UDC 531.788:541.183.2

超高真空技術における気体分子と表面の諸問題

Physical problems of gas-surface interaction in ultrahigh vacuum technology

迁 泰* Yutaka TUZI

私は大学卒業以来約40年間にわたって、真空科学と表面現象の研究に携わってくることができた.真空と表面の諸現象は互いに密接な関係を持っていることが多く,特に超高真空では,表面現象を考慮せずに真空を語ることはできない.ここでは,真空の立場からの研究を中心とし,年代を追って紹介する.単一指向性真空計の開発,超高真空系の特性解析法など,真空科学に寄与すると思われる諸問題を,最近になって取り上げることができたのは幸いであった.

1.まえがき

昭和25年3月に東京大学第2工学部物理工学科を卒業 してから現在まで、私は真空科学の枠の中で研究を続け てくることができた、対象とした圧力領域は、おもに高 真空 (10⁻¹~10⁻⁵Pa),超高真空 (10⁻⁵Pa以下)である。 このような領域では気体分子の平均自由行程が真空容器 の代表的寸法よりも遙かに長くなるため、空間における 気体分子相互間の衝突頻度は極めて小さい、気体分子の 表面への入射頻度に比べて分子同士の衝突頻度が無視で きる状態は,「自由分子条件」が成立している状態といわ れる.この条件下では,気体分子と表面との相互作用を 考慮に入れないで真空内現象を取り扱うことは困難であ る.しかし,真空の生成や測定に関与する表面は,真空 容器の内壁や真空計の電極などの実用表面であり、そこ で起こる現象の解析は、原子的清浄表面に比べて格段に 困難である。私は、表面分析などに関連して、原子的清 浄表面への吸着現象など,表面物理学の範囲に入る研究 も行ったが、ここでは真空に直接関係の深い研究を中心 として,大体年代を追ってまとめてみたい.

2. 過渡現象による吸着の研究

大学卒業後,約2年間,大学院学生として理工学研究 所の熊谷研究室でお世話になり,熊谷寛夫先生のご指導 を受け優れた諸先輩に接することができた¹⁰.また,柴田 英夫氏に真空に関する研究と,その実技の手ほどきを受 けた.この期間には,油拡散ポンプのジェットの研究, 油回転ポンプの排気速度測定の研究,電離真空計回路の 研究など,真空工学の研究に参加したが,私は手伝いの 域を出なかったと思うので,ここでは割愛する.

昭和26年10月に東京芝浦電気株式会社に入社し、マツ

*東京大学名誉教授

ダ研究所に配属された.マツダ研究所では、ガラス一金 属封着の研究や、当時Blears氏が発表した論文に刺激さ れて、漏れ探しの研究を断片的に行ったが、電子管の容 器であるガラスへの水蒸気の吸着を高真空領域で調べる ことが、大きなテーマとして与えられた.これは電子管 の性能劣化に関連した問題であるが、現在でも適確な実 験方法が得難いような難問であった。吸着測定の際の最 大の難点は、熱陰極との反応のために、閉じた容器の中 の水蒸気の圧力を電離真空計では測定できないという点 にあった.そこで、Barrer氏によって開発されつつあっ た、流れの過渡現象における遅延時間の測定により吸着 現象を解析する方法を採用することにした².

当時の装置は図1に示すようなガラス製のもので, ヒックマン・ポンプで排気しており, 点線の内部を380°C に加熱して排気することによって, 1×10^{-8} Torr以下の 圧力を得ていた. 試料気体は低温で脱ガスした水からの 水蒸気で,電離真空計 G_i の示す圧力 p_i を油マノメーター G_a の読みから推定できるように校正曲線を作り,吸着の

測定はG,を消して行った.試料のガラスは10~20メッ シュに破砕してU字型の導管に詰め,電気炉Fで温度を 調節した.ある時刻t=0のときに試料のp,側から水蒸 気を流し始めると,水蒸気は試料ガラスの間を表面と相 互作用しながら流れ, G_2 で測定している圧力 p_2 を上昇さ せる. G_1 が試料表面に及ぼす影響は $p_1 \gg p_2$ の範囲ならば 小さいものと考えた.図2は,硼珪酸ガラスを試料とし た実験における p_2 を記録したものである.(a)の曲線は 乾燥空気を流した場合の結果で,t=0のときに p_1 を急 上昇させると,わずかの時間遅れで p_2 が上昇している.

