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Turbulence Models for Practical Applications
--Survey of Models Part I (Mixing-length Models

and Energy-equation Models)--
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A survey is given of relatively simple turbulence models which are in use for solving

practical flow problems. The models all employ the eddy viscosity/diffusivity concept
and include algebraic mixing-length models, energy equation models employing a

differential transport equation for the turbulent kinetic energy k. The merits and

shortcomings of these models are discussed. More elaborate models such as the k-c

two-equation model and the algebraic second moment closure model are presented in
part II of the paper.

1 . INTRODUCTION

In spite of considerable advances in the direct

solution of the time-dependent Navier-Stokes equa

tions and in large-eddy simulation techniques, the

only economically feasible way to solve practical

turbulent flow problems is still the use of statistically

averaged equations governing mean-flow equations.

In these equations, the transport of momentum, heat

and mass by the turbulent motion is represented by

correlations between fluctuating quantities. Because

of the appearance of these terms, the mean-flow

equations are not closed and a turbulence model is

necessary to determine these turbulent momentum,

heat and mass fluxes before the equations can be

solved.

A wide variety of turbulence models has been sug

gested over the years, ranging from simple algebraic

expressions relating the turbulent fluxes to the mean

flow field to models employing differential transport

equations for the individual turbulence correlations

or even for their spectral distribution over the various

element sizes contributing to the turbulent motion.

However, the more complex models have so far been
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tested mainly for rather simple, idealised flow situa

tions and have hardly been used in calculations of

practical flow problems. Such calculations were car

ried out mostly with the aid of simpler models em

ploying either algebraic expressions or differential

transport equations only for the velocity scale of the

turbulent motion or at most also for the length scale.

The present paper reviews the available models of

this type; for more complex models based on the

transport equations for the individual turbulent

fluxes the reader is referred to the literature (e.g. 2) ,

12), 13)). The present paper is further restricted to

models for incompressible flows and concentrates on

so-called high-Reynolds-number versions of the

models which are not applicable in viscosity-affected

regions very near walls. The treatment of these

regions is discussed briefly in Part II. Examples of

applications of the models reviewed are given in the

third part of the paper.

2 . BASIC CONCEPTS

The reader is first reminded of the task of turbu

lence models. This is to determine the turbulent or

Reynolds stresses - PUiUj and the turbulent heat or

mass fluxes - PUiqJ appearing in the statistically

averaged mean-flow equations. In tensor notation

these read as follows:

continuity equation:



For incompressible flows, these are the equations

governing the mean-flow velocity components U,, the

mean pressure P and the scalar quantity @ which

stands either for mean temperature or mean concen-

tration. In general, an equation of state has to be

added relating the density p to the quantity t' on

which the density may depend. The lower case quan-

tities zai and I are the fluctuating velocity compo-

nents and scalar fluctuations respectively. The corre-

lations between these fluctuating quantities (indicat-

ed by an overbar) represent the turbulent momentum

and heat or mass fluxes.

As two-dimensional thin shear layers play an

important role in the discussion below and also in the

applications paper (part III and continued papers), the

mean-flow equations are also given in a simplified

boundary-layer form applicable to these flows (defini-

tion of symbols see Fig. 1) .

普=0       (1)

momentum equation:

普+α鑑―÷釜+&(ν謗
一万)十&

( 2 )

( 3 )

temperature/concentration equation:

是手+α税=者諭(λ:分
一万厖∋+Sφ
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Fig. 1 2D boundary-layer flows
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shear stress―ρπυ(representing the lateral transport

of longitudinal momenturn)and the lateral heat or

mass flux ― ρυ9 need to be determined by the turbu‐

lence model.

An important concept in all turbulence models,and

in particular in the silnpler ones considered here, is

the characterisation of the local state of turbulence

by only few parameters.For dirnensional reasons,at

least one、relocity scale レ
r and one length scale二

 (or

alternatively a time scale二/ク)has tO be used.These

scales play a major role in the models described

below.Once the parameters to characterise the state

of turbulence have been chosen,the task of a turbu‐

lence mOdelis i)to relate the turbulent stresses and

heat or rnass fluxes to the parameters chosen and 五 )

to determine the variation Of the parameters over the

flow field.

Another important concept,which is a significant

part of nearly all the turbulence models discussed in

this lecture,is the Boussinesq eddy viscosity concept.

