研究 特集 14

自動車まわりの乱流の数値シミュレーション ----第3報 境界条件の影響-----

Numerical Prediction of the Turbulent Flow around Road vehicle —-3rd Report Effects of Boundary Conditions—

> 鬼頭幸 三*·小 林 敏 雄* Kozo KITOH and Toshio KOBAYASHI

1. まえがき

第1報では2次元車体まわりの乱流を $k - \epsilon$ 乱流モデ ルを用いて数値予測するプログラムを開発し¹⁰,第2報 では数値予測結果と実験結果とを詳細に対比して本プロ グラムの性質を考察した²⁰.本報においては種々の境界 条件の影響を系統的に調べることによって本プログラム の改善に必要な基礎資料を求めることを目的とする.ま ず,計算対象領域の入口部における乱流エネルギ k.乱流 エネルギ散逸率 ϵ 値の設定方法に考察を加える.次に渦 動粘性係数 ν , k および ϵ について種々の境界条件の取 り扱いを検討する.すなわち無すべりの条件,自由すべ りの条件の影響を明らかにするとともに補助式の適用お よび線形化の良否を考察し,これらの境界条件の取り扱 いが主として車体表面の圧力分布におよぼす影響を検討 する.また壁面付近の諸乱流量の分布について検討を加 える

2. 境界条件

境界条件として計算対象領域の入口部では一定値を, 同出口部では一様流出の条件,同上面部では自由すべり の条件を課し,一方車体まわりおよび地面盤では固定壁 の条件を設定する.本報においては主として計算対象領 域入口部における k, ϵ 値の設定方法および固定壁にお ける ν_{ι} , k, ϵ の境界条件の取り扱いを考察の対象とす る.すなわち,

(a)入口部における k, ϵ 値(k_{in} , ϵ_{in})には Laufer の 実測値³⁾を標準値 (k_{in} =3.2×10⁻³, ϵ_{in} =7.4×10⁻⁴) に選 び, それぞれの 10 倍値および 0.1 倍値を設定する(表 1 のケース a1~a3).

(b)固定壁における ν_t の境界条件には無すべりおよ び自由すべりの条件を選び、さらに壁面近傍領域におけ る ν_t の線形化を考察する(表1のケースbl~b3).ここ に、 ν_t の線形化とは次の意味をもつ:高レイノルズ数域 を対象とした通常の乱流モデルから計算される ν_t を壁 面近傍の低レイノルズ数域にそのまま適用することは適 切ではなく、低レイノルズ数を考慮したモデルが必要と

*東京大学生産技術研究所 第2部

なる.しかし、この場合モデルがより複雑となるため、 便宜上壁面に隣接するメッシュにおける ν_t と同メッシュに外接するメッシュにおける ν_t' とが線形の関係を もつものと仮定し、壁面上で ν_t 零の条件下で $\nu_t \in \nu_t'$ から直接求める.

(c)固定壁における k, ε の境界条件にはそれぞれ無 すべりおよび自由すべりの条件を選び、さらに補助式適 用の良否を考察する(表1のケース cl~c8).補助式の適 用は前述の ν_{t} の線形化と同様の意味をもつ.混合長理論 から導出される k, ε に関する補助式は次式で表される.

 $\varepsilon = C_{\mu}^{3/4} k^{3/2} / (\chi d)$

 $k = C_{\mu}^{\mu} x^2 d^2 (\partial U/\partial d)^2$

ここに、 C_{μ} :数値定数、 χ : カルマン定数、d: 壁からの 距離、 $\partial U/\partial d$ の算出には便宜上 1/7 乗則を適用する.

