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1. Introduction

In the present study, the beam bending finite ele-
ment using a cubic polynomial as a shape function,
which is the most popular element in the bending
problem, is physically explained, as previously con-
ducted by the author for the linear Timoshenko beam
element?.

In Ref. 1), the strain energy approximation of the
linear Timoshenko beam element®, which is based on
the reduced integration technique (one-point qua-
drature in this case), was compared with that for the
beam bending element including the shear effect in
the Rigid Bodies-Spring Models® (abbreviated as the
RBSM hereafter), and it was shown that these two
elements are equivalent to each other when

m=—& or &=—p (1)
where &, is the coordinate of the integration point in
the finite element and p, indicates the location of a
connecting point between rigid bars in the RBSM, as
shown in Fig. 1. This comparison also suggests that
the linear Timoshenko beam element is suitable, as
well as the RBSM, to the plastic collapse analysis
using the concept of plastic hinges and that the loca-
tion of the occurence of a plastic hinge can be
controlled by the movement of the numerical integra-
tion point. This variable location technique for
numerical integration points can be conveniently used
in the finite element collapse analysis of framed
structures, as conducted in Ref. 4).

In the present report, the similar consideration is
carried out for the cubic beam bending element,
which can be expected useful in the collapse analysis
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of framed structures using this element. Numerical
studies are carried out for the linear problem of
axisymmetric shells as well as the plastic collapse
problem of beams.
2 . Physical Interpretation of the Cubic Beam
Element
2.1 Strain energy for the cubic finite element
In the most frequently used beam bending finite
element, the lateral deflection #(z) is assumed as
follows, using a cubic polynomial:
1(z) = Hyguy - Hyo L6, -+ Hyyu,+ H,, L6,
where
Hy=(1/8) (4 —6&+28°) (2)
Hy,=(1/8)(1—&—&2+¢&9%
Hy=(1/8)(4 +6£—2&°%
Hy=1/8)(—1—-&+&+&%
Ineq. (2), (m, 6, u,, &) are nodal displacements
shown in Fig. 2. Z is the axial coordinate of a beam,
and & is the nondimensional axial coordinate for each
element, which has the value in the following range:
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Fig. 1 Linear Timoshenko beam element and its physical
equivalent
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Fig. 2 Cubic beam element and its physical equivalent

—1=£=1 (3)

The second-order derivative of the lateral deflec-
tion is calculated as follows:

d*u/da?= (6&/L)w+{(38—1)/L}6,
—(6&/LDu,+{(3&+1)/L}6, (4)
which gives the curvature change during the deforma-
tion of the beam.

The strain energy stored in this element can be
obtained as follows, by using the two-point numerical
integration scheme:

Vere= (EIL/4){[d%u/ dz*(£)]*
+{du/dz2(&) 1%} (5)
where the two numerical integration points are locat-
ed at &, and &, respectively. EI and L in this equa-
tion are the bending rigidity and the length of the
beam element, respectively.
2.2 Strain energy for the RBSM

In order to obtain the physical interpretation of the
cubic beam element, we consider the RBSM as shown
in Fig. 2, which is composed of three rigid bars
connected with two rotational springs. Writing the
non-dimensional coordinates of the connection points
by p1 and p ., the curvature change at p, is assumed as
follows in the RBSM:

=G+ Ci1 6+ Gtz + Ciafe
where
Co=—8/{[2+(m+p2)](po—p) L?} (6)
Co=—4/(1+p/{[2+(mt+p)](p—p) L}
C.= 8/{[2+(m+p2)](pa—p)L?
Co=—4(1=p)/{[2+(n+p)](p—p) L}
Egs. (6) give the ratio of the relative rotational
angle between adjacent rigid bars to the distance
between the node 1 and the center of the middle rigid

bar. Similarly, the curvature change at p. is given by
the following equations:
1= C oty + C 2,0+ C 05+ C 536,
where
Cxn= 8/{[2—(n+p)](p.—p)L?% (7)
Ca= 4(1+p)/{[2—(p+p2)]lp:—p)L}
C=—8/{[2—(p+p)](p.—p) L?}
Cu= 4(1—p)/{[2-(+p)l(p—p)L}
In the RBSM theory, the strain energy stored in the
rotational springs is approximated as follows:
Vassu= (EIL/4) { (36,) 2+ (32) 2} (8)
2.3 Equivalence between the cubic finite element
and the RBSM
The equivalence between the cubic finite element
and the rigid bars-spring mode! requires

Vere= Vpsu (9)
which is satisfied by

d*u/dz? (&) =mn (10a)
and

d*u/dz? (&) =1, . (10b)

Eq. (10a) holds when the following conditions are

satisfied:

Co=6&/L?

