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A Simple Second-Moment Closure for the Prediction of
Turbulent Flows under the Action of Force Fields
--Part 1 Closure of the Second-Moment Equations-­
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The paper considers the effects of force fields on turbulent shear flows and the extent

to which observed phenomena can be accounted for by turbulence models developed by

reference to flows unaffected by body forces. Especial emphasis is placed on second­

moment closure as at this level the direct effects of force fields appear in the second­

moment equations in a form that can be treated exactly. Applications of the model will
be presented in a future issue of this journal.

1 . Introduction

External force fields produce a bewildering variety

of effects on turbulent shear flows reflecting both the

intrinsic non-linearity endemic in turbulent flows and

the subtle intercouplings that the force field may

impart.

While no-one seriously supposes that any

computational approach short of full simulation will

completely and reliably capture the outcome of apply­

ing an arbitrary force field to turbulence, there is,

nevertheless, considerable interest from both indus­

trial and environmental standpoints in seeing whether

relatively simple models can be devised that broadly

account for the action of body forces over at least a

limited range of turbulent flows. The present contri­

bution attempts to throw light on this issue. The

modelling level considered is that of second-mement

closure. At present this is the highest order approxi­

mation that can be contemplated for the multi­

dimensional, inhomogeneous flows of practical inter­

est. The main attraction of modelling at this level is

that the direct effect of the force field in question on

the second-moment generation rates appears in the

model in a from requiring no further approximation.

The present contribution limits attention to the

simplest and most widely used form of second­

moment closure. The model itself is developed in the
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following section while applications covering free

flows and near-wall layers and involving several

types of force field will be presented in the Part II, to

appear in the following issue.

At the outset it will be helpful to distinguish two

different types of effect of a body force on a turbulent

flow. Time-averaged body forces applied to a shear

flow may modify the velocity field in accordance with

the mean momentum and this, indirectly, modifies the

generation rates of the Reynolds stresses and other

second moments. Fluctuations in body force contrib­

ute source or sink terms to the equation governing the

turbulent velocity field and thus directly contribute to

the rate of creation of the velocity-containing second

moments. The reason for drawing this distinction is

that, in the former case, eddy-viscosity models often

lead to satisfactory flow-field predictions, e.g. Cotton

and Jackson (1987), McGuirk and Spalding (1976).

In the latter, however, the assumption of isotropic

turbulent transport coefficients in the momentum and

enthalpy equations will· hardly ever capture the

effects of a significant force field with the desired

level of accuracy. Accordingly, the present contribu­

tion is concerned predominantly with cases where the

main effects of the force field arise from the direct

modification of the generation rate of the second

moments.
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2. The Exact Second‐ Moment Equations

An exact describing the transport of the kinematic

Reynolds stress, πJ″ゴ, may be obtained by taking a

fluctuating・velocity‐weighted moment of the Navier‐

Stokes equation and averagillg. The result may be

expressedi
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In the above, molecular contributions to diffusive

transport have been dropped.In the case of a rotating

reference frame,the body force term becomes

Fグθ= - 2Ω ヵπt tθc Jヵ″            ( 4 )

while for buoyancy

F″ =g´
′
θ
                    (5)
ρ

Density fluctuations are here supposed to arise purely

from the fluctuations in the scalar quantity O

(lvhether it denote temperature or mass fraction of a

particular species)so it is convenient to link the t、vo

more explicitly.To fix ideas,、ve suppose θ denotes

temperature fluctuations and introduce a dilnensioll―

less volumetric expansion coefficient α:

α≡
ギ 島 I P        ( 6 )

Then F′θ=αgJθ
2/O where fOr an ideal gas α is unity.

Thus,for buoyancy― llnodified flows,one rnust neces‐

sarily consider the approxirnation of the lnean square

temperature variance; in a second― moment closure

that,too,lvould be found via its o、vl■transport equa―

tion.The exact transport equation for θ
2, 。btained

by multiplying the energy equation by θ and averag‐

ing,、vas first presented by Corrsin (1952)and runs:

plied by%F, may be expressed:
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The symbols take their standard meaning but, in any

event, are defined under Nomenclature. The first four

groups of terms on the right of (1) express the action

of source or sink terms on the generation rate ofu;cti

due respectively to mean strain (Pu) , the action of

the body force (F") , the interaction between the

fluctuating pressure and strain fields (pr;) and vis-

cous dissipation (eu) . The final term expresses the

diffusional transport rate of 
-u;ui 

through velocity and

pressure fluctuations and by molecular diffusion (d;J .

