谏

UDC 533.6.011:519.6

ヴォロノイ図を用いた流れ場計算手法の構成

Constraction of a Flow Simulating Method Based on Voronoi Diagrams

谷 口 伸 行* • 小 林 敏 雄* Nobuyuki TANIGUCHI and Toshio KOBAYASHI

1.概 要

比較的複雑な流れ場の数値計算においては、境界条件 の表現法と計算時間が問題となることが多い。前者は計 算点の配置に対する自由度を増すことにより改善される。 後者については主に離散方程式を解くための行列計算の 速度に依存しており、ここでは並列計算機を有効に利用 できることも重要である。

流れ場の数値計算手法として,差分法は離散方程式を 効率のよい反復法で解くことができるため計算時間の点 に優れる.しかし,計算点の配置が座標系に依存するこ とは大きな欠点である.一般座標系の導入はこの欠点を ある程度改善するが,格子生成法に対する過大な負担と いう問題を生じる.また比較的単純な形状に対しても, 計算点の配置を適切に定めることが著しく困難である場 合が少なくない.

本稿で提案する計算法では,計算領域の離散化にヴォ ロノイ図を用いることにより計算点を座標系によらず任 意の位置におくことができる。ヴォロノイ図は計算幾何 学の概念で,空間内に置かれた離散点の勢力圏を表す領 域分割図である。離散化法には有限体積法を,アルゴリ ズムにはSIMPLEを適用する。離散式行列の解法には差 分法で用いられるものと同等の点反復法を適用すること ができ,最も計算時間を要する反復計算の部分では十分 なベクトル化が可能である。

以下ではこの計算法の概要を述べ、2次元層流におけ る計算例を示す。

2. 離散化の方法

2.1 ヴォロノイ図の導入

ナビエ・ストークス方程式に基づく流れ場の数値計算 において,基礎式は一般に輸送方程式として与えられる。 有限体積法では計算領域を有限個の小領域(セル)に分 割し,このセルにおいて物理量4の輸送方程式を体積積

*東京大学生産技術研究所 第2部

分した式,

a

$$\int_{Vol} \frac{\partial \phi}{\partial t} dV = \int_{S} \mathbf{J} \cdot d\mathbf{n} + \int_{Vol} B dV \tag{1}$$

を離散化の基礎方程式とする.上式で $\int_{Vol} dV$ は体積積分 を、 $\int_{S} dn$ は境界面での面積分を表す. Jは面での全フ ラックスベクトル (v:速度ベクトル、 Γ :拡散係数より $J = v\phi + \Gamma \nabla \phi$), nは面の法線ベクトル, Bは ϕ の生成量 である.

従来の有限体積法では離散点の配置およびセル分割は 座標系に沿って行われ、セル形状は6面体(2次元では 4角形)になる.ここで,(1)式の左辺および右辺第2 項の体積積分はセル内の代表値により評価される.また、 右辺第1項はセル境界面において面の近傍点を用いて離 散化され、それらの点の相互の影響係数を与える.これ らから得られる離散式は一般に、

$${}^{C}\boldsymbol{\phi}^{C} = \sum a^{NB}\boldsymbol{\phi}^{NB} + b \tag{2}$$

ただし, C:セル代表点, NB:座標軸に沿った近傍点 の形で表される. aは影響係数をbは定数項を示す. これ は隣接点との参照関係において差分法と同等であるため, 効率のよい反復法で解ける一方, 離散点配置における欠 点も差分法と共有している.

ところで,(1)式はセル形状を制限していないので, 従来とは異なるセル分割により新たな離散化式を与える 可能性を持つ.ただし,セル分割には次の条件が課せら れる.

① 領域が透き間なく,重なり合わずに分割される.

② 各セルは内部に一つずつ離散点を含む.

③ 各セルは凸領域で近似される.

