剛体・ばね要素により構成された柱の塑性座屈モデルの解析解

Analytical Solutions for the Plastic Buckling Model of a Column Composed of the Rigid Bodies-Spring Elements

都 井 裕*•関 宝 仁*•川 井 忠 彦* Yutaka TOI, Bao Ren GUAN and Tadahiko KAWAI

1.序

著者の一人の川井により創始された剛体・ばねモデ ル¹⁾ (The Rigid Bodies-Spring Models) は、すでに多 くの構造非線形問題に応用され、従来の塑性解析法をコ ンピュータの使用を前提として組織化、一般化した離散 化解析手法としての立場を確立しているが、数々の応用 例の中の特に重要な成果の一つとして、非弾性構造安定 問題におけるShanley model²⁾の一般化を挙げることが できる、すなわち、都井・川井は文献3)、4)において、 剛体・ばねモデルにより構成された柱の2自由度シミュ レータがShanley modelと等価であることを数値的に実 証し、さらに一般の薄肉構造に適用可能な剛体・ばねモ デルである平板剛体要素モデルの非線形解析アルゴリズ ムを用いることにより、任意の板殻構造に対する低自由 度の安定問題シミュレータを開発可能であり, 非弾性構 造安定問題の定性的研究に裨益するであろうことを、平 板・円筒殻に対する数値例を通じて主張した、これらの 研究においては数値的に安定問題がシミュレートされた が、もし可能な場合には、剛体・ばねモデルによる低自 由度シミュレータに対し, 解析的な考察を加えることも 興味深い課題である. そこで手始めに本研究では、上述 の柱の2自由度シミュレータを取り上げ,解析解を導く ことを試みた、この種の解析解は一般には、現象全体を 把握する際の見通しをよくし、数値解と比較することに よる数値計算アルゴリズムチェックを可能にし、また設 計公式・実験公式を誘導する際の基本形として使用しう るなどの意義を有する.

2. 柱の塑性座屈モデルの解析解

2.1 基本関係式

図1に示すように,2個の剛体要素にモデル化された 両端支持H型断面柱の強軸方向の曲げ変形を伴う軸圧縮 塑性座屈問題を考える.

*東京大学生産技術研究所 第2部

図1のように変位自由度を設定すると、境界条件および問題の対称性より $u_1 = u_3 = 0$, $w_1 = -w_3$ が成立するので、 w_3 および u_2 を独立変数とする2自由度モデルとして、この問題を扱えることになる。以下ではこれらの変数をそれぞれ単にwおよびuと記述する。すなわち、wは柱の軸方向の1/2縮み、uは柱中央部の横たわみである。

2 つのフランジ断面における軸方向相対変位 $\delta_1(w, u)$ および $\delta_2(w, u)$ は次のように与えられる³⁾.

$$\delta_1(w, u) = -2w - \frac{2H(u-u_0)}{L} + \frac{2(u-u_0)^2}{L}$$
(1 a)

$$\mathfrak{F}_{2}(w, u) = -2w + \frac{2H(u-u_{0})}{L} + \frac{2(u-u_{0})^{2}}{L}$$
(1b)

ここに、 σ_1 および σ_2 などの下付き添字1,2はそれぞれ 座屈曲げ変形の圧縮側と引張側を表し、wは縮みを正と する。各フランジ断面上で応力 σ_1 および σ_2 は一様分布と 仮定し、ウェブの存在を無視すれば、フランジ上の応力 と軸荷重Pの関係は次式のように表現される。

図1 剛体・ばね要素による柱の塑性座屈モデル

$$\sigma_1 = -\frac{P\left(H+2u\right)}{AH} \tag{2a}$$

$$\sigma_2 = -\frac{P(H-2u)}{AH} \tag{2b}$$

ここで,荷重Pは圧縮側を正とし,2つのフランジの断面 積はおのおのA/2としている。相対変位とひずみの関係 を

$$\begin{cases} \delta_1 = \varepsilon_1 L \\ \delta_2 = \varepsilon_2 L \end{cases}$$
 (3)