This assumes that,in ana10gy to the viscous stresses

and to the heat or mass transfer by the molecular

motion in laminar flo、 vs, the turbulent stresses and

fluxes are proportional to the mean velocity and

mean temperature/concentration gradients. For thin

shear layers,there follows therefore:

―   ∂ υ―
πυ= ν

死 「

一万=「等 (7)
continuity equation:

等+等=0

momentum equation:

, , O U , , , O U  r r d U * , A /  A U  / F \' E * ' a y : u *  
d * * a y \ v  a y - u u )  

( 5 )

temperature/concentration equation:

, 1 0 6 ,  1 1 0 6 - O  r , d d  - -  \u&+ 16:6\16-,q)  (6 )

It can be seen that in this shear lavers onlv the

(4)
where y' is the turbulent or eddy viscosity and f I

the turbulent or eddy diffusivity. In contrast to the

molecular viscosity u and the molecular heat conduc-

tivity or mass diffusivity i., these quantities are not

fluid properties but depend strongly on the state of

the turbulence and may hence vary significantly over

the flow field and also from one flow to another. The

introduction of the eddy viscosity formula ( 7 ) is

therefore by itself not a turbulence model; the main

modelling problem is now shifted to the determina-

tion of the distribution of v, and 1,. Most models

employ the Reynolds analogy between heat/mass

transfer and momentum transfer and therefore

assume the eddy diffusivity to be proportional to the

eddy viscosity:

「′=荒 (8)

where or is the turbulent Prandtl or Schmidt number.

For general flow situations, where six different com-

ponents of the Reynolds stress -pur", and of the

ノ,7



4 1巻8号 (1 9 8 9 . 8 )

turbulent flux ― ρπ′ψ prevail, the eddy viscosity/

diffusivity cOncept may be expressed as

―瓦=均(券+普)一=れ
―扇=「器
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eddy viscosity may be too cude. Below, algebraic

stress/flux models are introduced which remove this

limiting assumption.

In most turbulent flow problems of engineering

interest, the assumption of a constant eddy viscosity

or diffusivity is not sufficient so that the turbulence

model must provide the means of calculating the

distribution of these quantities over the flow field. In

the following and part II of the paper, three types of

models permitting this are reviewed, namely mixing-

length models not using any additional differential

equations for turbulence quantities, one-equation

models introducing a differential transport equation

for the velocity scale of the turbulent motion, and

two-equation models introducing an additionai trans-

port equation also for the turbulent length scale.

3 . MIXING.LENGTH MODELS

The first model for describing the distribution of y,

was proposed in 1925 by Prandtl'). This modei is

known as mixing-length hypothesis and relates the

eddy viscosity directly to the mean-velocity field. it

was designed for thin shear layer flows where the

only significant velocity gradient is dU /Oy. Prandtl

postulated that the velocity scale ? of the turbulent

motion is equal to this velocity gradient times a

length scale n^ which is called mixing length. Accord-

ing to (10) there results for the eddy viscosity:

(9)

The last term in the eddy-viscosity relation involv-

ing the Kronecker delta d; is necessary to ensure that

the sum of the three normal stresses (when t: j:7,

2, 3) is equal to twice the kinetic energy of the

turbulence ft (defined as 7/zuiLt) .

Because the eddy viscosity concept assumes an

analogy between the momentum transport by the

turbulent motion and the transport by the molecular

motion, it has frequently been criticised as physically

unsound. However, in spite of the conceptual objec-

tions, the eddy-viscosity concept has often been found

to work quite weil in practice, simply because y, as

defined by equation ( 7 ) can be determined to good

approximation in many flow situations. For dimen-

sional reasons, the eddy viscosity is proportional to a

velocity scale f and a length scale Z characterising

the turbulent motion

v ,e tL  (10 )

and it is the distribution of these scales that can be

approximated reasonably well in many flows.

It should be mentioned that the eddy viscosity/

diffusivity concept breaks down in certain flow

regions, for example where the shear stress e p"r)

and the velocity gradient aU / Ay have opposite sign.

In such regions, the eddy viscosity would have to be

negative which is only mathematically possible but

not physically meaningful. However, regions with

negative eddy viscosity or diffusivity are, in most

flows of engineering interest, rather small so that for

practical purposes the local failure of the eddy viscos-

ity/diffusivity concept is not of great consequence.

