生產研究 43

差分法によるLESについて

On LES by Finite Difference Method

堀内 潔* Kiyosi HORIUTI

1. はじめに

ラージ・エディ・シミュレーション(以下,LES)¹¹ は、Deardorff²⁰により,最初に本格的に行われた.この 計算は、その後、Schumann³⁰, Moin and Kim⁴⁰, Horiuti⁵⁰ により精密化されてきたが、扱った流れ場は、いずれも、 平行平板間の発達した乱流場であった.この場では、チャ ンネル内の下流および横断方向に、流れは一様と考えら れるので、周期境界条件を課すことができる.このため、 この2方向には、Moin and Kim⁴⁰, Horiuti⁵⁰では、フー リエ展開による高精度のスペクトル法が用いられた. チャンネル流といった比較的単純な形状では、こうした 高精度のスペクトル法を用いることが可能であるが、一 般の複雑形状のLESに、スペクトル法を適用するのは、 まだまだ容易ではなく、通常の2次精度、あるいは、高々 4次精度の差分法が多く用いられている^{6,70}.

LESでは、すべてのスケールを含む生の変数fに、フィ ルター

 $\overline{f}(x_1,x_2,x_3)$

 $= \int_{D_{i=1}}^{3} G_{i}(x_{i} - x_{i}')f(x_{1}', x_{2}', x_{3}') dx_{1}' dx_{2}' dx_{3}' \quad (1)$ を施すことにより,格子スケール (GS) 成分 (\overline{f}),格子 以下のスケール (SGS) 成分に分離する.ここに,G(x)は,フィルター関数であり,通常,ガウシアン形もしく は,トップ・ハット形¹³⁾が用いられている.以下,SGS成 分f- \overline{f} をf'のように記述する.ナビエ・ストークス方程 式,および,連続の方程式に,このフィルターを施すこ とにより,速度 u_{i} , 圧力pのGS成分 \overline{u}_{i} , \overline{p} にたいする支配 方程式

$$\frac{\partial \,\overline{u}_i}{\partial t} + \frac{\partial}{\partial x_j} (\,\overline{u}_i \,\overline{u}_j) = -\frac{\partial}{\partial x_j} \,\tau_{ij} - \frac{\partial \,\overline{p}}{\partial x_i} + \frac{1}{Re} \Delta \,\overline{u}_i \qquad (2)$$

$$\frac{\partial x_i}{\partial x_i} = 0$$
 (3)

を得る.本速報では,チャンネル流れを考え, *i*=1(x) は下流方向, *i*=2(y) は壁に垂直な方向, *i*=3(z) は

*東京大学生産技術研究所 第1部

横断方向を表す.(2)式中の τ_{ij} は、レオナード項 ($L_{ij} = \overline{u_i u_j} - \overline{u_i u_j}$), クロス項($C_{ij} = \overline{u_i u_j' + u_i' u_j}$), お よび、SGSレイノルズ応力項($R_{ij} = \overline{u_i' u_j'}$)から成る.ガ ウシアン・フィルターと併用したスペクトル法では、 L_{ij} は直接計算できる.これは、(1)式のconvolutionの計算 が、フーリエ空間では、ガウシアン・フィルターのフー リエ変換(やはり、ガウシアン形)とfのフーリエ変換の 単純な積で書き表せるという事実による. R_{ij} の近似には 通常スマゴリンスキー・モデル¹⁻⁵⁾が用いられているが、 過去の計算^{4,5)}では、 C_{ij} は無視されてきた。

ところで、近年の電子計算機のめざましい発達は、ス ペクトル法による直接シミュレーション (DNS) を可能 にした.このデータ・ベースを用いたLESにおける乱流 モデリングの直接的な検証⁸⁻¹²⁾は、過去の近似の誤まり、 特に、*C_{ii}の*無視が、DNSとの相関、および、乱流強度と いった統計量の精度を、落とすことを明らかにした.*C_{ij}* のモデルとしては、Bardina⁹によるモデルがある.これ は、

$$C_{ij} \sim \overline{\overline{u}}_i (\overline{u}_j - \overline{\overline{u}}_j) + (\overline{u}_i - \overline{\overline{u}}_i) \overline{\overline{u}}_j$$
(4)

$$R_{ij} \sim (\overline{u}_i - \overline{\overline{u}}_j) (\overline{u}_j - \overline{\overline{u}}_j) \tag{5}$$

$$C_{ii} + R_{ii} \sim \overline{u}_i \overline{u}_i - \overline{\overline{u}}_i \overline{\overline{u}}_i$$
(6)

