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ABSTRACT

Physics-based vision is one field of the computer vision. By using physics-based vision
methods, we could accurately estimate the geometrical and optical properties of real
object from images. Physics-based vision is concerned with the physical relationship
between an imaging sensor and the external world. The physical phenomenon that
mediates this relationship is light. Consequently, two key components of physics-based
vision are reflection models and sensor models.

This thesis investigates these two key components, the reflection models and sensor
models. Specifically, for reflection models we proposed a practical method to estimate
the reflectance properties of outdoor diffuse object with the presence of inter-reflection.
For sensor models, we investigated the characteristics of spectral sensitivity and pro-
posed a robust method to estimate spectral sensitivity of digital cameras by using basis
functions.

To create a realistic model of a real world object by computer vision and graphics
techniques has attracted interest from a wide range of research fields and industries in
recent years. Reflectance properties of the object are necessary to simulate the accurate
appearance of an object. However, wrong reflectance parameters are estimated, when
inter-reflection exists. Inter-reflections are negligible for convex objects, while it is not
for concave objects. We addressed a method to estimate reflectance properties of an
outdoor diffuse object with the presence of inter-reflection. This problem is solved
by assuming that the object surface consists of hundreds of small facets. The inter-
reflection effect on one facet is calculated as the sum of incoming light energy from
all other facets. Experimental evaluation on both simulation and real outdoor object
shows the improvement achieved by the proposed method.

Spectral sensitivity of digital cameras plays an important role for many computer
vision applications, such as demosaicing, color correction and illuminant estimation
algorithms. Spectral sensitivity is also an essential factor for most color constancy
methods. However, previous work does not provide reliable estimation for spectral
sensitivity. We investigated the characteristics of spectral sensitivity by extracting the
basis functions of them by using SVD (Singular Value Decomposition); sensitivity of
different cameras have been measured, also collected from the literature. We compared
the extracted basis functions with another three different mathematical basis functions:
polynomial basis functions, Fourier basis functions and radial basis functions (RBF),
and obtained the optimum set. Experimental result shows the extracted basis functions
are reliable and adequate to estimate the spectral sensitivity for an arbitrary digital
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camera.
The main contributions of this thesis are that two key components of physics-based

vision are investigated, reflectance estimation with the presence of inter-reflection and
camera sensitivity recovery. It can be summarized by the two following points: First,
reflectance of an outdoor diffuse object with the presence of inter-reflection is accurately
estimated by assuming the object surface consists of hundreds of small facets, inter-
reflection effect on one facet is calculated as the incoming light energy from all the
other facets. Second, characteristics of spectral sensitivity are investigated, and basis
functions extracted from database are used for estimating the spectral sensitivity of an
arbitrary digital camera.
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Chapter 1

Introduction

1.1 Background
Physics-based vision has attracted much attention in the field of computer vision

since the concept has been addressed in the late 1980s. Much more accurate geo-
metrical and optical information of objects could be acquired by physics-based vision
methods. In physics-based vision, computer vision is modeled as process of physi-
cal phenomenon/optical phenomenon. By the definition of physics-based vision, it is
concerned with the physical relationship between an imaging equipment and the real
objects. Therefore, two key components of physics-based vision are reflection models
and sensor models. Reflection models are the interaction of light with material objects
through the physical process of reflection and transmission. Sensor models are the
formation of sensor pixel intensities from the interaction of reflected light with lens
optics and photo-optical electronics. These two key components are investigated and
two novel methods are proposed. Specifically, for reflectance models we proposed a
practical method for estimating reflectance of outdoor diffuse object with the presence
of inter-reflection, for sensor models we proposed a robust method for estimating the
spectral sensitivity of digital cameras by using basis functions.

Reflectance Estimation Computer vision and graphics techniques to create a realistic
model of a real world object have attracted interest from a wide range of research fields
and industries in recent years. To simulate the accurate appearance of an object, shape
and optical information are necessary. Acquiring shape information has been facilitated
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by the development of sensors and the progress of data processing algorithms, while
estimating surface reflectance properties remains a challenge, especially for outdoor
objects.

Several modeling methods with range sensors were proposed [6] [9]; however
those methods created surface textures by simply blending images taken from multiple
views. Meanwhile, physics-based reflectance estimation methods [10] [12], photomet-
ric stereo techniques [57] [58] [59], and image-based rendering techniques [14] have
been proposed to create more physically correct object appearances. Physics-based
reflectance estimation is based on physical reflection models [60] and estimates the pa-
rameters of the models by fitting the data to them. The methods have achieved highly
accurate re-renderings, yet they need accurately calibrated illuminants and cameras.
Photometric stereo is a method that captures images under three different lighting con-
ditions and estimates the surface reflectance and the surface normal of the shape. It
assumes a known distant point light source, and therefore it is unsuitable for outdoor
conditions. Image-based rendering is a technique that samples appearances under a
number of different lighting conditions, and re-renders the appearance by interpolating
the images. Creating such a number of different illumination conditions is impractical
for an outdoor environment, and so it is difficult to be applied to outdoor objects.

Debevec et al.[61] proposed a method to obtain the reflectance function with the
position of light sources known. To extend this idea to outdoor scenes, Yu and Ma-
lik [30] measured the illumination of the scene by acquiring photographs of the sky
and the surrounding environments. Most recently, Debevec [31] introduced a novel
lighting measurement apparatus than can record the high dynamic range of both, sun-
lit and cloudy environments, using a set of specular and diffuse calibrated spheres.
With the captured illumination, proposed method estimates spatially varying surface
reflectance. Weiss [17] proposed a method to decompose an image into a reflectance
image and an illumination image by assuming the change caused by reflectance re-
mains constant in the image sequence, while the change caused by illumination varies
depending on time. Therefore, by taking the median of derivative filter outputs of in-
put images, the reflectance image can be estimated. Matsushita et al. [29] extended the
idea so that it can handle non-Lambertian surfaces, and proposed an illumination nor-
malization scheme utilizing the illumination eigen space and a shadow interpolation
method based on shadow hulls.
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Camera Sensitivity Recovery Spectral sensitivity plays an important role for many
computer vision applications, such as demosaicing [18], color correction [19] and il-
lumination estimation algorithms [20] [21]. CCD (Charge Coupled Device) sensors
usually provide only single response at each pixel, demosaicing is used to recover re-
sponse of R, G and B channels based on the spectral sensitivity for each pixel. Color
correction is a method that correct the obtained image to compensate for the effects of
the recording illumination. Illumination estimation is used for recovering the illumina-
tion by acquiring different images under different illumination environments. Spectral
sensitivity is also an essential characteristic for color constancy methods. Captured
appearance of object is different according to different illumination conditions. Color
constancy method is used to remove the influence of light source and retrieve object
surface color under standard illumination.

In computer vision and graphics research fields, a few methods that estimate the
spectral sensitivity have been proposed. Vora et al. [32] measured the spectral sen-
sitivity of two digital cameras: Kodak DCS-200 and Kodak DCS-420. In this paper,
the target is illuminated by the monochrometer which could produce narrow-band
illumination. While changing the wavelength, the images and spectra are simultane-
ously captured by camera and spectrometer, respectively. The spectral sensitivity is
calculated by dividing the image intensity by the measured spectra. Hardeberg et al.
proposed a method that estimates spectral sensitivity by inverting the system of linear
equations obtained by image intensities and known spectral reflectance [24], while it
has not been applied to real data because of the instability.

All these proposed methods of spectral sensitivity estimation require the image
intensity as input. The image intensity is not linearly related to scene radiance because
of the gamma function. In order to obtain the precise measurement of scene radiance
to estimate the spectral sensitivity, the gamma function (also called as camera response
function) must be estimated first. While less attention has been paid for estimating
the spectral sensitivity, much attention has been paid for camera response estimation.
Mann and Picard [55] proposed a method that assumes the response functions can be
approximated by gamma correction functions. Debevec and Malik [56] estimate re-
sponse functions with a non-parametric representation using a smoothness constraint.
Takamatsu [22] proposed a method for estimating camera response functions by max-
imizing the image similarity measurement defined as the integral of the probabilistic
intensity similarity.
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1.1.1 Reflectance Estimation

With the acquisition of shape information of diffuse object, we need to estimate
the absolute surface reflectance for recovering the appearance of the object under a
novel illumination condition. Reflectance is the ratio of reflected light to the incident
electromagnetic radiation, i.e., how much light a material will reflect regarding the
incident light. This thesis defines the reflectance on each RGB channel; the maximum
reflectance (no absorption) is (1.0, 1.0, 1.0) for (R, G, B). Figure 1.1 shows an example of
surface reflectance. We can clearly see that the surface reflectance is the most essential
component in terms of the object’s surface property. However, we have to take the
shape information into account.

