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1 Introduction

This document describes about the atmospheric general circulation model (AGCM) of MIROC6
(the sixth version of MIROC or Model for Interdisciplinary Research on Climate; Tatebe et
al., 2019), which has been cooperatively developed at the Center for Climate System Research
(CCSR; the precursor of a part of the Atmosphere and Ocean Research Institute), the Univer-
sity of Tokyo, the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), and
the National Institute for Environmental Studies (NIES). All the descriptions are basically cor-
responded with the source codes of MIROC6, specifically the version used for CMIP6 DECK
experiment, whereas the original document written in Japanese by Dr. Numaguti in 1995 was
corresponded with those of CCSR/NIES AGCM5.4.

1.1 Characteristics of MIROC6 AGCM

MIROC6 AGCM are summarized below.

• System of equations: Hydrostatic primitive equations

• Area: Global 3D

• Prognostic variables: Horizontal wind speed, temperature, surface pressure, specific
humidity, cloud water

• Horizontal discretization: Spectral transformation (Bourke, 1988) method

• Vertical discretization: Hybrid σ − p coordinate, based on Arakawa and Konor (1996)

• Resolution for default: T85 (150 km), 81 levels up to 0.004 hPa

• Time integration: Essentially the leap frog scheme, with a time filter (Williams, 2009)

• Cumulus: An entrainment plume model with multiple cloud types (Chikira and Sugiyama,
2010)

• Shallow convection: A mass-flux-based single-plume model based on Park and Brether-
ton (2009)

• Large scale condensation & Cloud microphysics: A prognostic large scale conden-
sation scheme (Watanabe et al., 2009) and the implementation of a bulk mirco-physical
scheme (Wilson and Ballard, 1999)

• Radiation: k-distribution scheme (Sekiguchi and Nakajima, 2008) with a hexagonal solid
column as ice particle habit and extended mode radius of cloud particles

• Turbulence: The Mellor-Yamada-Nakanishi-Niino scheme (Nakanishi 2001; Nakanishi
and Niino 2004)’s level 2.5 closure scheme

• Surface flux: Bulk coefficients (Louis, 1979; Louis et al., 1982) with convection effects at
sea surface (Miller et al., 1992)

• Gravity wave drag: An orographic gravity wave parameterization (McFarlane, 1987)
with a non-orographic gravity wave parameterization (Hines, 1997; Watanabe et al., 2011)
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1.2 Features and Structure of the Model

1.2.1 Basic Features of the Model.

The MIROC6 AGCM is a numerical model for describing the global three-dimensional atmo-
sphere based on physical laws and calculating the time evolution of the system as an initial value
problem or a boundary value problem.

The data to be inputted are as follows.

• Initial data for each prognostic variable (horizontal wind speed, temperature, surface pres-
sure, specific humidity, cloud liquid water content, etc.)

• Boundary condition data (surface elevation, surface condition, sea surface temperature,
etc.)

• Various parameters of the model (atmospheric components, physical process parameters,
etc.)

On the other hand, the output is the following.

• Data for each prognostic parameter and diagnostic parameter, for each time or time average

• Initial data to be used for continuous execution (restart data)

• Progress and various diagnostic messages

The prognostic variable is the data obtained as a time series by integrating the differential
equation of time evolution, and the diagnostic variable is the quantity calculated from the
prognostic variable, the boundary conditions and the parameters by some method that does not
include time integration.

More specifically, the model basically solves the following equations (prognostic equations).

∂u

∂t
= (Fx)D + (Fx)P . (1.1)

∂v

∂t
= (Fy)D + (Fy)P . (1.2)

∂T

∂t
= (Q)D + (Q)P . (1.3)

∂pS
∂t

= (M)D + (M)P . (1.4)

∂q

∂t
= (S)D + (S)P . (1.5)

∂Tg
∂t

= (Qg)D + (Qg)P . (1.6)

Here, u, v, T, pS , q, Tg are two-dimensional and three-dimensional prognostic variables such
as eastward wind, northward wind, temperature, surface pressure, specific humidity, and surface
state amount, respectively, and the right-hand side is a term that causes time variation of each
prognostic variable. The terms Fx,Fy, Q, S,Qg are calculated based on the prognostic variables
u, v, T, pS , q, Tg, are divided into two main categories: the terms u and v, such as advection due
to the motion of the atmosphere (the terms with index D in the above equation), and the terms
such as cloud and radiation (the terms with index P in the above equation). There are two
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main types of terms. The former is called the dynamical process, and the latter is called the
physical process.

The advection term is the main part of the time-varying term in dynamical processes, and
the accurate estimation of the spatial derivative is important in its calculation. The MIROC6
AGCM utilizes the spherical harmonic expansion to calculate the horizontal differential term.
On the other hand, it is important for physical processes to be represented in a simple model
with parameters (parameterization), such as energy conversions due to the phase change of
water, radiative absorption and emission, the effects of small-scale atmospheric motions, and
the effects of various processes on the ground surface.

The time integration of the prognostic equation is done by approximating the left-hand side
of (1) etc. by the difference. For example,

∂q

∂t
→ qt+∆t − qt

∆t
(1.7)

By making,

qt+∆t = qt +∆t [(S)D + (S)P ] (1.8)

where S is a function of the prognostic variables u, v, T, pS , q. Although S is a function of
the prognostic variables u, v, T, pS , q, and so on, there are various time difference schemes that
can be used in this calculation depending on the time of day the prognostic variables are used
to evaluate S. The MIROC6 AGCM uses the Euler method, which uses the value of the t as it
is, the leap frog method, which uses the value of the t+∆t/2, and the implicit method, which
uses the (approximate) value of the t+∆t.

In the MIROC6 AGCM, the time integration of the prognostic variables is done separately
for the dynamical and physical processes. The dynamical processes basically use a leap frog,

q̃t+∆t = qt−∆t + 2∆t (S)tD (1.9)

However, some terms are treated as implicit. In the physical process, based on the results of
integrating the dynamical terms, the Euler and implicit methods are used together,

qt+∆t = q̃t+∆t + 2∆t (S)P (1.10)

in (8). Note that ∆t in (8) is replaced by 2∆t.

1.2.2 Model Execution Flow

The flow of the model execution is briefly shown below. The entries in the index are the names
of the corresponding subroutine.

1. set the parameters of an experiment, coordinates, etc.

SUBROUTINE:[PCONST,ASETCO,SETPAR,SETTSTRT,SETTEND]

2. read the initial values of the prognostic variables SUBROUTINE:[RDSTRT]

3. start the time step SUBROUTINE:[TIMSTP]
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4. perform time integration by mechanical processes SUBROUTINE:[DYNMCS]

5. perform time integration by physical processes SUBROUTINE:[PHYSCS]

6. advance the time MODULE:[TFILT]

7. Output the data if necessary MODULE:[HISTOU]

8. Output the restart data if necessary SUBROUTINE:[WRRSTR]

9. Return to 3

1.2.3 Prognostic Variables

The prognostic variables are as follows. The values in parentheses are the coordinate system,
and λ, φ, σ, z indicate the longitude, latitude, dimensionless pressure, σ, and vertical depth,
respectively. The values in the square brackets are in units of the index.

Element Symbol Unit

Eastward wind speed u (λ, φ, σ) [m/s]
Northward wind speed v (λ, φ, σ) [m/s]
Atmospheric temperature T (λ, φ, σ) [K]
Surface pressure pS (λ, φ) [hPa]
Specific humidity q (λ, φ, σ) [kg/kg]
Cloud water specific humidity l (λ, φ, σ) [kg/kg]
Cloud ice specific humidity qi (λ, φ, σ) [kg/kg]
Total water PDF variance V (λ, φ, σ) [ND]
Total water PDF skewness S (λ, φ, σ) [ND]
Variance of liquid potential temperature TSQ (λ, φ, σ) [K2]
Covariance of liquid potential temperature and total water COV (λ, φ, σ) [K]
Variance of total water QSQ (λ, φ, σ) [ND]
Tracers - -

Of these quantities, the quantities for turbulence process, TSQ,COV,QSQ, store only one
step at a time, while the quantities for the atmosphere, u, v, T, pS , q, l, qi, V, S, need to store two
steps at a time. This is due to the fact that the leap frog method is used in the time integration
of the dynamic process of the quantities related to the atmosphere.

The quantities of the atmosphere, u, v, T, pS , q, l, are variables managed by the main routine,
Administration of the Atmosphere'[AGCM5\a]. On the other hand, the quantities relating
to the earth’s surface and ground, qi, V, S, TSQ,COV,QSQ, do not appear in the main routine,
but are managed by the subroutine MODULE:[PHYSCS] of the physical process.

Tracers include mass concentrations of aerosol species,

10



1.3 Basic Settings

Here we present the basic setup of the model.

1.3.1 Coordinate System

The coordinate system of the atmospheric model consists of longitude λ, latitude φ, and normal-
ized pressure η (definitions are given below), each of which is treated as orthogonal. However, z
is used for the vertical coordinate in the ground, which is treated in a land physics component.

Longitude is discretized at equal intervals (SUBROUTINE: [SETLO] in asetc.F).

λi = 2π
i− 1

I
, i = 1, . . . I. (1.11)

Latitude grids φj are derived from the Gauss-Legendre integral formula (SUBROUTINE: [SETLA]

in asetc.F). This is the zero point of the Legendre polynomial of order J with µ = sinφ as the
argument (SUBROUTINE: [GAUSS] in uspst.F). If J is large, we can approximate

φj = π

(
1

2
− j − 1/2

J

)
, j = 1, . . . J. (1.12)

Usually, the grid spacing of longitude and latitude is taken to be approximately equal to J = I/2,
based on the triangular truncation of the spectral method.

Air pressure p is defined at half levels (pk+1/2, k = 1, 2, . . .K) using the following formula
using constants Ak+1/2, Bk+1/2:

pk+1/2 = Ak+1/2 +Bk+1/2 ps, (1.13)

where A1/2 = AK+1/2 = 0, B1/2 = 1, BK+1/2 = 0 and thus p1/2 = ps, pK+1/2 = 0. Therefore,
the normalized pressure σ ≡ p/ps can be written as below:

σk+1/2 =
Ak+1/2

ps
+Bk+1/2. (1.14)

Furthermore, a hybrid normalized pressure η is defined as below:

ηk+1/2 =
Ak+1/2

p0
+Bk+1/2, p0 ≡ 1000 hPa. (1.15)

Since Ak+1/2, Bk+1/2, p0 are constants, ηk+1/2 is also a constant and we use it as the vertical
coordinate of the atmopheric model. However, as described in Chapter 2, basic equations are
descretized in such a way that ηk+1/2 does not explicitly appear and σk+1/2 is used instead to
commonize source codes with the σ-coordinate system used in MIROC 5.

Air pressure pk at full levels (pk, k = 1, 2, . . .K) is interpolated from half-level pressure as
below:

pk =

{
1

1 + κ

(
pκ+1
k−1/2 − p

κ+1
k+1/2

pk−1/2 − pk+1/2

)}1/κ

. (1.16)

Full-level pressure in a 80-level configuration is shown in Fig. 1. While lower layers follow the
terrain, upper layers are isobaric, and the two are smoothly connected.

All prognostic variables are defined either on a grid of (λi, φj , ηk) or (λi, φj , zl). (The under-
ground level, zl, is described in the section on physical processes.)

In the time direction, the forecast equations are discretized at evenly spaced ∆t and time
integration is performed. However, ∆t may change in cases where the stability of the time
integration is insufficient.
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Figure 1: Default arangement of vertical levels for 80-level simulations.

1.3.2 Physical Constants

The basic physical constants are shown below (SUBROUTINE [PCONST] in apcon.F).

Element Symbol Unit Value

Earth radius a m 6.37 ×106
Gravitational acceleration g m s−2 9.8
Atmospheric specific heat at constant pressure Cp J kg−1 K−1 1004.6
Atmospheric gas constant R J kg−1 K−1 287.04
Latent heat of water evaporation L J kg−1 2.5 ×106
Water vapor specific heat at constant pressure Cv J kg−1 K−1 1810
Gas constant of water Rv J kg−1 K−1 461
Density of liquid water dH2O kg m−3 1000
Saturated vapor pressure at 0 ◦C e∗(273K) Pa 611
Stefan-Bolzman constant σSB W m−2 K−4 5.67 ×10−8

Kárman constant k 0.4
Latent heat of ice melting LM J kg−1 3.4 ×105
Freezing point of water TM K 273.15
Constant pressure specific heat of water Cw J kg−1 4200
Freezing point of seawater TI K 271.35
Specific heat ratio of ice at constant pressure CI = Cw − LM/TM 2397
Water vapor molecular weight ratio ϵ = R/Rv 0.622
Coefficient of virtual temperature ϵv = ϵ−1 − 1 0.606

12



Element Symbol Unit Value

Ratio of specific heat to gas constant κ = R/Cp 0.286
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2 Dynamics

2.1 Basic Equations

2.1.1 Basic Equations

The basic equations are a system of primitive equations at the spherical (λ, φ) and η coordinates,
given as follows (Arakawa and Konor 1996).

1. Continuity equation

∂m

∂t
+∇η · (mvH) +

∂(mη̇)

∂η
= 0 (2.1)

2. Hydrostatic equation

∂Φ

∂η
= −RTv

p
m (2.2)

3. Equation of motion

∂ζ

∂t
=

1

a cosφ

∂Av
∂λ
− 1

a cosφ

∂

∂φ
(Au cosφ)−D(ζ) (2.3)

∂D

∂t
=

1

a cosφ

∂Au
∂λ

+
1

a cosφ

∂

∂φ
(Av cosφ)−∇2

η(Φ +RT̄π + E)−D(D) (2.4)

4. Thermodynamic equation

∂T

∂t
= − 1

a cosφ

∂uT ′

∂λ
− 1

a

∂

∂φ
(vT ′ cosφ) + T ′D

− η̇
∂T

∂η
+
κT

σ

[
B

(
∂π

∂t
+ vH · ∇ηπ

)
+
mη̇

ps

]
+
Q

Cp
+
Qdiff
Cp

−D(T ) (2.5)

5. Tracers

For any tracer whose conservative quantity (e.g. mixing ratio) is denoted as q,

∂q

∂t
= − 1

a cosφ

∂uq

∂λ
− 1

a cosφ

∂

∂φ
(vq cosφ) + qD

− η̇
∂q

∂η
+ Sq −D(q) (2.6)
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Here,

m ≡
(
∂p

∂η

)
ps

, (2.7)

θ ≡ T (p/p0)
−κ , (2.8)

κ ≡ R/Cp, (2.9)

Φ ≡ gz, (2.10)

π ≡ ln pS , (2.11)

η̇ ≡ dη

dt
, (2.12)

Tv ≡ T (1 + ϵvq), (2.13)

T ≡ T̄ + T ′, (2.14)

T̄ ≡ 300 K, (2.15)

ζ ≡ 1

a cosφ

∂v

∂λ
− 1

a cosφ

∂

∂φ
(u cosφ), (2.16)

D ≡ 1

a cosφ

∂u

∂λ
+

1

a cosφ

∂

∂φ
(v cosφ), (2.17)

Au ≡ (ζ + f)v − η̇ ∂u
∂η
− RT ′

a cosφ

∂π

∂λ
+ Fx, (2.18)

Av ≡ −(ζ + f)u− η̇ ∂v
∂η
− RT ′

a

∂π

∂φ
+ Fy, (2.19)

E ≡ u2 + v2

2
, (2.20)

vH · ∇ ≡ u

a cosφ

(
∂

∂λ

)
σ

+
v

a

(
∂

∂φ

)
σ

, (2.21)

∇2
η ≡

1

a2 cos2 φ

∂2

∂λ2
+

1

a2 cosφ

∂

∂φ

[
cosφ

∂

∂φ

]
. (2.22)

f is the Coriolis parameter. D(ζ),D(D),D(T ),D(q) are horizontal diffusion terms, Fλ,Fφ
are forces due to small-scale kinetic processes (treated as ‘physical processes’), Q are forces due
to radiation, condensation, small-scale kinetic processes, etc. Heating and temperature change
due to ‘physical processes’, and Sq is a water vapor source term due to ‘physical processes’ such
as condensation and small-scale motion. Qdiff is the heat of friction and

Qdiff = −v ·
(
∂v

∂t

)
diff

. (2.23)

(∂v∂t )diff is a time-varying term of u, v due to horizontal and vertical diffusion.

2.1.2 Boundary Conditions

Upper and lower boundary conditions for the vertical velocity is:

η̇ = 0 at η = 0, 1. (2.24)

The prognostic equation for ps and the diagnostic equation for the vertical velocity can be
derived by integrating the continuity equation and applying these boundary conditions.
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2.2 Vertical Discretization

Following Arakawa and Konor (1996) except for using the Lorentz grid, the basic equations are
discretized vertically by differences. This scheme has the following characteristics.

• Conservation of the total integrated mass.

• Conservation of the total integrated energy.

• Conservation of the globally integrated angular momentum.

• Conservation of the total mass-integrated potential temperature.

• The hydrostatic pressure equation is localized (the altitude of the lower level is independent
of the temperature of the upper level).

• For a given temperature distribution, constant in the horizontal direction, the hydrostatic
pressure equation becomes precisely accurate and the barometric gradient force becomes
zero.

• Isothermal atmosphere stays permanently isothermal.

2.2.1 Model Levels

Model level increases in altitude with the vertical level number k. k = 1/2 corresponds with
the model bottom (η = 1), while k = K + 1/2 corresponds to the model top (η = 0). Variables
ζ,D, T, q are defined at integer levels (k = 1, 2, . . .K), while the vertical velocity η̇ is defined at
half-integer levels (k = 1/2, 3/2, . . .K + 1/2). Using constants Ak+1/2 and Bk+1/2 and variable
surface pressure ps, air pressure at half levels are defined as below:

pk+1/2 = Ak+1/2 +Bk+1/2 ps. (2.25)

Thus, the normalized pressure σ ≡ p/ps can be written as below:

σk+1/2 =
Ak+1/2

ps
+Bk+1/2. (2.26)

Using a reference pressure p0, the hybrid-normalized pressure η is defined as below:

ηk+1/2 =
Ak+1/2

p0
+Bk+1/2, (2.27)

which is a constant at all levels and is used as the vertical coordinate by default in MIROC 6.0.
Pressure at full levels are interpolated from half-level pressure by the following formula:

pk =

{
1

1 + κ

(
pκ+1
k−1/2 − p

κ+1
k+1/2

pk−1/2 − pk+1/2

)}1/κ

. (2.28)

For later use, let us define the following:

∆σk ≡ σk−1/2 − σk+1/2,

∆Bk ≡ Bk−1/2 −Bk+1/2. (2.29)

16



2.2.2 Vertical Discretization

Basic equations vertically discretized at the η hybrid coordinates are shown below.

1. Continuity equation and diagnosis of the vertical velocity

∂π

∂t
= −

K∑
k=1

{Dk∆σk + (vk · ∇π)∆Bk} (2.30)

In MIRCO 6.0, the discretization is conducted in a manner similar to the σ coordinate,
which can be optionally selected and was the default in previous versions, to commonize source
codes. Thus, the vertical velocity is represented as σ̇ = mη̇/ps. Furthermore, vertical advection
η̇(∂/∂η) is replaced with an equivalent form mη̇/ps(∂/∂σ).

(σ̇ =)
(mη̇)k−1/2

ps
= −Bk−1/2

∂π

∂t
−

K∑
l=k

{Dl∆σl + (vl · ∇π)∆Bl} (2.31)

(mη̇)1/2

ps
=

(mη̇)k+1/2

ps
= 0 (2.32)

2. Hydrostatic equation

Φ1 = Φs + Cp(σ
−κ
1 − 1)Tv,1

= Φs + Cpα1Tv,1 (2.33)

Φk − Φk−1 = Cp

[(
pk−1/2

pk

)κ
− 1

]
Tv,k + Cp

[
1−

(
pk−1/2

pk−1

)κ]
Tv,k−1

= CpαkTv,k + Cpβk−1Tv,k−1 (2.34)

Here,

αk ≡
(
pk−1/2

pk

)κ
− 1, (2.35)

βk ≡ 1−
(
pk+1/2

pk

)κ
. (2.36)

3. Equations of motion

∂ζk
∂t

=
1

a cosφ

∂(Av)k
∂λ

− 1

a cosφ

∂

∂φ
(Au cosφ)k −D(ζk) (2.37)

∂D

∂t
=

1

a cosφ

∂(Au)k
∂λ

+
1

a cosφ

∂

∂φ
(Av cosφ)k −∇2

η(Φk +RT̄π + (KE)k)−D(Dk)(2.38)

(Au)k = (ζk + f)vk −
[
(mη̇)k−1/2

ps

uk−1 − uk
∆σk−1 +∆σk

+
(mη̇)k+1/2

ps

uk − uk+1

∆σk +∆σk+1

]
− 1

a cosφ

∂π

∂λ
(CpTv,kκ̂−RT̄ ) + Fx (2.39)

(Av)k = −(ζk + f)uk −
[
(mη̇)k−1/2

ps

vk−1 − vk
∆σk−1 +∆σk

+
(mη̇)k+1/2

ps

vk − vk+1

∆σk +∆σk+1

]
−1

a

∂π

∂φ
(CpTv,kκ̂−RT̄ ) + Fy (2.40)

κ̂k =
Bk−1/2αk +Bk+1/2βk

∆σk
(2.41)
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4. Thermodynamic equation

∂Tk
∂t

= − 1

a cosφ

∂ukT
′
k

∂λ
− 1

a cosφ

∂

∂φ
(vkT

′
k cosφ) +Hk +

Qk
Cp

+
(Qdiff )k
Cp

−D(Tk) (2.42)

Here,

Hk ≡ T ′
kDk −

[
(mη̇)k−1/2

ps

T̂k−1/2 − Tk
∆σk

+
(mη̇)k+1/2

ps

Tk − T̂k+1/2

∆σk

]

+

{
αk

[
Bk−1/2vk · ∇π −

K∑
l=k

(Dl∆σl + (vl · ∇π)∆Bl)

]

+ βk

[
Bk+1/2vk · ∇π −

K∑
l=k+1

(Dl∆σl + (vl · ∇π)∆Bl)

]}
1

∆σk
Tv,k

= T ′
kDk −

[
(mη̇)k−1/2

ps

T̂k−1/2 − Tk
∆σl

+
(mη̇)k+1/2

ps

Tk − T̂k+1/2

∆σl

]
+κ̂k(vk · ∇π)Tv,k

−αk
K∑
l=k

(Dl∆σl + (vl · ∇π)∆Bl)
Tv,k
∆σk

−βk
K∑

l=k+1

(Dl∆σl + (vl · ∇π)∆Bl)
Tv,k
∆σk

, (2.43)

T̂k−1/2 = akTk + bk−1Tk−1, (2.44)

ak = αk

[
1−

(
pk
pk−1

)κ]−1

, (2.45)

bk = βk

[(
pk
pk+1

)κ
− 1

]−1

. (2.46)

5. Tracers

∂qk
∂t

= − 1

a cosφ

∂ukqk
∂λ

− 1

a cosφ

∂

∂φ
(vkqk cosφ) +Rk + Sq,k −D(qk) (2.47)

Rk = qkDk −
1

2

[
(mη̇)k−1/2

ps

qk−1 − qk
∆σk

+
(mη̇)k+1/2

ps

qk − qk+1

∆σk

]
(2.48)

2.2.3 Differences from the σ-Coordinate

In MIROC 6.0, the discretization is conducted in a similar form to the σ coordinate. Thus,
differences of discretized equations between the η and σ coordinates are relatively small, which
are listed below:

• In the σ coordinate, Ak+1/2 is equal to zero at all levels.

• While ∆Bk and ∆σk are different in the η coordinates, those are equivalent to each other
in the σ coordinate.
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2.3 Horizontal Discretization

The horizontal discretization is based on the spectral transformation method (Bourke, 1988).
The differential terms for longitude and latitude are evaluated by the orthogonal function ex-
pansion, while the non-linear terms are calculated on the grid.

2.3.1 Spectral Expansion

As an expansion function, the spherical harmonic functions Y m
n (λ, µ), which are eigenfunction of

Laplacian on a sphere, are used. However, µ ≡ sinφ is used. Y m
n satisfies the following equation,

∇2
σY

m
n (λ, µ) = −n(n+ 1)

a2
Y m
n (λ, µ) (2.49)

Using the Associated Legendre function Pmn it is written as follows.

Y m
n (λ, µ) = Pmn (µ)eimλ (2.50)

However, it is n ≥ |m|.
The expansion by spherical harmonic functions is ,

Y m
n ij ≡ Y

m
n (λi, µj) (2.51)

When I write ,

Xij ≡ X(λi, µj) = R⌉
N∑

m=−N

N∑
n=|m|

Xm
n Y

m
n ij , (2.52)

The inverse of that is ,

Xm
n =

1

4π

∫ 1

−1
dµ

∫ π

0
dλX(λ, µ)Y m∗

n (λ, µ)

=
1

I

I∑
i=1

J∑
j=1

XijY
m∗
n ijwj (2.53)

The formula is expressed as To evaluate by replacing the integral with a sum, we use the
Gauss trapezoidal formula for the λ integral and the Gauss-Legendre integral formula for the µ
integral. µj is the Gauss latitude and wj is the Gaussian weights. Also, λi is a grid of evenly
spaced Gaussian weights.

Using spectral harmonics transformation, the grid point values of the terms containing the
derivatives can be calculated as follows.

(
∂X

∂λ

)
ij

= Re
N∑

m=−N

N∑
n=|m|

imXm
n Y

m
n ij (2.54)
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(
cosφ

∂X

∂φ

)
ij

= Re
N∑

m=−N

N∑
n=|m|

Xm
n (1− µ2) ∂

∂µ
Y m
n ij (2.55)

Furthermore, the grid point values of u, v can be obtained from the spectral components of
ζ and D as follows

uij =
1

cosφ
Re

N∑
m=−N

N∑
n=|m|
n̸=0

{
a

n(n+ 1)
ζmn (1− µ2) ∂

∂µ
Y m
n ij −

ima

n(n+ 1)
Dm
n Y

m
n ij

}
(2.56)

vij =
1

cosφ
Re

N∑
m=−N

N∑
n=|m|
n̸=0

{
− ima

n(n+ 1)
ζmn Y

m
n ij −

a

n(n+ 1)
Dm
n (1− µ2) ∂

∂µ
Y m
n ij

}
(2.57)

The derivative appearing in the advection term of the equation is calculated as

(
1

a cosφ

∂A

∂λ

)m
n

=
1

4π

∫ 1

−1
dµ

∫ π

0
dλ

1

a cosφ

∂A

∂λ
Y m∗
n

=
1

4π

∫ 1

−1
dµ

∫ π

0
dλ imA cosφ

1

a(1− µ2)
Y m∗
n

=
1

I

I∑
i=1

J∑
j=1

imAij cosφjY
m∗
n ij

wj
a(1− µ2j )

(2.58)

(
1

a cosφ

∂

∂φ
(A cosφ)

)m
n

=
1

4πa

∫ 1

−1
dµ

∫ π

0
dλ

∂

∂µ
(A cosφ)Y m∗

n

= − 1

4πa

∫ 1

−1
dµ

∫ π

0
dλA cosφ

∂

∂µ
Y m∗
n

= −1

I

I∑
i=1

J∑
j=1

Aij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

(2.59)

Furthermore,

(
∇2
σX
)m
n

= −n(n+ 1)

a2
Xm
n (2.60)

to be used for the evaluation of the ∇2 section.

2.3.2 Horizontal Diffusion Term

The horizontal diffusion term is implemented in the form ∇ND as follows.

D(ζ) = KMH

[
(−1)ND/2∇ND −

(
2

a2

)ND/2
]
ζ, (2.61)
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D(D) = KMH

[
(−1)ND/2∇ND −

(
2

a2

)ND/2
]
D, (2.62)

D(T ) = (−1)ND/2KHH∇NDT, (2.63)

D(q) = (−1)ND/2KEH∇NDq. (2.64)

This horizontal diffusion term damps high frequency component occuring aliasing for com-
putational stability. In order to represent selective horizontal diffusion on small scales, 4 ∼ 16 is
used as ND. Here, the extra term for vorticity and divergence diffusion indicates that the term
of rigid body rotation in n = 1 does not decay.

2.3.3 Spectral Representation of Equations

1. A series of equations

∂πmm
∂t

= −
K∑
k=1

(Dm
n )k∆σk

+
1

I

I∑
i=1

J∑
j=1

ZijY
m∗
n ijwj , (2.65)

where,

Z ≡ −
K∑
k=1

vk · ∇π. (2.66)

2. Equation of motion

∂ζmn
∂t

=
1

I

I∑
i=1

J∑
j=1

im(Av)ij cosφjY
m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

(Au)ij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

−(DM )mn ζ
m
n , (2.67)
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∂D̃m
n

∂t
=

1

I

I∑
i=1

J∑
j=1

im(Au)ij cosφjY
m∗
n ij

wj
a(1− µ2j )

−1

I

I∑
i=1

J∑
j=1

(Av)ij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

−n(n+ 1)

a2
1

I

I∑
i=1

J∑
j=1

EijY
m∗
n ijwj

+
n(n+ 1)

a2
(Φmn + Cpκ̂kT̄kπ

m
n )− (DM )mn D

m
n , (2.68)

where

(DM )mn = KMH

[(
n(n+ 1)

a2

)ND/2

−
(

2

a2

)ND/2
]
. (2.69)

3. Thermodynamic equation

∂Tmn
∂t

= −1

I

I∑
i=1

J∑
j=1

imuijT
′
ij cosφjY

m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

vijT
′
ij cosφj(1− µ2j )

∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

(
Hij +

Qij +Qdiff
Cp

)
Y m∗
n ijwj

−(D̃H)mn Tmn , (2.70)

where,

(DH)mn = KHH

(
n(n+ 1)

a2

)ND/2

. (2.71)

4. Water vapor formula

∂qmn
∂t

= −1

I

I∑
i=1

J∑
j=1

imuijqij cosφjY
m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

vijqij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

(
R̂ij + Sq,ij

)
Y m∗
n ijwj

+(DH)mn qmn (2.72)
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where

(DE)mn = KEH

(
n(n+ 1)

a2

)ND/2

. (2.73)

23



2.4 Time Integration

The time discretization is essentially the leap frog scheme. However, backward or forward
differences are used for diffusion terms and physical process terms. A time filter (Williams,
2009), which is a modified version of the Asselin time filter (Asselin 1972), is used to suppress
computational modes. A semi-implicit method is applied to the gravitational wave term to make
the ∆t larger (Bourke, 1988).