これに対して、水蒸気を流した場合の(b)では、 p_2 が上 昇し始めるまでに約3分間を要している.

試料ガラスを入れた管の中の流れを拡散現象として解 析すると,非定常な流れが定常な流れに転換するまでの 遅延時間から,水蒸気と表面との相互作用を知ることが 可能であるが,遅延時間のp,依存性を定量的に解釈する ことが困難であったため,相互作用の全体を解明するに は至らなかった。しかし,この実験は,真空中における 過渡現象の利用に眼を開かせてくれた点で忘れることが できない。また,この頃,林主税氏が真空装置内の吸着 現象の基本的取り扱いを示し,過渡現象に適用した研 究ッを発表されたことに強い刺激を受けた。

昭和34年10月に生産技術研究所の富永五郎先生の助手 にしていただき,最初は前記の研究の延長として,ガラ ス表面への水蒸気の吸着を高感度ピラニ真空計を使用し た準静的測定によって研究した⁴.これらの結果をまと めたものが私の学位論文となった.その後,富永先生が, 拡散ポンプ作動液の油蒸気がガラス管の中を通過する過 渡的な流れの遅延時間から,管壁表面における油分子の 平均滞留時間を求める研究を始められた.この場合には, 油分子の平均滞留時間が長いため,試料としてガラス管 の内壁表面を使用することが可能であり,明解な結果を 得ることができた⁵.

この研究をお手伝いしているうちに,油分子は平均滞 留時間が十分に長いので,分子線として試料ガラスの表 面に入射させれば,反射・脱離分子線の強度変化が容易

に測定でき、その過渡的変化から試料表面における付着 確率や平均滞留時間を求め得ることに気付いた。図3は、 この目的のために製作した装置で、ベアードーアルパー ト真空計を中心にしたガラス製のものである。図のよう に装置の下部を液体窒素で冷却し、試料油を高温にして おいてニッケル板のシャッターを電磁石で開けると、油 分子線が試料ガラス表面(ターゲット)に入射する。ター ゲットからの反射・脱離分子をベアード-アルパート真 空計で測定すると、その時間変化は図4に示すようにな り、ターゲット温度T_tが低いほど平均滞留時間が長いこ とを示す結果が得られた⁶. しかし,加熱排気してター ゲットが清浄になった状態では平均滞留時間が異常に長 く、シャッターを閉じた後の脱離分子線の強度変化から 求めた値、および、油分子の吸着したターゲットを加熱 しないで排気した後、油分子線を再入射させて求めた値 と一致しないことが明らかとなった。

前記の富永先生の研究でも、ガラス表面が十分に加熱 脱ガスされている場合には、管の中の油蒸気の流れの遅 延時間が非常に長くなることが認められており、それと 同様に平均滞留時間の長い現象が、ここでも観測された わけである.この現象の本質は、まだ解明されていない. 油分子線による吸着の研究は長期海外出張(カナダ国立 研究所)のため中断し、熊谷先生に早く継続して実験す るようにと釘を刺されていたにもかかわらず、その後の 事情により私の手では再び実験をすすめることができな かったが、後に富永研究室の大学院学生(嶋田邦夫君) によって、かなりの程度まとめられ発表されたのは幸い であった.

3.物理吸着における置換現象の研究

昭和40年に海外出張から帰国し、10月に教授総会メン

バーにしていただいた.当時,超高真空技術を用いるこ とにより、ガラスその他の表面への低温における窒素, 希ガスなどの吸着量を,超高真空の領域まで測定するこ とが試みられており,従来,吸着量が圧力に比例する(ヘ ンリー則)と考えられていた低い圧力領域における物理 吸着でも,比例関係が成立しないことが話題となってい た.幸い,生研の所内制度である選定研究費をいただき, まだ珍しかった4極子型質量分析計を入手することがで きたので,低温のガラス表面における混合気体の吸着現 象を調べてみることにした.この研究は主として浅尾薫 君が進めてくれたが,後期には小林正典君が担当してく れたⁿ.