For directly estimating surface reflectance properties, three components are nec-
essary: the shape of a target object, the actual appearance of the object, and the illu-
mination environment. Shape information and actual appearance can be obtained by
range and image sensors, respectively. Two methods of recovering surface reflectance
of outdoor objects measured the above three components. Yu et al. [30] the first who
handled outdoor objects, took photographs of the sun and sky to measure their radi-
ance distribution. As they used a normal camera, they included landmarks in each
photograph so that they could use them to recover the camera pose later. Debevec et al.
[31], the second and the latest to solve the outdoor problem, used a specific apparatus
to measure the outside illumination. They used a mirrored sphere to image the sky
and clouds, a shiny black sphere to indicate the position of the sun, and a diffuse grey
sphere to indirectly measure the intensity of the sun. These methods need elaborate
procedures and do not take the inter-reflection into account. Consequently, these meth-
ods could not be applied for outdoor objects which have concave parts. Because the
inter-reflection effect is not negligible for the concave objects.

For concave objects or objects with concave parts, a point of object surface receives
light from both light source and other points on the surface. The latter (reflection
between points on object surface) is called as inter-reflection effect . Therefore, light
rays that we observe for concave object is the result of reflections repeated between
surface points infinitely. It is difficult to trace back those recursive reflections from the
observation.
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(a) Appearance. (b) Shape and illumination.

(c) Surface reflectance.

Figure 1.1: The object’s appearance is determined by its shape, surrounding illumina-
tion, and surface reflectance.
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1.1.2 Camera Sensitivity Recovery

Spectral sensitivity of digital cameras is non-trivial information for many computer
visions applications. Different cameras usually produce differently-colored images
for the same scene, regardless of how well adjusted the white balance is, due to the
difference in the spectral sensitivity.

(a) Canon EOS Kiss. (b) Nikon D1.

Figure 1.2: Images captured with same camera parameters under same illumination
condition: (a) Image captured by Kiss Digital X. (b) Image captured by Nikon D1.

Spectral sensitivity is the response of a sensor to monochromatic light as a func-
tions of wavelength, also known as spectral response. This paper defines the spectral
sensitivity on each RGB channel with the wavelength varying from 380 nanometers to
780 nanometers. The spectral sensitivity is normalized among three channels, therefore
the maximum value is 1.0. Figure 1.2 shows the difference of two images which are
captured by different cameras with same parameters (exposure time, F number, ISO)
under same illumination environment. However, we can see that the appearance of this
object looks so different because of the difference in spectral sensitivity characteristics
of digital cameras.
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Spectral sensitivity can be measured by dividing the image intensity by the cor-
responding spectra with two special equipments, spectrometer and monochrometer.
Vora et al. [32] measured the spectral sensitivity of two digital cameras: Kodak DCS-
200 and Kodak DCS-420 in this way. Image intensity is not linearly related to scene
radiance recorded at the camera sensor, it must be linearized first in order to calculate
the spectral sensitivity. In this paper, the camera response function is determined by
stimulating the camera with varying intensities of a single light source obtained with
ND filters (neutral density filters). The image intensity of camera Kodak DCS-200 was
verified to be linear over most of the visible spectra range, a linearization curve of cam-
era Kodak DCS-420 was also developed. The spectral sensitivity for these cameras are
determined by stimulating them with very narrow-band illumination produced by a
monochrometer, while simultaneously capturing the images and spectra by these cam-
eras and the spectrometer, respectively. This measurement is conceptually very simple
and can be very accurate. However, the equipment required to produce sufficiently
intense narrow-band illumination at uniformly spaced wavelengths is expensive and
not readily available.

1.2 Thesis Overview
Chapter 2 describes the proposed method for estimating diffuse reflectance param-

eters of an outdoor object with the presence of inter-reflection. After briefly reviewing
the related work, the radiometric definitions and the calculation of radiance and irra-
diance value are introduced. Then, the inter-reflection model based on [3] is explained.
The inter-reflection problem is solved by making an assumption that the object surface
consists of hundreds of small facets. The inter-reflection effect on one facet is calculated
as the sum of incoming light energy from all the other facets. The problem caused by
occlusion between two facets is also solved. The occlusion between two facets affects
the estimated reflectance so much that it makes the synthesized image appears very
dark. The chapter solves the occlusion problem by detecting the vector between two
facets intersects with another facet or not. If the intersection exists, the inter-reflection
between these two facets is not calculated. The reflectance of each facet is calculated
based on this inter-reflection model. Experimental evaluation on both simulation and
real outdoor objects shows the improvement achieved by the proposed method.

Chapter 3 proposes a method for estimating the spectral sensitivity of digital cam-
eras by using basis functions which are extracted from database by SVD (Singular Value
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Decomposition). Related work is introduced first, then the benefits of using basis func-
tions for sensitivity estimation are explained. In order to extract the basis functions,
we measured the spectral sensitivity of digital cameras and collected from literature
to create a database. The chapter verifies the accuracy of collected sensitivities by an-
alyzing the error between the measured RGB values and predicted values which are
calculated from spectra. The basis functions are extracted from the database by SVD
method. This chapter compares the extracted basis functions with another three dif-
ferent mathematical basis functions, the polynomial basis functions, the Fourier basis
functions and radial basis functions to obtain the optimum set of basis functions. The
evaluation result shows that the extracted basis functions are reliable and adequate for
estimating the spectral sensitivity of an arbitrary digital camera.

Chapter 4 concludes this dissertation by summarizing this thesis and contributions,
and discussing possible future research directions.



9

Chapter 2

Reflectance Estimation with the
Presence of Inter-reflection

Computer vision and graphics techniques need the accurate reflectance properties
to create a realistic three-dimensional model of a real world object. This chapter
proposes a practical method to estimate the surface reflectance parameters of outdoor
diffuse object with the presence of inter-reflection. The inter-reflection problem is
solved by making an assumption that the object surface consists of hundreds of small
facets. The inter-reflection effect on one facet is calculated as the sum of incoming light
energy from all the other facets. The problem caused by occlusion between two facets
is also solved. The occlusion between two facets affects the estimated reflectance so
much that it makes the synthesized image appear very dark. The chapter solves the
occlusion problem by detecting the vector between two facets intersects with another
facet or not. If the intersection exists, the inter-reflection between these two facets is
not calculated. Experimental evaluations on both simulation and real outdoor object
show the improvement achieved by the proposed method.

2.1 Introduction
To create a realistic model of a real world object by computer vision and graphics

techniques has attracted interest from a wide range of research fields and industries in
recent years. Shape and reflectance properties of the object are necessary to simulate
the accurate appearance of an object. As a result of significant advancement of range
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sensors and data processing algorithms, shape of an object becomes acquirable without
much difficulties [1] [2]. However, obtaining the reflectance properties of the object
remains a challenge, because the reflectance properties of a real object are usually very
complicated.

One reason of this complexity is the inter-reflection between object surfaces. Light
rays that we observe is the result of reflections repeated between surfaces infinitely. It
is difficult to trace back those recursive reflections from the observation, and therefore,
only few works that handle inter-reflections with regards to reflectance estimation have
been proposed.

This chapter proposes a practical method to estimate the reflectance parameters
of an outdoor diffuse object with the presence of inter-reflection which based on the
technique addressed by Nayar et al. [3]. Assuming that the object surface consists of
hundreds of small facets, the inter-reflection effect on one facet is calculated as the sum
of incoming light energy from all the other facets. Experimental evaluations on both
simulation and real outdoor object show the accuracy of proposed method.

2.1.1 Related Work

In the late 1990s, textures of an object were modeled by linearly combining multiple
reference textures [5] [6] [7] [8] [9]. In order to create more realistic and physically
correct model of an object, a lot of methods have been proposed in the last two decades,
such as physics-based reflectance parameter estimations [10] [11] [12], and image-based
renderings [13] [14].

