UDC 628.517.2/.4:699.84:534.83

遮音箱から放射される騒音の固体伝播音成分の推定

Estimation of the Structure-Borne Component of Noise Radiated by an Enclosure

大石久己*・大野進一* Hisami OHISHI and Shinichi OHNO

1.はじめに

機械の騒音を低減するために,機械を遮音箱に格納す ることがある.これにより,遮音箱の透過損失の分だけ 空気伝播音を低減することができる。しかし、機械は一 般に騒音源であると同時に振動源であるので、機械が遮 音箱を振動させ、新たに固体伝播音が発生する、もし、 この固体伝播音の発生分が無視できない場合には、防振 支持の強化等によりさらに騒音の低減を図ることができ る。したがって、機械を格納した遮音箱が与えられた場 合に,この遮音箱が機械の騒音を適切に低減しているか どうかを判断するためには, 遮音箱が放射する騒音に対 する,空気伝播音と固体伝播音の寄与率を知ることが必 要となる。そこで、本研究では、固体伝播音と空気伝播 音とを含む騒音の中から固体伝播音の成分を分離し、空 気伝播音と固体伝播音の寄与率を知るための実験的方法 を求めることを目的とする、以下で、本研究で提案する 方法の理論と実験による確認を述べる。

2.理論

図1に示すように振動と騒音を共に発生する機械を遮 音箱に格納すると、遮音箱は固体伝播音と空気伝播音を 放射する。図1において、ベクトル $\{A\}_o$ 、 $\{A\}_s$ および $\{A\}_A$ は、機械の取付点1~nの加速度を表し、 $\{P\}_o$ 、 $\{P\}_s$ および $\{P\}_A$ は、空間の点1~mにおける音圧を表すとす る。また、添字Oは、機械の振動と騒音とが共に存在す る場合を表し、添字Sは、機械の騒音のみが存在する場 合を表し、添字Aは、機械の騒音のみが存在する場合を 表すとする。もし、振動に対する応答と騒音に対する応 答とが互いに線形独立である場合には、振動と騒音が共 に存在するときの応答は、次式に示すように、それぞれ の応答の和によって与えられる。

$$\{A\}_{o} = \{A\}_{s} + \{A\}_{A}$$
(1)

$$\{P\}_{o} = \{P\}_{s} + \{P\}_{A}$$
(2)

*東京大学生産技術研究所 第2部

ここで、機械の振動のみが遮音箱に作用している場合 について考える。まず、機械と遮音箱を分離して考え、 図1に示すように両者の間に作用する力を $\{f\}_s$ とおき、 互いに反対方向に外力として作用すると考える。つぎに、 遮音箱について、この力と取付点の加速度との間の伝達 関数のマトリックスを $[H_a]_E$ とし、この力と空間の音圧 との間の伝達関数を $[H_p]_E$ とすれば、式(1)および式 (2)の右辺の第一項の $\{A\}_s \ge \{P\}_s \ge e$ 書きかえること ができ、

$$[A]_{o} = [H_{a}]_{E} \{f\}_{S} + \{A\}_{A}$$
(3)

$$[P]_{0} = [H_{p}]_{F} \{f\}_{S} + \{P\}_{A}$$

$$(4)$$

となる.

つぎに、機械の取付点においては、加速度 $\{A\}_o$ のう ち、機械の騒音による加速度 $\{A\}_A$ が、機械の振動による 加速度 $\{A\}_s$ に対して小さく、無視することができると仮 定する.この仮定が許されることは、4.2節で実験結果 を用いて確認される.この仮定を式(3)に適用して $\{f\}_s$ を求め、それを式(4)に代入し、式(2)と比較すると、

 ${P}_{s} = [H_{p}]_{\epsilon}[H_{a}]_{\epsilon}^{-1}{A}_{o}$ (5) を得る.式(5)は、取付点の加速度と固体伝播音の関係 $[H_{p}]_{\epsilon}[H_{a}]_{\epsilon}^{-1}$ をあらかじめ求めておけば、機械が運転状態にあるときの取付点の加速度 ${A}_{o}$ の測定値から、その ときの固体伝播音 ${P}_{s}$ を推定できることを示している.

ところで、伝達関数 $[H_a]_{\epsilon}$ と $[H_p]_{\epsilon}$ とは、機械から遮音 箱に作用する力を基準とした伝達関数であるので、これ を測定するためには、機械を取り外す必要がある。した がって、機械を取り外すことができないと、固体伝播音 の推定のための式(5)を使用することができない。その ため本研究では、図2に示すように機械の取付点1~n をそれぞれ衝撃加振したときの取付点の加速度と空間の 音圧との測定値から式(5)の $[H_p]_{\epsilon}[H_a]_{\epsilon}$ -1に代わるも のを求めることにする。

いま、衝撃力と加速度、衝撃力と音圧、および衝撃力 と機械と遮音箱との間に作用する力との間の伝達関数を それぞれ $[H_a]$, $[H_p]$, および $[H_t]$ とする. これらの伝達 関数は、 $(n \times n)$ のマトリックスとなる. 衝撃加振した とき、機械と遮音箱との間に作用する力と衝撃力とが遮 音箱に作用すると考えるならば、これらの伝達関数の関 係は、式(3)および式(4)の第一項と同様に伝達関数 $[H_a]_{\rm E}$, $[H_p]_{\rm E}$ を用いて表され、

 $[\mathbf{H}_{a}] = [\mathbf{H}_{a}]_{E} ([\mathbf{H}_{f}] + [\mathbf{I}])$ (6)

 $[H_p] = [H_p]_E([H_f] + [I])$ (7)

となる.ただし, [I]は単位行列である.

