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Large Eddy Simulation at Very High Reynolds Numbers
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Reynolds numbers of turbulent flows in large-scale regions are very high. In their

large eddy simulation, sufficiently narrow filters cannot be adopted owing to the

limitation of computer resources. Coase filters give rise to various difficulties

concerning the choice of model constants and the imposition of noslip boundary

conditions. Some methods for resolving such difficulties are provided.

I. Introduction

Wide varieties of approaches to simulating turbu-
lent flows have been developed over the past twenty
years. In the most fundamental approach, full or
direct turbulent simulation (FTS) , the Navier—
Stokes equations are solved numerically ; the
results contain the complete details of the flow.
(LES) solves filtered
Navier—Stokes equations and yields the large scale

Large eddy simulation
components of the fluid motion. In time—or
Reynolds—averaged Navier—Stokes (RANS) calcu-
lations (also called one point closures) , the
Navier —Stokes equations are averaged over an

ensemble of realiztions of the flow.

Among these methods, FTS is essentially exact
(if careful attention is paid to numerical methods) ,
LES requires modeling for the small scales (which
may contain anywhere from 10 to 90 percent of the
and RANS

computations demand modeling of all the turbulent

kinetic energy of the turbulence)

motions. Because turbulence models are uncertain,
as the fraction of the turbulence represented by a
model increases, the accuracy expected of a calcula-
tion decreases. On the other hand, the more exact
approaches require considerably more computation
time and expense ; these are often beyond what
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most users can afford.

For practical reasons, one should use the least
expensive method capable of producing the desired
accuracy. However, as the preceding paragraph
shows, there is a trade—off between cost and
accuracy so one may be forced to choose between a
method that is not accurate enough and one that is
too expensive. Because RANS models are not
always sufficiently accurate, LES has been suggest-
ed as an alternative to them. In this paper, we shall
investigate issues connected with LES of very high
Reynolds number flows, for which filtering removes
appreciable part of the energy of the turbulence.
This is an important topic because, in many applica-
tions, it is essential to predict the (steady and
unsteady) forces that arise from the largest scale
turbulent motions.  Fields with interest in this
subject include architectural aerodynamics, unsteady
aircraft aerodynamics and meteorology, among
others. LES has been applied to all of these areas.
There are important differences between this type
of calculation (eg. Murakami et al, 1985) and the
kind of LES used to investigate the fundamental
physics of turbulent flows (eg. Moin and Kim, 1982).
It is these differences that we intend to focus on.

II. Filtering

In the standard approach to LES, the part of the
velocity field to be resolved is defined by spatial
filtering ; 1i.e. the filtered velocity field # (written
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in one dimention) is:

@)= [Glz,x’;0)ulx"dx (1)

which may be thought of as a running average of
the velocity,%, over a volume whose linear dimen-
tion is the filter width, A. For present purposes, the
choice of filter, G, is not important. However, it is
important to note that, although they may be quite
anisotropic, the small structures or eddies are
similar in all three demensions and time.
Consequently, filtering in any one dimention (or
time) tends to remove the components of the
velocity field which vary  rapidly in the other
directions and in time.

The primary issue we want to investigate is what
happens when the width, A, of the filter becomes
large. It would be useful if, in this limit, the LES
equations reduce to RANS equations. Unfortunate-
ly, this does not happen in the usual formulation of
LES, because filtering on such a large scale also
smoothes the mean velocity field. The limit we
desire will obtain if the flow is homogeneous in at
least one spatial direction and is filtered only in that
direction. However, we prefer to avoid this restric-
tion.

An alternative, especially for statistically steady
flows, is to filter in time. Although this approach
has been mentioned a number of times, it has not
been out into pratice because it is computationally
inconvenient, Furthermore, as noted above, spatial
filtering removes the small time scale fluctuations
of the velocity field so time filtering is unnecessary
when spatial filtering is used. For our purposes, it is
convenient to adopt temporal filtering for nominally
steady flows because this allows a Reynolds aver-
aged formulation to emerge as a limit of LES.

The ideal method of deriving the RANS equations
is via ensemble averaging ; the need for spatial or
temporal averaging is thereby eliminated and the
difficulties described above are avoided. Unfortu-
nately, as LES is designed to reproduce a single
flow realization, ensemble averaging cannot serve

our purpose.
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III. Smagorinsky Model

Now let us consider what happens when the width
of the filter is increased. As suggested above, we
shall think in terms of time filtering but, because
they are better developed, we will use ideas derived
from the spatial filtering formulation.

In the limit of zero filter width, LES reduces to
FTS and no modeling is required. As the width of
the filter is increased, some of the small scale
motions become part of the unresolved or subgrid
scale field and a model must be introduced to
account for them. Eddy viscosity models have been
widely used for this purpose ; they represent the
subgrid scale Reynolds stresses, in terms of the large
scale field by :

Tij:_)/T( gf‘ﬁL%):—Zwa (2)

where pr is the subgrid scale eddy viscosity. In
turn, the eddy viscosity can be written :

vr=Cs’q A (3)
where ¢ is a velocity scale of the subgrid motions
and, A is the filter width, the appropriate length
scale for the subgrid motions and Cs is the single

model parameter.

