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1. Introduction

The so-called ideal cleavage strength of a solid is
usually estimated by considering the restraining
stress between atomic planes”. Similarly the behav-
ior of a completely brittle crack may, in principle, be
subject to the atomic restraining stress in crack plane.
We can suggest that a crack grows when the atomic
restraining stress at crack-tip becomes irreversible
with the increase of an external force. But this idea
has been used only conceptually and we have seen few
analyses which actually follow the change of the
atomic restraining stress to estimate the behavior of
a crack in continuum. In this study, using the discon-
tinuous model proposed previously?, we try the finite
element analyses of crack behavior considering the
restraining stress between atomic planes. Through
the results we show some fundamental issues about
completely brittle fracture, and make clear the mean-
ings and roles of fracture mechanics parameters such
as stress intensity factor etc..

2 . Modeling of a Completely Brittle Crack
by Discontinuous Model

2.1 Discontinuous Model

Consider a two-dimensional problem. Figure 1
shows the situation in which a discontinuous plane is
considered ahead of a notch whose radius of curva-
ture is p. In the discontinuous model, a plane before
deformation (Fig. 1(2)) is stretched after deforma-
tion (Fig. 1(b)), and it can be a model for analysis
when some constitutive relation compatible with the
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one for continuum parts is given for the plane?. The
strain in the discontinuous plane cannot be defined in
the same way as for continuum parts. Therefore we
introduce a characteristic length Lz]= L1y, %], and
define strain-like quantities as

€11 :%aix(u1++%1_)

Ezzzt(u;—uﬁ-) : (1)

;'u:éi(ul*—uf) +%ain(u¢++uf)
Here, %, u,”, w* and u,~ are the displacements on
the upper and lower planes in X, and X, derections,
respectively. When we employ an appropriate con-
stitutive equation between these strain-like quantities
and the stresses for the discontinuous plane, and, as to
the continuum parts, employ an ordinary constitutive
relation, the discontinuous model can be analized
actually?.
2.2 Introduction of a2 Constitutive Relation
Representing the Atomic Restraining Stress
In the model in Fig. 1, suppose that the continuum
parts are linear elastic and only ModeI load is
applied hereafter (symmetric about the dis-
continiuous plane), and let’s try to introduce a con-
stitutive relation representing the atomic restraining
stress into the discontinuous plane. That is, suppose
that the quantity corresponding to Poisson’s ratio is
zero for simplicity and, the relation between the
restraining stress oz, and the strain-like quantity e IS
given, as shown in Fig. 2, by
[ OmaxSin (27ez2/1) ,if (0<,<1/2)
o= {0, i (1/2< %)
Here, A is the wave length of sinusoidal function, and

(2)

Omax 1S the ideal cleavage strength. Since the values of
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Fig. 3 Crack Model for Analyses

Strain-like Quantity &,
and Restraining Stress

on and oy, are comparatively small (o1, will be zero
for symmetry), the relation between ¢y, and &, and
that between o1, and = can be assumed to be linear.

As to the characteristic length %, through which
the strain-like quantity e, is defined, it should be
noted that physically it corresponds to the distance
between atomic planes in the unstressed state as &,=
' —u,~ is equal to the relative displacement between
atomic plancs in the stressed state. The same may be
said of A, .
2.3 Crack Parameters

‘The conventional crack parameters are defined for
the continuum with a completely sharp crack (p=0)
under a particular consititutive relation. In order to
remove these restrictions, the CED (Crack Energy
Density) was proposed as a crack parameter which
always has a clear physical meaning®. So, we will
discuss the matter centering the CED. The CED is
defined as “the work done per unit area in the plane
containing crack front line during deformation, that
is, the strain energy area density”. The CED & at the
crack-tip of the model in Fig. 1 is given by

E=6*+&" (3)

&* is the contribution from the stretched discontinu-
ous plane, and &" is the contribution from the notch-
tip path T, in Fig. 1. When ¢ (#) is the crack-tip
opening displacement at the time #, and ¢* (8;,) isthe
restraining stress as the function of the relative dis-
placement &,, &* is given by

$()
%*:fo 0'*<(¥22)dé‘zz

2 2
= () "B (1-co?Zt )

considering that E is Young’s modulus and ¢* (8,,) is

(4)

given by Eq. (2). On the other hand, &" is given by
&= [ wax, (5)

when W is the strain energy density. It is noteworthy
that the value of &* becomes equal to the surface
energy 2ys when the strain-like quantity e, reaches
/2. .

