
524 38 ~ 12l;} (1986.12)

~ ~ 1 UDC 533.6.011.1: 621.3.014.3
~~I!UI.

Large Eddy Simulation at Very High Reynolds Numbers
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Reynolds numbers of turbulent flows in large-scale regions are very high. In their

large eddy simulation, sufficientJy narrow filters cannot be adopted owing to the

limitation of computer resources. Coase filters give rise to various difficulties

conceming the choice of model constants and the imposition of noslip boundary

conditions. Some methods for resolving such difficulties are provided.

I. Introduction

Wide varieties of approaches to simulating turbu­

lent flows have been developed over the past twenty

years. In the most fundamental approach, full or

direct turbulent simulation (FTS) , the Navier­

Stokes equations are solved numerically; the

results contain the complete details of the flow.

Large eddy simulation (LES) solves filtered

Navier-Stokes equations and yields the large scale

components of the fluid motion. In time-or

Reynolds-averaged Navier-Stokes (RANS) calcu­

lations (also called one point closures) , the

Navier - Stokes equations are averaged over an

ensemble of realiztions of the flow.

Among these methods, FTS is essentially exact

(if careful attention is paid to numerical methods) ,

LES requires modeling for the small scales (which

may contain anywhere from 10 to 90 percent of the

kinetic energy of the turbulence) and RANS

computations demand modeling of all the turbulent

motions. Because turbulence models are uncertain,

as the fraction of the turbulence represented by a

model increases, the accuracy expected of a calcula­

tion decreases. On the other hand, the more exact

approaches require considerably more computation

time and expense; these are often beyond what
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most users can afford.

For practical reasons, one should use the least

expensive method capable of producing the desired

accuracy. However, as the preceding paragraph

shows, there is a trade-off between cost and

accuracy so one may be forced to choose between a

method that is not accurate enough and one that is

too expensive. Because RANS models are not

always sufficiently accurate, LES has been suggest­

ed as an alternative to them. In this paper, we shall

investigate issues connected with LES of very high

Reynolds number flows, for which filtering removes

appreciable part of the energy of the turbulence.

This is an important topic because, in many applica­

tions, it is essential to predict the (steady and

unsteady) forces that arise from the largest scale

turbulent motions. Fields with interest in this

subject include architectural aerodynamics, unsteady

aircraft aerodynamics and meteorology, among

others. LES has been applied to all of these areas.

There are important differences between this type

of calculation (eg. Murakami et ai, 1985) and the

kind of LES used to investigate the fundamental

physics of turbulent flows (eg. Moin and Kim, 1982).

It is these differences that we intend to focus on.

II. Filtering

In the standard approach to LES, the part of the

velocity field to be resolved is defined by spatial

filtering; i.e. the filtered velocity field u (written
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in one diinention) is i

ズ″)=ルし,″';△)ス″')″' (1)

which may be thought of as a running average of

the velocity, z, over a volume whose linear dimen-

tion is the filter width, A. For present purposes, the

choice of filter, G, is not important. However, it is

important to note that, although they may be quite

anisotropic, the small structures or eddies are

similar in al l  three demensions and t ime.

Consequently, filtering in any one dimention (or

time) tends to remove the components of the

velocity field which vary. rapidly in the other

directions and in time.

The primary issue we want to investigate is what

happens when the width, A, of the filter becomes

large. It would be useful if, in this limit, the LES

equations reduce to RANS equations. Unfortunate-

ly, this does not happen in the usual formulation of

LES, because filtering on such a large scale also

smoothes the mean velocity field. The limit we

desire will obtain if the flow is homogeneous in at

least one spatial direction and is fiitered only in that

direction. However, we prefer to avoid this restric-

tion.

An alternative, especially for statistically steady

flows, is to filter in time. Although this approach

has been mentioned a number of times, it has not

been out into pratice because it is computationally

inconvenient. Furthermore, as noted above, spatial

filtering removes the small time scale fluctuations

of the velocit5' field so time filtering is unnecessary

vr.hen spatial filtering is used. For our purposes, it is

convenient to adopt temporal filtering for nominally

steady flows because this allows a Reynolds aver-

aged formulation to emerge as a limit of LES.

