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1. Introduction

MHD flows are attracting much attention in
close relation to nuclear fusion physics, especially, the
reversed field pinches of plasma (RFP)?. In the
research of plasma confinement, RFP provides a
promising mechanism of plasma confinement, in
addition to the tokamak confinement. The
reversed-field configuration is considered to be
sustained by turbulent dynamo that is familiar in the
sustainment of earth magnetic field>®.

Phenomena related to RFP are so complicated
that purely analytical approaches fail to give a clear
detailed understanding. This situation also holds in
the study of non-MHD turbulent shear flows. In it,
numerical simulation has been an indispensable
method for understanding complicated turbulence
structures. In such simulations, however, some kind of
turbulence model must be incorporated, because the
dissipation scale of turbulent flows at high Reynolds
numbers (R) is of O(R™*L) (L is a reference
length), and cannot be treated numerically even by
existing and prospective supercomputers.

Of a variety of simulation methods, large eddy
simulation (LES)
accuracy and detail of computed results*®. In LES,

is the most promising in the

the energy dissipation mechanism, which is lost
because of coarse grid resolution, is compensated for
with the aid of subgrid-scale (SGS) eddy viscosity.
LES was first applied to channel flows by Deardorff®
using the Smagorinsky model for the SGS eddy
viscosity, With the progress of supercomputers, LES
has achieved much progress in the improvement of
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models and the imposition of exact boundary
conditions on solid walls.

In numerical simulation of RFP, their direct
simulation with no turbulence model is also very
difficult at high kinetic and magnetic Reynolds
numbers. Because, all scales from torus radius to
magnetic reconnection scales cannot be resolved
simultaneously even by any existing supercomputers.
This situation suggests to us that LES also will
become a useful method in the research of various
MHD turbulent shear flows.

In this paper, we first make an introduction to
the subgrid modeling in LES of non-MHD turbulent
flows, and remark about its application to some types
of flows. Then, we give a MHD subgrid model, which
can be derived using a two-scale direct-interaction
approximation (TSDIA)”. For the details, refer to
Ref. 8.

2 . Non-MHD flows

A . Fundamental equations
The Navier-Stokes equation for a viscous

incompressible fluid is written as

a 5/
ou” aa u”u“:——i-i-vAu“, (1)
ot Ox ox
with the solenoidal condition
ou®
axa_o . ( 2 )

Here, u is the velocity, p is the pressure divided by
fluid density, v is the kinematic viscosity, and the
summation convention is applied to repeated Roman
superscripts.
B. Filtering

In LES, we introduce the concept of filtering, i. e.,
filtering out the fluctuations smaller than grid
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intervals. The energy dissipation mechanism borne by
those filtered-out fluctuations must be compensated
for by what are called subgrid models. For the
filtering, we introduce a filter G(x, y) to define the
filtering of f(x) as

7=[ Gy Fay. (3)

As a representative filter, use is often made of the
Gaussian filter

G(x,p) = (zA?)~¥2expl — (x —y)?/A%], (4)

where A is the filter width related to computational

grid sizes.

On applying (3) to (1) and (2), we have
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+ax“(R +L*¥+C ~!—yW , (5)
with

on’_

ax“_o’ (6)
where

Raﬁ:_u/a urﬂ , (7)

L¥=—(a*af —a*a’) (8)

CP=—(a*w? +uw?a®) (9)

(Ww=u—m). The most remarkable feature of
filtering procedure is that the Leonard term (8) and
the cross term (9) appear, whereas only the
Reynolds stress corresponding to (7) appears in the
ensemble-mean procedure.
C. Smagorinsky model

As the most fundamental of subgrid models, let
us mention the Smagorinsky model. In the model, we
neglect (8) and (9), and approximate R% by using
the familiar eddy-viscosity concept as

R*#= —%Kcé\aﬂ‘F Vc(?Z‘Y + aiﬂ

o ox®

where K is the SGS kinetic energy, and e is the SGS
eddy viscosity.

Next, we assume that the filter width A is

), (10)

approximately of the inertial-range scale, and that
the SGS energy production rate balances the SGS
energy dissipation rate. As a result, we have

7¢ 76
vo= (G [ S5+ 2 e, (a

Ke= V(Z;/(CKA)Z. (12)

The model constants Cs and Ck are optimized as

Cs=0.1, Cxk=0.1. (13)
Especially, Cs is called the Smagorinsky constant,
which plays a crucially important role in estimating
the SGS energy dissipation.
D. Applications

LES was first applied by Deardorff® using the
Smagorinsky model to channel flows. In recent LES,
the Leonard term (8) is often taken into account
since it can be calculated directly by a filter function.
LES accompanies a large amount of computing time
by a supercomputer, and is restricted to flows with
simple geometry at least at present. A comprehensive

review of LES is given in Refs. 4 and 5.
3. MHD subgrid modeling

The Smagorinsky model was originally derived
from purely dimensional analysis incorporated with
some physical assumptions. The model can also be
derived from the statistical viewpoint®. At this time,
the usual filter such as the Gaussian one is not

convenient. So, we introduce a statistical filter

f=];<kuf(k)exp(~ik-x)dk

T<Joon f (k) exp(—ikex)dk>, (14)

by using the Fourier component f(k) of f(x).
Here, <> denotes the ensemble mean, and Ay is the
wavenumber of the largest spatial scale of
fluctuations filtered out, which is written using the
filter width A as

kv=mn/A. (15)

We can combine (14) with a two-scale direct
-interaction approximation (TSDIA) to derive the
Smagorinsky model (10)-(12). At this time, the
Smagorinsky constant Cs is estimated as 0.14.