装置は4極子型質量分析計の容器がステンレス鋼製で あるが、それ以外はガラス製で、図5に示すように構成 されている。ガラス・ボンベ A, Bから取り分けた2成 分混合気体を流して定常状態を作っておき、パイレック ス・ガラス製の試料容器(容器の内壁表面が試料(adsorbent))を液体窒素で冷却すると、図6の1酸化炭素とク リプトンの組み合わせのように、試料を冷却してからの 時間の経過とともに、クリプトンが1酸化炭素に徐々に 置換されるというような現象を観測することができた。 窒素<1酸化炭素、クリプトン<+セノン、クリプトン< 1酸化炭素、1酸化炭素<2酸化炭素のように、不等号 の小さい側が大きい側の分子に置換されることが明らか

になった. 蒸発熱は, 窒素<1酸化炭素<クリプトン< キセノン<2酸化炭素の順に大きくなるので, 蒸発熱の 大小関係と置換とは一致しない. この研究は, 従来, 置 換が起こらないと考えられていた物理吸着でも, 吸着分 子の置換が起こることを明らかにし, また, 吸着等温線 がヘンリー則から外れることによって推測されていた, 物理吸着におけるガラス表面の不均一性の影響を実験的 に示したものと考えている.

4. 指向性真空計の開発と応用

昭和49年3月に,京都国際会議場で第6回真空科学国 際会議(6th IVC)・第2回固体表面国際会議(2nd ICSS) が開催された。この会議では,組織委員長熊谷先生,運 営委員長富永先生のもとで,真空科学国際会議のプログ

図 7 冷却コリメーター型指向性真空計実験装置
MF:4極子型質量分析計
BAG(N):ペアードーアルバート真空計(ヌード型)
T₁GP:チタン・ゲッター・ポンプ
SIP:スパッター・イオン・ポンプ
VL:可変リーク・バルブ
MV:超高真空用メタル・バルブ
LN:液体窒素

縦軸:イオン電流 (MF), 圧力 (BAG(N)) t_a:1酸化炭素 (圧力 6×10⁻⁷Pa) への露出時間 ラム面を担当したので、会議の前約1年間は用事に追い 回されたが、その頃から、研究室に全金属製超高真空装 置が、ぼつぼつ入ってくるようになった.

会議のための仕事を消化していくうちに,真空計に指 向性を持たせた場合の可能性について,いろいろ考える ようになり,金文沢君に手伝ってもらって予備実験をす すめた.その結果,一応の成果を得たのは図7の装置に よってである.この装置では,1対のアパーチャーを持 ち液体窒素で冷却された円筒の内面に,チタン膜を蒸着 してコリメーターとし,試料から放出される気体を分子 線として質量分析計(MF)に導いており,コリメーター と質量分析計とで単一指向性真空計を構成している.

試料を多結晶モリブデンとし、その表面に吸着させた 1 酸化炭素の昇温脱離を観測すると、図8にMFで示す 一連のピークのような結果が得られた。図の下部には、 試料表面の垂線とコリメーターの軸との間の角度が示し てある。無指向性真空計であるベアードーアルパート真 空計(ヌード型)で測定した結果(BAG(N))と比較す ると、この装置の指向性真空計は試料表面を「見て」い ることが良くわかる[®]. さらに、モリブデン(110)面に吸 着した窒素の脱離の方向分布を測定すると、図9のよう に余弦法則から外れていることが明らかになった[®]. 解 離吸着した2原子分子の脱離の方向分布は面の垂線方向 に大きく、その傾向は吸着の活性化エネルギーが大きい ほど顕著になるという簡単な理論があるが、モリブデン (110)面と窒素の系で得られた結果は、この理論に矛盾 していない.