The quantity l. is the fluctuating body force per

unit mass in direction xr. Its precise form depends on

the force field in question: the gravitational force is

p'Et/p (p' being the fiuctuation in density about its

mean value), while the effective r;-directed force

arising from observing the motion in a coordinate

frame rotating at angular velocity An is Zum0nei*n,

where e;rz is the third rank alternating tensor.

The resultant generation terms in (1) are thus:

〔盤〕
2&(高たハ (7)
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Buoyancy:

1 -

F,r:!{g, p'ur+e, p'u,}
IJ

Coordinate rotation (Coriotis) force:

Fri= - Zdtr n{ uitr*eru*l-urttmejkml

( 2 a )

( 2 b )

As asserted in the Introduction. these terms contain

only second-moment products as unknowns, so if

closure is at second-moment level the terms can be

included without further approximation.

The corresponding transport equation for the

scalar fluxes, obtained by multiplying the Navier-

Stokes equations by the fluctuating scalar 0 and

adding it to the instantaneous energy equation multi-

It is instructive to compare the intercouplings

among the second-moment equations arising (with

one exception noted below) from their generative

agencies and in particular how, for a buoyancy-

affected f1ow, these couplings differ according to

whether the flow is vertical or horizontal. Figure 1

relates to two-dimensional shear flows in which a is

the direction of the mean flow and rz is the direction

in which gradients of velocity and temperature occur.

We note that the solid lines interconnecting various

second-moment components are the same for both the

horizontal and the vertical shear flow: these represent

the couplings arising from mean velocity and temper-
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Fig.l  BuOyallt couplings through generation terms in

vertical anrl horiz‐0■tal sllear flo、vs
――buoyant clluplingi――――cOuplillg through lnean/

velocity or tell peFature qradients

a)horizontal flo、v b)vertical flo、v

ature gradients.Thus,velocity flucttlations do、vn the

velocity gradient (γ 3) create sheal‐ stress (%1%2)

which in turn creates strearltwise fluctuations(2:).

Here we note the e,こceptiollal connectioni there is■o

direct link betlveell π,and the other stress equations.

Turbulcnt fluctuations in the directiorl of the l■lean

velocity gradient are sustained only by the action Of

the pressure―strain process ill deflecting fluctuating

enel‐gy froll■the strealllvvise directiolni this pressure―

strain transfer is sllo■7n by the lvavy line.Considering

the scalar fluxes,a flux ttoll‐n the ternperatllre gradi―

ent is produced by%:Lvhile a stream、vise flux,πl θ,is

generaterd both by the sllear stress(interacting、vith

the temperature gradierlt)al‐ld露2θ (interacting、vith

aι1/8浣2)・ Li1/iewise θ
2 is created by the product of

the dovv‐n―gradient heat flux and tlle telllperature

gradient itseif. Notice that ill the above systell■ the

velocity field is uncoupled fro■l the scalar field.

The situation is qllite different、vhen buoyant con―

tributions, shov′n by broken lines in 「 igure l, al‐e

inclllded.The natllre of the intercoupling,ho、vever,is

very differerlt for vertical than horizontal flo、vs.Fol‐

a horizontal flow the buoyant feedback is directly

into the corlaponent already acting as the generative

agency,■7hile in a vertical flow the interconnections

16
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are more scattered.These t、vo very different coupling

patterns help one to see why any mOdel based upon

the notion of isOtropic diffusion coefficients is unlike―

ly tO handle both vertical and horizontal flows even

if,by suitable empirical cOrrelations,one of the cases

could be represented adequately.