The early work related to inter-reflection has been done by Nayar et al. [3]. They
estimated the shape and surface reflectance of a concave object, which has a lot of
inter-reflections inside. In this method, the object is assumed to have a uniform sur-
face reflectance. Another inverse-global-illumination method is proposed by Yu and
Debevec [4]. This method is applied for an indoor room, and it requires images from
different view points to cover the whole room. The light positions have to be known
in the method.

Sato and Ikeuchi [15] proposed a method to estimate reflectance properties by tak-
ing a number of images under varying illumination conditions. The method estimates
accurate reflectance of both diffuse and specular components. Nayar et al. [16] devel-
oped a technique to separate the direct and global components of a scene using high
frequency illumination. The direct component means the brightness of a scene whose
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radiance value is directly due to the light source, while the global component repre-
sents radiance value due to the other points in the scene. By projecting two complement
patterns to illuminate the objects, the direct and global components can be separated.
Those methods are only applicable for indoor objects.

Weiss [17] proposed a method to separate the illumination and reflectance of an
outdoor scene by using the derivate filter. The method requires a sequence of images
of a whole day, and does not take the inter-reflection into account.

2.1.2 Radiometric Definitions

Figure 2.1: Geometry used to define radiometric terms [3].

Definitions of radiometric terms which are used in the analysis of inter-reflection
are described as follows (detailed derivations of these terms are given by Nicodemus
et at. [41]). Figure 2.1 shows a surface element illuminated by a source light. The
irradiance E of the surface is defined as the incident flux density (W/m2):

E =
dΦi

dA
(2.1)
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where dΦi is the flux incident on the area dA of the surface facet. The radiance L of the
surface is defined as the flux emitted per unit foreshortened area per unit solid angle
(W/m2/sr). The surface radiance in the direction (θr, ϕr) is determined as

L =
d2Φr

dAcosθrdωr
(2.2)

where d2Φr is the flux radiated within the solid angle dωr. The Bidirectional Reflectance
Distribution Function (BRDF) of a surface is a measure of how bright the surface appears
when viewed from one direction while it is illuminated from another direction. The
BRDF is described as:

f =
L
E

(2.3)

2.2 Radiance and Irradiance Value of Object Surface

Figure 2.2: Calculation of radiance and irradiance value
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In general, when assuming the object surface is Lambertian and there is no inter-
reflection, the reflectance of an object can be derived from the bidirectional reflectance
distribution function f = L

E , where L and E are the radiance and irradiance values of
object surface, respectively.

Consider a facet located at the center of the sphere (as shown in Figure 2.2), then
the solid angle dω can be derived from the elevation θ and azimuth ϕ:

dω = sinθdθdϕ (2.4)

The energy received by the facet A from a particular direction, surrounded by an
infinitesimal solid angle dω, is described as:

L(λ, θ, ϕ) cosθ sinθdθdϕ (2.5)

where L(λ, θ, ϕ) is the incident radiance distribution of illumination.
The irradiance value of the facet A can be expressed as the integral of incident

energy over the hemisphere whose north pole is at the surface normal direction:

EA =

∫ π

−π

∫ π
2

0
L(λ, θ, ϕ) cosθ sinθdθdϕ (2.6)

In this chapter, we assume that the object surface is Lambertian surface, and there-
fore the reflected light is isotropic. Then, the radiance value of the facet A is expressed
as the multiplication of irradiance value E and reflectance SA:

IA =

∫ π

−π

∫ π
2

0
SAL(λ, θ, ϕ) cosθ sinθdθdϕ (2.7)

2.3 Inter-reflection Model
The inter-reflection effect especially for the concave object is not negligible. In

order to acquire the accurate reflectance properties for 3D object, we addressed an
inter-reflection model to calculate the inter-reflection effect. An assumption is made
that the object surface consists of hundreds of small facets as shown in Figure 2.3. The
inter-reflection effect on each facet is calculated as the sum of incoming light energy
from all the other facets.

When the surface of a concave object is illuminated, its facets receive light from
both light source and other facets, as shown in Figure 2.4. In Figure 2.4, the small facet
x receives light from both light source and another facet x′ on the surface. Therefore,
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Figure 2.3: Modeling the surface as a collection of facets, each with its own radiance
and reflectance values [3].

the radiance value at each surface facet has two components, one directly resulting
from the light source and the second due to illumination by other facets. The latter
component is also called as inter-reflection effect.

Radiance due to other facets The inter-reflection effect between two facets i and j is
strongly affected by whether these two facets can see each other or not. Two facets i
and j which are visible to each other is shown in Figure 2.5. The visibility V between
two facets i and j is determined by the following function:

Vi j =
n · (−r) + |n · (−r)|

2|n · (−r)| · n′ · r + |n′ · r|
2|n′ · r| ·Occ (2.8)

where n and n′ are unit surface normals of the ith and jth facets, r is the vector from jth
to ith facet, and Occ is the coefficient for occlusion between these two facets. If the ith
and jth facets are occluded by another facet, these two facets can not see each other.

The occlusion coefficient is important to calculate the visibility function. A typical
situation when occlusion happens is shown in Figure 2.6. In Figure 2.6, the ith facet lies
on the horizontal top plane, while the jth facet lies on the vertical plane. Since there
is another horizontal plane between them, they cannot see each other and there is no
inter-reflection effect between ith and jth facets. The occlusion coefficient is calculated
as follows: for the vector between the ith and jth facets, we detect whether this vector
intersects with another facet or not. If the vector intersects with at least one of the other
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Figure 2.4: A concave surface in three-dimensional space [3].

di

dj

di

dj

Figure 2.5: Two surface elements that are visible to one another.
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facets, the occlusion coefficient is equal to zero. If not, there is no occlusion between
the ith and jth facets and the occlusion coefficient is set to one.

The visibility function Vi j in Equation (2.8) can only have two values, 1 or 0. If it is
equal to 1, the ith and jth facets see each other and the inter-reflection between these
two facets will be calculated. If not, no inter-reflection exists between the facets.

Let Ei j be the irradiance value of ith facet due to the radiance value of the jth facet
L j. Ei j can be derived from the definitions of radiance and irradiance and geometry
shown in Figure (2.5):

Ei j = [
[n · (−r)][n′ · r]Vi j

[r · r]2 ]L jSi (2.9)

where Si is the area of the ith facet, Vi j is the visibility function between the ith and jth
facets, and L j is the radiance value of the jth facet.

The radiance value Li j of the ith facet can be determined from its irradiance value
Ei j as:

Li j =
ρi

π
Ei j (2.10)

where ρi is the reflectance of the ith facet. The reflectance is assumed to be invariable
among a facet, since a facet size is sufficiently small. The factor ρi

π is the bi-directional
reflectance distribution function for a Lambertian surface. From Equations (2.9) and
(2.10), we obtain

Li j =
ρi

π
Ki jL j (2.11)

where

Ki j = [
[n · (−r)][n′ · r]Vi j

[r · r]2 ]Si (2.12)

Ki j is a coefficient determined by the positions and orientations of the ith and jth facet.
From Equation (2.11), we obtain the radiance value Li j of ith facet due to the radiance

value of jth facet, and as described before, this radiance value is the second component
of the total radiance value for a small facet lies on the surface of a concave object.