この理論をさらに検証するため、シリコン(111)面と 水素の系で測定を試みようと考えた.シリコン(111)面 に対する水素分子の付着確率は極めて小さいが、水素原 子として入射させると付着確率がほぼ1となることから、 分子吸着の活性化エネルギーが大きいものと考えられた からである.

水素分子の測定に関しては、図8に示したようなコリ

縦軸:昇温脱離ピークの高さ

メーターは効率が低いので,多重細管型指向性真空計の 開発を試みた、自由分子条件が成立している場合には、 直管の軸に平行に入射した分子は管の内壁の影響を受け ずに通過するが(通過確率=1),斜めに入射した分子は 内壁と衝突を繰り返し通過確率が小さくなる。そのため、 真空計の測定子の容器に直管をつけると、管の軸方向に 指向性を持たせることができる。指向性は管径が細いほ ど鋭くなるが、気体放出による測定子容器内の圧力上昇 が測定のS/N比を低下させるので、多数の細い直管の軸 をそろえて束ね、単一指向性を保ったまま、コンダクタ ンスを増大させるように工夫した. この真空計により, シリコン (111) 面に吸着させた水素原子の昇温脱離(水 素分子として脱離)の方向分布を測定すると、モリブデ ン(110)面からの窒素の脱離と同様に、表面の垂線方向 に脱離する分子が多く、余弦法則から外れていることが 明らかになった10)

これら二つの型,冷却コリメーター型と多重細管型の 指向性真空計の特性については小林君が詳細に検討して くれた^{8,11}.後者は,同君により,放射光照射による固体 表面からの気体放出の研究にも使用された.また,冷却 コリメーター型指向性真空計の考え方は,真空用材料か らの気体放出速度の最も基本的な測定法として,小宮宗 治氏らとの共同研究により,液体へリウム冷却コリメー ターを使用する気体放出速度測定装置に発展した¹²⁾.

5. 低温気体凝縮層の研究

6th IVC・2nd ICSSの後始末が終了した頃, 荒川一郎 君が入ってきて, 低温気体凝縮層を吸着媒とするクライ オポンプの研究を行うことになった.この研究は, トリ チウム排気を長期的目標におく, 核融合装置用のポンプ に関する基礎研究であった.気体凝縮層を単純化して扱 うため, 図10のように, 超高真空装置の中の液体へリウ ム容器に糸巻き形の無酸素銅ブロックを取り付け, その 下面に2酸化炭素, キセノンなどの気体を凝縮させた¹³⁰. 当時は, 超高真空装置の中に液体へリウム温度の面を

作って実験するという経験が一般的に少なかったので, 熱電対の取り付けなどの簡単なことから種々工夫を要し たが,荒川君が解決してくれた.

2酸化炭素は真表面積の大きい凝縮層を作る気体の一 つであるが、無酸素銅ブロックの低温面に凝縮させてい くと、時々急激な温度上昇が観測された。図11は、その 状態を示したもので、2酸化炭素の圧力pcoと無酸素銅ブ ロックの温度Tsの時間変化である。最初、真空容器内に 2酸化炭素を導入し始めると、凝縮熱のためTsが少し上 昇するが、その後、不均一な時間間隔でTsのパルス的な 上昇(サーマルスパイク)が現れている。サーマルスパ イクは8.5K以下の場合にのみ現れ、その高さはスパイク とスパイクの間に凝縮した2酸化炭素の量に良く比例す る。生成温度を変えて凝縮層を作り、7.3Kでへリウムの 吸着等温線を求めてみると、図12のように、サーマルス

パイクが発生する温度で生成した凝縮層では吸着量が少 ないことが見いだされた。これらのことから、サーマル スパイクは2酸化炭素凝縮層の相変化に起因するもので あり、表面積が減少し、表面エネルギーが熱となって放 出されるものであると考えられた¹⁰.また、糸巻き形の無 酸素銅ブロックが熱量計として高感度であることがわ かったので、気相から入射する分子の凝縮熱から入射頻 度を測定し、絶対圧力計として使用する可能性を実験的 に検討した¹⁵.

