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1. Introduction

The nonlinearity observed in the material behavior
of ceramics is due to the following three different
physical phenomena: '

i) microcracking

ii) transformation plasticity

iii) creep

The microcracking plays an important role espe-
cially in single-phase ceramics such as polycrystalline
alumina (Al,Os), which exhibit little plasticity, as
well as in DZC (Dispersed Zirconia Ceramics) and
ceramic composites. The transformation plasticity is
essential in transforming ceramics such as PSZ
(Partially Stabilized Zirconia). The creep behavior
can be observed in each ceramic.

The purpose of the present study is to seek and
develop the most appropriate form of constitutive
equations in numerical computations, which repre-
sents the above materially nonlinear behaviors, based
on the continuum damage mechanics approach? in
dealing with the effect of microcracking.

There are two possible ways of formulating the
combined material nonlinearities as shown above, one
of which is to employ the so-called ’unified
approach’®, and the other is to formulate each non-
linearity independently and make the total strain as
the summation of each component. The former way
seems appropriate, when more than two nonlinear-
ities are caused by the similar physical mechanism, as
in the case of plasticity and creep in metals. However,
in ceramics, the above three nonlinearities are due to
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the different physical mechanisms. Threfore the
latter way, 'non-unified approach’, is adopted here.

In dealing with the nonlinear behavior of materials
subjected to the complicated stress-history, the fol-
lowing features, as possessed by the viscoplastic
constitutive theory of Bodner® in which a load-his-
tory dependent internal state variable is introduced,
seem effective in numerical computations:

i) non-zero microcracking (or plastic) deforma-

tion
ii) no microcracking (or plastic) condition
iii) no saturation {or critical transformation
strain) criterion

iv) no unloading condition,
because a great number of judgement processes con-
cerning the above conditions can be removed by
having these features. The constitutive modeling for
microcracking and transformation plasticity, to be
proposed in the present study, will be given the same
features by he use of an internal state variable depen-
ding on the stress-history.

This (Part 1) of the present study deals with the
constitutive modeling for microcracking.

2 . Constitutive Modeling for Microcracking

The rate-dependent constitutive modeling for brit-
tle microcracking solids given in Ref. 4) is summar-
ized in Subsection 2.1 and transformed into a new
form in Subsection 2.2.

2.1 Modeling based on the continuum damage
mechanics

The self-consistent theory of Budiansky and O’
Connell® gives the incremental form of constitutive

relation expressed as
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t5= (V) /EGy=v/E+Gudytf/Eoy (1)
where

F=9/(9-16&) (2)

F=144/(9—168)2 - & (3)
in which f is an internal state variable related to the
microcrack density &. For rate-dependent materials,
the relation between the microcrack density and the
stress is given by the following equations, depending

on the stress level?:

E=0 when ¢, < g, (42a)
£=(/n o/ (ot &/2) ~1}
when c,Z 0. +&/A (4b)

é-“=0 when &=¢& (4¢)
where ¢, is the equivalent stress, which is defined as

o.= (0,0, (5a)
or

o= (Ji1+2])'"” (5b)
where

S =oxtoyto:

Jo == (0205 6,0, 620%) + T+ 12+ 7t

Eqgs. (4) are applicable only in the region where the
maximum principal stress is tensile and increases
monotonically. It is assumed that no microcracking
occurs in a fully compressive region.

Substituting eqs. (2), (3), (4) and (5) into eq.
(1), the following, final form of constitutive equa-
tions can be obtained:

éi_] = Cz‘jkl(g) &kz

= (1+ V)/E M (;‘Z-j—l//E * f}kkd\ij
when ¢.< g, (6a)
‘::Z'J =Con (&) ot %0y, &)
={9/(9—16&) +v}/E + 64— v/E * Gu
Sy 1144/ (9-168)% - (/) [ Vo
o/ (6.+&/2) —11}/E * o5
when o.2 0.+ &/ (6h)
éij = Cin (&5) t."u
={9/(9—16&) +v/E * 6,— v/E * 0usdis
when &=¢& (6c)

The unloading is assumed to take place in a micro-
cracking region, when the following condition is
satisfied:

Ge< o E/L (7)
and the microcrack density remains the current value
during unloading.

2.2 Modeling with a stress-history dependent
internal state variable
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In One-dimensional case of Bodner’s modeling, the
viscoplastic strain rate is given as®
é”,ﬂ: (611/ ] o011 ‘ )Doexp{ (_1/2) [Z/G.”]Zn}

(8)

where
Z=7+(Zy—Z)exp(—mW,) (9)
W= [ ouiutdt (10)

These equations include five material constants; D,,
n, Z,, Z and m. Z is an internal state variable
depending on the plastic work W, taken as the
measure of material hardening.

Because of the similarity between the stress-plastic
strain behavior in viscoplastic solids and the stress
-microcrack density behavior in microcracking
solids, it is suggested that the main features of this
modeling will remain if the similar form of equations
are employed for the relation between the micro-
cracking rate and the quivalent stress, instead of eqs.
(4a)}~(4c).

This suggestion leads to the following equation as
the relation between the rate of microcrack density
and the equivalent stress:

£=D"exp{(~1/2) [2"/5,)*"} (1
This equation is essentially similar to eq. (8). The
exponential function gives the necessary characteris-
tics in this relation both at low stress levels and at
high microcrack-density rates.