本研究では上記の条件を満足する分割法として、ヴォ ロノイ図の適用を提案する。ヴォロノイ図は領域内に分 布する離散点(Xⁿ)の勢力圏,

$$V(X^{i}) = \bigcap_{j=1}^{n} \{X \mid d(X^{i}, X) \le d(X^{j}, X)\}$$
(3)
ただし, X:領域内の点

$d((X^i, X): X^i, X間の距離$

と表される.

による分割図である¹⁾ 図1の白丸の離散点に対し,太線 がヴォロノイ図によるセル分割を表している.計算領域 の境界もセルの境界となると考えると,このような閉じ たセルが必ず各離散点の周りに構成される.2次元では, 計算領域内部のセルは常に凸多角形で,セル境界は隣接 点との垂直2等分線で与えられる.3セルの境界交点は 離散点による3角形の外心である.

以下ではヴォロノイ図を適用した場合の(1)式の離散 化法について概要を延べる.

2.2 面フラックスの補間

(1)式の右辺第1項はヴォロノイ図によって得られる 多面体セルの各境界面において一定値をとるとして評価 される.ここで,各面は近傍2点を2等分しており、そ の位置関係(たとえば、面aに対し点X⁰および点X¹)は 正規座標系における通常のセル分割によるものと変わら ないことが注目される.よって、面のフラックスJの評価 には従来の有限体積法における方法をそのまま用いるこ とができる².たとえば、

$J = u\phi_f - (\Gamma$	(4)	
1st Upwind:		
ϕ°	$u \ge 0$	

 $\phi_{f} = \begin{cases} \phi^{0} & u \ge 0\\ \phi^{1} & u < 0 \end{cases}$ 2nd Central : $\phi_{f} = \frac{1}{2}(\phi^{1} + \phi^{0})$ QUICK : $\phi_{f} = \begin{cases} \phi^{0} + \frac{1}{4}(\Delta \phi + Ld\phi^{0}) & u \ge 0\\ \phi^{1} - \frac{1}{4}(\Delta \phi + Ld\phi^{1}) & u < 0 \end{cases}$ $\Delta \phi = (\phi^{1} - \phi^{0})$

図1 ヴォロノイ図によるセル分割

ここで,式(4)におけるJは2点X⁰,X¹を結ぶ方向に とられており,ヴォロノイ図による分割では境界面と垂 直になるため,(1)式右辺第1項の内積は容易に計算さ れる.

2.3 勾配ベクトルの補間

(1)式左辺および右辺第2項の体積積分は従来の計算 法と同様に、

(代表点での値)×セル体積 (5) で評価される。右辺第2項の表式は変数φによって異な るが,他の物理量の1次微分の積和で表されることが多 く,代表点における物理量ψの勾配∇ψを正しく定義す ることが必要である。これはまた,高次スキームを導入 する場合にも利用される。

本節では、上付添字は離散点位置を、下付添字はベクトルの成分を示し、総和記号は隣接点の個数の和をとるとする.

まず,考えている代表点*X*[®]の隣接点の1つを*X^{nb}とす* ると,境界面での∇ ψの2点を結ぶ方向の射影成分は1 次線形補間により,

$$(\nabla \psi^{nb})_{nb} = \frac{\psi^{nb} - \psi^0}{\|X^{nb} - X^0\|}$$
(6)

と表される. $\| X^{nb} - X^{0} \| \ kX が ペクトル量であるので$ $その大きさを表す. また, <math>X^{0}$ での $\nabla \psi$ のこの方向の成分 と($\nabla \psi^{nb}$)_{nb}との差をとると,

$$\delta \boldsymbol{\psi}^{nb} = \frac{\boldsymbol{\psi}^{nb} - \boldsymbol{\psi}^0}{\parallel \boldsymbol{X}^{nb} - \boldsymbol{X}^0 \parallel} - \boldsymbol{\nabla} \boldsymbol{\psi} \cdot \boldsymbol{e}^{nb}$$
(7)

となる. e^{nb} は 2 点を結ぶ方向 (すなわち,面に垂直な方向) の単位ベクトルである. (7)式は各隣接点について得られるので, $\delta \mu^{nb}$ の重み付け 2 乗平均,

$$\mathbf{\Psi} = \sum_{nb} (g^{nb} \delta \psi^{nb} \delta \psi^{nb}) \qquad g^{nb} は 重 み 係 数$$
(8)

を評価関数として▼ ψが定義される.