While &, &* and &" can be evaluated directrly
from the equations above, especially & can be
evaluated also by the following path-independent
integral®.

&, =]
=/ . (WdX,~ Ta,dD)
r.+7r,

5(X»
+f0 O'*(Jzz)d()‘zg (6)

Here, T_+T', is an arbitrary path surrounding the
crack-tip in Fig. 1. 7; and #; are the surface traction
and the displacement on the path I'. +T'_, respective-
ly, and &, (X,) is the relative displacement at the
point X,.

When we define &x as the CED for a completely
sharp crack in a linear elastic solid, the relation
among &x, energy release rate 4 and stress-intensity
factor K

% g_ (1_L'2)K2

(7)

holds for plane strain state®. Here, v is Poisson’s

ratio.

3. Finite Element Analyses and Evaluation
of Crack Parameter

3.1 Object and Method for Analyses
In order to analize crack behaviors in the atomic
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size order, we pay attention to the limited small
region around crack-tip, and plane strain analyses of
the region are carried out by applying the displace-
ment field prescribed by Mode I stress-intensity fac-
tor K on the boundary. Since the non-linear region is
very small, it is thought to be natural to assume the
K field in the region surrounding the non-linear
region. Taking account of the symmetrical character,
the semi-circular region shown in Fig. 3(2) is taken
as the object for analyses. The discontinuous plane of
which the constitutive relation is given by Eq. (2) is
inserted ahead of the crack front. Two kinds of
analyses are carried out. A completely sharp crack,
and a notch with a finite radius of curvature p in the
unstressed state are supposed in Figs. 3(b) and
3(c), respectively. Since an actual crack in a solid
often exsists with some width, the model in Fig. 3(¢)
may be more actual.

Taking the fact stated in Sec 2.2 into considera-
tion, the characteristic length of the discontinuous
plane /%, is 0.4X10"°mm (atomic size order). The
distance from crack-tip to the boundary R is 250X
he, and the radius of curvature p in Fig. 3(c) is
0.4X10"°mm. The minimum mesh size around the
crack-tip is set about a quarter of the distance
between atomic planes in the unstressed state so that
we can follow the non-linear behavior near the
crack-tip. Four-noded isoparametric elements and
four-noded discontniuous plane elements with three
Gauss integrating points are employed for the contin-
uum parts and for the discontinuous plane, respectively.
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Fig. 4 CED Value with load (p=0mm)

3.2 Results of Analyses

Figure 5 shows the relation between CED and K
that plays the role of parameter of external force. In
the figure, &, and #&* are the results by the path-
independent integral Eq.(6) and Eq.(4) through the
crack-tip opening displacement, respectively, and &«
is the result by Eq.(7) and means the CED which is
expected to be obtained when p=0 and the discontin-
uous plane is not considered. Essentially &* and &,
should take the same value, and it is considered that
&* is estimated smaller than &, here because the
quantities near the crak tip are apt to be estimated
smaller than the true values in the finite element
analysis. So, it is resonable to regard &, as more
exact solution. The difference between &; and &y is
caused by the non-linearity near the crack-tip.

Figure 5 shows the variation of each CED with the
increase of the external force parameter K for the
case of Fig. 3(c). Here, 8*+&" should take the
same value as that of &, by the path-independent
integral, and it is thought that &*+&7 is evaluated to
be smaller because the values near the crack-tip are
used directly. So, &, is regarded as more exact solu-
tion of CED. &« is evaluated by Eq.(7) in the same
way as in Fig. 4.