Closure of the Seeond-Moment Equations

3. l- Preliminary Remarks

While the generation and convective transport

rates of the second moments requ.ire no approxima-

tions, the remaining processes in the transport equa-

tions canrrot be handled exactly at second-moment

level and must be "modelled." Surrogate forms

devised to imitate the reai process will incorporate at

least some of the formal characteristics of the tensors

they repiace: dim.ensional homogeneity; rank, symme-

try and contraction properties of the original form;

invariance to the coordinate frame adopted for

monitoring the flow development. One may also wish

to insist that the approximation should give exactly

the correct result in certain limiting cases where the

magnitude of the origjnal correlation is known(e.g. in

isotropic turbulence).These formal constraints, how-

ever, neeci to be weighed against the benefits of

simplicity (from both conceptuai and computational

standpoints) and what might be regarded as the inher-

ent l imita.tions of a second-moment closure that dis-

regard.s such fea-tures as intermittency. Particularly

within the context of industrial flows the interwoven

principles of diminishing returns and receding influ-

ence shouid aLways be borne in mind. As it turns out,

a very simple formulation, used increasingly over the

past decade, leads to a decisively greater width of

predictive accuracy than any eddy-viscosity-based

scheme and, indeed, that the only other set of

proposals to have been extensively used. It is this

simple formulation that is described in the succeeding

paragraphs and for which results will be presented in

Part II.

3 " 2 Non-Dispersive Pressure Interactions
'Ihe pressure-strain correlation contains within it

three types of process. This may be seen by forming

a Poisson equation for the pressure fluctuation rt $y

taking the divergence of the Navier-Stokes equation

and subtracting the mean part):

D" f r . :  _  O ' (uuu* - -wew* )  _ rOL I r  Ou**Of  e  f  R  )
d.Xp' dTpdXa dXm dTe dXt
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On integrating (8)and multiplying each side by the

instantaneous strain and averaging, one obtains an

expression for the pressure‐ strain correlation ¢ ガ

which, away frolln the vicinity of rigid boundaries,

may be、 vritteni
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as a re\lace?nent for gtt ralher than as an addition to

it-its form is directly parallel to (10):

g i iz :  -  r r (P,r- i6r iPuu) (11)

If c, is chosen as 0.6, equation (11) satisfies Crow's

(1968) exact result for isotropic turbulence:

.  ^ lJ i  
+AUi\9 i iz ,"" :0.4k lYAx Ox, t

A wide range of pairings of cr and crhave in fact been

adopted in the literature, though nearly all closely

satisfy the interrelation (7- cr) / cr:0.23 (see Laun-

der, 1985, 19BB for a discussion) . The writer's group

normally adopts the value 0.6 indicated by isotropic

turbulence,

An obvious extension of the IP idea is to suppose

9〃3=~θ3(島~÷ら鳥♪ (12)

which was first adopted by Launder (1975a) in con-

sidering the behaviour of a horizontal, stably

stratified shear flow. This form too is exact for

isotropic turbuience, though in this case the coeffi-

cient is smaller, 0.3 (Lumley, 1975; Launder, 1975b) .

The usual Practice in adopting (12) is to choose the

same value for c, and ce and, as noted later, there is

some experimental support for this idea, at least in

shear flows.

Strictly, the above modeis for rpilz and qiiz have a

fundamental weakness that, in relation to (11) was

first noticed by Mjolsness (1979) . In a rotating refer-

ence frame the tensor Po, depends on the rate of

rotaion; moreover (and this is the crucial point) so

does (Ptj+ F). Thus, even with the same values

adopted for ce and c:, the predicted behaviour of, say,

an axisymmetric swirling jet will depend upon the

rotation rate of the frame of reference used to exam-

ine the flow. This is plainly nonsense! In order to

avoid such anomalies, the model of qti needs to be

expressed in terms of objectiue tensors. The obvious

(though not the only) way of modifying P;; and F;i so

that they do form a frame-indifferent tensor is by

introducing the convective transport tensor C;y=

Uuauou,/axu. Another line of thought that would also

lead to the inclusion of C; is that, in formulating the

Poisson equation f.or rt , the "mean-strain" contributor

arises from two elements in the fluctuating velocity

equation, one of which is associated with "produc-

tion" and the other "convection". Thus, a rational

and simpie form of the IP model reinterpreted to

provide a form independent of the observer's notion

is:

9ガ=島/{〔焼靱〕
′
〔離+離〕

,  ̂  (  O U  D ,  (  O u * \ ,  (  O u ; ,  d u . t \- r l l a t a )  
\ a x )  l a * , -  a h )

