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1. Introduction

The preceding parts of this note dealt with the shift
synthesis under equality constraint conditions by the
use of a finite elment formulation based on the notion
of the minimum design change in order to determine
the design variables able to attain the desired shift of
structural responses. Inequality constraint conditions
also play important role in structural synthesis as
much as equality constraint conditions. According to
the requisite of so-called elastic design of structures,
the generated stresses should remain in elastic
domain, that is, equal to or less than the yield stress
of the material, but all the stresses are not requested
to be equal to the yield stress. Such a requisite forms
inequality constraint conditions.

Powell proposed a formulation to deal with in-
equality constraint conditions by means of introduc-
ing slack variables and employing the quadratic
terms of the constraint conditions incorporated by
multipliers used in the sense of penalty coefficients®.
His iterative formulation requires initial guess of all
the variables and multipliers employed, hinting that
the resultant design variables are dependent on the
initial values guessed. The multipliers are to be
varied judiciously, since no rules are given to vary the
multipliers in the iterative formulation. ‘

This note presents a generalized inverse formula-
tion for the structural synthesis under inequality
constraint conditions which are modified into the
equality constraint conditions with the aid of slack
variables. The validity of the formulation is verified
by the numerical example of mode shape change of
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beam vibration.
2 . Description of problem

Suppose that we have a baseline design whose
structural responses do not satisfy J inequality con-
straint conditions given in the following linear form,

N
z+ 3 zidlan—z*
n=1

N
=z;+ 3 zlan<0 . (1)
n=1

in regard to N design variables «, defined for the
design parameters x, as follows.

20 =% (1 @) (2)
The upper bar indicates the quantities corresponding
to the baseline design, asterisk the allowable response
limit, and z;,' the response sensitivity calculated by
the finite element analysis®. The problem in this note
is to determine the design variables that satisfy Eq.

(1.
3. Proposed formulation

The inequality constraint conditions are modified
into the equality constraint conditions with the aid of
slack variables 8; in the following form. All the slack
variables should be non-negative.

N
z+ 212jn‘arn+p’n=0 (3)
Pont

Equation (3) is rewritten in a matrix form of Eq. (4)
where {x} denotés M unknowns consisting of the
design variables and slack variables. M is equal to
N+J. {D} is the deviation vector of the response
limits and baseline responses. The expression given in
the following shows an example for three design
variables and two constraint conditions.

[S]{x}={D} (4)
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From the viewpoint of numerical treatment, it is
recommended to normalize Eq. (2) adequately, for
instance, by means of the largest sensitivity in abso-
lute sense for each inequality condition in order to
have numerals in Eq. (4) of approximately same
order. The matrix [S] is rectangular in size of J X M .

The unknowns vector {x} is determined by using
the Moore and Penrose generalized inverse [S-] in
size of M XJ. The necessary and sufficient condition
for the existence of the solution {x} of Eq. (4) is that
the following equation (5) holds.

([S1Ls-1-[7D [D1={0} (5)
The matrix [/] denotes identity matrix in size of
either J/XJ or MXM. When Eq. (5) holds, the
general solution of {x} is obtained as the sum of the
particular solution {x,} and the complimentary solu-
tion {x.} given in the following form?.

{m)=1{x} +{x} (6)
{x}=[S" D} (7)
{x=([I1-[S-1[SD{ A} (8)

The vector {£} on the right hand side of Eq. (8) can
be taken arbitrary. The Moore and Penrose general-
ized inverse [S~] is calculated by the Penrose
method?.

The aimed design variables «, are determined
simply as the upper part of the particular solution
{x»}, when all the slack variables g; in the lower part
of {x,} are non-negative, since all the inequality
constraint conditions are satisfied. This case implies
that the arbitrary vector {%} is taken equal to {0}. If
{x,} gives rise to many negative slack variables, the
vector {4} is chosen so that the general solution {x}
of Eq. (5) results in non-negative slack variables.

4 . Inequality conditions in small number

Suppose that the number of the inequality con-
straint conditions is small, for instance, J is less than
N . In this case, the rank of [S] is equal to J so that
Eq. (5) holds. Then the solution exists in the form of
Eq. (6). A case is dealt with in this section that the
number of the negative slack variables of the particu-
lar solution is L. L is less than or equal to /, that is,
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less than N . Under such circumstances, it is easy to
make all the slack variables non-negative by adding
the complimentary solution. At first, the following
vector {5} is made in the form of Eq. (9) in order to
set L negative slack variables equal to zero. The
governing equation of {4} is then obtained as Eq. (10) .

{o}=—{B;(x)} (9)

[CHrt={b} (10)
In the above, [C] is a LXM rectangular matrix
generated by means of extracting L lines from [/]—
[S-1[S] corresponding to L ingredients of Eq. (9).
Then {2} can be determined as the particular solution
of Eq. (10) again by making use of the generalized
inverse [C~] as given below.