式(6)および式(7)から([H_r]+[I])を消去することにより,

$$[H_p]_E[H_a]_{E}^{-1} = [H_p][H_a]^{-1}$$
(8)
を得る.式(8)を式(5)に代入すれば,

 $\{P\}_{s} = [H_{p}][H_{a}]^{-1}\{A\}_{0}$ (9)

となり、固体伝播音の推定式を得る.

式(9)は、衝撃加振で伝達関数 $[H_a]$ と $[H_p]$ とをあら かじめ測定しておけば、機械が運転状態にあるときの取 付点の加速度 $\{A\}_o$ の測定値から、そのときの固体伝播音 $\{P\}_s$ を推定できることを示している。

3.実 験

3.1 実験装置

図3に示す実験装置を用いて実験を行った。今回の実

3.2 加速度と音圧の測定

上記の実験装置を用いて,以下の三つの状態について, 取付点の加速度と空間の音圧とをそれぞれ測定した。

- (a) 加振機だけを運転
- (b) スピーカだけを運転

(c) 加振機とスピーカとを同時に運転

以後は、これらの加振機とスピーカの運転状態を、状態 (a)、(b)、(c)と呼ぶことにする.

ここで、加振機とスピーカのパワーアンプに入力する 信号として、両者とも同じFFTアナライザのランダム信 号を使用した。このことにより、状態(a),(b),(c) の測定値を同じ信号を基準として比較することができる。 また、加振機とスピーカのそれぞれのパワーアンプの増 幅率は、状態(a)と状態(b)とで空間の音圧の実効値が 等しくなるように調節した。

測定値の単位は、力を1[N],加速度を1[m/s²],音圧 を2.0×10⁻⁵[Pa]および電圧を1[V]を基準としたデシベ ルとした.

3.3 伝達関数の測定

マイクロホン

鋼板

marken

加振機

加速度 ピックアップ

加振機と鋼板の取付点を外部から鋼板に垂直にインパ クトハンマで衝撃加振し、この衝撃力と取付点の加速度 との間の伝達関数と、衝撃力と空間の音圧との間の伝達 関数とを測定した.また、状態(a)での測定において、

チャージアンプ

パワーアンプ

図 3

実験装置

騒音計

FFTアナライザ

入力電圧V

(ランダム信号)

加振機と鋼板との間の力も測定し、この力と取付点の加 速度との間の伝達関数と、力と空間の音圧との間の伝達 関数とを測定した。

4.検討

4.1 重ね合わせの成立

図4(a),(b)は、それぞれ音圧と加速度とについて、 状態(a)と状態(b)との測定値を重ね合わせた結果と、 状態(c)の測定値である.実線が重ね合わせた結果,一 点鎖線が状態(c)の測定値である.図4より、加振機に よる振動とスピーカによる音圧とは、互いに独立に遮音 箱に作用し、その結果の重ね合わせができると認める.

4.2 スピーカの音圧による取付点の加速度の検討

図5は,音圧と加速度との間の伝達関数を状態(a)と 状態(b)とで比較したものである。実線が状態(a)で, 一点鎖線が状態(b)である。これら二つの伝達関数を比 較することにより,図中の矢印の振動数以外では,状態 (b)での値が,状態(a)での値に対して常に小さいこと がわかる。ゆえに,取付点の加速度において,スピーカ の音圧による成分は,加振機の振動による成分より小さ く無視できると考える.

図6は、状態(a)での加振機の加振力と加速度との間 の伝達関数の測定値と、図5と同じ振動数を矢印で示し たものである。図6より、矢印の振動数では、取付点が 節となっており、機械の振動による加速度の成分が小さ く、スピーカの音圧による成分を無視できなくなると考 えられる。したがって、本方法では、これらの振動数に おいて固体伝播音の成分を分離することができない。

4.3 衝撃加振による伝達関数の測定

図7は、衝撃加振をした場合と加振機で加振をした場 合とについて、式(8)に従って加速度と音圧との間の伝 達関数をそれぞれの測定値を用いて計算した結果を比較 したものである.実線が、式(8)の右辺であって衝撃加 振をした場合の値であり、一点鎖線が、式(8)の左辺で あって加振機で加振をした場合の値である.図7の結果 より、式(8)の示す関係が成り立つと認められる.した がって、固体伝播音の推定に必要な加速度と音圧との間 の伝達関数は、機械を遮音箱の中に格納したまま、取付 点に衝撃加振を行うことによって求めることができると 考える.ただし、本方法では、衝撃加振を行って伝達関

144 41巻2号(1989.2)

研

図7 取付点の加速度と空間の音圧との間の伝達関数

数[H_p]と[H_a]とを測定したが,取付点に加える力を測 定できるならば,他の方法を用いても同じ結果を得るこ とができると考える.

4.4 固体伝播音の推定値

図8は,式(9)を用いて求めた固体伝播音の推定値と 固体伝播音の測定値(状態(a)での空間の音圧)および 固体伝播音と空気伝播音とを含む全騒音の測定値(状態 (c)での空間の音圧)とを比較した図である。実線が固 体伝播音の推定値,一点鎖線が固体伝播音の測定値およ び波線が全騒音の測定値である。図8の結果より,本研 究で提案した方法を用いて固体伝播音を推定できると考 える。

生産研究

5.おわりに

本研究では,以下の結果を得た.

1. 固体伝播音と空気伝播音が互いに線形独立で重ね合 わすことができ、機械の騒音による取付点の加速度の成 分が小さく無視できる場合に、機械が運転状態にあると きの取付点の加速度を用いて固体伝播音を推定する実験 的方法を求めた。

 2. 固体伝播音の推定に必要な機械の振動による加速度 と音圧との間の伝達関数は、機械を遮音箱に格納したま ま、取付点に衝撃加振を行うことによって求めることが できる. (1988年11月25日受理)