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On the Physical Interpretation of the Cubic Finite Element
for Beams and Axisymmetric Shells
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In eq. (2), (u" e" u 2, ( 2 ) are nodal displacements

shown in Fig. 2. Z is the axial coordinate of a beam,

and'; is the nondimensional axial coordinate for each

element, which has the value in the following range:

of framed structures using this element. Numerical

studies are carried out for the linear problem of

axisymmetric shells as well as the plastic collapse

problem of beams.

2 . Physical Interpretation of the Cubic Beam

Element

2. 1 Strain energy for the cubic finite element

In the most frequently used beam bending finite

element, the lateral deflection u(zJ is assumed as

follows, using a cubic polynomial:

u (z) = Hoou, +HlOLe, +HOJu.+ HllLe2

where

X numerical integration point
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In Ref. 1), the strain energy approximation of the

linear Timoshenko beam element2
), which is based on

the reduced integration technique (one-point qua­

drature in this case) , was compared with that for the

beam bending element including the shear effect in

the Rigid Bodies-Spring Models" (abbreviated as the

RBSM hereafter), and it was shown that these two

elements are equivalent to each other when

P, =- ';, or ';, =- P, ( 1 )

where ';, is the coordinate of the integration point in

the finite element and p, indicates the location of a

connecting point between rigid bars in the RBSM, as

shown in Fig. 1. This comparison also suggests that

the linear Timoshenko beam element is suitable, as

well as the RBSM, to the plastic collapse analysis

using the concept of plastic hinges and that the loca­

tion of the occurence of a plastic hinge can be

controlled by the movement of the numerical integra­

tion point. This variable location technique for

numerical integration points can be conveniently used

in the finite element collapse analysis of framed

structures, as conducted in Ref. 4) .

In the present report, the similar consideration is

carried out for the cubic beam bending element,

which can be expected useful in the collapse analysis

1 . Introduction

In the present study, the beam bending finite ele­

ment using a cubic polynomial as a shape function,

which is the most popular element in the bending

problem, is physically explained, as previously con­

ducted by the author for the linear Timoshenko beam

element').
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Fig. 2　Cubic beam element and its physical equivalent

-1≦首≦1　　　　　　　　　　　　　　(3)

The secondl0rder derivative of the latera一 deflec-

tion is calculated as follows:

d2u/dz2- (65/L2)ul+〈(3号1 1)/L)ol

-(6号/L2)u2+((3才+ 1)/L)02　(4)

whichgives the curvature change during the deforma･

tion of the beam,

The strain energy stored in this element can be

obtained as follows, by using the twoIPOint numerical

integration scheme:

VcFE- (Eュl/4)守 [d2u/dz2(51)]2

十[d2u/d22(52)]2〉　　　　　　　　( 5)

wherethe two numerical integration points are locat･

ed at El and島, respectively. EZ and L in this equa-

tion are也e bending rigidity and the leng也of the

beam element, respectively.

2. 2　Strain energy for the RBS加Ⅰ

In order to obtain the physical interpretation of the

cubic beam element, we consider the RBSM as shown

in Fig. 2, which is composed of three rigid bars

comected wi仇two rotational springs. Writing the

non･dimensional coordinates of the connection points

by pl and p2, the curvature change at pl lS assumed as

follows in the RBSM:

xl- C"u.+ Cllel+ C12u2+ C1302

wllere

G｡ニー8/([2 +(pl+β2)](β2-β1)エ2〉　　(6)

Cl1-- 4/(1 +p2)/([2 +(pl+p2)](p2-Pl)L)

C12-　8/([2+(pl+p2)](p2-Pl)L2)

C13-- 4 ( 1 -p2)/([2 +(pl+p2)](p21Pl)L)

Eqs. (6) give the ratio of the relative rotational

a喝le between adjacent rigid bars to the distance

bar. Similarly, the c11Ⅳature Change at 〟 2 is given by

the following equations:

X2- C2｡ul+ C2191+ C22才ち+ C2302

where

C2｡-　8/〈[2-(β1+β2)](β2-β1)エ2)　(7)

C21-　4(1+pl)/〈[2-(βl+β2)](β2-pl)エ〉

C22-- 8/([2 -(pl+β2)](β2-βl)エ2〉

C23-　4(11P2)/([2-(p.+p2)](p21Pl)Ll

In the RBSM theory, the strain energy stored in the

rotational springs is approximated as follows:

