわめて短周期の負荷変動(サイクリック成分)は、系統の負荷特性によって吸収される。また、負荷変動のうち 20 秒以上数分程度の負荷変動はガバナフリー、そして周期が数分から 10 数分までの負荷変動(フリンジ成分)については、ガバナフリー、LFC によって制御を行っている。ガバナフリーによる制御は LFC による制御よりも速いため、より短周期の変動成分に対して有効である。10 数分以上の周期成分(サステンド成分)については、負荷変動の予測が可能であること、および負荷変動が大きいことから、発電所間の経済的な配分を考慮した経済負荷配分制御(EDC)によって制御を行っている。発電機の制御分担と負荷変動幅との概念を図 3.2 に示す。

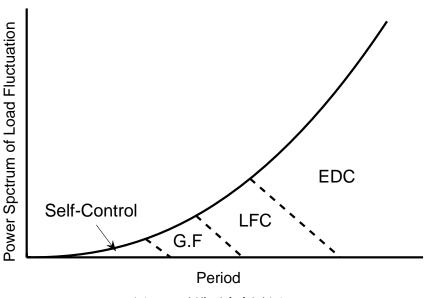


図 3.2 制御分担概略図

本研究が対象とする風力発電の出力変動も様々な周期の成分を持つが、本研究では約20分周期以下の短周期出力変動に起因する周波数変動を、LFC 用発電機と蓄電池の協調制御により抑制することを試みる。

3.3. 制御分担

3.3.1.ガバナフリー運転

ガバナフリー (GF) 運転とは、系統周波数の変動に応じ、発電機ガバナ (スピードガバナ、調速機) の働きにより、発電機出力を自動的に増減する運転のことである。発電機の回転数 (周波数) が上昇した場合には出力を減らすように、回転数 (周波数) が低下した場合には出力を増やすように制御される。つまり、

発電機自端の周波数 > 基準周波数 → 出力減少 発電機自端の周波数 < 基準周波数 → 出力増加

という制御である。ガバナを用いた制御であるため、発電機ごとで個別に制御がなされること、 負荷周波数制御や経済負荷配分制御などに比べて応動が速いことなどの特徴がある。大幅な出力 変化は発電機の運転上好ましくないため、ガバナフリーによる出力変動幅は発電機出力の数%程 度に制限されている。

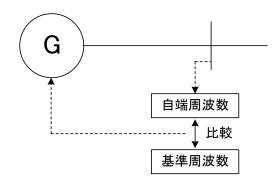


図 3.3 ガバナフリーによる制御

なお,ガバナフリー運転を行う発電機の特性(系統周波数と発電機出力の関係)は,次式の速度調定率 ε によって定まる。

$$\varepsilon = \frac{N - N_0}{N_0} \tag{3.2}$$

ただし,

N:無負荷にした場合の回転数

 N_0 : 定格回転数

3.3.2.負荷周波数制御 LFC

系統の負荷特性および発電機のガバナフリー運転のみの場合,系統周波数に生じる基準周波数からの定常偏差が避けられない。これを基準周波数に近づけるために、自動制御である負荷周波数制御(Load Frequency Control, LFC)が行われる。負荷周波数制御では、まず中央給電指令所で需給のアンバランスの大きさである地域要求量(Area Requirement, AR)を計算し、その結果を基に各発電機への制御量を求め、LFC 対象発電機である水力発電機、火力発電機に制御信号を送る。各 LFC 発電機は、この信号に応じて発電機出力を制御する。ガバナフリー運転は発電機ごとに設けられた制御系であるのに対し、負荷周波数制御は集中的に制御が行われている点が根本的に異なる。

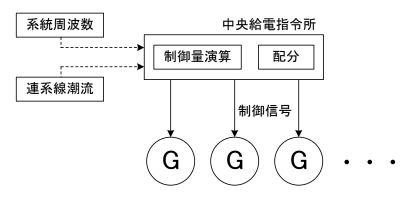


図 3.4 LFC による制御

3.3.3.経済負荷配分制御 EDC

負荷変動は、長周期の成分ほど変動幅が大きい傾向にあり、また、長周期の成分は負荷変動の 傾向として捉えることもできる。このような長周期の大きな負荷変動については、全体的な経済 性の向上のため、各発電機の経済性(火力発電機の燃料費など)等を考慮して発電機への負荷配分を行う必要がある。また、このような負荷変動については、その変化の傾向を考慮して制御することが効率的である。経済負荷配分制御(Economic Load Dispatching Control、EDC)は、負荷周波数制御と組み合わせて中央給電指令所から行う制御であり、経済性等を配慮して各発電機への出力を制御するものである。またその際には、負荷変動の傾向に基づいた予測制御を行っていることが多い。なお、対象とする時間領域が長くなるにつれ、発電機の起動・停止が必要となるなど、人間系の介在の機会も増加する。

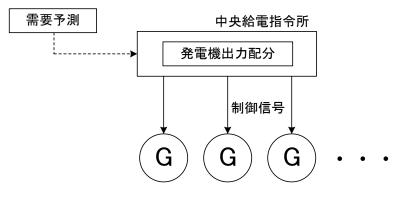


図 3.5 EDC による制御

負荷周波数制御 (LFC) と経済負荷配分制御 (EDC) は、密接な関係を持って実現されている。 LFC と EDC の結合については、装置や制御回路の構成から種々の組み合わせが考えられるが、 基本的には表 3.1 に示す 5 方式に区分される。

LFC と EDC の 方式 制御信号出力 系統 -----> LFC --> EDC 出力 直列配分方式 発電機群 共 有 (一括出力) 系統 --LFC **∢**--EDC ◀ 直列再配分方式 発電機群≤ 系統 並列配分方式 LFC EDC 発電機群↓ 系統 個 別 再配分方式 LFC EDC 発電機群 (別出力) ▼ ▼ EDC LFC 並列再配分方式 発電機群 🛨

表 3.1 LFC と EDC の結合方式

3.4. 制御系モデル

本研究で用いる系統モデルを図3.6に示す。

このモデルは動作点からの偏差を扱う伝達関数モデルであり、発電機(電力系統)モデル、火力プラントモデル、LFC モデル、マイクログリッドモデル、及び出力変動モデルによって構成される。LFC による出力変化指令値がプラントモデルへと入力され、タービン出力偏差、つまり機械的入力偏差が発電機モデルへ入力される。また、出力変動も発電機モデルへ入力される。この出力変動により、発電機モデルから回転速度偏差、つまり系統の周波数偏差が出力され、LFC モデルへ入力される。なお、原子力発電機は一定出力運転と仮定し、出力偏差は常に0のため図3.6には現れない。

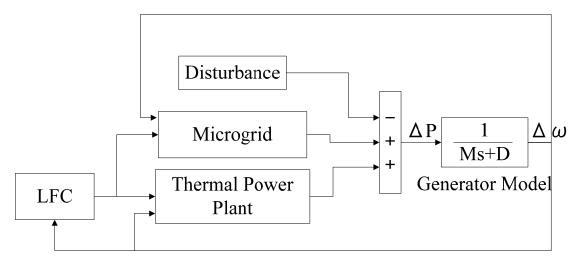


図 3.6 系統モデル

3.4.1.発電機モデル

電力系統における需要と供給の関係,つまり発電機の機械的入力 ΔP_m と電気的出力 ΔP_e の関係は (3.3) 式によって表現することができる。

$$M\frac{d\Delta\omega}{dt} = \Delta P_m - \Delta P_e \tag{3.3}$$

ただし、 $\Delta \omega$ は発電機の回転速度偏差、M は慣性定数である。また、系統の周波数が変化すると回転機負荷の回転数が変化し、消費電力が変化する。これを負荷の周波数特性といい、(3.4)式を用いて表すことができる。

$$\Delta P_{e} = \Delta P_{L} + D\Delta \omega \tag{3.4}$$

ただし、 ΔP_L は負荷変動、D は負荷の周波数特性を表すダンピング係数である。(3.3)式及び(3.4)式をブロック図で表すと図 3.7 のようになる。

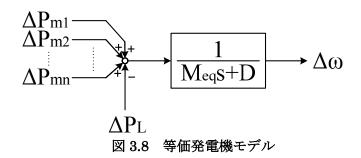



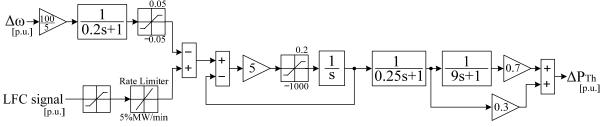
図 3.7 発電機入出力と負荷周波数特性

系統内の発電機がすべて完全な同期運転を行っていると仮定すると,発電機モデルは,図 3.8 に示したように系統内のすべての発電機を統合した1台の等価的なモデルで表現することができる。

等価慣性定数 M_{eq} は系統内すべての発電機の慣性定数の和であり、個々の発電機の機械的入力偏差を受けて周波数偏差を出力する。

3.4.2.火力機ガバナ制御系モデル

本研究で用いる火力プラントモデルは、主蒸気系、プラント制御系、給水・燃料制御系の模擬はしておらず、タービン・ガバナ系を模擬したガバナ制御系のみから構成される。また、系統内のすべての火力発電機群を1台のモデルで模擬する。火力発電機のガバナ制御系モデルを図3.9に示す。



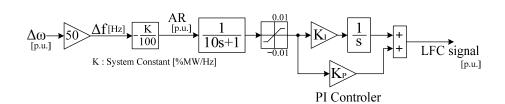

図 3.9 火力機ガバナ制御系モデル

図 3.10 に示すように、ガバナフリーによって可能な出力変化(GF 容量)および LFC によって可能な出力変化(LFC 容量)を制限するためのリミッタを、それぞれに対して設けている。本来、各 LFC 発電機はその LFC 運転可能範囲の中で出力を変化させることができるため、全ての LFC 発電機の出力調整可能範囲の和を系統の LFC 容量として定義することができる。しかし、本研究では全ての火力発電機を 1 台のガバナ制御系モデルで表現しているため、図 3.10 のような LFC 容量としてのリミッタを設けた。

また、LFC システムからの信号に対しては、±5%MW/min の変化率制約を設けている。

3.4.3.LFC システムモデル

負荷周波数制御(LFC)では、まず中央級伝書で需給のアンバランスの大きさである地域要求量(AR)を計算し、その結果をもとに各発電機への制御量を求め、LFC対象発電機である火力機に制御信号を送る。各発電機はこの信号に応じて発電機出力を制御する。本研究で用いたLFCシステムモデルを図3.10に示す。ARを用いたPI制御系によって、各発電機の出力設定値を制御する。

図 3.10 LFC システムモデル

3.4.4.マイクログリッドモデル

図 3.11 にマイクログリッドモデルを示す。系統内部の全てのマイクログリッドを 1 つのモデルで 模擬し、LFC 信号または系統周波数を用いて出力調整を行うものとする。

本研究ではマイクログリッドの詳細なモデル化は行わず、マイクログリッドで用いられるガスエンジンの過渡応答性から、制御にかかる時定数を T_{mg} =2sec とし、これと出力調整用予備力および出力の変化率制約のみを考慮した。

制御性に優れた小型のガスエンジン発電機が平常時に 90%の出力で運転されているものと仮定し、出力調整可能範囲を±10%としている。また、ガスエンジンの出力は約 50 秒で 0 から 100%まで立ち上げることが可能であることから、変化率制約を定格の 2%MW/sec とした。

マイクログリッドの出力制御には、LFC 信号または系統周波数(等価発電機モデルの角速度)を使用する。周波数を利用する場合は、周波数測定に 1 秒かかるものとする。これについては 4 章で説明する。

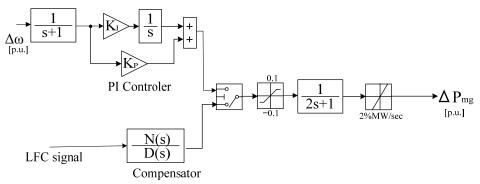


図 3.11 マイクログリッドモデル

3.4.5.負荷変動モデル

負荷変動にはステップ,正弦波,および風力発電の出力変動を想定した系統の負荷変動モデルを使用 した。負荷変動については使用する章において説明する。

3.5. モデル系統

モデル系統としては、図 3.12 に示す電気学会東 30 機系統^[6]を用いており、大規模系統のエリア 1 (定格出力 53509[MW]) と小規模系統のエリア 2 (定格出力 11560[MW]) の 2 エリアに分割し、エリア 2 内のみの需給制御を検討することとした。本来はエリア 1 とエリア 2 の間に連系線潮流が流れているが、本研究では簡略化のためにこの潮流もエリア 2 内の負荷と見なしている。なお、LFC 能力が一番弱まる時間帯での解析を行うために、系統状態としては夜間断面を用いた。

		Rated capacity [MW]	Initial output [MW]	Inertia constant [sec]	Total load [MW]
	Nuclear	6000	5800	9.03	
Area 2	Thermal	5560	4800	9.01	10600
Area Z	Hydro	_	-	_	10000
	Total	11560	10600	9.02	

表 3.2 発電機出力データ (夜間断面)

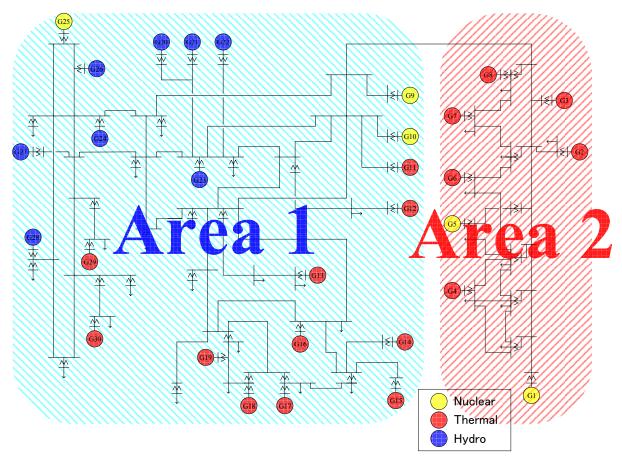


図 3.12 電気学会東 30 機系統

3.6. シミュレーション条件

シミュレーションの際に設定した諸条件を表 3.3 に示す。

表 3.3 シミュレーション条件

		Area 2
基準周	50	
系統定	9	
負荷周波数	2	
LFC 制御ゲイン	比例ゲイン Kp	5
	積分ゲイン Ki	0.1
AR 計算	10	
GF 容量	[%]	5
	[MW]	278
LFC 容量	[%]	1.5
	[MW]	159
マイクログ	2312	
マイクログリッ	231.2	

ただし GF 容量とは、ガバナフリーによって調整可能な出力の範囲であり、火力発電機群の定格出力の $\pm 5\%$ とした。また LFC 容量とは、LFC システムモデルによって調整可能な出力の範囲であり、系統内の総需要(負荷合計)の 1.5%とした。つまり、

GF 容量: $5560 \times (\pm 0.05) = \pm 278$ [MW] LFC 容量: $10600 \times (\pm 0.015) = \pm 159$ [MW]

となる。

また、マイクログリッド容量は負荷の20%、調整予備力はそのうちの10%とした。

マイクログリッド容量:11560×0.2=2312[MW]

マイクログリッド調整予備力:2312×0.1=231.2[MW]

