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1. Introduction

The preceding parts of也is note dealt with the shift

syn也esis under equality constraint conditions by the

use of a finite elment fomulation based on the notion

of the minimum design change in order to detemine

the design variables able to attain the desired shift of

structural responses. Inequality constraint conditions

also play Important role in stmctural syn比esis as

much as equality constraint conditions. According to

the requisite of so-called elastic design of stmctures,

the generated stresses should remain in elastic

domain, that is, equal to or less than也e yield stress

of the material, but all the stresses are not requested

to be equal to the yield stress. Such a requisite foms

inequality constraint conditions.

Powell proposed a fomulation to deal with in･

equality constraint conditions by means of introduc-

ing slack variables and employing the quadratic

tems of the constraint conditions incorporated by

multipliers used in the sense of penalty coefficientsl).

His iterative formulation requlreS initial guess of all

the variables and multipliers employed, hinting that

the resultant design variables are dependent on the

initial values guessed. The multipliers are to be

varied judiciously, since no rules are glVen tO Vary the

multipliers in the iterative fomulation.

This note presents a generalized inverse formula-

tion for the stmctural synthesis under inequality

constraint conditions which are modified into the

equality constraint conditions with the aid of slack

variables. The validity of the formlllation is verified

by the numerical example of mode shape change of
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beam vibration.

2. Description of problem

Suppose that we have a baseline design whose

structural responses do not satisfy ∫ inequality con-

straint conditions given in the following linear fom,

N
-zj+ ∑ zjnlαn-Zj*

JL=1

.〟

-zj+ ∑ I,.nlαn≦0

7‡-1

(1)

in regard to N design variables αn defined for the

design parameters xn as follows.

端-も(1+αn)　　　　　　　　　　　　　　(2)

The upper bar indicates the quantities co汀eSpOnding

to the baseline design, asterisk the allowable response

limit, and zjnl the response sensitivity calculated by

the finite element analysis2). The problem in this note

is to detemine the design variables that satisfy Eq.

(1).

3. Proposed formulation

The inequality constraint conditions are modified

into也e equality constraint conditions with the aid of

slack variables A in the following form. All the slack

variables should be non･negative.

〟

zj+ ∑ i,A,zlαn+pn-0

n-1

(3)

Equation (3) is rewritten in a matrix form of Eq. (4)

where　〈X〉 denot占s M unknOwns consisting of the

design variables and slack variables. 〟 is equal to

N+). (Di is the deviation vector of the response

limits and baseline responses. The expression given in

the following shows an example for three design

variables and two constraint conditions.

lS](X)-iD)　　　　　　　　　　　　　(4)
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From the viewpoint of numerical treatment, it is

recommended to nomalize Eq. (2) adequately, for

instance, by means of the largest sensitivity in abso-

lute sense for each inequality condition in order to

have numerals in Eq. (4) of approximately same

order. The matrix lS] is rectangular in size ofJ X M.

The unknowns vector hHs determined by using

the Moore and Penrose generalized inverse lS-] in

size of 〟 ×ノ. The necessary and sufficient condition

for the existence of the solution (X) of Eq. (4) is that

the following equation (5) holds.

(lS]lSl-lI])lD]-iOi　　　　　　　　(5)

The matrix lZ] denotes identity matrix in size of

eitherノ×J or 〟×〟. When Eq. (5) holds, the

general solution of毎日s obtained as the sum of the

particular solution (ち) and the complimentary solu-

tion ixc)given in the following forms).

ixb)-〈扉+ixc)

(xp)-[5-]〈D)

(xcl- (lI]-lS-]lS])(h)

The vector ihi ontheright hand side of Eq. (8) can

be taken arbitrary. The Moore and Penrose general-

ized inverse lS-] is calculated by the Penrose

method4).

The aimed design variables　α,2 are determined

simply as the upper part of the particular solution

ixp) , when all the slack variables A･ in the lower part

of ixpi are non-negative, since all the inequality

constraint conditions are satisfied. This case implies

that the arbitrary vector ih) is taken equal to i0L If

ixP)givesrise to many negative slack variables, the

vector (hl is chosen so that the general solution (X)

of Eq. (5) results in non-negative slack variables.

4. Inequality conditions in small mlmber

suppose that the number of the inequality con-

straint conditions is small, for instance, ∫ is less than

N. In this case, the rank of lS] isequaltoJ so that

Eq. (5) holds. Then the solution exists in the form of

Eq. (6). A case is dealt with in this section that the

number of the negative slack variables of the particu-

lar solution is上.エis less than or equal toJ, that is,

less than 〟. Under such circumstances, it is easy to

make all the slack variables non-negative by adding

the complimentary solution. At first, the followlng

vector ibi is madeinthe formofEq. (9) in order to

setエnegative slack variables equal to zero. The

goveming equation of (hl is then obtained as Eq. (10).

(b)--(P,･(xP)〉　　　　　　　　　　　　( 9 )

lC](h)-(b)　　　　　　　　　　　　　(10)

In the above, [C] is aエ×〟 rectangular matrix

generated by means of extracting L lines from lZ] -

lS-] lS] Corresponding to L ingredients of Eq. (9).