使用する基礎方程式,計算手法,計算対象,主要変数 の定義などは第1報と同様である.なお,メッシュ分割 として第1報のケース2(141×69,不等分割メッシュ)

ケース	U, V	k	ε	ν	k _{in} ,ε _{in}
al					Laufer 実 験値
a2		自由すべり	補助式適用	線形化	同 10 倍值
a3		ļ			同 0.1 倍值
b1	 壁面に平行 方 向 の 速			線形化	
b2	度:1/7 乗 則,同垂直	自由すべり	補助式適用	無すべり	Laufer 実 験値
b3	万回の速 度:零			自由すべり	
c1		無すべり	無すべり		
c2		自由すべり	自由すべり		
c3		無すべり	自由すべり		
c4		自由すべり	無すべり	線形化	Laufer 実 験値
c5		無すべり		1	
c6		自由すべり	補助式適用	t I	
c7		補助式適用			
c8		補助式適用		無すべり	

表1 境界条件

を、数値定数としては Launder らの推奨値⁴⁾ (C_{μ} =0.09, C_1 =1.44, C_2 =0.1728, σ_1 =1.0, σ_2 =1.3)を用い、レイノル ズ数 Re=2.2×10⁶ (代表長さ:車高),収束計算に用いる SMAC 法における時間ステップの刻みとして 1/100,連 続式を満たす許容誤差として 1/100 を選んでいることを 付記しておく.

3. 結果および考察

3.1 入口部におけるk, ε値の影響

図1に、2次元車体上表面の圧力分布におよぼす入口 部におけるk、 ϵ 値(k_{in}, ϵ_{in})の影響を示す(ケース al ~a3).ここに、 $C_p=2(P-P_{\infty})$, $P_{\infty}=-$ 様流中の無次元 圧力.図から、 k_{in}, ϵ_{in} として Laufer の実測値の 10 倍値 あるいは 0.1 倍値を選んでも、上表面の圧力分布にはあ まり大きな差異が生じないことがわかる.

3.2 v, の境界条件の影響

図2に、2次元車体表面の圧力分布におよぼす ν_lの無 すべり条件、自由すべり条件および線形化の影響を示す (ケース b1~b3).図から、上表面の圧力分布については あまり大きな差異が生じないが、一方下面の圧力分布は 境界条件の影響を受けやすいことがわかる。下面の圧力 分布は車体床下部と地面盤間のメッシュ数に強く依存す るものと予想される。今後メッシュ数を増大させること によって図に示される下面圧力分布の傾向を確認するこ とが必要であると思われる。表2に抗力係数 C_b および 揚力係数 C_l を示す。ここに、C_b および C_L はそれぞれ 車体の前後方向および上下方向に働く圧力差を前面投影

ケース	Съ	CL	
b1	0.417	-0.808	
b2	0.427	-1.13	
b3	0.475	-0.363	

表 2 C_D および C_L (ケース bl~b3)

面積と流入速度の動圧との積で無次元化したものであ る.したがって, C_D, C_Lの算出に際して壁面摩擦力は無 視している.下面の圧力分布の影響を直接受ける C_L が 当然のことながら境界条件によって大きく変化している ことがわかる.

3.3 k, cの境界条件の影響

本計算範囲において k, cの境界条件について得られ た結果は次のとおりである.

(i) ϵ の補助式を用いない場合には ϵ の境界条件にか かわらずkの境界条件が重要な役割を果たす.すなわち, kが無すべりの条件の場合 (ケース cl, c3) 解は発散し, 自由すべりの条件の場合(ケース c2, c4)計算が収束す る.

(ii) ε の補助式を用いる場合(ケース c5~c8)には k
の補助式を用いる場合も含め k の境界条件にかかわらず
計算が収束する。

上記の結果(i)における自由すべりの条件は壁面近傍 において *k* 一定とみなす実験的事実に対応しうるもので あり,また結果(ii)については補助式の導出に際してこ の実験的事実が用いられていることなど *k* の条件が組み 入れられていることと強い関連があると思われる.