のように近似するが、ガウシアン・フィルターを、スペ クトル法と併用した場合には、前述のように、直接計算 することが可能である.これにたいし、一般の2次精度 の差分法では、打ち切り誤差がL_{ij}に対応し^{13,14)}、陰的に L_{ij}の近似を含み、C_{ij}を考慮していない.したがって、差 分法におけるC_{ij}のモデルの導入は、より精度の高いLES を行うためには、必要なことと考えられる.本速報は、 Bardinaモデルの差分法によるLESへの導入を論じるも のである。

2. レイノルズ応力の非等方表現とBardinaモデル

本節では、まず、チャンネル流のDNSのデータ・ベー スを用いたLES乱流モデルの検証を行う。データ・ベー

研 究 谏

スの計算には、フーリエ・チェビシェフ多項式展開を用 い,格子点数は, x, y, z方向におのおの, 128, 129, 128 とした。このデータに、x、z2方向には、ガウシアン・ フィルターを、y方向には、トップ・ハット・フィルター を施すことにより、GS成分、および、SGS成分に分離し た.この際、フィルターの特性長さは、x、z方向には、 DNSデータの格子幅の4倍、y方向には、2倍とした。こ のデータを用いて、 L_{ii} 、 C_{ii} 、 R_{ii} の各項の厳密値とモデル 値を算出し、その相関係数等により、モデルの忠実度を 検討した.この結果、まず、Bardinaモデルは、 C_{ij} を非 常に良く近似することがわかった¹²⁾. 図1は, $L_{12} > C_{12}^{B}$ と R_{12}^{B} (おのおのBardinaモデルによる C_{12}, R_{12} のモデル 値), R_{12}^{s} (スマゴリンスキー・モデルによる R_{12} のモデル 値)等との相関係数 (C.C.),および,rms値の比 (R.R.) を示す.この図より、 C_{12}^{B} と L_{12} は、強い負の相関を持 ち,rms値も非常に近いことがわかり,ほとんど,打ち消 し合っていることがわかる。テイラー展開を用いること により、 $L_{ij} > C_{ij}$ は次のように近似できる。

$$L_{ij} \sim \frac{\Delta^2}{24} \overline{u}_i \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_k} \overline{u}_j + \frac{\Delta^2}{24} \overline{u}_j \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_k} \overline{u}_i + \frac{\Delta^2}{12} \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_k} \overline{u}_i + 0 \quad (\Delta^4)$$
(7)

$$C_{ij}^{\ B} \sim -\frac{\Delta^2}{24} \overline{u}_i \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_k} \overline{u}_j - \frac{\Delta^2}{24} \overline{u}_j \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_k} \overline{u}_i \qquad (8)$$

ここに、△は格子間隔を示し、おのおのの展開の最初の 2項は、同じ形で反対の符号をもっている。これが先述 の強い負の相関の原因であるが、注意すべきは、両者を 足し合わせたとき、ガリレイ不変性 (G.I.)¹⁵⁾を破る項が 消去される点である. さらに,残りの項は,いわゆるレ イノルズ応力の非等方表現の一部に相当する. この項は, 図1からもわかるように、SGSレイノルズ応力の大きさ と比べ無視できない大きさをもっている. さらに, これ らは、 Δ^2 のオーダーの項であり、スマゴリンスキー・モ デルによる項と同じオーダーであるので、これらの項を

 $\boxtimes 1 \quad C_{12}^{B} \geq L_{12} \mathcal{O} C.C. (\longrightarrow), R.R. (\longrightarrow L_{12} + C_{12}^{B} \geq L_{12}$ \mathcal{O} R.R (--+--), $R_{12}^{B} + R_{12}^{S} \geq L_{12} + C_{12}^{B} \mathcal{O}$ R.R. (- Δ -)

無視する積極的な理由はない。

3. Bardinaモデルの差分法への導入

Bardinaモデルの差分法への導入には、いくつかの方 法が考えられるが、一つの方法は、(7)、(8)式のテイ ラー展開を直接近似する方法である。しかし、この方法 では、たとえば、壁での境界条件を考えると、整合性が 完全にとれるとは言えない。むしろ、 L_{ii} および C_{ii} ^Bは、 フラックス形式で書かれることに注目し、この性質を利 用したほうが良い. この場合, たとえば, 壁では, $\overline{u}_i = \overline{\overline{u}}_i$ =0となるので、境界条件の与え方も、このほうが容易 である.この方法を採用するには、 \overline{u}_i から $\overline{\overline{u}}_i$ を適当に定 義しなくてはならない。ところで、 2次の中心差分が、 その差分をとる区間で、トップ・ハット・フィルターを 施すことに相当するのはよく知られている^{13,14)}.した がって、ここでも、 $\overline{\overline{u}}_i(x)$ を、 $\overline{u}_i(x-\Delta x)$ 、 $\overline{u}_i(x)$ 、 $\overline{u}_i(x+$ Δx)を使って適切に定義することにした. その結果, G.I. の観点から、シンプソン則が最も適切であることがわ かった。したがって、 L_{ii} , C_{ii} を近似するスキームは、 次のようになる:

