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A Note on Finite Element Synthesis of Structures (Part 1)
——Shift Synthesis of Vibration Eigenpairs——
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1. Introduction

A new approach is proposed for the strctural
synthesis by means of the finite element method for
the purpose to determine the structural parameters
required to realize certain objectives of the structure
under interest. It has been made easy to analyse the
structural response with respect to the given set of the
structural parameters by use of numerical methods
such as the finite element method and boundary
element method, owing to the fact that the uniqueness
of the solution holds for linear systems. On the other
hand, the structural synthesis in the sense of the
determination of the structural parameters for the
given set of objective response is still a difficult
matter to cope with in inverse problems of structures,
because that a same response can be attained by
different combinations of the structural configuration
and parameters.

A number of literatures have been published so
far on the techniques of structural optimiza-
tion23)98 - The basic notion employed to develop
the techniques is to determine the design variables so
that a functional, usually comprised of the error
defined somehow in regard to the difference between
the objective design and baseline design, is minimized.
This notion seems to result in many numbers of the
iteration required until the design variables converge
to the objective design. The reason is that the design
variables are likely to be diversified in the course of
the error minimization. This note presents two
formulations of the shift synthesis based on the notion
that the design variables are determined so that the
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objective design is sought as near the baseline design
as possible while the constraint conditions set for the
attainment of the objective design is imposed in terms
of the Lagrange muitiplier method. The numerical
example is concerned with the determination of the
bending stiffness to realize the determinate shift of
the eigenvalue and eigenvector of undamped flexural
vibration of beams.

2 . Statement of problem

Suppose that a baseline design or prototype
design is well identified so that the stiffness matrix
[K] and mass matrix[M] are known together with
the eigenvalue A and eigenvector {4} as the solution
of the following eigenvalue problem Eq. (1).

([K]-2[MD{$}= {0} (1)
The upper bar indicates the values for the baseline
design hereafter. The change of the eigenpairs in the
vicinity of the baseline design can be approximated
by means of the Taylor series expansion with respect
to the design variables «, and truncated at the first
order of them. The problem is to determine the design
variables of N in total number to attain the objective

eigenpairs of a certain mode.
3. Formulation based on vectorical constraint

Suppose that the objective eigenvalue A and
eigenvector components of ! in number {#}, are
prescribed. A functional I, is introduced in the form
of Eq.(2) so that an objective function comprised of
the sum of squared design variables is to be
minimized under the conditions of a scalar constraint
for the eigenvalue and a vectorical constraint for the
eigenvector by use of two Lagrange multipliers x; and
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#2. This formulation means that the objective
structure is sought as near the baseline design as
possible and the objectives of A and {¢}, are attained
by the first order approximation of the eigenpair
change.

N I i
0= 2 abtm(-1- 3 2% ) Lelie} (2)

In the above, {¢} indicates a vector of [ degrees of
freedom corresponding to the difference between the
objective vector components and the baseline ones as
given below.

{e) =1}~ (3}~ 3 (dh}ian (3)

The first order rates of change, in other word,
sensitivities of the eigenvalue A5 and eigenvector
{$% }, with respect to the design variables «, can be
computed on the basis of the first order perturbation
technique® .

4 . Formulation based on scalar constraints

In this formulation, the objective eigenvector
components of / in number are dealt with individually
so that all the objectives including the eigenvalue are
indicated as x; standing for scalar vaiables of L=1+
! in total. The functional II, in this formulation is
constituted by the same notion of minimizing the
change of the design variables as given in Eq. (4) by
use of the Lagrange multipliers of L in number. In Eq.
(4), % indicates the objective eigenvalue and x; (j =
2~L) the objective eigenvector components.

N L - N
=2 ai+ zlﬂj(xjijg Elxi'n ay)? (4)
n=1 = n=

5 . Determination of «, and y;

The design variables a, and Lagrange multipliers
u; can be determined by the following conditions so
that the aforemmentioned functional II is minimized.

O _y  p=1~N (5)
Say

oml . ..

e =0 j=1~L (6)

The result is summarized in the matrix form of Eq.
(8) for the case of Eq. (4) by use of the first order
approximation of the squared term in the form of Eq.
(7) wiith respect to a, in order to linearize Eq. (5)

in regard to a, and u;

L — — N
Evlllj { (=22 —2(5—x) n§1x§" ay (7)
2y | .y )
- 5 i ﬁ2(xj_xJ)xjn ax
1 SYM. : 0 J #
( 5 L
HL
0
K
= ~ (8)
—(g—x)*
= (0= q)?

