鉄筋コンクリート造弱小モデルによる地震応答観測 -----1987年12月17日千葉県東方沖地震による応答記録-----

Observation of Earthquake Response of Reinforced Concrete Weak Model Building Structures ——Response Due to Chiba Earthquake on December 17, 1987——

> 岡田恒男*•隈澤文俊*•西田哲也* Tsuneo OKADA, Fumitoshi KUMAZAWA and Tetsuya NISHIDA

1.はしがき

鉄筋コンクリート造弱小モデルによる地震応答観測は, 『自然地震による地盤・構造物系の応答および破壊機構に 関する研究』の一環として行われている.本速報では, 千葉県東方沖地震(1987年12月17日, M=6.7)において 観測された弱小モデルの応答性状について報告する.

2. 鉄筋コンクリート造弱小モデル

弱小モデルは実物の1/3~1/4の5層建物で,図1に示 すように階高1m,スパン2.5mの純ラーメン構造であ る.試験体は崩壊形の違いにより,柱崩壊型モデル(柱 を梁より弱くしたモデル),梁崩壊型モデル(梁を柱より 弱くしたモデル)の2種類があり,中小地震でも損傷が 生じるように,いずれも設計上の耐震強度を意図的に通 常の建物の約1/2と低くしている.柱崩壊型モデルの柱断 面は10×10cm,梁崩壊型モデルの梁断面は10×12cmで ある.各試験体は図2に示すように配置され,各層3方 向絶対加速度・層間変位,主要鉄筋の歪等の計測を行っ ている.

3. 観 測 結 果

〈入力地震動〉

弱小モデルが設置されている東京大学生産技術研究所 千葉実験所は, 震央から西北45kmのところに位置して おり,柱崩壊型モデルの脇,地下1mにおいて観測された 地動加速度の最大値は,南北成分400gal,東西成分223 gal,上下成分124galであった.図3,4に地動加速度時 刻歴とその加速度応答スペクトルを示す.0.15~0.2秒の 短周期成分が卓越しており,減衰定数0.05の場合でも最 大値が2,000galにも及んでいる.

<弱小モデルの応答記録>

この地震により観測開始以来,最大規模の応答が観測 された.各試験体の応答層間変位の時刻歴を図5に,最 大応答値を表1に示す.

柱崩壊型モデルの場合,図6より層間変位の最大値付 近では、X方向は1次振動、Y方向に2次振動が卓越し ていることがわかる。また、Y方向の最大加速度が中層 階で大きくなっているのも2次振動の影響である。

梁崩壊型モデルでは、図6よりX、Y両方向とも1次 振動が卓越していることがわかる.X方向の最大変形量 は層間変形角にして1/100に達している.

次に,各試験体の地震時およびそれ以前の固有周期を 表2に示す.この地震により受けた損傷の影響で固有周

図 1

形状図

RFL

5FI

4F]

3FL 2FL

1FL

期が著しく伸びたことがわかり、それに伴う剛性低下が 図7に示したせん断力-層間変位関係において確認でき る.また、この図から両試験体とも曲げ降伏変位を越え た塑性範囲に入ったものと考えられる。地震時に作用し た最大せん断力はベースシアー係数にして柱、梁崩壊型 モデルで、それぞれ0.19、0.33であった。

図4 加速度応答スペクトル

4. 各試験体の損傷

各試験体の亀裂発生状況を図8に示す. 柱崩壊型モデ ルでは各層の柱頭,柱脚に多数の曲げ亀裂が発生し,X, Yの方向による差異は見られない.一方,梁崩壊型モデ ルでは3階床面のほかに2,4階床面にも梁端部にスラ ブを貫通した亀裂が見られた.それらの亀裂はX方向が Y方向に比較して多く,この関係は,表1における各方 向の最大層間変位の関係と一致していることがわかる.