低温における気体凝縮層や物理吸着の研究をすすめる 過程で,再び,単一指向性真空計が必要となり,荒川君 が,気体分子の電子衝撃によって生成される励起中性粒 子を利用する,図13のような真空計を開発してくれ た^{10,17)}.この真空計では,励起中性粒子のうち1対のア パーチャーを通過したものを2次電子増倍管で計数する ことにより,指向性を持たせている.気体分子の電子衝 撃の際にはイオンと光子も生成されるが,イオンはグ リッドに阻止電位を加えて除去し,光子は速度が速いの で,電子線をパルスとし,それに同期して計数回路のゲー トを適当に閉じることにより除去した.

パルス電子線の使用により,この真空計には励起中性 粒子の飛行時間測定装置としての機能も持たせることが できた、図14はその結果の一例で、励起中性粒子の飛行 距離55mmとして、表面からのアルゴン原子を検出した 結果である。図の(a)は室温の真空容器内の表面から来 た原子,(b)は51Kの凝縮層から来た原子を測定したも ので,計数回路のゲートを開のままにしてあるため,ま ず光子が計数され、つづいて、アルゴン原子の飛行時間 分布を示す図形が得られている. 各表面温度に対応する マクスウェル速度分布則に従う気体分子による理論曲線 を点線で示してあるが,実験と良く合っていることがわ かる17). すなわち、アルゴン原子の51Kの凝縮層表面に対 する熱適応係数は、ほぼ1であると考えることができる. この真空計の感度は1×10⁶c/(s•Pa)程度まで上げるこ とができたが、実用真空計としては、さらに高感度にす ることが必要である。

真空計には,超高真空用,極高真空用,中真空用,磁 場中用など,目的に応じて種々のものが開発されている が,励起中性粒子型指向性真空計は,S/N比が大きく, 鋭い単一指向性を持つほか,気体分子の並進運動のエネ ルギー分布まで測定することができるという点で,真空 計の一つの窮極の姿を指向するものと言っても過言では ないであろう.

6. レーザー照射急速昇温脱離法による研究

真空用材料からの気体放出速度の測定は指向性真空計 の重要な応用の一つであったが,材料表面を強力なパル ス・レーザー光で照射し,脱離(放出)分子を応答速度 の速い真空計で測定する方法も有効ではないかと考えた. また,レーザー光のパルス幅が狭ければ表面近傍のみが 加熱されるので,表面に吸着した分子と,表面層に吸蔵 されている分子,固体内部に吸蔵されている分子の放出 を,区別して測定できる可能性もあるように思われた. そこで,超高真空中に置かれた固体表面のパルス・レー ザー照射による急速昇温脱離の測定を試みた.この研究 の開始に際しては,横浜国立大学工学部の字佐美誠二教 授に多くのご教示を賜り,寺田啓子さんが研究を進めて くれた.また,実験とデーターの解析には岡野達雄助教 授の協力を得た.

図15は、超高真空装置内の試料表面をレーザーで照射 し、脱離気体を観測する装置である¹⁸⁾.真空容器はステン レス鋼製で、チタン・ゲッター・ポンプ(液体窒素冷却) とスパッター・イオン・ポンプで排気し、加熱脱ガス後 の到達圧力は6×10⁻⁹Pa以下である.試料には鏡面のシ

リコン (111) 面を使用し、Qスイッチ付きルビー・レー ザーで照射した。4極子型質量分析計 (QMS) のイオン 源の位置は試料表面から65mmである。試料の処理はア セトンを使用した超音波洗浄のみとした。

気体放出速度の測定には、真空容器に対するポンプ系 の排気速度を正確に知ることが必要である。そのため、 図16のようなオリフィス系を真空容器とポンプの間に設 置した。この系は、アパーチャー①、同心円板②、円板 ③から成り、容器の外部から操作して、図のAまたはB の状態にすることができる。系のコンダクタンスをモン テカルロ法によって求め、その値を基準として、オリフィ ス系を含むポンプ系の排気速度を次節で述べるコンダク タンス変調法により求めた。