C.=B&—-1)/L (11)

C.=—6&/L?

Cs=03B&+1)/L

It is noted that the first equation in egs. (11) is the

same as the third equation, because C, is equal to

—C,, as seen from eqs. (6).

The following three variables are defined here for
the convenience:
Ri={(p2)?—(p)2}/4
R,=(p;—p1)/2 (12)
R;=p,

Using these variables, eqs. (11) can be rewritten as
&R 3SR+ 1=0
B&E—1)R+B&—1)R+R+1=0 (13)
B&E+1)R+B&E+1)R—R+1=0

It is clear that egs. (13) can be replaced with the

following set of equations:

36 R+3ER+F1=0
R+R—R;=0 (14)

Eqgs. (12) give the following relation between R; and

(R, Ry):

Ry;=(R\/R,) +R, (15)

Substituting eq. (15) into the second equation in egs.
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m % &
(14) , the following set of equations for R, and R, can
finally be obtained:

&R T35 R+1=0 (16a)

R—R/R=0 (16b)
Egs. (16) give the following two sets of solutions:

R=0 and R,=-1/3& (17a)
or

R=-1-1/3& and R,=1 (17b)

As for the values of p, and p,, two equations in (17b)
are inconsistent with each other. Therefore egs. (17a)
give required solutions for p, and p,, which are

m=1/3& and p,=—1/3& (18)
From egs. (10b), the following solutions for p; and p.
can be similarly obtained:

m=—1/3% and p.=1/3& (19)
It can be seen that the following relation between &
and & must hold in order to have the equivalence
between the finite element and the RBSM:

E=—& (20)
It can also be said that & and & must have the
following ranges:

—1=£=<1/3 and 1/32&=1 (21)
It is interesting to note that when (&, &) are located
on the Gaussian integration points, (p,, p,) are locat-
ed on the same points, that is,

L=p=—1/v3 and &=p,=1/v3 (22)

3. Numerical Studies
3.1 Plastic collapse of a clamped beam
As mentioned in the introductory remarks, the
relation between (&, &) and (s, p») can be conve-
niently used in the plastic collapse analysis of framed
structures. The plastic collapse of a beam with both
ends clamped and subjected to a centrally concen-
trated lateral loading is studied as a numerical exam-
ple to show the validity of the variable location
technique for numerical integration points. In the
analysis, the concept of plastic hinges is introduced by
assuming zero bending rigidity at the integration
point where the value of bending moment reaches a
fully-plastic value. This treatment is equivalent to the
assumption of zero spring constant at the correspond-
ing connection point in the RBSM.
In the present numerical study, the following two

elements with different locations of integration points
are used:

FClL &=+1/V/3 (p=%1/V3)
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FC2: &==+1/3 (p:==£1.0)
In FC1, the integration points are exactly located at
Gaussian integration points, and the plastic hinges are
formed at the same points. In FC2, the integration
points are located at &= 11/3, and the plastic hinges
are formed at the end points (p;==+1.0) of the ele-
ment.

The numerical results given by these elements are
shown in Table 1, where the ratios of the calculated
collapse loads and linear deflections to the exact
solutions are presented. FC1, the standard form in the
beam bending analysis, has the best accuracy for
linear displacements, however, the convergence for
the collapse load is slow, because in FC1 the plastic
hinges are not formed exactly at the loaded point and
clamped ends. On the other hand, the convergence of
FC2 for the collapse load is extremely fast, because
the locations of the plastic hinges formed are ‘exact’
in this element, while the accuracy for linear displace-
ments are disturbed by the movement of integration
points. (FC1+FC2) in Table 1 means the combina-
tion of FC1 and FC2, in which the elements contaning
loaded or clamped nodes, at which plastic hinges are
to be formed, are FC2 and others are FCl. This
modeling has higher accuracy for linear solutions
than FC2. Therefore it can be said that (FC1+FC2) is
the most efficient and recommended modeling.