2.4.1 Time Integration and Time Filtering with the Leap Frog Method

We use leap frog as the time integration scheme for advection terms and other dynamic terms.
A backward difference of 2∆t is used for the horizontal diffusion term. The p-surface correction
of the diffusion term and the frictional heat due to horizontal diffusion are treated by forward
differences of 2∆t. The physical process terms (Fλ,Fφ, Q, Sq) use the forward difference of
2∆t (except for the vertical diffusion term, which uses the forward difference of Fλ,Fφ, Q, Sq).
However, the calculation of the prognositc veriables of vertical diffusion is treated as a backward
difference. Please refer to the chapter on physical processes for details.)

Expressing each prognostic variable as X,

X̂t+∆t = X̄t−∆t + 2∆tẊadv

(
Xt
)
+ 2∆tẊdif

(
X̂t+∆t

)
, (2.74)

where Ẋadv is the advection term etc., and Ẋdif is the horizontal diffusion term.

X̂t+∆t is then corrected for diffusion (Ẋdis for p-surface correction and the heat of friction)
and physical processes (Ẋphy), yielding X

t+∆t.

Xt+∆t = X̂t+∆t + 2∆tẊdis

(
X̂t+∆t

)
+ 2∆tẊphy

(
X̂t+∆t

)
(2.75)

To damp numerical modes, a time filter (Williams, 2009) is applied to leap-frog method at
every steps. The time filter is given below, where terms with over bars are filtered.

¯̄Xt = X̄t + να[ ¯̄Xt−∆t − X̄t +Xt+∆t], (2.76)

X̄t+∆t = Xt+∆t + ν(1− α)[ ¯̄Xt−∆t − 2X̄t +Xt+∆t], (2.77)

where ν = 0.05 and α = 0.5.

2.4.2 Semi-Implicit Time Integration

Basically, the leap frog is used for the dynamic processes, but the trapezoidal implicit scheme
is used for some terms. For a vector quantity q, let us write the value at t as q, the value at
t+∆t as q+, and the value at t−∆t as q−. Then, in the trapezoidal implicit scheme, the time
change term is evaluated for (q++q−)/2, instead of q used in the simple leap forg method. We
now divide q into two time varying terms, one (A) for the leap forg method and the other (B)
for the trapezoidal implicit method. We assume that (A) is nonlinear to q, while (B) is linear.
In other words,

q+ = q− + 2∆tA(q) + 2∆tB(q+ + q−)/2, (2.78)

where (B) is a square matrix. Defining ∆q ≡ q+ − q, we get

(I −∆tB)∆q = 2∆t (A(q) +Bq) . (2.79)

This can be easily solved by matrix operations.
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2.4.3 Applying the Semi-Implicit Time Integration

Here, we apply the semi-implicit method and treat terms associated with linear gravity waves
as implicit, which allows us to increase the time step ∆t.

We divide the basic equation into a linear gravity wave term (T = T̄k) with a static field
as the basic field and other terms (with the indices NG). Using a vector representation for the
vertical direction (D = {Dk} and T = {Tk}),

∂π

∂t
=

(
∂π

∂t

)
NG

−C ·D, (2.80)

∂D

∂t
=

(
∂D

∂t

)
NG

−∇2
η(ΦS +WT+Gπ)−DMD, (2.81)

∂T

∂t
=

(
∂T

∂t

)
NG

− hD−DHT. (2.82)

Here, the non-gravitational wave term is(
∂π

∂t

)NG
= −

K∑
k=1

vk · ∇π∆Bk, (2.83)

(mη̇)NGk−1/2

ps
= −Bk−1/2

(
∂π

∂t

)NG
−

K∑
l=k

vl · ∇π∆Bl, (2.84)

(
∂D

∂t

)NG
=

1

a cosφ

∂(Au)k
∂λ

+
1

a cosφ

∂

∂φ
(Av cosφ)k −∇2

ηÊk −D(Dk), (2.85)(
∂Tk
∂t

)NG
= − 1

a cosφ

∂ukT
′
k

∂λ
− 1

a cosφ

∂

∂φ
(vkT

′
k cosφ) + Ĥk −D(Tk), (2.86)

Ĥk = T ′
kDk −

[
(mη̇)k−1/2

ps

T̂k−1/2 − Tk
∆σk

+
(mη̇)k+1/2

ps

Tk − T̂k+1/2

∆σk

]
+κ̂kTv,kvk · ∇π

− αk
∆σk

Tv,k

K∑
l=k

vl · ∇π∆Bl −
βk
∆σk

Tv,k

K∑
l=k+1

vl · ∇π∆Bl

− αk
∆σk

T ′
v,k

K∑
l=k

Dl∆σl −
βk
∆σk

T ′
v,k

K∑
l=k+1

Dl∆σl +
Qk + (Qdiff )k

Cp
, (2.87)

Êk = Ek +

K∑
k=1

Wkl(Tv,l − Tl), (2.88)

where the vector and matrix of the gravitational wave term (underlined) are

Ck = ∆σk, (2.89)

Wkl = Cpαlδk≥l + Cpβlδk−1≥l, (2.90)

Gk = RT̄ , (2.91)

hkl =
T̄

∆σk
[αk∆σlδk≥l + βk∆σlδk+1≤l] . (2.92)

Here, δk≤l is 1 if k ≤ l is valid and 0 otherwise.
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We now use the following expressions for time differences:

δtX ≡ 1

2∆t

(
Xt+∆t −Xt−∆t

)
, (2.93)

X
t ≡ 1

2

(
Xt+∆t +Xt−∆t

)
= Xt−∆t + δtX∆t. (2.94)

Then, applying the semi-implicit method to the system of equations, we get

δtπ =

(
∂π

∂t

)
NG

−C ·Dt
, (2.95)

δtD =

(
∂D

∂t

)
NG

−∇2
η(ΦS +WT

t
+Gπt)−DM (Dt−∆t + 2∆tδtD), (2.96)

δtT =

(
∂T

∂t

)
NG

− hDt −DH(Tt−∆t + 2∆tδtT). (2.97)

Thus, {
(1 + 2∆tDH)(1 + 2∆tDM )I − (∆t)2(W h+ (1 + 2∆tDM )GCT )∇2

η

}
D
t

= (1 + 2∆tDH)(1 + ∆tDM )Dt−∆t +∆t

(
∂D

∂t

)
NG

− ∆t∇2
η

{
(1 + 2∆tDH)ΦS +W

[
(1 + 2∆tDH)Tt−∆t +∆t

(
∂T

∂t

)
NG

]}
+ (1 + 2∆tDH)G

[
πt−∆t +∆t

(
∂π

∂t

)
NG

]}
. (2.98)

Since the spherical harmonic expansion is used, we can rewrite ∇2
η as the following:

∇2
η = −

n(n+ 1)

a2
, (2.99)

which enables us to solve the above equations for Dm
n
t
. Then, using (2.95), (2.97) and Dt+∆t =

2D
t −Dt−∆t, we can obtain the value of prognostic variables X̂t+∆t at t+∆t.

2.4.4 Time Scheme Properties and Requiments for Time Steps

Let us consider solving the advection equation with the leap-frog method:

∂X

∂t
= c

∂X

∂x
. (2.100)

Assuming X = X0 exp(ikx), the descretized form of the above equation becomes:

Xn+1 = Xn−1 + 2ik∆tXn. (2.101)

Assuming X evolves exponentially, we can define λ such that

λ = Xn+1/Xn = Xn/Xn−1, (2.102)

λ2 = 1 + 2ikc∆tλ . (2.103)

Defining p ≡ kc∆t, the solution becomes:

λ = −ip±
√
1− p2. (2.104)
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The absolute value of those solutions are

|λ| =
{

1 |p| ≤ 1

p±
√
p2 − 1 |p| > 1

(2.105)

and in the case of |p| > 1, we get |λ| > 1, and the absolute value of the solution increases
exponentially with time. This indicates that the computation is unstable.

In the case of |p| ≤ 1, however, the calculation is neutral since the value of |λ| = 1. However,
there are two solutions to λ, one of which, when set to ∆t→ 1, leads to λ→ 1, while the other
leads to λ → −1, which indicates an osscilating solution. This mode is called “computational
mode” and is one of the problems of the leap frog method. This mode can be damped by
applying a time filter described later.

Given the horizontal grid spacing ∆x, the maximum value of k becomes

max k =
π

∆x
. (2.106)

Then, the condition |p| = kc∆t ≤ 1 requires

∆t ≤ ∆x

πc
. (2.107)

In case of a spectral model, using the Earth’s radius a and the maximum wavenumber N ,
the requirement becomes

∆t ≤ a

Nc
, (2.108)

which is a condition for the numerical stability.

To guarantee the stability of the integration, one needs to take the time step ∆t smaller
than that required by the fastest-propagating mode. If the semi-implicit scheme is not used,
the propagation speed of gravity waves, which can be as fast as 300 m/s, sets the criterion for
stability. With the gravity waves taken account of by the semi-implicit method, however, the
fastest mode usually becomes the maximum easterly wind Umax. Therefore,

∆t ≤ a

NUmax
. (2.109)

In practice, this is multiplied by a factor smaller than 1 for further safety.

2.4.5 Handling of the Initiation of Time Integration

When starting from an initial condition that is not calculated by MIROC 6.0 itself, it is not
possible to give values of all prognostic variables at two time steps t and t − ∆t consistently
with the model dynamics. However, giving inconsistent values for t − ∆t results in a large
computation mode.

To avoid this, a special procedure is followed at the initiation of time integration. Firstly,
assuming X∆t/4 = X0, a 1/4-step integration is performed to obtain X∆t/2:

X∆t/2 = X0 +∆t/2Ẋ∆t/4 = X0 +∆t/2Ẋ0. (2.110)

Then, a 1/2-step integration is performed to yield X∆t:

X∆t = X0 +∆tẊ∆t/2. (2.111)

Finally, in the normal time step,

X2∆t = X0 + 2∆tẊ∆t. (2.112)

From here on, the leap-frog method is executed in the usual manner.
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2.5 Tracer Advection Scheme

2.5.1 Introduction of Tracer Advection Scheme

MIROC6 adopts a spectral method based on Spherical harmonic expansion to dynamic core.
The spectral method is an excellent method, but it has some drawbacks.

1. Because of Gibbs phenomenon, noisy oscillations are produced when representing a non-
smooth field.

2. Associated with Gibbs phenomenon, negative value may occure on grids where they are
not supposed to such as, eg., specific humidity.

3. Global conservation of conservative quantity is good enough, but local conservation does
not always hold.

4. The property that information is transmitted from upstream to downstream is not always
satisfied. In spherical model, information travels instantly to the other side of the world.

Despite of these disadvantages, MIROC has adoptted spectral method as dynamic core. Gibbs
phenomenon usually doesn’t cause any problems. However, when describing the transport of ma-
terials with strong discontinuity, the noisy oscillation and unexpected negative values sometimes
appear. For example, water vapor in polar region and the stratosphere often shows discontinu-
ous distribution because there is very small amount of water vapor. Tracers such as aerosols are
also distributed locally and often show large discontinuity. These tracers are easy to affected
by Gibbs phenomenon. Therefore, in MIROC6, water vapor transport and tracer transport are
calculated using a flux form semi-Lagrange (FFSL) scheme (Lin and Rood 1996) instead of using
the spectral method.

Merits of this scheme are described below.

1. Gibbs phenomenon doesn’t occur because it’s based on gridpoint method. Therefore,
non-smooth fields can be represented with better accuracy.

2. Negative values of tracer quantity can be avoided even in unsmooth fields.

3. No new extreme values are created.

4. Information is transmitted from upstream to downstream.

5. Conservation is satisfied locally and globally.

6. Problems which is induced by narrow grid range in polar region can be avoided.

In the next section, the principle of the tracer advection scheme is introduced in detail, and in
the following section, we describe the actual implementation of the tracer advection scheme.

2.5.2 Principle of the Tracer Advection Scheme

2.5.2.1 Transport Equation in Flux Form

The winds and the tracer distributions are staggered in the Arakawa C-grid (Mesinger and
Arakawa 1976). As example, three dimension advection equation in (x,y,p) rectangukar coordi-
nate system is given as follows.

∂q

∂t
= −u∂q

∂x
− v ∂q

∂y
− ω∂q

∂p
(2.113)
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Here, q is the amount of tracer (ex. specific humidity for water vapor), u, v is zonal and merid-
ional velocity respectively. By substituting continuity equation to this, we get the advection
equation in flux form.

∂q

∂t
= − ∂

∂x
(uq)− ∂

∂y
(vq)− ∂

∂p
(ωq) = − ∂

∂x
F x − ∂

∂y
F y − ∂

∂p
F p (2.114)

Discretizing by x = xi(i = 1, 2, 3...), y = yj(j = 1, 2, 3...), p = pk(k = 1, 2, 3...), the advection
equation is rewritten as

∂qi,j,k
∂t

=
1

∆xi,j,k
(F x

i− 1
2
,j,k
− F x

i+ 1
2
,j,k

) +
1

∆yi,j,k
(F y

i,j− 1
2
,k
− F y

i,j+ 1
2
,k
) +

1

∆pi,j,k
(F p

i,j,k− 1
2

− F p
i,j,k+ 1

2

)

(2.115)
Here, F x

i− 1
2
,j,k

is the flux in x direction at boundary between (i, j, k) and (i − 1, j, k), ∆xi,j,k

is x-direction width of grid represented as (i, j, k). This flux formed equation automatically
satisfies the conservation law. The accuracy of the scheme depends on how F x

i− 1
2
,j,k

is chosen.

Next, how F x
i− 1

2
,j,k

is determind in MIRIOC6 is explianed in one dimension in x-direction, for

simplicity.

2.5.3 The Piecewise Parobolic Method Scheme

In semi-Lagrange scheme, the flux at point xi+ 1
2
at time t is calculated by using q at point

xi+ 1
2
− u∆t at time t−∆t. The velocity u = u(t) is used assuming constant locally during this

period, and q at time t −∆t are used. If CFL condition (|u∆t∆x | < 1) is satisfied and ui+ 1
2
> 0,

xi+ 1
2
− u∆t is at a point inside grid i.

As the value of q at point xi+ 1
2
−u∆t, qi, which is the average value of point i, can be chosen,

assuming that q is constant in the grid.
However, the value of q shows large discontinuity at i + 1

2 , which is the boundary between
grid i and i + 1 in this assumption. This discontinuity strengthens numerical viscosity, and is
unwanted for numerical experiments. Therefore, we want to give some kind of distribution to q,
which is assumed to be constant in a grid, in order to eliminate the discontinuity and enable us
to calculate q at xi+ 1

2
− u∆t by interpolation. Given distribution must be satisfied a condition

as follows.

qi =
1

∆xi

∫ x
i+1

2

x
i− 1

2

q(x)dx (2.116)

The old editions of MIROC adoptted van Leer method, in which interpolation function is a
linear function, but MIROC6 adopts The Piecewise Parobolic Method (PPM) scheme (Colella
and Woodward 1984) , in which interpolation function is a quadrative function (Fig.2). The
FFSL scheme which adopts PPM scheme is called FFSL-3 (Lin and Rood 1996).

In PPM scheme, the distribution is determined as follows.

q(x) = qL,i + ξ(∆qi + q6,i(1− ξ))

ξ =
x− xi− 1

2

∆xi
, xi− 1

2
≤ x ≤ xi+ 1

2

(2.117)

Here, qL,i is defined as limx→x
i+1

2

= qL,i. qR,i is defined as limx→x
i+1

2

= qR,i as well. In PPM

scheme, q is continuous at boundary i+ 1
2 , therefore qL,i+1 = qR,i = qi+ 1

2
is hold. In addition,

∆qi = qR,i − qL,i, q6,i = 6(qi −
1

2
(qL,i) + qR,i) (2.118)
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Figure 2: The image of interpolation function in The piecewise parobolic method (PPM) scheme.
The interpolation function is in the solid line, the grid mean value is in the dot line.

For calculationg qi+ 1
2
by interpolation, a finite integration of q given as follows is introduced.

A(x) =

∫ x

q(x′)dx′ (2.119)

At boundary of grid,

A(xi+ 1
2
) = Ai+ 1

2
=
∑
k≤i

qk∆xk (2.120)

qi+ 1
2
is calculated by discretization of qi+ 1

2
= dA/dx|x

i+1
2

by using (Aj+k+ 1
2
, xj+k+ 1

2
), k =

0,±1,±2. Specifically, qi+ 1
2
is calculated as follows.

qi+ 1
2
=qi +∆xi

qi+1 − qi
∆xi+1 +∆xi

+
1∑i+2

k=i−1∆xk

×
[ 2∆xi∆xi+1

∆xi+1 +∆xi
(
∆xi +∆xi−1

∆xi+1 + 2∆xi
− ∆xi+2 +∆xi+1

2∆xi+1 +∆xi
)(qi+1 − qi)

−∆xi
∆xi +∆xi−1

∆xi+1 + 2∆xi
δqi+1 +∆xi+1

∆xi+2 +∆xi+1

2∆xi+1 +∆xi
δqi

] (2.121)

In case the grid width is equal in all grids, Eq.(2.121) can be simply rewritten as

qi+ 1
2
=

1

2
(qi−1 + qi)− 1

6
(δqi − δqi−1) (2.122)

Here, δqi is given as

δqi =
∆xi

∆xi−1 +∆xi +∆xi+1

[
2∆xi−1 +∆xi
∆xi+1 +∆xi

(qi+1 − qi) +
∆xi + 2∆xi+1

∆xi−1 +∆xi
(qi − qi−1)

]
(2.123)

However, in this case, the interpolation function may have extremes in the grid and may not
satisfy monotonicity. In order to avoid such a situation, qi+ 1

2
should be between qi as qi+1, and

δqi is modified as follows for that.

δmqi = min(|δqi|, 2|qi − qi−1|, |qi+1 − qi|) if (qi+1 − qi)(qi − qi−1) > 0,

= 0 otherwise
(2.124)

This δqi is used in Eq.(2.121) to calculate qi+ 1
2
.

When q(x) is interpolated as Eq.(2.117), by using Courant number defined as

C =
ui+ 1

2
∆t

∆xi+1
(2.125)

flux F x
i+ 1

2

is wriiten as follows.

F x
i+ 1

2

=

{
ui+ 1

2
[qR,i − C

2 (∆qi − (1− 2
3C)q6,i)] (ui+ 1

2
≥ 0)

ui+ 1
2
[qL,i+1 +

C
2 (∆qi+1 + (1− 2

3C)q6,i+1)] (ui+ 1
2
≤ 0)

(2.126)
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2.5.3.1 Devices for Taking Long Time Steps

The above argument is stable only if C < 1 When the grid method is adapted to spherical
coordinate, ∆x is very small in polar region. Therefore, we have to take very small ∆t to satisfy
CFL condition. The special treatment when C > 1 for taking larger ∆t are described below.
Although this method is used for any grid widths, in this subsection we assume that ∆x does
not depend on i for simplicity.

Courant number can be divided into a integral fraction and a decimal fraction.

C = IC + Ĉ, IC : an integer fraction, −0.5 ≤ Ĉ ≤ 0.5 (2.127)

When IC > 0

F x
i− 1

2

= ˆF x
i−IC+ 1

2

+

i∑
i′=i+1−IC

qi′
∆xi
∆t

(2.128)

When IC < 0

F x
i− 1

2

= ˆF x
i+|IC |+ 1

2

+

i+|IC |∑
i′=i+1

qi′
∆xi
∆t

(2.129)

Where ˆF x
i−IC+ 1

2

is the flux of point (i− IC + 1
2) calculated by using Ĉ.

As indicated above, in the case the fluid moves in multiple grids during ∆t, we can avoid
instability of numerical calculation by evaluating the flux using the quantity qi′ corresponding
to each grids passed. In actual, these argument is applied only to zonal flux, which can break
CFL condition.
2.5.3.2 The Treatment of Cross Terms

In the case velocity of the fluid is not only in the x-direction or y-direction, only adding
the flux contributions in the x- and y-directions together underestimate the effect of diagonal
advection. To take these cross term into considering, the following procedure is taken. Here, we
discuss this in two-dimensional space, not in one-dimensional.

When calculating x-direction flux F x
i+ 1

2
,j
, upstream value of q in y-direction is used as value

of q. That is expressed by the following equation.

qyi,j =
1

2
q(xi, yi − vi,j∆t) + qi,j (2.130)

Here, q(xi, yi−vi,j∆t) is calculated by linear interpolation of the two nearest grid points. In the
same way, when calculating y-direction flux F x

i+ 1
2
,j
,

qxi,j =
1

2
q(xi − ui,j∆t, yi) + qi,j (2.131)

is used as q.
In the case of three dimensional tracer advection, this procedure is conducted in two dimen-

sion.

2.5.4 Actual Tracer Advection Scheme in MIROC6

In this subsection, the procedure implemented in MIROC6 of the tracer advection scheme is
described. Although MIROC6 adopts σ-p hybrid coordinate as vertical coordinate, the tracer
advection scheme is largely based on σ coordinate because previous version of MIROC adopted
σ coordinate. Therefore, firstly the procedure under σ coordinate system is described. After
this, the changes in the hybrid coordinate system from the σ coordinate system is described.
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2.5.4.1 σ-Coordinate

The transport equation in σ coordinate on the sphere is expressed as

∂PSq

∂t
= − 1

a cosφ

∂

∂λ
(PSuq)− 1

a cosφ

∂

∂φ
(PSvq cosφ)− ∂

∂σ
(PS σ̇q)

=
1

a cosφ

∂

∂λ
(F λ)− 1

a cosφ

∂

∂φ
(Fφ)− ∂

∂σ
(F σ) (2.132)

PS is surface pressure, q is quantity of tracers. Continuity equation is given by considering the
case of q = 1.

∂PS

∂t
= − 1

a cosφ

∂

∂λ
(PSu)− 1

a cosφ

∂

∂φ
(PSv cosφ)− ∂

∂σ
(PS σ̇) (2.133)

Assuming that grid is equally spaced in zonal direction, the transport equation is discretized as
follows.

∂PS,i,j,kqi,j,k

∂t
=

1

∆Dj,k
[(Gλ

i− 1
2
,j,k
−Gλ

i+ 1
2
,j,k

)+(Gφ
i,j− 1

2
,k
−Gφ

i,j+ 1
2
,k
))+(Gσ

i,j,k− 1
2

−Gσ
i,j,k+ 1

2

)] (2.134)

Here,
Gλ
i− 1

2
,j,k

= F λ
i− 1

2
,j,k

∆yj∆σk = (PSuq)i− 1
2
,j,k∆yj∆σk (2.135)

Gφ
i,j− 1

2
,k
= Fφ

i,j− 1
2
,k
∆xj− 1

2
∆σk = (P svq)i,j− 1

2
,k∆xj− 1

2
∆σk (2.136)

Gσ
i,j,k− 1

2

= F η
i,j,k− 1

2

∆xj∆yj = (PS σ̇q)i,j,k− 1
2
∆xj∆yj (2.137)

And
∆Dj,k = a cosφj∆λ∆φj∆σk, ∆xj = a cosφj∆λ, ∆yj = a∆φj (2.138)

This flux form equation ensure the conservation.
For the calculation of the time-averaged mass flux across the cell boundary, the winds and

the tracer distributions are staggered in the Arakawa C-grid (Mesinger and Arakawa 1976). The
horizontal winds at the cell boundary, ui− 1

2
,j,k, vi− 1

2
,j,k, are reconstructed by using the mass

convergence field in the spectral model and the discretized continuity eqution:

∂PSi,j,k
∂t

=
1

∆Dj,k
[(V λ

i− 1
2
,j,k
− V λ

i+ 1
2
,j,k

) + (V φ

i,j− 1
2
,k
− V φ

i,j+ 1
2
,k
)) + (V σ

i,j,k− 1
2

− V σ
i,j,k+ 1

2

)] (2.139)

Here, V λ
i− 1

2
,j,k
, V φ

i,j− 1
2
,k
, V σ

i,j,k− 1
2

denote zonal, meridional, and vertical mass-weighted wind at the

cell boundary, rspectively. That is,

V λ
i− 1

2
,j,k

= (PSu)i− 1
2
,j,k∆yj∆σk (2.140)

V φ

i,j− 1
2
,k
= (PSv)i,j− 1

2
,k∆xj− 1

2
∆ηk (2.141)

V σ
i,j,k− 1

2

= (PS σ̇)i,j,k− 1
2
∆xj∆yj (2.142)

∆Dj,k denotes the cell volume, and ∆xj ,∆yj , and ∆σk denote zonal, meridional and vertical
width of the cell, respectively. That is ∆Dj,k = a cosφj∆λ∆φj∆σ, ∆xj = a cosφj∆λ and
∆yj = a∆φj .

The following are the procedure for the calculation of tracer advection in the staggering-
grided horizontal and vertical wind fields:

32



1. Surface pressure PS(t+∆t) and horizontal wind v(t+∆t) are predicted in the spectral
model.

2. The horizontal component of mass flux divergence at time step t is calculated by using
spherical harmonics. The mass fluxes at time step t are reconstructed from the values at
t + ∆t and t −∆t because MIROC applies semi-implicit scheme for the time-integration
of surface pressure. Zonal and meridional component of mass flux divergence are:

Cx = − 1

a cosφ

∂

∂λ
(P su), Cy = − 1

a cosφ

∂

∂λ
(P sv cosφ) (2.143)

3. By using Cx and Cy, V
λ, V φ, V σ are calculated as follows.

V λ
i− 1

2
,j,k
− V λ

i+ 1
2
,j,k

= Cxi,j,k∆Dj,k, V λ
i,j− 1

2
,k
− V λ

i,j+ 1
2
,k
= Cyi,j,k∆Dj,k (2.144)

The boundry conditions are V φ = 0 at the North Pole and South Pole, σ = 1 at surface
and V σ = 0 at σ = 0. The condition for V λ = 0 is:∑

i

V λ
i− 1

2
,j,k

=
∑
i

PSi,j,kui,j,k∆yj∆σk (2.145)

That means zonal mean of zonal mass transport is equal to that in the spectral model
grid. Here, the following equation must be satisfied for boundary condition V φ = 0 at the
North Pole and the South Pole. ∑

j

Cyi,j,k∆Dj,k = 0 (2.146)

However, this is not always satisfied (On the other hand,
∑

i

∑
j C

y
i,j,k∆Dj,k = 0 is valid

within numerical error.).

In order to satisfy the boundary condition, the following correction is made.

Cyi,j,k ← Cyi,j,k − δC, Cyi,j,k ← Cxi,j,k + δC (2.147)

Here, δC =
∑

j C
y
i,j,k∆Dj,k/

∑
j ∆Dj,k. Vertical velocity V

η is obtained by using

∂PSi,j,k
∂t

∑
k

∆Dj,k =
∑
k

(Cxi,j,k + Cyi,j,k) (2.148)

(The contents so far are in [TRACEG] of dtrcr.F. The rest of the content is in [GTRACE]
of dtrcr.F.)

4. Gλ, Gφ, Gσ are calculated by PPM scheme from V λ, V φ, V σ.

5. P si,j,kqi,j,k at time step t+∆t is calulated by integration of Eq.(2.134) by leap frog method

from Gλ, Gφ, Gσ.

6. qt+∆t is calculated by dividing (P sq)t+∆t by P
s
t+∆t. There is small quantity of difference

between P st+∆t from Eq. (2.148) and P st+∆t in the spectral model, because semi-implicit
time integration scheme is applied. P st+∆t from Eq. (2.148) is applied at present for
the consistency of mass advection. Mass Conservation is not strictly satisfied because of
the discrepancy between the surface pressure in the spectral model and from P st+∆t Eq.
(2.148).
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2.5.4.2 σ-p Hybrid Coordinate

The transport equation in η coordinate (σ − p hybrid coordinate) on the sphere is:

∂mq

∂t
= − 1

a cosφ

∂

∂λ
(muq)− 1

a cosφ

∂

∂φ
(mvq cosφ)− ∂

∂η
(mη̇q)

=
1

a cosφ

∂

∂λ
(F λ)− 1

a cosφ

∂

∂φ
(Fφ)− ∂

∂η
(F η) (2.149)

Here, m corresponds to the density of the coordinate and is defined as m = ∂p
∂η . if you look

at Eq. (2.132), you can find that difference of σ coordinate and η coordinate is only that PS

replaces m. The actual tracer advection in η coordinate is mostly the same as σ coordinate.
In the scheme in η coordinate, the following variables are calculated in the same way as the

way Gλ, Gφ, Gη is calculated in σ coordinate, except ∆σ replaces with ∆η and σ̇ replaces with
η̇.

G′λ
i− 1

2
,j,k

= (PSuq)i− 1
2
,j,k∆yj∆ηk, G′φ

i,j− 1
2
,k
= (PSvq)i,j− 1

2
,k∆xj− 1

2
∆ηk, G′η

i,j,k− 1
2

= (PS η̇q)i,j,k− 1
2
∆xj∆yj

(2.150)
In the time integration step, multiplying G′ by m/PS , Gλ, Gφ, Gη is calculated. After that, mq
at time step t+∆t is calculated by leap-frog method as well as σ coordinate.

In actual source code, conbining to dividing by m to calculate q at time step t + ∆t, q at
point (i, j, k) in time step t+∆t is calculated as follows.

qt+∆t =
∆Ak +∆BkP

S,t−∆t
i,j,k

∆Ak +∆BkP
S,t+∆t
i,j,k

qt−∆t
i,j,k +

2∆t

∆D

× [(G′λ,t
i− 1

2
,j,k
−G′λ,t

i+ 1
2
,j,k

) + (G′φ,t
i,j− 1

2
,k
−G′φ,t

i,j+ 1
2
,k
)) + (G′η,t

i,j,k− 1
2

−G′η,t
i,j,k+ 1

2

)]

×
∆Ak +∆BkP

S,t
i,j,k

PS,ti,j,k

1

∆Ak +∆BkP
S,t+∆t
i,j,k

(2.151)

Here,A,B is the coefficients for η coordinate, ηk+ 1
2
= Ak+ 1

2
/p0 + Bk+ 1

2
and ∆Ak = Ak− 1

2
−

Ak+ 1
2
, ∆Bk = Bk− 1

2
− Bk+ 1

2
. And ∆Ak + ∆BkP

S
i,j,k = ∆pi,j,k(More details in the section of

the vertical discretization).
2.5.4.3 The Mass Fluxes into/out of Polar Caps

The mass fluxes into/out of polar caps are calculated by using the semi–Lagrangian scheme
in the polar stereo projection (cf. Fig.3). The horizontal average at the highest latitude band is
assumed to be preserved before/after flux calculation for the mass conservation. The sequence
of calculation is:

1. Zonal average of PSq at time step t is calculated at the highest latitude band (j = jN , jS),
and is assumed to equal PSq at the pole.

