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A Note on Finite Element Synthesis of Structures (Part 5)
—Shape Modification for Weight Minimization Based on Finite Element Sensitivity Analysis—
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1. Introduction

Optimal shape of a structure with minimum weight
is rather new topic in problems of optimal design V~%,
though parametric optimization of structures has
been discussed in detail so far . In the past the
minimum weight design had been sought by changing
such parameters as cross-sectional area and moment
of inertia of members. When the finite element
method has been made available, shape optimization
can be devised by means of changing the nodal coordi-
nates on the structure contour 7,

As a matter of strutural synthesis, an attempt is
made in this paper to formulate the minimum weight
design which enables us to keep the generated stresses
below allowable stress. Weight minimization tech-
niques proposed so far do not predict in usual how
much the weight of a structure can be reduced and
how much the stress state in changed beforehand the
computation. By a rule of thumb, stress state is
expected to be stringent when the weight is reduced.
It turns out that it is necessary to incorporate proper
constraint conditions, stress limit in elastic design for
instance, in weight minimization.

This paper deals with a formulation of weight
minimization based on the Hessian matrix derived
from finite element sensitivity analysis and equality
constraint conditions incorporated by Lagrangian
multipliers. The weight change is simulated by the
second-order Taylor series expansion with respect to
desigh variables chosen duly, while the stress change
is approximated by the first-order Taylor series
expansion. The wvalidity and efficiency of the
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proposed formulation is examined by a numerical
example concerned with a connecting rod of internal

combustion engine.
2 . Statement of problem

Suppose that the change of design parameters X,
such as nodal coordinates on the structure contour
are expressed by the design variables @, chosen
adequately and expressed by Eq. (1) . The change of
structural responses under interest Z; near the
baseline design are assumed in the linear form of Eq.
(2), and the change of objective weight in nonlinear
form of Eq. (3) with respect to the design variables
a,. The upper bar indicates quantities defined at the
baseline design hereafter. The superfices ' and " indi-
cate the order of sensitivity. The Hessian matrix is
constituted by means of arranging the second-order
sensitivities in matrix form.

X=X, (1+a,) (1)
_ N
Z;= Z,-+n§:)12,-,.lar,, (2)
_ N 1NN
W=W-+ é W,,Iar,,—!-? 2:, 23 Wi atnetn (3)
n=1 n=1k=1

The problem in this study is to determine the design
variables which make the objective weight minimized
and satisfy the equality constraint conditions posed
for structural responses.

3. Formulation Based on Lagrangian Multiplier
Method

The subsequent numerical example is carried out
on the basis of the finite element analysis under plane
strss state. Triangular, constant-strain finite ele-
ments are employed in this study. The stress sensitiv-
ities Z;,' and weight sensitivities W,' and W, in Egs.
(2) and (3) are calculated by the perturbation
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%
technique . Particularly, W,," is zero for any n in
regard to the said triangular elements. Equivalent
stresses in the elements in Mises’ sense are taken as
structural responses, for which equality constraint
conditions are imposed.

A functional is constituted in the following form by
the use of Lagrangian multipliers u;, so that the
weight is to be minimized under the condition that the
stresses in some chosen elements are increased to a
limit value.

J _ N
+ 2 ﬂj(zj+ 2 Zjnld’n'“zj*) (4)
j=1 n=1

In the above, asterisk denotes the limit value. The
first term of the right hand side of Eq. (4) is added
artificially to the functional. The second and third
terms stand for the weight change and stress shift of
the limit value, respectively. The stationary condition
of the functional with respect to the design variables
and Lagrangian multipliers is summarized in the
matrix form of Eq. (5), which is the governing
equation of the unknown variables and multipliers.
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As a particular case, W,,''s are zero for the finite
elements used in the numerical example, giving rise to
that all the diagonal ingredients of the matrix in Eq.
(5) are rendered to zero, unless the first term of
right hand side of Eq. (4) is present. In presence of
the first term with a weighting coefficient K, the
stationary condition is converted into the minimiza-
tion condition and the numerical solution of the
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governing equation are likely to be stabilized. To this
end, the coefficient K equal to the largest absolute
value of W,} is found to be sufficient, after some
numerical experiments, for the stabilization and
yielding the design variables directly applicable to
design change. When positive but small value is taken
for K, the obtained design variables are likely to be
large enough to distort the finite elements too much.