シミュレーション時間内において、系統状態は一定であると仮定する。また、長周期の風力変動、負荷変動は、発電機の経済負荷配分制御(EDC)およびその他制御で対応しているものとし、需給が完全にバランスしている状態であると仮定する。また、初期状態(t=0)における設定は以下の通りである。

- 周波数偏差: $\Delta f = f f_0 = 0$ [Hz]
- ・ 火力発電機出力偏差:0[MW](調整可能出力帯の中央の値を0とする)
- ・ マイクログリッド出力偏差:0[MW](同上)

ただし、 f_0 および P_0 は基準値であり、シミュレーション時間内においては一定であると仮定する。なお、次節以降の本文中および図表中における「周波数」「連系線潮流」「火力発電機出力」などの表現は、上記に示す各偏差を指すものとする。

第 4 章 発電出力応答と周波数変動

本章では 4.1 節でマイクログリッドの制御方式を説明し、4.2 節ではステップ状の外乱、4.3 節では正弦波状の外乱に対して、系統の周波数変動と火力機出力の動作を解析する。

4.1. 集中制御と分散制御

電力系統の制御方式として、階層型集中方式と自律分散方式の二つが考えられる[7]。

階層型集中方式では、系統情報が中央給電司令所、地方給電司令所などの各階層レベルの中央コンピュータに集中的に集められ、各レベルでの総合的な判断の下に制御を行うシステムである。各電気所は中央からの指令に従って操作を行う。自律分散方式では、系統内の主要電気所からなるサブシステムが、オンライン系統情報と、個々に情報を有する分散コンピュータによって、自主的にかつ相互に協調し合いながら制御を行うシステムであり、各電気所は自らの判断で操作を行う。

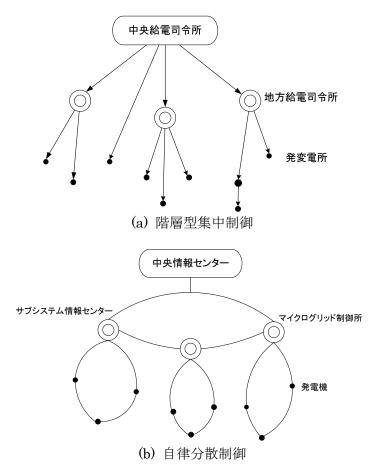


図4.1 集中制御と分散制御

現行の電力系統の運用・制御システムは階層型集中制御方式に基づいており、系統情報から効率的に制御を行う協調のとりやすいシステム構成である。マイクログリッドの需給制御の協調方式としては、現行のシステムの拡張という形で、この階層の一部にマイクログリッドとその発電機を組み込む形が考えられる。マイクログリッドを含むすべての発電所には中央給電司令所から LFC 指令が送られ、各発電機はこれに従って運転する。

一方、マイクログリッドという概念は系統からの独立運転を指向しており、理想とする運用形態は 自律分散制御に近い。また階層型集中制御では中央コンピュータに判断機能を持たせ、通信系を介し て制御を行うため、あまり高速な制御ができない欠点もある。このためマイクログリッドは高い制御 性を活かすために、系統周波数から需給バランスを推定し、自律的に系統の需給制御に参加し、系統 側は現行のLFCシステムを用いる、という併存状態も考えられる。

本研究ではマイクログリッドの制御方式として,前者を集中制御,後者を分散制御と呼び,それぞれの制御能力について検討する。

4.2. ステップ入力

負荷変動に対する周波数変動と制御の追従性を検討するために、まずステップ状の外乱について検討する。t=0sec 時に需要急増(あるいは発電機出力急減)が起こったものとし、外乱として 100MW のステップ入力を加える。一時的に電力の需給不均衡が生じるため周波数は低下し、これに対してガバナフリー運転や LFC 指令が働き火力機の出力が増加することとなる。

ここでは周波数の変動が収束した基準として、周波数の偏差が±0.002Hz 以内に収まった時刻を 用いている。

4.2.1.火力機応答

100MW のステップ外乱に対して、火力プラントのガバナフリー運転および LFC を組み合わせた 需給制御の周波数及び出力応答を図 4.2 に示す。

周波数変動が±0.002Hz以内に収束した時刻は t=88sec であった。

これは現行の電力系統を模擬したものと考えられ、マイクログリッドの需給調整能力を比較する際の基準となる。

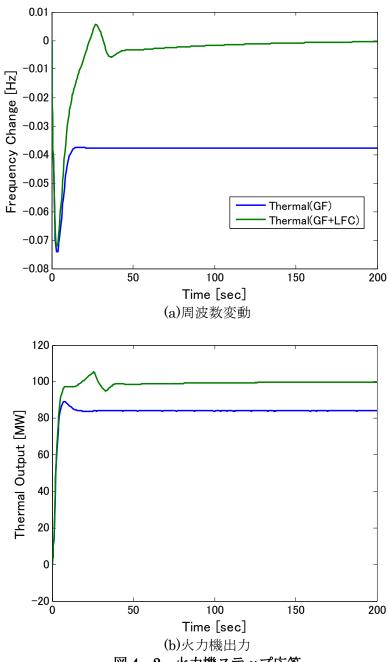
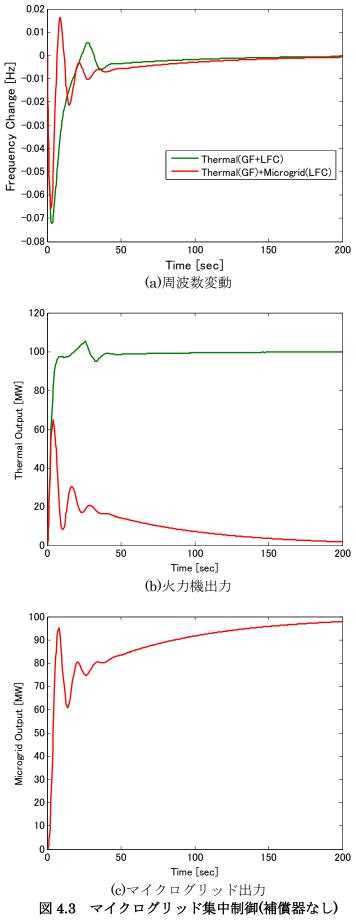



図 4. 2 火力機ステップ応答

)

4.2.2.集中制御(LFC 信号)

マイクログリッドの制御に系統の LFC 信号を用いる集中制御方式で、マイクログリッドにより系 統の需給制御をおこなった場合のステップ応答を図 4.3 に示す。ここではマイクログリッドの需給 制御能力を検証するため、火力プラントはガバナフリー運転のみを行い、LFC には参加していない ものとする。

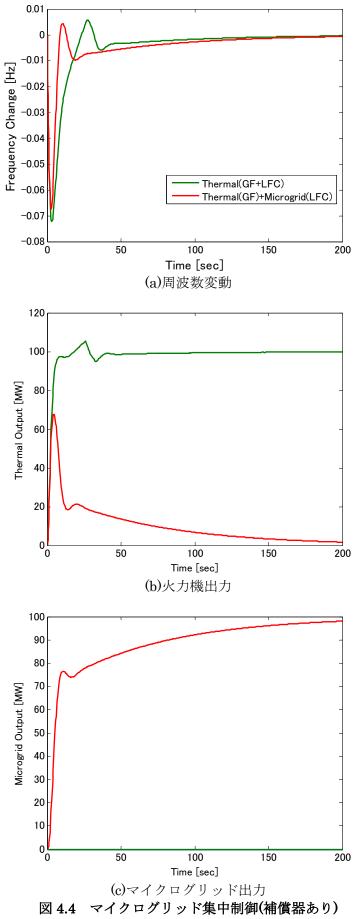
周波数が収束した時刻は t=127sec と火力機応答よりも非常に遅くなり, また周波数や火力機の出力も振動的になっている。

周波数および出力に振動が生じたのは、現行の火力機用のLFC信号がマイクログリッドに適していないことが原因と考えられる。火力機ガバナフリーによる出力との協調が取れていないため、出力が振動的になる。したがってこれを抑えるためには、マイクログリッドの応答性を火力機用LFC信号のスピードに合わせればよい。

つまり、マイクログリッドが LFC 調整用火力機と同じスピードで動作すれば、振動が収まり LFC 調整用火力機と同じ性能で需給制御を行うことが可能となるはずである。そこでマイクログリッドの 応答性を遅らせるための補償器を設置する。

火力機およびマイクログリッドの伝達関数モデルから非線形な部分を無視すると, 伝達関数はそれぞれ

$$\frac{54s+20}{9s^3+82s^2+189s+20}$$
, $1/(2s+1)$


である。マイクログリッド全体の伝達関数を火力機のものと一致させるため、次のような補償器をマ イクログリッドに導入する。

$$\frac{54s+20}{9s^3+82s^2+189s+20} \times (2s+1) = \frac{108s^2+94s+20}{9s^3+82s^2+189s+20}$$

補償器を導入したマイクログリッド集中制御のステップ応答を図4.4に示す。

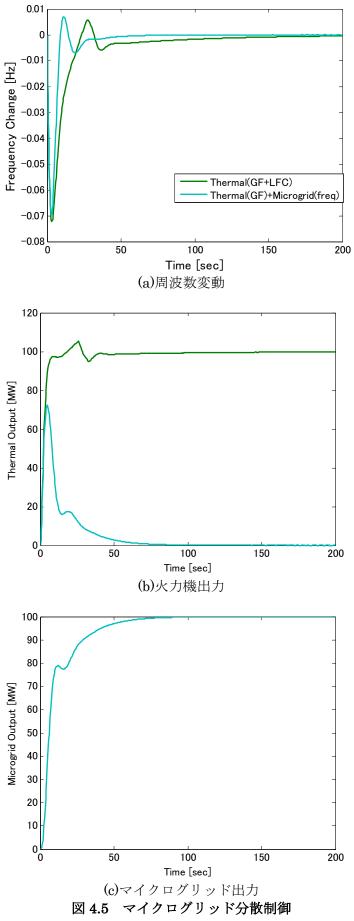
周波数の収束時刻は t=122sec となり、若干(5sec)改善した。周波数変動のオーバーシュートも半分程度となり、制御結果がよくなっていることがわかる。

以上の結果から、マイクログリッドを集中制御方式で系統需給制御に参加させる場合には、火力機の特性に合わせるような補償器の導入が有効であり、その場合 LFC 火力機には収束時間で劣るものの需給制御が可能であるといえる。

4.2.3.分散制御(周波数)

分散制御方式では、マイクログリッドは系統周波数の変動から系統の電力需要を推定し、これに応じて各マイクログリッドが系統との間の連系点潮流量を調節する。火力機はガバナフリー運転のみ行い LFC には参加しない。

マイクログリッドが周波数変動を用いた比例制御を行うだけでは、周波数の定常偏差を 0 にすることができないため、ここでは簡単な PI 制御器を使用することにする。設定試行錯誤的に PI 制御器の比例ゲイン,積分ゲインはそれぞれ Kp=1,Ki=1 とした。このときの分散制御の結果を図 4.5 に示す。


周波数の収束時刻は t=27sec と非常に短くなり、周波数と出力のオーバーシュートが LFC 火力機 に比べてやや大きいものの、マイクログリッドの制御性の高さを活かした非常によい結果となっている。

これまで述べた補償器の設定をもとに 100MW のステップ変動に対する応答を図 4.6 にまとめる。

収束時間[sec]周波数オーバーシュート[Hz]LFC 火力機880.0055マイクログリッド集中制御1220.0044マイクログリッド分散制御270.007

表 4.1 ステップ変動に対する収束時間と周波数オーバーシュート

集中制御,分散制御のいずれの方式でもマイクログリッドはステップ外乱に対する周波数変動の制御が可能であることがわかった。ステップ外乱に対して周波数を最も速く収束させるのは、マイクログリッドの制御性の高さを活かした分散制御である。

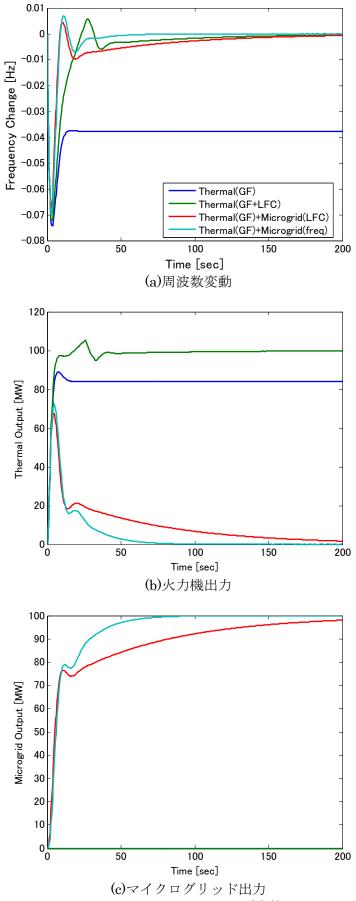


図 4.6 100MW ステップ応答

4.3. 正弦波入力

ステップ入力より実際の負荷に近い変動パターンとして、正弦状の外乱を加える。マイクログリッド集中制御、分散制御の場合は 4.2 節内で述べたものと同じ補償器を使用し、また LFC 火力機の容量も同様に 0 となっている。

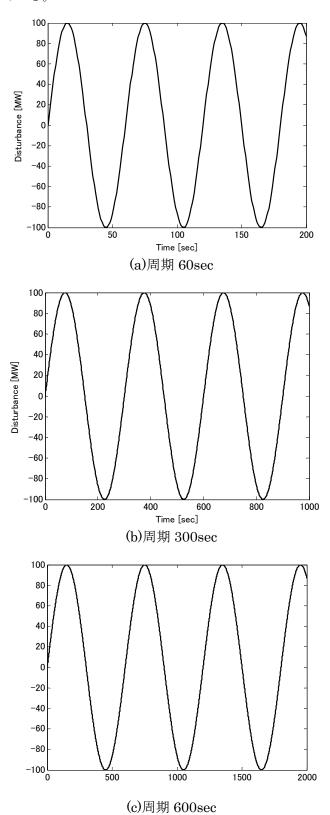


図 4. 7 正弦波外乱

正弦波状の外乱として周期 1 分,5 分,10 分のものを使用した,この波形を図 4. 7 に示す。正弦波の振幅はいずれも 100MW である。

それぞれの外乱に対する周波数制御の結果を図4.8から4.10に示す。

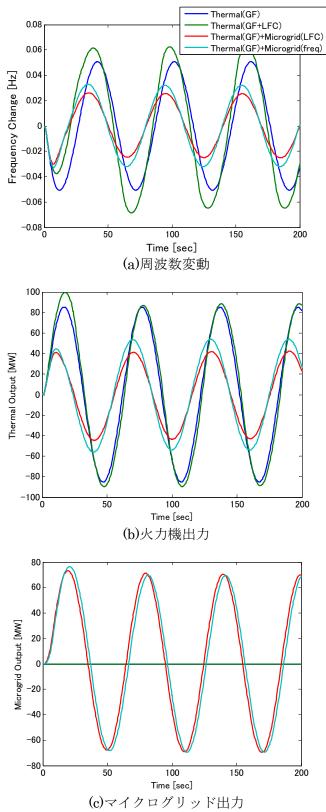


図 4.8 100MW 正弦波(周期 60sec)応答

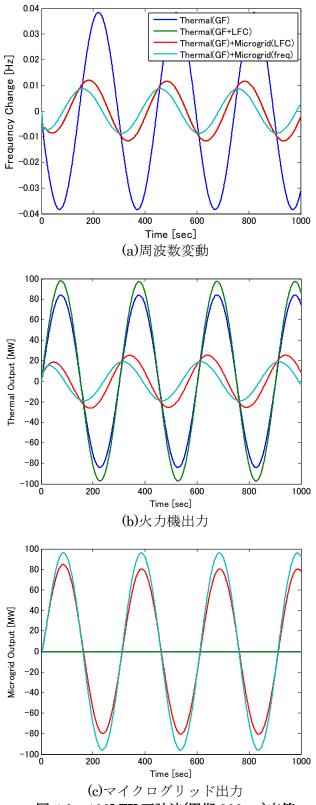


図 4.9 100MW 正弦波(周期 300sec)応答

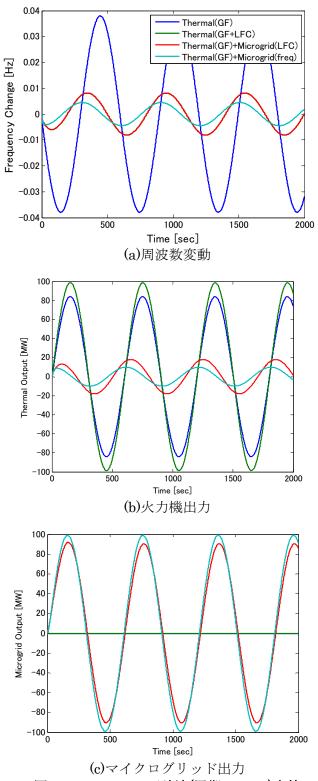


図 4.10 100MW 正弦波(周期 600sec)応答

長周期(300sec,600sec)の正弦波入力に対しては、火力機とマイクログリッド集中制御の応答は全く同じ結果となった。これはマイクログリッド集中制御において、マイクログリッドに火力機伝達関数と一致するような補償器を導入したためである。また、このときマイクログリッド分散制御が周波数変動を最もよく抑えたよい制御となっており、正弦波状の変動に対してもマイクログリッドによる高速な制御が有効であることがわかった。