と仮定すれば,

$$\delta_2 - \delta_1 = L(\varepsilon_2 - \varepsilon_1) \tag{4}$$

のような関係が得られる.材料の降伏応力をσ,とし,弾 性比例限を*k*σ,と仮定すれば,両フランジの応力・ひずみ 関係とその微分関係は

a) $|\sigma_i/\sigma_y| < k$ のとき(弾性域)

$$\boldsymbol{\varepsilon}_i = \frac{\boldsymbol{\sigma}_i}{E} \quad (i = 1, 2) \tag{5a}$$

b) | *σ_i/σ_y* | ≧*k*のとき(塑性域)

$$d\varepsilon_i = \frac{d\sigma_i}{E_t} \quad (i = 1, 2) \tag{5b}$$

と表現される. ただし、kは0 < k < 1なる定数であり、 Eはヤング率、 E_i は接線係数を表す. ここで

$$E_{\iota} = \frac{E}{1-k} (1 - \frac{\sigma_i}{\sigma_y}) \quad (i = 1, 2)$$
(5 c)

と仮定すれば(5b)式より、塑性変形時の応力・ひずみ関 係は

$$\varepsilon_{i} = \frac{\sigma_{y}}{E} (k' \ln \frac{k' \sigma_{y}}{\sigma_{y} - \sigma_{i}} + k)$$

$$(6)$$

$$(i = 1, 2)$$

と計算される. ただし, ここにk'=1-kである.

なお、最高荷重 P_{\max} における平均応力を最高応力 σ_{\max} と呼ぶことにする.

初期たわみu₀を有する柱において、荷重の増大ととも にフランジに生じる応力状態としては、以下の4ケース を考える必要がある.

(1) 圧縮側と引張側がともに弾性域にある場合

(II) 圧縮側が塑性域に、引張側が弾性域にある場合

(III) 圧縮側と引張側がともに塑性域にある場合

(IV) 圧縮側が塑性域に、引張側が除荷域にある場合 これらの各応力状態での解を接続することにより、初期 状態から最高荷重に至る荷重・変位関係を得ることがで きる.また、最高荷重時の応力状態としては(II),(III), (IV)の3ケースを考えればよい.

2.2 圧縮側と引張側がともに弾性域にある場合

この場合の圧縮側ひずみ ϵ_1 および引張側ひずみ ϵ_2 はと もに(5a)式により与えられる.これらのひずみと(1)式 の相対変位を(4)式に代入し、さらに(2)式を用いると、 荷重Pと横たわみuの関係として次式が得られる。

$$P = \frac{AEH^2}{L^2} (1 - \frac{u_0}{u}) \tag{7}$$

上式でu→∞とした場合の極限荷重値

$$P_{cr} = \frac{AEH^2}{L^2} \tag{8}$$

は、考えているモデルの弾性座屈荷重である.

2.3 圧縮側が塑性域に、引張側が弾性域にある場合

この場合は、圧縮側のひずみ ϵ_1 および引張側のひずみ ϵ_2 がそれぞれ(6)式および(5a)式により定まる.これら のひずみおよび(1)式の相対変位を(4)式に代入し、さ らに(2)式を用いると、荷重Pと横たわみuの関係とし て次式を得る.

$$\frac{\sigma_y}{E} \left[k' \ln \frac{k' A H \sigma_y}{P(H+2u) + A H \sigma_y} + k \right]
+ \frac{P(H-2u)}{A H E} + \frac{4H}{L^2} (u - u_0) = 0$$
(9)

横たわみuに関する荷重Pの極値条件dP/du = 0より, 最高荷重時の横たわみ u_{max} として次式が得られる.

$$u_{\max} = \frac{k' \sigma_y A H L^2}{4 A H^2 E - 2L^2 P_{\max}} + \frac{A H \sigma_y}{2P_{\max}} - \frac{H}{2}$$
(10)

2.4 圧縮側と引張側がともに塑性域にある場合

圧縮側,引張側いずれにも,応力・ひずみ関係として (6)式を用いれば,荷重Pと横たわみuの関係として次 式が導かれる.

$$\frac{k'\sigma_y}{E}\ln\frac{P(H-2u)+AH\sigma_y}{P(H+2u)+AH\sigma_y} + \frac{4H}{L^2}(u-u_0) = 0 \quad (11)$$

