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SECOND-MOMENT CLOSURES FOR RECIRCULATING AND
STRONGLY-SWIRLING FLOWS
--Part 1. Turbulence Models--
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Second-moment closures are turbulence models which consist of differential or alge·
braic equations, each governing the balance between generation, redistribution,
dissipation and transport of a related Reynolds stress or a scalar flux. The paper
argues the potential advantages of using such closures in preference to eddy-viscosity
models in the presence of body forces brought about by fluid recirculation, swirl and
buoyancy. Some basic forms of second-moment closure are introduced, and their
numerical implementation is discussed.

1 . INTRODUCTION

Impressive progress has been made over the past

decade in the area of direct and large-eddy simula

tion of turbulent flow, with the latter begining to

yield results not only valuable from a fundamental

viewpoint but also helpful in the engineering

context,,2). Yet, it is the conventional approach,

based on time- or ensemble-averaged formulations,

which has maintained a strongly dominant position 

and seems set to continue doing so - in the field of

computing complex industrially-relevant flows in

which information is sought on mean transport of

heat, mass and momentum, and on the distribution

of design-related global parameters such as wall

pressure, skin friction and heat-transfer coefficients.

A statistically-averaged mathematical frame

work is based on the notion that any instantaneous

flow quantity - say, velocity, pressure, density and

enthalpy - may be represented as the sum of a time

(or ensemble-) mean value and a related turbulent

fluctuation. Insertion of this decomposition into the

instantaneous flow equations, followed by an averag

ing process - involving time-integration or event
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summation, results in a set of equations governing

the distribution of averaged flow quantities. In the

case of momentum components, this process 'trans

fers' the Navier-Stokes to the Reynolds equations.

The principal merit of the above approach is

economy, particularly if attention is focused on statis

tically steady and two-dimensional flow, for in such

circumstances, the computational task reduces from

a fully three-dimensional time-dependent solution to

a two-dimensional iterative one. The penalty of

averaging the parent equations is, however, an

important loss of information, reflected by the

appearance of unknown double correlations - termed

'second moments'. In the case of momentum, these

correlations are the 'Reynolds stresses', while inclu

sion of scalar transport gives rise to further unknown

correlations of scalar and velocity fluctuations re

presenting 'turbulent fluxes'. A pre-requisite for the

solution of the averaged equations is thus a mecha

nism yielding the unknown stresses and fluxes in

terms of known or determinable quantities. This is

what is known as the 'Turbulence Model'.

The key concept underlying most traditional and

well-established approaches to modelling turbulence

effects is the quasi-linear relationship between stress

and strain, analogous to that used for laminar flow,

but in which a flow-dependent 'eddy viscosity' takes

the place of the fluid viscosity. Cartesian-tensor
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notation pernlits the relationship between all six

independent Reynolds stresses in a 3D incompressible

flo、た, ρ%`″グ, and their associated strains to be collec‐

tively vァritten as:

一″万万=ル〔傍+普〕一:ρたら (1)

v′here the last term containillg the turbulence energy,

た=05(%:+%;十 %3), has been included to account

fOr the fact that the sum of the normal stresses must

amountto 2た , even if ali strains are zero.In analogy

to (1), any scalar flux (that of enthalpy, say)is

related linearly to the associated gradient of the

mean scalar value, M/ith the diffusivity being the

proportionality factor and forlned by the ratio of the

above eddy viscosity and an assumed Prandt1/

Schmidt number

Dimensional reasoning dictates that the eddy

viscosity be proportional to a velocity scale and a

length scale of the turbulent motion, and the most

obvious parameters to adopt is the夕 η2簿value of the

turbulence energy, た , and a macro― length scale, L,

representing the  large energy― containing  eddies

v/hich interact most intimately 、 パth the mean

strains. It is readily appreciated that both quantities

cannot simply depend on local flow properties alone

but m“ t be influenced by prOcesses in neighbouring

locations, v/ith convective and diffusive transpOrt

providing theマbridgest.It is this realization v/hich has

led to the forlnulation of a number of ttt、vo―equation

models of turbulence"3), an Containing a modelled

transport equation for turbulence energy and a sec‐

ond equation for L or some combination of力 and ι

( e . g  v o r t i c i t y  c 2 =力ν2 /ι o r  d i s s i p a t i o n  ε=た3′2 / L ) .