The situation is different for geophysical flows,

where large regions may be present in which the

transport by the turbulent motion is against the

gradient of the transported quantity. In equation

( 9 ) , the eddy viscosity y, and the eddy diffusivity f i

have been introduced as scalar quantities so that they

are the same for all stress components urut and fiux

components u,rp. This will in general not be the case;

especially in complex situations with directional

influences on the turbulence (e.g. gravitational or

centrifugal forces), the assumption of an isotropic

(11)

The mixing length I*has to be prescribed empiri-

cally, and the success of the model for calculating

simple shear layers lies in the fact that this can be

done through relatively simple formulae for these

flows. In free shear layers, for example, X.* can be

assumed constant across the layer and proportional

to the layer width. The proportionality factor, i.e. the

empirical constant in the turbulence model, depends

however on the type of free flow considered (for

actual values see 2 ) ) . In wall boundary iayers, a

ramp distribution is usualiy employed, with a linear

distribution of X^:tcy near the wall and !* propor-

tional to the boundary layer thickness rl in the outer

region, i.e. !.*: i-rl. The linear law is valid up to a

point y :6/x in which !^ reaches the value n*: )"6

prescribed by the outer law. The proportionality

constant r is the von Kdrmdn constant appearing in

the logarithmic velocity distribution given below, and

刺″21等|
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the linear variation of !* near the wall is consistent

with this distribution. Patankar and Spalding') sug-

gest x:0.435 and ,1":0.09 for the empir ical con-

stants while Crawford and Kaysn) suggest x:0.41

and ,1:0.085. Very close to the wall, where viscous

effects play a role, the linear mixing-length relation

has to be modified, and usually the following relation

proposed by van Driests) is employed:

n^:]c! [ r 
_."r ,_yrr-lp],, )f , e:za rz)

With this mixing-length distribution inserted into

the eddy viscosity expression (11), the boundary

layer equation ( 5 ) can be integrated right to the

wall .

Another popular model is that proposed by Cebeci

and Smith6), who use van Driest's mixing length

relation (12) near the wall, but do not strictly employ

the mixing length hypothesis in the outer region

where they assume the eddy viscosity itself to be

constant and related to the velocity distribution

according to the following expression:

, , :o l l :w*-0dyl (13)

where U* is the free stream velocity. This formula

was developed for general shear layers and can be

expressed as

吟=αυttδ≒ δ*=ノ
Fll―義)の (14)

where ct* is the displacement thickness. Cebeci and

Smith suggest a constant value of q:0.0168 for

boundary layers with hish Reynolds numbers, but

introduce an empirical Reynolds-number function for

boundary layers at low Reynolds numbers and also

additional empirical formulae to allow the calcula-

tion of laminar-turbulent transition. In flows with

local separation zones, the use of (13) leads to diffi-

culties as the free-stream velocity y* is not known a

priori. For such situations, Baldwin and Lomax')

proposed a different model for the outer region which

has recently become popular in computational aero-

dynamics. This model relates the eddy viscosity to the

maximum of a function involving the mean vorticity

and to the distance from the wall of the point at

which this maximum occurs. In wake situations, the

eddy viscosity is related to the maximum velocity

difference across the wake and to the vorticity at the

point where the function mentioned above has its

maximum. Visbal and Knight8) have carried out a

4
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critical exarnination of the Bald、vin Lomax lnodel by

perforrning test calculations for shock― boundary―

layer interaction flo、v on a ramp. They concluded

that,even for this case、vith a relatively small separa‐

tion region,the model did not perform too、vell.They

found that the function involving the rllean vorticity

does not always have an unambiguous maxiinum,

that the model does not account for any history

effects and that altogether the concept of an alge―

braic eddy viscosity is not very adequate for complex

separated flov√fields.In flo、vs oVer bluff bodies、vith

larger separation zones is not clear 、 vhether the

distance to the base、vall is in fact a relevant length

scale,and along lvhich sections a velocity difference

should be formed.Hence,the Baldwin Lomax model

is likely not to be very suitable for flo、vs、vith larger

separation zones.

Effects of buoyancy and rotation

Body forces like those due to buoyancy or strearn‐

line curvature and rotation have been found to influ"

ence the rnixing‐ length distribution significantly.