$$\frac{\partial}{\partial x_{j}} L_{ij} \sim L_{x} L_{z} \frac{\delta^{(4)}}{\delta x^{(4)}} (\bar{u}_{i} \bar{u}_{j}) - \frac{\delta^{(4)}}{\delta x^{(4)}} (\bar{u}_{i} \bar{u}_{j}), \qquad (9)$$

$$\frac{\partial}{\partial x_j} C_{ij} \sim \frac{\delta^{(4)}}{\delta x^{(4)}} (\,\overline{u}_i \,\overline{u}_j - \overline{\overline{u}}_i \,\overline{\overline{u}}_j), \tag{10}$$

$$\overline{\overline{u}}_i = L_x L_z \overline{u}_i, \tag{11}$$

$$L_{x} \overline{u}_{i,k} = (\overline{u}_{i,k-1} + 4 \ \overline{u}_{i,k} + \overline{u}_{i,k+1})/6$$
(12)

ここに、 $\delta^{(4)}(\bar{u}_i\bar{u}_i)/\delta x^{(4)}$ は、運動量、および、エネルギー を保存する 4 次精度のArakawa form²⁰⁾を示し、 *ū*_{i,k}は、 x方向にk番目の格子点での第i成分の速度を示す。この スキームの長所は、前述のように、たとえば、壁で は、 $\overline{u}_i = 0$ という自然境界条件が使えること、および、 計算機プログラムへの導入が容易な点にある. ここでは, 連続の式、および、圧力勾配の項も4次精度の中心差分 を用いて近似している点に留意されたい。ただし、渦粘 性係数を含む残りの項は、以下の計算例では、2次精度 としている.このスキームは、 Δ^2 のオーダーまで、テイ ラー展開(7),(8)と全く同じ打ち切り誤差を与える。 ほかにも、10種類以上におよぶスキームを試みたが、こ のスキームが最良の結果を与えたので、採用した。とこ ろで、これらのスキームの優劣は、打ち切り誤差の、GS エネルギー・バランス中での振る舞いで,評価できる. それは、打ち切り誤差が、同バランス中では、たとえば、 <(∂ ū/∂x)³>といったderivative skewnessで表現でき, これらは、せん断乱流中では、零以外の正負の値をとる からである^{13,14)}. 種々のderivative skewnessのうち,特 に、 $-\langle \partial \bar{u}/x \cdot \partial \bar{v}/\partial x \cdot \partial \bar{u}/\partial y \rangle$ の項が最も重要な貢献を

していることが明らかになった²¹⁾. この項は, GSエネル ギーの生成項(-< \overline{u} " \overline{v} > $\partial \overline{u}$ / ∂y)に近い項であり,特に, 壁際のsublayerからbuffer layerにかけては,正の値をと り,エネルギーの生成に貢献している(ここに, \overline{u} "は, \overline{u} のx-z面内平均からのずれを示す). これらのlayerで は,いわゆる縦渦の発生に伴う乱流エネルギーの生成が 激しく起きることが良く知られている. 一方,一般に, derivative skewnessは,渦の伸長に関係していること は、良く知られており^{13,14)},こうした秩序構造と,関連し ている項と考えられる. 他のスキームの失敗は,derivative skewnessによるGSエネルギーの生成,あるいは,散 逸が大きすぎることによる.

不等間隔メッシュへの本スキームの適用には、シンプ ソン則による積分を、ラグランジュ補間による積分に置 きかえる等の補正が必要である.同時に、Bardinaモデル 自体にも補正が必要である.

4.計算結果

スキーム(9)~(12)を用いた結果を、他のスキームに よる結果と比較する。チャンネル幅と、壁面摩擦速度で 定義したレイノルズ数 (Re) は1280とし、格子点数は、 $64 \times 62 \times 64$ とした。基本的な数値計算法はHoriuti⁵⁾と同

図2は、GSエネルギーの壁近傍のy分布を示す.(a), (b)は、おのおの、下流、および壁に垂直な成分である。 (a),(b)のいずれにおいても、ケース1、2とケース 3、4との2つのグループに分けることができる。ケー ス1は、スペクトル法を用い、多大の計算時間を要する が、残念ながら、その結果は、ケース2にくらべ、必ず しも改善されているとは言えない。また、ケース3と4 にも、著しい相違は見いだされない。実験との比較から、 後者のグループ、すなわちBardinaモデルを導入したほ

1.00-1.00-0.50-0.00 25.0 50.0 75.0 100.0

1.50

○, ケース1;---, ケース2;-----

図2 壁近傍の乱流強度の分布 (a)下流方向成分 (b)垂直方向成分 ケース3; ----, ケース4; -----, 実験データ²²⁾

図3 GS乱流エネルギー下流方向成分のバランス (a)ケース3 (b)ケース4 <u>→</u>, レオナード項による散逸; →, Bardinaモデルによる生成; ----, 生成項; ---+--, 輸送項; ---×--, velocity-pressure gradient; ---◇--, 拡散項; -----, 散逸項