{r}=[CH5} (1
In this manner, the complimentary solution {x.} is
obtained, and the aimed design variables are deter-
mined corresponding to the non-negative slack vari-
ables.

It is worthy to note that some of the slack vari-
ables, the particular component of which is non-
negative, might turn to negative when the complimen-
tary component is added. In such a case, a simplified
algorithm is devised by setting all of J slack variables
equal to zero, instead of looking for the combination
of the inequality constraint conditions which results
in non-negative slack variables of the general solu-
tion. This means that a set of the design variables
satisfying the inequality constraint conditions can be
determined by taking the generalized inverse three
times at most.

5. Numerical example

The wvalidity of the proposed formulation is
examined by the shape change of the first mode of an
elastic beam vibration. A straight beam simply
supported at two points as shown in Fig. 1 is taken as
the example. The beam is modeled by ten finite
elements of equal length, whose stiffness matrix is
constituted by the assumption that the moment of
inertia is distributed lineraly in an element. Eleven
design variables are taken for the nodal values of the
moment of inertia. The mass matrix is kept un-
changed. The moment of inertia of 8.33X1072mm* is
constant over the full length of D=20 mm as for the
baseline design, giving rise to the eigenvalue of 4.194.
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Fig. 1 Finite element beam model and distribu-
tion of moment of inertia I before and
after structural modification

The normalization of the eigenvector is to set the
right end deflection equal to unity. The sensitivities
of the eigenpair are calculated by the finite element
analysis of the beam vibration®.

As the inequality constraint conditions of J =3, the
eigenvalue and deflections of the eigenvector at two
points A and B in Fig. 1 are taken into account. The
variation of the eigenpair is not linear with respect to
the change of the nodal moments of inertia so that the
inequality constraint conditions in the form of Eq. (1)
is none but their first-order approximation. It means
that structural modification in this case should be
iterated by renewing the baseline design and sensitiv-
ity analysis in order to cope with the deficiency
caused by the first-order approximation. The
eigenvalue and deflections at the points A and B in
Fig. 2 of the eigenvector are set as follows.
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Fig. 2 Mode shapes before and after structural
modification
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Fig. 3 Iteration history of structural modifica-
tion

When the defelections are changed by two equality
constraint conditions, the eigenvalue is decreased to
2.791. Thus the condition is imposed on the
eigenvalue not to take the smaller value than the
inital value. In Fig. 1, the distribution of the moment
of inertial is depicted, while a chain line indicates the
result obtained by taking all the three conditions as
mere equality constraint and based on the notion of
design change minimum?. Figure 2 shows the mode
shape, the hatched domain indicating that the inequal-
ity condition is satisfied. In the figures, the solid lines
correspond to the design after three iterations, and
the broken lines to the initial design. Figure 3 illus-
trates that the iteration history of the eigenvalue and
deflections converges fast.

6 . Discussion

When structural modification is tried by not so
many design variables or under many but dependent
inequality constraint conditions, the number of design
variables is smaller than that of inequality constraint
conditions. In such a case, the application of the
generalized inverse formulation is not straight-
forward, because the slack variables, whose particu-
lar component is non-negative, might be made nega-
tive by adding the complimentary components. Two
typical examples are discussed hereby with respect to
two variables and three conditions, under the assump-
tion that Eq. (1) is exact.

Figrue 4 illustrates the matted feasible domain and
an idle inequality condition. The square means the
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Fig. 4 Idle inequality constraint condition in-
cluded

design variables obtained as the particular solution
and outside the feasible domain. The circle indicates
the design variables falling into the feasible domain
after adding the complimentary solution. When the
number of idle inequality constraint condition is not
so large, the generalized inverse formulation can cope
with more conditions than the design variables.
There is no feasible domain in Fig. 5, because of
wrong combination of inequality constraint condi-
tions. The triangle indicates the particular solution of
the design variables outside the feasible domain with
two negative slack variables. If these two variables
are made positive, the positive third is made negative
by addition of the complimentary solution. When the
negative third is made positive further, the two posi-
tives are made negative again. This repetition is
depicted as the two squares in the figure. This means
that the periodic repetition of the design variables by
the proposed formulation can be a clue to judge
whether the structural synthesis under peculiar in-

equality constraint conditions is possible or not.
7 . Concluding remarks

The generalized inverse formulation is proposed to
determine the design variables which satisfy the in-
equality constraint conditions given in the linear
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Fig. 5 No feasible domain existing

form. The formulation needs the correction of the
design variables by addition of the complimentary
solution so that all the slack variables are positive as
requested. Some difficulties are associated with the
structural synthesis with peculiar inequality con-
straint conditions, as we cannot know which condi-
tions are idle or there is no feasible domain. The
discussion suggests that the formulation is still
dependable in presence of the peculiarities.
(Manuscript received, June, 22, 1990)
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