速

報 INTIMATINATION CONTRACTOR CONTRACT

BEM による応力拡大係数の高精度・汎用解析法

Accurate and Efficient Analyses of Stress Intensity Factors for Various Crack Problems with Boundary Element Method

結 城 良 治*・松 本 敏 郎* Ryoji YUUKI and Toshiro MATSUMOTO

1. 緒 言

境界要素法(BEM)に FEM の離散化手法が導入され, 高精度化・効率化が図られて以来¹⁾, BEM によるき裂間 題の解析が発展・普及しつつあるが,精度・汎用性など の面でまだ検討の余地がある.著者らは,BEM に適した 応力拡大係数の決定法として,き裂先端の変位・表面力 の直接解を利用する比例変位法・比例応力法を提案し, このようなKの決定法の工夫により,2次元および3次 元モード I き裂のKが簡便かつ高精度に求められること を明らかにしている^{2),3}.

本研究では、実用上重要となる混合モードき裂あるい は複雑な形状のき裂、体積力場のき裂等が解析できる汎 用の2次元 BEM 弾性プログラムを開発し、各種の2次 元き裂の BEM 解析を行った。あわせてこのようなき裂 においても前述の比例法が有効に利用できることを示す。

2. BEM の基礎式

本研究における BEM 弾性解析は, Kelvin の解を用い た直接法である.図1のような弾性体の境界値問題の場 合,BEM の基礎式は次のように表される.

 $C_{ij}u_j(P) + \int_{\Gamma} T_{ij}(P,Q)u_j(Q)d\Gamma$ = $\int_{\Gamma} U_{ij}(P,Q)t_j(Q)d\Gamma + \int_{\mathcal{Q}} U_{ij}(P,q)b_j(q)dQ \quad (1)$

ここで、i, jは座標軸、 u_j, t_j はそれぞれ変位および表面 カベクトル、 U_{ij}, T_{ij} は Kelvin の基本解であり、それぞ れ無限領域中の1点Pのj方向に単位集中力が作用した

*東京大学生産技術研究所 第1部

ときの別の点Qにおける*i*方向の変位,表面力である. また, C_{ij} は,滑らかな境界に対しては,クロネッカの記 号 δ_{ij} を用いて $1/2\delta_{ij}$ 表される定数である. b_j は体積力 ベクトルである.

式(1)中の変位 $u_j(Q)$,表面力 $t_j(Q)$ は境界上の値の みからなり、境界を離散化し、境界条件を用いることに よって未知数の次元からなる連立方程式に変換でき、間 題が解けることになる.さらに、境界上の値 u_j , t_j が求ま れば、領域内部の点 pにおける変位は次式により求まる.

 $u_i(p) + \int_{\Gamma} T_{ij}(p,Q) u_j(Q) d\Gamma$

 $= \int_{\Gamma} U_{ij}(p,Q) t_j(Q) d\Gamma + \int_{\Omega} U_{ij}(p,q) b_j(q) d\Omega \quad (2)$

また、内点のひずみや応力は式(2)を微分した式に変位 一ひずみ関係式,構成方程式を用いて求めることができる.

3. BEM 弾性解析プログラムの概要

前述(1)式の離散化解析手法については詳述を省き, 本研究で用いた BEM 弾性解析プログラムの特徴のみを 以下に列記する.

- 境界要素に2次アイソパラメトリック要素を用いた。必要に応じてき裂先端には中間節点を1/4点に 移動した特異要素も用いた。
- コマンドを使って対話式に要素分割を行う自動分 割システムにより分割作業の効率化を図った。
- 3) 数値積分は Gauss の数値積分公式を用い,誤差評価法による積分次数の可変化により計算の効率化を図った。
- 特異積分は1つの要素をいくつかのサブ要素に分割して行い、数値積分精度の向上を図った。
- 5) 表面力が不連続となる角点には無限小要素を用いた.
- 混合モードき裂の解析では、領域をき裂を含んだ
 2つの領域に分割し、領域分割法で解析した。
- 7) 内部セルは三角形一次要素で離散化し、Gaussの 数値積分を誤差評価法を組み込み実行した。

4. Kの決定法(比例応力法,比例変位法)

き裂問題の解析においては、前述の離散化解析手法の 高精度・効率化に加えて、き裂先端の応力の特異性に起 因して、Kの決定法を工夫する必要がある.以下に BEM に適したKの決定法として、比例応力法および比例変位 法³⁰を、混合モードに拡張して定式化を示す.