一方、短周期(60sec)の正弦波入力に対しては、制御方式によって周波数変動の様子が大きく異なる結果となった。これは一つには LFC 火力機の出力変化率制約がかかっている。火力機の LFC による変化率制約は 5%MW/min=4.6MW/sec。正弦波外乱の 0 から $\pi/2$ までの平均の変化率は 100/15=6.67MW/sec であるから、LFC 火力機の出力ではこの変動に追従することができない。従って LFC 火力機の制御結果は著しく悪くなっている。

マイクログリッドの分散制御よりも集中制御の結果がよくなっているが、分散制御の PI 制御器の比例ゲインを Kp=5 に大きくすることで、集中制御の場合と同程度の周波数変動に抑えることも可能である。ただしその場合、ステップ応答の収束時間が数秒長くなる。

表 4.2 周波数変動幅

	周期 60sec	周期 300sec	周期 600sec
LFC 火力機	$0.064 \mathrm{Hz}$	0.012Hz	$0.0082 \mathrm{Hz}$
マイクログリッド集中制御	$0.026 \mathrm{Hz}$	0.012Hz	0.0082Hz
マイクログリッド分散制御	$0.033 \mathrm{Hz}$	$0.0087 \mathrm{Hz}$	$0.0045 \mathrm{Hz}$

第 5 章 配電系統電圧

5.1. マイクログリッドが配電系統に与える影響

分散型電源の多くは配電系統に連系されており、マイクログリッドも配電系統に連系された状態で 運転されると想定される。通常はマイクログリッドと系統との間の連系線に流れる潮流を一定に保ち、 配電系統に影響を与えないような運用を行うが、本研究で検討している系統需給制御への貢献をおこなう場合には、マイクログリッド連系線の潮流は常時変化する必要がある。

このような連系線潮流の変動は、同じ配電線内の負荷電圧を変動させるおそれがある。電気事業法では 100V 契約の場合、101±6V の範囲内の電圧で供給することが義務づけられているため、マイクログリッドが需給制御を行う場合には配電系統電圧も考慮して出力制御を行う必要がある。

5.2. 連系線潮流と配電線電圧

マイクログリッドが連系される配電線のモデルとして、住宅地域系統および工業地域系統[8]を図 5.1 に示す。

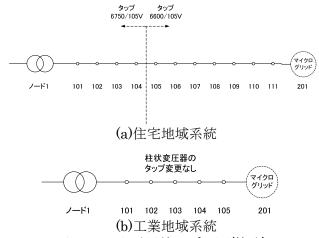
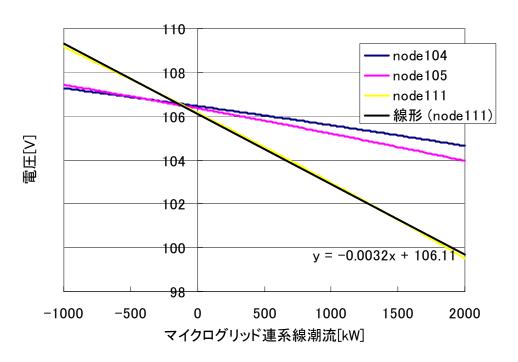



図 5.1 配電系統モデル図(簡略)

左端の変電所ノードは無限大母線に接続されている状態なので,配電線の潮流状態にかかわらず電 圧は一定に保たれており,配電線の右端に行くほど電圧降下によって電圧は下がっていく。従ってマ イクログリッドが系統末端側に連系されているほど,連系線潮流が変化した場合の配電線内の潮流に 与える影響が大きく,配電線の電圧変化は大きくなる。

ここでは最も電圧への影響が厳しい、マイクログリッドが配電線の右端に連系されているという仮定をおいた。系統状態は Area 2 の設定に合わせ、中間季節期夜間 6 時の負荷断面を用いる。

このときのマイクログリッド連系線潮流の大きさと配電線内のノード電圧の関係を図 5.2 に示す。 ただし連系線電力潮流は配電系統からマイクログリッドへ流れる向きを正とする。

(a)住宅地域モデル

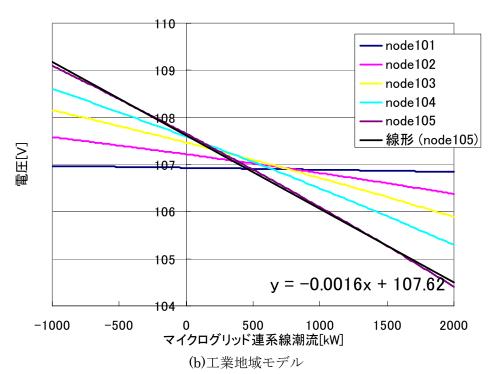


図 5. 2 中間季節期朝 6 時における連系線潮流と配電線ノード電圧

どちらも傾きが大きく電圧違反を最も起こしやすいのは系統右端のノードであり、電圧変化の大き さは連系線潮流の大きさにほぼ比例している。

これより、最も電圧違反を起こしやすいノードの電圧 y[V]はマイクログリッドからの潮流 x[kW]によって

住宅地域: y = -0.0032x + 106.11 (5.1)

工業地域: y = -0.0016x + 107.62 (5.2)

で近似できる。

5.3. 東北地域 (Area2) における電圧変動の試算

電気事業連合会の電力統計情報によると、東北電力の配電設備総容量は $2.6 \times 10^7 \, \text{kVA}(2006\ 年)$ であるから、配電線一本の容量を $3000 \, \text{kVA}$ とおくと、配電線総本数は $2.6 \times 10^7 \div 3000 \cong 8700$ 本と概算される。

ここで

- ・系統内の配電線がすべて同一の住宅地域モデルで表される。
- ・全配電線のうち M%にマイクログリッドが連系されている。
- ・個々のマイクログリッドもすべて同一のモデルで表すことができる。

という系統の構成を単純化した仮定をおくと、(5.1)式の配電線一本あたりの連系線潮流 x[kW]を用いて、Area2 内のマイクログリッド総出力 Pmg[MW]は

$$P_{mg} = 8700x \times \frac{M}{100} \cdot 10^{-3} \,[\text{MW}] \tag{5.3}$$

と表せる。

M=10%とするとマイクログリッドの調整予備力に相当する Pmg=231.2MW の出力変動に対して、配電線一本あたりの連系線潮流は 266kW, 電圧の変動幅は(5.1)式より 0.85V となる。マイクログリッドコージェネの最大 10%を予備力として活用できるのであるから、マイクログリッド一件あたりのコージェネの定格は 2660kW となり、設備容量として妥当な値である。

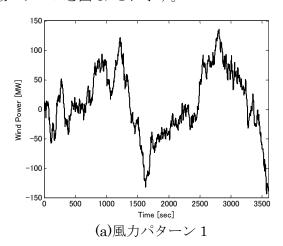
このときの電圧はすべて 101±6V の範囲内に収まるため、配電系統電圧には問題となるほどの影響を与えないことがわかる。

・系統内の配電線がすべて工業地域モデルで表される

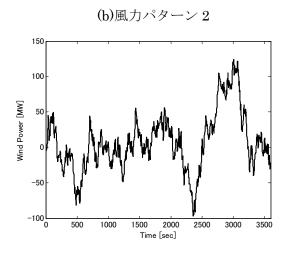
という仮定に置き換えた場合の試算は,(5.2)式より 0.43V となり,さらに電圧への影響は小さく なる。

まとめると,住宅地域や工業地域などの比較的短い配電線に接続されたマイクログリッドについては、制御可能電源の定格が 3000kW 以下程度の中小規模のものであれば、電圧への影響はあまり考慮する必要がないといえる。

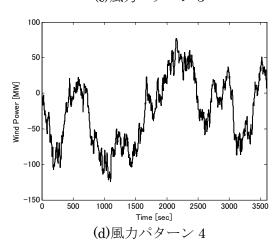
ただしマイクログリッドの連系される配電線の割合 M[%]が小さい, すなわちマイクログリッドー件あたりの容量と連系線潮流が大きい場合には, 配電系統電圧への影響を考慮し、連系線潮流が大きくならないような制御や, 配電系統の電圧に対する無効電力制御を検討する必要があると考えられる。


第 6 章 予備力削減効果

6.1. ランダム変動波形


実測データ^[9]によると,定格出力 $21000 \mathrm{kW}$ のウィンドファームにおいて,平均出力:約 $10000 \mathrm{kW}$,標準偏差:約 $1000 \mathrm{kW}$,最大振幅(60分間):約 $5000 \mathrm{kW}$ である。

ここでは将来的に Area2 系統内に合計 1000MW の風力が導入されたと仮定し, 標準偏差 50MW, 最大振幅 250MW 程度のランダム変動を用いてシミュレーションをおこなうこととする。


使用した5つの風力変動パターンを図6.1に示す。

200 150 100 -50 -100 -150 0 500 1000 1500 2000 2500 3000 3500

(c)風力パターン 3

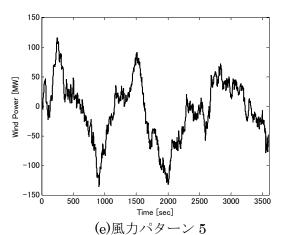


図 6. 1 風力ランダム変動パターン

表 6.1 風力変動データ

	パターン 1	パターン 2	パターン 3	パターン 4	パターン 5
最大値[MW]	135.6	161.3	123.8	77.1	115.8
最小値[MW]	-143.1	-133.1	-96.5	-124.2	-135.1
標準偏差[MW]	56.0	70.4	40.9	46.2	50.0

6.2. 周波数および地域要求量偏差

この章では、ランダム変動に対する需給制御能力の指標として、需給アンバランスの量に当たる地域要求量 (AR) と系統周波数を使用する [10]。 1 時間の AR 及び周波数の値をサンプリング時間 1 秒でとり、この標準偏差が小さいほど制御能力が高いと判定する。 AR の標準偏差が小さいほど需給バランスがとれているよい制御であり、また周波数の標準偏差が小さいほど基準周波数からずれていない周波数制御であると見なすことができる。本研究では他地域系統との連系線潮流は考慮していないので、二つの指標はほぼ同じ意味となる。

LFC 火力機による制御を行った場合の AR および周波数の標準偏差を表 6.2 に示す。

表 6.2 LFC 火力機による制御結果

	パターン 1	パターン 2	パターン 3	パターン 4	パターン 5
AR 標準偏差[MW]	3.480	3.839	3.103	3.178	3.474
周波数標準偏差[Hz]	0.0048	0.004896	0.00448	0.004603	0.004892

6.3. マイクログリッド集中制御による予備力削減効果

マイクログリッド集中制御による需給制御への貢献について検討する。ここでは現実的にLFC 火力機とマイクログリッドが協調して周波数制御を行っているものとする。

マイクログリッドと LFC 火力機が協調制御を行うために、ここではマイクログリッドへの LFC 信号分配比を定める。

これは中央給電所で計算した AR の値のうち, 何割をマイクログリッドが分担するかと言う割合である。例として LFC 信号分配比が 0.1, 系統の AR は 100MW の電力不足と計算されるような状態を考える。

このとき当然中央給電所は LFC により合計 100MW の出力増加指令を出すが、マイクログリッド の信号分配比は 0.1 であるから、マイクログリッドへの出力増加指令は 10MW となる。残り 90MW は LFC 火力機に割り当てられる。

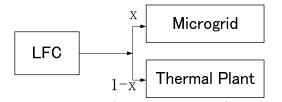


図 6. 2 マイクログリッドへの LFC 信号分配比

このように制御分担を割り当てると、マイクログリッドの予備力が加わった分、これまでの火力機の LFC 容量 159MW を減らすことが可能になると予想される。これは AR または周波数の標準偏差が、表 6.2 で示した規準値と比較することで判断できる。

マイクログリッドの信号分配比と火力機 LFC 容量を変更したときの AR および周波数の標準偏差を表 6.3 から 6.12 に示す。

それぞれの表ではさらにマイクログリッドの予備力が(a)231.2MW, (b) 115.6MW, (c) 57.8MW, (d) 23.12MW となった場合の標準偏差を求めており、需給制御に参加できるマイクログリッドの予備力があまり大きくない場合についても検討している。色つきのマスがマイクログリッドによって火力機の予備力削減が可能となる部分である。

信号分配比を増やすほど火力機削減可能量は増加するが,風力変動に比べてマイクログリッドの容量が小さくなると大きな信号分配比を割り振ることができなくなる。

この表を用いて、風力パターンを制御した場合におけるマイクログリッドへの適切なLFC信号分配比と、このときの火力機予備力削減可能量を適切に求めることができる。

表 6.3 風力パターン 1 (AR)

(a)マイクログリッド予備力 231.2MW

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.48	3.48	3.48	3.48	3.48	3.49	3.60	3.96	4.56	5.38	6.35	7.58	8.96	10.36	11.80	13.37
	0.2	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.56	3.82	4.29	4.92	5.67	6.51	7.40	8.37	9.41
	0.3	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.53	3.73	4.11	4.63	5.24	5.88	6.59	7.38
LFC signal	0.4	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.50	3.67	3.99	4.44	4.94	5.49	6.11
distribution		3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.49	3.62	3.91	4.30	4.74	5.25
	0.6	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.58	3.84	4.21	4.62
ratio	0.7	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.55	3.80	4.14
	0.8	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.53	3.78
	0.9	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.51
	1.0	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48