There remains the problem of determining the
scale velocity, ¢g. For this purpose, the familiar
argument relating the energy drain to the velocity
and length scales can be used. At the high Reynolds
numbers under consideration here, viscosity is not
important in the larger subgrid scales and we

have :

_Qa_qs (4)

where Q is the velocity scale of total turbulent
kinetic energy and L the integral or large scale of
the turbulence. Combining these equations with

Q=L(SuS:)E (5)
which is derived by equating production and dissipa-
tion, gives :

vr=Cs" A*L¥(5:;:5:)! (6)
which is a version of the Smagorinsky model. In
equation(5), ensemble averaged strain is approx-
imated by Sij in equation(2) since the filter width
is large. We have given the spatial filter form of
the model but it is not difficult to convert it to a

form appropriate to temporal filtering ie. A is

3
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replaced by g A f.

In the form of the model given by Eq. (6), the
length scale is (L A®)"® rather than the more
commonly used A. In most simulations, the
difference is not of great importance because the
ratio L/ A is approximately constant. However,

(6) should require a different model constant.
IV. Broad Filters and Reynolds Averaged Models

In the limit of a very broad temporal filter, all of
the turbulent kinetic energy lies in the unresolved
motions. LES then reduces RANS. Eddy viscosity
(Boussinesq) models have long been used in RANS.
These models have the form (2), where u is the
time mean velocity (the infinite width time—filtered
velocity). Furthermore, the eddy viscosity takes
form similar to (3) :

ve=CuQL (7)
where ¢ is the velocity scale of the complete
tubulence field and L is a length scale usually taken
to be the integral scale.

In writing equation (7)), we are implicitly assum-
ing that a method of computing the length scale is
available. The method of doing this is of the major
difficulties in turbulence modeling; a number of such
procedures have been proposed. Of these, the zero-
and two-equation models are far and away the most
popular. The latter has been preferred in recent
years because it is easier to apply to a wide range
of flows. However, for the purposes of this paper, it
is sufficient to assume that the length scale is
somehow known i. e. we shall assume that the

model for the length scale is accurate.

Thus, for temporal filtering applied to statistically
steady fows, the limits of the LES equations when
the filter width becomes large are just the familiar
RANS equations. The only important difference is
that the length scale in the eddy viscosity formula is
not the filter width but a turbulence length scale.
Under these circumstances, the model length (or
time) scale can become smaller than the filter
width.

We note in passing that, when eddy viscosity
models are used in RANS calculations, the effect of

4
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the model is to replace the actual high Reynolds
number flow by an effective low Reynolds number
flow . however, the eddy viscosity is not spatially
constant. Indeed, the objective of turbulence
modeling is the determination of an eddy viscosity
distribution which yields the mean velocity field of
the turbulent flow ie. the goal is to produce an
effective laminar flow that has the tubulent mean

velocity profile.

Experience shows that this is not easy. If too
little viscosity is introduced, the computed flow may
not be stable and an unsteady or divergent solution
may be obtained when a steady one is expected.
While the problem may be due to the numerical
methods, insufficient effective viscosity is a common
cause of the problem. In other words, one may be
performing a large eddy simulation when a time—
average calculation is intended.

Most importantly, let us note that, assuming it
leads to a steady solution, the eddy viscosity of Eq.
(7) must be an upper bound to the eddy viscosity
that can be used in a large eddy simulaiton. This
follows from the fact that, by definition, this eddy
viscosity is large enough to remove all of the
turbulence from the resolved scales and leave a
steady resolved flow. Since, in this limit, the filter
width is larger than any scale of the turbulence, the
eddy viscosity of Eq. (7) can become also smaller
than that given by Eq. (6).

An interesting situation occurs in simulations in
which the cutoff wavenumber is below the inertial
subrange (or the filter width is larger than the
integral scale) . Some of the turbulence remains
unresolved so the simulated flow should be un-
steady. However, the eddy viscosity must be
smaller than that provided by the Smagorinsky
model. This is usually accounted for by reducing
the model constant but the above argument suggen-
sts that using the integral scale rather than the filter
width or grid size as the length scale in the model

would be more appropriate.

In most RANS calculations, the grid size used in
the numerical solution is smaller than the model

length scale ; this is required for numerical accu-
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racy. In this case, the Smagorinsky eddy viscosity
based on the grid size (rather than the filter size)
is smaller than the eddy viscosity provided by a
RANS model. This is consistent with the point
made above ie. that the principal feature distin-
guishing LES from RANS is the magnitude of the
eddy viscosity. Indeed, one may be able to use the
same numerical code for both types of calculations
by varying the eddy viscosity.