2. Horizontal wind at the highest latitude bands is projected into the orthogonal coordinate
system centering around the pole, and q at time step t+∆t is estimated by using the value
at the“ departure point”.

3. Zonal anerage of PSq at time step t+∆t is fixed to that at t.
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Figure 3: Conceptual figure for the flux on pole-most grids.
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2.6 Summary of the Dynamical Core

In this section, we enumerate the calculations performed in the dynamical core, although they
overlap with the previous descriptions.

2.6.1 Conversion of Horizontal Wind to Vorticity and Divergence

Obtain grid point values of vorticity and divergence from the grid point values of uij , vij for
horizontal wind. First, we obtain the vorticity and divergence in spectral space, ζmn , D

m
n ,

ζmn =
1

I

I∑
i=1

J∑
j=1

imvij cosφjY
m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

uij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

,(2.152)

Dm
n =

1

I

I∑
i=1

J∑
j=1

imuij cosφjY
m∗
n ij

wj
a(1− µ2j )

− 1

I

I∑
i=1

J∑
j=1

vij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

; .(2.153)

The grid point value is calculated by

ζij = Re
N∑

m=−N

N∑
n=|m|

ζmn Y
m
n ij , (2.154)

and so on.
Corresponding file & subroutines: [G2Wpush, G2Wtrans, G2Wshift, W2Gpush, W2Gtrans,

W2Gshift (xdsphe.F)]

2.6.2 Calculating a Virtual Temperature

virtual Temperature Tv is ,

Tv = T (1 + ϵvq − l) , (2.155)

However, it is ϵv = Rv/R − 1 and Rv is the gas constant for water vapor (461 Jkg−1K−1)
and R is the gas constant for air (287.04 Jkg−1K−1).

Corresponding file & subroutine: [VIRTMD (dvtmp.F)]

2.6.3 Calculating the Pressure Gradient Term

The pressure gradient term ∇π = 1
pS
∇pS is first used to define the πmn

πmn =
1

I

I∑
i=1

J∑
j=1

(ln pS)ijY
m∗
n ijwj , (2.156)

to a spectral representation and then ,

1

a cosφ

(
∂π

∂λ

)
ij

=
1

a cosφ
Re

N∑
m=−N

N∑
n=|m|

imX̃m
n Y

m
n ij , (2.157)
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1

a

(
∂π

∂φ

)
ij

=
1

a cosφ
Re

N∑
m=−N

N∑
n=|m|

πmn (1− µ2) ∂
∂µ
Y m
n ij . (2.158)

Corresponding file & subroutine: [PSDOT (dgdyn.F)]

2.6.4 Diagnosis of Vertical Dlow

Pressure change term, and lead DC,

∂π

∂t
= −

K∑
k=1

{Dk∆σk + (vk · ∇π)∆Bk} (2.159)

(mη̇)k−1/2

ps
= −Bk−1/2

∂π

∂t
−

K∑
l=k

{Dl∆σl + (vl · ∇π)∆Bl} (2.160)

and its non-gravity components.

(
∂π

∂t

)NG
= −

K∑
k=1

vk · ∇π∆Bk (2.161)

(mη̇)NGk−1/2

ps
= −Bk−1/2

(
∂π

∂t

)NG
−

K∑
l=k

vl · ∇π∆Bl (2.162)

Corresponding file and subroutine: [PSDOT (dgdyn.F)]

2.6.5 Tendency Terms due to Advection

Momentum advection term:

(Au)k = (ζk + f)vk −
[
(mη̇)k−1/2

ps

uk−1 − uk
∆σk−1 +∆σk

+
(mη̇)k+1/2

ps

uk − uk+1

∆σk +∆σk+1

]
− 1

a cosφ

∂π

∂λ
(CpTv,kκ̂−RT̄ ) + Fx (2.163)

(Av)k = −(ζk + f)uk −
[
(mη̇)k−1/2

ps

vk−1 − vk
∆σk−1 +∆σk

+
(mη̇)k+1/2

ps

vk − vk+1

∆σk +∆σk+1

]
− 1

a

∂π

∂φ
(CpTv,kκ̂−RT̄ ) + Fy (2.164)

Temperature advection term:

(uT ′)k = uk(Tk − T̄ ) (2.165)
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(vT ′)k = vk(Tk − T̄ ) (2.166)

Hk = T ′
kDk −

[
(mη̇)k−1/2

ps

T̂k−1/2 − Tk
∆σl

+
(mη̇)k+1/2

ps

Tk − T̂k+1/2

∆σl

]

+ κ̂kvk · ∇πTv,k − αk
K∑
l=k

(Dl∆σl + (vl · ∇π)∆Bl)
Tv,k
∆σk

− βk

K∑
l=k+1

(Dl∆σl + (vl · ∇π)∆Bl)
Tv,k
∆σk

(2.167)

Water vapor advection term:

(uq)k = ukqk (2.168)

(vq)k = vkqk (2.169)

Rk = qkDk −
1

2

[
(mη̇)k−1/2

ps

qk−1 − qk
∆σk

+
(mη̇)k+1/2

ps

qk − qk+1

∆σk

]
(2.170)

Corresponding file & subroutine: [GRTADV, GRUADV (dgdyn.F)]

2.6.6 Transformation of Prognostic Variables to Spectral Space

(122) and (123).

Transform ut−∆t
ij , vt−∆t

ij to a spectral representation of vorticity and divergence ζmn , D
m
n . Fur-

thermore, transforming the temperature T t−∆t, specific humidity qt−∆t, and π = ln pt−∆t
S to

Xm
n =

1

I

I∑
i=1

J∑
j=1

XijY
m∗
n ijwj , (2.171)

to a spectral representation.
Corresponding file & subroutine: [G2Wpush, G2Wtrans, G2Wshift (xdsphe.F)]

2.6.7 Transformation of Tendency Terms to Spectral Space

Tendency Term of Vorticity

∂ζmn
∂t

=
1

I

I∑
i=1

J∑
j=1

im(Av)ij cosφjY
m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

(Au)ij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

(2.172)
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The non-gravity wave component of the tendency term of the divergence

(
∂Dm

n

∂t

)NG
=

1

I

I∑
i=1

J∑
j=1

im(Au)ij cosφjY
m∗
n ij

wj
a(1− µ2j )

− 1

I

I∑
i=1

J∑
j=1

(Av)ij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

− n(n+ 1)

a2
1

I

I∑
i=1

J∑
j=1

ÊijY
m∗
n ijwj (2.173)

The non-gravity wave component of the tendency term of temperature

(
∂Tmn
∂t

)NG
= −1

I

I∑
i=1

J∑
j=1

im(uT ′)ij cosφjY
m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

(vT ′)ij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

ĤijY
m∗
n ijwj (2.174)

Tendency term of water vapor

∂qmn
∂t

= −1

I

I∑
i=1

J∑
j=1

im(uq)ij cosφjY
m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

(vq)ij cosφj(1− µ2j )
∂

∂µ
Y m∗
n ij

wj
a(1− µ2j )

+
1

I

I∑
i=1

J∑
j=1

RijY
m∗
n ijwj (2.175)

Corresponding file & subroutines: [G2Wpush, G2Wtrans, G2Wshift (xdsphe.F)]

2.6.8 Time Integration in Spectral Space

Equations in matrix form

{
(1 + 2∆tDH)(1 + 2∆tDM )I − (∆t)2(W h+ (1 + 2∆tDM )GCT )∇2

σ

}
D
t

= (1 + 2∆tDH)(1−∆tDM )Dt−∆t +∆t

(
∂D

∂t

)
NG

−∆t∇2
σ

{
(1 + 2∆tDH)ΦS +W

[
(1− 2∆tDH)Tt−∆t +∆t

(
∂T

∂t

)
NG

]
+(1 + 2∆tDH)G

[
πt−∆t +∆t

(
∂π

∂t

)
NG

]}
. (2.176)
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Using LU decomposition, D̄ is obtained by solving for

∂T

∂t
=

(
∂T

∂t

)
NG

− hD (2.177)

∂π

∂t
=

(
∂π

∂t

)
NG

−C ·D (2.178)

Calculate the value of the spectrum in ∂T/∂t, ∂π/∂t and then calculate the value of the
spectrum in t+∆t using

ζt+∆t =

(
ζt−∆t + 2∆t

∂ζ

∂t

)
(1 + 2∆tDM )−1 (2.179)

Dt+∆t = 2D̄ −Dt−∆t (2.180)

T t+∆t =

(
T t−∆t + 2∆t

∂T

∂t

)
(1 + 2∆tDH)−1 (2.181)

qt+∆t =

(
qt−∆t + 2∆t

∂q

∂t

)
(1 + 2∆tDE)−1

πt+∆t = πt−∆t + 2∆t
∂π

∂t
(2.182)

Corresponding file & subroutine: [TINTGR (dintg.F)]

2.6.9 Transformation of Prognostic Variables to Grid Point Values

Obtain grid values of horizontal wind speed from the spectral values of vorticity and divergence
(ζmn , D

m
n ) uij , vij .

uij =
1

cosφj
Re

N∑
m=−N

N∑
n=|m|
n ̸=0

{
a

n(n+ 1)
ζmn (1− µ2) ∂

∂µ
Y m
n ij −

ima

n(n+ 1)
Dm
n Y

m
n ij

}
(2.183)

vij =
1

cosφj
Re

N∑
m=−N

N∑
n=|m|
n ̸=0

{
− ima

n(n+ 1)
ζmn Y

m
n ij −

a

n(n+ 1)
D̃m
n (1− µ2) ∂

∂µ
Y m
n ij

}
(2.184)

Furthermore,

Tij = Re
N∑

m=−N

N∑
n=|m|

Tmn Y
m
n ij , (2.185)

Tij , πij , qij , and so on,

pSij = expπij (2.186)

to calculate.
Corresponding file & subroutines: [W2Gpush, W2Gtrans, W2Gshift (xdsphe.F)]
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2.6.10 Diffusion Correction along Pressure Level

The horizontal diffusion is applied on the surface of η−plane, but it can cause problems in large
slopes, such as transporting water vapor uphill and causing false precipitation at the top of a
mountain. To mitigate this problem, corrections have been made for T, q, l to make the diffusion
closer to that of the p surface, e.g., for T, q, l.

Dp(T ) = (−1)ND/2K∇ND
p T ≃ (−1)ND/2K∇ND

η T − ∂σ

∂p
(−1)ND/2K∇ND

η p · ∂T
∂σ

= (−1)ND/2K∇ND
η T − (−1)ND/2K∇ND

η π · σ∂T
∂σ

= D(T )−D(π)σ∂T
∂σ

(2.187)

So,

Tk ← Tk − 2∆tσk
Tk+1 − Tk−1

σk+1 − σk−1
D(π) (2.188)

and so on. In D(π), the spectral value of π is converted to a grid by multiplying the spectral
value of πmn by the spectral representation of the diffusion coefficient.

Corresponding file & subroutine: [CORDIF (ddifc.F)]

2.6.11 Frictional Heat Associated with Diffusion

Frictional heat from diffusion is ,

QDIF = − (uijD(u)ij + vijD(v)ij) (2.189)

It is estimated that Therefore,

Tk ← Tk −
2∆t

Cp
(uijD(u)ij + vijD(v)ij) (2.190)

Corresponding file & subroutine: [CORDIF (ddifc.F)]

2.6.12 Horizontal Diffusion and Rayleigh Friction

The coefficients of horizontal diffusion can be expressed spectrally,

DMm
n = KM

[(
n(n+ 1)

a2

)ND/2

−
(

2

a2

)ND/2
]
+KR

DHmn = KM

(
n(n+ 1)

a2

)ND/2

DEmn = KE

(
n(n+ 1)

a2

)ND/2

(2.191)

KR is the Rayleigh coefficient of friction. The Rayleigh coefficient of friction is
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KR = K0
R

[
1 + tanh

(
z − zR
HR

)]
(2.192)

However, the profile is given in the same way as However,

z = −H lnσ (2.193)

The results are approximate to those of K0
R = (30day)−1 and zR = −H lnσtop. The standard

values are K0
R = (30day)−1, zR = −H lnσtop (σtop: top level of the model), H = 8000 m, and

HR = 7000 m.
Corresponding file & subroutine [DSETDF (dsetd.F)]

2.6.13 Time Filter

To reduce numerical mode associated with leap frog scheme, time filter is applied every time
step. MIORC6 used modified Asselin time filter (Williams, 2009), which is updated version
of Asselin(1972) used previous version of MIROC. Although Asselin time filter attenuate high
frequency physical mode, bringing low accuracy of leap frog scheme, current time filter succeeded
in suppressing it.

Modified Asselin filter is expressed as following equation

¯̄Xt = X̄t + να[ ¯̄Xt−∆t − 2X̄t +Xt+∆t] (2.194)

X̄t+∆t = Xt+∆t + ν(1− α)[ ¯̄Xt−∆t − 2X̄t +Xt+∆t] (2.195)

where bar indicates time filter. The parameters set to ν = 0.05, α = 0.5. Assuming α = 1,
modified Asselin filter is same as Asselin filter.

In the model,

¯̄Xt∗ = (1− να)−1[(1− 2να)X̄t + να ¯̄Xt−∆t] (2.196)

is firstly calculated at MODULE: [DADVNC] where transformation of prognostic variableto grid
point values. And then, Xt−∆t − 2Xt is stored. When the Xt+∆t is obtained later, time filter
conduct at MODULE [TFILT],

¯̄Xt = (1− να) ¯̄Xt∗ + ναXt+∆t (2.197)

X̄t+∆t = Xt+∆t + ν(1− α)[ ¯̄Xt−∆t − 2X̄t +Xt+∆t] (2.198)

Corresponding file & subroutine: [DADVNC (dadvn.F)]

2.6.14 Correction for Conservation of Mass

In the spectral method, the global integral of π = ln pS is preserved with rounding errors
removed, but the preservation of the mass, i.e. the global integral of pS is not guaranteed.
Moreover, a wavenumber break in the spectra sometimes results in negative values of the water
vapor grid points. For this reason, we perform a correction to preserve the masses of dry air,
water vapor, and cloud water, and to remove the regions with negative water vapor content.
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Before entering dynamical calculations, [FIXMAS], the global integrals of water vapor and
cloud water are calculated for Mq,Ml.

M0
q =

∑
ijk

qpS∆λiwj∆σk (2.199)

M0
l =

∑
ijk

lpS∆λiwj∆σk (2.200)

In the first step of the calculation, the dry mass Md is calculated and stored.

M0
d =

∑
ijk

(1− q − l)pS∆λiwj∆σk (2.201)

After exiting dynamical calculation, [MASFIX], the following procedure is followed.
First, negative water vapor is removed by dividing the water vapor from the grid points

immediately below the grid points. Suppose that qk < 0 is used,

q′k = 0 (2.202)

q′k−1 = qk−1 +
∆pk
∆pk−1

qk (2.203)

However, this should only be done if it is q′k−1 ≥ 0.
Next, set the value to zero for the grid points not removed by the above procedure.

3. calculate the global integral value of Mq and multiply the global water vapor content by
a fixed percentage so that it is the same as that of M0

q .

q′′ =
M0
q

Mq
q′ (2.204)

4. correct for dry air mass Likewise calculate Md,

p′′S =
M0
d

Md
pS (2.205)

Corresponding file & subroutine: [FIXMAS, MASFIX (dmfix.F)]
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2.7 Computational Flow of Dynamical Core

In this section, calculations of dynamical component based on coding are summarized. [module
name(file name)]

2.7.1 Overview of Dynamical Core

1. Calculate dynamical term [DYNTRM(dterm.F)]

1.1 Calculate volticity and divergence on wave space and get grid value. [G2W, W2G(xdsphe.F)]

1.2 Diagnose stream function and potential velocity [DYNTRM(dterm.F)]

1.3 Diagnose surface pressure advection, its tendency & vertical flow [PSDOT(dgdyn.F)]

1.4 Calculate factor for hydrostatic eq. & interporation of temprature on Hybrid coord.
[CFACT(dcfct.F)]

1.5 Calculate virtual temprature [VIRTMD(dvtmp.F)]

1.6 Calculate temperature advection [GRTADV(dgdyn.F)]

1.7 Calculate momentum advection [GRUADV(dgdyn.F)]

1.8 Spectral transform of tendency terms [G2W(xdsphe.F)]

2. Time integration of equation DYNSTP(dstep.F)

2.1 Calculate tracer transport [TRACEG(dtrcr.F)]

2.2 Time integration on wave space [TINTGR(dintg.F)]

2.3 Time integration of tracer terms [GTRACE(dtrcr.F)]

2.4 Time filter [DADVNC(dadvn.F)]

2.5 Get horizontal wind of grid value from wave space [W2G(xdsphe.F)]

2.6 Correction of pressure-level diffusion [CORDIF(ddifc.F)]

2.7 Correction of horizontal friction heating [CORFRC(ddifc.F)]
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3 Physics

3.1 Overview of Physical Parameterizations

As a physical process, we can consider the following

• Cumulus convection

• Shallow convection

• Large scale condensation

• Cloud microphysics

• Radiation

• Turbulence

• Surface fluxes

• Gravity wave drag

We compute the time-varying terms Fx, Fy, Q,M, S for the prognostic variables from these
processes, and perform time integration.

3.1.1 Time Integration of Physical Parameterizations

NOTE: the descriptions in this section are outdated.
In terms of time integration of predictors, we can classify the physical Parameterizations in

the following three orders of execution.

1. Cumulus convection, shallow convection, large-scale condensation, and cloud microphysics

2. Radiation, turbulence and surface fluxes

3. Gravitational wave drag

For cumulus convection, shallow convection, large-scale condensation, and cloud micro-
physics, the values are updated by the usual Euler difference as follows.

T̂ t+∆t,(1) = T̂ t+∆t + 2∆tQCUM (T̂ t+∆t) (3.1)

T̂ t+∆t,(2) = T̂ t+∆t,(1) + 2∆tQLSC(T̂
t+∆t,(1)) (3.2)

Note that the large-scale condensation scheme is updated by the cumulus convection scheme.
In practice, the routines of cumulus convection and large-scale condensation output the heating
rates and so on, and the time integration is performed immediately afterwards by MODULE:[GDINTG].

The calculations of the radiative, vertical diffusion, ground boundary layer and surface pro-
cesses in the following groups are basically performed with these updated values (T̂ t+∆t,(1), q̂t+∆t,(2),
etc.). However, in order to calculate some of the terms as implicit, we calculate the heating rates
and so on for all of these terms together, and then perform time integration at the end. In other
words, if we write symbolically

T̂ t+∆t,(3) = T̂ t+∆t,(2) + 2∆tQRAD,DIF,SFC(T̂
t+∆t,(2), T̂ t+∆t,(3)) (3.3)

That would be the gravitational wave resistance, mass modulation, and dry convection mod-
ulation are the same as those for cumulus convection and large-scale condensation.

T̂ t+∆t,(4) = T̂ t+∆t,(3) + 2∆tQADJ(T̂
t+∆t,(3)) (3.4)
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3.1.2 Various Physical Quantities

Here are definitions of various physical quantities that can be computed simply from the prog-
nostic variables. Some of them are calculated with MODULE:[PSETUP].

1. Virtual temperature

Virtual Temperature Tv is calculated as follows.

Tv = T (1 + ϵvq − l) (3.5)

2. Air density

The air density ρ is calculated as follows.

ρ =
p

RTv
(3.6)

3. Altitude

The altitude z is evaluated in the same way as the calculation of the geopotential height in
the dynamics.

z =
Φ

g
(3.7)

Φ1 = Φs + Cp(σ
−κ
1 − 1)Tv,1 (3.8)

Φk − Φk−1 = Cp

[(
σk−1/2

σk

)κ
− 1

]
Tv,k + Cp

[
1−

(
σk−1/2

σk−1

)κ]
Tv,k−1 (3.9)

4. Half-level temperature

Half-level temperature is calculated by performing a linear interpolation on ln p, i.e., lnσ.

Tk−1/2 =
lnσk−1 − lnσk−1/2

lnσk−1 − lnσk
Tk +

lnσk−1/2 − lnσk

lnσk−1 − lnσk
Tk−1 (3.10)

5. Saturated specific humidity

The saturated specific humidity q∗(T, p) is approximated using the saturated vapor pressure
e∗(T ),

q∗(T, p) =
ϵe∗(T )

p
. (3.11)

Here, it is ϵ = 0.622,
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1

e∗v

∂e∗v
∂T

=
L

RvT 2
(3.12)

Therefore, if the latent heat of evaporation (L) and the gas constant of water vapor (Rv) are
held constant,

e∗(T ) = e∗(T = 273K) exp

[
L

Rv

(
1

273
− 1

T

)]
, (3.13)

where e∗(T = 273[K]) = 611[hPa].
From eq.3.12,

∂q∗

∂T
=

L

RvT 2
q∗(T, p). (3.14)

It is noted that if the temperature is lower than the freezing point 273.15[K], the sublimation
latent heat L+ LM is used as the latent heat L.

6. Dry static energy and moisture static energy

The dry static energy s is defined by

s = CpT + gz (3.15)

The moisture static Energy h is defined by

h = CpT + gz + Lq (3.16)
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3.2 Cumulus Scheme

3.2.1 Outline of Cumulus Scheme

The Chikira scheme (Chikira and Sugiyama 2010) has been adopted since version 5 of MIROC.
It represents updrafts, downdrafts, their detrainment and compensating downward motion over
the surrounding area as well as microphysical processes associated with updrafts and downdrafts.

The updraft is based on an entraining plume model, where the mass flux increases upward
due to lateral entrainment. The detrainment occurs only at the cloud top which is defined as the
neutral buoyancy level of the updraft air parcel. The lateral entrainment rate is formulated in
terms of buoyancy and vertical velocity of the air parcel at each level following Gregory (2001).
The momentum transport is formulated following Gregory et al. (1997).

The cloud base mass fluxes are determined by the prognostic convective kinetic energy closure
proposed by Arakawa and Xu (1990) and Xu (1991, 1993), which was adopted in the prognostic
Arakawa–Schubert scheme (Randall and Pan 1993; Pan 1995; Randall et al. 1997; Pan and
Randall 1998). The convective kinetic energy increases by buoancy and decreases by dissipation.

The cloud types are spectrally represented according to the updraft vertical velocity at the
cloud base. Larger (smaller) vertical velocities give smaller (larger) entrainment rates which
result in higher (lower) cloud tops. The cloud base is diagnosed as the lifting condensation level
of the air parcel at the lowest model layer.

The scheme has a simple downdraft model, where a part of the precipitation caused by the
updrafts evaporates and forms the cold air which enters into the downdrafts. The detrainment
of the downdraft mass fluxes occurs at the neutral buoyancy level and near the surface.

The interaction of the updrafs and downdrafts with the surrounding environment is formu-
lated following Arakawa and Schubert (1974). The areal fractions of the updrafts and downdrafts
are assumed to be sufficiently small and the grid-mean prognostic variables are supposed to be
the same as those over the environmental area, which are changed by the detrainment of the
updrafts and downdrafts, the compensating subsidence and the evaporation and sublimation of
the precipitation associated with the updrafts.

The input variables to this scheme are temperature T , specific humidity q, cloud liquid water
ql, cloud ice qi, zonal wind u, meridional wind v, all tracers including aerosols and greenhouse
gases, height z, pressure p, and cloud cover C. The scheme gives the tendencies of T , qv, ql, qi,
u, v, C and all the tracers. The vertical profiles of the rainfall and snowfall fluxes, cloud liquid
water, cloud ice and cloud fraction associated with the updrafts are also output as diagnostic
variables.

The procedure of the calculations is given as follows along with the names of the subroutines.

1. Calculation of cloud base CUMBAS.

2. Calculation of in-cloud properties CUMUP.

3. Calculation of cloud base mass flux CUMBMX.

4. Calculation of cloud mass flux, detrainment, and precipitation CUMFLX.

5. Diagnosis of cloud water and cloud cover by cumulus CUMCLD.

6. Calculation of tendencies by detrainment CLDDET.

7. Calculation of freezing, melting, evaporation, sublimation, and downdraft mass flux CUMDWN.

8. Calculation of tendencies by compensating subsidence CLDSBH.

9. Calculation of cumulus momentum transport CUMCMT.

10. Calculation of tracer updraft CUMUPR.

11. Calculation of tracer downdraft CUMDNR.

12. Calculation of tracer subsidence CUMSBR.

13. Fixing tracer mass CUMFXR .
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3.2.2 Interaction between Cumulus Ensemble and Large-Scale Environment

Following Arakawa and Schubert (1974), the equations for tendencies of the grid-mean variables
are written as

∂h̄

∂t
=M

∂h̄

∂z
+
∑
j

Dj

[
hj(zT,j)− h̄

]
, (3.17)

∂q̄

∂t
=M

∂q̄

∂z
+
∑
j

Dj [qj(zT,j)− q̄] , (3.18)

where M , D, h denote total mass flux, detrainment mass flux and moist static energy. q
is a substitute for qv, ql and qi and any tracers which are calculated in the same way. zT is
the height of the updraft. The hats indicate in-cloud properties, the overbars grid-mean. The
subscripts j are an index for the updraft types.

The total mass flux M and detrainment D are defined as

M(z) =
∑
j

Mu,j +Md , (3.19)

Dj(z) =Mu,j(zT,j)δ(z − zT,j) (3.20)

respectively, where Mu and Md denote mass fluxes of updraft and downdraft respectively.
The updraft mass flux is formulated as

Mu,j(z) =MB,j ηj(z) (3.21)

where MB and η are the updraft mass flux at its cloud base and normalized mass flux.

3.2.3 Cloud Base

The cloud base is determined as the lifting condensation level of the air at the lowest model
layer. It is defined as the smallest z which satisfies

q̄t(z1) ≥ q̄v∗ +
γ

Lv(1 + γ)

[
h̄(z1)− h̄∗(z)

]
, (3.22)

where qt denotes total water, Lv the latent heat of vaporization, z1 the height of the lowest
model layer at the full level and

γ ≡ Lv
Cp

(
∂q̄∗

∂T̄

)
p̄

. (3.23)

Cp denotes the specific heat of dry air at constant pressure and the stars indicate saturation
values.

The normalized mass flux below the cloud base is given by η = (z/zB)
1/2 for all of the

updraft types where zB denotes the cloud base height.
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3.2.4 Updraft Velocity and Entrainment Rate

The entrainment rate is defined by

ϵ =
1

Mu

∂Mu

∂z
(3.24)

and allowed to vary vertically. Based on the formulation of Gregory (2001), the updraft
velocity is calculated by

1

2

∂ŵ2

∂z
= aB − ϵŵ2 (3.25)

where w and B are the vertical velocity and the buoyancy of updraft air parcel respectively.
a is a dimensionless constant parameter ranging from 0 to 1 and represents a ratio of buoyancy
force used to accelerate the updraft velocity. The hats indicate the values of the updraft. The
second term on the right-hand side represents reduction in the upward momentum of the air
parcel through the entrainment. Here and hereafter, the equation number corresponds to that
in Chikira and Sugiyama (2010).

Then it is assumed that

ϵŵ2 ≃ CϵaB, (3.26)

where Cϵ is a dimensionless constant parameter ranging from 0 to 1. This formulation
denotes that a certain fraction of the buoyancy-generated energy is reduced by the entrainment,
which is identical to the fraction used to accelerate the entrained air to the updraft velocity.
Thus, the entrainment rate is written as

ϵ = Cϵ
aB

ŵ2
. (3.27)

Eqs. (3.25) and (3.27) lead to

1

2

∂ŵ2

∂z
= a(1− Cϵ)B (3.28)

which shows that ŵ is continuously accelerated upward when buoyancy is positive. Many
CRM and LES results show, however, that updraft velocity is often reduced if the parcel ap-
proaches its cloud top. For this reason, adding an additional term, we use

1

2

∂ŵ2

∂z
= a(1− Cϵ)B −

1

z0

ŵ2

2
(3.29)

where the last term denotes that the energy of the updraft velocity is relaxed to zero with a
height scale z0. Eq. (3.29) is discretized as

1

2

ŵ2
k+1/2 − ŵ

2
k−1/2

∆zk
= a(1− Cϵ)Bk −

1

z0

ŵ2
k+1/2

2
(3.30)
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where k is an index of full levels and k+1/2 and k− 1/2 indicate the upper and lower sides
of the half levels. ∆z is the depth of the model layer. Note that the equation is solved for ŵ2

rather than ŵ.
The buoyancy of the cloud air parcel is determined by

B =
g

T̄
(T̂v − T̄v) (3.31)

≃ g

{
ĥ− h̄∗

CpT̄ (1 + γ)
+ ε(q̂v − q̄v)− [(q̂l + q̂i)− (q̄l + q̄i)]

}
(3.32)

where g and Tv denote gravity and virtual temperature respectively. ε = Rv/Rd − 1 where
Rv and Rd are the gas constants for water vapor and dry air respectively.

ŵ, B and ϵ are calculated for each of the updraft types separately, but we omit the subscript
j for convenience.

3.2.5 Normalized Mass Flux and Updraft Properties

The properties of the updraft are determined by

∂ηĥ

∂z
= ϵηh̄+Qi, (3.33)

∂ηq̂t
∂z

= ϵηq̄t − P (3.34)

and

∂η

∂z
= ϵη, (3.35)

where Qi and P denote heating by liquid-ice transition and precipitation respectively. All
the other variables such as temperature, specific humidity, and liquid and ice cloud water are
computed from these quantities. Tracers are calculated by a method identical to that for q̂t.

Equation (3.35) leads to

∂ ln η

∂z
= ϵ. (3.36)

Then, η and ϵ are discretized as

ln ηk+1/2 − ln ηk−1/2

∆zk
= ϵk. (3.37)

Note that this discrete form leads to an exact solution if ϵ is vertically constant. Also, η is
finite as far as ϵ is. For ϵk, a maximum value of 4× 10−3m−1 is applied.