3.2 Linear analysis of a cantilever cylinder

The similar numerical studies have been conducted
for the axisymmetric linear analysis of a cantilever
circular cylinder, the free edge of which is subjected

Table 1 Convergence of beam bending elements with a
cubic polynomial

Number FC1(&=%0.57735) FC2(&==1/3)
of (m==0.57735) (=
Elements  Prax Ui Prex Utia Prax Ulin

FC1+FC2

1 1.732  1.000 1.000 3.000 — —
2 1.268 1.000 1.000 1.500 - =
3 1.164 1.000 1.000 1.222 1.000 1.148
4 1.118 1.000 1.000 1.125- 1.000 1.062
5 1.092 1.000 1.000 1.080 1.000 1.032
6 1.076  1.000 1.000 1.056 1.000 1.019
7 1.064 1.000 1.000 1.041 1.000 1.012
8 1.056 -+ 1.000 1.000 1.031 1.000 1.008
9 1.049 1.000 1.000 1.025 1.000 1.005
10 1.044 1.000 1.000 1.020 1.000 1.004
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Table 2 Convergence of axisymmetric shell elements

Number FCl  FC2 FC3 RE1l RE2 RE3
0 (exact) (Gaussan) {trape— (5 =+0.57735) (5=+2/3)(5=%1/3)
Elements zoidal) (oy=£0.57735) (a==1/2{p=21.0)

9 0.995 0.995 0.700 1.027  1.100 0.733
14 1.000 1.000 0.896 1.007  1.022 0.921
24 1.000 1.000 0.971 1.002  1.005 0.980
34 1.000 1.000 0.987 1,000 1.002 0.991
44 1.000 1.000 0.992 1.001  1.001 0.995

to a ring load in the radial direction. For this analysis,
the circumferential membrane stiffness has to be
added to the beam stiffness described in Section 2.
Two approaches to do this have been tested. In the
first approach the circumferential membrane strain
(e=—u/R) is estimated, using lateral deflection
expressed by a cubic polynomial, while in the second
approach, the displacement field given by rigid bar
elements (refer to the lower figure in Fig. 2) is used
to calculate the membrane strain.

FC1, FC2 and FC3 in Table 2 belong to the first,
conventional approach. The bending as well as the
membrace stiffness are estimated exactly in FCl. In
FC2 and FC3, Gaussian and trapezoidal numerical
integration schemes are used, respectively, with two
integration points. On the other hand, RE1, RE2 and
RE3 in Table 2 are derived by the second approach.
The locations of numerical integration points and
connection springs are noted in the table. In all cases
the five-sixth part of the cylinder from the clamped
end is subdivided unequally using four elements and
the rest is subdivided uniformly, as conducted in Ref.
5).

From the results for the FC family, it is seen that
the trapezoidal rule, which was used in the pioneering
work of Grafton and Strome®, gives poor results in
comparison with the other two solutions.

Among the RE family, RE1, in which Gaussian
points are adopted as the connection points, is the
most accurate. RE2, which is almost equivalent to the
variational difference modeling given by Bushnell®,
gives a little less accurate results than RE1L. RE3, in
which plastic hinge circles can occur at ends of the
element, gives poor solutions for elastic behaviors,
however, this element can be expected useful in the
plastic collapse analysis, like FC2 in the beam bend-
ing problem.

It should be mentioned that the cubic finite element
with the variational location technique for numerical
integration points includes the RBSM (RE1~RE3)
and the variational difference model (RE2) in itself
and it also offers the easiest way for the development
of the RBSM and the variational difference pro-
grams, as previously pointed out for linear beam and
axisymmetric shell elements”.

4 . Concluding Remarks

In this brief note, the cubic finite element for beams
and axisymmetric shells has been physically ex-
plained through the comparison of its strain energy
approximation with that of the rigid bars-spring
element, and the relation between the locations of
numerical integration points and those of connection
springs (or plastic hinges) has been derived, which
ensures the equivalence between these two discrete
elements. The obtained relation is useful, not only in
the development of the unified computer code for the
FEM, the RBSM and the variational difference
method, but also in the plastic collapse analysis of
framed structures and axisymmetric shells, especially
in the case when coarse mesh is required to reduce the
computing cost.

(Manuscript received, November 7, 1989)
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