V. High Reynolds Number Large Eddy Simulation

Now suppose that the intent is to simulate very
high Reynolds number flows. Such flows may
contain very large eddies which produce forces that
oscillate on relatively long time scales ; it may be
desirable to explicitly simulate these eddies and the
forces they generate. For example, we might want
to simulate the large unsteady vortices and forces
generated when a boundary layer flows over an
obstacle such as a building. (There are several
different types of vortices in such flows.) Meteorol-
ogy provides other examples ; in one obvious case,
it is essential to track the progress of a storm
without explicitly simulating the smaller scale
motions. Still another example is the flow within
the cylinder of an internal combustion engine ; the
vortices differ from one cycle to the next and it may
be important to capture this variation by doing

several LES realization.

In these examples, LES is employed because it can
simulate the important large eddies but cost consid-
erations and abilties of the computer do not permit
the use of full simulation. In simulations of these
flows, a large fraction of the turbulent kinetic
The filter
width is comparable to the grid size rather than

energy resides in the subgrid scales.

being much larger than it as is the case for RANS
eddy viscosity models, but it is also comparable to
the integral scale of the turbulence. The arguments
about the scaling of the subgrid scale made earlier
no longer apply.

Because the filter width is now comparable to the
integral scale of the turbulence and the wavenumber
cutoff is now near the peak of the energy spectrum,
the velocity scale should no longer vary with the
filter size. The Smagorinsky eddy viscosity can
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take the form :

Ve= CSZLZ(Sz‘jSij)UZ ( 8 )
for these flows. Again, it is possible that, if only a
small range of flow parameters is used, the differ-

ence will not be noticed.

As noted earlier, it then follows, that for the
simulation of very high Reynolds number flows, the
subgrid scale eddy viscosity should be smaller than
that predicted by the usual Smagorinsky model.
The fact that a number of authors have found it
necessary to reduce the value of the Smagorinsky
coefficient may be related to this observation.
Indeed, many simulations including meteorology

(Deardorff, 1974), channel flow (Horiuti, 1986)
and architectural flows (Murakami et al, 1985)
have used Cs =0.1 while homogeneous flows and
theory suggest that 0.2 is more appropriate. In fact,
as the Reynolds number is increased further, a still

smaller value of Cs may be appropriate.
VI. Wall Conditions

In treating wall bounded flows, one has to choose
between resolving the wall region by including no—
slip boundary conditions at the surface and remov-
ing the wall region from consideration by applying
artificial boundary conditions at some distance from
the wall. In the latter case, the artificial condition
is usually applied in the logarithmic or buffer region
of the boundary layer. The first type of simulation
is preferred when the purpose is to study the
dynamics of turbulence production near walls while
the second type is preferred. in engineering applica-
tions aimed at computing a few important integral

effects.

In simulations with no—slip boundary conditions,
the Smagorinsky model is usually modified near the
wall. This modification usually takes the form of
reducing the length scale by a van Driest damping
factor :

L=y(l—exp(—y/A)) (9)
where y is the distance to the wall and A is a
"sublayer thickness” : other forms of the damping
factor have been proposed. The van Driest factor
was originally introduced into RANS models in
order to account for the reduction in the turbulence
length scales near the wall. It is difficult to justify

5
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this factor in LES ; indeed, it may not be correct
in RANS simulations (Norris and Reynolds, 1975).
The philosophy of LES suggests that the distance to
the wall should not be introduced as directly as Eq.
(9) suggests ; it is difficult to justify the presence
of an integral parameter such as the sublayer
thickness in the model.

Actually, it is the turbulence intensity (unresolved
or total) that is reduced near the wall. Relation-
ships (2) and (6) are no longer correct. They
overpredict the subgrid scale Reynolds stress and
need to be modified near the wall. No simple
method of doing se has vet been suggested. In the
absence of such a model, we suggest use of a
turbulent kinetic energy subgrid scale model in

calculations that include no—slip conditions.

For simulations that use artificial boundary
conditions, the best such condition is due to
Schumann (1973).
between the velocity at the point at which the

It assumes proportionality

condition is imposed and the shear stress at the
wall, 7, :
w(x,y)=<uly: > rulzx)/ <7wd (10)

where < > indicates an average of a quantity over a
plane parallel to the wall. The velocity in the
direction normal to the wall is assumed to be zero.
However, the last assumption cannot be correct
because sweep and burst events, which involve
considerable motion normal to the wall, are known
to carry most of the shear stress in the region in
which the condition is to be imposed. Thus,
improved boundary conditions should be sought ;
Piomelli et al (1986) have proposed such models but
have not yet tested them.

VIl. Conclusions

We have shown that a number of approaches to
the simulation of turbulent flows, including full
simulation, large eddy simulation and one point
closures, can be regarded as members of a contin-
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uum of methods parameterized by the fraction of
the turbulence resolved. This viewpoint suggests
that large eddy simulations of very high Reynolds
number flows may require a different subgrid scale
models than lower Reynolds numbers flows. It also
shows that the differences between RANS and LES
may not be as great as some authors suppose.
Finally, further development of the artificial bound-
ary conditions usually applied in very high Reynolds
number LES is needed.
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