The ideal method of deriving the RANS equations

is via ensemble averaging i the need for spatial or

temporal averaging is thereby eliminated and the

difficulties described above are avoided. Unfortu-

nately, as LES is designed to reproduce a single

flow realtzation, ensemble averaging cannot serve

our purpose.
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I I I .  Smagorinsky Model

Now let us consider what happens when the width

of the filter is increased. As suggested above, we

shall think in terms of time filtering but, because

they are better developed, we will use ideas derived

from the spatiai filtering formulation.

In the limit of zero filter width, LES reduces tc

FTS and no modeling is required. As the width of

the filter is increased, some of the small scale

motions become part of the unresolved or subgrid

scale field and a model must be introduced to

account for them. Eddy viscosity models have been

widely used for this purpose i they represent the

subgrid scale Reynolds stresses, in terms of the large

scale field by:

aび=パ(筈争+1:争)=2ン島

where yr is the subgrid scale eddy viscosity. In

turn, the eddy viscosity can be written i

vr--  Csz q L (3)

where 4 is a velocity scale of the subgrid motions

and, A is the filter width, the appropriate length

scale for the subgrid motions and Cs is the single

m n d a l  n a r q m p t p r

There remains the problem of determining the

scale velocity, 4. For this purpose, the familiar

argument relating the energy drain to the velocity

and length scales can be used. At the high Reynolds

numbers under consideration here, viscosity is not

impoftant in the larger subgrid scales and we

have

ε=#=f (4)

vyhere Q is the velocity scale of total turbulent

kinetic energy and Z the integral or large scaie of

the turbulence. Combining these equations with

0=ι (S″S″): ( 5 )

which is derived by equating production and dissipa-

tion, gives i

ンT=Cs2△
夕3L23(s,Js″

)12 (6)

which is a version of the Smagorinsky model. Ir.

equation(5), ensemble averaged strain is approx-

imated by Sij in equation(2 ) since the filter width

is large. We have given the spatial filter form of

the model but i t  is not dif f icult  to convert i t  to a

form appropriate to temporal filtering i.e. A is

( 2 )
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replaced by qLt.

In the form of the model given by Eq. (6), the

length scale is (IA')'re rather than the more

commonly used A. In most simulations, the

difference is not of great importance because the

mtio Ll A is approximately constant. However,

( 6 ) should require a different model constant.

IV, Broad Filters and Reynolds Averaged Models

In the limit of a very broad temporal filter, all of

the turbulent kinetic energy lies in the unresolved

motions. LES then reduces RANS. Eddy viscosity

(Boussinesq) modeis have long been used in RANS.

These models have the form ( 2 ), where u is the

time mean velocity (the infinite width time-filtered

velocity). Furthermore, the eddy viscosity takes

f o r m s i m i l a r t o  ( 3 ) :

νθ=C″0五 (7)

where Q is the velocity scale of the complete

tubulence field and Z is a length scale usually taken

to be the integral scale.

In writing equation ( 7 ), we are implicitly assum-

ing that a method of computing the length scale is

available. The method of doing this is of the major

difficulties in turbulence modeling; a number of such

procedures have been proposed. Of these, the zero

and two-equation models are far and away the most

popular. The latter has been preferred in recent

years because it is easier to apply to a wide range

of flows. However, for the purposes of this paper, it

is sufficient to assume that the length scale is

somehow known i. e. we shall assume that the

model for the length scale is accurate.

Thus, for temporal filtering applied to statistically

steady fows, the limits of the LES equations when

the filter width becomes large are just the familiar

RANS equations. The only important difference is

that the length scale in the eddy viscosity formula is

not the filter width but a turbulence length scale.

Under these circumstances, the model length (or

time) scale can become smaller than the filter

width.

