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A Note on Finite Element Synthesis of Structures (Part 1)

--Shift Synthesis of Vibration Eigenpairs-­
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2. Statement of problem

3. Formulation based on vectorical constraint

The upper bar indicates the values for the baseline

design hereafter. The change of the eigenpairs in the

vicinity of the baseline design can be approximated

by means of the Taylor series expansion with respect

to the design variables an and truncated at the first

order of them. The problem is to determine the design

variables of N in total number to attain the objective

eigenpairs of a certain mode.

objective design is sought as near the baseline design

as possible while the constraint conditions set for the

attainment of the objective design is imposed in terms

of the Lagrange multiplier method. The numerical

example is concerned with the determination of the

bending stiffness to realize the determinate shift of

the eigenvalue and eigenvector of undamped flexural

vibration of beams.

Suppose that a baseline design or prototype

design is well identified so that the stiffness matrix

[K] and mass matrix[M] are known together with

the eigenvalue "I and eigenvector {4>} as the solution

of the following eigenvalue problem Eq, ( 1) .

([K] -"I[M]){4>} = {O}

1 , Introduction

A new approach is proposed for the strctural

synthesis by means of the finite element method for

the purpose to determine the structural parameters

required to realize certain objectives of the structure

under interest. It has been made easy to analyse the

structural response with respect to the given set of the

structural parameters by use of numerical methods

such as the finite element method and boundary

element method, owing to the fact that the uniqueness

of the solution holds for linear systems. On the other

hand, the structural synthesis in the sense of the

determination of the structural parameters for the

given set of objective response is still a difficult

matter to cope with in inverse problems of structures,

because that a same response can be attained by

different combinations of the structural configuration

and parameters.

A number of literatures have been published so

far on the techniques of structural optimiza­

tion')·2).3)..),5). The basic notion employed to develop

the techniques is to determine the design variables so

that a functional, usually comprised of the error

defined somehow in regard to the difference between

the objective design and baseline design, is minimized,

This notion seems to result in many numbers of the

iteration required until the design variables converge Suppose that the objective eigenvalue A. and

to the objective design. The reason is that the design eigenvector components of I in number {<p} I are

variables are likely to be diversified in the course of prescribed. A functional It is introduced in the form

the error minimization. This note presents two of Eq. ( 2) so that an objective function comprised of

formulations of the shift synthesis based on the notion the sum of squared design variables is to be

that the design variables are determined so that the minimized under the conditions of a scalar constraint

*Dept. of Applied Physics and Applied Mechanics, for the eigenvalue and a vectorical constraint for the

Institute of Industrial Science, University of Tokyo eigenvector by use of two Lagrange multipliers p-, and
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Fz. This formulation means that the objective

structure is sought as near the baseline design as

possible and the objectives of ,l and \6j tare attained

by the first order approximation of the eigenpair

change.

Πl=,α夕+μl(λ―π―ゝλ′″α″)2+ルLε」{ε) (2)

In the above, {e} indicates a vector of / degrees of

freedom corresponding to the difference between the

objective vector components and the baseline ones as

given below.

{ε}=(φ),一{φ)ι-21{φ力}ι% (3)

The first order rates of change, in other word,

sensitivities of the eigenvalue ,t l and eigenvector

{6L } ' with respect to the design variables a, can be

computed on the basis of the first order perturbation

technique6).

4 . Formulation based on scalar constraints

In this formulation, the objective eigenvector

components of / in number are dealt with individualiy

so that ali the objectives including the eigenvalue are

indicated as r; standing for scalar vaiables of L:Ii

/ in total. The functional II, in this formulation is

constituted by the same notion of minimizing the

change of the design variables as given in Eq. ( 4 ) by

use of the Lagrange multipliers of Z in number. In Eq.

( 4) , x' indicates the objective eigenvalue and xi U:

2-L) Ihe objective eigenvector components.

Π2=Σα免十Σμ,(均―均一Σ χtt α2)2 ( 4 )

5 . Determination of en and p,

The design variables a, and Lagrange multipliers

pi can be determined by the following conditions so

that the aforemmentioned functional [I is minimized.

裁
= 0

説=0

二乃{(場
~場)2_2(均―ろ)21χLし

幸長

(7)
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(8)

The vaiues of an and pi obtained as the solution of Eq.

( 8 ) are not exact because that the first order

approximation is employed to estimate the eigenpair

change and to calculate the functional. It is necessary

to repeat the procedure by means of changing the

baseline design obtained by the current values of a,

unti l  the solut ion ol an=0 tor x;- l  is obtained.