表1 最大応答値

(a)柱崩壊型モデル

	方向	最大加速度 (gals)
R階	X Y	411 591
5 階	X Y	299 313
4 階	X Y	391 633
3階	X Y	388 767
2 階	X Y	$\begin{array}{c} 374\\ 419 \end{array}$
1階	X Y	$\frac{260}{468}$

万向	僧間変位 (cm)	層間変形角 (rad.)
X Y	0.38 0.57	1 /265 1 /175
X Y	0.84 0.79	1 /120 1 /125
X Y	0.86 0.61	$rac{1\ /115}{1\ /165}$
X Y	$ \begin{array}{c} 0.86 \\ 0.69 \end{array} $	1 /115 1 /145
X Y	0.95 0.72	1 /105 1 /140
	向 X Y X Y X Y X Y X Y X Y X Y	fri (cm) X 0.38 Y 0.57 X 0.86 Y 0.79 X 0.86 Y 0.61 X 0.86 Y 0.69 X 0.95 Y 0.72

(b) 梁崩壊型モデル

	方向	最大加速度 (gals)
R階	X Y	582 705
5階	X Y	512 522
4階	X Y	488 208
3階	X Y	364 423
2階	X Y	352 511
1階	X Y	285 258

_	 			
		方向	層間変位 (cm)	層間変形角 (rad.)
	5 層	X Y	$\substack{0.17\\0.20}$	1 /590 1 /500
	4 層	X Y	$\substack{0.63\\0.51}$	1 /160 1 /195
	3 層	X Y	$\begin{array}{c} 0.99\\ 0.72\end{array}$	1 /100 1 /140
	2層	X Y	$\begin{array}{c}1.01\\0.65\end{array}$	1 /100 1 /155
	1層	X Y	$\begin{array}{c} 0.65\\ 0.36\end{array}$	1 /155 1 /280

表 2 固有周期変動

崩壞型	次	1987.12.17.の地震				
	数	以 前	地震時			
柱	1	0.4	0.7			
	2	0.2	0.25			
梁	1	0.3	0.5			
	2	0.09	0.1			

(単位; sec.)

(D))	楽朋環型モナル
図 5	屃	古答層間変位時刻歷

	柱 崩 壊 型 モ デ ル						
		X 方 向			X方向		
	1 層層間変位 の最大時	3 層層間変位 の最大時	5 層層間変位 の最大時	1 層層間変位 の最大時	3 層層間変位 の最大時	5 層層間変位 の最大時	全層層間変位 の最大時
変位分布	$ \begin{array}{c} \mathbf{R} \\ 5 \\ 4 \\ 3 \\ 2 \\ -3 \text{cm} \\ 3 \text{cm} \end{array} $	-3cm 3 cm R	$-3 \text{cm} \qquad 3 \text{cm} \qquad R \\ 5 \\ 4 \\ 3 \\ 2 \\ 3 \\ 3 \text{cm} \qquad R $	$\begin{array}{c c} R \\ 5 \\ 4 \\ 3 \\ 2 \\ -3 cm \\ 3 cm \\ \end{array}$	-3cm 3 cm R	$ \begin{array}{c} R \\ 5 \\ 4 \\ 3 \\ 2 \\ -3cm 3cm \end{array} $	$\begin{array}{c} R \\ 5 \\ 4 \\ 3 \\ -3 cm \\ 3 \\ cm \\ cm$
加速度分布	R 5 4 3 2 -600gal 600gal	R 5 4 3 -600gal 600gal	4 3 2 1 600gal 600gal	4 5 R 4 3 2 -600gal 600gal	R 5 4 600gal 600gal	R 5 3 600gal 600gal	R 5 4 3 2 -600gal 600gal

変位および加速度分布図 図 6

(1) 応答は観測開始以来最大で、各試験体の被害程度 は通常の被害度分類によると中破から大破と判断された. (2) 応答は両試験体ともほぼ降伏域に達したと考えら れる.

(3) 地震時に卓越した振動形および亀裂性状は、設計

地震応答観測,生産研究,35巻9号,1983.9.

- 2) 岡田,田村:鉄筋コンクリート造建物弱小モデルによる 地震応答観測(第2報),生産研究,36巻9号,1984. 9.
- 3) 昭和62年度文部省科学研究費補助金 (一般研究 B) 研究 成果報告書(代表者,東京大学生産技術研究所 岡田恒 男,課題番号61460171),1988.3.