Radiance due to a light source The radiance value of the ith facet directly due to a
single point light source (excluding interreflection effect) can be expressed by using the
irradiance value:

Lsi =
ρi

π
Esi (2.13)

where Esi is the irradiance value of the ith facet directly due to a light source. The
irradiance value can be calculated from Equation (2.6).
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Figure 2.6: Occlusion between two facets: the ith and jth facets are occluded by the
middle horizontal plane

Total radiance The total radiance value of the ith facet Li can be expressed as a sum
of the radiance due to a light source Lsi and all the other facets on the surface:

Li = Lsi +
ρi

π

m∑
j=1

L jKi j (2.14)

where m is the number of facets on the object surface. When j equals to i, the Ki j

coefficient between the ith and jth facets becomes zero, according to Equation (2.12).
The inter-reflection equation for a concave surface can be written as follows using a

vector notation. Let us define the facet radiance vector as L = [L1,L2, ..., Lm]T, the source
contribution vector as Ls = [Ls1,Ls2, ..., Lsm]T, and the reflectance matrix P and the Ki j

coefficient matrix K as:

P =
1
π



ρ1 0 · · · 0
0 ρ2 · · · 0
· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 0 · · · ρm


(2.15)
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K =



0 k12 · · · · · · · · ·
k21 0 · · · · · · · · ·
· · · · · · 0 · · · · · ·
· · · · · · · · · 0 · · ·
· · · · · · · · · · · · 0


(2.16)

Now, the Equation (2.14) can be written as:

L = Ls + PKL (2.17)

The reflectance matrix P can be derived from Equation (2.17) as:

P = (L − Ls)L−1K−1 (2.18)

The parameters of matrix P are the reflectance of each facet, and can be obtained as:

ρi = πLi(Esi + L1Ki1 + L2Ki2 + ... + LmKim)−1 (2.19)

where ρi is the reflectance of the ith facet, Li is the radiance value of the ith facet, Esi is the
irradiance value due to the light source, and Ki j is a coefficient between the ith and jth
facets. The irradiance and radiance values can be calculated from Equations (2.6) and
(2.7), respectively. The K coefficient is determined only by the geometry of two facets
on the object surface, and can be derived from the object shape. From Equation (2.19),
we can acquire the reflectance of each facet on the object surface with the presence of
inter-reflection.

2.4 Experiment
In this section, we will show our experimental results for both simulation and real

outdoor objects with the presence of inter-reflectons. As described before, the inter-
reflection effect on a facet can be calculated as the sum of incoming light energy from
all the other facets by assuming that the object surface consists of hundreds of small
facets. The experimental evaluations show the improvement achieved by proposed
method.
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2.4.1 Simulation Object

First we applied our method to estimate the reflectance of a simulation object. We
use the Radiance software [42] to define two planes perpendicular to each other. One
and the other plane have the reflectance of (0.1, 0.2, 0.7) and (0.7, 0.1, 0.1) for the three
RGB channels, respectively. After rendering using Radiance software, the acquired
image is the radiance image of the defined object. This image can be also called as
observation, the pixel value of observation is the radiance value of corresponding
facets.

The irradiance value of a small facet due to light source (Esi in Equation (2.19)) is
proportional to cosine of the angle between the source direction and the surface normal
direction of the small facet, that is Esi = kn · s. The constant of proportionality k is
determined by the radiant intensity of the source and its distance from the surface.
Then, in Equation (2.19), for each facet, we can read the radiance value from the
observation, calculate the irradiance value as the multiplication of constant k and dot
production, also the Ki j coefficient can be calculated from Equation (2.12).

(a) Observation. (b) Synthesized image.

Figure 2.7: (a) Radiance image of simulation object (b) Synthesized image rendering
with the estimated reflectance

Figure 2.7(a) shows the simulation object. We use the estimated reflectance and the
same light condition to re-render the simulation object, and get the synthesized image
of this object. This synthesized image is shown in Figure 2.7(b). Figure 2.8 shows the
difference between the observation and the synthesized image. The difference is less
than 4 percent for two planes. This means the pixel value of synthesized image is
similar to observation.
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Figure 2.8: Difference image (10 times brighter) between observation and synthesized
image

Figure 2.9: A spherical motion camera Ladybug2 [44]
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2.4.2 Real Outdoor Object

For the experiment of real outdoor diffuse object, we choose the clock tower in
Tokyo University campus. Unlike the simulation object, it is much harder to estimate
the accurate reflectance of a real outdoor object, because the light source for an outdoor
object can not be controlled. For light source of an outdoor object, we used image based
lighting to render the object.

Observation capture and shape acquisition The proposed method for estimating
the reflectance parameters of outdoor diffuse object only needs one measurement with
a spherical camera. The camera we used is Ladybug2 [44] as shown in Figure 2.9.
Ladybug2 has 6 lenses, one of them and the others point to vertical and horizontal
directions. This camera could capture nearly 75 percent of a 360-degree field of view;
thus, it captures the radiance of an object and illumination environment at one shot.
Using the same camera sensitivity for capturing the object and illumination, the al-
gorithm becomes simple and no calibration of the camera gain factor is needed. It is
always sure that the image intensity of the object reflects the instantaneous response to
the surrounding illumination that is captured in the same image. The camera pose cal-
ibration is required only once; the object and illumination are geometrically consistent
in the acquired image.

To capture the wide level of intensity, we took images with ND filters and multiple
shutter speeds. We used two ND filters, Fujifilm ND-4.0 and ND-3.0 that reduce
incoming light to 1/10000 and 1/1000, respectively. Each filter was placed in front of the
lenses. We also tuned the shutter speeds carefully to cover the entire dynamic range in
conjuction with these filtes, and took images, as Figure 2.10 shows.

The ND filters attached in front of the lens produce vignette-like effect. Image
brightness gradually reduces from the center towards the periphery of the image, as
Figure 2.11 (a) shows. This is due to the reflection at the interface of the ND filter. Light
that is reflected by the filter increases when its incident angle is off the optical axis.

To rectify the reduction of image brightness, we took images of a white board by
Ladybug2 with and without the ND filter. In this experiment, images from each camera
lens were output. Then, we modeled the effect by an empirical mathematical model,
and calculated the parameter by the least square fitting. Figure 2.11 (b) shows the
estimated vignetting effect. By dividing the images taken with ND filter by Figure 2.11
(b), rectified images can be acquired, as shown in Figure 2.11 (c).

The rectified observation is shown in Figure 2.11 (c). The image’s vertical and
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Shutter speed: 1/39, with ND-4.0 filter Shutter speed: 1/10000

Shutter speed: 1/19, with ND-4.0 filter Shutter speed: 1/2500

Shutter speed: 1/9, with ND-4.0 filter Shutter speed: 1/1250

Shutter speed: 1/5, with ND-4.0 filter Shutter speed: 1/625

Shutter speed: 1/39, with ND-3.0 filter Shutter speed: 1/312

Shutter speed: 1/19, with ND-3.0 filter Shutter speed: 1/156

Figure 2.10: A set of images taken on a sunny day. The unit of shutter speeds is micro
second. Normally, about twenty and ten images were taken on sunny and cloudy days,
respectively.
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(a)

(b)

(c)

Figure 2.11: (a): an image with vignette-like effect. See the upper right of the image.
The reduction of image is highly visible. (b): the estimated vignette-like effect. (c): an
image rectified. Image brightness is recovered.
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Figure 2.12: The range sensor Cyrax 2500 [43] used to acquire the shape information.

Figure 2.13: Acquired shape information of clock tower by Cyrax 2500.
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horizontal axes correspond to the polar and zenith angles. The camera captures nearly
75 percent of a 360-degree field of view, so it captures the radiance distributions of the
sky and the target object at a time.

The object shape information is acquired by the range sensor Cyrax 2500 [43]. This
range sensor has a maximum 40◦×40◦ field-of-view. With a single-point range accuracy
of+/- 4mm, angular accuracies of+/- 60 micro-raians, and a beam spot size of only 6mm
from 0-50m range, the Cyrax sensor delivers survey-grade accuracy while providing
a versatile platform for data capture. Figure 2.12 shows the range sensor Cyrax 2500.
The acquired shape of clock tower is shown in Figure 2.13. From the shape, we can get
the surface normal and 3D coordinates of each facet on the object surface to calculate
the inter-reflection effect.

We calibrated the object and the camera coordinates using Tsai’s method [54]. We
found corresponding points between the shape of the object and the images taken, then
we calculated the view point and the projection matrix using those coordinate pairs.

Figure 2.14: Radiance image of clocktower which is cut from the observation.

Radiance calculation In the experiment of clock tower, the radiance value of each
facet is read from the radiance image. The radiance image which is cut from the
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rectified observation (as shown in Figure 2.11 (c)) is shown in Figure 2.14.

Irradiance calculation The irradiance value directly due to the light source can be
calculated from Equation (2.6). In this experiment, we used Radiance software to do
the irradiance calculation. Specifically, first we set the reflectance of each facet to be 1.0
for all the RGB channels, then render the clock tower by image based lighting method.
The image rendered is the irradiance image, as shown in Figure 2.15.