6 . Numerical examples

Two numerical examples are given to show the

comparison and validity of the formulations in regard

to the vibration of a cantilever and that of a truck

chassis modeled by beam elements. The moment of

inertia of the section of the beam is taken as the

design variables while the other parameters such as

the beam element length, cross-sectional area of the

beam, Young's modulus and mass are kept constant.

A stiffness matrix for the beam bending is

formulated newl1' ly taking the moment of inertia 1

at two nodes as variable and assuming the linear

distribution of the moment of inertia in an element

for the purpose to chase the change of the beam shape

by the elements of small number. It turns out that the

change of the moment of inertia at a node causes the

change of the stiffness matrices of the elements on

both side of the node.

Cantilever beam

The first numerical example is concerned with a

cantilever of 100mm in length and 415 Hz in the

natural frequency for the first mode of the initial

0.51 by use of five finite elements with six design

variables of the nodal moment of inertia. Figure 1

速
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的

μ‐
．
‥

μ

π= 1´ レヽⅣ

ノ=1～ι

(5)

(6)

The result is summarized in the matrix form of Eq.

(8)for the case of Eq (4)by use of the first order     desigla v′
ith the uniform moment of inertia7) The

approximation of the squared tem in the form Of Eq      problem aiined at is to reduce the eigenvalue to λ
 =

( 7 ) wiith respect to an in order to hnearize Eq. ( 5 )

in regard Lo an and pt
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shows the convergence of the eigent'alue due to the

structure modification based on the formuiation

stated in rection 3. It is seen that the objective

eigenvalue of 0.5,i can be attained by small iteration

number of eight. Figure 2 shorvs the convergence to

the objective eigenvector components of u,":g.gu'"

and wu-Q.g-, for the two points of A and B

indicated in Fig. 1. A11 the eigenvector is normarized

so that the largest deflection component of the

eigenvector remains unity in this study. This figure is

obtained b)'the formulation based on the vectorical

constraint of L 6)F I uo, uu). This fonnulation

gives rise to meandering convergence and requires

many iteration numer. Figure 3 shows the result of

the same shift obtained by the formulation based on

the scalar constraints stated in section 4. It is obvious

that the scalar type formulation is superior to the

vector type one due to the fast and monotonic

convergence.

NUn/1BER OF ITERATIONS F√

Figure l  Convergence of eigenvalue due to

structure modincatiOn

NUMBER OFITERATIONS Ⅳ

Figure 3  Convergence of eigenvector compOnents due to

structure modificatiOn(scalar cOnstraints)
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Truck chassis model

The second example deals with the flexural

vibration of a truck chassis modeled by use of 30

elements simply supported at two points. The initial

momement of inertia 7 is taken equal to 0.141 x 10-n

ma, and the weight loaded on the chassis is 64.1kN

resulting in the natural frequencies of 4.42 and 9.83

Hz for the first and second modes 7). The mode shape

and resulted distribution of the moment of inelrizr

corresponding to ihe eigenveector shift of w" _ 0.8i"

and, wu -9.2*u are shown in Fig. 4. Those with the

additional shift of the eigenvalue to 1.2,1, are shown

in Fig. 5.

NUMBER OFITERATIONS Ⅳ

Figure 2  Convergence of eigenvector compOnents due to

structure modification(vectOrical cOnstraint)
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LOCATION ALONG BEAM

Figure 4 Mode shape and distribution of moment o1
inertia after structure modification for
eigenvector change only
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The fast convergence implies that the

formulation can be applied to large scale problems. It

is worthy to note, however, that the combination of

the objective eigenpair should be chosen judisciously

as well as the design parameters. Even in the simple

cases described herein, the structural modification is

unable when the deflection and rotation components

at two adjacent nodes are prescribed randomly so

that the smooth shape of the eigen mode is violated.

It is therefore recommendable to choose the

eigenvector components of limited number and trr

assign indeterminacy to the objective eigenpairs in

case of large scale problems.

(Manuscript received, August 12, 1987)
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Figure 5 Mode shape and distribution of moment of inertia
after structure modification for eigenpair change

7 . Concluding remarks

This note presents two formulations for the shift

synthesis, by which the structural modification

required for the given shift of the eigenpairs of

undamped linear vibration systems is obtained, on the

basis of the finite element modeling and sensitivity

study. The basis of the formulation is to seek the

objective design near the baseline one while the

response change to the objective design is chased by

the first order approximation regarding the design

variables, which is employed as the constraint

conditions and incorporated in terms of the Lagrange

multiplier method. It is shown that the formulation

based on the scalar constraints results in the fast and

monotonic convergence'
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