Equations (3.33) and (3.34) are written as
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∂ηĥ

∂z
= Eh̄+Qi, (3.38)

∂ηq̂t
∂z

= Eq̄t − P (3.39)

respectivuly, where E = ϵη. These equations are discretized as

ηk+1/2ĥk+1/2 − ηk−1/2ĥk−1/2

∆zk
= Ekh̄k +Qi,k (3.40)

ηk+1/2q̂t,k+1/2 − ηk−1/2q̂t,k−1/2

∆zk
= Ekq̄t,k − Pk (3.41)

Considering the relation that ∂η/∂z = ϵη, we descretize Ek as

Ek =
ηk+1/2 − ηk−1/2

∆zk
(3.42)

Note that conservation of mass, energy, and water is guaranteed with Eqs. (3.37)–(3.42).
This set of equations leads to exact solutions of ĥ under the special case that ϵ and h̄ are
vertically constant and Qi is zero. From Eqs. (3.37), (3.40), and (3.42), assuming Qi is zero,

ĥk+1/2 = e−ϵk∆zk ĥk−1/2 + (1− e−ϵk∆zk)h̄k, (3.43)

which shows that ĥk+1/2 is a linear interpolation between ĥk−1/2 and h̄k. Thus, the stability

of ĥ is guaranteed. The same property applies to q̂t as well, if P is zero.
These calculations are made for each of the updraft types separately, but we omit the sub-

script j for convenience.

3.2.6 Spectral Representation

Following the spirit of the Arakawa–Schubert scheme, updraft types are spectrally represented.
Different values of cloud-base updraft velocities are given from the minimum to the maximum
values with a fixed interval. The minimum and maximum values are set to 0.1 and 1.4 ms−1,
with an interval of 0.1 ms−1 for MIROC6. The minimum and maximum values and the interval
can be changed.

Then, the updraft properties are calculated upward with Eqs. (3.27), (3.29), (3.33), (3.34),
and (3.35). This upward calculation continues even if the buoyancy is negative as long as
the updraft velocity is positive. If the velocity becomes negative at some level, the air parcel
detrains at the neutral buoyancy level which is below and closest to the level. That is, the scheme
automatically judges whether the rising parcel can penetrate the negative buoyancy layers when
there is a positive buoyancy layer above. The effect of the convective inhibition (CIN) near cloud
base is also represented by this method. Note, however, that an effect of overshooting above
cloud top is not represented for simplicity (i.e., detrainment never occurs above cloud top).
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3.2.7 Cloud-Base Mass Flux

The cloud-base mass flux is determined with the prognostic convective kinetic energy closure
proposed by Arakawa and Xu (1990). That is, the cloud kinetic energy for each of the updraft
types is explicitly predicted by

∂K

∂t
= AMB −

K

τp
, (3.44)

where K and A are the cloud kinetic energy and cloud work function respectively, and τp
denotes a time scale of dissipation. The cloud work function A is defined as

A ≡
∫ zT

zB

Bη dz . (3.45)

The cloud kinetic energy is linked with MB by

K = αM2
B. (3.46)

The cloud-base mass flux is then solved for each of the updraft types.

3.2.8 Microphysics

The method to obtain temperature and specific humidity of in-cloud air from moist static energy
is identical to that in Arakawa and Schubert (1974). The ratio of precipitation to the total
amount of condensates generated from cloud base to a given height z is formulated as

Fp(z) = 1− e−(z−zB−z0)/zp , (3.47)

where z0 and zp are tuning parameters.
The ratio of cloud ice to cloud condensate is determined simply by a linear function of

temperature,

Fi(T ) =


1 T ≤ T1
(T2 − T )/(T2 − T1) T1 < T < T2

0 T ≥ T2
(3.48)

where T1 and T2 are set to 258.15 and 273.15 K. The ratio of snowfall to precipitation is also
determined by this function.

From the conservation of condensate static energy, CpT + gz + Lvq − Liqi where Li is the
latent heat of fusion, for a cloud parcel, Qi in Eq. (3.33) is written as

Qi = Li

(
∂ηq̂i
∂z
− ϵηq̄i

)
(3.49)

and discretized as

Qik = Li

(
ηk+1/2q̂i,k+1/2 − ηk−1/2q̂i,k−1/2

∆zk
− Ekq̄i,k

)
(3.50)
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Strictly, the ratio of the cloud ice to the cloud condensate should be recalculated after the
modification of temperature by Qi and the iterations of the calculation are required; however,
it is omitted for simplicity.

Melting and freezing of precipitation occurs depending on wet-bulb temperature of large-scale
environment and cumulus mass flux.

3.2.9 Evaporation, Sublimation and Downdraft

A part of precipitation is evaporated at each level as

Ev = ae(q̄w − q̄)
(
P

VT

)
, (3.51)

where Ev, qw and VT are the mass of evaporation per a unit volume and time, wet-bulb
saturated specific humidity and terminal velocity of precipitation respectively ae is a constant.
Downdraft mass flux Md is generated as

∂Md

∂z
= −beρ̄(T̄w − T̄ )P, (3.52)

where ρ and Tw are density and wet-bulb temperature, respectively; be is a constant. Proper-
ties of downdraft air are determined by budget equations and the detrainment occurs at neutral
buoyancy level and below cloud base.

If the precipitation is composed of both rain and snow, the rain (snow) is evaporated (subli-
mated) in the same ratio as the ratio of rain (snow) to the total precipitation when the precipi-
tation evaporates to produce downdrafts.

3.2.10 Cloudiness

Fractional cloudiness of the updrafts Cu used in the radiation scheme is diagnosed by

Cu =
Cmax − Cmin

lnMmax − lnMmin
(ln
∑
j

Mu,j − lnMmin) + Cmin, (3.53)

where Cmax, Cmin, Mmax, Mmin are the maximum and minimum values of the cloudiness and
cumulus mass flux respectively.

The grid mean liquid cloud mixing ratio in the updrafts is given by

lc =
βCu
M

∑
j

q̂l,jMu,j , (3.54)

where β is a dimensionless constant. The grid mean ice cloud mixing ratio is determined
similarly.

3.2.11 Cumulus Momentum Transport

Following Gregory et al. (1997), the zonal and meridional velocities of the updrafts are calculated
as
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∂ηû

∂z
= ϵηū+ Cmη

∂ū

∂z
, (3.55)

where Cm is a constant from 0 to 1 representing the effect of pressure. This equation can be
rewitten as

∂ηû

∂z
= (1− Cm)ϵηū+ Cm

∂ηū

∂z
, (3.56)

and is discretized as

ηk+1/2ûk+1/2 − ηk−1/2ûk−1/2

∆zk
= (1− Cm)Ekūk + Cm

ηk+1/2ūk+1/2 − ηk−1/2ūk−1/2

∆zk
. (3.57)

The horizontal velocities of the downdrafts are calculated similarly. The tendencies of zonal
and meridional velocities by the cumulus momentum transport (CMT) are calculated as

(
∂u

∂t

)
CMT,k

= −g
(ρu′w′)k+1/2 − (ρu′w′)k−1/2

∆pk
, (3.58)

(
∂v

∂t

)
CMT,k

= −g
(ρv′w′)k+1/2 − (ρv′w′)k−1/2

∆pk
(3.59)

respectively, where ρu′w′ and ρv′w′ are total zonal and meridional momentum fluxes respec-
tively and ∆pk = pk − pk+1.
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3.3 Shallow Convection Scheme

3.3.1 Overview of Shallow Convection

Shallow convection is the most frequent type of convective cloud in the tropics and subtropics
Its impact on climate through the energy budget due to atmospheric radiation is considered
important (Stevens, 2005). Shallow convection is responsible for transporting the boundary layer
air to the free atmosphere. It is often not accompanied by precipitation and is characterized by
the fact that precipitation-induced downdraft does not reach the surface as in deep convection.

This section briefly describes the vertical structure of the boundary layer favorable for shallow
convection. When the ground surface is heated by sunlight or cold air flows in from above, the
energy of convective instability is dissipated by turbulence in the bottom of the atmosphere,
forming a mixed layer with a nearly uniform vertical distribution of potential temperature and
water vapor at a thickness of about 600 m to 800 m from the surface. At the upper end of
the mixed layer, there is a transition layer of weakly stable stratification, which is the height
at which water vapor in updraft begins to condense (lifting condensation level, LCL). Above
LCL, the temperature decreases according to the moist adiabatic lapse rate, and the updraft
is observed as clouds. Above the level of free convection (LFC), the cloud continues to grow
while mixing with surrounding air. The growth of these convective clouds is limited by the
temperature inversion layer at the lower end of the free atmosphere, and the cloud tops are
often located about 2 km from the surface.

In the former versions of MIROC, A cumulus parameterization proposed by Chikira and
Sugiyama (2010) deals with multiple cloud types including shallow cumulus and deep con-
vective clouds. However, it tends to overestimate low-level cloud amounts. To cope with
this bias and improve the performance for reproducing current climate, the shallow convec-
tion scheme is introduced from the 6th version of MIROC (Tatebe et al., 2019, Ogura et al.,
2017, Ogura, 2015)．The source code in concern (pshcn.F) consists of SUBROUTINE:[PSHCN]

and SUBROUTINE:[DISTANCE]. The input values for SUBROUTINE:[PSHCN] are temperature, wa-
ter vapor mixing ratio, and liquid water mixing ratio, ice mixing ratio. It predicts liquid water
potential temperature, total water mixing ratio, ice mixing ratio, and horizontal components
of wind in response to vertical transport. It also diagnoses cloud fraction and precipitation.
SUBROUTINE:[DISTANCE], which is called inside SUBROUTINE:[PSHCN], calculates the degree of
buoyancy-induced updraft and mixing with the environment. Since the variables diagnosed
in the cumulus scheme (SUBROUTINE:[CUMLUS]) are referenced to determine the conditions for
shallow convection, SUBROUTINE:[PSHCN] is required to be run after SUBROUTINE:[CUMULUS],
followed by the diagnosis of cloud fraction. On the other hand, it should be run before the land
surface process SUBROUTINE:[SURFCE] because precipitation by convection is referenced in the
land surface and ocean models.

3.3.2 Basics of Cloud Model

Subgrid clouds are modeled based on the frameworks proposed by Bretherton et al. (2004) and
Park and Bretherton (2009). This scheme employs a simple plume model for cloud to calculate
vertical transport of conserved variables and precipitation due to updraft. An ensemble of
shallow convection in a horizontal grid, which is expressed as a single updraft plume, is supposed
to experience horizontal mixing with the environment (entrainment/detrainment). The flux of
vertical transport of mass is assumed in the following form:

ρw′ψ′ ≈Mu(ψu − ψ), (3.60)

where Mu = ρuσuwu is mass flux of updraft (ρu,σu, and wu stand for density in updraft, area
fraction of updraft in a grid, and vertical velocity, respectively)，ψu is a conserved variable

56



transported by convection (e.g. liquid water potential temperature, total water mixing ratio,
horizontal components of momentum) in updraft，ψ denotes the average value in the envi-
ronmental field of the same conserved value. The effects of vertical transport due to shallow
convection are represented by determining the vertical profiles of unknown values Mu and ψu.
Flux of mass and conserved values are diagnosed as

∂Mu

∂z
= E −D (3.61)

∂

∂z
(ψuMu) = Xψ + SψMu, (3.62)

where Xψ represents horizontal mixing with environmental air, and Sψ is source term. E and
D are rates of entrainment and detrainment, which are described in fractional from

E = ϵMu (3.63)

D = δMu. (3.64)

Substituting ψ for grid value and assuming the horizontal mixing term as Xψ = Eψ − Dψu
results in

∂Mu

∂z
=Mu(ϵ− δ) (3.65)

∂ψu
∂z

= ϵ(ψ − ψu) + Sψ. (3.66)

In MIROC6, changes in liquid water potential temperature due to precipitation and the effect of
subgrid pressure gradient on horizontal momentum are included in Sψ. Consequently, equations
(3.65) and (3.66) results in a closure problem of two parameters δ and ϵ. By determining δ and
ϵ by the formulation described in section 3.3.3.4 and solving differential equations along with
boundary condition at cloud base, vertical profiles of Mu and ψu are calculated.

3.3.3 Computation in PSHCN

The effect of convective updraft is calculated as follows.

• Liquid water potential temperature θl and total water qt are diagnosed from input tem-
perature T , water vapor mixing ratio qv, liquid water mixing ratio ql, ice mixing ratio
qi,

• Updraft mass flux at cloud base is diagnosed.

• Height of cloud base is diagnosed.

• Presence of shallow convection is determined.

• Vertical profiles of Mu, θl, qt, horizontal wind components u and v are diagnosed.

• θl, qt, qi, u, v, liquid water temperature Tl are predicted.

• T , qv, and ql are diagnosed according to Tl and qt.
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3.3.3.1 Lower boundary condition: diagnosis of cloud base mass flux

The mass flux at cloud base is formulated as it depends on turbulent kinetic energy (TKE)
in boundary layer and convective inhibition (CIN) at the top of boundary layer.

Firstly, the vertical profile of updraft velocity is supposed to fulfill

1

2

∂

∂z
w2
u = aBu − bϵw2

u (3.67)

all over the layers with shallow convection. Bu means updraft buoyancy, a and b are empirical
parameters. The first term of the right-hand side of (3.67) is acceleration by buoyancy, and
the second term represents drag by entrainment. By assuming no entrainment below LFC and
integrating (3.67) from cloud base to LFC, The critical value of upward velocity for updraft
plume to reach LFC, wc, can be determined

wc =
√
2a(CIN). (3.68)

Updrafts that exceed this critical value penetrates from cloud base.
Computation of CIN is based on Appendix C of Bretherton et al.,

CIN = [Bu(pbase) +Bu(pLCL)]
pLCL − pbase

g(ρLCL + ρbase)
+Bu(pLCL)

pLFC − pLCL
g(ρLFC + ρLCL)

. (3.69)

In the following, subscript base represents the value at the top of mixing layer. In MIROC6, for
simplicity, Bu(pbase) is set to zero.

Secondly, to obtain the information of vertical velocity at cloud base, the statistical distri-
bution of w is assumed to follow Gaussian distribution

f(w) =
1

2πkfeavg
exp

[
− w2

2kfeavg

]
(3.70)

with variance equal to kfeavg, where eavg is average TKE diagnosed in turbulent and vertical
diffusion scheme. kf is an empirical parameter describing the partitioning of TKE between
horizontal and vertical motions at the subcloud layer inversion, whose recommended value based
on large eddy simulation is 0.5.

By taking average of vertical velocity above the critical value wc, cloud base mass fluxMu,base

is diagnosed as

Mu,base = ρbase

∫ ∞

wc

wf(w)dw = ρbase

√
kfeavg
2π

exp

[
− w2

c

2kfeavg

]
, (3.71)

where ρbase is density at LFC. This mass flux is larger for larger boundary layer TKE and smaller
for larger CIN.

3.3.3.2 Diagnosing height of cloud base

The cloud base height is set between the top of the boundary layer and the LCL. The larger
the CIN is, the lower the cloud base becomes. The top of boundary layer is diagnosed as the
level with maximum vertical gradient of relative humidity. Let zHi be the higher of this level
and LCL, and zLo be the lower, then the cloud base altitude zbase is set

zbase = zHi − (zHi − zLo)
CIN − CINLo

CINHi − CINLo
. (3.72)

CINHi and CINLo are coefficients which satisfy CINLo ≤ CIN ≤ CINHi for a typical value of
CIN.
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3.3.3.3 Determination of the presence of shallow convection

For each horizontal column, whether shallow convection occurs is determined with following
criteria.

• If estimated inversion strength (EIS; Wood and Bretherton, 2006) exceeds a certain thresh-
old, the environmental field is judged to be dominated by stratocumulus clouds, and shal-
low convection is not generated. This criterion is introduced because the vertical resolution
of climate models does not sufficiently represent the thin and strong inversion layer over
the boundary layer, and underestimates CIN, which leads to an overestimation of shallow
convection. EIS is estimated by EIS = θ700−θ0−Γ850

m (z700−LCL) where θ700 and θ0 are
potential temperature at 700hPa and surface, Γ850

m is moist adiabatic lapse rate at 850hPa,
and z700 is height of 700hPa.

• If the intensity of cumulus convection diagnosed by SUBROUTINE:[CUMULUS] exceeds a
threshold, the environmental field is supposed to be dominated by deep convection and
shallow convection is not generated.

• If the areal fraction of shallow convection is under a threshold, computation of shallow
convection is omitted.

3.3.3.4 Diagnosing vertical profile of updraft mass flux

For the grid boxes that contain shallow convection, entrainment and detrainment is calcu-
lated using the value of ψu at cloud base and Mu,base. Fractional entrainment and detrainment
are computed based on the framework of buoyancy sorting suggested by Kain and Fritsch (1990).
In a layer of thickness δz, equal parts ϵ0Muδz of updraft and environmental air are involved in
the lateral mixing process that creates a spectrum of mixtures. This yields a total mixing mass
flux 2ϵ0Muδz, with fractional mixing rate ϵ0 = c0/H (c0 is a certain empirical coefficient andH is
the height from surface). In the mixed air, there exists states with probability density such that
the air from the environmental field occupies a proportion χ. Here, for simplicity of calculation,
it is considered that the state from pure moist air (χ = 0) to pure environmental air (χ = 1)
is distributed with uniform probability (Kain-Fritsch scheme assumes Gaussian distribution).
Based on the buoyancy force on the mixed air, the entrainment or detrainment is determined.
SUBROUTINE:[DISTANCE] is called in SUBROUTINE:[PSHCN]. The output variables in this sub-
routine are liquid water potential temperature (THETLU) and bool value for entrainment or
detrainment (JUDGE).

The occurrence of entrainment is judged as follows. Firstly, if the updraft air is not saturated,
entrainment is not assumed to occur. Nextly, with virtual potential energy in the environmental
field (θv) and updraft (θvu), buoyancy force on the parcel is defined:

Bu = g
θvu − θv
θv

(3.73)

and entrainment occurs when the buoyancy on parcel is positive. Furthermore, even when the
buoyancy is negative, entrainment occurs if the parcel can travel longer than a certain eddy
mixing distance lc = c1H, where c1 = 0.1 is an empirical constant, chosen to optimize the
trade-cumulus case. This criterion corresponds to the critical buoyancy value

Bc = −
1

2

w2
u

lc
(3.74)

and otherwise, all the mixed air is detrained. Therefore, Once the critical value of the mixing
state χc is obtained, which allows the updraft to rise a distance lc under negative buoyancy,
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the air in the environmental field entrained into the cloud and the air in the updraft that is
detrained can be determined as follows

Muϵ = 2ϵ0Mu

∫ χc

0
χq(χ)dχ = ϵ0Muχ

2
c (3.75)

Muδ = 2ϵ0Mu

∫ 1

χc

(1− χ)q(χ)dχ = ϵ0Mu(1− χc)2. (3.76)

Thus, letting

ϵ = ϵ0χ
2
c (3.77)

δ = ϵ0(1− χc)2, (3.78)

equatinons (3.65) and (3.66) are expressed as follows

1

Mu

∂Mu

∂z
= ϵ− δ = ϵ0(2χc − 1) (3.79)

∂ψu
∂z

= ϵ(ψ − ψu) + Sψ = ϵ0χ
2
c(ψ − ψu) + Sψ, (3.80)

where χc is computed based on virtual potential temperature of mixed air

θv(χ) = θvu + χ

[
β(θl − θlu)−

(
βL

cpΠ
− θu

)
(qt − qtu)

]
(3.81)

(Bretherton et al., 2004). β is a thermodynamic parameter which depends on temperature and
pressure defined by Randall (1980), θlu is liquid water potential temperature in updraft, θu is
updraft potential temperature，qt is total water mixing ratio of environment，qtu is total water
mixing ratio of updraft, L is latent heat of vaporization，cp is specific heat capacity of dry air
at constant pressure, and Π is the Exner function.

Consequently, the governing equations (3.67), (3.79), and (3.80) for vertical profiles of wu,
Mu, and ψu are obtained. These equations are discretized and integrated upward one layer at
a time using the lower boundary condition in section 3.3.3.1 to yield the vertical profile of each
variables.

Afterward, from liquid water potential temperature and total water mixing ratio, liquid water
mixing ratio ql and water vapor mixing ratio qv are diagnosed. The cloud water that exceeds
a threshold is disposed as rainwater qr, and liquid water potential temperature is updated
according to the amount of qr. This corresponds to Sψ in (3.81).

The formulation of the vertical flux in this scheme is equal to the assumption that the updraft
is not large enough to replace all of the air in a grid box in the time step ∆t. Therefore, the
following limiter is imposed to prevent numerical instability when diagnosing mass flux of the
updraft.

Mu = min.

(
Mu,

ρ∆z

∆t

)
(3.82)
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3.4 Large Scale Condensation

The SUBROUTINE:[PDF2CLD] and SUBROUTINE:[CLD2PDF] are written in pmlsc.F file. These
are called in padmn.F, pcumc.F, pshcn.F, pcldphys.F and pvdfm.F files.

3.4.1 Physical Basis for Statistical PDF Scheme

General Circulation Models (GCMs) typically adopt fractional cloud cover (the volume of cloudy
air per total air volume in a grid box) assumption to realistically represent clouds because of
their coarse horizontal resolution (O(100km)). Statistical cloud schemes assume a subgrid‐scale
probability density function (PDF) of humidity within the grid. Integration of the specific PDFs
will give the cloud fraction and the amount of water condensate consistently.

By means of the “fast condensation” assumption, the cloud water amount in a local area in
the grid is

qc = (qt − qs) δ (qt − qs) (3.83)

where qs denotes the saturation //mixing ratio and qc does the cloud water mixing ratio. qt
is sum of water vapor and cloud water mixing ratio. δ(x) denotes the Heviside function of x.

The majority of statistical cloud schemes use the so-called “s-distribution” following Som-
meria and Deardorff (1977). A single variable s, which considers the subgrid-scale perturbations
of liquid temperature Tl and total water mixing ratio qt, is employed. s is defined as

s = aL (qt − αLTl) (3.84)

where

aL = 1/ (1 + LαL/cp) , αL = ∂qs/ ∂T |T=T̄l . (3.85)

For any choice of the PDF of s, denoted as G(s), the grid-mean cloud fraction, C, and cloud
water content, qc, are obtained by integrating G(s) and (Qc+ s)G(s),

C =

∫ ∞

−Qc

G(s)ds (3.86)

q̄c =

∫ ∞

−Qc

(Qc + s)G(s)ds, (3.87)

where Qc denotes the grid-scale saturation deficit defined as

Qc ≡ aL
{
q̄t − qs

(
T̄l, p̄

)}
. (3.88)

3.4.2 Hybrid Prognostic Cloud scheme

The statistical scheme implemented in MIROC6 is called Hybrid Prognostic Cloud (HPC)
scheme (Watanabe et al. 2009). The HPC scheme proposes two types of shape for the PDF
G(s), Double-uniform PDF and Skewed-triangular PDF. Here we focus on Skewed-triangular
scheme because MIROC6 adoptes the shape. The physical basics of the scheme are in common
with Double-uniform PDF.
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Example of the basis PDF for HPC: skewed-triangular functions. Copied from Fig.1 in
Watanabe et al. 2009.

The scheme predicts variance (V ) and skewness (S) of the PDF. V , S, the second moment
µ2, and the third moment µ3 are defined as follows.

µ2 ≡ V =

∫ ∞

−∞
s2G(s)ds (3.89)

µ3 ≡ µ3/22 S =

∫ ∞

−∞
s3G(s)ds (3.90)

V and S are affected by cumulus convection, cloud microphysics, turbulent mixing, and
advection.

The integrals to obtain C and qc are symbolically expressed as

C = IC
(
p̄, T̄l, q̄t,V,S

)
(3.91)

q̄c = Iq
(
p̄, T̄l, q̄t,V,S

)
(3.92)

where p̄ denotes the pressure. The overbars denote the grid-mean quantity.
If the PDF is not too complicated, (1, 2) can be analytically solved for V and S by defining

integrand functions Ĩ as

V = ĨV
(
p̄, T̄l, q̄v, q̄c, C

)
(3.93)

S = ĨS
(
p̄, T̄l, q̄v, q̄c, C

)
(3.94)

The relationship between (1, 2) and (4, 5) is quasireversible. The double-uniform func-
tion and skewed-triangular function PDFs are selected for G(s) because of their feasibility in
analytically nalderiving Ĩ.

3.4.3 PDF Change Through Processes

The HPC cloud scheme is composed using prognostic equations for four variables determining
I, namely, Tl, qt, V , and S. The prognostic variables can be Tl, qt, C, and qc that determine Ĩ.

Prognostic equations for the PDF variance and skewness are expressed as

DV
Dt

=
∆V
∆t

∣∣∣∣
conv.

+
∆V
∆t

∣∣∣∣
micro.

+
∆V
∆t

∣∣∣∣
turb.

+
∆V
∆t

∣∣∣∣
others

− εV (3.95)

DS
Dt

=
∆S
∆t

∣∣∣∣
conv.

+
∆S
∆t

∣∣∣∣
micro.

+
∆S
∆t

∣∣∣∣
turb.

+
∆S
∆t

∣∣∣∣
others

− εS (3.96)

where subscripts ‘conv.’, ‘micro.’ and ‘turb.’ indicate cumulus convection, cloud micro-
physics and turbulent mixing processes respectively, which all affect the PDF shape. The last
terms represent dissipation due to subgrid-scale horizontal motions. The specific formulations
for each term are described below.

The HPC scheme is referred to as and G(s) is updated every after the process that affects
cloud water PDF. G(s) is thus modified several times within a single time step.

62



3.4.3.1 Cumulus Convection

The total effect of cumulus convection to the PDF moments is written as

∆V
∆t

∣∣∣∣
conv.

=Mc
∂V
∂z

+
∆ĨV
∆t

(3.97)

∆S
∆t

∣∣∣∣
conv.

=Mc
∂S
∂z

+
∆ĨS
∆t

(3.98)

Mc is the cumulus mass-flux including updraft in the convection tower and downdraft in the
environment. The vertical transport of the PDF moments is represented by the first terms on
the right side hand of (14, 15).

Cumulus convections modify the grid-mean Tl, qt, and qc by upward transportation of grid-
mean moist static energy, qv, and qc. Detrainment also affects these variables. The detrainment
of the cloudy air mass is considered, as in Bushell et al. (2003),

∂C

∂t

∣∣∣∣
conv.

= D(1− C) (3.99)

The second terms on the right hand side of (14, 15) indicates that the changes in the PDF
moments is calculated consistent with the changes in the grid-scale temperature, humidity, cloud
water, and cloud fraction.

∆ĨX = ĨX
(
p̄, T̄l +∆T̄l, q̄v +∆q̄v, q̄c +∆q̄c, C +∆C

)
− ĨX

(
p̄, T̄l,q̄v, q̄c, C

)
(3.100)

(3.101)

where X is either V or S.

3.4.3.2 Cloud Microphysics

The tendency due to microphysical processes can be written in a similar manner to the
cumulus convection effect.

∆V
∆t

∣∣∣∣
micro.

=
∆ĨV
∆t

(3.102)

∆S
∆t

∣∣∣∣
micro.

=
∆ĨS
∆t

(3.103)

Changes in T̄l, q̄v, andq̄c are derived from microphysical tendency terms including precipita-
tion, evaporation,and melting/freezing.
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3.4.3.3 Turbulent Mixing

From the definition of s, the PDF variance V becomes

V = a2L

(
q′2t + α2

LΠθ
′2
l − 2αLΠq′tθ

′
l

)
, (3.104)

where Π is the Exner function. Assuming the level-2 closure in Nakanishi and Niino (2004),
the time evolution of V can be derived as

∆V
∆t

∣∣∣∣
turb.

=2a2L

[
(αLΠ)

2KH

(
∂θ̄l
∂z

)2

+Kq

(
∂q̄t
∂z

)2

−αLΠ(KH +Kq)
∂θ̄l
∂z

∂q̄t
∂z

]
− 2q

Λ2
V,

(3.105)

where KH and Kq are the mixing coefficients for sensible heat and moisture, respectively.

q2 = u′2 + v′2 + w′2 denotes the turbulent kinetic energy. The other symbols follow the original
notation.

Since the turbulence production does not affect the PDF shape parameter defined by the
third moment (cf. Tompkins 2002), the skewness change ∆S/ ∆t|turb. is simply calculated due
to the variance change in (28).

3.4.3.4 Subgrid-Scale Horizontal Eddy

In the planetary boundary layer, the subgrid-scale inhomogeneity is dissipated due to the
turbulent mixing. In free atmosphere, the grid box will be homogenized mainly due to mesoscale
motions, which are expressed by the Newtonian damping as in (Tompkins 2002): εV = V

τh
, εS =

S
τh
, where the relaxation timescale is parameterized by the horizontal wind shear as

τ−1
h = C2

s

{(
∂ū

∂x

)2

+

(
∂v̄

∂y

)2
}1/2

(3.106)

The coefficient Cs is set to 0.23 following Tompkins (2002).

3.4.3.5 Other Processes

Dynamics, shallow convection, radiation, mass source, and dissipation heating processes
change the grid-mean temperature and humidity. Such effects on the shape of PDF are included
following (16).

3.4.4 Solving Procedures

The shape of the Skewed-triangular PDF is represented as follows. The widths defined by
positions of the left and right edges on the s-coordinate are denoted as a and b, respectively.
The position of the top, denoted as q, is constrained by a+ b+ q = 0. By definition, q ≤ b and
a ≤ q must be satisfied. The PDF is then expressed as

G(s) =

{
− 2(s−b)

(b−q)(b−a) for q < s ≤ b
2(s−a)

(q−a)(b−a) for a < s ≤ q
(3.107)
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The pmlsc module includes two main subroutines, PDF2CLD and CLD2PDF. The subrou-
tine PDF2CLD calculates C and q̄c given p̄, Tl,q̄t,V,S. The subroutine CLD2PDF calculates V
and S given p̄, Tl,q̄t, q̄c, C. We will derive the concrete calculation processes in this subsection.

3.4.4.1 Caluculation of Cloud Variables from PDF Moments

This is written in SUBROUTINE:[PDF2CLD].

From µ1, µ2, µ3 to a, b, q

The first, second, and third moments of the PDF is calculated as follows.