オリフィス系Aを通して排気しながらシリコン(111) 面を照射し、4極子型質量分析計の走査を高速にして、 イオンの質量m(原子質量単位)と電荷q(単位は素電荷) の比 $m/q = 1 \sim 50$ の間を繰り返し測定すると、図17(a) に示すように、多くの種類の分子が脱離してくることが わかった。図の横軸はレーザー照射後の時間を示してい る。図17(b)は時間軸を拡大したもので、m/q = 2, 15, 16, 26, 28などのイオンの量が多いことがわかる。レー ザー光の波長から考えて、この脱離現象は、おもに熱的 な効果によるものである。スペクトルを見ると、脱離分 子の中には、表面に吸着していた有機物分子の分解生成 物も、かなり含まれていると考えることができる。すな わち、加熱排気をして超高真空になった真空容器内の表 面にも、なお、相当量の有機物分子が吸着していること を示している²⁰.

レーザー照射による表面からの気体放出は、パルス・ レーザー光の幅と同程度の時間内で起こるので、幅の狭

図15 レーザー照射による急速昇温脱離測定装置 QMS:4極子型質量分析計 CMA:オージュー電子分光装置

LEED:低速電子回折装置

レーザー:Qスイッチ付きルビー・レーザー(パルス幅 25ns, 波長694.3nm, 試料面におけるエネル ギー密度1.25~3.75J/cm², 同ビーム径2.8 mm) い圧力パルスとして利用することができる.気体分子が 真空容器の代表的寸法を通過するために要する時間(数 百 μ s)よりも十分短い幅の圧力パルスを発生することが できると,容器内の非定常現象,特に,表面と気体分子 との相互作用を含む現象を解析することが可能になる. そこで,質量分析計で特定のm/qのイオンのみを観測

m/q:イオンの質量・電荷比 ΔP:レーザー照射による全圧上昇(窒素相当圧) レーザー光エネルギー密度:3.75J/cm² I_I:イオン電流

し、レーザー照射後の分圧変化を測定してみると、図18 のようになることがわかった。レーザー照射は時間0の ところで行っている。(b)のほうで良くわかるが、分圧 変化には、照射直後に現れるピーク(速いピーク)と、 そのピークの変化が大体完結してから現れるピーク(遅 いピーク)とが見える。速いピークは、試料表面から直 接分析計のイオン源に入射した分子によるもので、ピー クの形は脱離分子の飛行時間分布を示している。その分 布は、図18よりも速い速度で時間軸を掃引すれば得るこ とができ、方向分布などと共に、脱離の機構を解明する 手がかりとなるものと考えられる。

真空工学的には遅いピークの持つ情報が有用である. このピークは、容器内に散乱した分子が表面と衝突を繰 り返し、全体としてchaoticな気体となり、オリフィス系 を通して排気される過程を示している。したがって、遅 いピークの減衰の時定数は、容器の体積と容器に対する 排気速度で決まる。後者は、ポンプ系の排気速度のほか に、容器内の表面への吸着による排気速度も含んでいる。

分圧減衰の時定数を(質量)[→]に対して整理すると,図 19の■印(オリフィス系A)と●印(オリフィス系B) のようになった.□印はオリフィス系Aを用いたときの 容器に対する実測の排気速度と容器の体積から求めた理 論値であり、○印はオリフィス系Bに対するものである。 実験値は、いずれも理論値を大幅に下回っており、この 原因は、容器内の表面への気体分子の吸着に起因するも のと考えられた.そこで、相互作用を表面に対する付着

確率と吸着分子の平均滞留時間で表し、球形容器を仮定 した計算と実験結果とを比較した¹⁹.その結果、平均滞留 時間は図18に示されている程度の測定時間より長いと考 えられたが、その値を決めることはできなかった。しか し、付着確率は水素 (m/q=2)に対して約0.003, m/q=150分子に対して約0.03, m/q=16, 26, 28の分子に 対して約0.01であることがわかった¹⁹. これらの値は小 さいが、容器内の表面の面積が大きいために、過渡現象 に対しては、表面がポンプ系と同程度の排気速度を持つ ことになる。