VRBSM- (EIL/4) ( (X2)2+ (X2)2)　　　　　　( 8 )

2. 3　Equivalence between the cubic finite element

and the RBSM

The equivalence between the cubic finite element

and the rigid bars-spring model requires

VcFE- TiBSM

which is satisfied by

d2u/dz2(51) -Xl

and

d2u/dz2(義) -X2

Eq. (10a) holds when the following conditions are

satisfied:

G｡=651/L2

Gl-(351- 1)/L

C12- -651/L2

C13-(351+ 1)/L

3iJO

It is noted that the first equation in eqs. (ll) is the

same as the third equation, because G｡ is equal to

-G2, aSSeenfromeqs. (6).

The following three variables are defined here for

the convenience:

R1-i (p2)21 (p.)2)/4

R2- (p2-Pl)/2

R3-p2

(12)

Using these variables, eqs. (ll) can be rewritten as

35IRl+3号lR2+ 1 - 0

(351- 1)Rl+(351- 1)R2+R,+ 1 - 0　　(13)

(351+ 1)Rl+(351+ 1)R2lR,+ 1 = 0

It is clear that eqs. (13) can l〕e replaced with the

following set of equations:

3号lR.+3EIR2+ 1 - 0

Rl+R2-R,- 0　　　　　　　　　　　　　(14)

Eqs, (12)give the following relation between R3 and

(Rl, R2):

Ra- (Rl/R2) +R2　　　　　　　　　　　　(15)

between the node 1 and the center of themiddle rigid Substituting eq. (15) into the second equationineqs.
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(14) , the following set of equations for Rl and R2 Can

finally be obtained:

3号1Rl十3EIR2+ 1 - 0　　　　　　　　　(16a)

Rl-Rl/R2- 0　　　　　　　　　　　　　(16b)

Eqs. (16) give the following two sets of solutions:

R1-0 and R2-ll/3El　　　　　　　(17a)

Or

R1--1-1/351 and R2- 1　　　　　(17b)

As for the values of p1 and p2, two equations in (17b)

are inconsistent with each other. Therefore eqs. (17a)

give required solutions for pl and p2, Which are

p1-1/351 and p2--1/351　　　　　(18)

From eqs. (lob), the following solutions for βl and メ)2

can be similarly obtained:

p1-ll/352　and p2-1/352　　　　　　(19)

It can be seen that the following relation between El

and 62 must holdinOrder to have the equivalence

between the finite element and the RBSM･.

51--島　　　　　　　　　　　　　　　(20)

It can also be said that El and 52 must have the

followlng ranges:

-1≦51≦1/3　and 1/3≦eT2≦1　　　　(21)

It is interesting to note that when (51 , 52) are located

on the Gaussian integration points, (pl, P2) are locat-

ed on the same points, that is,

51-P1--1/√す　and　52-P2-1/√す(22)

3. Numerical Studies

3. 1 P)astic collapse of a clamped beam

As mentioned in the introductory remarks, the

relation between (El, 62) and (pl, P2) can be conve-

niently used in the plastic collapse analysis of framed

stnlCtureS. The plastic collapse of a beam with both

ends clamped and subjected to a centrally concen-

trated lateral loading is studied as a numerical exam-

ple to show the validity of the variable location

technique for numerical integration points. In the

analysis, the concept of plastic hinges is introduced by

assuming zero bending rigidity at仇e integration

point where the value of bending moment reaches a

funy･plastic value. This treatment is equivalent to the

assumption of zero spring constant at tlle COrreSpOnd-

ing connection point in the RBSM.

In也e present numerical study, the following two

elements with different locations of integration points

are used:

FCl: Ei-± 1/J3-(pz-± 1/√す)

FC2:首Z-±1/3　(pz-±1.0)

In FCl, the integration points are exactly located at

Gaussian integration points, and the plastic hinges are

formed at the same points. In FC2, the integration

points are located at Ez- ±1/3, and the plastic hinges

are formed at the end points (pi-士1.0) of the ele-

ment.