( Of p\ , ( OLt, , Ou,\ I dVol
I  l - T - l t -  \ Y /\Atca) \ df; Oxr) t r

where the primed quantities are evaluated at distance

r from the point in question and the integration

extends over all space (though in practice the contri-

bution is limited to distances from the point compa-

rable with the turbulent macroscale). The corre-

sponding equation for g;a can obviousiy be formed in

an analogous way. While in Part II we shall consider

a little more closely the details of the integral in (9) ,

we note here simply that it comprises a contribution

involving only fluctuating velocities (eu) , one

containing linear mean-strain elements multiplying

double-veiocity products (cpti) and one involving the

fluctuating body force (qoi) . Since these three con-

tributors to the integral clearly arise from quite

distinct processes, they will require separate approxi-

mation. Considerable efforts are now being made to

devise widely valid forms that broadly follow or

extend the general direction advocated by Lumley

(1978) . In this section, however, simple intuitive

forms are presented that are only loosely connected

with the three integrals in (9) . One of the most

enduring proposals in second-moment closure is

Rotta's (1951) l inear return-to-isotropy proposal for

9;itl

ψガ1-~θ I Cα″ (10)

SOt αガ=(瓦
~÷
と万形♪/乃 and c≡ ν(a笏/魏 ン お

essentially the kinematic rate of dissipation of turbu‐

lence energy For decaying anisotropic turbulence,

with dissipation processes assumed isotropic(viz §

3.3), equation (10)produces a return to isotropy for

εl>1. If a constant value is to be chosen for this

coefficient,the optimum choice seems to be close to

2 . 0 .

The best siFnple model for ψ ″2 haS COme to be

known as the lsotropization of Production (IP)

model.First proposed by Naot et al(1970)一though
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( rpur*  g i is)  :  -  cr(Prr+ Fur-  c, ,

-!tor(Puu+ Fuu- cuu)

This modification, as will be seen in Part II, of the

paper has brought great improvement to the predic-

tion of swirling flows while producing little change

from the behaviour provided by equations (11) and
(12) in simple shear flows.

Precisely parallel approximations have been adopt-

ed in the corresponding terms in the scalar flux

equations. Thus

のθ=~らθ号瓦万
~のθPれぬθF″ (14)

The first term on the right of (14) was contributed by

Monin (1965). Regarding the second term, only the

part of the generation of heat flux associated with

mean velocity gradients, Piar, is included-not mean

temperature gradients-in accord with the indication

of the Poisson equation for p. The usual practice has

been to adopt a value of approximately 0.5 for both

cza a,nd csp (Owen, 1973; Launder, 1975a), though in

the isotropic limit it may be shown thal cse takes the

value 
f 

(Lumlev, 1975; Launder, 1975b).

In the neighbourhood of a wall, an additional term

must be added to gri and gia to account for the way

pressure reflections from the boundary "interfere"

with the energy-transfer processes. Formally we can

attribute this "wall-echo" process to the contribution

of a surface integral that is missing from the exact

representation of q;; (which is, of course, absent in

free turbulence). This wall contribution seems to be

responsible for the very different effects of a stable

stratification on free and near-wall turbulence. No

theories as such are available, but wall effects are

usually accounted for (Shir, 1973; Gibson and Laun-

der, 1978) by using the unit vector normal to the wall,

?tp, zs a device for preferentially damping velocity

fluctuations in that direction. Thus, in terms of the

pressure-strain correlation, a wall correction E?i is

added of the form

g fi: { c', (uou*n un*Brr_" }u u4r,n un,

―与 %の″力釧脅"

十¢れ3)%力ππら一電<9″2+9励3)η力衡

~=し″2+¢九Jηたη』}〔亀孫〕
α 0
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The quantity( 3々′2/cκた)multiplying the whole term is

the ratio of the turbulent length scale at a point to the

distance fron■the Ⅵrall:as this ratio becomes smaller,

、vall influences dilninish.The exponent ttα''has usu―

ally been taken as unity, though Naot and Rodi

(1982)report improved agreement in predicting tur‐

bulence driven flows in rectangular ducts frorll taking

α=2.