研 兖 速 報 เกมแบบกามแบบแบบกามเกมแบบกามแบบกามแบบกามแบบกามแบบกามแบบกามแบบกามเกมแบบกามเกมแบบกามเกมแบบกามเกมแบบกามเกม

図4 ダイナミック・テストの相関係数のy分布 ----, フィルターをかけたDNSデータとLESのケース 1におけるC.C.; ----, ケース3;-----, ケース4

うが、壁付近での立ち上がりがより良い、および、乱流 強度のピーク位置がより壁に近い等の点で, 改善されて いる.したがって、過去のケース1の欠点が解消されて いることがわかる。図3は、GS乱流エネルギーの下流方 向成分のバランスである。(a), (b)はおのおのケース 3、4からのものであるが、両者はほぼ同一であり、新 しいスキーム(9)~(12)は、レオナード項、および、Bardinaモデルを忠実に近似していることがわかる。ちなみ に、ケース4に要する計算時間は、ケース3の半分であ り、顕著な節約となっている。このエネルギー・バラン スで注目すべきは、レオナード項がエネルギーの散逸を しているのにたいし、Bardinaモデルによる項は、特に、 y+~10の近辺で,エネルギーの生成として機能しており, この領域ではエネルギーの"backscaffering"を行ってい る点である. この点は,前述のderivative skewnessと密 接に関連している。最後に、"厳密"解との相関を測る dynamicなテストによって、スキームの精度を検証す る12).図4は、無次元時間で0.225経過した時点での相関 係数のy分布で、ケース4は、ケース1より高い相関を保 持しているが,ケース3に比べると,やや低い相関となっ ている.これは、4次精度差分は、高波数成分にたいす る精度が、スペクトル法に比べると低いこと、および、 粘性項の計算に,2次精度を用いたことによると考えら れる.

5.まとめ

LESにおけるレオナード項とBardinaモデルの役割を 論じ、レオナード項のみの導入は、計算精度を落とすこ とを明らかにした。さらに、差分法によるLESへの、両 者の適切な導入を図る、新しいスキームを提案した。こ のスキームは、2次精度の打ち切り誤差まで正確に両項 を近似し、スペクトル法とガウシアン・フィルターを併 用した計算と、統計量のレベルでは、ほぼ、同じ精度が 出せ、大幅な計算時間の軽減が図れることを示した。不 等間隔メッシュへの適用については、紙面の関係で、別 の機会にゆずる. (1989年10月9日受理)

参考文献

- Reynolds, W.C., Ann. Rev. of Fluid Mech., 8, 183 (1976)
- 2) Deardorff, J.W., J. Fluid Mech., 41, 453 (1970)
- 3) Schumann, U., J. Comp. Phys., 18, 376 (1975)
- 4) Moin, P. and Kim, J., J. Fluid Mech., 118, 341 (1982)
- 5) Horiuti, K., J. Comp. Phys., 71, 343 (1987)
- 6)生産研究、乱流の数値シミュレーション(NST)特集
 号、その1~その5(1985~1989)
- IIS Ann. Report on Num. Simulations of turb. flows, No. 1~3 (1986~1988)
- 8) Clark, R.A. et al., J. Fluid Mech., 91, 1 (1979)
- 9) Bardina, J., Ph. D. dissertation, Stanford Univ. (1983)
- 10) Speziale, C.G. et al., Phys. Fluids, 31, 940 (1988)
- 11) Piomelli, U. et al., Phys. Fluids, 31, 1884 (1988)
- 12) Horiuti, K., Phys. Fluids, A 1, 462 (1989)
- 13) Leonard, A, Adv. Geophys., 18A, 237 (1974)
- 14) 堀内 潔, 生産研究, 第38巻, 第1号, 35 (1986)
- 15) Speziale, C.G., J. Fluid Mech., 175, 459 (1987)
- Leslie, D.C., "Developments in the theory of furbulence"., Clarendon Press, Oxford (1973)
- 17) Yoshizawa, A., Phys. Fluids, 27, 1377 (1984)
- 18) Speziale, C.G., J. Fluid Mech., 175, 459 (1987)
- 19) Nisizima, S. and Yoshizawa, A., AIAA J. 25, 414 (1987)
- 20) Arakawa, A., J. Comp. Phys., 1, 119 (1966)
- Horiuti, K., Proc. Int. Symp. Comp. Fluid. Dyn. Nagoya, Aug. 28-31, p. 233 (1989)
- 22) Kreplin, H. and Ecklemann, M., Phys. Fluid, 22, 1233 (1979)