We note in passing that, when eddy viscosity

models are used in RANS calculations, the effect of

4

生 産 研 究

the model is to replace the actual high ReynOlds

number floM′ by an effective lov7 Reynolds number

f10v′: hOM′ever, the eddy viscosity is not spatially

constant    lndeed,  the obiectiVe  Of turbulence

modeling is the determination of an eddy viscosity

distributiOn which yields the mean velocity field of

the turbulent f10M′ ie the goal is to produce an

effective lanlinar floM′ that has the tubtllent mean

velocity profile

Experience shoM′ s that this is not easy.  If tOO

little viscosity is introduced,the computed floM′ rnay

not be stable and an unsteady or divergent solution

may be obtained M/hen a steady one is expected

Vヽhile the problem may be due to the numerical

methods,insufficient effective viscOsity is a conlmon

cause of the prOblem  ln Other words, one may be

peFforming a large eddy silnulation when a tinle―

average calculation is intended

N10st iinportantly, let us note that, assunling it

leads to a steady solution,the eddy viscosity of Eq.

(7)must be an upper bound to the eddy viscosity

that can be used in a large eddy simulaitOn.  This

folloM/s from the fact that, by definition, this eddy

viscosity is large enOugh to remOve an of the

turbulence frOm the resolved scales and leave a

steady resolved flow. Since, in this lirnit, the filter

width is larger than any scale of the turbulence,the

eddy宙 scosity of Eq.(7)can beCome also smaller

than that given by Eq.(6).

An interesting situation occurs in siinulations in

v/hich the cutoff wavenumber is belo、 ′ the inertial

subrange (or the filter v′ idth is larger than the

integral scale)   Some Of the turbulence remains

unresolved so the siinulated floM/ 壺 ould be un‐

steady    Ho、 ァever, the eddy viscosity must be

smaller than that prOvided by the Smagorinsky

model  This is usually accOunted for by reducing

the mOdel constant but the above argument suggen‐

sts that using the integral scale rather than the filter

vridth or grid size as the length scale in the model

v7ould be more appropriate

ln most RANS calculations, the grid size used in

the numerical solution is smaller than the model

length scale i this is required for numerical accu‐
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racy  ln this case, the Smagorinsky eddy viscosity

based on the grid size  (rather than the filter size)

is smaller than the eddy viscosity provided by a

RANS model. This is consistent with the point

made above i.e. that the principal feature distin‐

guishing LES frOn■ RANS is the magnitude of the

eddy vi∝ osity. Indeed, one may be able to use the

same numerical code for both types of calculations

by varying the eddy viscosity.

rヽ .High Reynolds Number Large Eddy Simulation

Nov/ suppOse that the intent is to siinulate very

high Reynolds number flows. Such flows may

contain very large eddies M′ hich produce forces that

oscillate on relatively long tilne scales i it may be

desirable to explicitly sirnulate these eddies and the

forces they generate  For example, v′ e might M/ant

tO silnulate the large unsteady voltices and forces

generated when a boundary layer flo、 vs over an

obstacle such as a building.  (There are several

different types of vortices in such flows.)MeteOr01_

ogy provides other examples; in one obvlous case,

it is essential to track the progress of a storm

M′ithout explicitly silnulating the maller scale

mOtions  Still anOther example is the ■ o ′ヽ M′ithin

the cylinder of an internal combustion engine; the

vOrtices differ from one cycle to the next and it may

be irnportant to capture this variation by doing

several LES realization.

In these examples,LES is employed because it can

simulate the important large eddies but cost consid‐

erations and abilties of the computer do not penmit

the use of full sirnulation.  In silnulations of these

flOws, a large fraction of the turbulent kinetic

energy resides in the subgrid scales   The filter

M/idth is comparable to the grid size rather than

being much larger than it as is the case for RANS

eddy viscosity models, but it is also comparable to

the integral scale of the turbulence  The arguments

about the scaling of the sub3rid scale made earlier

n010nger apply

Because the filter v/idth is noM′comparable to the

integral scale of the turbulence and the wavenumber

cutOff is nOM′near the peak of the energy spectrunl,

the velocity scale should no longer vary with the

filter size.  The Smagorinsky eddy viscosity can
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( 8 )

take the form l

y , : 6 1 2 1 2 ( S t i S i i ) r t "

for these flows. Again, it is possible that, if only a

small range of flow parameters is used, the differ-

ence will not be noticed.