µ1 =

∫ q+b

q−a
sG(s)ds = q +

b− a
3

(3.108)

µ2 =

∫ q+b

q−a
(s− µ1)2G(s)ds =

a2 + ab+ b2

18
(3.109)

µ3 =

∫ q+b

q−a
(s− µ1)3G(s)ds =

(b− a)
(
2a2 + 5ab+ 2b2

)
270

(3.110)

From (7,8,9), we will derive the solution for a, b, q given µ1, µ2, µ3.
We define δ ≡ b− a, β ≡ ab. (8,9) are

δ2 + 3β = 18µ2 (3.111)

δ (β + 12µ2) = 90µ3 (3.112)

Eliminate β or δ from these equations, you will get the equations.

δ3 − 54µ2δ + 270µ3 = 0 (3.113)

β = 6µ2 −
1

3
δ2 (3.114)

We apply the formula for the solution of a cubic equation to (10) to obtain δ.

δ = 2
√

18µ2 cos

1

3
cos−1

 −135µ3√
(18µ2)

3

+
4

3
π

 (3.115)

β is obtained from (11). We define α ≡
√
δ2 + 4β for simplicity. Finally, a, b, q is calculated

as follows.
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a = (α− δ)/2 (3.116)

b = (α+ δ)/2 (3.117)

q = µ1 − δ/3 (3.118)

From PDF to C and qc

Once the PDF G(s) is determined by the parameters a, b, q, the cloud fraction C and grid-
mean cloud water mixing ratio q̄c are derived as follows.

C =


0 if b < −Qc
(Qc+b)

2

(b−q)(b−a) if q ≤ −Qc ≤ b
(Qc+a)

2

(q−a)(b−a) if a ≤ −Qc ≤ q
1 if −Qc < a

(3.119)

q̄c =


0 if b < −Qc
1
3C (Qc + b) if q ≤ −Qc ≤ b
Qc − 1

3(1− C) (Qc + a) if a ≤ −Qc ≤ q
Qc if −Qc < a

(3.120)

3.4.4.2 Caluculation of PDF moments from cloud variables.

This is written in SUBROUTINE:[CLD2PDF]

From q̄c, C to a, b, q

We can not determine the position of Qc in the triangle at the beginning of the calculation.
Thus we calculate a, b assuming that a ≤ −Qc ≤ q at first. If the calculated parameters are
physically consistent with the PDF (a + b ≥ 0), a, b, q are determined. Otherwise, we regard
q ≤ −Qc ≤ b and then a, b, q are derived.

1. a ≤ −Qc ≤ q

From (16), a is derived as follows.

a =
3 (Qc − qc)

1− C
−Qc (3.121)

We eliminate q from (15) using q = −a− b. The quadratic equation for b is obtained.

b2 + ab− 2a2 + (Qc + a)2 /(1− C) = 0 (3.122)

The physically meaningful solution for b is

b =

(
−a
√
9a2 − 4 (Qc + a)2 /(1− C)

)
/2 (3.123)
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2. q ≤ −Qc ≤ b

From (16), b is

b =
3qc
C
−Qc (3.124)

We eliminate q from (15) using q = −a− b. The quadratic equation of a is obtained.

a2 + ab− 2b2 + (Qc + b)2 /C = 0 (3.125)

The physically meaningful solution for a is

a =

(
−b−

√
9b2 − 4 (Qc + b)2 /C

)
/2 (3.126)

Adjustment of Cloud Fraction

When there is no physically meaningful solution for (18), C is adjusted so that a reasonable
solution is obtained. The critical conditions for the existence of real solutions for (18) are as
follows.

9a2 − 4 (Qc + a)2 /(1− C) = 0 (a ≤ −Qc ≤ q)
9b2 − 4 (Qc + b)2 /C = 0 (q ≤ −Qc ≤ b)

(3.127)

Eliminate a and b uging (17), we get the relationship between C and qc,

9
(
3(Qc−qc)

1−C −Qc
)2

= 4
1−C

(
3(Qc−qc)

1−C

)2
(a ≤ −Qc ≤ q)

9
(
3qc
C −Qc

)2
= 4

C

(
3qc
C

)2
(q ≤ −Qc ≤ b)

(3.128)

We take the square root of the both sides of the equations and define γ1 ≡
√
1− C and

γ2 ≡
√
C. The cubic equations for γ is obtained.

γ31 − 3
(
1− qc

Qc

)
γ1 ± 2

(
1− qc

Qc

)
= 0 (a ≤ −Qc ≤ q)

γ32 − 3 qcQc
γ2 ± 2 qcQc

= 0 (q ≤ −Qc ≤ b)
(3.129)

We define R1 = 1− qc
Qc
, R2 =

qc
Qc

.

γ2 =

 −4R sinh2
(
1
3 sinh

−1
(

1√
−R

))
(R < 0)

4R cos2
(
1
3 cos

−1
(

1√
R

)
+ 4

3π
)

(R > 1)
(3.130)

Note that, γ = γ1, R = R1 (a ≤ −Qc ≤ q) or γ = γ2, R = R2 (q ≤ −Qc ≤ b).
The actual calculation procedure is as follows. If the solution for (18) is not a real number,

C is adjusted using (26). Then we solve (18) again.
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From a, b, q to µ2, µ3

By definition, the PDF moments are expressed in terms of a and b.

µ2 =
a2 + ab+ b2

6
(3.131)

µ3 =
−(a+ b)ab

10
(3.132)

3.4.4.3 Treatment of Cloud Ice and in-Cloud Water Vapor

Because the original HPC scheme by Watanabe et al. (2009) does not consider the cloud
ice, it is modified when coupled with the Wilson and Ballard (1999) ice microphysics. Since the
statistical PDF scheme employs a ‘fast condensation’ assumption that is no more valid for ice,
the ice mixing ratio is assumed to be conserved in the large scale condensation process.

Here we assume that - the water vapor mixing ratio within the cloudy area in a grid is
constant - cloud ice preferentially exists in areas with large total water content

Based on these assumptions, the cloud fraction and each condensate mixing ratios are di-
agnosed. The notations for the mixing ratios (ql, qi, qv, qvi) of liquid water (subscript l), ice
(subscript i), vapor (subscript v), in-cloud vapor (subscript vi) are employed.

At first the total condensate mixing ratio qc = ql + qi is diagnosed from qt and Tl assuming
that ice does not exist in the grid. The saturation mixing ratio is set for liquid (qsatl).

Mixed-phase cloud is generated when the condensate amount is more than the ice content
(qc > qi), whereas the cloud fraction and vapor amount are adjusted in the case of a pure ice
cloud when the condensate amount is less than the ice content (qc < qi). Specifically, qc, C and
qvi are calculated as follows.

1. qc > qi

Liquid-phase clouds and ice clouds coexist.

ql = qc − qi (3.133)

qvi = qsatl (3.134)

2. qc < qi

Only ice clouds exist (ql = 0). In this case, C and qvi are rediagnosed. We eliminate Qc in
(15,16) assuming that qc = qi. Equations for C are given as

C3 =
9q2i

(b− q)(b− q)
(q ≤ −Qc ≤ b) (3.135)

C3 + 3C2 = 4− 9 (qi + a)2

(q − a)(b− a)
(a ≤ −Qc < q) (3.136)
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From these equations, C is obtained as follows.

C =


3

√
9q2i

(b−q)(b−a)

(
0 ≤ qi ≤ (b−q)2

3(b−a)

)
2 cos

(
1
3 cos

−1
(
1− 9(qi+a)

2

2(q−a)(b−a)

))
− 1

(
(b−q)2
3(b−a) < qi ≤ −a

)
1 (−a < qi)

(3.137)

,where

Qc =
3qi
C
− b = 3

√
3qi(b− q)(b− a)− b. (3.138)

Given Qc, qvi = qt −Qc is calculated as follows.

qvi =


qt − 3qi

C + b
(
0 ≤ qi ≤ (b−q)2

3(b−a)

)
qt − 3(qi+a)

2+C + a
(
(b−q)2
3(b−a) < qi ≤ −a

)
qt − qi (−a < qi)

(3.139)
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3.5 Cloud Microphysics

The SUBROUTINE:[CLDPHYS] is written in the pcldphys.F file.

3.5.1 Overview of Cloud Microphysics

Cloud microphysics control the conversion from water condensate to precipitate. The condensate
parameterization closely links to the lifetime of and radiative properties of the clouds.

The stratiform (non-convective) cloud microphysics in MIROC6 (Tatebe et al. 2019) are
basically the same as those used in MIROC5 (Watanabe et al. 2010). MIROC5 implemented a
physically based bulk microphysical scheme. The previous version of the scheme in MIROC3.2
diagnoses the fraction of liquid-phase condensate to total condensate simply as a function of
the local temperature. In contrast, the explicit treatment of ice cloud processes allows flexible
representation of the cloud liquid/ice partitioning in MIROC5 and MIROC6 (Watanabe et
al. 2010; Cesana et al. 2015).

The MIROC6 cloud microphysics scheme uses four quantities to describe water in the at-
mosphere: vapour; liquid-phase cloud droplets; raindrops; and frozen water. Only one quantity,
which we will refer to as ‘ice’, is used to describe all frozen water in large-scale clouds, including
aggregated snow, pristine ice crystals and rimed particles. Physically based transfer terms link
the four water quantities. The scheme treats two prognostic condansate variables: ice water
mixing ratio qi and cloud water mixing ratio qc. Water vapor mixing ratio qv affects the rate of
microphysical processes and qv itself is also modified via microphysical processes. Ice number
concentration Ni is diagnosed as a function of qi and air temperature T in K. Cloud number
concentration Nc is predicted by the online aerosol module implemented. Rain water mixing
ratio qr is treated as a diagnostic variable: qr falls out to the surface within the time step. Cloud
fraction is predicted as described in the section ‘pmlsc: Large Scale Condensation’.

The cold rain parameterization following Wilson and Ballard (1999) predicts qi using physi-
cally based tendency terms, which represent homogeneous nucleation, heterogeneous nucleation,
deposition/sublimation between vapor and ice, riming (cloud liquid water collection by falling
ice), and ice melting. The warm rain processes produce rain as the sum of autoconversion
and accretion processes. Specific formulations of each process are described in the following
“Microphysical Processes” subsection.

The scheme utilizes a “dry” mixing ratio ( kg kg−1) to define the amount of water condensate.
For example, qc is the mass of cloud water per mass of dry air in the layer. The dry air density
ρ kg m−3 is calculated as ρ = P/(RairT ), where P is the pressure in Pa, and the gas constant of
air Rair = 287.04 J kg−1 K−1. A condensate mass is obtained by multiplying the mixing ratio
by the air density. (e.g., the mass of ice mi = ρqi). A number concentraion is in units m−3.

Hereafter, unless stated otherwise, the cloud variables qc, qi, Nc, and Ni represent grid-averaged
values; prime variables represent mean in-cloud quantities (e.g., such that qc = Cq

′
c, where C

is cloud fraction). Note that qv
′ ̸= qv. qv

′ for ice clouds is determined as described in pmlsc
section. The sub-grid scale variability of water content within the cloudy area is not considered
at present.

3.5.2 Microphysical Processes

The time evolution of qi by microphysical processes is written in symbolic form as follows.
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(
∂qi
∂t

)
micro

=

(
∂qi
∂t

)
esnw

+

(
∂qi
∂t

)
fallin

+

(
∂qi
∂t

)
fallout

+

(
∂qi
∂t

)
hom

+

(
∂qi
∂t

)
het

+

(
∂qi
∂t

)
dep

+

(
∂qi
∂t

)
rim

+

(
∂qi
∂t

)
mlt

(3.140)

, where t is time. The terms of the right hand side denote evaporation of snow (sunscript
esnw), ice fall in from above layers (subscript fallin), ice fall out to below layers (subscript
fallout), homogeneous nucleation (subscript hom), heterogeneous nucleation (subscript het),
deposition/sublimation (subscript dep), riming (subscript rim), and melting (subscript mlt).
Similarly, the time evolution of qc by microphysical processes is

(
∂qc
∂t

)
micro

=

(
∂qc
∂t

)
hom

+

(
∂qc
∂t

)
het

+

(
∂qc
∂t

)
rim

+

(
∂qc
∂t

)
evap

+

(
∂qc
∂t

)
auto

+

(
∂qc
∂t

)
accr

(3.141)

, where the terms on the right hand side are homogeneous nucleation, heterogeneous nu-
cleation, riming, evaporation (subscript evap), autoconversion (subscript auto), and accretion
(subscript accr). The formulations of these processes are detailed in the following subsections.

The conversion terms of all processes are calculated at every layer downward from the top
layer (k=kmax) to the bottom layer of the column (k=1). k is the vertical level increasing with
height, i.e., k+1 is the next vertical level above k.

The changes in the temperature of a layer is treated consistent with the phase-change of
water.

(
∂T

∂t

)
phase change

=

(
∂T

∂t

)
vapor↔liquid

+

(
∂T

∂t

)
vapor↔solid

+

(
∂T

∂t

)
liquid↔solid

(3.142)

with

(
∂T

∂t

)
vapor↔liquid

=
Lv
cp

((
∂qc
∂t

)
evap

+

(
∂qr
∂t

)
erain

)
(3.143)

(
∂T

∂t

)
vapor↔solid

=
Ls
cp

((
∂qi
∂t

)
esnw

+

(
∂qi
∂t

)
dep

)
(3.144)

(
∂T

∂t

)
liquid↔solid

=
Lf
cp

((
∂qi
∂t

)
hom

+

(
∂qi
∂t

)
het

+

(
∂qi
∂t

)
rim

+

(
∂qi
∂t

)
mlt

)
, (3.145)

where Lv, Ls, and Lf is the latent heat of vaporization, sublimation, and fusion, respectively.
Cp is the specific heat of moist air at constant pressure.

3.5.2.1 Ice Properties

The formulation of the ice conversion terms requires parametrization of the mass, fall speed
and particle size distributions of ice. These are described first and then subsequently used to
derive the conversion terms.
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The ice particle size distribution is parametrized as

Ni(D) = Ni0 exp(−0.1222(T − T0)) exp (−ΛiD) , (3.146)

where D is the equivolume diameter of the particle in m, Ni0 = 2.0 × 106 m−4, T is the
temperature in K, and T0 = 273.15 K. Λi represents the slope of the exponential distribution.
The temperature function exp(−0.1222(T − T0)) represents the fact that ice particles tend to
be smaller at lower temperatures, and is an implicit way of parametrizing aggregation.

The mass of an ice particle is parametrized as a function of D

mi(D) = aDb (3.147)

where a = 0.069 kg m−2and b = 2.0.
The fall-speed of an ice particle at an air density of ρ0 = 1 kg m−3 is

vi(D, ρ0) = cDd (3.148)

where c = 25.2m0.473 s−1 and d = 0.527.
At low air densities a particle will fall faster than at high air densities. Considering such

ventilation effect, the fall-speed of a particle at arbitrary air density ρ is

vi(D, ρ) = (ρ0/ρ)
0.4 vi (D, ρ0) (3.149)

The combination of the size distribution, mass and velocity relationships yields a fall-speed
and ice water content relationship.

For a given ice content and temperature, Λi can be calculated by integrating (A.2) across
the particle size distribution (A.1). This gives the result that, for a given temperature, Λi is
proportional to the inverse cube root of the ice water content.

Λi =

(
2aNi0 exp(−0.1222(T − T0))

mi

) 1
3

(3.150)

3.5.2.2 Evaporation of Rain and Snow

The evaporation rate of rain
(
∂qr
∂t

)
erain

is expressed as

(
∂qr
∂t

)
erain

=
1

ρ∆z
kE (qw − qv)

Fr
VTr

(3.151)

, where Fr denotes the net accumulation of rain water at the layer in kg m−2 s−1, VTr the
terminal velocity, and kE the evaporation factor (VTr = 5 m s−1and kE = 0.5). qw correcponds
to the saturation water vapor mixing ratio at the wet-bulb temperature. The evaporation occurs
only when qw − qv > 0.

Similary to this, the evaporation rate of falling ice
(
∂qi
∂t

)
esnw

is expressed as

(
∂qi
∂t

)
esnw

= kE (qw − qv)
Fi
VTr

(3.152)

where Fi denotes sedimentation of cloud ice from above layers. VTs is set to 5 m s−1.
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3.5.2.3 Ice Fall

The total ice flux from the layer ‘k’ is

Fi|k =
∫ ∞

0
Ni(D)mi(D)vi(D)dD. (3.153)

The fraction of ice flux from level the ‘k’ to the below level ‘kk’ (1 <= kk < k) iceweight|k,kk,
is given as

∫ f(zm(k)−zm(kk))
0 Ni(D)mi(D)vi(D)dD −

∫ f(zm(k)−zm(kk+1))
0 Ni(D)mi(D)vi(D)dD∫∞

0 Ni(D)mi(D)vi(D)dD
, (3.154)

where zm(k) is the middle of the height of the layer k, and f(dz) is the ice size which falls
the distance dz in a single time step.

The net ice fall out from the layer is

(
∂qi
∂t

)
fallout

= − ∆t

ρ∆z
Fi (3.155)

.
The net ice fall in to the layer ‘k’ is

(
∂qi
∂t

)
fallin

=
∆t

ρ∆z

l=kmax∑
l=k+1

Fi|k=l × iceweight|l,k (3.156)

3.5.2.4 Homogeneous Nucleation

This term simply converts all liquid cloud water to ice if the temperature is less than a given
threshold of 233.15 K.

(
∂qi
∂t

)
hom

= −
(
∂qc
∂t

)
hom

=
qc
∆t

(3.157)

3.5.2.5 Heterogeneous Nucleation

A Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS; Takemura et
al. 2000, 2002, 2005, 2009) coupled with MIROC6 explicitly predicts the masses and number
concentrations for aerosol species. Heterogeneous freezing of cloud droplets takes place through
contact and immersion freezing on ice cucleating particles (INPs), which are parameterized ac-
cording to Lohmann and Diehl (2006) and Diehl et al. (2006). Soil dust and black carbon are
assumed to act as INPs. Ratios of activated INPs to the total number concentration of soil
dust and black carbon for the contact freezing and the immersion/condensation freezing are
based on Fig. 1 in Lohmann and Diehl (2006). Using the number of INPs (Nnuc) predicted in
SPRINTARS, the rate of heterogeneous freezing is diagnosed as follows.

(
∂qi
∂t

)
het

= −
(
∂qc
∂t

)
het

= max{NnucWnuc0,
qc
∆t
} (3.158)

The weight of nucleated drop, Wnuc0, is set to 1.0× 10−12.
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3.5.2.6 Deposition/Sublimation

A single ice particle grows or disappears by water vapor diffusion according to the following
equation:

∂mi(D)

∂t
= {4πC (Si − 1)F} / [{Ls/(RvT )− 1}Ls/ (kaT ) +RvT/ (XPsati )] (3.159)

where ∂mi(D)
∂t is the rate of change of the particle mass; (Si − 1) is the supersaturation of

the atmosphere with respect to ice; Rv is the gas constant for water vapour; ka is the thermal
conductivity of air at temperature T,X is the diffusivity of water vapour; Psati is the saturated
vapour pressure over ice; Ls is the latent heat of sublimation of ice; C is a capacitance term and
F is a ventilation coefficient. C is assumed to appropriate to spheres, so is equal to D/2 . F is
given by Pruppacher and Klett (1997) as F = 0.65 + 0.44Sc1/3Re1/2, where Sc is the Schmidt
number, equal to 0.6, and Re is the Reynolds number, v(D)ρD/µ, where µ is the dynamic
viscosity of air.

Integrating ice size distribution,
(
∂qi
∂t

)
dep

is obtained as

(
∂qi
∂t

)
dep

=
1

ρ

∫
∂mi(D)

∂t
N(D)dD (3.160)

The ice grows or disappears depending on the sign of (Si − 1).

1. (Si − 1) > 0

The ice grows (deposition). If qc exists in the same grid, qc is evaporated as fast as the
deposition process (Wegener–Bergeron–Findeisen process).

(
∂qc
∂t

)
evap

= −
(
∂qi
∂t

)
dep

(3.161)

The basis of this theory is the fact that the saturation vapor pressure of water vapor with
respect to ice is less than that with respect to liquid water at the same temperature. Thus,
within a mixture of these particles, the ice would gain mass by vapor deposition at the expense
of the liquid drops that would lose mass by evaporation.

2. (Si − 1) < 0

The ice disappears (sublimation).

3.5.2.7 Cloud water Collection by Ice (Riming)

Riming process (the ice crystals settling through a population of supercooled cloud droplets,
freezing them upon collision) is based on the geometric sweep-out integrated over all ice sizes
(Lohmann 2004):

(
∂qi
∂t

)
rim

= −
(
∂qc
∂t

)
rim

=
πESWn0SaqcΓ(3 + b)

4λ
(3+b)
S

(
ρ0
ρ

)0.5

(3.162)
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where n0S = 3 × 106 m−4 is the intercept parameter, λS is the slope of the exponential
Marshall-Palmer ice crystal size distribution, a = 4.84, b = 0.25, and ρ0 = 1.3 kg m−3 is the
reference density. Γ is the gamma fanction. The collection efficiency Esw is highly dependent
on the cloud droplet and snow crystal size (Pruppacher and Klett 1997). The size-dependent
collection efficiency for aggregates is introduced as obtained from laboratory results by Lew et
al. (1986) (simulation ESWagg).

Eagg
SW = 0.939St2.657 (3.163)

The Stokes number (St) is given by

St =
2 (Vt − vt) vt

Dg
(3.164)

Vt is the snow crystal terminal velocity, andD is the maximum dimension of the snow crystal.
vt is the cloud droplet terminal velocity. g is the acceleration due to gravity.

3.5.2.8 Ice Melt

Since this term is essentially a diffusion term, although of heat instead of moisture, its form
is very similar to that of the deposition and evaporation of ice term. The rate of change of ice
mass of a melting particle is given by:

(
∂qr
∂t

)
mlt

= −
(
∂qi
∂t

)
mlt

= 4πCF {ka/Lm (Tw − T0)} (3.165)

,where Lm is the latent heat of melting of ice, Tw is the wet-bulb temperature of the air and
T0 = 273.15K is the freezing point of ice. Ice melt occurs when Tw − T0 > 0. The capacitance
term, C, is considered to be that for spherical particles. Hence C = D/2. The ventilation factor,
F is considered to be the same as in the deposition/sublimation process.

3.5.2.9 Warm Rain Cloud Microphysics

We assume Nc is the number of aerosols activated as droplets. The nucleation of cloud
droplets is predicted in the aerosol module SPRINTARS (Takemura et al. 2000; 2002; 2005;
2009) based on the parameterization by Abdul-Razzak and Ghan (2000), which depends on
the aerosol particle number concentrations, size distributions and chemical properties of of each
aerosol species, and the updraft velocity.

The autoconversion term following Berry (1968) is a function of qc and Nc.

(
∂qr
∂t

)
auto

= −
(
∂qc
∂t

)
auto

=
1

ρ

b1 ×m′2
c

b2 + b3
Nc
m′

c

(3.166)

The parameters are set as b1 = 0.035, b2 = 0.12, b3 = 1.0×10−12. The effect of aerosol-cloud
interaction on cloud lifetime is taken into account by the dependency on Nc.

The accretion term is given as

(
∂qr
∂t

)
auto

= −
(
∂qc
∂t

)
auto

=
1

ρ
qcqr (3.167)

Rain water qr into the layer is from above the layer. qr is treated as a diagnostic variables:
qr falls out to surface within the time step.
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3.5.2.10 Total Precipitation

The total amount of precipitation at a certain pressure level, p, is obtained by integrating
the relevant processes from the top of the model (p = 0) to the respective pressure level. The
fluxes of rain and ice kgm−2 s−1 are then expressed as

Prain(p) =
1

g

∫ p

0

((
∂qr
∂t

)
auto

+

(
∂qr
∂t

)
accr

+

(
∂qr
∂t

)
mlt

−
(
∂qr
∂t

)
revap

)
dp (3.168)

Pice(p) =
1

g

∫ p

0

((
∂qi
∂t

)
fallin

−
(
∂qi
∂t

)
fallout

+

(
∂qi
∂t

)
rim

−
(
∂qr
∂t

)
mlt

−
(
∂qr
∂t

)
esnw

)
dp(3.169)
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3.6 Radiation Scheme

3.6.1 Summary of the Radiation Flux Calculation

The radiation scheme in the MIROC was created based on the Discrete Ordinate Method and the
k-distribution Method (Nakajima et al., 2000), and updated by Sekiguchi and Nakajima (2008).
The scheme calculates the value of the radiation flux at each level by considering the absorption,
emission, and scattering processes of terrestrial and solar radiation by gases and clouds/aerosols.
The main input data are temperature T , specific humidity q, cloud water l, and cloud cover C.
The output data are shortwave or longwave upward and downward radiation fluxes F∓, and
derivative coefficient to surface temperature dF∓/dTg, surface downward radiation flux F+

sf ,

and 0.5 and 0.67 µm optical thickness τvis.
The calculation is separated for several wavelength bands. It is further divided into several

sub-channels, based on the k-distribution method. As for gaseous absorption, the line absorption
in H2O, CO2, O2, O3, N2O, CH4, the continuous absorption in H2O, CO2, O2, O3, and the CFC
absorption are incorporated. As for scattering, Rayleigh scattering of gases and scattering by
cloud and aerosol particles are considered.

Major subroutines used to calculate the radiation flux in SUBROUTINE:[DTRN31] of pradt.F
are as follows.

1. Calculate the Planck function from atmospheric temperature SUBROUTINE:[PLANKS, PLANKF]

2. Calculate the optical thickness to the gas in each sub-channel SUBROUTINE:[PTFIT2]

3. Calculate the optical thickness to the CFC absorption SUBROUTINE:[CNTCFC2]

4. Calculate the optical thickness to aerosol, Rayleigh scattering, and cloud SUBROUTINE:[SCATAE,
SCATRY, SCATCL]

5. Expand the Planck function by optical thickness for each sub-channel SUBROUTINE:[PLKEXP]

6. Calculate the transmission coefficient (T), reflection coefficient (R) and source function
(S) SUBROUTINE:[TWST]

7. Make T, R, and S matrixes for maximal/random approximation SUBROUTINE:[RTSMR]

8. Calculate the radiation flux by adding method SUBROUTINE:[ADDMR, ADDING]

To account for the partial coverage of clouds, the transmission and reflection coefficients and
source functions for each layer are calculated at weighted average of the cloud cover, separately
for cloud cover and clear-sky conditions. The cloud cover of the cumulus is also considered. In
addition, it also performs several adding and calculates the clear-sky radiation flux.

3.6.2 Wavelength and Sub-Channel

The basics of radiative flux calculations are represented by Beer-Lambert’s Law.

F λ(z) = F λ(0)exp(−kλz) (3.170)

F λ is the radiant flux density at the wavelength of λ and kλ is the absorption coefficient. In
order to calculate the radiative fluxes related to the heating rate, the integration operation with
respect to the wavelength is required.

F (z) =

∫
F λ(z)dλ =

∫
F λ(0)exp(−kλz)dλ (3.171)

However, it is not easy to calculate this integration precisely because the absorption and
emission of radiation by gas molecules have the complicated wavelength dependence of the

77



Figure 4: Flowchart of SUBROUTINE:[DTRN31]

absorption line attributed to the structure of the molecule. The k-distribution method is a
method designed to make the relatively precise calculation easier. Within a certain wavelength
range, considering the density function F (k) for λ of the absorption coefficient of k, the above
formula is approximated as follows,

∫
F λ(0)exp(−kλz)dλ ≃

∫
F̄ k(0)exp(−kz)F (k)dk (3.172)

where F̄ k(0) is the flux averaged over a wavelength having the absorption coefficient in this
wavelength k in z = 0.

If F̄ k(0) and F (k) are a relatively smooth functions to the k,

∫
F λ(0)exp(−kλz)dλ ≃

∑
F̄ i(0)exp(−kiz)F i (3.173)

the formula, as such above, can be relatively precisely calculated by the addition of a finite
number (sub-channels) of exponential terms. This method has furthermore the advantage easy
to consider the absorption and scattering at the same time.

In the MIROC 6.0, by changing the radiation parameter data, the calculations can be per-
formed at various wavelengths. In the standard version, the wavelength range is divided into 29
parts. In addition, each wavelength range is divided into 1 to 6 sub-channels (corresponding to
the i in the above formula). There are 111 channels in total. The wavelength range is divided
by the wavenumber ( cm−1 ), 1, 250, 400, 530, 610, 670, 750, 820, 980, 1175, 1225, 1325, 1400,
2000, 2500, 3300, 3800, 4700, 5200, 6000, 10000, 12750, 13250, 14750, 23000, 30000, 33500,
36000, 43500, 50000. Additionally, a chemical version is also with 37 bands and 126 channels

78



for chemical transport model and the boundary of the shortwave region is also changed to 54000
cm−1.

3.6.3 Calculation of the Planck Function

In this section, SUBROUTINE:[PLANKS, PLANKF] in pradt.F is described.
The Planck function B̄w(T ), integrated in each wavelength range, is evaluated by the fol-

lowing formula.

B̄w(T ) = λ−2Texp

{
5∑

n=1

Bw
n

(
λ̄wT

)−n}
(3.174)

where λ̄w is the averaged wavelength of the wavelength range, Bw
n is the parameter deter-

mined by function fitting. This is calculated to the atmospheric temperature of each layer Tl,
and the boundary atmospheric temperature of each layer Tl+1/2, surface temperature Tg and
temperature 1K higher than surface temperature Tg+1K . The calculations are performed for
each wavelength and each layer. In the following description, the subscript of the wavelength
range w is omitted.

3.6.4 Calculation of the Optical Thickness to Gas Absorption

In this section, SUBROUTINE:[PTFIT2] in pradt.F is described.
The optical thickness of the gas absorption (the line and continuum absorption are unified)

τKD is expressed as follows by using the index m as the type of molecules.

τKD =
∑
m=1

k(m)C(m) (3.175)

where k(m) is the absorption coefficient of the molecule m, which is different for each sub-
channel and determined as a function of temperature T and atmospheric pressure p. C(m)

represents the amount of gas in the layer represented by mol/cm2/km, calculated by using the
gas concentration r(m) in ppmv ( C(m) = 10−1r(m)ρdz ). In the MIROC 6.0, the number of
the considered molecule types m is 6 (1:H2O, 2:CO2, 3:O3, 4:N2O, 5:CH4, 6:O2). Also, k(m) is
represented as follows (the details are in Sekiguchi and Nakajima, 2008).

k(m) = exp
(
log 10k

(m)
2 + (A+BT ) log (T/Tref2 )

)
(3.176)

B =

 log 10
(
k
(m)
3 − k(m)

2

)
log
(
Tref3
Tref2

) −
log 10

(
k
(m)
1 − k(m)

2

)
log
(
Tref1
Tref2

)
 / (Tref3 − Tref1 ) (3.177)

A =
log 10

(
k
(m)
3 − k(m)

2

)
log (Tref3 /Tref2 )

−BTref3 (3.178)

Tref1−3 are the reference temperatures prepared in advance (200, 260, 320 K), and k
(m)
1−3 are

the absorption coefficients when the reference temperatures Tref1−3 is used (also fitted at 26
atmospheric pressure grids).
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When considering the absorption of H2O, we calculate the optical thickness of the self-
broadening and add τ self .