Figure 2.15: Irradiance image of clocktower

Reflectance estimation Known the surface normal and three dimensional coordinates
of each facet from acquired shape, the Ki j coefficient can be calculated from Equation
(2.12). By using the radiance value read from the radiance image of clocktower which
is cut from the observation and irradiance value calculated from Equation (2.6), we can
calculate the reflectance of each facet according to Equation (2.19).

As shown in Figure 2.6, even though the visibility function without occlusion
coefficient between these two facets is equal to 1, these two facets actually can not see
each other because of the occlusion. Figure 2.16 shows this kind of situation.
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(a) K coefficient. (b) K coefficient.

Figure 2.16: (a)K coefficient calculation with occlusion (b) K coefficient calculation
without occlusion
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When estimating the reflectance of the small facet lies in the blue circle, the Ki j

coefficient is calculated between this facet and all the other red facets shown in Figure
2.16(a). Apparently, there are too many red facets that this facet actually can not
see. But the Ki j coefficient was included in the sum as inter-reflection effect because
of the occlusion between them. Without occlusion coefficient, the calculated inter-
reflection effect would be too large, the estimated reflectance would be too small. We
solve this occlusion problem by applying the occlusion coefficient to visibility function
calculation. Specifically, we detect whether the vector between the ith and jth facets
intersects with all the other facets or not. If the vector intersects with at least one of
the other facets, then the occlusion coefficient is equal to 0, so is the Ki j coefficient. If
not, the visibility function is equal to 1, and the Ki j coefficient can be calculated from
Equation (2.12).

Figure 2.16(b) shows the situation when dealing with the occlusion problem by the
method described before. The red facets have the same meaning as Figure 2.16(a). For
the same facet, the number of red facets in Figure 2.16(b) is only around one third of
Figure 2.16(a). Two thirds of red facets in Figure 2.16(a) are occluded, and should not
be seen by the facet lies in the blue circle. With the occlusion coefficient, the estimated
reflectance becomes much more accurate.

In order to evaluate the estimated reflectance, we used the image based lighting
method to render the clock tower, the result is shown in Figure 2.17.

Figure 2.17(a) is the observation of clock tower, (b) is the result re-rendered by
the previous method which does not take the inter-reflection effect into account, (c) is
the result re-rendered by our proposed method. From Equations (2.6) and (2.7), if we
divide the radiance value by the irradiance value of each facet, we can estimate the
reflectance, however this does not handle the inter-reflection effect. Okura et al. [45]
used this method to estimate the reflectance of an outdoor diffuse object. Figure 2.17(b)
was rendered by this way, there is no inter-reflection effect calculated for each facet
on the object surface. Figure 2.17(c) shows the synthesized image re-rendered with
estimated reflectance, which are obtained by our proposed method.

Figures 2.18(a) and (b) show the difference between observation of clock tower
(Figure 2.17(a)) and synthesized image without inter-reflection effect (Figure 2.17(b))
and with inter-reflection effect (Figure 2.17(c)), respectively. From the comparison
between Figures 2.18(a) and (b), for most concave parts of clock tower, if handling the
inter-reflection effect, the re-rendered image looks much more realistic. The difference
between the re-rendered image with inter-reflection effect and radiance image of clock
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(a) Truth value.(b) No inter-reflection. (c) Inter-reflection.

Figure 2.17: (a) Observation of clock tower (b) Synthesized image without inter-
reflection (c) Synthesized image with estimated reflectance

tower, especially for the concave parts, is less than three percent. But for re-rendered
image without inter-reflection effect, the difference is bigger than sixty percent.

In order to make it clear, we zoom in the red rectangle part in Figure 2.18 (a) and
(b). The amplified result is shown in Figure 2.19 (a) and (b). In these Figures, the RGB
values of the pixel (brightness) represents the error. If the error is larger, the pixel will be
brighter. Obviously, the result estimated by our proposed method (as shown in Figure
2.19 (b)) has much smaller errors. We took four pixels (the red, green, blue and yellow
pixel as shown in Figure 2.19 (a) and (b)) as examples, the difference for these four
pixels between the observation and re-rendered image without inter-reflection effect
and with inter-reflection effect are shown in Table 2.1. Except the yellow pixel, the other
three pixels of our proposed method have much smaller errors. The error for yellow
pixel is larger compared to error of other pixels, because actually it is occluded by the
tree which lies in front of the clock tower (as shown in Figure 2.14). The geometrical
and optical information of this yellow pixel does not match. For the blue pixel which
has strong inter-reflection effect, the error of Okura’s method which does not take the
inter-reflection into account is almost 15 times bigger than the error of our proposed
method. This proves the efficiency of proposed method.
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(a) No inter-reflection. (b) Inter-reflection.

Figure 2.18: (a) Difference between observation and re-rendered image without
inter-reflection (b) Difference between observation and re-rendered image with inter-
reflection
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(a) Zoom in of result without inter-reflection.

(b) Zoom in of result with inter-reflection.

Figure 2.19: (a) Difference of zoomed in part between observation and re-rendered
image without inter-reflection (b) Difference of zoomed in part between observation
and re-rendered image with inter-reflection

Table 2.1: Difference of zoomed in part of Okura’s method (without inter-reflection
effect) and our proposed method (with inter-reflection effect)

Pixels Okura’s method Our proposed method

Red pixel 0.042 0.009
Green pixel 0.066 0.007
Blue pixel 0.102 0.007

Yellow pixel 0.048 0.014



32 Chapter 2 Reflectance Estimation with the Presence of Inter-reflection

In the re-rendered image with estimated reflectance by our proposed method (as
shown in Figure 2.17(c)), there are some parts which still have large errors and many
highlight points. We consider that these errors might be caused by lack of whole
geometry and calibration error between three-dimensional object and two-dimensional
image.

2.5 Summary
This chapter explains our proposed method to estimate the reflectance properties

of outdoor diffuse object with the presence of inter-reflection. This problem is solved
by assuming the object surface consists of hundreds of small facets. The inter-reflection
effect on each facet is calculated as the incoming energy from all the other facets. This
technique takes shape and radiance image as input to estimate the reflectance of object
surface. Then, the estimated reflectance can be used for synthesizing image. This
chapter also solves the problem caused by occlusion between two facets by detecting
the vector between two facets intersect with another facet for not, the occlusion affect the
estimated reflectance so much that it makes the synthesized image appear very dark.
In the experiment, the shape information is acquired by the range sensor Cyrax 2500,
and a spherical motion camera Ladybug2 is used to capture the radiance image. This
spherical camera can capture the radiance of the object and illumination environment
at one shot, this makes the algorithm of reflectance estimation become simple and no
calibration of the camera gain factor is needed. The experimental evaluation shows
the accuracy of proposed method. Compared to the re-rendered image without inter-
reflection, result of our proposed method is much more similar to the real one.



33

Chapter 3

Camera Sensitivity Recovery

Spectral sensitivity of digital cameras plays an important role for many computer
vision applications. However, previous work does not provide reliable estimation
for spectral sensitivity. This chapter investigates the characteristics by extracting the
basis functions of them by using SVD (Singular Value Decomposition); we measured
the spectral sensitivity of different digital cameras and also collected data from the
literature. The extracted basis functions are compared with different mathematical
basis functions, the polynomial basis functions, the Fourier basis functions and the
radial basis functions, to obtain the optimum set. The extracted basis functions can be
used to estimate the unknown spectral sensitivity of an arbitrary camera.

3.1 Introduction
Spectral sensitivity of digital cameras is non-trivial information for many computer

visions applications. Different cameras usually produce differently-colored images
for the same scene, regardless of how well adjusted the white balance is, due to the
difference in the spectral sensitivity. When the spectral sensitivities of those cameras
are known, color of one camera can be converted into that of the other. This would help
a number of applications based on colors such as object recognition, object detection,
image retrieval, etc. Several other methods of physics-based vision require spectral
sensitivity, such as demosaicing [18], color correction [19] and illuminant estimation
algorithms [20] [21]. Spectral sensitivity is also an essential characteristic for color
constancy method [48] [49] [50] [51] [52]. Most color constancy algorithms require an
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estimation of camera responses to the real world with its many different surfaces and
illumination conditions. Although it is conceivable to obtain camera responses for a
large number of surfaces under a given illuminant, it is impractical to obtain this data
for each camera. Furthermore, some algorithms require this data for each possible
illumination, including combinations of several sources. It is thus far more effective
to first obtain illuminant spectra and spectral sensitivity of cameras, then by using a
camera model to predict camera responses.