As noted earlier, it then follows, that for the

simulation of very high Reynolds number flows, the

subgrid scale eddy viscosity should be smalier than

that predicted by the usual Smagorinsky model.

The fact that a number of authors have found it

necessary to reduce the value of the Smagorinsky

coefficient may be related to this observation.

Indeed, many simulations including meteorology

(Deardorff, 1974), channel flow (Horiuti, 1986)

and architecturai flows (Murakami et al' 1985)

have used Cs =0.1 while homogeneous flows and

theory suggest that 0.2 is more appropriate. In fact,

as the Reynolds number is increased further, a still

smailer value of Cs maV be appropriate.

VI. Wall  Condit ions

In treating wall bounded flows, one has to choose

between resolving the wall region by including no-

slip boundary conditions at the surface and remov-

ing the wall region from consideration by applying

artificial boundary conditions at some distance from

the wa1l. In the latter case, the artificial condition

is usually applied in the logarithmic or buffer region

of the boundary layer. The first type of simulation

is preferred when the purpose is to study the

dynamics of turbulence production near walls while

the second type is preferred in engineering appliczL-

tions aimed at computing a few important integral

effects.

In simulations with no-slip boundary conditions,

the Smagorinsky model is usually modified near the

wa11. This modification usually takes the form of

reducing the length scale by a van Driest damping

factor :

ι=y(1-exp(一 y/4))2 (9)

where y is the distance to the wall and A is a

"sublayer thickness" : other forms of the damping

factor have been proposed. The van Driest factor

vras originally introduced into RANS models in

order to account for the reduction in the turbulence

length scales near the wall. It is difficuit to justify
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this factor in LES i indeed, it may not be correct

in RANS simulations (Norris and Reynolds, 1975).

The philosophy of LES suggests that the distance to

the wall should not be introduced as directly as Eq.

( 9 ) suggests i it is difficult to justify the presence

of an integral parameter such as the sublayer

thickness in the modei.

Actually, it is the turbulence intensity (unresolved

or total) that is reduced near the wall. Relation-

ships (2) and (6) are no longer correct. They

overpredict the subgrid scale Reynolds stress and

need to be modified near the wa1l. No simple

method of doing so has yet been suggested. In the

absence of such a model, we suggest use of a

turbulent kinetic energy subgrid scale model in

calculat ions that include no-sl ip condit ions.

For simulations that use artificial boundary

conditions, the best such condition is due to

Schumann (1973). I t  assumes proport ional i ty

between the velocity at the point at which the

condition is imposed and the shear stress at the

wall ,  r* ' .

u ( r ,s ' )  :  1  u1n,D r .G )  I  ( r * ) (10)

where ( ) indicates an average of a quantity over a

plane paral lel to the wall .  The velocity in the

direction normal to the wall is assumed to be zero.

However, the last assumption cannot be correct

because sweep and burst events, which involve

considerable motion normal to the wall, are known

to carry most of the shear stress in the region in

which the condition is to be imposed. Thus,

improved boundary conditions should be sought i

Piomelli et al (1986) have proposed such models but

have not yet tested them.

VII.  Conclusions

We have shov/n that a number of approaches to

the simulation of turbulent flows, including full

simulation, large eddy simulation and one point

closures, can be regarded as members of a contin-
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uum of methods parameterized by the fraction of

the turbulence resolved.  This viewpoint suggests

that large eddy simulatiOns Of very high Reynolds

number floM″s may require a different subgrid scale

models than loM″er Reyn。lds numbers f10M/s  lt also

shows that the differences betM「een RANS and LES

may not be as great as some authors suppose

Finally, further development of the artificial bound‐

ary conditions usually applied in very high Reynolds

number LES is needed.
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