20Kおよび110K相Bi(Pb)-Sr-(Ca)-Cu-O超伝導体中の転位の解析

Transmission Electron Microscopic Analysis of Dislocations in 20K and 110K Bi(Pb)-Sr-(Ca)-Cu-O Superconductors

高橋 裕*•松崎 順*•森 実*•石田洋一* Yutaka TAKAHASHI, Jun MATSUZAKI, Minoru MORI and Yoichi ISHIDA

1.はじめに

前報¹⁾においては80K相Bi-Sr-Ca-Cu-O超伝導酸化物 (80K-BSCCO)中の転位の電顕観察の結果を示した。こ れからバーガースベクトルが $b_1=a/2\langle110\rangle$, $b_2=a\langle100\rangle$ 型の2種類の転位が存在することがわかった。最短の格 子ベクトルに相当する b_1 型の転位の存在は当然予想さ れる。ところが、 b_2 型の転位の存在はfcc系金属のそれと 比較すると特異な現象であり、転位論からは興味ある現 象である。

本報では80K-BSCCOと類似した構造を持つ,(Bi, Pb) $_{2}$ Sr₂Ca₂Cu₃O₁₀(T_c=110K)²⁾およびBi₂Sr₂CuO₆ (T_c=20K)³⁰⁴⁾の合成を行い,転位の解析を行った.そして,80K-BSCCOのそれと比較した.

2.実験方法

2.1 Bi-Sr-Ca-Cu-O系の結晶構造

```
これら3種類の超伝導相は化学式が理想組成において
(Bi, Pb)<sub>2</sub>Sr<sub>2</sub>Ca<sub>n-1</sub>Cu<sub>n</sub>O<sub>2n+4</sub>
```

で表され、n = 1, 2, 3が20K相, 80K相, 110K相に 対応する。結晶構造はペロブスカイトユニットと Bi_2O_2 層が交互に積層したAurivillius相類似構造であり,

20K相 Bi₂O₂-Sr-Cu-Sr-Bi₂O₂-------

110K相 Bi_2O_2 -Sr-Cu-Ca-Cu-Ca-Cu-Sr- Bi_2O_2 -------とペロブスカイトユニットの大きさが異なる。格子定数 も a, b 軸に関しては a = b = 0.54nmでほぼ同じ値を持 つが, c 軸長はそれぞれ2.4nm, 3.1nm, 3.6nmである(擬 正方晶).いずれの相も Bi_2O_2 層を含むためb 軸方向に非 整合(20K相のみ整合)な変調構造を有する。

2.2 試料の作製条件および抵抗率の測定結果

試料の合成は固相反応法により行った.

(a)20K相Bi-Sr-Cu-Oの合成法

$$(1)Bi_2O_3, SrCO_3, CuO \mathcal{E}[Bi] : [Sr] : [Cu] = 1$$

*東京大学生産技術研究所 第4部

1:1の比で混合

(2)820°C×18hr(炉冷)の条件で仮焼

(3)850°C×2hr(炉冷)の条件で本焼結

(b)110K相Bi(Pb)-Sr-Ca-Cu-Oの合成法

- (1)Bi₂O₃, PbO, SrCO₃, CaCO₃, CuOを[Bi]:
 [Pb]:[Sr]:[Ca]:[Cu]=1.3:0.8:2:
 2:3の比で混合
- (2)820°C×24hr(炉冷)の条件で仮焼
- (3)845°C×230hr(炉冷)の条件で本焼結

これらの試料の抵抗率測定は4端子法により行った.

Agを電極として真空蒸着した後, 導線は銀ペーストで接続した。図1において測定範囲内(>17K)で20K相Bi-Sr-Cu-Oの抵抗率の低下は認められない.これはBi-Sr-Ca-O系では良質の試料を作製することが難しいためであり, 文献4)では T_c =7Kを報告している.この試料をさらに冷却した場合に超伝導遷移が生じるか否かは不明であるが, 以後の電顕観察からAurivillius構造を持つ結晶相が多数含まれることがわかっている.

一方,110K相には多量のPbを添加した。これはPbを

添加しない系では110K相の単相を作製することが困難 であり80K相が共存しやすいからである. Takano et al. はPb添加により110K相の生成が容易になることを実験 的に示した⁵⁰. 長時間焼成を行うことによりさらに試料 の均質性は向上する. この試料においては抵抗率曲線に 肩が見られず,零抵抗を示す温度が103Kである良質の試 料である.