図2に示すようにき裂先端近傍の応力,変位,表面力 を定義する.き裂先端近傍におけるき裂前方($\theta=0$)の 応力分布 σ_y , τ_{xy} およびき裂後方($\theta=\pm\pi$)の相対変位 Δu , Δv は次式で表される.

$$\sigma_{\mathcal{Y}} \mid_{\theta=0} = -t_{\mathcal{Y}} = \frac{K_{1}}{\sqrt{2\pi r}} \tag{3}$$

$$\tau_{xy} \mid_{\theta=0} = -t_x = \frac{K_{\mathrm{II}}}{\sqrt{2\pi r}} \tag{4}$$

$$\frac{2G}{\chi+1}\frac{\Delta v}{2} = \frac{K_1}{\sqrt{2\pi}}\sqrt{r} \tag{5}$$

$$\frac{2G}{\varkappa+1}\frac{\varDelta u}{2} = \frac{K_{\rm H}}{\sqrt{2\pi}}\sqrt{r} \tag{6}$$

ここで、 $\Delta v = v|_{\theta=\pi} - v|_{\theta=-\pi}, \Delta u = u|_{\theta=\pi} - u|_{\theta=-\pi},$ G: 横弾性係数、 $x = 3 - 4\nu$ (平面歪)、 $(3-\nu)/(1+\nu)$

(平面応力), ν :ポアソン比,K,Kn はモード I および モード II に対する応力拡大係数である.通常、 σ を負荷応 力,aをき裂半長として、Kを次のように無次元化して 表示する.

 $K_{I} = F_{I}\sigma\sqrt{\pi a}$, $K_{II} = F_{II}\sigma\sqrt{\pi a}$ (7) 今,異なるき裂問題 A, Bを考える. き裂先端の要素の 相対分割 r/aを問題 A, Bで互いに等しくすると,式 (3),(4)より,表面力と F_{I} , F_{II} の間に次の比例関係が 得られる.

$$\left[\frac{t_y}{F_1}\right]_A = \left[\frac{t_y}{F_{II}}\right]_B = \frac{-\sigma\sqrt{\pi a}}{\sqrt{2\pi r}} = \text{const.}$$
(8)

$$\left[\frac{t_x}{F_{\rm II}}\right]_{A} = \left[\frac{t_x}{F_{\rm II}}\right]_{B} = \frac{-\sigma\sqrt{\pi a}}{\sqrt{2\pi r}} = \text{const.}$$
(9)

BEM や FEM 解析におけるき裂先端の節点値は誤差が 含まれ,通常それ自身単独では使用できなく,外挿法な どでは用いられないが,それが含まれる要素内である種

図2 き裂先端近傍の変位と表面力の定義

図3 き裂先端近傍の要素分割と節点

MINIMULTINUMULTINUMULTIUMI 研究速報の平均値を示しているものと考えられ、式(8)、(9)における比例関係もそのまま成り立つと予想される。そこで、問題BとしてKのわかっている問題(基準問題)をあらかじめ解析し、図3のC点での表面力を求めておき、同じ相対分割でKのわかっていない問題AのC点での表面力を求めれば、式(8)、(9)より問題AのF値が次のように求められる(比例応力法)³⁰.

$$F_{IA} = \frac{[t_{x,c}]_A}{[t_{x,c}]_B} F_{IB}$$

$$F_{IIA} = \frac{[t_{x,c}]_A}{[t_{x,c}]_B} F_{IIB}$$
(10)

なお、村上ら⁴⁰は、精度を上げるための要点として、き裂 がない場合にももともと存在している表面力成分 $l_{y,g}$ 、 $l_{y,g} を l_{y,c}, t_{x,c}$ から差し引くべきことを重ね合わせの原 理から導いている.

同様な比例関係は変位についても成立し³, 図 3 cD点の節点相対変位を Δu_D , Δv_D とすれば問題 A oF 値 が次のように求められる (比例変位法).

$$F_{IA} = \frac{[\Delta v_D]_A}{[\Delta v_D]_B} \cdot \frac{a_B}{a_A} F_{IB}$$

$$F_{IIA} = \frac{[\Delta u_D]_A}{[\Delta u_D]_B} \cdot \frac{a_B}{a_A} F_{IIB}$$
(11)

ここで、 a_A 、 a_B はそれぞれ問題 A, B のき裂(半)長であ る. なお、比例応力法、比例変位法の適用に当たっては、 両問題のき裂先端近傍の要素の相対分割 r/aを等しく する必要があることを再記しておく.

BEMによるKの解析では、従来変位ないし応力の外 挿法が用いられてきた。外挿法ではき裂先端近傍の要素 分割を十分細かくする必要があるが、上述の比例法では、 比較的粗い要素分割でも、高精度な解が期待できる³⁾.