最高荷重時の横たわみ umax は

$$u_{\max} = \frac{1}{2} \sqrt{H^2 \left(1 + \frac{A\sigma_y}{P_{\max}}\right)^2 - \frac{k'\sigma_y L^2}{E} \left(1 + \frac{A\sigma_y}{P_{\max}}\right)}$$
(12)

となり、この式を(11)式に代入すれば、最高荷重 P_{max} を与 える陰関数式が得られる。この式を数値的に解いて計算 される最高荷重は、除荷の発生を考慮に入れない、いわ ゆる接線係数理論流の考え方に従う理論解であり、柱の 初期たわみが零の場合は、通常の接線係数荷重(tangent modulus load) に一致する。なお、2.3節および2.4節 の P_{max} に対応する応力を σ_{max} と記すことにする。

2.5 圧縮側が塑性域に、引張側が除荷域にある場合

 σ_{2r} を引張側圧縮応力の最大値(極値),すなわち除荷発 生時の応力と仮定し,さらに(6)式を用いれば,引張側 応力・ひずみ関係は次式のように表される.

 \cdots 究 速 報

$$\varepsilon_2 = \frac{\sigma_y}{E} (k' \ln \frac{k' \sigma_y}{\sigma_y - \sigma_{2r}} + k) + \frac{\sigma_2 - \sigma_{2r}}{E}$$
(13)

これを利用して、荷重P・横たわみuの関係として次式が 導かれる.

$$\frac{k'\sigma_{y}}{E}\ln\frac{(\sigma_{y}-\sigma_{2\tau})AH}{P(H+2u)+AH\sigma_{y}} + \frac{P(H-2u)+AH\sigma_{y}+4H}{AHE} + \frac{4H}{L^{2}}(u-u_{0}) = 0$$
(14)

この段階では σ_{2r} は未知である. $d\sigma_2/du = 0$ の条件と荷重 P・横たわみuの関係を利用して、除荷開始時の横たわみ urにおける荷重Pr(いわば除荷開始荷重)が次式のように 導かれる.

$$P_{r} = \frac{AHE\sigma_{y}(H - 2u_{r})}{k'\sigma_{y}L^{2}E(H^{2} - 4u_{r}^{2})}$$
(15)

この式を(14)式の荷重・横たわみの関係式に代入して, 数値的に解いたu_rを再び上式に代入すれば,引張側圧縮 応力の最大値(極値)における荷重Prが得られる。さら に、 σ_{2r} は(2b)式より計算される、初期たわみ $u_0 = 0$ なら ばPrの計算は簡単になり、その時のPrは接線係数荷重 (tangent modulus load) と一致する. なお, 荷重Prに 対応する応力を σ_r と記す.

(14) 式を利用して、2.3節と同様の方法で最高荷重 Pmaxが計算される.その際, (10)式もそのまま利用可能で ある.また,本節の P_{\max} に対応する応力を σ_{\max}^r と記すこと にする.

3. 数值計算例

前章で誘導した解析解に対する数値例を以下に述べる. 計算に用いた各定数はA=0.2, H=1, E=100, σ_v=-1, k=0.7である. 細長比L/r(=4H/L) および 初期たわみи₀を変化させたパラメータ計算を実施した.

最高荷重の計算から付随的に,除荷の発生を考慮する 必要のある範囲が図2のように得られた。すなわち、図 2の「必要域」においては、最高荷重時に両フランジが

図2 除荷の発生を考慮する必要のある範囲

塑性化しており、引張側のフランジについては除荷の発 生をチェックしておく必要がある.