図3に、収束解が得られる場合(ケース c2, c4~c8)に ついて車体の上表面および下面の圧力分布を示す。図で

表 3 C_D および C_L (ケース c2, c4~c8)					
ケース	Съ	CL			
c2	0.555	-0.963			
c4	0.484	-0.999			
c5	0.421	-0.811			
c6	0.421	-0.811			
с7	0.440	-0.645			
c8	0.476	-0.272			

は、2次元模型による計測値(縮尺1:17.5, Re=1.1× 105, 第2報参照)を併記してある。図から、上表面圧力 分布については ε の補助式を用いる場合 (ケース c5 ~c8)には Cp 分布の差異が比較的少ないこと、補助式を 用いる場合には補助式を用いない場合(ケース c2, c4)と 比べて予測値が実測値により近づくことがわかる。すな わち、 ϵ の補助式はkの境界条件に左右されないほどの 強い影響を上表面 C_p 分布に与え、予測の改善をもたら す。下面の圧力分布については ε 補助式を用いる場合計 算ケース間において比較的大きな差異が生じている(車 体床下部と地面盤間のメッシュ数が下面圧力分布におよ ぼす影響については3.2節の場合と同様検討課題であ る). 表3に Coおよび CL を示す. なお, 2次元模型に よる実測の C_Dおよび C_Lはそれぞれ 0.20 および-0. 56 である. 表から、境界条件を適切に選定すれば Coの 場合と比べて C_L は実測値を再現しやすい傾向にある. また、ケース c8 は C_L を過小評価する傾向が認められ る.図4および表3に示される計算結果は定量的にみて 決して十分なものではない。特に、車体後部上表面圧力 分布については body-fitted-coordinates による車体形

図3 車体表面の圧力分布におよぼす k, c の境界条件の影響

図4 車体下面および車体上表面における vt, k, cの分布

状のより正確な表現,はく離域に適した乱流モデルなど の導入によって一層改善することが必要である.

図4に、車体下面(車体前端部から約0.2車長の距離 における断面:断面I)および車体上表面(車体前端部か ら約0.5車長の距離における断面:断面II)における ν_i , k, ϵ の分布を示す。図には流れ方向の平均速度Uの 分布を併記してある。図から、断面 I, IIの場合ともに k, ϵ の分布についてケース c2 と c4、ケース c5 と c6、 ケース c7 と c8 がそれぞれ壁面近傍を除き類似した傾向 を示すことがわかる。これらの傾向は定性的には図3に 示される傾向と一致している。また、 ν_i の分布について は ϵ の補助式を用いる計算ケース間では差異が少ない。

4. あとがき

本報では2次元車体まわりの流れを対象として種々の 境界条件の影響を調べて次の結論を得た.

(1)計算領域入口部における k, ε 値について:車体 上表面の圧力分布におよぼす影響は比較的小さい.

(2)固定壁における ν_tの境界条件について:(i)車 体上表面の圧力分布におよぼす無すべり/自由すべりの 条件および線形化の影響は比較的小さい.(ii)車体下面 の圧力分布におよぼすこれらの影響は大きい.

(3)固定壁における k, ϵ の境界条件について: (i) ϵ の補助式を用いない場合収束解を得るためにはkが自由 すべりの条件をもつことが必要である.(ii) ϵ の補助式 を用いる場合にはkの境界条件にかかわらず収束解が得 られる.(iii) k, ϵ の補助式の適用によって予測の改善が もたらされる.(iv)車体下面の圧力分布におよぼすk, ϵ の境界条件の影響は車体上表面の圧力分布の場合に比 べて比較的大きい.

本研究に対して有益なご討論をいただいた本研究所 NST研究グループの各位に対して心から謝意を表す る.また,本研究の一部は本研究所選定研究費によるこ と,計算は東京大学大型計算機センターHITAC M280H システムを用いて行ったことを付記する.

(1986年5月24日受理)

参考文献

- 1) 小林·諸岡, 生産研究, 36-12 (1984), 520.
- 2) 小林·諸岡, 生産研究, 38-1 (1986), 50.
- 3) J.Laufer, NACA Rep. 1174 (1954).
- B.E.Launder and D.B.Spalding, Computer Meth. in Appl. Mech. and Eng., 3 (1974), 269.