τKD(H2O) = τKD(H2O) + τ self (3.179)

τ self =
k(H2O self)C(H2O)2

C(H2O) + ρdz105
(3.180)

k(H2O self) is calculated in the same way as k(m). The self-broadening absorption coefficients
in the reference temperatures Tref1−3 are prescribed and dependent on the pressure. In the
above formula, 105 is multiplied to convert the unit from km to cm. This calculation is done for
each sub-channel and each layer.

3.6.5 Calculation of the Optical Thickness to CFC Absorption

In this section, SUBROUTINE:[CNTCFC2] in pradt.F is described.
The optical thickness of the CFC absorption τCFC is considered for several types of CFCs

m.

τCFC =
∑
m

10k
(m)
r(m)ρ∆z10−1 (3.181)

In MIROC 6.0, the number of the considered CFCs m is 28 (1:CFC-11, 2:CFC-12, 3:CFC-13,
4:CFC-14, 5:CFC-113, 6:CFC-114, 7:CFC-115, 8:HCFC-21, 9:HCFC-22, 10:HCFC-123, 11:HCFC-124,
12:HCFC-141b, 13:HCFC-142b, 14:HCFC-225ca, 15:HCFC-225cb, 16:HFC-32, 17:HFC-125, 18:HFC-134,
19:HFC-134a, 20:HFC-143a, 21:HFC-152a, 22:SF6, 23:ClONO2, 24:CCl4, 25:N2O5, 26:C2F6,
27:HNO4, 28:SF5CF3). In the above formula, 10−1 is multiplied to convert from km to cm,
and from ppmv to ratio. This calculation is done for each sub-channel and each layer. This
calculation is performed for each layer and the wavelength range from about 540 to 1800 cm−1.

3.6.6 Optical Thickness to Scattering and Scattering Moment

Calculate the optical thickness of scattering and the scattering moment. These calculations are
performed for each wavelength and each layer. The optical parameters for the particle matter

q
(p)
m are prepared, including the extinction coefficient (m = 1) including the scattering and
absorption process and the absorption coefficient (m = 2) the moments of the volume scattering
phase function (m = 3-4: first-second order).

3.6.6.1 Aerosol

In this section, SUBROUTINE:[SCATAE] in pradt.F is described.
The optical thickness τae, the part of the optical thickness due to absorption τaeab , the scat-

tering moment Qaem for aerosol are

τae =
∑
p

q
(p)
1,nr

(p) × ρ∆z10−1 (3.182)
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τaeab =
∑
p

q
(p)
2,nr

(p) × ρ∆z10−1 (3.183)

Qaem =
∑
p

q(p)m,nr
(p) × ρ∆z10−1( m ≥ 3) (3.184)

p is the aerosol type, and r(p) is volume mixing ratio of the particle. The optical parameters

for the particle q
(p)
m,n depend on the mode radius index n prescribed for each particle (IRA).

In the MIROC 6.0, the number of the considered aerosol types p 15 (1-6:soil dust (bin1-6),
7:carbonaceous (BC/OC=0.3), 8:carbonaceous (BC/OC=0.15), 9:carbonaceous (BC/OC=0),
10:black carbon (external mixture), 11:sulfate, 12-15:sea salt (bin 1-4)).

If the aerosol radius is used, the optical thickness τae, the part of the optical thickness due to
absorption τaeab , and the scattering moment Qaem for the hygroscopic aerosols (e.g., carbonaceous,
sulfate, sea salt) are

τae =
∑
p

[
(1− FXae) q

(p)
1,nfitr

(p) + FXaeq
(p)
1,nfit+1r

(p)
]
× ρ∆z10−1 (3.185)

τaeab =
∑
p

[
(1− FXae) q

(p)
2,nfitr

(p) + FXaeq
(p)
2,nfit+1r

(p)
]
× ρ∆z10−1 (3.186)

Qaem =
∑
p

[
(1− FXae) q

(p)
m,nfitr

(p) + FXaeq
(p)
m,nfit+1r

(p)
]
× ρ∆z10−1( m ≥ 2) (3.187)

FXae =
(
RH −RH(ref)

nfit

) 1

RH
(ref)
nfit+1 −RH

(ref)
nfit

 (3.188)

where RH is the local relative humidity and RH
(ref)
nfit is the relative humidity given in the

parameter and nfit is the number of the prescribed relative humidity closest to the RH. nfit
and FXae are calculated in the SUBROUTINE:[RMDIDX] in pradt.F and determined in advance.
In the above formulas, 10−1 is multiplied to convert from km to cm, and from ppmv to ratio.

3.6.6.2 Rayleigh Scattering

In this section, SUBROUTINE:[SCATRY] in pradt.F is described.
The optical thickness τ r of Rayleigh scattering and the part of the optical thickness due to

absorption τ rab are

τ r =
erqmol1dp

pSTD
(3.189)

τ rab =
erqmol2dp

pSTD
(3.190)
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pSTD = 1013.25 (3.191)

where er is the Rayleigh scattering coefficient, qmolm is the moments of the phase function.
These calculations are performed up to m = 2. Also, this is added to the optical thickness for
the aerosol.

τae+r = τae + τ r (3.192)

τae+rab = τaeab + τ rab (3.193)

3.6.6.3 Cloud

In this section, SUBROUTINE:[SCATCL] in pradt.F is described.
The optical thickness τ cl, the part of the optical thickness due to absorption τ clab, and the

scattering moment Qclm for cloud are

τ cl =
∑
ct

q
(ct)
1,n r

(ct) × ρ∆z10−1 (3.194)

τ clab =
∑
ct

q
(ct)
2,n r

(ct) × ρ∆z10−1 (3.195)

Qclm =
∑
ct

q(ct)m,n × r(ct)ρ∆z10−1( m ≥ 3) (3.196)

ct is the cloud particle type (1:liquid cloud, 2:ice cloud). The optical parameters for the

particle q
(ct)
m,n depend on the mode radius index n prescribed for each particle (IRC). If the cloud

radius is used, the optical thickness τ cl, the part of the optical thickness due to absorption τ clab,
and the scattering moment Qclm for cloud are

τ cl =
∑
ct

[
(1− FXcl) q

(ct)
1,nfitr

(ct) + FXclq
(ct)
1,nfit+1r

(ct)
]
× ρ∆z10−1 (3.197)

τ clab =
∑
ct

[
(1− FXcl) q

(ct)
2,nfitr

(ct) + FXclq
(ct)
2,nfit+1r

(ct)
]
× ρ∆z10−1 (3.198)

Qclm =
∑
ct

[
(1− FXcl) q

(ct)
m,nfitr

(ct) + FXclq
(ct)
m,nfit+1r

(ct)
]
× ρ∆z10−1( m ≥ 3) (3.199)

FXcl =
(
R(ct) −R(ref)

nfit

) 1

R
(ref)
nfit+1 −R

(ref)
nfit

 (3.200)
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where R(ct) is the calculated mode radius and R
(ref)
nfit is the mode radius given in the parameter

and nfit is the number of the prescribed mode radius closest to the R(ct). nfit and FXcl are
calculated in the subroutine SUBROUTINE:[RMDIDX] in pradt.F and determined in advance. In
the above formulas, 10−1 is multiplied to convert from km to cm, and from ppmv to ratio.

Finally, the total optical thickness for particle scattering, Rayleigh scattering and absorption
τp and the contribution of scattering τ scat are obtained as follows.

τP = τ cl + τae+r (3.201)

τ scat = τP −
(
T clab + T ae+rab

)
(3.202)

In addition, the moments of the normalized phase function G are calculated up to the three
orders. The zeroth moment G1 is trivial from the normalization condition of the phase function.
The first and second moments G2, G3, are referred as the asymmetry factor g and the truncation
factor f .

G1 = 1.0 (3.203)

Gm−1 =
Qclm +Qaem
τ scat

(m ≥ 3), G2 = g, G3 = f (3.204)

This calculation is divided into the cloudy, clear sky and cumulus conditions. In the cloudy
and cumulus conditions, τ cl in the 0.5 and 0.67 µm regions is as recorded as τvis in subroutine
DTRN31.

**Rct is calculated in SUBROUTINE:[RADFLX] as follows.

R(ct) =

(
3

4π

ρr(ct)

ρ
(ct)
w n

(ct)
c

)1/3

(3.205)

ρ
(ct)
w is the liquid or ice density. rct is the amount of the liquid or ice cloud and calculated

as follows.

r(ct) =
Cstr

(ct)
st + Ccur

(ct)
cu

1− (1− Cst) (1− Ccu)
(3.206)

C is the area of the cloud, and the subscript st and cu mean the stratus and cumulus. When

r
(ct)
st,cu is the small amount in the stratosphere, it is reset to 0. n

(ct)
c is the number density of

cloud particles.

n(liq)c = max

(
qliqae pNA

RTv (18× 10−3Rv/R)
, fliqn

(liq)
min

)
(3.207)

n(ice)c = max

(
qiceae pNA

RTv (18× 10−3RvRv/R)
, (1− fliq)n

(ice)
min

)
(3.208)
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where qliqae is the mixing ratio of the aerosol particles calculated by the SPRINTERS and

converted to the number concentration, and n
(ct)
min is the minimum number of the cloud particles.

and fliq is liquid fraction. Also, n
(ct)
c is calculated as follows when using OPT AECL SIMPLE.

n(ct)c =
εnan

(ct)
max

εna + n
(ct)
max

(3.209)

where na is the number density of aerosol particles give as an external condition, and ε and

n
(ct)
max are constants. fliq is calculated by the following formula using the amount of cloud water
w (0 ≤ fliq ≤ 1).

fliq =
wstfliq,st + wcufliq,cu

wst + wcu
(3.210)

3.6.7 Total Optical Thickness

All optical thickness including gaseous band absorption, and scattering is,

τ = τKD + τCON + τP (3.211)

where because τKD is different for each subchannel, the calculation is done for each sub-
channel and each layer, and divided into the cloudy, clear sky, and cumulus conditions.

3.6.8 Expansion of the Plank Function

In this section, SUBROUTINE:[PLKEXP] in pradt.F is described.
In each layer, the Planck function B is expanded as follows and the expansion coefficients

b0, b1, and b2, are obtained.

B
(
τ ′
)
= b0 + b1τ

′ + b2
(
τ ′
)2

(3.212)

Here, as B (τ ′), B at the top of each layer (the boundary with the top layer) is used, and as
B(τ), B at the bottom edge of each layer (the boundary with the layer below), and as B(τ/2),
the B at the representative level of each layer.

b0 = B(0) (3.213)

b1 = (4 B(τ/2)−B(τ)− 3 B(0))/τ (3.214)

b2 = 2( B(τ)−B(0)− 2 B(τ/2))/τ2 (3.215)

This calculation is done for each sub-channel and each layer and divided into the cloudy,
clear sky and cumulus conditions.
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Figure 5: Second-order expansion using the optical thickness of the plank function

3.6.9 Transmission and Reflection Coefficients, and Source Function

In this section, SUBROUTINE:[TWST] in pradt.F is described.
Using the obtained optical thickness τ , optical thickness of scattering τ scat, scattering mo-

ments g, f , expansion coefficients for Planck function bn, and solar incidence angle factor µ0, the
transmission coefficient T , reflection coefficient R, downward radiation source function ϵ+, and
the upward radiation source function ϵ− are founded, by assuming a uniform layer and using
the two-stream approximation.

The single-scattering albedo ω is,

ω = τ scat/τ (3.216)

The optical thickness τ∗, the single-scattering albedo ω∗, and asymmetric factor g∗, corrected
by the contribution from the forward scattering factor f are,

τ∗ = τ(1− ωf) (3.217)

ω∗ =
(1− f)ω
1− ωf

(3.218)

g∗ =
g − f
1− f

(3.219)

µ is a two-stream directional cosine.

µ ≡
(

1√
3
,

1

1.66

)
(shortwave, longwave) (3.220)

W− ≡ µ−1/2 (3.221)
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Furthermore,

P̂± = ω∗W−2
(
1± 3g∗µ2

)
/2 (3.222)

Ŝ±
s = ω∗W− (1± 3g∗µ0µ) (3.223)

can be determined as above as a normalized scattering phase function.

X = µ−1 −
(
P̂+ − P̂+

)
= µ−1 − 3ω∗W−2µ2g∗

(3.224)

Y = µ−1 −
(
P̂+ + P̂+

)
= µ−1 − ω∗W−2

(3.225)

σ̂+S = Ŝ+
S + Ŝ−

S

= ω∗W− (3.226)

σ̂−S = Ŝ+
s − Ŝ−

S

= 3ω∗µ0W
−µg∗

(3.227)

Using the above formula, the reflectance R and transmission T become

AA =
X
(
1+e−λτ∗

)
−λ

(
1−e−λτ∗

)
X(1+e−λτ∗)+λ(1−e−λτ∗)

(3.228)

BB =
X
(
1−e−λτ∗

)
−λ

(
1+e−λτ∗

)
X(1−e−λτ∗)+λ(1+e−λτ∗)

(3.229)

λ =
√
XY (3.230)

R = 1
2(AA+BB) (3.231)

T = 1
2(AA−BB) (3.232)

Next, we find the source function derived from the Planck function.

b̂n = 2π (1− ω∗)W−
(

1

1− ωf

)n
bn (3.233)
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The expansion coefficients of the radiation source function can be found from the above
formulas.

D±
2 = b̂2

Y
(3.234)

D±
1 = b̂1

Y ∓
2b̂2
XY

(3.235)

D±
0 = b̂0

Y + 2b̂2
XY 2 ∓ b̂1

XY
(3.236)

D± (τ∗) = D+
0 +D+

1 τ
∗ +D+

2 τ
∗2 (3.237)

The radiation source function derived from the Planck function ϵ̂±A is

ϵ̂−A = D−
0 −RD

−
0 − TD− (τ∗) (3.238)

ϵ̂+A = D+ (τ∗)− TD+
0 −RD− (τ∗) (3.239)

On the other hand, the radiation source function of the solar-induced radiation is

ϵ̂+S = Fsol

(
V +
s e

− τ∗
µ0 − TV +

s −RV −
s e

− τ∗
µ0

)
(3.240)

ϵ̂+S = Fsol

(
V +
s e

− τ∗
µ0 − TV +

s −RV −
s e

− τ∗
µ0

)
(3.241)

Here, Qγ and V ±
s are expressed by the following formulas, and Fsol is solar irradiance.

V ±
s = 1

2

[
Qγ ±

(
Qγ
µ0

+
σ̂−
S
X

)]
(3.242)

Qγ =
Xσ̂+

S µ0+µ
−1
0 σ̂−

S

XY µ0+µ
−1
0

(3.243)

The direct solar transmission is also calculated in this subroutine.

Exdir = e−τ
∗/µ0 (3.244)

This calculation is done for each sub-channel and each layer and divided into the cloudy,
clear sky, and cumulus conditions.
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3.6.10 T, R, S Matrixes for Maximal/Random Approximation

In this section, SUBROUTINE:[RTSMR] in pradt.F is described.
In this subroutine, T, R, S matrixes for maximal/random approximation is made. The

radiation source function, which is the sum of both the plank function and the solar incident
origins, is

ϵ−(cloud) = ϵ̂
−(cloud)
S Tr(cloud) + ϵ̂

−(cloud)
A C (3.245)

ϵ−(clear) = ϵ̂
−(clear)
S Tr(clear) + ϵ̂

−(clear)
A (1− C) (3.246)

ϵ+(cloud) = ϵ̂
+(cloud)
S Tr(cloud) + ϵ̂

−(cloud)
A C (3.247)

ϵ+(clear) = ϵ̂
+(clear)
S Tr(clear) + ϵ̂

−(clear)
A (1− C) (3.248)

Tr is the direct solar transmission for maximal/random approximation and calculated as
follows in SUBROUTINE:[DTRN31].

Tr(cloud)n = Ex(cloud)n B(3)
n + Ex(clear)n

(
1−B(1)

n

)
(3.249)

Ex
(cloud)
n+1 = Tr(cloud)n Exdir(cloud)n (3.250)

Tr(clear)n = Ex(cloud)n

(
1−B(3)

n

)
+ Ex(clear)n B(1)

n (3.251)

Ex
(clear)
n+1 = Tr(clear)n Exdir(clear)n (3.252)

Ex is the cumulative direct solar transmission. B
(1−4)
n is the cloud cover interaction index

and calculated in SUBROUTINE:[BCVR]in pradt.F.

B
(1)
n = 1−max(Cn−1,Cn)

1−Cn−1
(3.253)

B
(2)
n = 1−max(Cn+1,Cn)

1−Cn+1
(3.254)

B
(3)
n = min(Cn−1,Cn)

Cn−1
(3.255)

B
(4)
n = min(Cn+1,Cn)

Cn+1
(3.256)
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Next, T matrixes for maximal/random approximation are calculated.

T+(cloud,1) = T (cloud)B(3) (3.257)

T+(cloud,2) = T (cloud)
(
1−B(1)

)
(3.258)

T+(clear,1) = T (clear)
(
1−B(3)

)
(3.259)

T+(clear,2) = T (clear)B(1) (3.260)

T−(cloud,1) = T (cloud)B(4) (3.261)

T−(cloud,2) = T (cloud)
(
1−B(2)

)
(3.262)

T−(clear,1) = T (clear)
(
1−B(4)

)
(3.263)

T−(clear,2) = T (clear)B(2) (3.264)

Also, R matrixes for maximal/random approximation are calculated.

R+(cloud,1) = R(cloud)B(3) (3.265)

R+(cloud,2) = R(cloud)
(
1−B(1)

)
(3.266)

R+(clear,1) = R(clear)
(
1−B(3)

)
(3.267)

R+(clear,2) = R(clear)B(1) (3.268)

R−(cloud,1) = R(cloud)B(4) (3.269)

R−(cloud,2) = R(cloud)
(
1−B(2)

)
(3.270)

R−(clear,1) = R(clear)
(
1−B(4)

)
(3.271)

R−(clear,2) = R(clear)B(2) (3.272)

This calculation is done for each sub-channel and each layer.
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Figure 6: Schematic illustration of the adding method

3.6.11 Adding of Source Functions for Each Layer

In this section, SUBROUTINE:[ADDMR] and SUBROTINE:[ADDING] in pradt.F is described.
By using transmission coefficient T , reflection coefficient R, and radiation source function ε

in all layers, the radiation fluxes u at each layer boundary can be obtained by using the adding
method. This means that the when two layers of T , R, ε are known, the T , R, ε of the whole
combined layer of the two layers can be easily calculated.

3.6.11.1 SUBROUTINE:[ADDMR]

In this subroutine, the maximal/random flux in cloudy conditions is calculated by the adding
method and the T, R, and S matrixes are used for calculations.

First, the upward radiation source function the bottom layer is calculated.
In the shortwave region,

ϵ
−(cloud)
N =W+αsµ0

(
1
µ

)
F0e

−⟨τ∗⟩/µ0(cloud)
N (3.273)

ϵ
−(clear)
N =W+αsµ0

(
1
µ

)
F0e

−⟨τ∗⟩/µ0(clear)
N (3.274)
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⟨τ∗⟩ indicates the total optical thickness τ∗ of from the upper end of the atmosphere to the up-
per end of the layer currently being considered and e−⟨τ∗⟩/µ0 is calculated in SUBROUTINE:[ADDMR]
of pradt.F.

In the longwave region,

ϵ
−(cloud)
N = ϵ

−(cloud)
N +W+2π (1− αs)BNCN (3.275)

ϵ
−(clear)
N = ϵ

−(clear)
N +W+2π (1− αs)BN (1− CN ) (3.276)

Here,

W+ ≡ µ1/2 (3.277)

The reflectance R−
1,n and source function ϵ+1,n regarded from the first to the n layers as a

single layer are

ϵ+1,n = ϵ+n + T+
n

(
1−R+

nR
−
1,n−1

)−1 (
R−

1,n−1ϵ
−
n + ϵ+1,n−1

)
(3.278)

R−
1,n = R−

n + T+
n

(
1−R+

nR
−
1,n−1

)−1
R−

1,n−1T
−
n (3.279)

The upward and downward fluxes at the bottom of the atmosphere are

u+N+1/2 =
(
1−R−

1,N−1R
+
N

)−1 (
ϵ+1,N−1 +R−

1,N−1ϵ
−
N

)
(3.280)

u−N+1/2 =
(
1−R+

NR
−
1,N−1

)−1 (
ϵ−N +R+

N ϵ
+
1,N−1

)
(3.281)

Also, upward and downward fluxes at the boundary between layers n and n+ 1 are

u+n+1/2 =
(
1−R−

1,n−1R
+
n

)−1 (
R−

1,n−1T
−
n u

−
n+1/2 +R−

1,n−1ϵ
−
n + ϵ+1,n

)
(3.282)

u−n+1/2 =
(
1−R+

nR
−
1,n−1

)−1 (
T−
n u

−
n+1/2 +R+

n ϵ
+
1,n−1 + ϵ−n

)
(3.283)

However, the upward and downward flux at the upper end of the atmosphere is as follows.

u+1/2 = 0 (3.284)

u−1/2 = T−
1 u

−
1+1/2 + ϵ−1 (3.285)

Finally, since this flux is scaled, we rescaled and added the direct solar incidence to the find
the radiation flux. Furthermore, the flux in the cloudy area and the clear sky area is added.
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F+
n+1/2 =

W+

W

(
u
+(cloud)
n+1/2 + u

+(clear)
n+1/2

)
+ µ0F0

(
e
−⟨τ∗⟩/µ0(cloud)
n+1/2

)
(3.286)

F−
n+1/2 =

W+

W

(
u
−(cloud)
n+1/2 + u

−(clear)
n+1/2

)
(3.287)

Also, surface direct downward radiation flux F+
sf is

F+
sf = µ0F0

(
e
−⟨τ∗⟩/µ0(cloud)
N + e

−⟨τ∗⟩/µ0(clear)
N

)
(3.288)

This calculation is done for each sub-channel.

3.6.11.2 SUBROUTINE:[ADDING]

Since the maximal/random approximation cannot be used under the clear sky condition,
this subroutine is used to calculate the flux.

First, the radiation source function, which is the sum of both the plank function origin and
the solar incident origin, is

ϵ± = ϵ̂±S e
−⟨τ∗⟩/µ0 + ϵ̂±A (3.289)

There are layers 1, 2, . . . , N from the top. The surface layer is considered to be a single layer
and the N layer. Given the reflectance and source function of the layers from the n to the N
layer as a single layer Rn,N , ϵ

−
n,N ,

Rn,N = Rn,N + Tn (1−Rn+1,NRn)
−1Rn+1Tn (3.290)

ϵ−n,N = ϵ−n + Tn (1−Rn+1,NRn)
−1
(
Rn+1,N ϵ

+
n + ϵ−n,N

)
(3.291)

Rn,N = Rn,N + Tn (1−Rn+1,NRn)
−1Rn+1Tn (3.292)

ϵ−n,N = ϵ−n + Tn (1−Rn+1,NRn)
−1
(
Rn+1,N ϵ

+
n + ϵ−n,N

)
(3.293)

This can be solved by n = N − 1, . . . , 1 in sequence, starting from the values at the surface
RN,N , ϵ

−
N,N .

RN,N = RN = αs (3.294)

ϵN,N =W+
(
αsµ0

(
1
µ

)
e−⟨τ∗⟩/µ0F0 + 2π (1− αs)BN

)
(3.295)

The reflectance R1,n and source function ϵ+1,n regarded from the first to the n layers as a
single layer are
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R1,n = Rn + Tn (1−R1,n−1Rn)
−1R1,n−1Tn (3.296)

ϵ+1,N = ϵ+n + Tn (1−R1,n−1Rn)
−1
(
R1,n−1ϵ

−
n + ϵ+1,n−1

)
(3.297)

It can be solved by n = 2, . . . , N , starting from R1,1 = R1, ϵ
+
1,1 = ϵ+1 .

With these, downward flux at the boundary between layers n and n+ 1, the downward and
upward flux are came back to a problem between two layers of combined layer, the combinations
of layers 1− n and n+ 1−N .

u+n+1/2 = (1−R1,nRn+1,N )
−1
(
ϵ+1,n +R1,nϵ

−
n+1,N

)
(3.298)

u−n+1/2 = Rn+1,Nu
+
n,n+1 + ϵ−n+1,N (3.299)

can be written as above. However, the flux at the top of the atmosphere is

u+1/2 = 0 (3.300)

u−1/2 = ϵ−1,N (3.301)

Finally, since this flux is scaled, we rescaled and added the direct solar incidence to the find
the radiation flux.

F+
n+1/2 =

W+

W u+n+1/2 + µ0e
−⟨τ∗⟩/µ0F0 (3.302)

F−
n+1/2 =

W+

W u−n+1/2 (3.303)

Also, surface direct downward radiation flux F+
sf is

F+
sf = µ0F0e

−⟨τ∗⟩ µ0 (3.304)

3.6.12 Adding in the Flux

F± =
∑
c

wc (1− Ccu) F̄± +
∑
c

wcCcuF
c± (3.305)

F ◦± =
∑
c

wcF
◦± (3.306)
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If the radiation flux F±
C is found for each sub-channel in each layer, the wavelength-integrated

flux is found by multiplying a weight wc correspondingly to a wavelength representative of the
sub-channel and adding. Ccu is the horizontal coverage of the cumulus cloud. It is divided into
the short wavelength range and long wavelength range and added together. In addition, the
downward flux of a part of the short wavelength region (shorter than the wavelength of 0.7-0.8
µm) at the surface is obtained as PAR (photosynthetically active radiation). Also, the radiation
flux in the clear-sky condition is calculated (F ◦±).

Also, in the shortwave region, we find the downward radiation at the lower end of the
atmosphere and the difference between the surface direct downward radiation flux.

F+
sf =

∑
c

wc (1− Cu) F̄+
N+1/2 +

∑
c

wcCcuF
c
N+1/2 (3.307)

F+
sf,dif =

∑
c

wc (1− Ccu)
(
F̄+
N+1/2 − F̄

+
sf

)
+
∑
c

wcCcu

(
F cN+1/2 − F

c
sf

)
(3.308)

This calculation is done in SUBROUTINE:[DTRN31]

3.6.13 Calculation of the Temperature Derivative of the Flux

To implicitly solve for surface temperature, calculate differential term of upward flux with respect
to surface temperature dF∓/dTg. Therefore, we obtained the value for temperatures 1K higher
than Tg B̄

w (Tg + 1) and used it to redo the flux calculation using the addition method, and
the difference from the original value is set to dF∓/dTg. This is a meaningful value only in the
longwave region (earth radiation region). This calculation is done in SUBROUTINE:[RADFLX] of
pradt.F.

3.6.14 Calculation of the Heating Rate

The heating rate of the nth layer Hn is calculated by using the radiation flux obtained so
far. It is calculated separately for shortwave and longwave ranges, and finally add together
(SUBROUTINE:[RDTND] in pradm.F).

Hn = −
(F−

n − F−
n )−

(
F+
n − F+

n+1

)
gCpdp

(3.309)

3.6.15 Flux of incidence and incident angle

In this section, SUBROUTINE:[SHTINS] in pradi.F is described.
The following parameters are determined using the orbital eccentricity e, with reference to

Berger (1978).

β =
√
1− e2 (3.310)

a1 = −2
(
1
2e+

1
8e

3
)
(1 + β) (3.311)

a2 = −2
(
−1

4e
2
) (

1
2 + β

)
(3.312)
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a3 = −2
(
1
8e

3
) (

1
2 + β

)
(3.313)

b1 = 2e− 1
4e

3 (3.314)

b2 =
5
4e

2 (3.315)

b3 =
13
12e

3 (3.316)

Additionally,

ϵ = epsd
180 π (3.317)

ϖ = vpid+180
180 π (3.318)

where epsd and vpid are the angle of the obliquity, and the precession represented by the
true longitude of the perihelion measured from the vernal equinox.

The mean longitude of the vernal equinox λ0 is computed.

λ0 = a1 sin(−ϖ) + a2 sin(−2ϖ) + a3 sin(−3ϖ) (3.319)

The mean longitude of the Earth position λm at time tm is represented by using the position
of the vernal equinox λ0.

λm = tm−t0
2π×tyear + λ0 (3.320)

where tyear is the number of seconds in year, and the origin of the time t0 is defined as the
time of the vernal (March) equinox.

The true longitude of the Earth position V at time tm is calculated as below.

(3.321)

V = λm −ϖ + b1 sin (λm −ϖ) + b2 sin 2 (λm −ϖ) + b3 sin 3 (λm −ϖ) (3.322)

The solar declination δ is

δ = arcsin(sin ϵ sin(V +ϖ)) (3.323)

The incident angle cos ζ is founded by using the latitude φ, the solar declination δ, and the
hour angle at a point of longitude h.

95



µ0 = cos ζ = sinφ sin δ + cosφ cos δ cosh (3.324)

Incident Flux F0 is represented as follows,

F0 = F00r
−2 (3.325)

r = 1−e2
1+e(cosV+ϖ) (3.326)

where F00 is the solar constant and is the ratio to the time of the distance between the sun
and the earth. The number of times when cos ζ ≥ 0 (in the daytime) in time increments (set in
NHSUB), is counted, and F0 and cos ζ are finally averaged.

It is also possible to give average annual insolation. In this case, the annual and day mean
incidence and angle of incidence are approximated as follows.

F̄ = F00/π (3.327)

µ̄0 ≃ 0.410 + 0.590 cos2 φ (3.328)

3.6.16 Reading Each Parameter

In SUBROUTINE:[OPPARM2]of pradt.F, various parameters used for radiation calculation are read.
The outline of the procedure is shown below.

1. Read the numbers of bands, the radiances representative of upward and downward ra-
diation, the grids of the pressure log(p), grid of the temperatures, the optical flag, and
CFCs.