2.3 電顕試料の作製法

電顕観察のための薄膜試料は前報¹¹と同様に破砕法で 行った。このとき破砕中の塑性変形により転位が多数導 入される。このため以下で示す転位の観察例は転位密度 の低い結晶粒を選択的に撮影した。

3. 結果および考察

3.1 20K相Bi-Sr-Cu-O中の転位の観察結果

20K相Bi-Sr-Cu-O中の転位の解析結果を図 2,図 3 に示す。図 2 においては(c)g=220,(d)g=222で像消 失ししていると見なせるため、バーガースベクトルbは これらに直交する最も短い格子ベクトルをとって

 $b_1 = a/2[1\bar{1}0]$

である。

これに対して図3では(c)g=020, (d)g=022で像消 失しているため

 $b_2 = a/2[100]$

であり**b**1型の転位とは型が異なる.

このように2種類の転位が存在するため

図4 110K相Bi(Pb)-Sr-Ca-Cu-Oの転位ネットワーク

 $a[100] = a/2[110] + a/2[1\overline{1}0]$ ($b_2 = b_1 + b'_1$) などの合流・分岐により転位ノードが形成される場合も 観察された.このことは80K相Bi-Sr-Ca-Cu-Oと同様で あるり。

3.2 110K相Bi(Pb)-Sr-Ca-Cu-Oの中の転位の 観察結果

110K相Bi(Pb)-Sr-Ca-Cu-Oにも**b**₁型および**b**₂型の 転位が存在する.図4に見られる規則的な転位ネット ワークの例ではそれぞれのgでネットワークを形成する 一部の転位が像消失する.この結果からbを決定し、ノー ドの様子を模式的に示したのが図5であり、転位網は大 きな8角形のループと小さな長方形のループにより構成

されることがわかる。そしてバーガースベクトルの保存 則を満足することは言うまでもない.また,この場合は 転位線の方向とbがほぼ平行であるため螺旋成分が強い

708 41巻9号(1989.9)

この転位網の像と非常に似た組織はグラファイトに観 察される.110K相Bi(Pb)-Sr-Ca-Cu-Oもグラファイト も層状構造である点では類似しているが,前者は正方晶 であり後者は六方晶である。このため底面の構造が異な り,転位網の構造も違ってくる.つまり

- (1)グラファイトはb=a/2<2110>型転位のみで6角
 形ネットワークが構成される。
- (2)110K相Bi(Pb)-Sr-Ca-Cu-Oは正方晶であるため1つの型の転位のみではネットワークを組みえない. b₁=a/2<110>およびb₂=a<100>型の転位の合流・分岐により構成され、8角形および長方形のループの組み合わせである.

これにより,結晶学的にはまったく異なった性質を持つ. 最後にPbの効果について述べる.本試料では110K相 の単相を得るため,多量にPb添加を行った.PbはBiサイ トを置換していることはほぼ確かである.このためPbを 添加しない110K相でも同じ結果が得られるか否かの疑 間が残る.一方,Pbを含んだ20K相および80K相におい ても**b**1型および**b**2型の転位の存在を確認しているため⁰, Pbを含まない110K相でも同様であると考えるのが自然 であろう.

 b_1 型の転位の存在は当然として、 b_2 型の転位の存在は Bi $_2O_2$ 層の特異性であることを前報で指摘した¹⁾. これら のPb添加した試料の解析結果はPb置換によっても b_2 型 の転位の安定性が保たれることを意味する. 言い換えれ ば、 Bi_2O_2 層で部分転位に拡張した場合にPb置換により 積層欠陥エネルギーが極端に大きくならないことを示す.

4.まとめ

20K相Bi-Sr-Cu-Oおよび110K相Bi(Pb)-Sr-Ca-Cu -O超伝導酸化物を固相反応法により合成し,転位の電顕 解析を行った。

- (1)いずれの試料においてもバーガースベクトルが *b*₁=a/2〈110〉, *b*₂=a〈100〉型の2種類の転位が確 認された.この2種類の存在は前報¹の結果と併 せて,(Bi, Pb)₂Sr₂Ca_{n-1}Cu_nO_{2n+4}(n=1, 2,3)に共通な性質である.
- (2)この2種類の転位の合流・分岐により転位ネット ワークが底面に形成され、これも(Bi, Pb)₂Sr₂ Can-1CunO_{2n+4}(n=1, 2, 3)に共通な性質で ある。

(1989年4月28日受理)

参考文献

- 1) 高橋, 松崎, 森, 石田: 生産研究, 41 (1989), 701.
- H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano: Jpn. J. Appl. Phys., 27 (1988), L209.
- C. Michel, M. Herview, M.M. Borel, A. Gradin, F. Deslandes, J. Provost and B. Raveau: Z. Phys., 68 (1987), 421.
- J. Akimitsu, A. Yamazaki, H. Sawa and H. Fujiki: Jpn. J. Appl. Phys., 26 (1987), L2080.
- M. Takano, J. Takeda, K. Oda, H. Kitaguchi, Y. Miura, Y. Ikeda, Y. Tomii and H. Mazaki: Jpn. J. Appl. Phys., 27 (1988), L1041.
- 6) 高橋,松崎,森,石田:未発表.