EInpirical relations were developed to account for the

influence of buoyancy on the rllixing length.「 Fhe

buoyancy effect is thereby characterised by the gradi‐

where y is the vertical direction. For stabie stratifica-

tion (R')0) the so-called Monin-Oboukhov relation

ent Richardson number

沢′=―テ載発拳記予

考=l βlれ

KEYPS formula

考=(1ぱ♪
刊4

(15)

(16)

(17)

is often employed, where !*, is the mixing length

distribution in the corresponding non-buoyant flow.

The empirical constant Bt is of the order of 7 (value

of B' ranging from 5 to 10 have been reported in the

literature). For unstable conditions (Rr<0) the

is commonly used, with B r=I4. Bradshawe) demon-

strated the close analogy between bouyancy and

curvature effects on the turbulence and found that

relations (16) and (17) also allow to describe the

influence of streamline curvature on the mixing-

length distribution. In this case, the Richardson num-

ber is defined as the ratio of centrifugal to inertial

forces:



(18)

where {/" is the velocity component along the stream-

lines, z is the direction normal to them and R" is the

local radius of curvature of the streamlines.

Bradshawt0) reports that the constant B1 in relation

(16) lies in the range 6 to 14 and depends relatively

strongly on the flow situation considered.

Discussion

Mixing-length models have been used successfully

to calculate many thin shear layer flows. The exten-

sive testing has, however, also brought to light the

limitations of these models, in particular the lack of

universality of the empirical input. One shortcoming

of the model is that it is based on the implied assump-

tion that turbulence is in a local state of equilibrium,

which means that, at each point in the flow, turbu-

lence energy is dissipated at the same rate as it is

produced, so that there can be no influence of turbu-

lence production at other points in the flow or at

earlier times. Hence, mixing-length models cannot

account for transport and history effects of turbu-

lence. In grid turbulence, for example, the turbulence

is generated by the wakes directly behind the grid and

is then convected downstream by the mean motion.

The mixing-length model cannot account for this

transport and yields' zero turbulence (y,:I,:0)

because the mean velocity is uniform in the down-

stream region. In channel flow, the turbulence is

produced mainly near the walls and is transported to

the central region by diffusion due to the turbuient

fluctuations; the mixing-length model neglects this

transport and therefore predicts zero turbulence at

the centerline.

In conclusion, mixing-length models are not very

suitable when convective and diffusive transport of

turbulence or history effects are important. Further,

although the basic relation for thin shear layers can

be extended for general flows (see e.g. 2) ) , the model

is of little use in complex flows because of the great

difficulties in specifying the distribution of the mix-

ing length -0.. However, for many simple shear layers

where X* can be specified empirically, the mixing-

length model is a practically useful and therefore

popular tool.

4.ENERGY‐ EQUAT10N MODELS

In order to account for the transport and hiStory
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effects of turbulence, models were developed which

solve differential transport equations for turbulence

parameters. The simplest models of this kind use a

transport equation for a suitable velocity scale of the

turbulent motion. The physically most meaningful

scale is , / ,  where k=I/2u,u, is the kinetic energy of

the turbulent motion per unit mass, which is a mea-

sure of the intensity of the fluctuations in the three

directions. An exact equation f.or k can be derived

from the Navier Stokes equations and reads for high

Reynolds numbers:

4 1巻8号 ( 1 9 8 9 . 8 )

鳥=競

子 単げ碓
rate of convective
change transport

= ―

&  [

場(摯+台)]―瓦警
diffusive transport P :production

by shear

AtL.Au,
- Fs, ure 

-' 
ak art

G:buoyant production/ e:viscous (t(t)
destruction dissipation ''"'

This equation is the trace of the exact equation for

uil given, for example, in 2). The rate of change of

ft is balanced by the convective transport due to the

mean motion, the diffusive transport due to velocity

and pressure fluctuations, the production of & by

interaction of Reynolds stresses and mean-velocity

gradients, and the dissipation of k by viscous action

into heat. In buoyant flows there is also production or

destruction of fr due to buoyancy forces; the term G

represents an exchange between the turbulent kinetic

energy k and the potential energy (P is the

volumetric expansion coefficient). In viscosity-

affected regions, an additional molecular diffusion

term is present.