一般に、定常状態における吸着測定では、付着確率と 平均滞留時間の積が求まるのみで、それらを分離するこ とはできない。上記のように、実用表面で付着確率を求 め、付着確率が小さくて平均滞留時間が長いことを明ら かにできたのは、幅の狭い圧力パルスの生成が可能に なったためで、真空工学の観点から非定常現象の利用が 有効であることを示したものである。

7. コンダクタンス変調法による真空系の特性解析

圧力パルスによる付着確率の測定に関連して,真空容 器に対するポンプ系の排気速度を超高真空領域で知るこ とが必要になり,複数の既知の値のコンダクタンスを基 準としてポンプの排気速度を求める方法を考えついた. この方法はOatley氏によって提案されていたが,それを 再発見し新しい工夫を加えることによって,真空系の特 性解析に関する多くの可能性を引き出すことができた. われわれは,この方法をコンダクタンス変調法と呼ぶこ とにした.研究は,岡野君と寺田さんが図16に示すよう

な装置を使って進めてくれた。

この方法による排気速度の測定には,真空容器に流し 込む気体の流量,および真空計の感度係数を知る必要が 無く,真空容器への気体の流し込み位置,真空計の位置 などが結果に及ぼす影響も小さいという特徴がある²¹⁾. そのため,流量が極めて小さくなる超高真空領域におけ る排気速度測定に有効である.実験では,図16のチタン・ ゲッター・ポンプとスパッター・イオン・ポンプの複合 ポンプ系の排気速度を,窒素と水素を導入して2×10⁻⁷ Paまで測定することができた²¹⁾.

真空系内の圧力は、外部から真空容器に流れ込む気体 の流量、および真空容器内での気体放出速度と、真空ポ ンプの排気速度との釣り合いで決まる.また、真空ポン プは、それ自身からも気体を放出しており、その気体を 排気するために、外部からポンプに流入する気体に対す る正味の排気速度が、ポンプが本来持っている固有の排 気速度よりも低下する.真空系の到達圧力付近では、こ れら二つの排気速度の差が大きくなる.

到達圧力付近では、真空容器内での気体放出速度が、 ほぼ一定になっていると考えられるので、真空系に外部 から気体を導入しないでも、コンダクタンス変調法に よって正味の排気速度を求めることができる。その値と、 固有の排気速度の値、および真空容器内の圧力とから、 真空容器内の表面とポンプからの気体放出速度を独立に 求めることができる。そのため、コンダクタンス変調法 によれば、真空系としての特性をかなり明らかにするこ とが可能である²².

図20は、図16の真空系の到達圧力付近において、オリ フィス系をA→B→Aと変えたときの真空容器内の水素 分圧の変化を示す記録である.このような測定により、 コンダクタンス変調法で正味の排気速度を求めると,図 21の矢印の4点のような結果が得られた。到達圧力以外 における測定値は水素を導入して求めたもので、1× 10⁻⁶Pa以上の圧力では前記の二つの排気速度の値が等 しくなる。到達圧力付近では、正味の排気速度が1/ 2~1/4に低下しているが、これは、従来、真空研究者や 技術者が定性的に感じていたことを、定量的に裏づけた 結果になっている²²⁾.また、図21のqwの値は、真空容器 内での気体放出速度を単位表面積当たりに換算したもの で、脱ガスしたステンレス鋼からの気体放出速度の値と して従来得られているものと一致する。

コンダクタンス変調法は,真空ポンプの特性解析や真 空容器の気体放出速度測定に有用である。今後は,真空 系内の気体分子の出入バランスを,定量的に知るために 必要な手法の一つとして発展するものと期待している。

8. おわりに

以上,私の行ってきた研究の一部を紹介させていただ いた。実用表面における付着確率の測定と,真空系の到 達圧力付近の特性解析とは,長年の間,取り組んでみた いと考えていた問題で,その二つを最近の数年間に取り 上げることができ,今後の解明に向けての端緒を開くこ とができたのは幸いであった。今後も暫くの間,真空科 学に関する基礎研究を行う場を与えられているので,こ れらの問題も含めて研究をすすめる考えである。

時間の関係で,ご紹介できなかった表面関係の研究は, 菊田惺志教授に協同研究者として多くのご協力を賜った. また,岡野達雄助教授,三浦忠男君,高橋敏男君,桜井 誠君および,本田融君らが,この面での研究推進の中心 的役割を担ってくださった。研究成果を具体的にご紹介 できなかったことを,お詫びすると共に,心からの感謝 を捧げたい.