A MHD subgrid model of Smagorinsky type can
be derived similarly with the aid of TSDIA. The
model is summarized as follows:

Navier-Stokes equation

g% | 9
ot +ax“
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Magnetic induction equation

a;’t +2; (@b 2t 5)
2 (ri +lab ), an

Solenoidal condition

on"_0ob"_ (18)

oxe axt

SGS MHD stresses

RV =— (W uP —p® p'F ) = — (Cxp)2D?6*F

ou® | ouf
+ (CSA)ZD(axﬂ + Pwe ), (19)
Rie =— P b* —w* 0?) = (CsD)?
b bk
XD P A a') (Catr)?
cy 8D ;4 8D
X (b P b axzz), (20)
with
o
D=[ 25+ 25 /g, 21)
The model constants are estimated as
CK:0.22, Cs:0.14, CB:0.23, Ca=0.27. (22)

4 . Discussion

The filtered magnetic induction equation (17) is
also written in vector form as

ab+l7 X (bX@)=F X (W Xb)+AAb. (23)

Here the term u’ X b’ is called the SGS electromotive
force. When the filtering is replaced by the ensemble
averaging, the importance of the term is very familiar
in the study of earth magnetic dynamo®.

In the case of earth magnetic dynamo, the
electromotive force is modeled as

»9b°

(WXbp)*=C*b°+C** x+ . (24)

The two terms in (24) are named the « (alpha) and
£ (beta) terms, respectively. Their feature is that the
former is linearly dependent on the magnetic field
itself and the latter on the magnetic shear. Those two
terms stem from the isotropic non-mirrorsymmetric
and mirrorsymmetric properties of the velocity field,
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respectively. In reality, the kinematical homogeneous
turbulent dynamo theories can assume the isotropic
non-mirrorsymmetric velocity field to show that

CH=Cpo, (25)

CoPY=CyeP, (26)
using the Kronecker delta symbol 6% and the
alternating tensor ¢%*”, where C, and Cs are scalar
quantities. At this time, C, in the a term can be
written in terms of the helicity

Wew @n
characterizing the non-mirrorsymmetry of the
velocity field, where o’ (=F Xu’) is the vorticity.
Within the framework of homogeneous turbulence
theory, however, we have no way to relate C, and Gy
to the resolvable field & and b.

In the present result, we have

== (Can)ie ™D, (28)
C = (CaA) 2D . (29)

On comparing (28) and (29) with (25) and (26), (28)
corresponds to the « term, and (29) to the g term.
From the latter correspondence, Cg of (26) is written
as

Cg =(CsA)?D, (30)
in our filtering procedure.

On the other hand, the & term in (28) is different
essentially from (25). The cause of the present a
term is the inhomogeneity of the fluctuating field, as
was discussed in Ref. 7. The inhomogeneity
generated by the resolvable-field shear (gradient)
violates the isotropy of the field, and gives rise to
nonvanishing helicity leading to the a term.

Finally, let us compare the present subgrid model
with the corresponding MHD ensemble-mean model
to investigate some differences between them. We
denote the ensemble mean parts of u, b, and p by U,
B, and f’, respectively. Moreover, the MHD turbulent
energy or the sum of kinetic and magnetic turbulent
energy and its dissipation rate are denoted by %y and
&y Then, the ensemble-mean model, which is derived
from TSDIA, is given as follows!®:

Navier-Stokes equation

aUu~

a a_ anpa

o axa(U U* —B*B*)

aP au“
NEZ axa (R +v5). (81)
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Magnetic induction equation

aB o a e @ pa
o axa (U*B* —U“B*)
o @
—37(1?3 +Aaa%), (32)
Solenoidal condition
oUe 9B2 _
oxe  amt (33)

MHD stresses

o Dk
Vﬁ:_(MVlkM Mvzk;: D;’

+My3kM De y gor
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Dt
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k% OB« _aBﬁ _ ku @ akM
MBI (ax” ox” M- &y (B
- ak’ii)+Mm -(B* Oey _ po25L), (35)
ox
ku equation
Dg}l“l —( 'I'Ua axa)kM =Py —&y +Du, (36)
with
auUb aB?t
Py =R$Z 7 +R¥ 57, (37)
& equation
Dey . 3 " . Okn
Dt~ Mesgy P = Mevp ¥ B (Mey = 0
o
—Me ;‘Z )+ De, (38)

Here, Mv:, My, etc. are model constants, and Dy and
D, are the so-called diffusion terms (for the details,
see Ref. 10).

The major differences between the above two
models are that
(a) the ensemble-mean model is of two-equation
type, wheres the subgrid model is of zero-equation
type;
(b) in the MHD stresses RS’ and R%2 that are
crucial in dynamo effects, the alpha terms in the
former consist of two different terms, unlike the
latter. (Manuscript received, April 24, 1987)
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