谏

究

UDC 669.715-138:621.771.23:621.73

アルミ合金粉末の半溶融複合加工 第3報

Complex Mashy-State Processing of Al-Alloy Powder • 3

木内 学*•杉山 澄雄*•高木茂 義** Manabu KIUCH, Sumio SUGIYAMA and Shigeyoshi TAKAGI

1.はじめに

粉末素材を出発原料とする粉末冶金法は、従来の溶解 鋳造工程では得にくい合金組成を容易に実現可能なこと、 また、非金属強化材を金属基材中に均一に分散させうる ことなど、混合、複合化などの面で、他の加工法にはな い特徴を有している。しかし、粒子表面に強固な酸化被 膜を有するアルミニウム合金粉末においては、酸化皮膜 の除去なしに粒子間の完全な接合を得ることは難しく、 また、アルミナ等の非金属強化材を含む場合には、接合 は一層困難となる。

筆者らが開発を進めている半溶融加工法は、固液共存 の状態に加熱した金属粉を加工することを目指しており、 液相成分による金属粒子間あるいは金属基材と強化材と の結合を実現しようとするもので、簡便かつ有用な加工 法である。

既報¹¹²では、主に、アルミニウム合金粉末を複合加工 (半溶融鍛造および熱間あるいは冷間圧延)することによ り得られた板材について、機械的性質等を調べ、また、 一部、アルミナ粒子を強化粒子として含む複合材も製造 可能なことを示した。本研究では、3種類の複合加工条 件のもとで、アルミニウム合金粉末より製造された板材 の特性を、強化粒子を含む場合、含まない場合を比較し つつ、その内部組織、硬さ、曲げ性の点から評価検討し た結果について報告する。

2.実験方法および条件

実験条件等を表1に示す.マトリックス素材として使 用したA6061合金は,既報では用いていない合金である。 表2に試料の複合加工条件を示すが,標準的なプロセ スであるtype I では,まず,アルミニウム合金粉とアル ミナ粉との混合粉を型内に入れ,室温にて予成形し,そ の後半溶融鍛造により,80×40×3~8mmの試片を作

*東京大学生産技術研究所 第2部

製した、次にこの試片を、厚さ1mm程度にまで熱間圧延 および冷間圧延して製品板材を製造した。typeIIのプロ セスは、冷間圧延時に途中焼鈍 ($450^{\circ}C \times 1hr$)を混じえ るものである。また、typeIIIのプロセスは、予成形の

表1 実験条件および実験装置

Material				
matrix	A6061 air atomized powder			
	(-#250; max. 63µm)			
reinforcing particle	Al ₂ O ₃ powder			
	(#400; about 37µm)			
Pre-forming	31kg/mm², room temp.			
Mashy-state forging				
solid fraction	75%			
pressure	20kg/mm ²			
holding time	60 sec			
Rolling				
rolling temp.	hot : 550°C, cold : room temp.			
lubrication	no lubricant			
interstage annealing	450°C×1hr, air cooling			
Equipments				
forging press	oil hydroulic press			
	max. capacity: 100 ton			
rolling mill	two-hight mill			
	roll size: ϕ 250×110 ^w mm			
rolling speed	60 r.p.m.			
• • • • • • • • • • • • • • • • • • • •				

表2 試料の複合加工条件

^{**}受託研究員(住友軽金属工業㈱)

group of type of specimens processing	type of	volumetric fraction of	reduction in thickness /%		
	reinforcing particle /%	hot	cold	total	
А	Ι	10	30	0~77	30~84
В			48	0~87	48~93
С			68	0~53	68~85
D			83	0	83
E	II		30	76(AN.)	83
F			48	68(AN.)	
G	Ι	0	48	29~74	62~87
Н	III	10	48	25~65	58~83

表3 試料の製造条件

* AN.: interstage annealing

後,半溶融鍛造を省略して熱間および冷間圧延を行うプ ロセスである.

表3に各種製品の製造条件を示す.製品の類別をする ため、以下、試料A~Hと呼ぶ.試料A~Dは、強化粒 子を体積含有率で10%含む複合粉末をtype Iの製造工 程によって加工したものであり、熱間圧下率と冷間圧下 率を種々変化させてある.試料E~Fは、同じく強化粒 子の入った粉末を、途中焼鈍を混じえるtypeIIの工程で 加工したものである.また、試料Gは、強化粒子の有無 の有意差を、試料Hは、半溶融鍛造の有無の有意差を試 料Bと比較するためのものである.

3.実験結果および考察

3-1 マトリックス粒子の展伸状況

specimen : B group

reduction in thickness/% :

図1に製品内部のマトリックス粒子の展伸状況を示す。 総圧下率の増加に伴って、マトリックス粒子が圧延方向 に展伸されるようすが顕著である。この粒子厚みの変化 を測定した結果が図2である。冷間圧下率が50%以上に なると、熱間圧延後の粒子厚みに関係なく、冷間圧延後 の最終製品内部の粒子厚みは、3µm以下となることが わかる。このような測定によって等粒子厚み線図を求め たのが図3であり、冷間圧下率および熱間圧下率と圧延 後のマトリックスの粒子厚みの関係が明らかである。

3-2 硬さに及ぼす圧下率の影響

ロックウェル硬さ試験機のFスケールで硬さを測定し た結果が図4であり、強化粒子を含んでいるものについ ては、強化粒子とマトリックスの平均的な硬さとなって いる. 試料Bは、強化粒子を含んでいるにもかかわらず、 圧下率75%程度までは強化粒子を含まない試料Gより硬 さは低くなっている.