5. 解析結果

5.1 混合モード直線き裂の解析

対称性を利用できない混合モードき裂の解析では、領 域分割法を適用することにより、BEMによる解析が可 能となる.以下に各種混合モードき裂のKの解析例を示 す.Kの決定法として前述の比例応力法,比例変位法を 用いた.その際の基準解として、図4に示す長方形板中 の傾斜直線き裂(H/W=2, a/W=0.5, $a=45^\circ$)に対す る結城ら⁵¹による選点法の解を用いた.表1に基準解と 同一の問題であるが、中央傾斜き裂の傾斜角 α ,き裂長 a/W を変えた場合の比例変位法より求めた一連の解析 結果を選点法の解と比較して示す.表1からき裂が大き いa/W=0.8を除き,比較的高精度の解が得られ、K_{II}の 決定に際しても比例変位法が有効に利用できることが確 認された.

次に基準解を上述と同じとし,図5に示す片側傾斜き

研	究	速	報	
---	---	---	---	--

α	a∕W	BI Present	EM t results	Collocation method by Yuuki		
		FI	F_{II}	F_1	F_{II}	
	0.1	0.9373	0.2505	0.9391	0.2502	
	0.2	0.9571	0.2516	0.9577	0.2510	
	0.3	0.9896	0.2531	0.9904	0.2527	
15°	0.4	1.0389	0.2561	1.0402	0.2560	
10	0.5	1.1100	0.2616	1.1128	0.2619	
	0.6	1.2283	0.2752	1.2183	0.2727	
	0.7	1.3970	0.2963	1.378	0.293	
	0.8	1.6604	0.3270	1.653	0.307	
	0.1	0.7512	0.4337	0.7557	0.4339	
	0.2	0.7725	0.4382	0.7730	0.4367	
	0.3	0.8025	0.4434	0.8025	0.4417	
20°	0.4	0.8440	0.4495	0.8456	0.4497	
30	0.5	0.9011	0.4620	0.9046	0.4617	
	0.6	0.9828	0.4814	0.984	0.480	
	0.7	1.0518	0.5063	1.091	0.508	
	0.8	1.2316	0.5563	1.245	0.550	
	0.1	0.5042	0.5040	0.5046	0.5018	
	0.2	0.5177	0.5089	0.5181	0.5072	
	0.3	0.5403	0.5173	0.5406	0.5162	
150	0.4	0.5718	0.5293	0.5719	0.5290	
4J	0.5	base	base	0.6119	0.5458	
i	0.6	0.6621	0.5638	0.6611	0.5674	
	0.7	0.7206	0.5938	0.721	0.595	
	0.8	0.7869	0.6293	0.795	0.630	

表1 長方形板中の中央傾斜き裂の応力拡大係数

表2 長方形板中の片側傾斜き裂の応力拡大係数

θ	a∕W	$F_{\rm I} = K_{\rm I} / \left(\sigma \sqrt{\pi a} \right)$			$F_{\rm II} = K_{\rm II} / \left(\sigma \sqrt{\pi a} \right)$		
		P.D.M. *1	P.S.M. *2	Freese	P.D.M.	P.S.M.	Freese
30°	0.2 0.3 0.4 0.5	1.082 1.270 1.551 1.964	1.090 1.282 1.565 1.981	1.11 1.28 1.55 1.98	$\begin{array}{c} 0.355 \\ 0.403 \\ 0.471 \\ 0.561 \end{array}$	0.357 0.407 0.478 0.572	0.36 0.41 0.48 0.58
45°	0.2 0.3 0.4 0.5	0.797 0.898 1.050 1.275	0.796 0.899 1.053 1.271	$0.80 \\ 0.90 \\ 1.02 \\ 1.27$	0.404 0.446 0.501 0.571	0.402 0.446 0.503 0.567	0.41 0.45 0.50 0.58

*1 Proportional Displacement Method (比例変位法)

*2 Proportional Stress Method (比例応力法)

裂のKを比例応力法・比例変位法により求めた。表2に θ =30°,45°の場合について本解析結果を選点法(MMC) による Freese の解 60 と比較して示す。Freese の解は図か ら読み取った値であるが1%前後で両者が一致し、き裂

図4 長方形板中の中央傾斜 き裂と要素分割

図5 長方形板中の 片側傾斜き裂

図6 長方形板中の両端屈折き裂の応力拡大係数

形状,境界条件が基準解と異なっても比例法が適用でき ることがわかる.

5.2 屈折き裂の解析

上述の結果から領域分割法の適用およびKの決定法の 工夫により,非直線形状の複雑な2次元き裂のKも BEMにより簡便かつ比較的高精度に解析できる見通し が得られた.ここでは、図6に示すような両端屈折き裂 が長方形板 (H/W=2)の中で一様引張を受ける場合に ついてBEM解析を試みた.き裂形状を一定($\theta=45^\circ$, b/a=0.4)に保ったまま,a/Wを徐々に大きくした場合の比 例変位法により求めた K₁, K₁₁の変化を図6に示す.