(b)マイクログリッド予備力 115.6MW

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	FC in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.48	3.48	3.48	3.48	3.48	3.49	3.60	3.96	4.56	5.38	6.35	7.58	8.96	10.36	11.80	13.37
	0.2	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.56	3.82	4.29	4.92	5.67	6.51	7.40	8.37	9.41
	0.3	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.53	3.73	4.11	4.63	5.24	5.88	6.59	7.38
LFC signal	0.4	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.50	3.67	3.99	4.44	4.94	5.49	6.11
distribution		3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.49	3.62	3.91	4.30	4.74	5.25
	0.6	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.58	3.84	4.21	4.62
ratio	0.7	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.55	3.80	4.14
	0.8	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.53	3.78
	0.9	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.51
	1.0	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52	3.52

(c)マイクログリッド予備力 57.8MW

						Reduc	ed amoun	t of regul	ating pov	ver for Ll	FC in the	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.48	3.48	3.48	3.48	3.48	3.49	3.60	3.96	4.56	5.38	6.35	7.58	8.96	10.36	11.80	13.47
	0.2	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.56	3.82	4.29	4.92	5.67	6.51	7.53	8.85	10.67
	0.3	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.53	3.73	4.11	4.63	5.34	6.31	7.71	9.62
LFC signal	0.4	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.50	3.67	4.03	4.70	5.76	7.15	9.08
distribution		3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.52	3.76	4.40	5.46	6.82	8.79
	0.6	3.69	3.69	3.69	3.69	3.69	3.69	3.69	3.69	3.69	3.69	3.69	3.80	4.32	5.29	6.61	8.59
ratio	0.7	4.16	4.16	4.16	4.16	4.16	4.16	4.16	4.16	4.16	4.16	4.16	4.18	4.47	5.27	6.49	8.45
	0.8	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.04	5.50	6.51	8.35
	0.9	6.48	6.48	6.48	6.48	6.48	6.48	6.48	6.48	6.48	6.48	6.48	6.48	6.48	6.49	6.92	8.35
	1.0	10.63	10.63	10.63	10.63	10.63	10.63	10.63	10.63	10.63	10.63	10.63	10.63	10.63	10.63	10.63	10.63

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.48	3.48	3.48	3.48	3.48	3.49	3.60	3.96	4.56	5.38	6.49	8.11	10.37	12.87	15.57	18.03
	0.2	3.48	3.48	3.48	3.48	3.48	3.48	3.49	3.59	3.99	4.77	5.89	7.41	9.75	12.42	15.24	17.77
	0.3	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.75	4.05	4.78	5.81	7.23	9.57	12.30	15.14	17.69
LFC signal	0.4	4.05	4.05	4.05	4.05	4.05	4.05	4.05	4.09	4.31	4.95	5.92	7.29	9.55	12.26	15.08	17.63
distribution		4.56	4.56	4.56	4.56	4.56	4.56	4.56	4.57	4.71	5.22	6.12	7.43	9.62	12.27	15.06	17.60
ratio	0.6	5.25	5.25	5.25	5.25	5.25	5.25	5.25	5.25	5.32	5.65	6.45	7.66	9.74	12.31	15.07	17.58
Tatio	0.7	6.28	6.28	6.28	6.28	6.28	6.28	6.28	6.28	6.30	6.45	7.00	8.10	9.95	12.39	15.10	17.57
	0.8	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.98	8.21	8.97	10.43	12.60	15.16	17.58
	0.9	11.20	11.20	11.20	11.20	11.20	11.20	11.20	11.20	11.20	11.20	11.20	11.30	11.98	13.28	15.38	17.62
	1.0	19.06	19.06	19.06	19.06	19.06	19.06	19.06	19.06	19.06	19.06	19.06	19.06	19.06	19.06	19.06	19.06

表 6.4 風力パターン 1 (周波数)

(a)マイクログリッド予備力 231 2MW

					(a)~	マイク	ロク	`リッ	ド予1	崩力 2	231.2	MW					
						Reduc	ed amoun	t of regul	ating pov	ver for LI	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	4.79E-3	4.79E-3	,		4.79E-3		4.90E-3						9.53E-3			-10-0
	0.2	4.79E-3	4.79E-3			4.79E-3	4.79E-3	4.80E-3	4.86E-3	5.08E-3	5.47E-3			7.33E-3		9.00E-3	
	0.3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.83E-3	5.00E-3	5.32E-3	5.76E-3	6.25E-3	6.79E-3	7.40E-3	U.T.L.
LFC signal	0.4	4.79E-3	4.79E-3		4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.81E-3	4.95E-3	5.22E-3	5.59E-3	6.00E-3	6.45E-3	
distribution	0.5	4.79E-3	4.79E-3	,	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.80E-3	4.91E-3	5.15E-3	5.47E-3	5.82E-3	6.26E-3
ratio	0.6	4.79E-3	,		,	4.79E-3	4.79E-3	4.79E-3	4.79E-3		4.79E-3		4.79E-3	4.88E-3	5.10E-3	5.38E-3	
rutio	0.7	4.79E-3	,			4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.85E-3	5.06E-3	5.33E-3
	0.8		4.79E-3			4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3			4.79E-3	4.79E-3	4.83E-3	
	0.9		4.79E-3		4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3		4.79E-3	4.79E-3	4.79E-3	
	1.0	4.79E-3	4.79E-3	4.79E-3	4.79E-3								4.79E-3	4.79E-3	4.79E-3	4.79E-3	4.79E-3
					(p)~			`リッ									
					1			t of regul				_				1	
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	4.79E-3	4.79E-3	,	,			4.90E-3			6.39E-3		0.12, 0	9.53E-3	1.08E-2	1.21E-2	
	0.2		4.79E-3		4.79E-3				4.86E-3	5.08E-3	5.47E-3			7.33E-3	8.11E-3	9.00E-3	
	0.3		4.79E-3	,		4.79E-3					5.00E-3			6.25E-3	6.79E-3	7.40E-3	0111111
LFC signal	0.4				4.79E-3									5.59E-3	6.00E-3	6.45E-3	
distribution	0.5		4.79E-3				4.79E-3				4.79E-3 4.79E-3		4.91E-3	5.15E-3	5.47E-3	5.82E-3	
ratio	0.6				4.79E-3 4.79E-3									4.88E-3 4.79E-3	5.10E-3 4.85E-3	5.38E-3 5.06E-3	
					4.79E-3						4.79E-3					4.83E-3	
					4.79E-3		4.79E-3		4.79E-3		4.79E-3						
	1.0				4.83E-3		4.83E-3		4.83E-3		4.79E-3			4.83E-3	4.79E-3	4.83E-3	
	1.0	T.03L-3	4.03L-3	14.03L-3		マイ :					57.8N		4.03L-3	4.03L-3	4.03L-3	4.03L-3	T.03L-3
					(0)			t of regul					t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1				4.79E-3						/ 0					1.21E-2	
	0.2	_	4.79E-3	1	4.79E-3	4.79E-3	4.79E-3	4.80E-3	4.86E-3	5.08E-3	5.47E-3		6.62E-3	7.33E-3	8.23E-3	9 44E-3	-10 /
	0.3				4.79E-3		4.79E-3		4.79E-3	4.83E-3	5.00E-3	5.32E-3		6.34E-3	7.16E-3	8 42E-3	
IEG : I	0.4		4.79E-3			4.79E-3	4.79E-3	4.79E-3	4.79E-3		4.81E-3		5.26E-3	5.82E-3	6.71E-3	7.92E-3	9.68E-3
LFC signal	0.5	4.80E-3	4.80E-3	4.80E-3	4.80E-3	4.80E-3	4.80E-3	4.80E-3	4.80E-3	4.80E-3	4.80E-3	4.83E-3	5.03E-3	5.56E-3	6.47E-3	7.64E-3	9.41E-3
distribution	0.6	4.96E-3	4.96E-3	4.96E-3	4.96E-3	4.96E-3	4.96E-3	4.96E-3	4.96E-3	4.96E-3	4.96E-3	4.96E-3	5.06E-3	5.49E-3	6.34E-3	7.46E-3	9.23E-3
ratio	0.7	5.37E-3	5.37E-3			5.37E-3	5.37E-3	5.37E-3	5.37E-3	5.37E-3	5.37E-3		5.39E-3	5.63E-3	6.32E-3	7.36E-3	9.10E-3
	0.8	6.08E-3	6.08E-3	6.08E-3	6.08E-3	6.08E-3	6.08E-3	6.08E-3	6.08E-3	6.08E-3	6.08E-3	6.08E-3	6.08E-3	6.12E-3	6.51E-3	7.38E-3	9.01E-3
	0.9	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.34E-3	7.72E-3	9.01E-3
	1.0	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2	1.11E-2
					(d)~	マイク	ログ	`リッ	ド予位	備力 2	23.12	MW					
						Reduc	ed amoun	t of regul	ating pov	ver for LI	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1		4.79E-3		4.79E-3									1.08E-2	1.31E-2	1.57E-2	
	0.2		4.79E-3										8.15E-3	1.03E-2	1.27E-2	1.53E-2	
	0.3		,	4.96E-3	,	4.96E-3	4.96E-3	4.96E-3	5.02E-3		5.89E-3	6.78E-3	8.00E-3	1.01E-2	1.26E-2	1.52E-2	
LFC signal	0.4	5.27E-3	5.27E-3	5.27E-3	5.27E-3	5.27E-3	5.27E-3	5.27E-3	5.30E-3	5.48E-3	6.03E-3	6.87E-3	8.04E-3	1.01E-2	1.26E-2	1.52E-2	
distribution	0.5	5.67E-3	5.67E-3	5.67E-3	5.67E-3	5.67E-3	5.67E-3	5.67E-3	5.68E-3	5.81E-3	6.24E-3	7.03E-3	8.17E-3	1.01E-2	1.26E-2	1.51E-2	1.76E-2

5.67E-3 5.67E-3 5.67E-3 5.67E-3 5.67E-3 5.67E-3 5.67E-3 5.67E-3 5.67E-3 5.68E-3 5.81E-3 6.24E-3 7.03E-3 8.17E-3 1.01E-2 1.26E-2 1.51E-2 1.76E-2 6.25E-3 7.13E-3 7.13E-

 0.8
 8.62E-3
 8.65E-3
 9.54E-3
 1.09E-2
 1.29E-2
 1.53E-2
 1.76E-2

 0.9
 1.16E-2
 1.16E-2

distribution ratio

表 6.5 風力パターン 2 (AR)

(a)マイクログリッド予備力 231.2MW

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.84	3.84	3.84	3.90	4.13	4.63	5.35	6.29	7.40	8.60	9.81	11.06	12.32	13.64	14.90	16.13
	0.2	3.84	3.84	3.84	3.84	3.85	3.95	4.21	4.62	5.18	5.84	6.62	7.46	8.37	9.33	10.27	11.19
	0.3	3.84	3.84	3.84	3.84	3.84	3.84	3.88	4.02	4.28	4.67	5.16	5.75	6.40	7.13	7.88	8.66
LFC signal	0.4	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.85	3.92	4.10	4.39	4.78	5.26	5.82	6.44	7.08
distribution		3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.87	3.98	4.22	4.55	4.97	5.47	6.02
	0.6	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.91	4.10	4.39	4.77	5.25
ratio	0.7	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.87	4.01	4.28	4.67
	0.8	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.94	4.21
	0.9	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.89
	1.0	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84

(b)マイクログリッド予備力 115.6MW

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.84	3.84	3.84	3.90	4.13	4.63	5.35	6.29	7.40	8.60	9.81	11.06	12.32	13.64	14.90	16.13
	0.2	3.84	3.84	3.84	3.84	3.85	3.95	4.21	4.62	5.18	5.84	6.62	7.46	8.37	9.33	10.28	11.46
	0.3	3.84	3.84	3.84	3.84	3.84	3.84	3.88	4.02	4.28	4.67	5.16	5.75	6.40	7.13	7.97	9.23
LFC signal	0.4	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.85	3.92	4.10	4.39	4.78	5.26	5.82	6.60	7.87
distribution		3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.87	3.98	4.22	4.55	4.98	5.70	6.96
	0.6	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.91	4.10	4.41	5.06	6.31
ratio	0.7	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.84	3.87	4.05	4.61	5.83
	0.8	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.89	4.31	5.46
	0.9	4.26	4.26	4.26	4.26	4.26	4.26	4.26	4.26	4.26	4.26	4.26	4.26	4.26	4.26	4.33	5.21
	1.0	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37

(c)マイクログリッド予備力 57.8MW

						Reduc	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.84	3.84	3.84	3.90	4.13	4.63	5.35	6.29	7.40	8.60	10.10	12.00	14.01	16.07	18.07	19.95
	0.2	3.84	3.84	3.84	3.84	3.85	3.95	4.21	4.62	5.19	6.19	7.90	9.85	11.93	14.20	16.42	18.61
	0.3	3.84	3.84	3.84	3.84	3.84	3.84	3.88	4.02	4.38	5.32	6.91	8.84	11.15	13.55	15.88	18.16
LFC signal	0.4	3.85	3.85	3.85	3.85	3.85	3.85	3.85	3.87	4.14	4.97	6.38	8.29	10.77	13.27	15.62	17.92
distribution		4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.01	4.21	4.96	6.20	7.99	10.58	13.13	15.46	17.75
ratio	0.6	4.42	4.42	4.42	4.42	4.42	4.42	4.42	4.43	4.57	5.24	6.43	8.04	10.50	13.06	15.35	17.64
Tatto	0.7	5.23	5.23	5.23	5.23	5.23	5.23	5.23	5.23	5.30	5.85	6.99	8.45	10.63	13.05	15.29	17.56
	0.8	6.73	6.73	6.73	6.73	6.73	6.73	6.73	6.73	6.73	7.04	8.00	9.28	11.01	13.16	15.29	17.51
	0.9	9.96	9.96	9.96	9.96	9.96	9.96	9.96	9.96	9.96	9.96	10.24	11.11	12.22	13.71	15.45	17.50
	1.0	19.41	19.41	19.41	19.41	19.41	19.41	19.41	19.41	19.41	19.41	19.41	19.41	19.41	19.41	19.41	19.41

						Reduc	ed amoun	t of regul	ating pov	ver for Ll	FC in the	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.84	3.84	3.84	3.90	4.13	4.68	5.74	7.51	9.76	12.14	14.41	16.69	18.87	20.91	22.84	24.84
	0.2	3.88	3.88	3.88	3.88	3.98	4.45	5.49	6.94	9.06	11.76	14.15	16.45	18.61	20.67	22.56	24.68
	0.3	4.15	4.15	4.15	4.15	4.24	4.68	5.70	7.10	9.11	11.75	14.13	16.38	18.50	20.59	22.45	24.62
LFC signal	0.4	4.60	4.60	4.60	4.60	4.67	5.06	6.06	7.40	9.29	11.83	14.17	16.41	18.49	20.56	22.40	24.60
distribution		5.25	5.25	5.25	5.25	5.29	5.63	6.56	7.84	9.59	11.98	14.26	16.48	18.53	20.56	22.37	24.58
ratio	0.6	6.18	6.18	6.18	6.18	6.20	6.47	7.31	8.49	10.07	12.25	14.41	16.59	18.60	20.59	22.37	24.57
Tatio	0.7	7.57	7.57	7.57	7.57	7.57	7.74	8.45	9.50	10.86	12.71	14.69	16.76	18.74	20.65	22.41	24.57
	0.8	9.88	9.88	9.88	9.88	9.88	9.92	10.36	11.21	12.30	13.63	15.31	17.11	18.98	20.77	22.48	24.57
	0.9	14.37	14.37	14.37	14.37	14.37	14.37	14.37	14.63	15.28	16.13	17.14	18.27	19.67	21.16	22.67	24.60
	1.0	25.72	25.72	25.72	25.72	25.72	25.72	25.72	25.72	25.72	25.72	25.72	25.72	25.72	25.72	25.72	25.72

