

□□□ 研究室紹介 □□□□

UDC 621.9.01

谷 研 究 室

本研究室は第2部に所属し,1981年に発足以来,佐藤 研究室とともに切削工作計画工学部門を担当しており, 現在助教授谷 泰弘,講師仙波卓弥,技官上村康幸の3名 が研究室の運営に当たっている.

本研究室では、機械加工の性能向上を図る、周辺技術 をも含む除去加工技術に関する一連の研究を行ってお り、高能率かつ高精度化を実現するための新しい砥粒加 工法の開発や、知能化生産システムを推進させるために 必要となる,加工性能を評価する計測法に関する研究を 行っている。これらの研究の一部は、佐藤研究室との共 同で行われている。以下に、現在の代表的な研究課題の 概要を紹介する.

1. 高性能な砥粒加工法の開発

硬脆材料等の超精密加工の担い手の一つとして、研磨 加工が最近注目を浴びている。しかし、一般に高精度の 研磨を行おうとすれば、微細な砥粒が使用され、その加 工能率は低下するのが現状である。このため、化学的作 用や電解作用との複合化が研究されているが、それぞれ がまた別の問題を有しており、十分とはいえない。

そこで, 高精度でしかも高能率な研磨を実現するため に,本研究室では磁性流体に特有な磁気浮揚現象を応用 した研磨法や, 微細砥粒を液体の粘着力により結合させ た液体ボンド砥石をラップ(工具)として用いた研磨法 を提案している。これらの研磨法では、作用砥粒面に砥 粒切れ刃がほぼ最密充塡の状態で存在しており, 加工単 位 (一砥粒当たりの切込み量) が同一になるように,加 工圧を設定することにより、得られる精度のわりには高 能率な研磨を実現することができる.

磁性流体が磁場勾配中に存在すれば、その流体中の非 磁性体は低磁場側に排出される。一般に使用されている 砥粒は非磁性体であるため、この磁気浮揚現場を応用す れば、加工面に砥粒を集中させることができる。実際に 砥粒添加率の大きい領域では,磁性流体の表層に粘土層 (ポリシャ)ができあがる。これに加工物を押しあてれば, 加工が可能となる。このとき、作用する加工圧は、磁性 流体の磁化の強さと磁場勾配により決定される.

液体ボンド砥石は,加工面に砥粒を集中させるという 考えを推し進め,より高い加工圧での研磨を可能とした

ものである。この液体ボンド砥石は,平均粒径が 30μm 以下の砥粒を液体の粘着力により結合させたものであ り、従来のラップ砥石にはない結合力の弱い砥石である。 このため、たとえば通常のシリコンウエハのラップされ た面 (<111>面) を 3μm/min の加工能率で0.02μmRz 程度の粗さまで高能率にしかも容易に仕上げることがで

2. 加工変質層の評価法の確立

超精密加工の周辺技術として重要なテーマに,加工面 の評価の問題がある。高精度な面が要求される加工物は 光学部品の一部として使用されるため,加工面の粗さや 形状精度が優れているのみでなく, 加工により生じる変 質層の少ない高品質の面が要求されている。ところが, 現状ではこの加工変質層を総合的に評価できる計測法が 存在しない。

そこで、加工表面に存在するボイド・クラック・組織 変化・異物の混入等を音響インピーダンスの差異として 検出できる高分解能の超音波顕微鏡を用いて,加工変質 層の総合的な評価法を確立するための研究を,佐藤研究 室と協力して進めている。特に,加工変質層内の残留応 力を評価するために,加工表面の硬度がそこを伝搬する 紹音波の速度や減衰と密接な関連があることを利用し て、その定量化を進めている.

また、この研究と関連して熱損傷が生じやすいクリー プフィード研削での残留応力の解析を, 実際の状態との 対応を深めるために, 有限要素と境界要素との結合解法 により、加工時および冷却時の非定常な熱伝導を解明す ることをもとに進めている。このことにより、加工条件 と熱損傷との関連を明確にしようとしている。

超音波顕微鏡の工業計測への応用として、基板上の薄 膜の厚みを計測する新しい方法を開発している.これは, 薄膜にセザワ波が生じて,入射波の大部分が基板内に漏 洩する現象を利用しており,高速度な計測が可能となる。

3. 工作機械の構造解析

工作機械のように立体的な板構造を有する構造体に対 しては、二次元要素を用いて三次元構造を近似するため に、最適な CAE システムが存在していないのが現状で ある. このため、構造解析のための有限要素法を行える 大型計算機を有してはいても、その入出力を支援する簡 便なシステムがないために,解析の合理化が図れないこ とが多い。

そこで, こうした構造体の自動メッシュ分割や出力デ ータをもとにしたモードアニメーション等を, パーソナ ルコンピュータにより簡易的に行う支援ソフトシステム の開発を、佐藤研究室と共同して行っている。このこと により,安価なシステムにより工作機械の構造解析を行 泰 弘 記) うことが可能となる。 (谷