すなわち, ∇ ψの成分 (任意の直交座標系)を独立と して,

$$\frac{\partial \boldsymbol{\varPsi}}{\partial \left(\boldsymbol{\nabla}\boldsymbol{\varPsi}\right)_{a}}=0 \tag{9}$$

が各成分について得られ、これらは以下の連立1次式に まとめられる。

$$[A] \nabla \psi = \mathbf{r}$$

$$fz fz \cup, A_{ab} = \sum_{nb} (g^{nb} (e^{nb})_a (e^{nb})_b)$$

$$\mathbf{r}_a = \sum_{nb} (g^{nb} (e^{nb})_a (\nabla \psi^{nb})_a)$$

$$(10)$$

a, bは∇ ψの座標系でとる

ここで、 $\nabla \psi^{nb}$ を与える近接点が、次元数(=2:2次 元の場合)個以上あれば(10)式は独立になり、代表点で

研 究 速 の∇ ψの各成分が得られる。 ヴォロノイ図による分割で 計算手法の構成 はこれを満たしている.

式(10)はまた、点X⁰の近傍での線形近似式、

$$\boldsymbol{\psi} = \boldsymbol{\psi}^{0} + \boldsymbol{\nabla} \ \boldsymbol{\psi}^{0} \cdot (\boldsymbol{X} - \boldsymbol{X}^{0}) \tag{11}$$

に対する最小2乗法の表式とも解釈できる。

以上の手法によって得られる離散式は,

$$a^{c}\phi^{c} = \sum a^{NB}\phi^{NB} + b$$
 (12)
ただし、C :セル代表点

NB:ヴォロノイ図による隣接点

とまとめられる。式(12)において、一般に、隣接点の数 はセルごとに異なる.ただし,正規座標での等間隔格子 のようにヴォロノイ図による分割が従来のセル分割と同 一の場合には、式(12)は式(2)と一致する。

2.4 連続式の評価

連続の式については、従来の有限体積法でのノンスタ ガード格子(すべての物理量が同一格子で解かれる)に 拡張されたSIMPLEアルゴリズムが適用される³⁾.

まず、連続の式を体積積分し前述の輸送方程式と同じ セルで離散化すると次式を得る。

$\sum (uS)^{nb} =$	0	(13)

ただし, nb:セルの境界面

S:境界面面積

u:面に垂直な速度成分

式(13)の速度成分uは、境界面を挟む2点X¹、X⁰で離散 化された運動量式 (式(12)で $\phi = u$ とする) を平均して得 られる次式であたえる。

$u = \hat{u} - d \left(\nabla P \right)_{u}$	(14)
() $_u$: u の方向成分(X^1 , X^0 を結ぶ方[句)
$\hat{u} = [\{(\sum a^{NB}u^{NB} + b') \neq a^{C}\}]$	
+ { ($\sum a^{NB}u^{NB} + b'$) / a^{c} } ⁰] / 2	
a ^c :式(12)の係数	
b':式(12)の圧力Pを含まない定数項	
{ } ¹ , { } ⁰ : X ¹ , X ⁰ での値	
$d = \left[\left(V \middle/ \rho a^{c} \right)^{1} + \left(V \middle/ \rho a^{c} \right)^{0} \right] \middle/ 2$	
V :セルの体積, ρ :密度	
$(\mathbf{\nabla} P)_{u} = (P^{1} - P^{0}) \nearrow L$	
L : X ¹ , X ⁰ を結ぶ方向の距離	
ここで、(14)式中で圧力勾配項は式(12)の定数項b	に現
れる表式と異なることに注意されたい。	