The numerical results glVen by也ese elements are

shown in Table 1, where the ratios of the calculated

collapse loads and linear deflections to the exact

solutions are presented. FCl, the standard fom in the

beam bending analysis, has the best accuracy for

linear displacements, however, the convergence for

the collapse load is slow, because in FCl the plastic

hinges are not fomed exactly at the loaded point and

clamped ends. On the other hand, the convergence of

FC2 for the collapse load is extremely fast, because

the locations of the plastic hinges formed are texactt

in this element, while the accuracy for linear displace一

meれts are disturbed by the movement of integration

points. (FCl+FC2) in Table 1 means the combina-

tion of FCl and FC2, in which the elements contaning

loaded or clamped nodes, at which plastic hinges are

to be fomed, are FC2　and others are FCl. This

modeling has higher accllraCy for linear solutions

than FC2. Therefore it can be said that (FCl十FC2) is

the most efficient and recommended modeling.

3. 2　Linear analysis of a cantilever cylinder

The similar numerical studies have been conducted

for the axisymmetric linear analysis of a cantilever

circular cylinder,也e free edge of which is subjected

Table 1 Convergence of beam bending elements with a

cubic polynomial

Number FCl (51=±0 57735) FC2(El=±1/3)　FCl+FC2

of　　(p,= ±0.57735)　(p.= ±1.0)

Elements Pmax Ull｡　Pmaj'　UH｡　Pmax U.1n

0 o o o 0 0 O　0　0　01　1　1　｢⊥　l 1 1 1 l　12　00　4　8　2　6　4　6　9.43　6　6　1　9　7　6　5　4　47　2　1　1　0　nU 0 0 0 01 1 1 1 1 1 1 l　｢⊥　11　2　3　4-5　6　7　8　9　0

1
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Table 2　Convergence of axisymmetric shell elements

Number FCI  FC2   FC3   REI  RE2 RE3

Elements (exact) (Gau缶1an) (hape- (El=iO･57735) (石=±2/3)(6=tl/3)

of

zoidal)仏= ±0,57735) (Ja=±1/2) (I)=±1 0)

1.100　0.733

1.022　0921

1.005　0.980

1.002　0.991

1.001 0.995

to a ring load in the radial direction. For也is analysis,

the circumferential membrane stiffness has to be

added to the beam stiffness described in Section 2.

Two approaches to do this have been tested. In the

first approach the circumferential membrane strain

(8--a/R) is estimated, using latera一 deflection

expressed by a cubic polynomial, while in the second

approach, the displacement field given by rigid bar

elements (refer to the lower figure in Fig. 2) is used

to calculate the membrane strain.

FCl, FC2 and FC3 in Table 2 belong to the first,

conventional approach. The bending as well as the

membrace stiffness are estimated exactly in FCl. In

FC2 and FC3, Gaussian and trapezoidal numerical

integration schemes are used, respectively, with two

integration points. On the other hand, REl, RE2 and

RE3 in Table 2 are derived by the second approach.

The locations of numerical integration points and

connection springs are notedinthe table. In all cases

the five･sixth part of the cylinder fromthe clamped

end is subdivided unequally using four elements and

也e rest is subdivided unifomly, as conducted in Ref.

5).

From the results for the FC family, it is seen that

the trapezoidal mle, which was used in the pioneerlng

work of Grafton and Strome5), gives poor results in

comparison with the other two solutions.

Among the RE family, REl, in which Gaussian

points are adopted as the comection points, is the

most accurate. RE2, which is almost equivalent to the

variational difference modelinggiven by Bushnel16)

gives a little less accurate results than REl, RE3, in

which plastic hinge circles can occur at ends of the

element, gives poor solutions for elastic behaviors,

however, this element can be expected useful in the

plastic collapse analysis, like FC2 in也e beam bend-

It should be mentioned that the cubic finite element

with the variational location technique for numerical

integration points includes the RBSM (REl～RE3)

and the variational difference model (RE2) in itself

and it also offers the easiest way for the development

of the RBSM and the variational difference pro-

grams, as previously pointed out for linear beam and

axisymetric shell elementsl).

4. Conclllding Remarks

ln this t)rief note, the cubic finite element for beams

and axisymmetric shells has been physically ex-

plained through the comparison of its strain energy

approximation with that of the rigid bars･spring

element, and the relation between the locations of

numerical integration points and those of comection

springs (or plastic hinges) has been derived, which

ensures the equivalence between these two discrete

elements. The obtained relation is useful, not only in

the development of the unified computer code for the

FEM, the RBSM and the variational difference

method, but also in the plastic collapse analysis of

framed structures and axisymmetric shells, especially

in the case when coarse mesh is required to reduce the

computing cost.

(Manuscript received, November 7, 1989)
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