The internal state variable Z¥ is defined here as

follows:
Z¥=AY+ BYexp{[W"/ W{]™} (12a)
where
AVM=ZY—(Z¥=Z¥) / (e— 1) (12b)
BY=(Z¥=Z{)/(e—1) (12¢)
And W"¥in eq. (12a) is a parameter defined as
W= [ aidi (13)

The difference in form between eqs. (9) and (12a)
is due to the saturation of microcrack density which
occurs in microcracking materials. After the satura-
tion takes place, the microcrack density remains the
same value (&), therefore é;—‘ must become zero for
large W ™. This requires that the parameter Z¥ for
microcracking materials has no upper bound value
unlike Z ineq. (9) (Z is the upper bound value of Z
in eq. (9)). It is noted that Z"=Z}) when W*=0
(£=0) and Z¥%=Z¥ when W¥=W1in egs. (12).
When the rate of microcrack density is constant
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(é=;¢o) , eq. (11) can be written as

&,=D¥exp{ (—1/2) [Z¥/ 5,127} (14)
From eq. (14), it can be seen that Z*/s, is constant
in the case of constant rate of the microcrack density,
that is,

0./ Z¥=K"=const. (15)
Under this assumption, eq. (14) leads to the following
expression for K*:

K"=(20n[D"/&,)) 27 (16)
2.3 Determination of material constants

The material constants contained in the present
modeling can be determined by the procedure de-
scribed below, assuming that we have the following
two sets of material test data (6,— & curves including
the values of 6., os and &) for different constant
values of the microcrack-density rate, which are
denoted by ;ﬁ,’ andéa” respectively:

a.=0,, 6:s=05, &= Es

when =&, (:0) (172)
oc=0.", 0:=05, &=&"
when &=&,” (+0) (17D)
i) We assume that
D¥=10*, m’=10 (18)

ii) The value of #’ can be determined by using the
following equation, which is derived from eq.
(16):

ool =K"Z{/ K" ZY
= (4n[D¥/&,"1/00[D*/&, 1) -127  (192)
or
05" /os =KW ZY/ K" ZY
=(0n[D*/&,”)/ D"/ & )7 (19D)
iii) Z¥ and Z¥ can be determined as follows:

Z¥=¢./K" (20a)
=0/ KY” (20b)
Z¥ =0, (K™ (212)
=g,/ K" (21b)

iv) W¥ can be determined as follows:
W= (1/2) (e + 0s) & (22a)
=(1/2) (e."+05") & (22D)

Egs. (192), (20a), (21a), (22a) and egs. (19
b), (20b), (21b), (22b) might give different
values with respect to the material constants of #’,
ZY¥, Z¥ and W, In such a case, the average values
can be used.

Although this procedure is unpractical because of
the use of material test data under the condition of
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constant rates of microcracking which is hard to
realize, it has been described here to make it easier to
understand the meanings of material constants. More

complicated way with trial and error must be em-
ployed in practice.

3 . Numerical Examples

3.1 Material constants
One-dimensional numerical calculations for an
elastic-microcracking material have been conducted,
by using the following material constants:
D¥=10¢

m’ =10
E =0.4X10"*(N/m?)
n’ =4.36

=1.1920x108(N/m?)
Z¥=1.2510X108(N/m?)
W¥=0.3034 X 105(N/m?)
Z¥, Z¥ and WY have been

determined according to the procedure described in

The values of »’,

Subsection 2.3, based on the following fictitious
material test results:

o =0.80%10°(N/m?) (&, =10-]
o =0.84%10°(N/m?) [&,=10]
£’ =0.370 [&'=10-]
.7 =1.00% 10°(N/m?) (&7 =107
05" =1.05X108(N/m?) (£, =10°]
£7=0.296 (&, =10°]

3.2 Numerical results

Figs. 1 and 2 show calculated results for constant
stress rates, in which stress-strain relations as well as
microcrack density-stress relations are plotted. The
effect of high stress rates and the unloading behaviors
can be understood from Fig. 1 and Fig. 2, respective-

ly.
4 . Concluding Remarks

The constitutive relation for microcracking in
ceramics has been formulated by using an internal
state variable depending cn a stress-history, referring
to the viscoplastic constitutive theory of Bodner. The
proposed modeling has no microcracking, saturation
and unloading conditions. All of these can be auto-
matically treated in the same equations. The
proposed type of constitutive equations can be conve-
niently used in numerical computations for the behav-

e e e e R T T R AR

67



878 41 %115 (1989.11)

oo &
Stress(GPa)
0.2
i o Experimental Data 1
- (Static Test)
L 2
L 3
(3
0.1F
5
i Stress Rates
= 1:10° GPa/sec
2:10 GPa/sec
i 3107 GPa/sec
L 4:107° GPa/sec
51107 GPa/sec
0 TTTTTGo00s . oool
Strain
(a) stress-strain relations
Microcrack Density
0.5
L o Experimental Data
(Static Test) 5
0.4 4
’ 3
L 2
0.3r
0.2
0.1 |
O 1 1 i
0.1 0.2
Stress (GPa)

(b) microcrack density-stress relations
Fig. 1 Effect of stress rates in microcracking

ior of ceramics under a complicated stress-history.
(Manuscript received, August 4, 1989)
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