一方,マトリックス部分のみの硬さを測定した結果が 図5である。測定はマイクロビッカース硬さ試験機を用い,荷重200gにて行った。図4にも増して,試料Bと試料Gの硬さの隔たりが大きくなった。これは,図6に示

図2 粒子厚みに及ぼす冷間圧下率の影響

10µm

(c) (d)

(a) (b)

35 67 87

図6 強化粒子の存在有無による粒子の展伸状況の相違

すように、試料Gでは粒子がほぼ均一に展伸されている のに対し、強化粒子が存在するとそれが粒子の展伸に対 して障害となり、粒子は湾曲し、個々の粒子の中でも厚 みの大きい部分と小さい部分とができ、不均一な展伸状 態となる.この展伸状態の差が、マトリックスの硬さの 差に影響を与えているものと思われる.また、図4では 図5より試料B、G間の差が縮まっているが、これは強 化粒子自体の硬さが寄与しているものと考えられる.

ところで、半溶融鍛造をしていない試料Hについては、 図4、5においてどちらも試料Bより高い値を持つこと がわかる。この原因については、推測の域を出ないが、 半溶融鍛造過程において溶融したマトリックス粒子表面 あるいは結晶粒界の再凝固相が、硬さを低下させている ことも考えられる。

Cold reduction in unckness/ /

図7は、試料E、Fについての硬さの測定結果である。 この試料E、Fの途中焼鈍のタイミングについては、総 圧下率を83%と一定とし、焼鈍回数が1~3回となるよ うに冷間圧下率を振り分けた。横軸に最終焼鈍後の冷間 圧下率をとり整理したが、最終冷間圧下率が増加し、加

40巻2号(1988.2)

工硬化が進むに従い硬さもほぼ単調に増加している。 3-3 曲げ性に及ぼす圧下率の影響

本実験では、曲げ変形をしたときのポンチ押し込み量、 および曲げ部先端の外半径によって、曲げ性を評価した。 曲げ変形は図8のように、先端部の半径が5mmのポン チを用い3点曲げによって与えた。支え中心間の距離は 70mmの一定とし、最大押し込み量は30mmである。

試料B, G, Hについての曲げ性を示した結果が図9 である、曲げ先端部外周に亀裂が入ったときのポンチ押 し込み量を左縦軸に、そのときの先端部外半径を右縦軸 にとった。半溶融鍛造をしていない試料Hは、粒子間の 接合に難があるため、試料Bと比較して、曲げ変形量は 少ない結果となった.しかし、どちらの試料においても 冷間圧下率が増加すると、曲げ変形量が増加する傾向と なった、これは、圧下率の増加によって粒子間の接合が 促進されること,あるいは,粒子の展伸の度合が増すこ とによる粒子間の接触面積の増大が接合強度を向上させ ること等の理由が考えられるが、これらのメカニズムを 知るためには、圧延圧力と粒子の展伸度のより詳細な関 係を検討する必要があり、今後の課題である。また、試 料Gについては、ポンチ押し込み量が30mmではほとん ど亀裂が発生せず,曲げ性は良好である.これは強化粒 子がないため、強化粒子とマトリックス粒子の境界にお ける応力集中による亀裂発生がないためと考えられる。

図10には、試料BとGの焼鈍材(400°C×3hr)をU曲 げした例を示す。焼鈍すると試料Bでもかなりの曲率で U曲げが可能であり、また試料Gでは、同等の板厚にお いて密着曲げが可能なことを示している。

試料E, Fについての曲げ性を示したのが,図11であ る.最終焼鈍後の冷間圧下率が増加するに従って曲げ変 形量は減少しており,これは,焼鈍後の加工ひずみの量 に依存するものと考えられる.

4.ま と め

半溶融加工法の応用に関する研究の一環として、半溶

図11 曲げ性に及ぼす焼鈍後の冷間圧下率の影響

融鍛造,熱間圧延,冷間圧延,途中焼鈍を複合的に適用 することにより,強化粒子(アルミナ)を10vol.%含有す るA6061合金の複合材(一部A6061合金のみ)を製造し, 加工条件と内部組織,硬さ,曲げ性の関係を調べた結果, 以下のことがわかった.

(1) マトリックス粒子は、圧下率の増加に伴い展伸され、熱間圧延後の粒子厚みによらず、冷間圧下率が50%以上となると、製品内部の粒子厚みは、3µm以下になる。また、強化粒子が存在するとそれが障害となり、マトリックス粒子は湾曲し、不均一な展伸状態となる。
(2) マトリックスの硬さは、強化粒子のないもののほうが高いが、強化粒子を含めた硬さでは、マトリックスのの硬さを比較する場合ほど、両者の差は大きくない。また、半溶融鍛造をしないもののほうが、半溶融鍛造をしたものより硬さは高くなるが、理由は明確ではない。
(3) 冷間圧下率の増加に伴い、曲げ変形能はわずかながら増加する。また、強化粒子を含まないものは変形能が高い、一方、半溶融鍛造を実施しないものは、粒子の接合性が十分でないため、変形能は低い。

(4) 強化粒子を含む材料について、冷間圧延時に途中 焼鈍を実施すると、最終焼鈍後の冷間圧下率の増加に 伴って製品の硬さは増加し、逆に曲げ変形能は減少する。

なお,諸特性に及ぼす粒子の接合性,粒子の展伸度等 の影響については,いまだ不明な点が多く,今後,さら に追求し明らかにすることが課題である.

(1987年10月1日受理)

参考文献

1) 木内,杉山,富岡,山本:昭61春塑加講論,(1986),571

2) 木内,杉山,山本:37回塑加連講論,(1986),235