The ″ ―ε model of Launder and Spalding4)is the

versiOn M/hich has establiShed itself as the most popu‐

lar modelfor computing a wide range offlov/s― from

simple 2D free Shear floM′ s5)to very complicated 3D

recirculating flovr in jet engine combustors6)and

rotating impeller passages7)

Vヽhile the above models have been found to

return satisfactory numerical solutions in many situa‐

tions, they do not perforFn well in flo、 vs in M/hich

body forces ―  arising from strong curvature, recir‐

culation, sM/irl and buoyancy ―  play an important

role. Such body forces interact differently M/ith dif‐

ferent normal and Shear stresses, and this selective,

or rather discriminatory, influence connot be captur‐

ed by use of a model which relates all stresses to the
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mean field via a single isotropic parameter.

It is helpful to illustrate the above interaction by

focusing on the specific example of streamline curva-

ture in the plane 2D shear flow shown in Fig. 1.

Exact transport equations for the Reynolds stresses

can be derived, and these wiil be introduced later.

Here, it is merely necessary to accept that exact

stress-generation terms contribute to these equa-

tions, and that, for the present thin shear flow, the

rates of generation of the stresses u' ,7 and ua can

be expressed, in terms of stream-line adapted co
―ordinates, as follo、/s:

P滋=-2万〔り十g〕

Pラ = 4 'テ
g

Pラーアリ+(〔″―フ〕∬)
A number of useful qualitative observations may

be made by reference to the above equations; We note

first that the secondary strain U / R tends to increase

P * andhence uu , since 2u2 typically exceeds a' by a

factor 4. This stress is negative, however, and curva-

ture will consequently reduce the magnitude of utt.

Second, the influence of U/R is much stronger than

one might expect, for i ts mult ipl ier in P* is Qu"-

7) wh;ch is much larger than7 , the multiplier of the

primary strain. That 7 is relativeiy small follows

from the observation that P u is not only low but, in

fact, negative. Of course, despite the negative pro-

duction, 7 cannot itself be negative, and this is

ensured by so-called "pressure-stain-interaction"

processes which continuously 'feed' energy from 7 to

u". tne stress 7 can weli afford this loss, for it is

generated at a high rate due to the interaction

between uu and the primary stain OU / or . The final

( 2 )

(3)

( 4 )

Fig. I Curved 2D thin shear flo"v
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point to note is that the curvature-induced reduction

in 7 leads to a further reduction in the magnitude of

uu throrghthe product of tf and the primary strain in

Pw. In summary then, it may be concluded that

curvature selectively attenuates 7 (Aut slightly

increases 71 leading to a substantial reduction in uu .

In addition, za is reduced directly by U/R. Similar

arguments apply to other curved or swirling flows
(where thrbulence may either be attenuate or am-
plified, depending on the sense of curvature) , as well

as to situations in which buoyancy gives rise to terms

analogous to those associated with curvature.

The fact that some essential elements of the

interaction between curvature and turbulence can

only be explained by reference to the individual stress
*generation terms lends strong support to the asser-

tion that a turbulence model expected to yield a high

degree of generality must be based on equations

describing the processes affecting the balance of each

Reynolds stress (and, if appropriate, flux) separate-

ly. Exact forms of these equations can be derived by

somewhat lengthy manipulations and combination of

the Navier-Stokes, the Reynolds and the analogous

scalar-property equations8'e). Adopting, at this

stage, a simple descriptive representation, one may

write the stress and flux equations in the following

form:

Convection (utr4) :Diffusion (2,.a)

*Production (utui)

+ Pressure-strain (utut)
-Dissipation (zaz) (5)

=Diffusion (a.c)

*Production (Zcf

* Pressure-scr ambling ( w )

Convection (aac)