図20 到達圧力付近におけるオリフィス系変換に伴う真空容 器内の水素分圧の変化 P_A:オリフィス系Aのときの圧力 P_B:オリフィス系Bのときの圧力

図21 水素に対する排気速度の圧力依存性
P_A:オリフィス系Aのときの真空容器内の水素分圧
S*:ポンプの正味の排気速度
q_w:真空容器内の表面からの気体放出速度

終わりに、真空物理学という専門分野を掲げて、地味 な研究を継続することができたのは、ひとえに、生産技 術研究所という優れた研究環境が与えられたからにほか ならない。衷心より感謝すると共に、今後の所の発展を お祈りする次第である。(1988年9月19日受理)

参考文献

- 1) 辻泰:真空30 (1987) 931.
- H. Okamoto and Y. Tuzi: J. Phys. Soc. Japan 13 (1958) 649. 岡本宏章, 辻泰:応用物理 25 (1956) 20.
- C. Hayashi: 1957 4th Natl. Symp. Vac. Technol. Trans. A.V.S. (Pergamon Press, 1958) p.13.
- 4) Y. Tuzi: J. Phys. Soc. Japan 17 (1962) 218.
- 5) G. Tominaga: Japan. J. Appl. Phys. 4 (1965) 129.
- 6) 富永五郎, 辻泰: 生産研究 15 (1963) 163.
- Y. Tuzi, M. Kobayashi and K. Asao: J. Vac. Sci. Technol. 9 (1972) 248.
- M. Kobayashi and Y. Tuzi : J. Vac. Sci. Technol. 16 (1979) 685.
- M. Kobayashi, M. Kim and Y. Tuzi: Proc. 7th Intern. Vac. Congr. & 3rd Conf. Solid Surfaces (Vienna, 1977) p.1023.

- Y. Tuzi, M. Kobayashi and I. Arakawa: Proc. 14 th Intern. Symp. on Rarefied Gas Dynamics (Tsukuba, 1984) (Univ. Tokyo Press, 1984) p.385.
- M. Kobayashi, K. Terada and Y. Tuzi: J. Vac. Sci. Technol. 18 (1981) 1013.
- S. Komiya, Y. Sugiyama, M. Kobayashi and Y. Tuzi: J. Vac. Sci. Technol. 16 (1979) 689.
- 13) 荒川一郎, 辻泰: 生産研究 31 (1979) 597.
- 14) I. Arakawa and Y. Tuzi: J. Vac. Sci. Technol. 16 (1979) 738.
- 15) I. Arakawa and Y. Tuzi: J. Vac. Sci. Technol. 18 (1981) 1005.
- 16) 荒川一郎,金文沢,辻泰:真空27 (1984) 327, 904.
- 17) I. Arakawa, M. Kim and Y. Tuzi: J. Vac. Sci. Technol. A 2 (1984) 168.
- 18) 寺田啓子, 辻泰, 岡野達雄: 真空 29 (1980) 271.
- 岡野達雄,中山光康,寺田啓子,辻泰: Proc. 6th Meeting on Ultra High Vacuum Technol. for Accelerators and Storage Rings, KEK Rept.87-8 (1987) 69.
- 20) R. Terada, Y. Tuzi and T. Okano: J. Vac. Sci. Technol. A 5 (1987) 2507.
- 21) 寺田啓子, 岡野達雄, 辻泰: 真空 31 (1988) 259.
- 22) 寺田啓子, 岡野達雄, 辻泰: 真空 31 (1988) 473.