The values of a, and y; obtained as the solution of Eq.
(8) are not exact because that the first order
approximation is employed to estimate the eigenpair
change and to calculate the functional. It is necessary
to repeat the procedure by means of changing the
baseline design obtained by the current values of aa

until the solution of &,=0 for xj:;cj is obtained.
6 . Numerical examples

Two numerical examples are given to show the
comparison and validity of the formulations in regard
to the vibration of a cantilever and that of a truck
chassis modeled by beam elements. The moment of
inertia of the section of the beam is taken as the
design variables while the other parameters such as
the beam element length, cross-sectional area of the
beam, Young’s modulus and mass are kept constant.

A stiffness matrix for the beam bending is
formulated newly by taking the moment of inertia I
at two nodes as variable and assuming the linear
distribution of the moment of inertia in an element
for the purpose to chase the change of the beam shape
by the elements of small number. It turns out that the
change of the moment of inertia at a node causes the
change of the stiffness matrices of the elements on
both side of the node.

Cantilever beam

The first numerical example is concerned with a
cantilever of 100mm in length and 415 Hz in the
natural frequency for the first mode of the initial
design with the uniform moment of inertia”. The
problem aimed at is to reduce the eigenvalue to A =
0.51 by use of five finite elements with six design
variables of the nodal moment of inertia. Figure 1
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shows the convergence of the eigenvalue due to the
structure modification based on the formulation
stated in section 3. It is seen that the objective
eigenvalue of 0.51 can be attained by small iteration
number of eight. Figure 2 shows the convergence to
the objective eigenvector components of w,=0.9u,
and w,=0.9w, for the two points of A and B
indicated in Fig. 1. All the eigenvector is normarized
so that the largest deflection component of the
eigenvector remains unity in this study. This figure is
obtained by the formulation based on the vectorical
constraint of | ¢l,= L w,, w,]. This formulation
gives rise to meandering convergence and requires
many iteration numer. Figure 3 shows the result of
the same shift obtained by the formulation based on
the scalar constraints stated in section 4. It is obvious
that the scalar type formulation is superior to the
vector type one due to the fast and monotonic

convergence.
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Figure 1 Convergence of eigenvalue due to
structure modification

oy
>

0 wa=0.9s
® ws=09iws
1ST MODE

walwa, whws
<
0
g

CONVERGENCE OF
NVECTOR COMPONENTS

I
<3

EIGE

0 5 10 15 20
NUMBER OF ITERATIONS N

Figure 3 Convergence of eigenvector components due to
structure modification (scalar constraints)
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Truck chassis model

The second example deals with the flexural
vibration of a truck chassis modeled by use of 30
elements simply supported at two points. The initial
momement of inertia 7 is taken equal to 0.141X10*
m*, and the weight loaded on the chassis is 64.1 kN
resulting in the natural frequencies of 4.42 and 9.83
Hz for the first and second modes ”. The mode shape
and resulted distribution of the moment of inertia
corresponding to the eigenveector shift of w, =0.8u,
and w, =0.8w, are shown in Fig. 4. Those with the
additional shift of the eigenvalue to 1.24 are shown
in Fig. 5.
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Figure 2 Convergence of eigenvector components due to
structure modification (vectorical constraint)
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Figure 5 Mode shape and distribution of moment of inertia
after structure modification for eigenpair change

7 . Concluding remarks

This note presents two formulations for the shift
synthesis, by which the structural modification
required for the given shift of the eigenpairs of
undamped linear vibration systems is obtained, on the
basis of the finite element modeling and sensitivity
study. The basis of the formulation is to seek the
objective design near the baseline one while the
response change to the objective design is chased by
the first order approximation regarding the design
variables, which is employed as the constraint
conditions and incorporated in terms of the Lagrange
multiplier method. It is shown that the formulation
based on the scalar constraints results in the fast and

monotonic convergence.

The fast convergence implies that the
formulation can be applied to large scale problems. It
is worthy to note, however, that the combination of
the objective eigenpair should be chosen judisciously
as well as the design parameters. Even in the simple
cases described herein, the structural modification is
unable when the deflection and rotation components
at two adjacent nodes are prescribed randomly so
that the smooth shape of the eigen mode is violated.
It is therefore recommendable to choose the
eigenvector components of limited number and to
assign indeterminacy to the objective eigenpairs in
case of large scale problems.
(Manuscript received, August 12, 1987)
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