3.3  SecondⅢ Ploment Dissipation Rates

The usual(albeit not unchallenged)vie、 v is that

the very fine scale eddies, 、vhich are essential to

account for the destruction of turbulence energy by

viscous action, are formed by a large number of

interactions in 、vhich large eddies are successively

broken do、vn into finer scale motions.As this break―

down proceeds, the strong directional orientation

ilnprinted on the larger eddies by the mean strain

field gradually gets lost.Thus,by the tilne the scales

are ttnall enOugh for significant kinetic energy to be

dissipated (implying an eddy Reynolds number Of

order unity)the motions are お θ′%οク′ε. In this event,

the stress and scalar flux dissipation rate are given

by:

C″=丁 らC

Cプθ=0 (16)

The determination of the energy dissipation rate

itself is one of the weakest points in second-moment

closure. While an exact transport equation for € can

be readily obtained from the Navier-Stokes equation,

the resultant equation does not in practice form a

useful starting point. The reason is that the important

quantities appearing in it all relate to interactions

among the finest scales of motion present. Yet, only

in a legalistic sense is the rate of energy dissipation

controlled by these processes. The real controlling

factor is the rate that energy "cascades" from large-

to smali-scale eddies. The interactions producing that

transfer are larger-scale, essentially inviscid motions.

Accordingly, in formulating a surrogate transport

equation for e, one relies heavily on analogy, intui-

tion and experiment. The form usually adopted may

be written:

D e  - ^  O  l u a u t r O . t l
D t  

- " ' a fuL  
,  

naxe . )

+f号旦〔θcl鳥た+`こ3鳥″〕~εc2デ (17)

(13)

The three terms on the right of (77) are respectively
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diffusive,generative and dissipative in character.The

diffusion mOdel shown is the generalized gradient―

diffusion hypothesis(GGDH)of Daly and Harlow

(1970). The value usually adopted for θ c―about

O。18-is typical of those chosen、 vhen applying this

submodel to represent the turbulent diffusive transfer

of other quantities.

The source and sink terrns in this equation are the

critical terms in the equation,a change in one of the

coefficients by only a few percent altering the rate of

growth of a free shear flo、v by typically four tilnes as

much.In flows unaffected by force fields the normal

approach is to take`cl and cc2 aS COnstants(the usual

values are l.44 and l.92 respectively).This practice

brings difficulties、vhen buoyant flows are considered,

however,because then the coefficient fc3 iS aSSigned

different values depending upon whether the shear

flow is directed horizontally or vertically (compare

Hossain and Rodi,  1982,  and h/1cGuirk  and

Papadilnitriou, 1988). This is clearly an unsatisfac‐

tory state of affairs―especially if one is concerned

with recirculatillg flows,whiCh are sometimeS hOri_

zontal  and sometilnes vertical.  An  alternative

approach is to make one or both of the coefficients

depend upon the dilnensionless anisotropy of the

stress field. ′rhe second invariant 242==α ″α″ iS the

collnllnonly used measure of anisotropy and some use

is also beginning to be inade of the third invariant 243

≡αガ¢ゴヵαヵJ・ In faCt,in the first such proposal,Lunlley

and Khajeh‐ 1 oヽuri(1974)suggested that if θ ε2 Were

made a function of 242thC COefficient ε 。l could be set

to zero,a choice they preferred on physical grounds.

Subsequent studies by Lurnley's group reinstated the

turbulence energy generation rate (e.g. Zeman and

Lurl■ley, 1979)but with a coefficient θ cl of approxi―

mately O.5, i.e.about one third of that adopted when

rel and θ c2 are COnstant. Current work at UA/11ST

takes θcl and`c3equal to unity and takes θ c2=1・92/

( 1 + 0 . 6■=■ 2)Wh e r e■ =1-《 |■2-・3)・
InCe ( p e r _

sonal corninunication) has found this adaptation

greatly inproves the prediction of buoyant plumes.

Usually where temperature fluctuations are to be

comp離ed“,■ed面p面on mtt Jケ■soЫ」ned
by relating it to the kinetic energy dissipation rate

vla:
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where ft is just the ratio of dynamic to scalar time

scales. In simpie shear flows, where temperature and

velocity gradients occur in the same regions in space,

a constant value for ft seems to work well-a value

of approximately 0.5 being commonly chosen. To

handle other circumstances, transport equations for

eB have been proposed, for  example by Lumley

(1978) , Zeman and Lumley (1979), Newman et al

(1981), Elghobashi and Launder (1983), Jones and

Musonge (1985) . None of the proposed versions has

yet been subject to a sufficiently wide ranging set of

test flows to form a clear view of the satisfactoriness

or otherwise of the recommended forms of transport

equation. An aiternative strategy, intermediate in

complexity between the two approaches noted above,

is to correlate R as a function of the invariants of the

stress or heat flux fields. For example, Haroutunian

and Launder (1988) have shown that the choice.R-1:

7.2+2.3Ara leads to the correct level of temperature

fluctuations in jets and plumes (where Aza is the

heat-flux invariant 
"'A "ntnfl 

.