SIMPLEの仮定により、

$$u = u^* + u' \quad P = P^* + P'$$
 (15)

u*, P*: 近似值 u', P': 修正值 を(13)、(14)式に代入し、u'項を省略すると修正圧力P' の離散式が得られる。これは(12)式の形にまとめられ、 参照される近傍点は輸送方程式と同一である。計算アル ゴリズムは従来のSIMPLE法に従う。

前節に延べた離散化法を実際の流れ場計算に適用する と、計算手順は以下のようになる。

格子点の定義(配置は任意)

② ヴォロノイ図によるセル分割

③ 位置,形状の情報の計算

- ④ 参照配列の生成
- ⑤ SIMPLEアルゴリズムによる繰り返し計算

計算速度を上げるためには、最も計算時間を要する繰 り返し計算の効率化が重要である。特に、離散式行列の 反復計算においてはベクトル化による十分な加速が期待 できる.本研究ではベクトル化による加速率に優れた行 列解法として、マルチカラーSOR (Successive Overrelaxation Method) を採用した⁴⁾.

各点での離散式(12)において参照される近傍点が規格 的でないことは有限要素法に類似する. 近傍点における 座標量,物理量は参照配列(リストベクトル)を用いて 間接的に参照される。また、前述のマルチカラーSORに おける順序づけも参照配列により行う. 手順④はこれら の配列の生成を意味する。

4 計算例と結果

離散点の配置が異なる場合の結果を比較した。計算対 象は正方キャビティー流れで定常層流とした。図2に2 種類の計算格子を示す。図で細線は格子点の配置を、太 線はセル形状を表している。格子aではノン・スタガー ド格子による従来の手法と同一のセル分割が得られ、離 散式も一致する。格子a, bは、同一の計算プログラム で解くことができる。図3にレイノルズ数1000の結果を 流線図で示す。

最後に、図2格子a(計算点数40×40)における各手 順の計算時間を表1に示す.反復計算の収束条件は離散 化式の無次元残差10-3以下とした。計算には汎用機 (HITAC-M680H), 並列計算機(同S820H-80)を用い た。両者のスカラー演算速度は同程度であるので、反復 計算は並列計算により約25倍に加速されている。本計算 手法では反復計算に至る前に幾つかの手順を要するが、 反復計算に対し計算量として十分小さいことがわかる。

また,正規座標系における従来の計算手法との比較で は、ベンチマーク・プログラム%を基準とした計算速度で 約10倍となった、比較に用いた計算手法は正規座標系ス タガード格子を用いたSIMPLEアルゴリズムによるも ので、定常計算においては効率のよい計算手法とされて いる*・格子点配置の自由度が飛躍的に高いこと,並列化 による加速率が十分に期待できることから本計算手法の

図3 正方キャビティ流れの計算例(層流、Re=1000)

表1 各手順の計算時間

	Me	80	ベンチマーク基準	S820
セル分割 位置,形状情報 参照配列 反復計算	6 2 0.3 113	4 sec 6 sec 32sec sec	628	4.2sec
計	122	sec	678	
正規座標有限体積	責 法		65	

計算速度は満足しうるものと考える.

5.結論

有限体積法における領域の離散化に,計算幾何学の概 念であるヴォロノイ図を適用することにより,新しい流 れ場数値計算手法を構成した.

この計算法を2次元層流キャビティ流れに適用し,差 分法,有限体積法による従来の計算手法に比較して格子 配置の自由度が飛躍的に高く,計算時間において劣らな いことを確認した. (1988年10月13日受理)

参考文献

- 伊理 ほか:オペレーションズ・リサーチ学会報文集, T-83, 1983
- Patankar, S.V. : "Numerical Heat Transfer and Fluid Flow", 1978
- 3) Rhie, C.M.etc. : AIAA J. Vol. 21 No. 11, 1983
- 4) 谷口,小林:生産研究 Vol. 40 No. 8, 1988
- 第1回CFDワークショップ成果報告集,機学講演会, 1987