This paper investigates basis functions for spectral sensitivity of digital cameras. In
order to extract basis functions, the SVD (Singular Value Decomposition) is performed
to the database, which is created from the measured sensitivities and collected data
from the literature. The extracted set of basis functions are compared to mathematical
basis functions, the polynomial basis functions, the Fourier basis functions and the
radial basis functions, by applying them to recover the unknown spectral sensitivity
from the set of image intensities and spectra. The evaluation result shows that the
extracted basis functions are reliable and adequate to estimate the spectral sensitivity
of an arbitrary digital camera.

3.1.1 Related Work

Spectral sensitivity of digital cameras could be derived from the quotient of image
intensity and corresponding spectra. Because of the high dimensionality of spectral
sensitivity, this method becomes unstable. Much effort has been made to estimate
the spectral sensitivity robustly. These methods are categorized into two groups:
the method which try to introduce various constraints for spectral sensitivity and
the method which try to model the spectral sensitivity by parameters to reduce the
dimension.

For the first category, Sharma and Trussell [33] [34] improved the estimated spectral
sensitivity by introducing various constraints. The maximum allowable error as well as
RMS error (between measured and calculated spectral sensivity from spectra) is used
as a constraint. In addition, they also constrain a discrete approximation of the second
derivate to promote a smooth solution. Finally, they constrain the response functions
to be positive. They then observed that the constraint sets were all convex, and so they
compute a resulting constraint set using the method of projection onto convex sets.
Hubel et al. [35] also recognize that some form of smoothness is necessary for a good
solution, and they investigated the Wiener estimation method, as described by Pratt
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and Mancill [36], as a method for finding a smooth fit. They find that generally the
method produced good results. However, this method produced negative lobes in the
response functions and the authors briefly mentioned using the projection-onto-convex-
sets method to remedy this problem. Barnard et al. [37] introduce positivity and uni-
modality constraints combined with several other constraints such as regularization
smoothing and Fourier smoothing constraints to improve the accuracy of estimated
spectral sensitivity. However, the spectral sensitivity calculation of these methods are
complicated according to the introduced various constraints.

For the second category, Thomson et al. [38] proposed a method to estimate the
spectral sensitivity of cameras by using a parametric model. The response characteris-
tics of the color channels are fitted with basis functions of the Gram-Charlier expansion
[39]; this probability law uses Hermite polynomials to describe departures from pure
gaussian shape. The first two Hermite polynomials are used: each response distribution
is treated as possibly skewed, possibly kurtosed Gaussian functions. This parametric
model has five parameters: the peak wavelength, amplitude, and width of the Gaus-
sian, together with the skewness and kurtosis terms. The spectral sensitivity estimation
is identified as a nonlinear modelling task in which the parameters of the model are
varied so as to minimize the error over the visible range of wavelength. Nonlinear
fitting is performed using the Levenberg-Marquardt (L-M) technique [40], which uses
a mixture of first and second derivative methods to minimize the error between actual
and reconstructed pixel values. Although the parametric model is used to reduce the
dimension of spectral sensitivity, the accuracy and efficiency is not compared to our
proposed method.

Regarding the analysis of natural spectra, a number of studies have been inves-
tigated. Judd et al. [25] and Slater et al. [26] have analyzed the basis functions of
outdoor illumination spectra; both of them concluded that the first three bases dom-
inantly covers the entire spectral distributions. Grossberg [53] analyze the properties
of camera response function. They collected a diverse database of real-world camera
response functions (DoRF), and show the real-world responses occupy a small part of
the theoretical space of all possible responses. A low-parameter empirical model of
response (EMoR) is created from the combination of theoretical space and data from
DoRF. Then the complete response function of a camera is accurately interpolated from
a small number of measurements obtained using a standard chart. Several researchers
have analyzed the reflectance of Munsell color chips and extracted the first four to eight
basis functions [27] [28].
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3.2 Spectral Sensitivity Estimation by Using Basis Func-

tions
Basis functions reduces the dimension of spectral sensitivity, because the number

of basis functions required are much less than the dimension of sensitivity itself. This
reduces the number of unknowns in estimating sensitivity, and thus it provides more
accurate results.

3.2.1 Image Formation

The image intensity is related to the incoming spectrum and the spectral sensitivity
of a camera [46] [32]. Concretely, it can be described as

Ic =

∫
L(λ)qc(λ)dλ, (3.1)

where L(λ) is the incoming spectrum, qc(λ) and Ic are the spectral sensitivity and the
image intensity for R, G and B channels. The index c stands for R,G and B. The
integration is calculated over the visible spectrum. This model has been verified as
being adequate for computer vision over a wide variety of systems [23] [33] [32]. This
model is also assumed for the human visual system and forms the basis for the CIE
colorimetry standard after processing gamma function.

If we discretize Equation (3.1), then it becomes

Ic =

W∑
λ=1

Lλqcλ. (3.2)

where λ is the index, W is the total number of elements, Lλ and qcλ are sampled values
of L(λ)/dλ and qc(λ), and dλ is the sampling interval.

3.2.2 Recovering Spectral Sensitivity

If we use a vector notation to Equation (3.2), it can be converted to

Ic = [L1, · · · ,LW][qc1, · · · , qcW]t. (3.3)

Let us suppose that we have a set of incoming spectra and corresponding image
intensities. Then, Equation (3.3) becomes as follows by using a matrix notation:

I = LQ (3.4)
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where I is an N × 1 matrix of image intensities (N is the number of different images), L
is an N×W matrix of spectra (W is the number of samplings), and Q is an W× 1 matrix
of spectral sensitivity.

When I and L are known, Q can be solved as follows:

Q = L+I (3.5)

where L+ is the psuedo inverse of L and is equal to (LtL)−1Lt.
Here, the size of the matrix LtL is W ×W. In order to calculate the inverse matrix

of LtL robustly, its rank should be W. However, the rank of L is at most N when N is
smaller than W. This happens when the number of samplings is more than the number
of images. Then, the calculation of the inverse matrix becomes unstable because of rank
deficient of matrix L. Consequently, basis functions are used to reduce the dimensions
of spectra. Then, the spectral sensitivity becomes robust.

3.2.3 Benefits of Using Basis Functions

Spectral sensitivity can be robustly estimated from Equation (3.4) by using the basis
functions of spectral sensitivity owing to its low dimensionality. Let us assume that the
spectral sensitivity can be approximated by a linear combination of a small number of
basis functions:

q(λ) =
D∑

i=1

qiQi(λ) (3.6)

where D is the number of basis functions, qi is the coefficient and Qi(λ) is the basis
function.

By substituting the equation into Equation (3.1), we can derive

R =

∫
L(λ)

D∑
i=1

(qiQi(λ))dλ

=

D∑
i=1

qi

W∑
λ=1

L(λ)Qi(λ) (3.7)

where R is the image intensity for the red channel, and image intensity for green and
blue channels are calculated in the same way.

If we use another notation Ei to describe the multiplication of spectrum data and
basis function of spectral sensitivity, namely,

Ei =

W∑
λ=1

L(λ)Qi(λ), (3.8)
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then by substituting Equation (3.8) into (3.7), we obtain

R =
D∑

i=1

qiEi. (3.9)

The same equations for blue and green channels can be obtained in the same manner.
Now, let us suppose that we have N set of data (image intensities and spectra). By

using the matrix notation, we can describe Equation (3.9) as

I = Eq, (3.10)

where I is the N × 1 matrix, E is the N ×D matrix, and q is the D × 1 coefficient matrix.
Consequently, this coefficient matrix q can be expressed as

q = E+I (3.11)

where E+ is the pseudo inverse of the matrix E.
If the rank of the matrix E is bigger than D, namely, if the number of images N is

bigger than the number of dimension D, we can robustly estimate a unique solution of
coefficient matrix q. Then, we can correctly recover the spectral sensitivity.

3.3 Optimum Basis Functions
In order to find the optimum basis functions, we tried four different kinds of

basis functions to describe the spectral sensitivity, which includes polynomials basis
functions, Fourier basis functions, radial basis functions (RBF), and basis functions
extracted by singular value decomposition (SVD).

