室内気流数値解析の診断システムに関する研究(第12報) — 差分分割に伴う数値誤差の推定,評価方法について----Study on Diagnostic System for Simulation of Turbulent Flow in Room (Part 12) — Estimation of error caused by coarseness of finite-differencing—

村 上 周 三*・加 藤 信 介**・永 野 紳 一 郎***・Joel H. ファーツィガー**** Shuzo MURAKAMI, Shinsuke KATO, Shin-ichiro NAGANO and Joel H. FERZIGER

1. はじめに

差分化に伴う数値誤差は、数値シミュレーションに とって避けられないものである。誤差の推定,評価は数 値シミュレーションの診断システムの中核をなすものの 1つである。差分分割を細かくすれば精度が向上するの は当然であるが、各種の計算実施上の制約により、多く の場合理想的な差分分割を行うことはない。

筆者らは診断システムの一貫として差分分割の粗さに 伴う数値誤差の評価を行ってきたが¹⁾²,本報告では adaptive grid method³⁹⁴⁾で用いられている誤差評価手 法を用いて差分分割の粗さに伴う誤差の検討を行う.こ れはリチャードソンの補外法⁵⁾により,①真の解を推定 するとともに解の誤差 (solution error)を評価し,②真 の解の推定値を利用して差分方程式の打ち切り誤差 (truncation error)を具体的に評価するものである.

2. Solution error & truncation error

流れのシミュレーションで考察される誤差は便宜的に 2種類考えることができる。1つはシミュレーション結 果と真の解との差, solution error であり, いま1つは 差分方程式に由来する打ち切り誤差(真の解を差分式に 代入した結果生じる残差), truncation error である. solution error は, この truncation error が流れ場によ り移流・拡散されて生ずる error が複合されて生ずる.

3. 誤差の推定3)4)

3.1 Solution error の推定

差分間隔 h で領域を分割し P 次精度の差分スキーム を用いたときの solution error e(h,x) は, テイラー級数 を用いて次式で評価できるものと仮定する³⁾⁶⁾⁷⁾.

*東京大学生産技術研究所	付属計測技術開発センター
**東京大学生産技術研究所	第5部
***東京大学生産技術研究所	受託研究員(フジタ工業㈱)
****東京大学生産技術研究所	元外国人客員研究員(Dept. of
	C: ()] ()

Mechanical Engineering, Stanford Univ.)

$$e(h,x) = u(0,x) - u(h,x) = h^{p}F(x) + h^{q}G(x) + \cdots$$
(1)

u(0,x)は真の解, u(h,x)は差分間隔 h の場合の解を示 す. 誤差は, leading error $h^p F(x)$ のほか,高次誤差項 $h^q G(x)$ …を含む. 今回は2次精度の差分(中心差分およ び QUICK スキーム^{6)の})を用いており p=2とおける.

e(2h,x) = u(0,x) - u(2h,x)

= $(2h)^{p}F(x)+(2h)^{q}G(x)+\cdots$ (2) となる. leading error $h^{p}F(x)$ は(1), (2)式よりシ ミュレーション結果 u(h,x), u(2h,x), を用いて(3)式で 推定できる. (3)式右辺は leading error $h^{p}F(x)$ ほか, 高次誤差項を含み、これが差分間隔hのときの solution error の推定値 $\hat{e}(h,x)$ となる.

$$\tilde{e}(h,x) = \frac{u(h,x) - u(2h,x)}{2^p - 1}$$
$$= h^p F(x) + \left(\frac{2^q - 1}{2^p - 1}\right) h^q G(x) + \dots$$
(3)

3.2 Truncation error の推定

微分方程式 L[u(0,x)] - f = 0 (6) の差分間隔 h における差分近似式の truncation error は次式で評価される^{±1}.