Then i h) can be determined as the particular solution

of Eq. (10) again by making use of the generalized

inverse [C~] as given below.

ihy-lC-]ib)　　　　　　　　　　　　　(ll)

In this manner, the complimentary solution ixc) is

obtained, and the aimed design variables are deter一

mined corresponding to the non一megative slack vari-

ables.

It is worthy to note that some of the slack vari-

ables, the particular component of which is non-

negative, might tum to negative when the complimen-

tary component is added. In such a case, a simplified

algorithm is devised by setting all of ∫ slack variables

equal to zero, instead of looking for the combination

of the inequality constraint conditions which results

in non-negative slack variables of the general solu-

tion. This means that a set of the design variables

satisfying the inequality constraint conditions can be

detemined by taking the generalized inverse three

times at most.

5. Numericalexample

The validity of the proposed fomulation is

examined by the shape change of the first mode of an

elastic beam vibration. A straight beam simply

supported at two points as shown in Fig. 1 is taken as

the example. The beam is modeled by ten finite

elements of equal length, whose stiffness matrix is

constituted by the assumption that也e moment of

inertia is distributed lineraly ln an element. Eleven

design variables are taken for the nodal values of the

moment of inertia. The mass matrix is kept un-

changed. The moment of inertia of 8.33× 10~2mm4 is

constant over the full length of D-20 mm as for the

baseline design, giving rise to the eigenvalue of 4. 194.
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Fig. 1　Finite element beam model and distribu-

tion of moment of inertia i before and

a允er structural modification

The normalization of the eigenvector is to set the

right end deflection equal to unity. The sensitivities

of也e eigenpair are calculated by the finite element

analysis of the l⊃eam vibrations).

As也e inequality constraint conditions of ∫ -3, the

elgenValue and deflections of the eigenvector at two

points A and B in Fig. 1 are taken into account. The

variation of也e eigenpair is not linear with respect to

the change of the nodal moments of inertia so that the

inequality constraint conditions in the fom of Eq. (1)

is none but their first-order approximation. It means

that structural modification in this case should be

iterated by renewing the baseline design and sensitiv-

ity analysis in order to cope with the deficiency

caused by the firsLorder approximation. The

eigenvalue and deflections at the points A and B in

Fig. 2 0f the eigenvector are set as follows.

WA　≧1.2WA, WB　≦1.4WB, A≧九.

Fig. 2　Mode shapes before and after structural

modification
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Fig. 3 Iteration history of structural modifica-

tion

When the defelections are changed by two equality

constraint conditions, the eigenvalue is decreased to

2.791. Thus　也e condition is imposed on the

elgenValue not to take the smaller value than the

inital value. In Fig. 1, the distribution of the moment

of inertial is depicted, while a chain line indicates the

result obtained by taking all the three conditions as

mere equality constraint and based on the notion of

design change minimum2). Figure 2 shows the mode

shape, the hatched domain indicating that the inequal-

ity condition is satisfied. In the figures, the solid lines

co汀eSpOnd to the design after three iterations, and

the broken lines tothe initial design. Figure 3 illus-

trates that払e iteration history of the eigenvalue and

deflections converges fast.

6. I)iscussioII

When stmctural modification is tried by not so

many design variables or under many but dependent

inequality constraint conditions, the number of design

variables is smaller than that of inequality constraint

conditions. In such a case,也e application of the

generalized inverse fomulation is not straight-

forward, because the slack variables, whose particひ

ユar component is non-negative, might be made nega-

tive by adding也e complimentary components. Two

typical examples are discussed hereby with respect to

two variables and three conditions, under the assump-

tion that Eq. (1) is exact.

Figme 4 illustrates the matted feasible domain and

an idle inequality condition. The square means the
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Fig. 4 Idle inequality constraint condition in-

cluded

design variables obtained as the particular solution

and outside the feasible domain. The circle indicates

the design variables falling into the feasible domain

after adding the complimentary solution When the

number of idle inequality constraint condition is not

so large, the generalized inverse fomulation can cope

with more conditions than the design variables.

There is no feasible domain in Fig. 5, because of

wrong combination of inequality constraint condi-

tions. The triangle indicates the particular solution of

the design variables outside the feasible domain with

two negative slack variables. If these two variables

are made positive, the positive third is made negative

by addition of也e complimentary solution. When the

negative third is made positive further, the two posi-

tives are made negative again. This repetition is

depicted as the two squares in the figure. This means

that the periodic repetition of the design variables by

the proposed fomulation can be a clue to judge

whether the structuralsynthesis under peculiar in-

equality constraint conditions is possible or not.

7. Conchding remarks

The generalized inverse formulation is proposed to

determine the design variables which satisfy the in･

equality constraint conditions given in the linear

Fig. 5　No feasible domain existing

form. The formulation needs the correction of the

design variables by addition of the complimentary

solution so that all the slack variables are positive as

requested. Some difficulties are associated withthe

structural synthesis with peculiar inequality con-

straint conditions, as we cannot know which condi-

tions are idle or there is no feasible domain. The

discussion suggests that the fomulation is still

dependable in presence of the peculiarities.

(Manuscript receivedJune, 22 , 1990)
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