表 6.6 風力パターン 2 (周波数)

(a)マイクログリッド予備力 231.2MW

					,,					1147 4							
						Reduc	ed amoun	t of regul	lating pov	ver for LI	C in the	rmal plant	[MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	4.89E-3	4.89E-3	4.89E-3	4.95E-3	5.13E-3	5.54E-3	6.13E-3	6.94E-3	7.92E-3	8.99E-3	1.01E-2	1.12E-2	1.24E-2	1.36E-2	1.49E-2	1.60E-2
	0.2	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.91E-3	4.99E-3	5.19E-3	5.53E-3	6.00E-3	6.57E-3	7.24E-3	7.98E-3	8.80E-3	9.67E-3	1.05E-2	1.14E-2
	0.3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.93E-3	5.04E-3	5.26E-3	5.58E-3	5.99E-3	6.49E-3	7.05E-3	7.69E-3	8.38E-3	9.10E-3
LFC signal	0.4	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.90E-3	4.97E-3	5.11E-3	5.36E-3	5.67E-3	6.08E-3	6.55E-3	7.10E-3	7.68E-3
LFC signal distribution	0.5	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.92E-3	5.02E-3	5.21E-3	5.48E-3	5.82E-3	6.26E-3	6.74E-3
ratio	0.6	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.90E-3	4.96E-3	5.11E-3	5.35E-3	5.66E-3	6.08E-3
ratio	0.7	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.92E-3	5.04E-3	5.25E-3	5.58E-3
	0.8	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.90E-3	4.98E-3	5.20E-3
	0.9	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.94E-3
	1.0	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3
					(b)~	マイク	フログ	゙リッ	ド予値	備力 1	15.6	MW					
						Reduc	ed amoun	t of regul	lating pov	ver for LI	C in the	mal plant	[MW]				
		0	10	20	20	40	50	60	70	80	90	100	110	120	120	140	150

						Reduce	ed amoun	t of regul	lating pov	ver for LI	C in the	rmal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	4.89E-3	4.89E-3	4.89E-3	4.95E-3	5.13E-3	5.54E-3	6.13E-3	6.94E-3	7.92E-3	8.99E-3	1.01E-2	1.12E-2	1.24E-2	1.36E-2	1.49E-2	1.60E-2
																	1.17E-2
	0.3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.93E-3	5.04E-3	5.26E-3	5.58E-3	5.99E-3	6.49E-3	7.05E-3	7.69E-3	8.47E-3	9.61E-3
LFC signal	0.4	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.90E-3	4.97E-3	5.11E-3	5.36E-3	5.67E-3	6.08E-3	6.56E-3	7.24E-3	8.37E-3
distribution	0.5	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.92E-3	5.02E-3	5.21E-3	5.48E-3	5.84E-3	6.45E-3	7.54E-3
	0.6	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.90E-3	4.96E-3	5.11E-3	5.3/E-3	5.90E-3	6.96E-3
Tatio																	6.54E-3
																	6.21E-3
																	5.99E-3
	1.0	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3	7.00E-3

(c)マイクログリッド予備力 57.8MW

						Reduce	ed amoun	t of regul	lating pov	ver for LI	C in the	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	4.89E-3	4.89E-3	4.89E-3	4.95E-3	5.13E-3	5.54E-3	6.13E-3	6.94E-3	7.92E-3	8.99E-3	1.04E-2	1.21E-2	1.40E-2	1.59E-2	1.78E-2	1.96E-2
	0.2	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.91E-3	4.99E-3	5.19E-3	5.53E-3	6.01E-3	6.86E-3	8.36E-3	1.01E-2	1.20E-2	1.42E-2	1.63E-2	1.83E-2
	0.3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.89E-3	4.93E-3	5.04E-3	5.34E-3	6.11E-3	7.48E-3	9.21E-3	1.13E-2	1.35E-2	1.57E-2	1.79E-2
LFC signal	0.4																1.77E-2
distribution	0.5	5.04E-3	5.04E-3	5.04E-3	5.04E-3	5.04E-3	5.04E-3	5.04E-3	5.04E-3	5.20E-3	5.80E-3	6.85E-3	8.43E-3	1.08E-2	1.32E-2	1.53E-2	1.75E-2
ratio	0.6	5.39E-3	5.39E-3	5.39E-3	5.39E-3	5.39E-3	5.39E-3	5.39E-3	5.39E-3	5.51E-3	6.04E-3	7.06E-3	8.48E-3	1.07E-2	1.31E-2	1.52E-2	1.74E-2
Tatto	0.7	6.05E-3	6.05E-3	6.05E-3	6.05E-3	6.05E-3	6.05E-3	6.05E-3	6.05E-3	6.11E-3	6.57E-3	7.54E-3	8.86E-3	1.08E-2	1.31E-2	1.52E-2	1.73E-2
	0.8	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.33E-3	7.34E-3	7.60E-3	8.45E-3	9.60E-3	1.12E-2	1.32E-2	1.52E-2	1.73E-2
	0.9	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.05E-2	1.13E-2	1.23E-2	1.37E-2	1.53E-2	1.73E-2
	1.0	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2	1.91E-2

						Reduce	ed amoun	t of regul	ating pov	ver for LF	C in the	mal plant	[MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
																	2.42E-2
	0.2	4.93E-3	4.93E-3	4.93E-3	4.93E-3	5.02E-3	5.38E-3	6.23E-3	7.51E-3	9.40E-3	1.19E-2	1.41E-2	1.63E-2	1.83E-2	2.02E-2	2.21E-2	2.41E-2
	0.3	5.15E-3	5.15E-3	5.15E-3	5.15E-3	5.23E-3	5.57E-3	6.42E-3	7.65E-3	9.45E-3	1.18E-2	1.41E-2	1.62E-2	1.82E-2	2.02E-2	2.20E-2	2.40E-2
LFC signal	0.4	5.52E-3	5.52E-3	5.52E-3	5.52E-3	5.58E-3	5.90E-3	6.73E-3	7.91E-3	9.61E-3	1.19E-2	1.41E-2	1.62E-2	1.82E-2	2.01E-2	2.19E-2	2.40E-2
LFC signal distribution	0.5	6.06E-3	6.06E-3	6.06E-3	6.06E-3	6.11E-3	6.38E-3	7.17E-3	8.31E-3	9.88E-3	1.21E-2	1.42E-2	1.63E-2	1.82E-2	2.01E-2	2.19E-2	2.40E-2
ratio	0.6	6.87E-3	6.87E-3	6.87E-3	6.87E-3	6.89E-3	7.11E-3	7.85E-3	8.90E-3	1.03E-2	1.23E-2	1.43E-2	1.64E-2	1.83E-2	2.02E-2	2.19E-2	2.40E-2
Tatio	0.7	8.10E-3	8.10E-3	8.10E-3	8.10E-3	8.10E-3	8.25E-3	8.87E-3	9.82E-3	1.11E-2	1.28E-2	1.46E-2	1.66E-2	1.84E-2	2.02E-2	2.19E-2	2.40E-2
	0.8	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.02E-2	1.06E-2	1.14E-2	1.24E-2	1.36E-2	1.52E-2	1.69E-2	1.87E-2	2.03E-2	2.20E-2	2.40E-2
																	2.40E-2
	1.0	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2	2.51E-2

表 6.7 風力パターン 3 (AR)

(a)マイクログリッド予備力 231.2MW

						Reduce	ed amoun	t of regul	lating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.10	3.10	3.10	3.10	3.10	3.10	3.12	3.30	3.61	4.16	4.86	5.73	6.79	7.86	9.04	10.32
	0.2	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.11	3.23	3.46	3.84	4.32	4.95	5.72	6.62	7.66
	0.3	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.11	3.20	3.37	3.67	4.06	4.58	5.26	6.08
LFC signal	0.4	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.17	3.32	3.57	3.92	4.42	5.07
distribution		3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.15	3.28	3.51	3.86	4.39
	0.6	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.14	3.26	3.49	3.89
ratio	0.7	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.13	3.25	3.52
	0.8	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.12	3.26
	0.9	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.11
	1.0	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10

(b)マイクログリッド予備力 115.6MW

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	FC in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.10	3.10	3.10	3.10	3.10	3.10	3.12	3.30	3.61	4.16	4.86	5.73	6.79	7.86	9.04	10.32
	0.2	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.11	3.23	3.46	3.84	4.32	4.95	5.72	6.62	7.66
	0.3	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.11	3.20	3.37	3.67	4.06	4.58	5.26	6.08
LFC signal	0.4	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.17	3.32	3.57	3.92	4.42	5.07
distribution		3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.15	3.28	3.51	3.86	4.39
	0.6	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.14	3.26	3.49	3.89
ratio	0.7	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.13	3.25	3.52
	0.8	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.12	3.26
	0.9	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.11
	1.0	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10

(c)マイクログリッド予備力 57.8MW

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	FC in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.10	3.10	3.10	3.10	3.10	3.10	3.12	3.30	3.61	4.16	4.86	5.73	6.79	7.86	9.06	10.48
	0.2	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.11	3.23	3.46	3.84	4.32	4.95	5.93	7.17	8.68
	0.3	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.11	3.20	3.37	3.67	4.15	5.07	6.23	7.73
LFC signal	0.4	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.17	3.32	3.78	4.57	5.68	7.27
distribution		3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.17	3.56	4.27	5.32	7.00
	0.6	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.20	3.50	4.09	5.13	6.82
ratio	0.7	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.57	4.07	5.04	6.70
	0.8	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.89	3.92	4.34	5.05	6.63
	0.9	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.98	5.46	6.62
	1.0	8.03	8.03	8.03	8.03	8.03	8.03	8.03	8.03	8.03	8.03	8.03	8.03	8.03	8.03	8.03	8.03

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	C in the	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.10	3.10	3.10	3.10	3.10	3.10	3.12	3.30	3.61	4.16	5.09	6.36	7.91	9.36	10.76	11.94
	0.2	3.10	3.10	3.10	3.10	3.10	3.10	3.10	3.11	3.30	3.75	4.57	5.82	7.49	9.00	10.35	11.49
	0.3	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.19	3.34	3.76	4.47	5.73	7.40	8.87	10.22	11.29
LFC signal	0.4	3.37	3.37	3.37	3.37	3.37	3.37	3.37	3.38	3.50	3.92	4.57	5.76	7.39	8.83	10.15	11.18
distribution		3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.78	4.17	4.76	5.85	7.43	8.84	10.12	11.11
ratio	0.6	4.18	4.18	4.18	4.18	4.18	4.18	4.18	4.18	4.21	4.56	5.08	6.01	7.52	8.87	10.12	11.07
Tatto	0.7	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.96	5.18	5.63	6.41	7.69	8.97	10.16	11.05
	0.8	6.23	6.23	6.23	6.23	6.23	6.23	6.23	6.23	6.23	6.26	6.60	7.14	8.06	9.17	10.24	11.07
	0.9	8.53	8.53	8.53	8.53	8.53	8.53	8.53	8.53	8.53	8.53	8.53	8.67	9.10	9.76	10.51	11.16
	1.0	12.29	12.29	12.29	12.29	12.29	12.29	12.29	12.29	12.29	12.29	12.29	12.29	12.29	12.29	12.29	12.29

表 6.8 風力パターン 3 (周波数)

LFC signal Color						(a)~	マイク	ログ	`リッ	ド予値		231.21	MW					
Color 148E-3 4.48E-3 4.48E							Reduce	ed amour	t of regul	ating pov	ver for LI	C in ther	mal plan	t [MW]				
C2 4.88E-3			0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
LFC signal Gallet LFC signal Gallet Ga		0.1	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.49E-3	4.61E-3	4.84E-3	5.25E-3	5.81E-3	6.52E-3	7.43E-3	8.40E-3	9.51E-3	1.07E-2
LFC signal distribution ratio		0.2	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.57E-3	4.73E-3	5.01E-3	5.38E-3	5.88E-3	6.53E-3	7.34E-3	8.31E-3
Colorable Co		0.3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.54E-3	4.66E-3	4.88E-3	5.18E-3	5.60E-3	6.17E-3	6.91E-3
distribution ratio 15 4.48E-3 4.48E-	LEC signal	0.4	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.52E-3	4.62E-3	4.81E-3	5.07E-3	5.48E-3	6.05E-3
Reduced amount of regulating power for LFC in thermal plant [MW]		0.5	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.51E-3	4.60E-3	4.76E-3	5.04E-3	5.48E-3
10		0.6	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.50E-3	4.58E-3	4.75E-3	5.08E-3
1.0	ratio	0.7	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.49E-3	4.58E-3	4.79E-3
1.0		0.8	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.49E-3	4.59E-3
Book		0.9	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3
Reduced amount of regulating power for LFC in thermal plant [MW] 10 10 10 130 140 150 150 10 110 120 130 140 150 150 10 110 120 130 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 150 140 150		1.0	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3
Reduced amount of regulating power for LFC in thermal plant [MW] 10 10 10 130 140 150 150 10 110 120 130 140 150 150 10 110 120 130 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 140 150 150 150 140 150						(h)-	フイケ	ロガ	, II »	ド予値	曲力 1	15.6	VIVV					
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150						(0)								t [MW]				
Column			0	10	20	30									120	130	140	150
C		0.1		4 48F-3			.0			70	- 00	70	100	110	120	-00		
LFC signal distribution ratio A48E-3 4.48E-3 4.		0		4.48F-3												01.000	, ,, , , , ,	
LFC signal distribution ratio C														0.000	0.000		,	0.0 0
LFC signal distribution ratio 0.5 4.48E-3 4.48		0.0																
distribution ratio 0.6																0.0.0		
Tatio 17 4.48E-3	distribution																	
0.8	ratio	0.0																
0.9 4.48E-3 4.48E-		0.7													4.48F-3	., ., 0		
1.0 4.48E-3		0.0															.,.,	
COマイクログリッド子備力 57.8MW Reduced amount of regulating power for LFC in thermal plant [MW] 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 10 20 448E-3 4.48E-3 4.48																		
Reduced amount of regulating power for LFC in thermal plant [MW] 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 4.48E-3 4.48E-		1.0	1. 102 3	1.1023	1.1023									1.102 3	1.102 3	1.1023	1.102 3	1.102 3
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 4.48E-3						(6)								(D) (D) (1)				
0.1				10	20	20			_						120	120	1.40	150
LFC signal distribution ratio 1.		0.1	U	10						,,,		/ 0						
LFC signal distribution ratio 1. 4.48E-3 4.48																01.040	9.53E-3	
LFC signal distribution ratio ratio Fig. 1. Sept. 1. Sept		0											0.00-0				7.82E-3	, e
LEC signal distribution ratio 0.5 4.48E-3 4.48																		
ratio	LFC signal																	
ratio 0.7	distribution																	
0.7 4.68E-3	ratio	0.0															0.000	
0.9 5.88E-3 5.8																		
		0.0											0.000		0.00.00	010700		
1.0 8.52E-3		0.0																
		1.0	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3	8.52E-3