 $r(h,x) = L_h[u(0,x)] - f$ (7) ここで、Lは微分演算子であり、L_hは差分間隔 h の差分 演算子である.truncation errorの推定値 $\hat{r}(h,x)$ は (7)式を $\hat{u}(0,x)$ で評価し、次式で推定される^{#2)}.

$$\widetilde{\tau}(h,x) = L_h[\widetilde{u}(0,x)] - f$$

= $L_h[u(h,x) + \widetilde{e}(h,x)] - f$ (8)

4. 解析結果

 $k-\varepsilon$ モデルの基礎方程式および境界条件については文 献 8 を参照されたい^{#3)}. 解析対象とする室形状を図 1 に 示す. この領域を図 2 に示す 3 タイプのメッシュで分割 し、これに基づく解 (u(h,x) に対応) とそれぞれ対応す る粗分割メッシュに基づく解 (メッシュを 2 倍粗とした u(2h,x) に対応)の数値解を用いて、誤差評価を行う. 空 間一様に ν_i を与えた 0 方程式モデルおよび $k-\varepsilon$ モデル により定常解を求めて、これから(3)、(8)式^{#3)}により solution error, truncation error を算出する. なお 0 方程式モデルの室内一定の乱流拡散係数 ν_i は、タイプ 3 のメッシュの $k-\varepsilon$ モデルによるシミュレーションから 得られた ν_i の空間平均値とほぼ等しく 0.01 とした.

4.1 D 方程式モデルの場合の誤差評価

タイプ1からタイプ3へと吹出口周辺の分割を細かく するにつれて、以下のように変化する.①気流ベクトル (e(h,x)を含む):図3の(a)⇒(b)⇒(c)の順に吹出 間の床面から天井面に向かう上昇流が強くなる.②気流 ベクトルの真の解の推定値 $\hat{\alpha}(0,x)$:図4の(a)⇒(b) ⇒(c)の順に①と同様に上昇流が強くなる.③ solution error $\tilde{e}(h,x)^{n4}$:図5の(a)⇒(b)⇒(c)の順に吹出口 直下および周辺の誤差は小さくなる.④ truncation error $\hat{t}(h,x)^{n4}$:図6の(a)⇒(b)⇒(c)の順に吹出口 周辺および床面での誤差は小さくなる.

 $\tilde{e}(h,x)$), $\hat{\tau}(h,x)$ は差分分割が密となるほど小さく なっている. $\tilde{e}(h,x)$ を小さくするためには, 吹出口周辺 の分割を細かくすることが有効である.

4.2 *k*-ε モデルの場合の誤差評価

気流ベクトル(e(h,x)を含む)を図7(a)~(c)に示す. 吹出口間の差分分割を細かくすると吹出口の上昇流が強 くなる.なおタイプ2(図7(b))は実験結果¹¹と良い対 応を示すが、さらに差分分割の細かいタイプ3の場合上 昇流が天井近くまで到達し実験結果との対応は逆に悪い.

タイプ1から3へと差分分割を細かくすると、以下の ように変化する. ①流速の solution error $\tilde{e}(h,x)$:図8 の(a) \Rightarrow (b) \Rightarrow (c)の順に吹出口直下の誤差は小さくな るが、逆に床面近傍の誤差は大きくなる。全体の様相と しては差分分割が細かいほど誤差の大きな領域は小さく なる傾向がある。②流速の truncation error $\hat{r}(h,x)$: 図 9 の(a) \Rightarrow (b) \Rightarrow (c)の順に吹出口周辺および床面近 傍の誤差は大きくなり、予想に反する結果を示す。③乱 流エネルギー kの solution error $\hat{e}(h,x)$: 図 10 の(a) \Rightarrow (b) \Rightarrow (c)の順に誤差は小さくなる。ここでは省略す るが、kの truncation error, ϵ の solution error および truncation error はタイプ1から3へと分割が細かくな るほど誤差は大きくなる傾向がある。