3. 4 Diffusion

While rather elaborate models of the second-

moment diffusion processes have been put forward

(Ettestad and Lumley, 1984; Dekeyser and Launder,

1984) , in practice most workers adopt the general-

ized gradient-diffusion hypothesis

(19)

where d* denotes "net turbulent transport rate of

g", the quantity 9 standing for the second-moment

product in question" The idea underlying the use of

such simple models is that often the predicted mean

flow is insensitive to the transport model adopted for

the second moments. It is thus seen as an ineffective

use of computer resource to adopt a comprehensive

model for the third-order moments resoonsible for

diffusive transport.

Sometimes even simpler models are adopted for

handling the second-moment transport equations. The

ultimate step in simplifying the transport model is the

so -called alg eb rai c second-moment transport hypothe-

sis which expresses the transport of a second moment

in terms of the transport of kinetic energy. If this

approximation is applied to both convection and

diffusion processes, the closure is reduced to an ASM

(algebraic second-moment) model in which only ft

and e among turbulence quantities need to be found

ら=θ鐘レΨ髭〕

げR孝 (18)
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from transport equations. This approach has been

extensively used in computing buoyancy modified

shear flows, especially by Professor Rodi's group in

Karlsruhe (e.g. Hossain and Rodi, 1982) . A philosoph-

ical reason for not approximating stress transport in

this way is that by so doing one is representing a

process described by a non-objective tensor in terms

of an objective tensor. It says, at the very least, that

this approach should be avoided in swirling free flows

where transport effects are large (Fu et al, 1988).

4 . Concluding Remark

The present paper has presented the model of tur-

bulence that has been widely applied to predict the

behaviour of turbulent flows modified by buoyancy.

In Part II of the paper, to appear in a forthcoming

issue of SEISAN-KENKYU numerous applications of

the model will be presented.

The paper is based on lectures presented at the

Institute of Industrial Science, Tokyo in August 1987

and at the 2nd European Turbulence Conference,

Berlin in September 1988. My appreciation goes to all

my colleagues in the CFD group at UMIST whose

discoveries have been included in this paper. The

camera-ready manuscript has been prepared with

great care and skil l by Mrs. L.J. 8a11.

(Manuscript received, November 25, 1988)

5 . Nomenclature

aij dimensionless anisotropic Reynoids stress
r -  l -(ufti-iuau) /k

A, A", As invariaits of Reynolds stress field; defined

■2θ

θ
/S

p

勇

島

following eq. (20)

hear fiux invariant 
"rA "rAtA'n

empirical coefficients

space between plates or diamenter of pipe

fluctuating body force per unit mass

source due to body force in u,tt, transport

equatlon

F;e source due to body force in u,g transport

equation

E.i gravitational acceleration vector

k turbulent kinetic energy

L Monin Obukhov length scale

/t.; unit vector normal to wall

P, P mean, fluctuating parts of pressure

Pii generation rate of u,rr, by mean shear

P;ar, P;r, generation rates of 
"rg 

nv mean tempera-
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ture and velocity gradients respectively

R    time scale ratio,see eq.(18)

翼ノ     flux Richardson number

R`       gradient Richardson number

Ro     rotation number Ω D/ν

Pθ      pipe Reynolds number

ι「       streamwise component of mean velocity

ιら,%′    mean, fluctuating components of velocity

ln ffrectlon .r,

Reynolds stress tensor

rms velocity fluctuation normal to wall

tangential component of mean velocity

streamwise coordinate

Cartesian space coordinate (-t' denotes

stream direction; fr2, x.3 have variable

meanings explained in text)

dimensionless volumetric exnansion coeffi-

cient

AO excess of temperature above free-stream

value

dissipation rate of turbulence energy

dissipation rate of u;u,

dissipation rate of 
,L0'

mean, fluctuating parts of temperature

mean, fluctuating density

turbulent Prandtl number

kinematic viscosity

generalized dependent variable

pressure-strain correlati on

pressure/temperature gradient correlation

angular velocity

coordinate rotation vector

Z′″′

場

e

a - .

e 6

@ , 0

P ,  P '
61

v

a
9;i

(p ia

o
n
r a k

Subscripts

o value at origin or under neutral or non-

rotating conditions
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