						Reduce	ed amoun	t of regul	lating pov	ver for LI	C in the	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.49E-3	4.61E-3	4.84E-3	5.25E-3	5.99E-3	7.06E-3	8.42E-3	9.74E-3	1.11E-2	1.22E-2
	0.2	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.48E-3	4.61E-3	4.94E-3	5.57E-3	6.60E-3	8.03E-3	9.39E-3	1.07E-2	1.18E-2
	0.3	4.53E-3	4.53E-3	4.53E-3	4.53E-3	4.53E-3	4.53E-3	4.53E-3	4.53E-3	4.64E-3	4.95E-3	5.49E-3	6.52E-3	7.94E-3	9.27E-3	1.06E-2	1.16E-2
LFC signal	0.4	4.67E-3	4.67E-3	4.67E-3	4.67E-3	4.67E-3	4.67E-3	4.67E-3	4.67E-3	4.76E-3	5.07E-3	5.57E-3	6.54E-3	7.93E-3	9.23E-3	1.05E-2	1.15E-2
distribution	0.5	4.91E-3	4.91E-3	4.91E-3	4.91E-3	4.91E-3	4.91E-3	4.91E-3	4.91E-3	4.9/E-3	5.26E-3	5./3E-3	6.62E-3	7.9/E-3	9.23E-3	1.04E-2	1.14E-2
ratio	0.6	5.28E-3	5.28E-3	5.28E-3	5.28E-3	5.28E-3	5.28E-3	5.28E-3	5.28E-3	5.31E-3	5.57E-3	5.99E-3	6.77E-3	8.06E-3	9.27E-3	1.04E-2	1.14E-2
ratio	0.7	5.90E-3	5.90E-3	5.90E-3	5.90E-3	5.90E-3	5.90E-3	5.90E-3	5.90E-3	5.90E-3	6.09E-3	6.46E-3	7.12E-3	8.23E-3	9.36E-3	1.05E-2	1.14E-2
	0.8	6.98E-3	6.98E-3	6.98E-3	6.98E-3	6.98E-3	6.98E-3	6.98E-3	6.98E-3	6.98E-3	7.01E-3	7.30E-3	7.76E-3	8.58E-3	9.56E-3	1.06E-2	1.14E-2
	0.9	9.02E-3	9.02E-3	9.02E-3	9.02E-3	9.02E-3	9.02E-3	9.02E-3	9.02E-3	9.02E-3	9.02E-3	9.02E-3	9.15E-3	9.54E-3	1.01E-2	1.09E-2	1.15E-2
	1.0	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2	1.25E-2

表 6.9 風力パターン 4 (AR)

(a)マイクログリッド予備力 231.2MW

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.17	3.17	3.17	3.17	3.17	3.17	3.19	3.30	3.57	4.15	4.98	6.12	7.39	8.73	10.14	11.42
	0.2	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.18	3.26	3.48	3.92	4.49	5.26	6.23	7.20	8.21
	0.3	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.18	3.24	3.42	3.79	4.25	4.91	5.68	6.49
LFC signal	0.4	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.22	3.39	3.70	4.13	4.73	5.40
distribution	0.5	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.21	3.37	3.65	4.09	4.65
1	0.6	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.20	3.36	3.65	4.10
ratio	0.7	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.19	3.35	3.69
	0.8	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.19	3.37
	0.9	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.18
	1.0	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17

(b)マイクログリッド予備力 115.6MW

						Reduce	ed amoun	t of regul	lating pov	ver for Ll	FC in their	rmal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.17	3.17	3.17	3.17	3.17	3.17	3.19	3.30	3.57	4.15	4.98	6.12	7.39	8.73	10.14	11.42
	0.2	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.18	3.26	3.48	3.92	4.49	5.26	6.23	7.20	8.21
	0.3	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.18	3.24	3.42	3.79	4.25	4.91	5.68	6.49
LFC signal	0.4	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.22	3.39	3.70	4.13	4.73	5.40
distribution	0.5	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.21	3.37	3.65	4.09	4.65
	0.6	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.20	3.36	3.65	4.10
ratio	0.7	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.19	3.35	3.69
	0.8	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.19	3.37
	0.9	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.18
	1.0	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17

(c)マイクログリッド予備力 57.8MW

						Reduc	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.17	3.17	3.17	3.17	3.17	3.17	3.19	3.30	3.57	4.15	4.98	6.12	7.39	8.73	10.15	11.90
	0.2	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.18	3.26	3.48	3.92	4.49	5.26	6.28	7.61	9.71
	0.3	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.18	3.24	3.42	3.79	4.29	5.08	6.52	8.70
LFC signal	0.4	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.22	3.39	3.79	4.44	5.89	8.21
distribution	0.5	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.23	3.50	4.09	5.51	7.89
	0.6	3.23	3.23	3.23	3.23	3.23	3.23	3.23	3.23	3.23	3.23	3.23	3.24	3.39	3.91	5.27	7.67
ratio	0.7	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.53	3.89	5.14	7.53
	0.8	3.98	3.98	3.98	3.98	3.98	3.98	3.98	3.98	3.98	3.98	3.98	3.98	3.99	4.16	5.14	7.43
	0.9	5.09	5.09	5.09	5.09	5.09	5.09	5.09	5.09	5.09	5.09	5.09	5.09	5.09	5.09	5.53	7.42
	1.0	9.32	9.32	9.32	9.32	9.32	9.32	9.32	9.32	9.32	9.32	9.32	9.32	9.32	9.32	9.32	9.32

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	FC in ther	rmal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.17	3.17	3.17	3.17	3.17	3.17	3.19	3.30	3.57	4.15	5.05	6.92	9.13	11.76	14.55	17.00
	0.2	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.18	3.30	3.62	4.38	6.35	8.58	11.17	14.14	16.77
	0.3	3.26	3.26	3.26	3.26	3.26	3.26	3.26	3.27	3.35	3.60	4.30	6.23	8.38	10.98	14.00	16.68
LFC signal	0.4	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.57	3.77	4.41	6.27	8.36	10.92	13.94	16.64
distribution	0.5	3.88	3.88	3.88	3.88	3.88	3.88	3.88	3.88	3.93	4.09	4.64	6.41	8.44	10.92	13.92	16.62
ratio	0.6	4.47	4.47	4.47	4.47	4.47	4.47	4.47	4.47	4.48	4.60	5.04	6.64	8.59	10.98	13.92	16.60
Tatio	0.7	5.36	5.36	5.36	5.36	5.36	5.36	5.36	5.36	5.36	5.43	5.72	7.02	8.84	11.11	13.95	16.59
	0.8	6.80	6.80	6.80	6.80	6.80	6.80	6.80	6.80	6.80	6.81	6.94	7.85	9.34	11.42	14.04	16.60
	0.9	9.55	9.55	9.55	9.55	9.55	9.55	9.55	9.55	9.55	9.55	9.55	9.73	10.73	12.23	14.32	16.65
	1.0	18.04	18.04	18.04	18.04	18.04	18.04	18.04	18.04	18.04	18.04	18.04	18.04	18.04	18.04	18.04	18.04

表 6.10 風力パターン 4 (周波数)