4 . Fracture Criterion of a Completely Brittle Crack
and Meaning of Fracture Mechanics Parameter

4.1 Fracture of a Completely Sharp Crack
It is seen from Fig. 4 that the following relation
holds taking also Eq. (8) into acount.

[kgf/mm]
P

&

.0 0.5 1.0 2.5

1.5 2.0
K [kgf/mm*?
Fig. 5 CED Value with load (p=0.4X10"°mm)
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& (=5=5)~8=1"2 L ¢ (8)

It is expected that this relation holds generally taking
account of the path independency of J-integral and
the fact that the difference of the situation near the
crack-tip has little influence on the region far from
the crack-tip. So, it can be said that our expectation
was confirmed through numerical analyses. In the
crack model here, it is supposed that the deformation
at the crack-tip becomes irreversible when the strain-
like quantity e, reaches 1/2, that is, &* creaches the
surface energy 2ys. Therefore, the relation that &*=
2ys (=&¢&) is clearly the necessary and sufficient
condition of fracture. When K¢& and €& are the
values of K and €, respectively, at the time when &*
reaches 2ys, we have the relation

Be =2y ImDEE g (9)
by considering Eq. (8), and this implies that K¢
and%g¢ can be regarded almost constant since 2ys
takes a value peculiar to a material (exactly speak-
ing, K& and €& are dependent on the shape of
specimen and boundary condition) and that the condi-
tion almost equivalent to the necessary and sufficient
condition of fracture &*=2ys is given by

@=2ys or K=1/21—l?_% (10)

The exsistence of the K stress field around the crack-
tip is usually emphasized as the meaning of K.
However, the reason why K is available as a crack
parameter although the situation at the crack-tip is
completely defferent from that of K field (actualy o,
at the crack-tip in the discontinuous plane begins to
decrease in the neighborhood of K =1.0kgf/mm?®? in
Fig. 4) is that the relation of Eq. (8) holds, that is,
there exists the one-to-one correspondence between
K and &* that has the clear phisical meaning and
reﬂecfs the actual situation of the crack-tip, and this
fact is most essential to explain the meaning of K
(the same is said of @).

The relation of Eq. (10) is so-called Griffith’s
brittle fracture criterion, and this condition has been
thought of generally as the necessary condition of
fracture. However, through the above argument we
can find that this condition is also the condition
corresponding to the sufficient condition.
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4.2 Fracture of a Notch Type Crack
Figure 5 shows that the following relation holds.

B(=g+5"=8)~E=1"2E-¢

It can be expected in the same way as for Eq. (8)
that this relation holds generally. Also in this case,
&*=2ys (=& ) is the necessary and sufficient
condition of fraciure, and when we represent the
value &" at the time when &*=2ys by 2yw, this
condition can be expressed also by

E=2(ys+yn) (=8&c) (12)
When K¢ and G are the values of K and ¥ at the
time when Eq. (12) holds, we have the relation

A=v)KZ
E

Ec=2(ys+ym= =%Gc (13)

from Eq. (11), and this implies that the condition
almost equivalent to the necessary and sufficient
condition of fracture Eq. (12) is given by

G=2(ys+ym) or K=, /Bty g

It should be noted here that ys is dependent on the
value of p, therefore, when p is not constant, XK ¢ and
@ are not constant either, and this may cause the
scatter of the value of K¢ or 4 in the evaluation of
fracture toughness of brittle crack.

5. Conclusion

By using the discontinuous model, we showed that
it is possible to analize the crack behavior of a
completely brittle crack in consideration of the re-
straining stress between atomic planes and obtained
some fundamental knowledges about the brittle frac-
ture and the roles of fracture mechanics through the
results of the finite element analyses.

(Manuscript received, December 21, 1990)
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