図3と図4はそれぞれ、2.3節、2.4節の諸式による 除荷の発生を考慮しないコラムカーブ,および2.5節の 諸式を用いた除荷の発生を考慮したコラムカーブである. 図4からは、初期たわみがuo/L=10-4程度より小さくな

表1 除荷を考慮した最高応力 σ^{*}max と接線係数応力 σ*および等価係数応力σ*の相対関係

$\eta = \frac{\sigma_{\max}^r - \sigma^r}{\sigma^r - \sigma^t}$			
$u_{o}/L = 10^{-9}$			
L/r	η		
10	0.30		
14	0.30		
18	0.31		
22	0.33		

表2 最高応力に関する解析解と増分法数値解の比較

L/r	$\sigma_{\max}^r / \sigma_y$ ()内は増分法数値解 ³⁾		
	$u_0/L = 10^{-3}$	$u_0/L = 10^{-4}$	$u_0/L = 10^{-7}$
10	0.9082	0.9289	0.9385
	(0.9141)	(0.9320)	(0.9388)
14	0.8420	0.8704	0.8839
	(0.8486)	(0.8741)	(0.8841)
18	0.7673	0.8006	0.8162
	(0.7720)	(0.8035)	(0.8164)
22	0.6730	0.7233	0.7387
	(0.6779)	(0.7243)	(0.7388)

ると,接線係数荷重よりも大きい最高荷重値が得られて いることがわかる。表1に示すように, $u_0/L=10^{-9}$ のと きの除荷を考慮した最高応力 σ_{max} は,接線係数理論の解 を越え,接線係数応力と等価係数応力の間の約1/3のとこ ろに位置している。

表2は文献3)の研究で求められた増分法数値解と本計 算結果との比較であり、このような比較から通常の荷重 増分法による計算の精度が検証される.表2の結果より、 増分法数値解はいずれもやや高めの最高荷重値を与えて いるが、その誤差は最大でも0.7%程度であることがわか る.

図5は、L/r=16の柱に対し初期たわみを変化させた 場合の σ_{max}^{r} , σ_{max}^{r} , σ_{r} の相対関係図である.図5に示すよ うに、初期たわみが零に近い場合には除荷を考慮しない 最高応力 σ_{max}^{t} は除荷開始応力 σ_{r} と一致するが、初期たわ みが増大するにつれて σ_{max}^{t} より小さい荷重レベルで除 荷が発生していることがわかる.また、除荷を考慮した 最高応力 σ_{max}^{r} は初期たわみの増大とともに σ_{max}^{t} に近づ いてくることが理解される.

4.結 語

本研究では、剛体・ばね要素により構成された柱の塑 性座屈モデルに対し解析的検討を加え、最高荷重に関す る陰関数式を誘導し、いくつかの数値例を示した.本研 究で取り上げた、軸荷重を受ける柱の曲げ塑性座屈問題 は、最も基本的な非弾性構造安定問題であり、解析的な

図 5 原何を考慮した敢尚心刀 σ_{max} 原何を悪視した敢尚心刀 σ_{max}^{t} および除荷開始応力 σ_{r} の相対関係

考察例も数多い(たとえば,文献5),6)など).しかしな がら,剛体・ばねモデルの非線形解析アルゴリズムに従 えば,板殻を含む一般の構造要素の低自由度塑性座屈シ ミュレータを系統的に導出可能であり,これらのモデル に同様な解析的考察を加えることにより,工学的に有意 義な結果を得られる可能性もあるので,数値シミュレー ションと並行して,その方面へも研究の進展を図りたい. なお,本原稿作成に際し,種々のご助力をいただいた ソフトハウス インディード松山光男氏(元ダイヤコンサ ルタント勤務) に謝意を表します.

(1987年6月9日受理)

参考文献

- 川井忠彦: New Element Models in Discrete Structural Analysis, 日本造船学会論文集, 第141号 (1977), 174
- F.R. Shanley: The Column Paradox, J. of Aeronautical Research, Vol. 13, No 12 (1946), 678
- 3) 都井 裕・川井忠彦:薄肉構造の離散化極限解析(その 3;平板剛体要素モデルによる安定問題のシミュレー ション),日本造船学会論文集,第152号(1982),441
- 4) 都井 裕・川井忠彦:薄肉構造の離散化極限解析(その 5;軸荷重を受ける円筒殻の非軸対称塑性座屈モード),日本造船学会論文集,第154号(1983),353
- 5) 倉西正嗣:塑性座屈,日本機械学会誌,第58巻,第435
 号(1955),315
- 6) 山本善之:初期携みを有する柱と板の塑性変形を伴う 座屈,造船協会論文集,第97号(1955),57