					(a)~	イイン	ロク	リツ	ド予り	田フチェ	231.2	TAT AA					
						Reduce	ed amour	t of regul	ating pov	ver for LI	C in the	rmal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.62E-3	4.71E-3	4.91E-3	5.37E-3	6.01E-3	6.97E-3	8.07E-3	9.28E-3	1.05E-2	1.17E
	0.2	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.60E-3	4.67E-3	4.84E-3	5.20E-3	5.63E-3	6.26E-3	7.08E-3	7.93E-3	8.82E
	0.3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.59E-3	4.65E-3	4.80E-3	5.09E-3	5.45E-3	5.98E-3	6.63E-3	7.32E
LFC signal	0.4	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.59E-3	4.63E-3	4.77E-3	5.02E-3	5.36E-3	5.84E-3	6.40E
distribution	0.5	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.62E-3	4.76E-3	4.98E-3	5.33E-3	5.78E
ratio	0.6	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.61E-3	4.75E-3	4.98E-3	5.33E
Tatio	0.7	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.60E-3	4.74E-3	5.00E
	0.8	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.60E-3	4.75E
	0.9	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.59E
	1.0	4.58E-3	4.58E-3	4.58E-3					4.58E-3		4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E
					(h)~	マイク	ログ	゛リッ	ド予位	備力 1	15.6	MW					
					(6)								+ FM/X77				
		Reduced amount of regulating power for LFC in thermal plant [MW] 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 0.1 4.59E-314.59E-314.59E-314.59E-314.59E-314.59E-314.52E-314.71E-314.91E-315.37E-316.01E-316.97E-318.07E-319.28E-311.05E-211.17E-															
	0.1	1 4.59E-3 4.59E-3 4.59E-3 4.59E-3 4.59E-3 4.59E-3 4.59E-3 4.62E-3 4.71E-3 4.91E-3 5.37E-3 6.01E-3 6.97E-3 8.07E-3 9.28E-3 1.05E-2 1.17															1 175
	0.1									,				6.0/E-3	,		0 0 2 E
	0.2	4.59E-3 4.58E-3	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.59E-3		4.60E-3	4.67E-3	4.65E-3	4.80E-3	5.09E-3	5.45E-3	5.98E-3	6.63E-3	7.32E
	0.3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.03E-3	4.63E-3	4 77E-3	5.43E-3	5.36E-3	5.84E-3	6.40E
LFC signal	0.4	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.59E-3	4.03E-3	4.77E-3	4.76E-3	4 98E-3	5.33E-3	5.78E
distribution	0.6	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.61E-3	4.75E-3	4 98E-3	5.76E
ratio	0.7	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.51E-3	4.60E-3	4.74E-3	5.00E
li li	0.8	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.60E-3	4.75F
	0.9	4.58E-3	4.58E-3	4.58E-3		4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	4.58E-3	
	1.0	4.58E-3	4.58E-3		4.58E-3		4.58E-3			4.58E-3				4.58E-3	4.58E-3	4.58E-3	
					()	マイク	フロク	A	ド予		57.8N	•					
					(6)			//									
						Reduce	ed amour	nt of regul	ating pov	ver for Ll	C in the	rmal plan	t MW				
	0.1	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.59E-3	4.62E-3	4.71E-3	80 4.91E-3	5.37E-3	100 6.01E-3	110 6.97E-3	8.07E-3	9.28E-3	1.05E-2	1.21E
	0.2	4.59E-3 4.59E-3	4.59E-3 4.59E-3	4.59E-3 4.59E-3	4.59E-3 4.59E-3	4.59E-3 4.59E-3	4.59E-3 4.59E-3	4.62E-3 4.59E-3	4.71E-3 4.60E-3	80 4.91E-3 4.67E-3	5.37E-3 4.84E-3	100 6.01E-3 5.20E-3	5.63E-3	8.07E-3 6.26E-3	9.28E-3 7.13E-3		
	0.2	4.59E-3 4.59E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3	4.62E-3 4.59E-3 4.58E-3	4.71E-3 4.60E-3 4.58E-3	80 4.91E-3 4.67E-3 4.59E-3	5.37E-3 4.84E-3 4.65E-3	100 6.01E-3 5.20E-3 4.80E-3	5.63E-3 5.09E-3	8.07E-3 6.26E-3 5.48E-3	9.28E-3 7.13E-3 6.12E-3	1.05E-2 8.29E-3 7.35E-3	1.21E 1.01E 9.25E
	0.2 0.3 0.4	4.59E-3 4.59E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3	5.63E-3 5.09E-3 4.78E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3	1.21E 1.01E 9.25E 8.80E
	0.2 0.3 0.4 0.5	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.58E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.58E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3	1.21E 1.01E 9.25E 8.80E 8.50E
LFC signal distribution ratio	0.2 0.3 0.4 0.5 0.6	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3	4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.58E-3 4.65E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E
distribution	0.2 0.3 0.4 0.5 0.6 0.7	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.65E-3 4.82E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E
distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 5.37E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E
distribution	0.2 0.3 0.4 0.5 0.6 0.7	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 5.37E-3 6.10E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3 6.46E-3	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E 8.05E
distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 5.37E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E
distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 5.37E-3 6.10E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3 6.46E-3	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E
distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 5.37E-3 6.10E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3 6.46E-3	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E 8.05E
distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 (d)	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 Reduce	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 5.37E-3 6.10E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3 6.46E-3	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.06E 8.06E 8.05E 9.75E
distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 Reduce 40 4.59E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 1	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 23.12 C in ther 90 5.37E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 MW	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3 9.75E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 5.37E-3 6.10E-3 9.75E-3	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3 6.15E-3 6.46E-3 9.75E-3	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E 8.05E 9.75E
distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.62E-3 6.10E-3 9.75E-3 10 4.59E-3 4.59E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 20 4.59E-3 4.59E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 6.10E-3 9.75E-3 (d)	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 7 Reduce 40 4.59E-3 4.59E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 7 1 7 ed amour 50 4.59E-3 4.59E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.62E-3 6.10E-3 9.75E-3 1	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 xting pov 70 4.71E-3 4.60E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 带力 2 veer for LI 80 4.91E-3 4.70E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.59E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 5.24E-3 9.75E-3 23.12 6.10E-3 9.75E-3 4.95E-3 4.95E-3	100 6.01E-3 5.20E-3 4.80E-3 4.68E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 MW rmal plan 100 6.07E-3 5.55E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 t [MW] 110 7.65E-3 7.17E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3 9.75E-3 9.59E-3 9.10E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 6.10E-3 9.75E-3 130 1.20E-2 1.14E-2	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3 6.15E-3 9.75E-3 140 1.46E-2 1.42E-2	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E 8.05E 9.75E
distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.82E-3 6.10E-3 9.75E-3 0 4.59E-3 4.59E-3 4.67E-3	4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.62E-3 9.75E-3 10 4.59E-3 4.67E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 6.10E-3 9.75E-3 20 4.59E-3 4.67E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 (d) ~	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 9.75E-3 7 Reduce 40 4.59E-3 4.59E-3 4.67E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 6.10E-3 9.75E-3 7 12 7 ed amour 50 4.59E-3 4.59E-3 4.67E-3	4.62E-3 4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 1	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 9.75E-3 1 70 4.71E-3 4.60E-3 4.67E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 带力 2 ver for LL 80 4.91E-3 4.70E-3 4.75E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 9.75E-3 23.12 C in ther 90 5.37E-3 4.95E-3 4.95E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 MW mul plan 100 6.07E-3 5.55E-3 5.49E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 9.75E-3 t [MW] 110 7.65E-3 7.17E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 9.75E-3 9.75E-3 9.59E-3 8.91E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 6.10E-3 9.75E-3 130 1.20E-2 1.14E-2 1.13E-2	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.15E-3 6.15E-3 6.46E-3 9.75E-3 140 1.46E-2 1.42E-2	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E 9.75E 1.69E 1.66E 1.66E
distribution ratio	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 0 4.59E-3 4.69E-3 4.67E-3 4.86E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 10 4.59E-3 4.59E-3 4.67E-3 4.86E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 20 4.59E-3 4.59E-3 4.59E-3 4.59E-3 4.67E-3 4.86E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 (d) 30 4.59E-3 4.59E-3 4.59E-3 4.67E-3 4.67E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 7 / / Reduced 4.59E-3 4.59E-3 4.59E-3 4.59E-3 4.65E-3 4.65E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 7 ☐ 7 ed amour 50 4.59E-3 4.59E-3 4.67E-3 4.67E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 1	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 Fig. (1) 4.71E-3 4.60E-3 4.60E-3 4.60E-3 4.60E-3 4.60E-3 4.86E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 # 力 2 ver for LI 80 4.91E-3 4.70E-3 4.70E-3 4.70E-3 4.70E-3 4.75E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 23.12 FC in the 90 5.37E-3 4.95E-3 5.08E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.65E-3 5.24E-3 9.75E-3 MW mal plan 100 6.07E-3 5.55E-3 5.58E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 9.75E-3 t [MW] 110 7.65E-3 7.17E-3 7.06E-3 7.09E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 5.24E-3 6.10E-3 9.75E-3 120 9.59E-3 9.10E-3 8.91E-3 8.88E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.32E-3 5.16E-3 5.37E-3 6.10E-3 9.75E-3 130 1.20E-2 1.14E-2 1.13E-2	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.26E-3 6.15E-3 6.15E-3 9.75E-3 140 1.46E-2 1.42E-2 1.42E-2 1.40E-2	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E 9.75E 1.60E 1.66E 1.66E
distribution ratio	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5	4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 0 4.59E-3 4.59E-3 4.67E-3 4.67E-3 5.16E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 6.10E-3 9.75E-3 10 4.59E-3 4.67E-3 4.67E-3 4.86E-3 5.16E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 20 4.59E-3 4.59E-3 4.67E-3 4.67E-3 5.16E-3	4.59E-3 4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 (d) 30 4.59E-3 4.67E-3 4.67E-3 4.86E-3 5.16E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 Reduce 40 4.59E-3 4.67E-3 4.67E-3 5.16E-3	4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 7 1 7 ed amour 50 4.59E-3 4.59E-3 4.67E-3 5.16E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 9.75E-3 IJ y tof regul 60 4.62E-3 4.67E-3 4.67E-3 4.67E-3 5.16E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.52E-3 6.10E-3 9.75E-3 \$\frac{70}{4.71E-3} 4.60E-3 4.67E-3 5.16E-3	80 4.91E-3 4.67E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 # 力 2 ver for L1 80 4.91E-3 4.70E-3 4.70E-3 4.72E-3 5.20E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 23.12 FC in ther 90 5.37E-3 4.94E-3 5.08E-3 5.08E-3 5.08E-3 5.08E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.65E-3 4.65E-3 9.75E-3 MW rmal plan 100 6.07E-3 5.55E-3 5.49E-3 5.58E-3 5.58E-3 5.58E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 t [MW] 110 7.65E-3 7.17E-3 7.06E-3 7.06E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 5.24E-3 6.10E-3 9.75E-3 9.10E-3 9.10E-3 8.91E-3 8.98E-3 8.96E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.17E-3 5.16E-3 5.37E-3 9.75E-3 130 1.20E-2 1.14E-2 1.12E-2 1.12E-2	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.15E-3 6.15E-3 6.46E-3 9.75E-3 1.40E-2 1.41E-2 1.41E-2 1.40E-2	1.21E 1.01E 9.25E 8.80E 8.50E 8.30E 8.16E 8.06E 8.05E 9.75E 1.60E 1.66E 1.65E
distribution ratio ratio LFC signal distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 0 4.59E-3 4.59E-3 4.67E-3 4.67E-3 5.16E-3 5.16E-3 5.16E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 4.59E-3 4.59E-3 4.67E-3 4.86E-3 5.16E-3 5.16E-3 5.16E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 4.59E-3 4.67E-3 4.67E-3 5.63E-3 5.63E-3	4.59E-3 4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 (d) 30 4.59E-3 4.59E-3 4.67E-3 4.86E-3 5.16E-3 5.16E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 4.59E-3 4.59E-3 4.67E-3 4.67E-3 5.16E-3 5.16E-3 5.16E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 7	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 1 J y tt of regul 4.62E-3 4.69E-3 4.69E-3 4.69E-3 5.66E-3 5.16E-3 5.16E-3 5.16E-3 5.16E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 4.60E-3 4.60E-3 4.60E-3 4.60E-3 5.16E-3 5.16E-3 5.16E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 前力 2 ver for L1 80 4.91E-3 4.70E-3 4.75E-3 4.75E-3 5.20E-3 5.20E-3 5.20E-3 5.20E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.17E-3 90 5.37E-3 4.95E-3 4.95E-3 5.34E-3 5.34E-3 5.33E-3 5.33E-3 5.33E-3 5.37E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.82E-3 6.10E-3 9.75E-3 MW mal plan 100 6.07E-3 5.55E-3 5.55E-3 5.76E-3 6.10E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 t [MW] 110 7.65E-3 7.17E-3 7.06E-3 7.09E-3 7.22E-3 7.22E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3 9.75E-3 9.10E-3 8.91E-3 8.88E-3 8.88E-3 9.10E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.32E-3 5.16E-3 5.16E-3 9.75E-3 130 1.20E-2 1.14E-2 1.13E-2 1.12E-2 1.13E-2	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.15E-3 6.15E-3 6.46E-3 9.75E-3 140 1.46E-2 1.41E-2 1.41E-2 1.40E-2 1.40E-2 1.40E-2	1.21E 1.01E 9.25E 8.80E 8.30E 8.16E 8.06E 8.05E 9.75E 1.69E 1.66E 1.66E 1.65E 1.65E
distribution ratio	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 0 4.59E-3 4.59E-3 4.67E-3 4.67E-3 5.63E-3 5.63E-3 6.36E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.65E-3 9.75E-3 9.75E-3 10 4.59E-3 4.67E-3 4.67E-3 5.63E-3 5.63E-3 6.36E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 6.10E-3 9.75E-3 20 4.59E-3 4.67E-3 4.67E-3 4.67E-3 5.16E-3 5.16E-3 5.63E-3 6.36E-3	4,59E-3 4,59E-3 4,58E-3 4,58E-3 4,58E-3 4,65E-3 4,62E-3 5,24E-3 6,10E-3 9,75E-3 (d) 30 4,59E-3 4,67E-3 4,67E-3 5,16E-3 5,63E-3 6,36E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 6.10E-3 9.75E-3 7 7 Reduce 40 4.59E-3 4.67E-3 4.67E-3 4.67E-3 5.63E-3 5.63E-3 6.36E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 7 2 7 2d amour 50 4.59E-3 4.59E-3 4.59E-3 4.59E-3 5.16E-3 5.63E-3 6.36E-3	4,62E-3 4,59E-3 4,58E-3 4,58E-3 4,58E-3 4,65E-3 4,65E-3 6,10E-3 9,75E-3 11	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.55E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 扩子(4.61E-3 4.67E-3 4.67E-3 4.67E-3 5.16E-3 5.16E-3 5.63E-3 6.36E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 6.10E-3 9.75E-3 带力 2 ver for LI 80 4.91E-3 4.70E-3 4.70E-3 4.75E-3 4.25E-3 5.20E-3 5.64E-3 6.36E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.59E-3 4.65E-3 4.65E-3 5.24E-3 5.24E-3 9.75E-3 9.75E-3 4.95E-3 4.95E-3 5.38E-3 5.38E-3 5.74E-3 5.74E-3 5.74E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 MW rmal plan 100 6.07E-3 5.55E-3 5.54E-3 5.54E-3 5.55E-3 5.55E-3 6.10E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 t [MW] 110 7.65E-3 7.17E-3 7.06E-3 7.09E-3 7.42E-3 7.42E-3 7.42E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3 9.75E-3 9.10E-3 8.88E-3 8.88E-3 9.10E-3 9.10E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.17E-3 5.17E-3 5.17E-3 6.10E-3 9.75E-3 130 1.20E-2 1.14E-2 1.13E-2 1.12E-2 1.13E-2 1.13E-2 1.13E-2	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.15E-3 6.15E-3 6.46E-3 9.75E-3 140 1.46E-2 1.42E-2 1.41E-2 1.40E-2 1.40E-2 1.40E-2 1.40E-2	1.21E 1.01E 1.01E 1.01E 1.025E 8.80E 8.50E 8.30E 8.30E 8.16E 8.05E 9.75E 1.66E 1.66E 1.66S 1.66S 1.66S 1.66S 1.66S
distribution ratio ratio LFC signal distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 9.75E-3 9.75E-3 0 4.59E-3 4.67E-3 4.67E-3 4.67E-3 4.66E-3 5.63E-3 7.59E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.65E-3 9.75E-3 9.75E-3 10 4.59E-3 4.67E-3 4.67E-3 4.66E-3 5.63E-3 6.36E-3 7.59E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 20 4.59E-3 4.67E-3 4.67E-3 4.66E-3 5.16E-3 5.63E-3 6.36E-3 7.59E-3	4,59E-3 4,59E-3 4,58E-3 4,58E-3 4,58E-3 4,65E-3 4,65E-3 5,24E-3 9,75E-3 (d)~ 30 4,59E-3 4,67E-3 4,67E-3 4,67E-3 4,67E-3 5,16E-3 5,63E-3 6,36E-3 7,59E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 7.59E-3 4.67E-3 4.67E-3 4.67E-3 4.67E-3 5.63E-3 6.36E-3 7.59E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 7 2 4.59E-3 4.59E-3 4.67E-3 4.67E-3 5.16E-3 5.63E-3 6.36E-3 7.59E-3	4.62E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.65E-3 9.75E-3 1 1 0f regul 60 4.62E-3 4.67E-3 4.67E-3 4.67E-3 4.66E-3 5.63E-3 6.36E-3 7.59E-3	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 9.75E-3 \$\frac{1}{7}\frac{1}{4}\text{diag pov} 4.71E-3 4.60E-3 4.60E-3 4.60E-3 5.16E-3 5.16E-3 5.36E-3 7.59E-3	80 4.91E-3 4.67E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 5.24E-3 5.24E-3 6.10E-3 9.75E-3 带力 2 ver for LI 80 4.91E-3 4.75E-3 5.20E-3 5.20E-3 5.64E-3 6.36E-3 7.59E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 9.75E-3 9.75E-3 23.12 C in ther 90 5.37E-3 4.95E-3 5.08E-3 5.08E-3 5.33E-3 5.74E-3 6.42E-3 7.60E-3	100 6.01E-3 4.80E-3 4.63E-3 4.63E-3 4.65E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 MW mal plan 100 6.07E-3 5.58E-3 5.58E-3 5.76E-3 6.10E-3 7.71E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 t [MW] 110 7.65E-3 7.17E-3 7.06E-3 7.09E-3 7.22E-3 7.42E-3 7.76E-3 8.50E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3 9.75E-3 9.10E-3 8.91E-3 8.88E-3 8.88E-3 9.10E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.17E-3 5.17E-3 5.17E-3 6.10E-3 9.75E-3 1.20E-2 1.14E-2 1.12E-2 1.12E-2 1.13E-2 1.14E-2 1.14E-2 1.14E-2	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.15E-3 6.15E-3 9.75E-3 140 1.46E-2 1.41E-2 1.40E-2 1.40E-2 1.40E-2 1.40E-2 1.40E-2 1.40E-2	1.21E 1.01E 9.25E 8.80E 8.50E 8.50E 8.66E 8.06E 1.66E 1.65E 1.65E 1.65E
distribution ratio ratio LFC signal distribution	0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 0 4.59E-3 4.59E-3 4.67E-3 4.67E-3 5.63E-3 5.63E-3 6.36E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.65E-3 9.75E-3 9.75E-3 10 4.59E-3 4.67E-3 4.67E-3 5.63E-3 5.63E-3 6.36E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 6.10E-3 9.75E-3 20 4.59E-3 4.67E-3 4.67E-3 4.67E-3 5.16E-3 5.16E-3 5.63E-3 6.36E-3	4,59E-3 4,59E-3 4,58E-3 4,58E-3 4,58E-3 4,65E-3 4,62E-3 5,24E-3 6,10E-3 9,75E-3 (d) 30 4,59E-3 4,67E-3 4,67E-3 5,16E-3 5,63E-3 6,36E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 6.10E-3 9.75E-3 7 7 Reduce 40 4.59E-3 4.67E-3 4.67E-3 4.67E-3 5.63E-3 5.63E-3 6.36E-3	4.59E-3 4.59E-3 4.58E-3 4.58E-3 4.65E-3 4.65E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 7 2 7 2d amour 50 4.59E-3 4.59E-3 4.59E-3 4.59E-3 5.16E-3 5.63E-3 6.36E-3	4,62E-3 4,59E-3 4,58E-3 4,58E-3 4,58E-3 4,65E-3 4,65E-3 6,10E-3 9,75E-3 11	4.71E-3 4.60E-3 4.58E-3 4.58E-3 4.55E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 扩子(4.61E-3 4.67E-3 4.67E-3 4.67E-3 5.16E-3 5.16E-3 5.63E-3 6.36E-3	80 4.91E-3 4.67E-3 4.59E-3 4.58E-3 4.58E-3 4.58E-3 4.65E-3 4.82E-3 6.10E-3 9.75E-3 带力 2 ver for LI 80 4.91E-3 4.70E-3 4.70E-3 4.75E-3 4.25E-3 5.20E-3 5.64E-3 6.36E-3	5.37E-3 4.84E-3 4.65E-3 4.59E-3 4.59E-3 4.65E-3 4.65E-3 5.24E-3 5.24E-3 9.75E-3 9.75E-3 4.95E-3 4.95E-3 5.38E-3 5.38E-3 5.74E-3 5.74E-3 5.74E-3	100 6.01E-3 5.20E-3 4.80E-3 4.63E-3 4.65E-3 4.65E-3 5.24E-3 6.10E-3 9.75E-3 MW rmal plan 100 6.07E-3 5.55E-3 5.54E-3 5.54E-3 5.55E-3 5.55E-3 6.10E-3	5.63E-3 5.09E-3 4.78E-3 4.65E-3 4.66E-3 4.82E-3 5.24E-3 6.10E-3 9.75E-3 t [MW] 110 7.65E-3 7.17E-3 7.06E-3 7.09E-3 7.42E-3 7.42E-3 7.42E-3	8.07E-3 6.26E-3 5.48E-3 5.09E-3 4.86E-3 4.78E-3 4.89E-3 5.24E-3 6.10E-3 9.75E-3 9.10E-3 8.88E-3 8.88E-3 9.10E-3 9.10E-3	9.28E-3 7.13E-3 6.12E-3 5.61E-3 5.17E-3 5.17E-3 5.17E-3 6.10E-3 9.75E-3 130 1.20E-2 1.14E-2 1.13E-2 1.12E-2 1.13E-2 1.13E-2 1.13E-2	1.05E-2 8.29E-3 7.35E-3 6.80E-3 6.47E-3 6.15E-3 6.15E-3 6.46E-3 9.75E-3 140 1.46E-2 1.42E-2 1.41E-2 1.40E-2 1.40E-2 1.40E-2 1.40E-2	1.21E 1.01E 1.01E 1.01E 1.025E 8.80E 8.50E 8.30E 8.30E 8.16E 8.05E 9.75E 1.66E 1.66E 1.66S 1.66S 1.66S 1.66S 1.66S