-Dissipation (z;c) (6)

that is, each equation represents a balance between

physical processes which, apart from pressure/strain

and pressure/scalar-gradient interaction, are famil-

iar from mean-flow considerations. In the above

equations, when written in their full , mathematically

correct form, convection and (most importantly)

production need not be modelled, for both only con-

tain mean-flow quantities and the stresses (or fluxes)

themselves. The remaining terms, however, contain

higher-order moments (for example, triple correla-

tions of the form u'u and eaila*l or indeterminable

correlations such as the product of strain fluctua-

tions. It is this which necessitates approximations to

10
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be postulated if the stress and flux equations are to be

closed at second― moment leve1  0f cOurse, these

approximations are certain to introduce errors into

the equations, therby eroding their capabilities Yet,

the expectation is that the retention Of the exact

production terms for each stress, coupled with rea‐

sonably good modelling proposals for diffusion,pres‐

sure―strain and dissipation,M7ould ensure a high level

of generality.

Previous applications of stress/flux mOdels to

curved and buoyant boundary-layer type floM/s10'11)

have, indeed, Shown that the mOdels return the

correct response to the anisotrOpy―promoting agents.

FeM′ studies have fOcused on more complex recir‐

culating flo、v,however, and the little evidence tvhich

has emerged frOln these studies is inconclusive ln a

number Of cases12,13), the response of the turbulence

closures has been completely masked by numerical

errors prOvoked by the use of the first― order upwind

approximation within a hybrid centra1/upwind一 dif‐

ferencing scheme for convection. These errors are

particularly damaging in the context of stress clo‐

sures、vhich do not naturally yield diffusivity―cOntain‐

ing second―order terms enabling the central― differen‐

cing part of the h》あrid scheme to operate without loss

of iterative stability. The absence of such numeri‐

cally stabilizillg terms appears also to have seriously

hindered the use of stress c10sures in combination

M′ith accurate, numerically non― diffusive discretiza‐

tion schemes ln sOme recent instances14-18),stability

problems have been overcome either due to some

artificial diffusion introduced through the use of

ilnplicit Euler―type time―marching or other stability

―
promoting measures

The present paper reports the efforts towards

computing complex recirculating and strongly swir‐

ling floM/s M/ith stress closures. The review starts

、vith a statement of the turbulence models under

consideration There follows an outline of the numer‐

ical framework,with particular emphasis placed on a

brief description of some generally applicable numeri‐

cal measures,  specifically designed to promote

numerical stability v/hen stress closures are used in

CO蒟unCtiOn v/ith non― diffusive discretization 、vithin

the finite―vOlume method.

2 THE TURBULENCE MODELS

Four types of turbulence mOdels have been used
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in computations to be presented in Part 2,and all are

time―averaged  formulations.  One  closure,  an

unweighted (as opposed to density― weighted)stress

―transport model(RSTⅣ I), may be considered the

tmastert or tparentt version from 、 vhich tv′o other

un、veighted forllns may be derived by introducing

additional inodelling assumptions or simplifications.

The fourth modelis a density― weighted version of the

stress―transport model.

The most general co― ordinate framework used in

the computations is cun/ed― orthogonal, and the

models rnay, in principle,be、 7ritten in terms of these

co―ordinates. IIowever, such a forln is unnecessarily

complicated for tlle present purpose of outlining the

principles adopted;indeed, it、 vould impair transpar‐

ency. Instead, the models are introduced in terms of

Cartesian―tensor notation Also, Ivhile the complete

models contain s、 ァirl―related contributions and con‐

sist of coupled equations for the stresses,fluxes and,

most generally, the variance of the turbulent scalar

fluctuations, the forms reported here exclude .swirl

and scalar contributions. Flux and variance equa‐

tions only come into play in the case of tM′o swirling

―flow calculations to be presented, and appropriate

reference v/ill be made later to papers containing

complete model descriptions.Finally,in one swirling

―floM/case,strong density variations occur due to the

mixing between ietS Of Very differellt densities.This

has necessitated the use of density― 、veighted (Favre

―averaged)form Of the stres/flux― transport closure

、/ith inclusion of additional density― related terlns

Here again, this special form is not given, but refer‐

ence is made to a related publication.