3.3.1 Polynomial Basis Functions

Polynomial basis function is expressed as:

F =
D∑

i=0

aiλ
i (3.12)

where ai is the coefficient. Using this polynomial basis functions, the spectral sensitivity
is describe as a linear combination of λi (the value of i is from 0 to D) as shown in
Equation (3.8). The Figure 3.1 shows the polynomial basis functions. In Figure 3.1,
eight basis functions are shown with different colors.
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Figure 3.1: Polynomial basis functions.

3.3.2 Fourier Basis Functions

The basis functions of Fourier series is described as:

F =
D∑

i=0

aisin(iλπ) (3.13)

where ai is the coefficient. The Figure 3.2 shows the first four Fourier basis functions,
the Figure 3.3 shows the other four Fourier basis functions.

3.3.3 Radial Basis Functions

By using Radial basis functions, the spectral sensitivity is represented as a sum of
D radial basis functions, each associated with a different center µ, and weighted by an
appropriate coefficient σ. The radial basis functions is written as:

F =
D∑

i=0

ai exp(−
(λ − µi)2

σ2 ) (3.14)

The Figures 3.4, 3.5, 3.6 show the radial basis functions for R, G, and B channels,
respectively.

The advantage of using the radial basis function is that these basis functions are
similar to Gaussian function, also similar to the shape of spectral sensitivity. Hence,
better results can be obtained by using the radial basis function.
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Figure 3.2: The first four Fourier basis functions.

Figure 3.3: The Last four Fourier basis functions.
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Figure 3.4: Red channel of radial basis functions.

Figure 3.5: Green channel of radial basis functions.
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Figure 3.6: Blue channel of radial basis functions.

3.3.4 Basis Functions from Singular Value Decomposition

We collected several cameras and measured the spectral sensitivity for these digital
cameras. Also we collected a few estimated spectral sensitivity from the literature.
Then we made a database of spectral sensitivity.

By applying the singular value decomposition (SVD) for the database, we can
calculate the eigenvectors and use these eigenvectors as the basis functions to estimate
the spectral sensitivity of an arbitrary camera. Details of obtaining the sensitivity
database and estimating the basis functions from the database are explained in the next
section.

3.4 Experiment
This section shows the results of estimated spectral sensitivities by using four basis

functions described in the previous section. By comparing the results obtained with
different basis functions, we find the optimum set of basis functions which has the least
error to estimate the spectral sensitivity for an arbitrary camera.
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3.4.1 Obtaining Sensitivity Database

In the following experiment, we use the white board illuminated by the monochrom-
eter, which could produce narrow-band illumination. While changing the wavelength,
the image intensities and spectra of the white board are simultaneously captured by
cameras and a spectrometer respectively. The spectral sensitivity is expressed as:

S(λ) =
I(λ)

n ·
∫

L(λ)dλ
(3.15)

where S(λ) is the spectral sensitivity, I(λ) is the image intensity, L(λ) is the spectrum,
and n is a factor related to the camera aperture (F number), the exposure time and the
electronic amplification (the ISO number).

For red channel of spectral sensitivity, we write the equation as shown in Equation
(3.16), where N denotes the number of images taken by a camera and nN denotes
the combination of aperture, exposure time and amplification for the Nth image. The
equations for blue and green channels can be obtained in the same way. Image intensity
is read from captured image, and spectrum data are measured by a spectrometer. Thus,
the spectral sensitivity is calculated from the above equation.

IR1

IR2
...

IRN

 =


n1 · L1 · SR1

n2 · L2 · SR2
...

nN · LN · SRN

 (3.16)

Intensity Linearization Image intensity is not linearly related to scene radiance
recorded at the camera sensor. The function relating scene radiance to image in-
tensity is called as the camera response function. Therefore, before using the image
intensity which is read from images to calculate the spectral sensitivity, we must do
the liearization first. For estimating the response function of these cameras, we use
the method proposed by Takamatsu et al. [22]. This method is based on probabilistic
intensity similarity measure which is the likelihood of two intensity observations cor-
responding to the same scene radiance. It requires a few images of a static scene taken
from the same viewing position with fixed camera parameters. We took a few images
of a Macbeth color chart for collected cameras to estimate the response function. The
estimated response function of blue channel for Canon EOS Kiss Digital X camera is
shown in Figure 3.7. The solid curve in this figure is the estimated response function,
while the dotted line is used to make a contrast. For estimating the response function
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of cameras whose result estimated by Takamatsu’s method is not accurate, we changed
the shutter speed of these cameras to capture images of a Macbeth color chart to do the
estimation.

Figure 3.7: Estimated response function of blue channel for Canon EOS Kiss Digital X
camera by Takamatsu’s method.

Intensity Normalization When taking the images of a white board, according to
different wavelength of the light spectrum, the camera parameters (n in Equation
(3.15)) are changed. In order to calculate the spectral sensitivity using Equation (3.16),
the image intensity have to be normalized. The normalization factor n in Equation
(3.15) is expressed as:

n =
ISO · t

F2 (3.17)

where ISO is the value of electronic amplification, t stands for the exposure time, and
F means the f number of each image.

Spectrum Measurement The spectrum data of the white board are measured by a
spectrometer, Photo Research PR-655 as shown in Figure 3.8. The spectrometer could
measure the spectra from 380-780 nm at 4 nm increments.

Estimated Spectral Sensitivity We collected a few cameras, and estimated the spectral
sensitivity by using Equation (3.16). In order to verify the accuracy of estimated spectral
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Figure 3.8: Photo research PR-655 spectrometer [47].

sensitivity, we compared the error between the predicted image intensity and image
intensity read from images. With the spectra measured by spectrometer and estimated
spectral sensitivity, the predicted image intensity is calculated by using Equation (3.1).
Macbeth color chart is used for this verification. Images of the first 18 patches (color
patches) are used. The plotted data is shown in Figure 3.9. In this figure, the horizontal
axes displays the predicted RGB values normalized by the maximum, while the vertical
axes represents RGB values read from color chart patches. The data for R, G, and B
channels are shown in different colors. Obviously, we could see from this figure that
the predicted image intensity matches the real intensity very well. This proves that the
spectral sensitivity measurement is quite accurate.
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Figure 3.9: Accuracy verification of estimated spectral sensitivity of SONY DXC 9000.

Several results of spectral sensitivity are also obtained from the literature. All
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the spectral sensitivity data are added into a database, then we apply the singular
value decomposition (SVD) method for the database to extract the basis functions. The
spectral sensitivity of SONY DXC 9000, Nikon D70 and Canon 10D are shown in Figures
3.10 and 3.11. The spectral sensitivity of SONY DXC 9000 is obtained by ourselves,
and the measured spectral sensitivity is used as the ground truth for the evaluation
experiment. The spectral sensitivity of Nikon D70 and Canon 10D are collected from
the literature.

Figure 3.10: Spectral sensitivity of SONY DXC 9000.

Figure 3.11: Spectral sensitivity of Nikon D70 and Canon 10D.

Extracted basis functions from sensitivity database From the database of spectral
sensitivity, we compute the eigenvalues by SVD. The result of red channel is shown in
Table 3.1.
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Table 3.1: Percentage of each eigenvalue for red channel.
EigenValues Percentage

5.574994 76.3%
0.788019 10.8%
0.428096 5.9%
0.261325 3.6%
0.137284 1.9%
0.115380 1.6%

From this table we see that for the first four eigenvalues the sum of their percentage
is 97%. This means that we can take the corresponding eigenvectors to cover 97%
information of spectral sensitivity.

Based on the analysis of eigenvalues, the number of basis functions can be decided.
Then we obtain basis functions by extracting the eigenvectors of the spectral sensitivity
database. The result is shown in Figure 3.12. The horizontal axes in this figure shows the
wavelength, while the vertical axes represents the corresponding spectral sensitivity.

Figure 3.12: Extracted basis function of red channel by SVD.

These Figures 3.12, 3.13, and 3.14 show the R, G, and B channel of estimated basis
functions by SVD from the spectral sensitivity database respectively. Not all the basis
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Figure 3.13: Extracted basis function of green channel by SVD.

Figure 3.14: Extracted basis function of blue channel by SVD.



3.4. Experiment 49

functions are shown here.