2. Read the band boundaries and the information of the pressure grid and temperature grid.

3. First, the optical property flag, the number of channels, the weights for channels and the
number of the molecules including in a waveband are read. The optical property flag is
modified in order to distinguish the PAR, 0.67, 0.5, and 10.5 µm. Additionally, molecule
ID and k-width are read for each molecule. Finally, the absorption coefficient for the
self-broadening and CFC are also done only when the optical property flag in the band is
positive. The k-width and the absorption coefficient for the self-broadening are arranged
in the order of the grid of the temperatures, the grids of the pressures, and the channels.
Step 3 is performed for each wavelength band.

4. First, the number of particles is read. Next, the numbers of the modes and the mode
radius (or relative humidity) are read for each particle. Using the mode radius (or rel-
ative humidity), the following parameter required to interpolate the calculated values is
calculated for each mode number.

1

R
(ref)
n+1 −R

(ref)
n

(3.329)
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5. Read the band boundaries again.

6. Read the Plank function coefficient, solar insolation, surface properties (not output),
Rayleigh scattering coefficient, Rayleigh scattering phase function. The moment for par-
ticle scattering phase function is read in the order of the particle and the optical number
and read up to the second moment. Step 6 is performed for each wavelength band.

3.6.17 Other Notes

The calculation of the radiation is usually not done at every step. Thus, the radiation flux is
saved, and it is used if the time is not used for radiation calculation. As for the shortwave
radiation, using the percentage of time (time is µ0 > 0) between the next calculation time f
and the solar incidence angle factor averaged over the daylight hours µ̄0, seek the Flux F̄ ,

F = f
µ0
µ̄0
F̄ (3.330)
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3.7 Turbulence Scheme

A turbulence scheme represents the effect of subgrid-scale turbulence on the grid-mean prognos-
tic variables. It calculates the vertical diffusion of momentum, heat, water and other tracers.
The Mellor-Yamada-Nakanishi-Niino scheme (MYNN scheme; Nakanishi 2001; Nakanishi and
Niino 2004) has been used as a turbulence scheme in MIROC since its version 5, which is an
improved version of the Mellor-Yamada scheme (Mellor 1973; Mellor and Yamada 1974; Mellor
and Yamada 1982). Its closure level is 2.5. Level 3 is available, however it was not adopted as a
standard option, since we could not gain large benefits despite its much greater computational
costs.

In the MYNN scheme, liquid water potential temperature θl and total water qw are used as
key variables, which are defined as

θl ≡
(
T − Lv

Cp
ql −

Lv + Lf
Cp

qi

)(
ps
p

)Rd
Cp

, (3.331)

qw ≡ qv + ql + qi, (3.332)

where T and p are temperature and pressure; qv, ql and qi are specific humidity, liquid water
content, and ice water content respectively; Cp and Rd are specific heat at constant pressure and
gas constant of dry air respectively; Lv and Lf are latent heat of vaporization and fusion per
unit mass respectively. ps is 1000hPa. These variables conserve for the phase change of water.

In the level 2.5, the scheme predicts the time evolution of twice turbulent kinetic energy as
a prognostic variable, which is defined by

q2 ≡ ⟨u2 + v2 + w2⟩ (3.333)

where u, v, and w are velocities in zonal, meridional and vertical directions respectively.
In this chapter, uppercase letters represent grid-mean variables and lowercase counterparts the
deviation from the grid-mean. ⟨ ⟩ denotes an ensemble mean. In the Level 3, ⟨θl2⟩, ⟨qw2⟩, ⟨θlqw⟩
are also predicted, but we skip the details here.

The outline of the computational procedures is given as follows along with the names of the
subroutines. All the subroutines listed here are written in a Fortran source code of pvdfm.F.

1. Calculation of friction velocity and the Obukhov length

2. Calculation of buoyancy coefficients [SUBROUTINE:VDFCND]

3. Calculation of stability functions of the Level 2 [SUBROUTINE:VDFLEV2]

4. Calculation of planetary boundary layer depth [SUBROUTINE:PBLHGT]

5. Calculation of master length scale [SUBROUTINE:VDFMLS]

6. Calculation of diffusion coefficients, vertical fluxes and their derivatives [SUBROUTINE:VDFLEV3]

7. Calculation of production and dissipation terms of twice turbulent kinetic energy [SUB-
ROUTINE:VDFLEV3]

8. Calculation of tendencies of prognostic variables with implicit scheme

3.7.1 Surface Layer

The friction velocity u∗ and the Obukhov length LM are given as
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u∗ =
(
⟨uw⟩g2 + ⟨vw⟩g2

) 1
4
, (3.334)

LM = − Θv,gu∗
3

kg⟨wθv⟩g
, (3.335)

where the subscript g indicates the values near the surface Θv and θv denote virtual potential
temperature, k the von Kármán constant, and g the acceleration of gravity. The values of the
lowest model layer is used for Θv,g.

3.7.2 Calculation of the Buoyancy Coefficients

The buoyancy-production term in the prognostic equation of the twice turbulent kinetic energy
contains ⟨wθv⟩. Following Mellor and Yamada (1982), we assume the probability distribution of
θl and qw in a given grid and rewrite this term as

⟨wθv⟩ = βθ⟨wθl⟩+ βq⟨wqw⟩. (3.336)

However, note that unlike Mellor and Yamada (1982) and Nakanishi and Niino (2004), the
probability distribution assumed here is not Gaussian. It is triangular documented in the PDF-
based prognostic large-scale condensation scheme (Watanabe et al. 2009). In this case, the
buoyancy coefficients, βθ and βq are written as

βθ = 1 + ϵQw − (1 + ϵ)Ql −Qi − R̃abc, (3.337)

βq = ϵΘ+ R̃ac, (3.338)

where ϵ = Rv/Rd − 1. Rv is the gas constant for water vapor, and

a =

(
1 +

Lv
Cp

∂Qs
∂T

∣∣∣∣
T=Tl

)−1

, (3.339)

b =
T

Θ

∂Qs
∂T

∣∣∣∣
T=Tl

, (3.340)

c =
Θ

T

Lv
Cp

[1 + ϵQw − (1 + ϵ)Ql −Qi]− (1 + ϵ)Θ, (3.341)

R̃ = R

{
1− a [Qw −Qs(Tl)]

Ql
2σs

}
− Ql

2

4σs2
, (3.342)

σs
2 = ⟨qw2⟩ − 2b⟨θlqw⟩+ b2⟨θl2⟩, (3.343)

where R and Ql are cloud amount and liquid water computed from the probability distribu-
tion in the grids, respectively, and Qs is saturation water vapor.
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3.7.3 Stability Functions for the Level 2

It is known that the Mellor-Yamada Level 2.5 scheme fails to capture the behavior of growing
turbulence realistically (Helfand and Labraga 1988). Thus, the MYNN scheme first calculates
the twice turbulent kinetic energy of the Level2 q2

2, and then make a correction to the diffusion
when q < q2, i.e., the turbulence is in a growing phase. The stability functions of the level 2,
SH2 and SM2, required for the calculation of q2, are represented by

SH2 = SHC
Rfc −Rf
1−Rf

, (3.344)

SM2 = SMC
Rf1 −Rf
Rf2 −Rf

SH2, (3.345)

where Rf is the flux Richardson number and calculated as

Rf = Ri1

[
Ri+Ri2 − (Ri2 −Ri3Ri+Ri2

2)1/2
]
. (3.346)

Here, Ri is the gradient Richardson number represented by

Ri =
g

Θ

(
βθ
∂Θl

∂z
+ βq

∂Qw
∂z

)/[(
∂U

∂z

)2

+

(
∂V

∂z

)2
]
. (3.347)

The other symbols indicate quantities independent of the environmental field, which are
given as follows.

SHC = 3A2(γ1 + γ2), (3.348)

SMC =
A1

A2

F1

F2
, (3.349)

Rfc =
γ1

γ1 + γ2
, (3.350)

Rf1 = B1
γ1 − C1

F1
, (3.351)

Rf2 = B1
γ1
F2
, (3.352)

Ri1 =
1

2SMc
, (3.353)

Ri2 = Rf1SMC , (3.354)
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Ri3 = 4Rf2SMC − 2Ri2, (3.355)

where

A1 = B1
1− 3γ1

6
, (3.356)

A2 = A1
γ1 − C1

γ1Pr
, (3.357)

C1 = γ1 −
1

3A1B1
1
3

, (3.358)

F1 = B1(γ1 − C1) + 2A1(3− 2C2) + 3A2(1− C2)(1− C5), (3.359)

F2 = B1(γ1 + γ2)− 3A1(1− C2), (3.360)

γ2 =
B2

B1
(1− C3) +

2A1

B1
(3− 2C2) , (3.361)

and

(Pr, γ1, B1, B2, C2, C3, C4, C5) = (0.74, 0.235, 24.0, 15.0, 0.7, 0.323, 0.0, 0.2). (3.362)

3.7.4 Master Length Scale

3.7.4.1 Original Formulation by Nakanishi (2001)

Nakanishi (2001) proposed the following formulation for the master length scale L.

1

L
=

1

LS
+

1

LT
+

1

LB
, (3.363)

where LS , LT , LB represent length scales in the surface layer, convective boundary layer,
and stably stratified layer respectively. These length scales are formulated as

LS =


kz/3.7 ζ ≥ 1
kz/(2.7 + ζ) 0 ≤ ζ < 1
kz(1− α4ζ)

0.2 ζ < 0,
(3.364)

LT = α1

∫ ∞

0
qz dz∫ ∞

0
q dz

, (3.365)
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LB =


α2q/N ∂Θv/∂z > 0 and ζ ≥ 0[
α2 + α3(qc/LTN)1/2

]
q/N ∂Θv/∂z > 0 and ζ < 0

∞ ∂Θv/∂z ≤ 0,

(3.366)

where ζ ≡ z/LM is a height normalized by the Monin-Obukhov length LM , N ≡ [(g/Θ)(∂Θv/∂z)]
1/2

is the Brunt-Väisälä frequency and qc ≡ [(g/Θ)⟨wθv⟩gLT ]1/3 is a velocity scale in the convective
boundary layer.

3.7.4.2 Modifications in MIROC

The above formulation works well when the domain of the model is limited to the planetary
boundary layer (PBL) and its surrounding area. However, if the the upper troposphere is
included, the formulation gives inappropriate behaviors depending on the conditions: e.g. LT ,
the length scale of the convective boundary layer, is used in the free atmosphere, and the
turbulent kinetic energy in the free atmosphere is taken into account in the calculation of LT .

In order to avoid such misbehaviors, the top height of the convective boundary layer HPBL

is estimated in MIROC and we consider that the region below h =
[
(FHHPBL)

2 +H2
0

)1/2
is the

one where the PBL-derived turbulence is dominant. Here, we adopted FH = 1.5 andH0 = 500m.
Below the altitude h, equation (3.363) is used as the master length scale, but the vertical

range of the integration in LT is modified as

LT = α1

∫ h

0
qz dz∫ h

0
q dz

, (3.367)

and then the master length scale above h is represented as

1

L
=

1

LS
+

1

LA
+

1

Lmax
(3.368)

where LA = α5 q/N is a length scale of air parcel vertically transported by turbulence in a
stably stratified layer. α5 represents the effect of dissipation set to 0.53. Lmax = 500m gives the
upper limit of L.

3.7.4.3 Estimation of the Top Height of the Convective Boundary Layer

Based on Holtslag and Boville (1993), HPBL is estimated using the bulk Richardson number
RiB given as

RiB =
[g/Θv(z1)][Θv(zk)−Θv,g](zk − zg)

[U(zk)− U(z1)]2 + [V (zk)− V (z1)]2 + Fuu∗2
, (3.369)

where zk is the altitude of a k-th model layer from the bottom at full level, z1 the altitude
of the lowest layer at full level, zg the altitude of the surface. Fu is a dimensionless tuning
parameter, and

Θv,g = Θv(z1) + Fb
⟨wθv⟩g
wm

, (3.370)
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wm = u∗/ϕm, (3.371)

ϕm =

(
1− 15

zs
LM

)− 1
3

, (3.372)

where zs is the altitude of the surface layer assumed to be 0.1HPBL. Fb is a dimensionless
tuning parameter.

RiB is successively calculated from k = 2 upward, and then if RiB exceeds 0.5 for the first
time, it is linearly interpolated between this level and the level immediately below it. The height
satiffying RiB = 0.5 is used as HPBL. Since HPBL is necessary for the calculation of zs, we first
calculate zs using a temporary value of HPBL = z1− zg, from which we calculate the first guess
of HPBL. Then we use this value for the recalculation of zs, and then it is used for the final
estimate of HPBL.

3.7.5 Calculation of Diffusion Coefficients

3.7.5.1 Twice Turbulent Kinetic Energy of Level 2

The twice turbulent kinetic energy of the level 2, q2
2, is calculated from the following equa-

tion, which neglects the time derivative, advection and diffusion terms in the prognostic equation
of the twice turbulent kinetic energy.

Ps + Pb − ε = 0, (3.373)

where Ps and Pb denote the production terms by shear and buoyancy respectively. ε is the
dissipation term. Ps and Pb are written as

Ps = −⟨wu⟩
∂U

∂z
− ⟨wv⟩∂V

∂z
, (3.374)

Pb =
g

Θ
⟨wθv⟩, (3.375)

respectively. In the level 2 of the MYNN scheme, these are represented as

Ps = LqSM2

[(
∂U

∂z

)2

+

(
∂V

∂z

)2
]
, (3.376)

Pb = LqSH2
g

Θ

[
βθ
∂Θl

∂z
+ βq

∂Qw
∂z

]
, (3.377)

ε =
q3

B1L
. (3.378)

From (3.373), (3.376), (3.377), and (3.378), q22 is calculated by

q2
2 = B1L

2

{
SM2

[(
∂U

∂z

)2

+

(
∂V

∂z

)2
]
+ SH2

g

Θ

(
βθ
∂Θl

∂z
+ βq

∂Qw
∂z

)}
. (3.379)
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3.7.5.2 Stability Functions of the Level 2.5

When q < q2, i.e., the turbulence is in a growing phase, the stability functions of the Level
2.5 for momentum and heat, SM and SH respectively, are calculated using α = q/q2 introduced
by Helfand and Labraga (1998) as

SM = αSM2, (3.380)

SH = αSH2. (3.381)

When q ≥ q2, SM and SH are calculated as

SM = A1
E3 − 3C1E4

E2E4 + E5E3
, (3.382)

SH = A2
E2 + 3C1E5

E2E4 + E5E3
, (3.383)

where

E1 = 1− 3A2B2(1− C3)GH , (3.384)

E2 = 1− 9A1A2(1− C2)GH , (3.385)

E3 = E1 + 9A2
2(1− C2)(1− C5)GH , (3.386)

E4 = E1 − 12A1A2(1− C2)GH , (3.387)

E5 = 6A1
2GM , (3.388)

GM =
L2

q2

[(
∂U

∂z

)2

+

(
∂V

∂z

)2
]
, (3.389)

GH = −L
2

q2
g

Θ

(
βθ
∂Θl

∂z
+ βq

∂Qw
∂z

)
. (3.390)

The above formulas appear to be different from those in Nakanishi (2001), but are equivalent
and can be computed with a smaller computational cost.

104



3.7.5.3 Calculation of Diffusion Coefficients

The diffusion coefficients for momentum, twice turbulent kinetic energy, heat and water are
represented by

KM = LqSM , (3.391)

Kq = 3LqSM , (3.392)

KH = LqSH , (3.393)

Kw = LqSH , (3.394)

respectively.

3.7.5.4 Calculation of Fluxes

The vertical fluxes for U , V , q2, CpT and Qw at half levels are calculated as

Fu,k−1/2 = −ρk−1/2KM,k−1/2
Uk − Uk−1

∆zk−1/2
, (3.395)

Fv,k−1/2 = −ρk−1/2KM,k−1/2
Vk − Vk−1

∆zk−1/2
, (3.396)

Fq,k−1/2 = −ρk−1/2Kq,k−1/2
q2k − q2k−1

∆zk−1/2
, (3.397)

FT,k−1/2 = −ρk−1/2KH,k−1/2CpΠk−1/2
Θl,k −Θl,k−1

∆zk−1/2
, (3.398)

Fw,k−1/2 = −ρk−1/2Kw,k−1/2
Qw,k −Qw,k−1

∆zk−1/2
, (3.399)

respectively, where ρ denotes density and Π the Exner function. In order to perform time
integration with an implicit scheme, the derivative of each of the vertical fluxes is also calculated
as

∂Fu,k−1/2

∂Uk−1
=
∂Fv,k−1/2

∂Vk−1
= −

∂Fu,k−1/2

∂Uk
= −

∂Fv,k−1/2

∂Vk
= ρk−1/2KM,k−1/2

1

∆zk−1/2
, (3.400)
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∂Fq,k−1/2

∂q2k−1

= −
∂Fq,k−1/2

∂q2k
= ρk−1/2Kq,k−1/2

1

∆zk−1/2
, (3.401)

∂FT,k−1/2

∂Tk−1
= ρk−1/2KH,k−1/2Cp

Πk−1/2

Πk−1

1

∆zk−1/2
, (3.402)

∂FT,k−1/2

∂Tk
= −ρk−1/2KH,k−1/2Cp

Πk−1/2

Πk

1

∆zk−1/2
, (3.403)

∂Fw,k−1/2

∂Qw,k−1
= −

∂Fw,k−1/2

∂Qw,k
= ρk−1/2Kw,k−1/2

1

∆zk−1/2
, (3.404)

where ∆zk−1/2 = zk − zk−1. The fluxes for other tracers are also calculated in the same way
using Kw.

3.7.6 Calculation of Turbulent Variables

3.7.6.1 Calculation of Twice Turbulent Kinetic Energy

The prognostic equation for q2 is expressed as

dq2

dt
= −1

ρ

∂Fq
∂z

+ 2 (Ps + Pb − ε) . (3.405)

In the Level 2.5, Ps, Pb, ε are written as

Ps = LqSM

[(
∂U

∂z

)2

+

(
∂V

∂z

)2
]
, (3.406)

Pb = LqSH
g

Θ

(
βθ
∂Θl

∂z
+ βq

∂Qw
∂z

)
, (3.407)

ε =
q3

B1L
. (3.408)

Advection terms are calculated using the tracer transport routines in the dynamical core.
The turbulence scheme calculates the time evolution by the diffusion, production and dissipation
terms with an implicit scheme.
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3.7.6.2 Diagnosis of Variance and Covariance

The prognostic equations for ⟨θl2⟩, ⟨qw2⟩, ⟨θlqw⟩ are expressed as

d
〈
θl

2
〉

dt
= − ∂

∂z

〈
wθ2l

〉
− 2 ⟨wθl⟩

∂Θl

∂z
− 2εθl, (3.409)

d
〈
qw

2
〉

dt
= − ∂

∂z

〈
wq2w

〉
− 2 ⟨wqw⟩

∂Qw
∂z
− 2εqw, (3.410)

d ⟨θlqw⟩
dt

= − ∂

∂z
⟨wθlqw⟩ − ⟨wqw⟩

∂Θl

∂z
− ⟨wθl⟩

∂Qw
∂z
− 2εθq. (3.411)

In the Level 2.5, the time derivative, advection, and diffusion terms in these equations are
neglected assuming the following local balances.

−⟨wθl⟩
∂Θl

∂z
− εθl = 0, (3.412)

−⟨wqw⟩
∂Qw
∂z
− εqw = 0, (3.413)

−⟨wqw⟩
∂Θl

∂z
− ⟨wθl⟩

∂Qw
∂z
− 2εθq = 0. (3.414)

In the Level 2.5 of the MYNN scheme, −⟨wθl⟩, −⟨wqw⟩, εθl, εqw, εθq are represented as

−⟨wθl⟩ = LqSH
∂Θl

∂z
, (3.415)

−⟨wqw⟩ = LqSH
∂Qw
∂z

, (3.416)

εθl =
q

B2L

〈
θ2l
〉
, (3.417)

εqw =
q

B2L

〈
q2w
〉
, (3.418)

εθq =
q

B2L
⟨θlqw⟩ . (3.419)

from (3.412)-(3.419), ⟨θl2⟩, ⟨qw2⟩, ⟨θlqw⟩ can be diagnosed as

⟨θl2⟩ = B2L
2SH

(
∂Θl

∂z

)2

, (3.420)

⟨qw2⟩ = B2L
2SH

(
∂Qw
∂z

)2

, (3.421)

⟨θlqw⟩ = B2L
2SH

∂Θl

∂z

∂Qw
∂z

. (3.422)
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3.7.6.3 Treatment in the Bottom Layer

Since the lowest model layer corresponds to the surface layer where values of physical vari-
ables rapidly change in the vertical direction, the following Monin-Obukhov similarity theory is
used to accurately evaluate the vertical gradient of the variables.

∂M

∂z
=
u∗
kz
ϕm, (3.423)

∂Θ

∂z
=
θ∗
kz
ϕh, (3.424)

∂Qv
∂z

=
qv∗
kz
ϕh, (3.425)

where M is the horizontal wind velocity for the horizontal axis aligned to the direction of
the horizontal wind in the surface layer. ϕm and ϕh are the dimensionless gradient functions for
momentum and heat respectively. θ∗ and qv∗ are the scales of potential temperature and water
vapor in the surface layer respectively, and satisfy the following relationships.

⟨wm⟩g = −u2∗, (3.426)

⟨wθ⟩g = −u∗θ∗, (3.427)

⟨wqv⟩g = −u∗qv∗, (3.428)

where m is the deviation of M from the grid mean. Using M and m, the production term
of the turbulence kinetic energy is written as

Ps + Pb = ⟨wm⟩
∂M

∂z
+
g

Θ
⟨wθv⟩. (3.429)

Using (3.423), (3.426) and the definition of the Obukhov length, it is rewritten as

Ps + Pb =
u3∗
kz1

[ϕm (ζ1)− ζ1] , (3.430)

where ζ1 is ζ at the full level of the lowest model layer.
Assuming that the effect of cloud particles are negligible in the surface layer, ⟨θl2⟩, ⟨qw2⟩,

⟨θlqw⟩ is calculated diagnostically from (3.412)-(3.414), (3.417)-(3.419), (3.424), (3.425), (3.427),
and (3.428) as

⟨θl2⟩ =
ϕh (ζ1)

u∗kz1
⟨wθ⟩g2

/
q

B2L
, (3.431)
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⟨qw2⟩ = ϕh (ζ1)

u∗kz1
⟨wqv⟩g2

/
q

B2L
, (3.432)

⟨θlqw⟩ =
ϕh (ζ1)

u∗kz1
⟨wθ⟩g⟨wqv⟩g

/
q

B2L
. (3.433)

ϕm and ϕh are formulated following Businger et al. (1971) as

ϕm(ζ) =

{
1 + β1ζ, ζ ≥ 0

(1− γ1ζ)−1/4 , ζ < 0
(3.434)

ϕh(ζ) =

{
β2 + β1ζ, ζ ≥ 0

β2 (1− γ2ζ)−1/2 , ζ < 0
(3.435)

(β1, β2, γ1, γ2) = (4.7, 0.74, 15.0, 9.0). (3.436)

3.7.7 Time Integration with Implicit Scheme

3.7.7.1 Tendency of q2

The prognostic equation for q2 is discretized as

(
q2k,n+1 − q2k,n

∆t

)
turb

= − 1

ρk∆zk

(
Fq,k+1/2,n+1 − Fq,k−1/2,n+1

)
+ 2

(
Ps,k,n + Pb,k,n −

qk,n
B1L

q2k,n+1

)
,(3.437)

where n and n+1 indicate the current and next time steps respectively, and ∆zk ≡ zk+1/2−
zk−1/2. The subscript turb indicates the calculation by the turbulence scheme and the advection
term is omitted. Fq at n+ 1 is computed by

Fq,k−1/2,n+1 = Fq,k−1/2,n +
∂Fq,k−1/2

∂q2k
(q2k,n+1 − q2k,n) +

∂Fq,k−1/2

∂q2k−1

(q2k−1,n+1 − q2k−1,n). (3.438)

With a definition of

µk =

(
q2k,n+1 − q2k,n

∆t

)
turb

, (3.439)

(3.437) and (3.438) lead to

X1,k µk+1 +X2,k µk +X3,k µk−1 = Yk, (3.440)

where
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X1,k =
∂Fq,k+1/2

∂q2k+1

∆t, (3.441)

X2,k = ρk∆zk

(
1 + 2

qk,n
B1L

∆t

)
+

(
∂Fq,k+1/2

∂q2k
−
∂Fq,k−1/2

∂q2k

)
∆t, (3.442)

X3,k = −
∂Fq,k−1/2

∂q2k−1

∆t, (3.443)

Yk = Fq,k−1/2,n − Fq,k+1/2,n + 2ρk∆zk

(
Ps,k,n + Pb,k,n −

q3k,n
B1L

)
. (3.444)

(3.440) makes the following matrix equation,



X2,K X3,K 0 0 0 · · · 0
X1,K−1 X2,K−1 X3,K−1 0 0 · · · 0
0 X1,K−2 X2,K−2 X3,K−2 0 · · · 0
...

. . .
...

0 · · · 0 X1,3 X2,3 X3,3 0
0 · · · 0 0 X1,2 X2,2 X3,2

0 · · · 0 0 0 X1,1 X2,1





µK
µK−1

µK−2
...
µ3
µ2
µ1


=



YK
YK−1

YK−2
...
Y3
Y2
Y1


,(3.445)

where the subscript K denote the index for the top model layer. (3.445) is solved for µk
using the LU decomposition.

3.7.7.2 Tendencies of the Other Prognostic Variables

Letting ψ be a substitute for u, v, T , qw, the tendency of ψ is calculated by

(
ψk,n+1 − ψk,n

∆t

)
turb

= − 1

ρk∆zk

(
Fψ,k+1/2,n+1 − Fψ,k−1/2,n+1

)
, (3.446)

where

Fψ,k−1/2,n+1 = Fψ,k−1/2,n +
∂Fψ,k−1/2

∂ψk
(ψk,n+1 − ψk,n) +

∂Fψ,k−1/2

∂ψk−1
(ψk−1,n+1 − ψk−1,n).(3.447)

These equations lead to (3.445) again and computed with the LU decomposition, but µk,
X1,k, X2,k, X3,k and Yk are redefined as

µk =

(
ψk,n+1 − ψk,n

∆t

)
turb

, (3.448)

X1,k =
∂Fψ,k+1/2

∂ψk+1
∆t, (3.449)

X2,k = ρk∆zk +

(
∂Fψ,k+1/2

∂ψk
−
∂Fψ,k−1/2

∂ψk

)
∆t, (3.450)

X3,k = −
∂Fψ,k−1/2

∂ψk−1
∆t, (3.451)

Yk = Fψ,k−1/2,n − Fψ,k+1/2,n. (3.452)
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3.8 Surface Flux Scheme (Sea Surface)

Until CCSR/NIES AGCM (1997), both land surface and sea surface were treated as one of
the atmospheric physical processes, but after MIROC3 (Hasumi and Emori, 2004), land sur-
face processes became independent as MATSIRO. However, since MIROC3 (Hasumi and Emori,
2004), land surface processes have been separated into MATSIRO (Takata et al., 2003; Nitta et
al., 2014). In SUBROUTINE:[SURFCE] in pgsfc.F, ENTRY:[OCNFLX] (in SUBROUTINE:[OCEAN]

of pgocn.F) is called for the sea surface, and ENTRY:[LNDFLX] (in SUBROUTINE:[MATSIRO]

of matdrv.F) is called for the land surface, respectively. This chapter describes sea surface
processes, which are still treated within the framework of atmospheric physical processes in
MIROC6 (Tatebe et al., 2019)). For the land surface processes, please refer to Description of
ILS (https://github.com/integrated-land-simulator/model description).

Sea surface processes provide the boundary conditions at the lower end of the atmosphere
through the exchange of momentum, heat, and water fluxes between the atmosphere and the
surface. In ENTRY:[OCNFLX], the following procedure is used to deal with sea surface processes.

1. Prepare variables for sea ice extent and no ice extent, respectively, using sea ice concen-
tration.

2. Determine the surface boundary conditions.

3. Calculate the flux balance.

4. Calculate the radiation budget at the sea surface.

5. Calculate the deposition by CHASER.

6. Solve the heat balance at the sea surface and update the skin temperature and each flux
value.

No prognostic variables are used in this scheme.
Practically, precipitation flux from 2 schemes are treated together.

Pr = Prc + Prl (3.453)

where Pr is total precipitation flux, Prc is precipitation flux from the cumulus convection
scheme, and Prl is precipitation flux from the large scale condensation scheme, respectively.

Sea ice covered/free areas are represented by L = 1, 2. Each area is calculated then weighted
by sea ice concentration (Rice).

In the sea ice area (L = 1), the skin temperature (Ts) is the sea ice skin temperature (Tice).
However, if Tice is higher than the melting point (Tmelt = 273.15[K]), then Tmelt is used.

Ts = min(Tice, Tmelt) (3.454)

The sea ice bottom temperature (Tb) is assumed to be the sea skin temperature (To(1)).

Tb = To(1) (3.455)

The amount of sea ice (Wice) and the amount of snow on it (Wsnow) are converted per unit
area by considering sea ice concentration (Rice) and used in the calculation. However, a limiter
(ϵ) is provided to prevent the values from becoming too small.

Rice = max(Rice,orginal, ϵ) (3.456)
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In the ice-free area (L = 2), the skin temperature (Ts) and sea ice bottom temperature (Tb)
are assumed to be the sea temperature temperature (To(1)).

Ts = Tb = To(1) (3.457)

The evaporation efficiency is set to 1 for both L = 1, 2.
If sea ice concentration (Rice) is not given (as a boundary condition or from an OGCM), it is

simply diagnosed with the sea ice volume (Wice) in ENTRY:[OCNICR] (in SUBROUTINE:[OCNICR]

of pgocn.F).

Rice = min
(√max(Wice, 0)

Wice,c
, 1.0

)
(3.458)

The standard gives the amount of sea ice per area as Wice,c = 300[kg/m2].

3.8.1 Boundary Conditions

In ENTRY[OCNBCS] (in SUBROUTINE:[OCNSUB] of pgocn.F), surface albedo and roughness are
calculated. They are calculated supposing ice-free conditions, then modified to take into account
the effects of ice and snow cover.

First, let us consider the sea surface level albedo (α(d,b)), b = 1, 2, 3 represent the visible,
near-infrared, and infrared wavelength bands, respectively. Also, d = 1, 2 represents direct and
scattered light, respectively. The albedo for the visible bands are calculated in SUBROUTINE

[SEAALB] (of pgocn.F), supposing ice-free conditions. The albedo for near-infrared is set to
same as the visible one. The albedo for infrared is uniformly set to a constant value.