The basic form of the parent closure is the ver‐

sion of Gibsonマ&Launder8)(baSed on that of Launder

et all。)), and this consists of modelled transport

equations for the stresses%′″ブ, 、vhiCh may be written

光籍=&〔a滋:望雛〕t

十φ″
一
《1時

ε (7)

where U, are mean-velocity components in the direc'

tions &;

島≡―蕊鋭
―扇傍 (8)

is the generation of the stress ufi, dr; controls the re
-distribution of turbulence energy, k:0.Sutr'r';,

among the normal stresses, and'2/3 d;;e stands for the
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rate of dissipation of the normal stresses by the action

of viscosity. In the above, convection and generation

are exact, while the remaining terms are models of

exact expressions which cannot be used in their

original form as they contain third-order correla-

tions. Thus, diffusion is modelled by a generalized

gradient approximation, while dissipation is assumed

to be isotropic, with each normal stress dissipated at

the same rate, Z/3e, where e is determined from its

own transport equation,

OU"e A (^- f t  Oe ) ,  ^ e D
6 : * r " ' u n h  u  6 1 6 , ) T w E ' L - 2 k  

r k h

~a,2デ (9)

Finally, the redistribution term, d;;, modelling the

interaction between turbulent fluctuations of pressure

and stains, consists of three contributions, namely

Rotta's linear 'return to isotropy' term,

6,^=-9f (ra-i 6, u,,-) (lo)

the 'isotropization of production' term,

6 i ; . "= -c , ( " " - t  6 , ,  Puu)  ( l l )

and the 'wal1-reflection' terms,

a / . -  2

6 , i , , :  Cr ,  *  ]U  
uuu,non.6 i i ^  

f l1  
u  eu ;n  en i

-317扇蕩πたの十Cんφ"′π々ππ島

~シφ′ら2%η々シ傷″%たの
where the suffix '/'takes the same numerical value as

?' with no sumn'tation implied in this instance only,

and nt is the unit vector normal to the i-direction.

The above is, essentially, a vectorial interpretation

of a model combining suggestions by Shir'zo) and

Gibson and Launder8), and is meant to account for the

simultaneous influence of r'-and !'-directed walls

on normal-stress anisotropy. This influence is ex'

Fig. 2 Wall-related distances in functions J and I
(equation 13)

(12)

11
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pressed via the functions (applicable to plane cases

only),

ス=森
 〔分

+券 〕 兎
=尭

 〔分
+力 〕 (19

M/hich represent ratios of a turbulence length scale to

equivalent wall distances, where χ ι, χ2,夕 r andノ ,

are actual distances to surrounding wans, as illus‐

trated by the example sho、 /nin Fig 2

The∝ cond closure is a so―called algebraic stress

mOdel(ASM), and the particular version presented

here arises upon the replacement of the differential

stress―convection and diffusion terms by Rodi's

proposa121),

“b一 D♪ →
考絆

( C―D )型
争

( P―ε) (14)

where C, D, P and e represent convection, diffu-

sion, production and dissipation of turbulence

energy, respectively. There terms arise in the trans-

port equation for the turbulence energy,

響 =&〔Q蒻 :幾〕十P一ε (15)

which is simply half the sum of the transport equation

of the normal stresses u?. 'fne essential feature to

note here is that, once ft and e (and hence P) have

been determined from the differential equations (15)

and (9), equations (7), incorporating the model

(14), couple the stresses algebraically.

The final and simplest unweighted closure, used

here merely to generate 'reference predictions'

against which stress-closure calculations can be

compared, is the Boussinesq-viscosity &-e model

(EVM)4). This assumes stress-strain relationships

involving an isotropic eddy viscosity,

―蒻=場〔普+彎〕 (16)

The viscosity is related, by dimensional arguments,

to the turbulence energy and its dissipation rate via

ヵ=0∠ (17)

where & and e are determined from equations (15)

-  A b  ,  ^ -  O e
and ( 9 ) with C" unut ff and Ct uhut *- replaced by

On oIL

^  a k  , o e
a-p R --- ano vr/ 6e R u , respectively, where o. is' 

dXn OXh

a Prandtl number.