3.4.2 Evaluation of Optimum Basis Functions

As shown in Equation (3.11), the coefficient matrix is calculated from image intensity
and multiplication of spectrum data and basis functions. Then we estimate the spectral
sensitivity by multiplying the coefficient by corresponding basis functions. In order to
evaluate the optimum basis functions which has least error, we did the experiment with
a Macbeth color chart. The first 18 color patches are used. Image intensity and spectra
are simultaneously captured by camera and spectrometer for each patch. Then, the
linearized image intensity as shown in Figure 3.15 and spectra 3.16 and basis functions
are used to estimate the camera sensitivity. The result of different basis functions are
shown in Figures 3.17, 3.18, 3.19 and 3.20.

Figure 3.15: The first 18 patches of Macbeth color chart used for evaluation.

From these results, we see that the estimated spectral sensitivity from the extracted
basis functions is the best, and that of polynomial bases is the worst, as expected.
The radial basis functions may not be sufficiently accurate for estimating the spectral
sensitivity, because the spectral sensitivity is not the complete Gaussian function. There
are also some errors remained in the estimated spectral sensitivity from extracted basis
functions by SVD. We think this as the error of response function, measured spectral
sensitivity and image noises.
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Figure 3.16: Captured spectra of each patch for evaluation by spectrometer.
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Figure 3.17: Spectral sensitivity estimated from Polynomial Basis Functions.
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Figure 3.18: Spectral sensitivity estimated from Fourier Basis Functions.
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Figure 3.19: Spectral sensitivity estimated from Radial Basis Functions.
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Figure 3.20: Spectral sensitivity estimated from Singular Value Decomposition (SVD).

3.5 Summary
In this chapter, we have analyzed the characteristic of spectral sensitivity and

proposed a robust method to estimate the spectral sensitivity of digital cameras by
using basis functions. We obtained the spectral sensitivity by measuring the collected
digital cameras and from the literature. Then we added all these spectral sensitivity of
different digital cameras to a database and extracted the basis functions by using the
singular value decomposition (SVD). We compared the extracted basis functions by
SVD with another three basis functions, polynomial basis functions and Fourier series
and radial basis functions (RBF), to get the optimum set basis for spectral sensitivity
estimation. Based on the experiment, we found that the extracted basis functions by
SVD are much more suitable for estimating the spectral sensitivity of digital cameras.
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Chapter 4

Conclusions

4.1 Summary
Physics-based vision is concerned with the physical relationship between an imag-

ing sensor and the external world. The physical phenomenon that mediates this re-
lationship is light. Consequently, two key components of physics-based vision are
reflection model and sensor model. This thesis investigates these two key components,
the reflection model and sensor model, and propose one novel method for each model.
Specifically, for reflection model we proposed a practical method for estimating the
reflectance properties of an outdoor diffuse object with the presence of inter-reflection.
For sensor model, we proposed a reliable method for estimating the spectral sensitivity
of arbitrary digital camera by using basis functions extracted from the database.

4.1.1 Reflectance Estimation with the Presence of Inter-reflection

To create a realistic model of a real world object by computer vision and graphics
techniques has attracted interest from a wide range of research fields and industries in
recent years. Shape and reflectance properties of the object are necessary to simulate
the accurate appearance of an object. Obtaining the reflectance properties of an object
remains a challenge, because it is usually very complicated especially for the concave
object which has strong inter-reflection. We proposed a novel method to estimate the
reflectance properties of an outdoor diffuse object with the presence of inter-reflection
by assuming the object surface consists of hundreds of small facets. Then, the inter-
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reflection effect on one facet is calculated as the incoming energy from all the other
facets. Also, the occlusion problem between two facets has been solved perfectly. The
occlusion affect the estimated reflectance so much that it makes the synthesized image
very dark. For experiment results, the error between the synthesized image which
is acquired by re-rending the object with estimated reflectance and captured radiance
image is less than three percent, while the error of previous method [45] which does
not take the inter-reflection into account is as big as sixty percent. This fact proves the
proposed method for reflectance estimation with the presence of inter-reflection quite
accurate.

4.1.2 Camera Sensitivity Recovery

Spectral sensitivity of digital cameras is non-trivial information for many computer
vision and applications. Different cameras usually produce differently-colored images
for the same scene due to the difference in the spectral sensitivity. Color of one camera
can be converted into that of the other after acquiring the spectral sensitivity. Several
methods of physics-based vision require spectral sensitivity, such as demosaicing, color
correction and illuminant estimation algorithms. We investigate the characteristics of
spectral sensitivities of digital cameras and propose a method to estimate the spectral
sensitivity by using basis functions. We measured the spectral sensitivity of cameras
and also collected data from the literature. Then, the basis functions are extracted
from these collected data by singular value decomposition (SVD). In order to find the
optimum set to estimate the spectral sensitivity, the extracted basis functions are com-
pared with another three mathematical basis functions, the polynomial basis functions,
the Fourier basis functions and the radial basis functions (RBF). The experiment result
of estimated spectral sensitivity by using extracted basis functions has the least error.
Consequently, we think the extracted basis functions from the database is reliable and
adequate for spectral sensitivity estimation.

4.2 Contribution
In this thesis, we have investigated two key components of physics-based vision:

the reflectance model and the sensor model. Specifically, we proposed a practical
method to estimate the reflectance properties of outdoor diffuse object with the presence
of inter-reflection for the reflectance model. For sensor model, we proposed a reliable
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method to estimate the spectral sensitivity of digital cameras by using basis functions.
The main contributions are summarized as follows:

Reflectance estimation with the presence of inter-reflection The main contribution of
this work is the accurate inter-reflection estimation. The problem is solved by assuming
the object surface consists of hundreds of small facets. The inter-reflection effect on
one facet is calculated as the incoming light energy from all the other facets. The
problem caused by occlusion between two facets is also solved by detecting whether
the vector between two facets intersects with another facet or not. If intersection exists,
no inter-reflection between these two facets is calculated.

Camera sensitivity recovery To estimate the spectral sensitivity robustly still remains
a challenge, because of the high dimensionality of spectral sensitivity. Vora [32] mea-
sured the spectral sensitivity by using the monochromter. The estimated result is
accurate, but the equipment is expensive and not readily available. Sharma [33] [34]
improved the estimated spectral sensitivity by introducing various constraints, how-
ever the calculation is complicated. Thomson [38] proposed a method to estimate the
spectral sensitivity by using a parametric model, but this method is not as accurate
as ours. The main contribution is to estimate the spectral sensitivity by using basis
functions, which are extracted from the database of measured spectral sensitivity of
different digital cameras. Consequently, the algorithm becomes robust and efficient.
None of the method introduced above is as simple and efficient and robust as ours.

4.3 Future Work
These two proposed methods for estimating the reflectance properties with the

presence of inter-reflection and camera sensitivity recovery made significant progress.
However, there are still some issues remained.

Internet color constancy With the recent rise in popularity of Internet photo sharing
sites like Flickr and Google, community photo collections (CPCs) have emerged as a
powerful new type of image dataset. This kind of data presents a singular opportunity:
to estimate the shape and optical information and make a 3D model automatically. For
estimating the shape information from this dataset, the big problem is the tremendous
variation in viewing parameters. While traditional multi-view stereo algorithms have
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considered images with far less appearance variation, where computing correspon-
dence is significant easier, and have operated on somewhat regular distributions of
viewpoints, the structure from motion method could be used to handle this problem.
For acquiring the optical information, the big problem is the tremendous variation
in appearance. These images are acquired by an assortment of cameras at different
times of day and in various weathers. The possible solution of estimating the optical
information is color constancy method. The spectral sensitivity is an essential factor
for most color constancy algorithms.

Chapter 3 explains the proposed method of estimating the spectral sensitivity of
digital cameras by using basis functions. By using the basis functions, the dimension-
ality of spectral sensitivity is reduced, hence the estimation becomes robust. However,
spectra in the experiment is measured by the spectrometer, this equipment is not avail-
able for the CPCs. Hence, next we plan to estimate both spectra and spectral sensitivity
from image dataset available on the internet. After the spectral sensitivities of cameras
are known, the images captured by one camera can be converted into images captured
by the other. Then, the color constancy method will be used to estimate the object sur-
face color without the influence of illumination. Combined with the shape information
acquired by structure from motion method, we manage to automatically estimate the
shape and optical information from the dataset to make a realistic three dimensional
model.
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