以上の結果から $k - \epsilon \epsilon = \epsilon = \tau \nu$ の場合には、今回の場合差 分分割を細かくしても誤差は顕著に低減しない傾向があ るばかりか、逆の傾向を示す場合も生じた.これは現状 の差分分割の程度では、平均流の勾配をまだ精度良く捉 えることができないし、また平均流の様相のみならず k, ϵ 等の乱れの統計量の生産も正しく評価することができ ず、この結果差分分割を細かくしても単調に収束する方 向に向かわず k, ϵ および ν_i 等が変化して平均流そのも のも変化し、誤差が減少しないものと考えられる.この 意味でタイプ2の差分分割による結果は実験とおおむね 良く一致しており、実用上十分な結果を得られるという こともできるが、一方でこの程度の分割ではまだまだ不 十分であることや、数値定数等の乱流モデルの検討がさ らに必要であり、これらに関する診断が必要があること が示唆されている.

5.まとめ

Solution error, truncation error を評価し, 差分分 割の粗密の影響を考察した。今回の差分分割では, $① \nu_t$ を一定とする 0 方程式モデルでは差分分割を細かくする

注1) 差分にかかわる truncation error は差分と微分と	の差
すなわち,	
$\tau(h,x) = L_h[u(0,x)] - L[u(0,x)]$	(S1)
と定義されることも多い.これは(6)式を考慮すると	
$\tau(h,x) = L_h[u(0,x)] - f - (L[u(0,x)] - f)$	
$=L_h[u(0,x)]-f$	(S2)
となり、(7)式の定義と等しい.	
注2) 今回行ったシミュレーションでは解 u(h,x) は厳密	に各
格子点で L _h [u(h,x)]-f=0 を満たさない. そのため今	-回の

$$\tilde{\tau}(h,x)$$
の算出では、この寄与分を差し引いて評価している。
 $\tilde{\tau}(h,x) = L_h[\tilde{u}(0,x)] - f - (L_h[u(h,x)] - f)$

 $=L_h[\tilde{u}(0,x)]-L_h[u(h,x)]$ (S3)

注3) k-eモデルの数値定数はC₁=1.44, C₂=1.92 および吹 出口の流入乱流量は k=0.005 m²/s², l=0.2 m としている.

注 4) 流速 (ベクトル量) の solution error, truncation error は各方向成分ごとの error を合成 (2 乗和の根) して示す.

速

と誤差は小さくなる. $2 k - \epsilon$ モデルの場合には差分分割 を細かくしても誤差は必ずしも小さくならず、現状の差 分分割や数値定数を含む乱流モデルの検討がいまだ不十 分であることが示唆された.

辞 謝

本研究は, J. H. Ferziger 教授 (Stanford Univ.) が外国人客員研究員として,東京大学生産技術研究所に 滞在中に行った共同研究をとりまとめたものである. (1987年2月4日受理)

文 献 考

1) 村上,加藤,永野:乱流数値シミュレーションの診断シ

solution error ($\tilde{e}(h,x)$)

ステムに関する研究(第7報),日本建築学会関東支部研 究報告集, 1986.7

- 2) 村上,加藤,須山:室内気流数値解析の診断システム, 生産研究, 38, 12, 1986.12
- 3) S. C. Caruso, J. H. Ferziger and J. Oliger : Rept, TF-23 Mech. Engrg. Dept., Stanford Univ., 1985.11
- 4) S. C. Caruso, J. H. Ferziger and J. Oliger : A I A A paper, 86-0498, 1986.2
- 5) たとえば篠原能材著:数値解析の基礎,日新出版,1982.4
- 6) B. P. Leonard Computer Methods in Applied Mechanics and Engineering, pp 59-98, 19, 1979
- 7) B. P. Leonard Computer Methods in Fluids, Pentech Press, pp 159-195, 1980
- 8) 野村,松尾,加藤:MAC法の空間差分間隔に関する考 察, 日本建築学会論文報告集, 292, 1980.6