The exact &-equation (19) is of no use in a turbu-

lence model because new unknown correlations

appear in the diffusion and dissipation terms. In order

to obtain a closed set of equations, the following

model assumptions are usually introduced for these

terms:

笏《ち争十ナ)=童:身
ヵ3′2

ε=θt t「

(20)

( 2 1 )

5
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where o,* and cD are empirical constants. Relation (20)

involves a gradient-diffusion assumption and the

dissipation relation (21) follows from dimensional

analysis if one assumes that the amount of dissipated

turbulent energy is determined by the energy-

containing large-scale motion at high Reynolds num-

bers. With (20) and (21) and the eddy viscosity and

diffusivity expressions ( 9 ) for 
",r4 

and 
",q

introduced, the rt-equation reads:

ak  ,  , rAk
at -  u ,E

:3-(t!  Dft\  r  . ,  (ou,-?4\ au,
Ox;\dp dx/ 

-r ' '\ 
a+r ai) Aq

P

十眈 髪 θメ写f
(22)

G €

This is the high-Reynolds number form of the trans-
port equation for & used in most energy-equation

models. The majority of these models employs the

eddy viscosity concept, which with yG introduced as

velocity scale yields according to (10):

v1: C'p t/ k L (23)

where c'o is an empirical constant. This formula is

known as the Kolmogorov-Prandtl expression. In the

energy-equation model introduced so far, c'oco7g.gg

and 6n:1 appear to be reasonable values for the

empirical constants (the individual values of the con-
stants c'o and c D ate not important but only their

product). It should be noted that the above model is

not applicable to the viscous sublayer near walls. A

low-Reynolds-number version applicable also in this

region is introduced below in Part II of the paper as
part of a two-layer model.

Bradshaw et al.rl) converted the boundary-layer

form of the rt-equation (19) into an equation for the

shear stress * AV assuming that in these flows za is
proportional to k (uu:0.3ft is used). Hence, in their

model the eddy viscosity concept is not used. Brad-

shaw et al's modelled ft-equation is some what differ-

ent from (22); in particular they did not make use of

the gradient diffusion model (20) but assumed that

the diffusion flux of # is proportional to a bulk

velocity. Bradshaw et al's model was applied success-

fully in many wall-boundary-layer calculations but

cannot be used in a straightforward manner in shear

layers where the shear changes sign (e.g. in duct

flows, jets, wakes).

6
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Length‐ scale deternlination

The KollnogorOv‐ Prandtl expression(23)and also

the dissipation relation in the力‐equation(22)contain

the length scale 二 、vhich needs to be specified to

complete the turbulence model. In energy‐ equation

models, the distribution of this scale is described

empirically. Usually siFnple ernpirical relations are

adopted silnilar tO thOse used for the nlixing length

″″. In buoyant situations,the relations(16)and(17)

introduced for the rnixing length can be used also to

account for the effect of buoyancy on the length scale

L.The empirical relations、 vork quite、vell for silnple

shear layers, while in more complex f10v″ s L is no

easier to prescribe than the rnixing length f″.For this

reason, the application of energy― equation models

was so far lirnited lnainly to shear‐layer f10、vs. rヽari―

ous authors have tried to develop formulae for calcu‐

lating I' in general flo、v situations, and some test

calculations have been carried out for separated

flo、vs. A discussion on this can be found in Rodi2),

who concluded that these formulae、 vere insufficient―

ly tested and also rather complex and expensive of

computing tilne.The trend has therefore been to use

t、vo‐equation models 、 vhich deterlllline the length

scale frOm a second transport equation.

5.CONCLUDING REMARKS

In the past, Inixing‐length models have been used

widely and with considerable success for calculations

ёf silnple shear layers,and a great amount of experi_

ence has been conected On the errlpirical specification

of the rllixing‐length distribution in such flo、vs. The

rnixing‐length hypothesis and related algebraic eddy

viscosity models are, ho、 vever, not very Suitable

whenever turbulence transport and history effects are

ilnpOrtant,and they are of little use for f10、vs more

complex than shear layers because of the great diffi―

culties in specifying the rllixing―length distribution in

such flo、λrs.Further,extra effects on turbulence,such

as those due to body forces,can be accounted for in

an entirely empirical、vay only.One― equation models

employing a transpOrt ёquation for the kinetic energy

of turbulence account fOr transport and history

effects and are therefore superior to lllixing_length

models for such non‐ equilibrium shear layers where

the length‐scale distributiOn can be prescribed realis―

tically;they are,however,not very suitable for cOrn‐

plex flo、vs where an empiricallength―scale deterllllina―
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tion is difficult.「Fwo…equation models which deter‐

rnine the length‐scale from a second transport equa‐

tion are required.

Two‐equation models and Algebraic stress/flux

models will be given in Part II of this paper.
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