表 6.11 風力パターン 5 (AR)

(a)マイクログリッド予備力 231.2MW

						Reduce	ed amoun	t of regul	lating pov	ver for LI	C in the	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.47	3.47	3.47	3.47	3.47	3.48	3.54	3.78	4.27	4.94	5.88	7.07	8.35	9.66	11.10	12.65
	0.2	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.51	3.68	4.05	4.56	5.29	6.17	7.14	8.17	9.25
	0.3	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.50	3.62	3.92	4.35	4.95	5.69	6.48	7.32
LFC signal	0.4	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.48	3.58	3.83	4.22	4.76	5.40	6.08
distribution		3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.48	3.55	3.77	4.14	4.65	5.22
	0.6	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.53	3.74	4.10	4.59
ratio	0.7	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.51	3.72	4.11
	0.8	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.50	3.73
	0.9	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.49
	1.0	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47

(b)マイクログリッド予備力 115.6MW

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	[MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.47	3.47	3.47	3.47	3.47	3.48	3.54	3.78	4.27	4.94	5.88	7.07	8.35	9.66	11.10	12.65
	0.2	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.51	3.68	4.05	4.56	5.29	6.17	7.14	8.17	9.25
	0.3	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.50	3.62	3.92	4.35	4.95	5.69	6.48	7.32
LFC signal	0.4	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.48	3.58	3.83	4.22	4.76	5.40	6.08
distribution		3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.48	3.55	3.77	4.14	4.65	5.22
	0.6	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.53	3.74	4.10	4.59
ratio	0.7	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.51	3.72	4.11
	0.8	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.50	3.73
	0.9	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.49
	1.0	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49	3.49

(c)マイクログリッド予備力 57.8MW

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.47	3.47	3.47	3.47	3.47	3.48	3.54	3.78	4.27	4.94	5.88	7.07	8.35	9.66	11.10	12.66
	0.2	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.51	3.68	4.05	4.56	5.29	6.18	7.24	8.45	10.02
	0.3	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.50	3.62	3.92	4.35	5.05	6.02	7.30	8.99
LFC signal	0.4	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.47	3.48	3.58	3.87	4.45	5.35	6.70	8.49
distribution		3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.48	3.49	3.65	4.15	4.98	6.34	8.18
ratio	0.6	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.67	4.04	4.81	6.13	7.98
Tatto	0.7	3.95	3.95	3.95	3.95	3.95	3.95	3.95	3.95	3.95	3.95	3.95	3.97	4.19	4.79	6.00	7.84
	0.8	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.68	5.04	6.01	7.73
	0.9	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.02	6.37	7.72
	1.0	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28

						Reduce	ed amoun	t of regul	ating pov	ver for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
	0.1	3.47	3.47	3.47	3.47	3.47	3.48	3.54	3.78	4.27	4.96	6.01	7.47	9.20	11.05	13.18	15.54
	0.2	3.47	3.47	3.47	3.47	3.47	3.47	3.48	3.53	3.80	4.42	5.36	6.85	8.72	10.54	12.67	15.15
	0.3	3.61	3.61	3.61	3.61	3.61	3.61	3.61	3.65	3.86	4.40	5.29	6.73	8.57	10.35	12.46	14.98
LFC signal	0.4	3.93	3.93	3.93	3.93	3.93	3.93	3.93	3.96	4.11	4.57	5.40	6.79	8.54	10.27	12.36	14.88
distribution		4.42	4.42	4.42	4.42	4.42	4.42	4.42	4.43	4.54	4.89	5.61	6.93	8.61	10.28	12.31	14.83
	0.6	5.12	5.12	5.12	5.12	5.12	5.12	5.12	5.12	5.18	5.42	5.97	7.17	8.75	10.35	12.32	14.79
ratio	0.7	6.14	6.14	6.14	6.14	6.14	6.14	6.14	6.14	6.15	6.28	6.64	7.57	8.99	10.50	12.38	14.78
	0.8	7.73	7.73	7.73	7.73	7.73	7.73	7.73	7.73	7.73	7.75	7.90	8.38	9.44	10.79	12.52	14.80
	0.9	10.49	10.49	10.49	10.49	10.49	10.49	10.49	10.49	10.49	10.49	10.49	10.51	10.80	11.55	12.90	14.89
	1.0	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79

表 6.12 風力パターン 5 (周波数)

					(a)~	マイク	ロク	゚リッ	ド予り	開刀 2	231.2.	MW					
								t of regul					t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
(0.1	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.89E-3	4.94E-3	5.11E-3	5.48E-3	6.01E-3		7.80E-3	8.93E-3	1.01E-2	1.14E-2	1.29E
(0.2	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.91E-3	5.03E-3	5.31E-3	5.71E-3	6.29E-3	7.03E-3	7.88E-3	8.80E-3	9.76E
_(0.3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.90E-3	4.99E-3	5.21E-3	5.54E-3	6.03E-3	6.63E-3	7.34E-3	8.06E
	_	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.89E-3	4.96E-3	5.14E-3	5.44E-3	5.87E-3	6.41E-3	7.00E
distribution (4.87E-3	4.87E-3				4.87E-3			4.87E-3	4.87E-3	4.88E-3	4.94E-3	5.10E-3	5.38E-3	5.79E-3	6.28E
ratio (4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.92E-3	5.08E-3	5.35E-3	
14110					4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.91E-3	5.06E-3	5.37E
_						4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3		4.87E-3	4.87E-3		4.89E-3	
L			4.87E-3			4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3					4.87E-3	
	.0 4.87E-3 4.87E-3														4.87E-3	4.87E-3	4.87E
					(b)~	マイク	ログ	`リッ	ド予値	備力 1	15.6	MW					
								t of regul					t [MW]				
	[0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
(0.1	4.88E-3	4.88E-3	4.88E-3				4.94E-3			6.01E-3	6.79E-3		8.93E-3	1.01E-2	1.14E-2	1.2/1
_	_	4.87E-3	4.87E-3		4.87E-3						5.31E-3		6.29E-3	7.03E-3		8.80E-3	
L			4.87E-3		4.87E-3									6.03E-3	6.63E-3	7.34E-3	8.06E
L.F.C. Signal -		4.87E-3	4.87E-3	4.87E-3	4.87E-3								5.14E-3	5.44E-3	5.87E-3	6.41E-3	7.00E
distribution (4.87E-3		4.87E-3		4.87E-3			4.87E-3			4.94E-3	5.10E-3	5.38E-3	5.79E-3	6.28E
ratio					4.87E-3					4.87E-3				4.92E-3	5.08E-3	5.35E-3	
1	_		4.87E-3			4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3		4.87E-3	4.87E-3	4.91E-3	5.06E-3	
_					4.87E-3		4.87E-3			4.87E-3	4.87E-3		4.87E-3	4.87E-3	4.87E-3	4.89E-3	
Ľ					4.87E-3		4.87E-3			4.87E-3	4.87E-3					4.87E-3	4.88E
	1.0	4.90E-3	4.90E-3	4.90E-3	4.90E-3								4.90E-3	4.90E-3	4.90E-3	4.90E-3	4.90E
					(c)	マイク	クロク	ブリッ	ド予	備力:	57.8N	ΙW					
						Reduce	ed amoun	t of regul	ating pov	wer for Ll	C in ther	mal plan	t [MW]				
		0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
(0.1	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.89E-3	4.94E-3	5.11E-3	5.48E-3	6.01E-3	6.79E-3	7.80E-3	8.93E-3	1.01E-2	1.14E-2	1.29E
L	0.2	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.91E-3	5.03E-3	5.31E-3	5.71E-3	6.29E-3	7.03E-3	7.96E-3	9.05E-3	1.05E
L	0.3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3				4.99E-3		5.55E-3	6.11E-3	6.90E-3	8.02E-3	9.53E
LFC signal	0.4	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.87E-3	4.89E-3	4.96E-3	5.18E-3	5.63E-3	6.34E-3	7.49E-3	9.07E
distribution (0.5	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.88E-3	4.90E-3	5.01E-3	5.40E-3	6.03E-3	7.17E-3	8.80E
ratio (0.0		, , == 0		4.97E-3	, ,	, ,	, ,	4.97E-3		4.97E-3	, ,	5.02E-3	5.30E-3	5.89E-3	6.97E-3	0.022
<u> </u>					5.23E-3				5.23E-3		5.23E-3					6.86E-3	
<u> </u>	_				5.76E-3		5.76E-3		5.76E-3		5.76E-3		5.76E-3		6.08E-3	6.87E-3	
_(6.89E-3		6.89E-3		6.89E-3					7.20E-3	
	1.0	9.73E-3	9.73E-3	9.73E-3							9.73E-3		9.73E-3	9.73E-3	9.73E-3	9.73E-3	9.73E
					(d)~	マイク	ログ	`リッ	ド予値	備力 2	23.12	MW					
	1							t of regul					t [MW]				
	[0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
<u> </u>	_		4.88E-3		4.88E-3				5.11E-3		6.02E-3			9.68E-3	_	1.33E-2	
<u> </u>					4.87E-3		4.87E-3		4.92E-3		5.59E-3		7.60E-3	9.23E-3		1.29E-2	
10	0.3	4 98E-3	4 98E-3	4 98E-3	14 98E-3	4 98E-3	4 98E-3	4.98E-3	5.02E-3	5.17E-3	5.58E-3	6.28E-3	7.50E-3	9.10E-3	1.07E-2	1.27E-2	1.50E

第7章 結論と今後の課題

本研究では、系統に多数のマイクログリッド化した分散型電源が導入され、系統容量の大きな割合を占めていると仮定し、このマイクログリッドが系統需給制御に貢献可能であるかについての検討を行った。ステップ状の大外乱が系統の周波数変動に及ぼす影響について解析し、集中制御、分散制御のいずれの制御方式でも、マイクログリッドによってLFC火力機の代わりに周波数変動を抑制することが可能であることを示した。また、正弦波状の外乱に対する系統の周波数変動を解析し、特に短周期の正弦波外乱に対する制御能力が高いことを明らかにした。

短周期の正弦波に対しては、分散制御よりも集中制御の方が周波数変動を押さえ込める場合もあるという結果も得られたが、PI 制御器のゲインを調整することで周波数変動を改善することは可能である。

系統の需給制御を行うのに十分なマイクログリッドの予備力がある場合は,適切な補償器を設定することで常に火力機以上の需給制御能力を示している。このようなマイクログリッドの特性を活用するには,分散制御によって需給制御に参加させることが望ましいと言える。

さらに、大容量の風力発電が導入されたと仮定し、LFC 火力機とマイクログリッドで制御をおこなった場合の制御能力の評価を行った。1時間あたりのAR および周波数の標準偏差によって制御能力を評価し、系統の予備力削減可能量を算出した。これに基づいて、マイクログリッドの容量と系統に加わる最大の変動の大きさを元に、予備力削減量をできる限り大きくとれる信号の分配方法の指針を示した。

本論文中のシミュレーションではマイクログリッド分散制御方式の制御性の良さが際だったが,実際には系統周波数の測定には必ずノイズが混じるため,分散制御での運用には問題が生じる可能性もある。またマイクログリッド内のコージェネレーションシステムにおいても,制御性は発電機ごとに変わるため必ずしも本研究で仮定したような高い制御能力を発揮できるとは限らない。今後の課題としてマイクログリッドの制御能力とその問題点を明らかにできるような精密なモデル化が必要となる。

本論文中ではマイクログリッドが需給制御に参加するためのコスト等は一切考慮しなかったが、燃料費や設備投資、アンシラリーサービス料金の検討などは、実際にマイクログリッドの運用を考える上で非常に興味深いと思われる。

謝辞

本研究を進めるにあたり、指導教官の横山明彦教授には、終始懇切かつ熱心なご指導と、多くの貴重なご助言を頂きました。ここに厚くお礼申し上げます。

東京ガスの緒方隆雄様、塚田龍也様、徳本勉様をはじめとし、東京ガスの多くの方々にお世話になりました。研究への親切なご指導、ありがとうございました。

技術官の島田規人氏には、研究を進める際に、計算機環境をはじめ、様々な便宜を図って頂きました。深く感謝しております。

また,博士3年のチャン・ジュン氏,博士1年のクリサナ・タンパティパーン氏には研究を進めるにあたり,数多くの助言を頂きました。深く感謝しております。

そして、修士1年の入江寛氏、河辺賢一氏、学部4年の西崎康氏、若林悠太氏、研究生のナッタウット・パンスワン氏、そして特に修士2年の関田航氏には、公私にわたり大変お世話になりました。時にはご迷惑をお掛けしたこともありましたが、ともに楽しい研究生活を送ることができました。この場を借りてお礼申し上げます。

最後に、私の研究生活を支えて下さったすべての皆様に心より感謝の意を表し、皆様の今後の ご発展とご活躍を心からお祈りします。

参考文献

- [1] NEDO ホームページ,「日本における風力発電設備・導入実績」, http://www.nedo.go.jp/enetai/other/fuuryoku/index.html
- [2] 日本コージェネレーションセンターホームページ,「コージェネ導入実績」, http://www.cgc-japan.com/japanese/info/info01.html
- [3] 「電力系統における常時及び緊急時の負荷周波数制御」,電気学会技術報告, Vol. 869 (2002)
- [4] 「電力系統の負荷・周波数制御」, 電気学会技術報告, Vol. 40 (1976)
- [5] 「電力系統の需給制御技術」,電気学会技術報告, Vol. 302 (1989)
- [6] 「電力系統の標準モデル」, 電気学会技術報告, Vol. 754 (1999)
- [7] 「電力システムの自律分散制御」,電力中央研究所報告,総合報告 T21(1991)
- [8] 「『電力系統制御システム』に関する検討報告書」、エネルギー総合研究所、平成15年6月
- [9] 「風力発電電力系統安定化等技術開発 平成 15 年~平成 17 年度中間報告書」, NEDO, 2005
- [10]「需要家の二次電池を用いた系統制御手法とその検証」、木村操、林秀樹、梶原俊之、加藤政一、胡内克彦、電気学会論文誌 B、127 巻 3 号(2007)

発表文献

- [11] 大屋慎次・横山明彦・緒方隆雄・塚田龍也・徳本勉,「マイクログリッドの分散型電源 が配電系統に与える影響の評価」, 平成 18 年電気学会 B 部門大会, No.168
- [12] Shinji Ooya, Akihiko Yokoyama, "Contribution of Distributed Generations in Microgrid to LFC Abilityin Power System", ICEE2007, No.106
- [13] 大屋慎次・横山明彦・緒方隆雄・塚田龍也・徳本勉,「マイクログリッドの分散型電源による系統 LFC 調整力への貢献に関する研究」,電気学会電力技術・電力系統技術合同研究会,2007,PE-07-120,PSE-07-135
- [14] 大屋慎次・横山明彦・緒方隆雄・塚田龍也・徳本勉,「マイクログリッドの分散型電源による系統 LFC への貢献」, 平成 19 年電気学会 B 部門大会
- [15] 大屋慎次・横山明彦・緒方隆雄・塚田龍也・徳本勉,「マイクログリッドの分散型電源による系統 LFC 調整力への貢献に関する研究」,平成 20 年電気学会全国大会(発表予定)