Extended forms of the Reynolds-stress-transport

equations for uniform-density swirling flow may be

found in refs2"'""), while mass-averaged forms for

12
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Table l  Coefficients appearing in three closures

C l C 2 供 α α α Cε. Cε,2 α υ C.″

0 22 0 16 0 09 1 3 1 45 1 92 0 5

swirling flow, including scalar-flux and variance

equations, are documented in ref'?a). Finally, a ver-

sion of the algebraic stress closure applicable to

general-orthogonal co ordinates is given in ref'5).

3 . NUMERICAL IMPLEMENTATION

Discretization of the transport equations govern-

ing mean and turbulence properties is based on the

staggered finite-volume approach. The principles of

this approach, as well as the underlying rationale for

staggering the volumes pertaining to mass conserva-

tion and momentum components U and V , are well

known and will not be pursued here. A logical exten-

sion of the above rationale, previously used by

Poper3) and adopted here, is to stagger the locations

of the stresses (and fluxes, if applicable) and their

associated volumes, as shown in Fig. 3.

The main advantage of this practice is increased

numerical stability - a result of the strong coupling

established between the stresses (or fluxes) and the

associated 'primary' strains (or scalar gradients).

Focusing on the shear stress h6 as an example, it

will be observed that stress is located such that the

discrete velocities used to approximate the strain

GU /ar + aV /ax) straddie this stress centrally. A

useful consequence of this practice is that the stresses

are located such that no interpolation is involved in

evaluating stress differences required for the finite
-volume equations.

The convective fluxes appearing in any finite

|

Fig. 3 Staggered stress and flux arrangement
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―volume equation are approximated by the poM′ er

law differencing scheme(PLDS)of Patanker26)。 r,

alternatively, by the quadratic upstream― 、veighted

scheme(QUICK)of Leonard2つ  The latter has been

used as a means of indicating the degree of grid

―independence, for this ∝ heme is, in contrast to

PLDS,unaffected by artificial diffusion The numeri‐

cally  non―diffusive  character  of  the  quadratic

scheme, combined 、 vith the absence of naturally

―arising second―order(physical)diffusion terms,and

the inten∝  coupling betv/een the equations, neces‐

sitated the introduction of a series of special algorith‐

mic measures designed to enhance numerical stability

and hence convergence. One important measure,

documented in detall in ref28), inVolves the repre∞ n‐

tation of a particular portion of each ReynOlds stress

by means of an associated apparant viscosity As

shown in ref 28), suCh a representation is offered by

the di∝retized version of the related stress―transport

equation v/hich equates the stress to a collection Of

additive contributions, one of 、 vhich consists of a

group of unconditionally positive quantities rnultiply‐

ing the primary strain v/hich is associated M′ ith the

stress in question A silnilar practice is adopted in the

case of the algebraic mOdel, only that in this case

attention is focused directly on the algebraic equation

governing the stress. An analogous strategy is also

applied to flux equations.

A second measure v/hich has been found to be

beneficial tO stability in the case of stress―transport

computations entails a discriinination betl■ reen posi‐

tive and negative contributions to the source of any

one discretized equation at all grid points, and al‐

locating contributions according to

Sプ=Sび ,″+SP,″ %,総(no summation on′,ノ)

(18)

where Sυ  combines all positive and SP al negative

contributions.

Finally, an important stability―promoting prac‐

tice adopted in conJunction、vith the algebraic model

involved a coupled solution of the normal― stress

equations, v/ith the coefficients of the equations re

―arranged in such a way that the system al、 vays

returns positive values for the stresses.FolloM′ing the

solution of this system, the remaining Shear― stress

equations are solved explicitely.Details of this prac‐

tice may again be found in ref23)
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4. CONCLUDING COMMENTS

An outline has been provided of recent progress

made in computing complex recirculating and strong-

ly swirling flows with Reynolds-stress closures anc

non-diffusive discretization within the finite volume

framework. Many results reported suffice to illus-

trate that stress closures provide a superior represen-

tation of turbulent transport processes to that retur-

ned by the Boussinesq-viscosity model. This applies

both to mean-f1ow and turbulence features, the latter

being of particularly importance in the context of

heat transfer and scalar transport.

(Manuscript received, March 2, 1988)
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