図7 き裂を有する回転円板

表 3	き裂を有す	る回転体の応力拡大係数	(平面応力)
-----	-------	-------------	--------

		BEM*		FEM**		
	接続外挿法	比較変位法	比較応力法	直接法	エネルギー法	体镇力法 村上,西谷
$f_1(\lambda)$	1.5919	1.5955	1.3559	1.569	1.601	1.594
$F(\lambda)$	0.8884	0.8864	0.8540	0.901	0.883	0.887
	* BEM * * FEM	要素数	收 46, 秋 868.	内部セル 節点数	81 945	

a/W→0の極限では、結城らの等角写像法による無限 板中の屈折き裂の解⁷¹とほぼ一致した.この結果から、実 際の構造物で見られる複雑な形状のき裂についても、本 解析法により実用上十分の精度で解析できるものと思わ れる.さらにき裂伝播方向に関するクライテリオンを導 入すれば、き裂進展シミュレーション解析も可能と思われる.

5.3 き裂を有する回転円板の解析

一般に体積力が作用する場合は BEM においても領域 を内部セルに分割し領域積分を実行する必要がある.こ こでは、体積力として遠心力が作用する図7に示すき裂 を有する回転円板のKを BEM により解析した.その内 部セルの分割例を図8に示す.比重 γ =7.85×10⁻⁶kg/ mm³, ν =0.3, N=(30/ π) ω =10000rpm, E=2.1×10⁴kg/ mm²としたときの解析結果を表3に示す.表には同一問 題に対する FEM⁷および体積力法⁹による結果も併記し た.応力拡大係数は次式で無次元化している.

$$f_{1}(\lambda) = K_{1}/(\sigma_{0}\sqrt{\pi a}), \quad f_{2}(\lambda) = K_{1}/(\sigma_{1}\sqrt{\pi a})$$

$$F(\lambda) = \sigma_{0}\sqrt{\pi a}/K_{1}, \quad \lambda = a/R_{1}$$

$$\sigma_{0} = \frac{3+\nu}{8} \frac{\gamma \omega^{2}}{g}R_{2}^{2} \qquad (12)$$

$$\sigma_{1} = \frac{3+\nu}{8} \frac{\gamma \omega^{2}}{g} \left\{R_{1}^{2} + R_{2}^{2} - \frac{1+3\nu}{3+\nu}(R_{1}+a)^{2} + \frac{R_{1}^{2}R_{2}^{2}}{(R_{1}+a)^{2}}\right\}$$

図8 内部セルの分割例

ここでωは角速度,gは重力加速度,ωはき裂のない回転 円板の中心に生じる円周応力, ωはそのき裂先端となる べく位置での円周応力である.Kは,接続外挿法²⁾・比例 応力法・比例変位法で求めたが,比例変位法で求めたK が最も精度が良く,精度の高い解として信頼できる体積 力法の解と一致(0.1%以下)した.またFEMの解と比 べて精度・効率の面ではるかにすぐれていることがわか る.本プログラムは,体積力場の問題のみならず,熱弾 性,初期ひずみの問題にも直接利用できる.

6. 結 言

汎用の2次元 BEM 弾性解析プログラムを開発し,各 種混合モードき裂や体積力場中のき裂を解析した.本解 析では,Kの決定法として,BEMの直接解であるき裂先 端での表面力や変位の節点値を用いる比例応力法,比例 変位法を用い,本方法がいずれのき裂問題に対しても有 効に利用でき,簡便かつ高精度なKの決定法であること を示した. (1986年5月9日受理)

参考文献

- Lachat, J.C.and Watson, J.O.; Int. J.Num. Mech. Eng., 10 (1976) pp. 991
- 北川,結城,木須,川端;日本機械学会論文集A編, 50-450 (1984) pp. 129
- 太須,結城,北川;日本機械学会論文集A編, 51-463 (1985), pp. 660
- 4) 村上;日本機械学会論文集, 42-360 (1976), pp. 2305
- 5) 北川, 結城;日本機械学会論文集, 43-376 (1977) pp. 4354
- Bowie, O.L., "Mechanism of Fracture 1, Method of Analysis and Solutions of Crack Problems" ed. Sih, G.C., Noordhoff, (1973) pp. 51
- 7) 北川,結城;日本機械学会論文集,41-386 (1978) pp. 3346
- 回転体の強さ試験研究分科会報告書、日本機械学会 (1977) pp. 40
- 9)村上、西谷、日本機械学会論文集、41-348 (1975) pp. 2255