The design variables are determined as the solution
of Eq. (5). The first-order and second-order
approximation stated before is deficient to result in
accurate design variables, however. It is therefore
necessary to reiterate the determination by means of
renewing the current shape and sensitivity analysis
until the stresses attain the limit value.

4 . Numerical Example

A rod, which connects crank shaft with piston pin
of internal combustion engine is taken as the numeri-
cal example for the proposed formulation. The con-
necting rod is subjected to compressive force so that
the flexural rigidity should be large to avoid buckling
of the rod. for simplicity, the equality constratint
conditions are imposed only for the stress limit, the
cndition for the flexural rigidity being omitted. Only
in-plane bending of the rod is taken into account.

Figure 1 shows the generic model of the connecting
rod and idealized finite element division. The nodes,
to whose coordinates the design variables are as-
signed, are indicated by solid circles in the figure.
Young’s modulus and Poisson’s ratio are taken equal
to 210 GPa and 0.3, respectively. The smaaller end of
the connecting rod is fixed to eliminate rigid body
motion. The loading is simulated by the distributed
pressure applied to the inner surface of the larger end,
he maximum being 550 MPa. The number of the
design variables are fifteen, thirteen of which for the
shape of the shank and neck regions and two for the
outer radii of the right and left ends. The coordinates
of internal nodes are changed by a simple rule the
coordinate shift is almost proportional to the distance
from the bold line in Fig. 1, in order to avoid exces-
sive distorrtion of the finite element mesh.

Figure 2 shows the stress distribution along the rod
shank before and after the shape modification. The
initial stresses in the upper row (dotted) elements are
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Fig. 1 Finite element representation of connecting rod

largest, the maximum being about 220 MPa. The
stress limit is set equal to 230 MPa in order to sup-
press the stress increase due to the shape modifica-
tion. The stresses in the black elements are increased
when the width of the rod shank is decreased and the
larger stresses are mitigated by the stress limit. The
same stress is imposed also to the stresses in the black
elements. The shape modification is stopped when the
margin to the stress limit is judged exhausted. It is
seen in Fig. 2 that most of the dotted elements and
black elements are almost fully-stressed up to the
stress limit, indicated by bold line, after twenty four
renewals of the coordinate change. The shapes of the
connecting rod before and after the shape modifica-
tion are compared in Fig. 1.

Figure 3 illustrates the iteration history of the
weight reduction, showing that 20 95 of the initial
weight can be spared. The change of the maximum
stress with progress of the iteration is plotted in Fig.
4. It means that the maximum stress violates the
stress limit only by 3 % (defined by the stress limit).
Such offset, arising from the deficient first-order
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Fig. 2 Stress distribution along shank before and after
shape modification

apporoximation, is left for the constraint conditions.
The monotonic weight reduction shown in Fig. 3
indicates that the artificial addition of the first term
to the functional is effective to obtain the design
variables resulting in moderate weight redution and
gradual shape change.
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Fig. 3 Iteration history of weight reduction

5. Conclusion

A formulation is presented for design change aim-
ing at he attainment of the mitigated stress state and
the weight reduction at the same time. The stress
shift is approximated by the first-order Taylor series
expansion and the weight change by the second-order
expansion with respect to the design variables as-
signed to the coordinates of the nodes on the shape
contour. The squared sum of the design variables
with a weighting coefficient is added to the functional
in order to moderate the solution of the design vari-
ables. The weighting coefficient taken equal to the
absolute value of the largest second-order sensitivity
in the Hessian matrix gives such design variables that
are employed directly in the design change.

(Manuscript received, MARCH 11, 1991)
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