The grid-averaged albedo, taking into account sea ice concentration (Rice), is

α = α−Riceαice (3.459)

αice is given as αice,1 = 0.5, αice,2 = 0.5, αice,3 = 0.05, respectively.
In addition, we want to consider the effect of snow cover. Here, we consider the albedo

modification by temperature. Standard threshold values for snow temperature are Tal,2 =
258.15[K] and Tal,1 = 273.15[K]. The snow albedo changes linearly with temperature change
from αsnow,1 = 0.75 to αsnow,2. Let the coefficient τsnow, which is 0 ≤ τ ≤ 1.

τsnow =
Ts − Tal,1
Tal,2 − Tal,1

(3.460)

Update the snow albedo (αsnow) as

αsnow = αsnow,0 + τsnow(αsnow,2 − αsnow,1) (3.461)

Second, let us consider sea surface roughnesses. Roughnesses of for momentum, heat and
vapor are calculated in SUBROUTINE:[SEAZ0F] (of pgocn.F), supposing the ice-free conditions,
then modified to take into account the effects of ice and snow cover.

When the sea ice exists (L = 1), roughnesses of momentum, heat and vapor (r0,M , r0,H , r0,E)
is modified to take into account sea ice concentration (Rice),
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z0,M = z0,M + (z0,ice,M − z0,M )Rice (3.462)

z0,H = z0,H + (z0,ice,H − z0,H)Rice (3.463)

z0,E = z0,E + (z0,ice,E − z0,E)Rice (3.464)

where, r0,ice,M , r0,ice,H , r0,ice,E is the roughness of sea ice for momentum, heat and vapor,
respectively.

z0,M = z0,M + (z0,snow,M − z0,M )Rsnow (3.465)

z0,H = z0,H + (z0,snow,H − z0,H)Rsnow (3.466)

z0,E = z0,E + (z0,snow,E − z0,E)Rsnow (3.467)

where, r0,snow,M , r0,snow,H , r0,snow,E is the roughness of snow ice for momentum, heat and
vapor, respectively.

Third, let us consider conductivity of ice. When sea ice exists (L = 1), thermal conductivity
of sea ice (k⋆ice) is obtained by

k⋆ice =
Df,ice

max(Rice/σice, ϵ)
(3.468)

where Df,ice is thermal diffusivity of sea ice, and σice is sea ice density, respectively.
The calculated thermal conductivity is modified to kice to take into account that it varies

with snow cover.

hsnow = min(max(Rsnow/σsnow), ϵ), hsnow,max) (3.469)

kice = k⋆ice(1−Rice) +
Dice

1 + ∥Dice/Dsnow · hsnow∥
Rice (3.470)

where hsnow is snow depth, Rsnow is snow area fraction, σsnow is snow density, hsnow,max is
maximum snow depth, and Dsnow is thermal diffusivity of snow, respectively.

Therefore, heat conduction flux and its derivative are

G = kice(Tb − Ts) (3.471)

∂G

∂T
= kice (3.472)

Note that in the ice-free area (L = 2)

G = kocn (3.473)

where kocn is heat flux in the sea temperature layer, and kocn is heat flux in the sea temper-
ature layer, respectively.
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3.8.1.1 Albedo for Visible

In SUBROUTINE [SEAALB] (of pgocn.F), albedo for the visible bands are calculated supposing
ice-free conditions, then modified to take into account the effects of ice and snow cover.

For sea surface level albedo (αL(d)), d = 1, 2 represents direct and scattered light, respectively.
Using the solar zenith angle at latitude ζ, albedo for direct light is presented by

αL(1) = e(C3A∗+C2)A∗+C1 (3.474)

where

A∗ = min(max(cos(θ), 0.03459), 0.961) (3.475)

and C1, C2, C3 are constant parameters, respectively.
On the other hand, albedo for scattered light (αL(2)) is uniformly set to a constant parameter.

αL(2) = 0.06 (3.476)

3.8.1.2 Roughnesses

In SUBROUTINE:[SEAZ0F] (of pgocn.F), the roughnesses of for momentum, heat and vapor
are calculated supposing the ice-free conditions. calculated, according to Miller et al. (1992),
then modified to take into account the effects of ice and snow cover.

The roughness variation of the sea surface is determined by the friction velocity (u⋆).

u⋆ =
√
CM0(ua

2 + va2) (3.477)

where CM0 is a bulk coefficient for momentum, and ua, va are zonal and vertical winds of the
1st layer of the atmosphere. We perform successive approximation calculation of CM0 , because
Fu, Fv, Fθ, Fq are required.

Then, roughnesses of sea surface for momentum, heat and vapor are

z0,M = z0,M0 + z0,MR
+
z0,MR

u⋆2

g
+
z0,MS

ν

u⋆
(3.478)

z0,H = z0,H0 + z0,HR
+
z0,HR

u⋆2

g
+
z0,HS

ν

u⋆
(3.479)

z0,E = z0,E0 + z0,ER
+
z0,ER

u⋆2

g
+
z0,ES

ν

u⋆
(3.480)

where, ν = 1.5 × 10−5[m2/s] is the kinetic viscosity of the atmosphere, z0,M , z0,H and z0,E
are surface roughness for momentum, heat, and vapor, z0,M0 , z0,H0 and z0,E0 are base, and rough
factor (z0,MR

, z0,MR
and z0,ER

), and smooth factor (z0,MS
, z0,MS

and z0,ES
), respectively.
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3.8.2 Calculation of Momentum, Heat and Water Vapor Fluxes

Treatment of sea surface flux is basically the same with CCSR/NIES AGCM (1997). The
surface flux scheme evaluates the physical quantity fluxes between the atmospheric surfaces due
to turbulent transport in the boundary layer. The main input are horizontal wind speed (ua, va),
temperature (Ta), and specific humidity (qa) from the 1st layer of the atmosphere. The output
are the vertical fluxes and the differential values (for obtaining implicit solutions) of momentum,
heat, and water vapor.

Surface fluxes (Fu, Fv, Fθ, Fq) are expressed using bulk coefficients for momentum, head and
vapor (CM , CH , CE) as follows

Fu = −ρCM |Va|ua (3.481)

Fv = −ρCM |Va|va (3.482)

Fθ = ρcpCH |Va|(θs − θa) (3.483)

FPq = ρCE |Va|(qs − qa) (3.484)

where FPq is the possible evaporation flux, where Va is horizontal wind vector, and θs, θa are
potential temperature of surface and 1st layer of the atmosphere, respectively. Although there
is no description, surface fluxes are calculated using wind speed relative to ocean current speed.
For example, F u=-￥rho C M | V a - V o | (u a - u o). Here, V o = ( u o, v o) represents
ocean current vector at the uppermost layer. Note that in a stand-alone AGCM, V o = (0,0) is
assumed.

Turbulent fluxes at the sea surface are solved by bulk formulae as follows. Then, by solving
the surface energy balance, the ground skin temperature (Ts) is updated, and the surface flux
values with respect to those values are also updated. The solutions obtained here are temporary
values. In order to solve the energy balance by linearizing with respect to Ts, the differential
with respect to Ts of each flux is calculated beforehand.

• Momentum flux

τx = −ρCM |Va|ua (3.485)

τy = −ρCM |Va|va (3.486)

where τx and τy are the momentum fluxes (surface stress) of the zonal and meridional
directions, respectively.

• Sensible heat flux
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Hs = cpρCHs|Va|(Ts − (Ps/Pa)
κTa) (3.487)

where Hs is the sensible heat flux from the sea surface; κ = Rair/cp and Rair are the gas
constants of air, and cp is the specific heat of air.

• Bare sea surface evaporation flux

FPq = ρCE |Va| (q∗(Ts)− qa) (3.488)

3.8.2.1 Bulk factors

In SUBROUTINE:[BLKCOF] (of psfcl.F), the bulk factors are calculated. The bulk Richardson
number (RiB), which is used as a benchmark for the stability between the atmospheric surfaces,
is

RiB =

g
θs
(θa − θ(z0))/za
(ua/z1)2

=
g

θs

Ta(ps/pa)
κ − T0

u2a/z1
fT (3.489)

Here, g is the gravitational accerelation, θs is surface potential temperature, Ta is the at-
mospheric temperature of the 1st layer, Ts is the surface skin temperature, ps is the surface
pressure, pa is the pressure of the 1st layer, κ is the Karman constant, and

fT = (θa − θ(z0))/(θa − θs) (3.490)

The bulk coefficients of CM , CH , CE are calculated according to Louis (1979) and Louis et
al. (1982) However, corrections are made to take into account the difference between momen-
tum and heat roughness. If the roughnesses for momentum, heat, and water vapor are set to
z0,M , z0,H , z0,E , respectively, the results are generally z0,M > z0,H , z0,E , but the bulk coefficients

for heat and water vapor for the fluxes from the height of z0,M are also set to C̃H , C̃E , then
corrected.

CM =


C0,M [1 + (bM/eM )RiB]

−eM , RiB ≥ 0

C0,M

[
1− bMRiB

(
1 + dMbMC0,M

√
z1
z0,M
|RiB|

)−1
]

, RiB < 0
(3.491)

C̃H =


C̃0,H [1 + (bH/eH)RiB]

−eH , RiB ≥ 0

C̃0,H

[
1− bHRiB

(
1 + dHbHC̃0,H

√
z1
z0,M
|RiB|

)−1
]

, RiB < 0
(3.492)

CH = C̃HfT (3.493)

C̃E =


C̃0,E [1 + (bE/eE)RiB]

−eE , RiB ≥ 0

C̃0,E

[
1− bERiB

(
1 + dEbEC̃0,E

√
z1
z0,M
|RiB|

)−1
]

, RiB < 0
(3.494)
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CE = C̃Efq (3.495)

C0M , C̃0H , C̃0E is the bulk coefficient (for fluxes from z0M ) at neutral,

C0M = C̃0H = C̃0E =
k2[

ln
(

z1
z0M

)]2 (3.496)

Correction Factor fq is ,

fq = (qa − q(z0))/(qa − q∗(θ0)) (3.497)

but the method of calculation is omitted. The coefficients of Louis factors are (bM , dM , eM ) =
(9.4, 7.4, 2.0), (bH , dH , eH) = (bE , dE , eE) = (9.4, 5.3, 2.0).

is a correction factor, which is approximated from the uncorrected bulk Richardson number,
but we abbreviate the calculation here.

3.8.3 Radiation Flux Calculation

In SUBROUTINE:[RADSFC] (of pgsfc.F), the radiation flux at sea surface is calculated. For the
ground surface albedo (α(d,b)), b = 1, 2 represent the visible and near-infrared wavelength bands,
respectively. Also, d = 1, 2 are direct and scattered, respectively. For the downward shortwave
radiation (SW ↓) and upward shortwave radiation (SW ↑) incident on the earth’s surface, the
direct and scattered light together are

SW ↓ = SW ↓
(1,1) + SW ↓

(1,2) + SW ↓
(2,1) + SW ↓

(2,2)

SW ↑ = SW ↓
(1,1) · α(1,1) + SW ↓

(1,2) · α(1,2) + SW ↓
(2,1) · α(2,1) + SW ↓

(2,2) · α(2,2)

(3.498)

3.8.4 Solving Heat Balance

In SUBROUTINE:[OCNSLV] (of pgocn.F), heat balance at the sea surface is solved. Downward
radiative fluxes are not directly dependent on the condition of the sea surface, and their observed
values are simply specified to drive the model (Hasumi, 2015). Shortwave emission from the sea
surface is negligible, so the upward part of the shortwave radiative flux is accounted for solely
by reflection of the incoming downward flux. Let αS be the sea surface albedo for shortwave
radiation. The upward shortwave radiative flux is represented by

SW ↑ = −αSSW ↓ (3.499)

On the other hand, the upward longwave radiative flux (LW ↑) has both reflection of the
incoming flux and emission from the sea surface. Let α be the sea surface albedo for longwave
radiation and ϵ be emissivity of the sea surface relative to the black body radiation, respectively.
The upward shortwave radiative flux is represented by

LW ↑ = −αLW ↓ + ϵσT 4
s (3.500)
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where σ is the Stefan-Boltzmann constant and Ts is skin temperature, respectively . If sea
ice exists (L = 1), snow or sea ice temperature is considered by fractions. When radiative
equilibrium is assumed, emissivity becomes identical to co-albedo:

ϵ = 1− α (3.501)

The net surface flux (F ∗) is presented by

F ∗ = H +
(
(1− αLk)σT 4

s + αLkLW
↓
)
− LW ↓ + SW ↑ − SW ↓ (3.502)

where H is sensible heat flux.
With the surface heat flux calculated in SUBROUTINE:[SFCFLX] (of psfcm.F) (G), heat flux

into the sea surface (G∗) is presented as

G∗ = G− F ∗ (3.503)

Note that G∗ is downward positive.
The temperature derivative term of G∗ is

∂G∗

∂Ts
=
∂G

∂Ts
+
∂H

∂Ts
+
∂R

∂Ts
(3.504)

When the sea ice exists (L = 1), the surface flux Gice is considered with the sublimation flux
(lsE).

Gice = G∗ − lsE (3.505)

The temperature derivative term of Gice is

∂Gice
∂Ts

=
∂G∗

∂Ts
+ ls

∂E

∂Ts
(3.506)

We can update the skin temperature with sea ice concentration and ∆Ts = Gice(
∂Gice
∂Ts

)−1

Ts = Ts +Rice∆Ts (3.507)

Then, the sensible and latent heat flux on the sea ice (Eice,Hice) is updated.

Eice = E +
∂E

∂Ts
∆Ts (3.508)

Hice = H +
∂H

∂Ts
∆Ts (3.509)

When the sea ice does not existed (L = 2), otherwise, the surface heat flux (Gfree) is
calculated by addition of evaporation flux lcE and the net flux F ∗.
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Gfree = F ∗ + lcE (3.510)

Finally each flux is updated. For sensible heat flux (H), the temperature change on the sea
ice is considered.

H = H +RiceHice (3.511)

Then, the heat used for the temperature change (F ) is saved.

F = RiceHice (3.512)

For upward longwave radiative flux (LW ↑), temperature change on the sea ice (∆Ts) is
considered.

LW ↑ = LW ↑ + 4
σ

Ts
Rice∆Ts (3.513)

For the surface heat flux (G), sea ice existence is considered.

G = (1−Rice)Gfree +RiceGice (3.514)

For latent heat flux E, sea ice existence is considered.

E = (1−Rice)E +RiceEice (3.515)

Then, each term above are saved as freshwater fluxes (Wfree,Wice) of ice covered and free
areas.

Wfree = (1−Rice)E (3.516)

Wice = RiceEice (3.517)
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3.9 Gravity Waves

Effects of sub-grid scale gravity waves on the grid scale flows are represented by two kinds of
gravity wave parameterizations. The orographic gravity wave drag scheme represents decelera-
tions of the grid scale flow due to momentum deposition of orographic gravity waves, which is
described below. In contrast, the non-orographic gravity wave scheme may either accelerate or
decelerate the grid scale flow. At present this document does not contain a detailed description
of the non-orographic gravity wave scheme, and readers may find if in Watanabe (2008) and
Tatebe et al. (2019).

3.9.1 Overview of a Gravity Wave Drag Parameterization

The orographic gravity wave drag scheme represents the upward momentum flux of the gravity
waves induced by sub-grid scale topography and calculates the horizontal wind deceleration
associated with its convergence (McFarlane, 1987). The main input data are eastward wind (u),
northward wind (v), and temperature (T ), and the output data are the tendency of eastward
wind and northward wind, ∂u/∂t, ∂v/∂t.

The outline of the calculation procedure is as follows.

1. The momentum flux at the ground surface is calculated from the variance of sub-grid scale
orography, the horizontal wind speed at the lowest level, and the static stability.

2. The upward propagation of gravity waves is considered. If the momentum flux exceeds
its critical value, which is determined by the critical Froude number, then wave breaking
occurs and the momentum is limited by the critical value.

3. The tendency of horizontal wind is obtained by calculating the vertical convergence of
momentum flux in each layer.

3.9.2 Relationship between Local FroudeNnumber and Momentum Flux

Considering the vertical flux of horizontal momentum due to orographic gravity waves, the
difference between the flux (τ) and the local Froude number (FL = NH/U) at a certain altitude
is

FL =

(
τN

EfρU3

)1/2

, (3.518)

This relationship holds for the following cases where N = g/θ∂θ/∂z is the Brant-Väisälä
frequency, ρ is the density of the atmosphere, U is the wind speed, and Ef is the proportional
constant corresponding to the horizontal scale of the rippling of the surface. From now on,

τ =
EfF

2
LρU

3

N
(3.519)

The local Froude number (FL) cannot exceed the critical Froude number (Fc). If the local
Froude number calculated from (3.518) exceeds the critical Froude number Fc, the gravity wave
becomes supersaturated and the flux decreases to the momentum flux corresponding to the
critical Froude number.
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3.9.3 Momentum Fluxes at the Surface

The magnitude of the vertical flux of horizontal momentum due to gravity waves excited at the
earth’s surface, τ1/2, is calculated by substituting the local Froude number (FL)1/2 = N1h/U1

into (3.519),

τ1/2 = Efh
2ρ1N1U1 , (3.520)

where U1 = |v1| = (u21 + v21)
1/2 is the surface wind speed, N1, ρ1 are estimated to be the

stability and density of the atmosphere near the earth’s surface, respectively. h is an indicator
of the change in the sub-grid orography and is assumed to be equal to the standard deviation
of the surface height (ZSD).

Here, when the local Froude number ((FL)1/2 = N1ZSD/U1) exceeds the critical Froude
number (Fc), the momentum flux is suppressed to the value obtained by substituting (3.519) for
Fc. In other words,

τ1/2 = min

(
EfZ

2
SDρ1N1U1,

EfF
2
c ρ1U

3
1

N1

)
(3.521)

3.9.4 Momentum Fluxes in the Upper Levels

Suppose that the momentum flux τk−1/2 is computed at level k − 1/2. When no saturation
occurs, τk+1/2 is equal to τk−1/2. If the momentum flux (τk−1/2) exceeds the momentum flux
calculated from the critical Froude number at the k + 1/2 level, wave breaking occurs in the k
layer and the momentum flux decreases to the critical flux.

τk+1/2 = min

(
τk−1/2,

EfF
2
c ρk+1/2U

3
k+1/2

Nk+1/2

)
, (3.522)

Note that Uk+1/2 is the magnitude of the horizontal wind speed projected on to the direction
of the lowest level of the horizontal wind,

Uk+1/2 =
vk+1/2 · v1

|v1|
(3.523)

3.9.5 The Magnitude of the Time Variation of Horizontal Wind due to Momentum
Convergence

The tendency of the projected component of the horizontal wind, Uk, is ,

∂U

∂t
= −1

ρ

∂τ

∂z
= g

∂τ

∂p
. (3.524)

That is

∂Uk
∂t

= g
τk+1/2 − τk − 1/2

∆p
. (3.525)

Using this, tendency for the eastward and northward winds are calculated as follows
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∂uk
∂t

=
∂Uk
∂t

u1
U1

(3.526)

∂vk
∂t

=
∂Uk
∂t

v1
U1

(3.527)

3.9.6 Other Notes

1. It is assumed that no gravity waves are excited at the ground surface when the wind speed
is small (U1 ≤ vmin) or when the undulations at the surface are small (ZSD ≤ (ZSD)min).
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4 Miscellaneous

4.1 Coupler

4.1.1 Fluxes to Atmospheric Models

4.1.1.1 Fluxes between Atmosphere and Ocean

Fluxes from the sea surface to the atmosphere (FLXO) are calculated on the sea surface
grid of the atmospheric model.

Boundary conditions such as sea surface temperature, sea ice concentration, sea ice thickness,
snow depth over sea ice, sea ice internal temperature, and ocean surface current velocity are
obtained from the ocean model through an exchanger (sea ice surface temperature is determined
from the sea ice internal temperature, sea ice thickness, and atmospheric conditions over the sea
ice. The sea ice velocity is not currently used for flux calculations in MIROC). The atmospheric
boundary conditions such as wind speed, temperature, and specific humidity at sea are converted
from the atmospheric grid to the sea surface grid using linear or cubic spline completion. The
fluxes from the sea surface are calculated separately for seawater and sea ice, averaged by area
weight, and passed to the atmosphere. When using a sea ice model categorized by sea ice
thickness, it may be necessary to calculate fluxes for each sea ice thickness category, but the
current model specification calculates fluxes for the average sea ice thickness. The conversion
of fluxes and boundary conditions between the atmosphere and ocean by the exchanger will be
described in detail later.

4.1.1.2 Fluxes between Atmospheric land Surface

Fluxes from the land surface to the atmosphere (FLXL) are calculated on a land surface
grid. A land surface grid consists of multiple soil covers and lakes. Freezing and thawing of
lakes and snow cover are considered by a vertical 1D ice model (0-layer model). If the area of
the land surface grid is SL, the area occupied by the lake and each soil cover is respectively

SLlake = SL× LKFRC × FLND (4.1)

SLgrdk = SL×GRFRCk × (1− LKFRC)× FLND (4.2)

where LKFRC is the percentage of lakes on land, k is the type of soil cover, and GRFRCk is
the percentage of soil cover k on land excluding lakes. Fluxes from the land surface are calculated
separately over each of these soil covers and lakes, averaged by area weight, and passed to the
atmosphere.

FLXL = LKFRC × FLXLlake + (1− LKFRC)×
km∑
k=1

(GRFRCk × FLXLgrdk ) (4.3)

where FLXLlake is the flux at the lake surface, FLXLgrdk is the flux at soil cover k, and km
is the number of soil cover types.
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4.1.1.3 Total Flux to the Atmosphere

Since the river is treated without area property in the model, the flux to the atmosphere
(FLXA) can be obtained as a weighted average of the sea-land distribution of the fluxes on the
land grid (FLXL) and at the sea grid (FLXO) as follows

FLXA =
1

SA
× [

jldiv∑
j=1

ildiv∑
i=1

(SLij × FLNDland
ij × FLXLij)

+

jodiv∑
j=1

iodiv∑
i=1

(SOij × (1− FLNDoc
ij )× FLXOij)] (4.4)

.
where, (ildiv,jldiv) is the number of east-west and north-south divisions of the land surface

grid. Fluxes computed in the atmospheric model, such as precipitation, are also included in
FLXL and FLXO. In the case of such fluxes, all the fluxes in the partitioned land and sea
surface grids have the same value as the corresponding grid.

4.1.2 Fluxes between Land Surface Model and River Model

4.1.2.1 Fluxes between Land Surfaces and the River

In the current specification of the model, the fluxes of water between river and land surfaces
deal only with the inflow of water from the river to the lake (RUNIN), the outflow from the
lake to the river (RUNOFF ), the inflow of water to the land surface at the inland vanishing
point (RUNIN), and the outflow of water overflowing the soil to the river (RUNOFF ). Here,
the inland vanishing point indicates the point where the endpoint of the river disappears, such
as in deserts. The water balance in the river model is divided into ice and water. The ice in
the river model corresponds to a pseudo-glacier. Here, the phase change in the river model is
not considered to guarantee the conservation of melting heat. In addition, the flow rate of a
river is defined as the amount of water present in the river grid divided by its area. Water and
ice are transported downstream in the river model according to the river channel network data.
In the river model in MIROC6, the river discharge at the inland vanishing point of the river is
scattered over the global ocean to obtain the water balance.

4.1.2.2 Water Runoff from Land Surface

When each soil cover in the land surface grid can no longer hold water or snow and ice, water
or ice is passed from each soil model to the river model through the coupler.

RUNOFF grdall = (1− LKFRC)×
km∑
k=1

(GFLRCk ×RUNOFF grdk ) (4.5)

The details of the runoff from each soil cover can be found in the documentation of the land
surface model MATSIRO. In the lake model, when the lake level or snow/ice thickness (H)
exceeds a constant value (Hc), the water flows out to the river at a time constant τh

RUNOFF lake = LKFRC × (H −Hc)

τh
, (H > Hc) (4.6)
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RUNOFF lake = 0, (H < Hc) (4.7)

The average runoff from the land surface is as follows.

RUNOFF landall = RUNOFF lake +RUNOFF grdall (4.8)

When considering the average runoff volume of the land surface grid, it is necessary to
multiply the above equation by the percentage of land surface FLND. In the river model,
RUNOFF landall is converted to the river grid with the weight of sea-land distribution, and the
runoff amount RUNOFF riv is used for calculation.

4.1.2.3 Runin of Water from a River to a Lake

When a lake exists in the middle of a river channel, water flows into the lake according to
the river flow rate. In order to calculate the amount of water flowing into the lake, the river
flow GDRIV in the river grid is converted to the river flow GDRIV L in the land surface grid
through the coupler. Here, GDRIV L is the amount normalized by the area of the land surface
grid. In the land surface grid, the river inflow to the lake, RUNINN , is defined by the river
flow (GDRIV L) and the time constant τ as follows

RUNINN lake = GDRIV L/τ (4.9)

.
Since the current specification only considers inflow from rivers to lakes, except at the inland

vanishing point, the average inflow at the land surface is

RUNINN land = RUNINN lake × LKFRC (4.10)

.
When there are multiple river grids corresponding to a land surface grid, if the river water

inflow to the land surface averaged over the land surface grid is returned to the river grid using
only the area weights as in RUNOFF , it is possible that more water will flow out of the river
than exists in the river grid. Therefore, we convert the ratio of discharge to river flow from the
land surface grid to the river grid, and estimate the river discharge (inflow to the land surface)
in each river grid. The runoff ratio of the river flow to the land surface grid is

RINN land = RUNINN land/GDRIV L (4.11)

.
If the discharge rate converted to the river grid is RINN riv, the discharge (inflow to the

land surface) in the river grid is

RUNINN riv = RINN riv ×GDRIV (4.12)

.
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4.1.3 Fluxes to the Ocean Model

4.1.3.1 Boundary Conditions for the Ocean on a Sea Level Grid

As mentioned above, the fluxes between the atmosphere and the ocean are calculated on the
sea level grid. In this section, we describe the conversion from the ocean model grid to the sea
surface grid. The standard variables to be converted from the ocean model to the atmospheric
sea surface grid are sea surface temperature (SST ), sea ice concentration (AI), sea ice thickness
(HI), snow depth over sea ice (HSN), sea ice internal temperature (TI), and ocean surface
current velocity (UO, V O). In order to clarify which grid we are dealing with in the future,
variables in the ocean model grid will be denoted by superscript OGCM and variables in the
sea surface grid by superscript oc. In addition, the position in the ocean grid is denoted by LO
and the position in the sea surface grid by LC. The boundary condition of the ocean in the sea
level grid is defined as follows.

SST oc(LC) =

IJO(LC)∑
N=1

[SSTOGCM (IJO2C(LC,N))× SOCN(LC,N)]/SOCNG(LC) (4.13)

AIoc(LC) =

IJO(LC)∑
N=1

[AIOGCM (IJO2C(LC,N))× SOCN(LC,N)]/SOCNG(LC) (4.14)

HIoc(LC) =
1

SOCNG(LC)×AIoc(LC)

IJO(LC)∑
N=1

[HIOGCM (IJO2C(LC,N))

×AIOGCM (IJO2C(LC,N))× SOCN(LC,N)] (4.15)

HSNoc(LC) =
1

SOCNG(LC)×AIoc(LC)

IJO(LC)∑
N=1

[HSNOGCM (IJO2C(LC,N))

×AIOGCM (IJO2C(LC,N))× SOCN(LC,N)] (4.16)

TIoc(LC) =
1

SOCNG(LC)×HIoc(LC)×AIoc(LC)

IJO(LC)∑
N=1

[TIOGCM (IJO2C(LC,N))

×HIOGCM (IJO2C(LC,N))×AIOGCM (IJO2C(LC,N))× SOCN(LC,N)](4.17)

UOoc(LC) = RUO(LC)×
∑IJO(LC)

N=1 [UOOGCM (IJO2C(LC,N))× SOCN(LC,N)]

SOCNG(LC)

+RV O(LC)×
∑IJO(LC)

N=1 [V OOGCM (IJO2C(LC,N))× SOCN(LC,N)]

SOCNG(LC)
(4.18)

V Ooc(LC) = −RV O(LC)×
∑IJO(LC)

N=1 [UOOGCM (IJO2C(LC,N))× SOCN(LC,N)]

SOCNG(LC)

+RUO(LC)×
∑IJO(LC)

N=1 [V OOGCM (IJO2C(LC,N))× SOCN(LC,N)]

SOCNG(LC)
(4.19)
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SOCNG(LC) =

IJO(LC)∑
N=1

SOCN(LC,N) (4.20)

where, IJO(LC): Number of ocean grids corresponding to the sea level grid (LC) in the
atmospheric node.

IJO2C(LC,N): Location of the ocean grid corresponding to the sea surface grid in the
atmospheric node.

SOCN(LC,N): Area of the ocean grid corresponding to the sea surface grid in the atmo-
spheric node.

RUO(LC): Cosine of the rotation angle of the vector.
RV O(LC): Sine of the rotation angle of the vector
SOCNG(LC): Area of ocean occupied by sea surface grid.
The ratio of land surface to the sea level grid is also defined as follow.
FLNDoc = (1− SOCNG)/SO
where, SO is the area of sea surface grid.
The variables related to sea ice that are converted to the sea surface grid are calculated

as the average of variables categorized by sea ice layer thickness (AIM,HIM,HSM,TIM) as
follows.

AIOGCM =
NIC∑
L=1

AIMOGCM (L) (4.21)

HIOGCM =

NIC∑
L=1

HIMOGCM (L)×AIMOGCM (L)/AIOGCM (4.22)

HSNOGCM =
NIC∑
L=1

HSMOGCM (L)×AIMOGCM (L)/AIOGCM (4.23)

TIOGCM =
NIC∑
L=1

TIMOGCM (L)×AIMOGCM (L)/(AIOGCM ×HIOGCM ) (4.24)

where, NIC is the number of category of sea ice.

4.1.3.2 Conversion of Air-Sea Fluxes Calculated on the Sea Surface Grid to the
Ocean Grid

Fluxes calculated on the sea surface grid are calculated at sea surface and sea ice surface,
respectively, and fluxes to the atmosphere are calculated as

FLXO = (1−AI)× FLUXO +AI × FLUXI (4.25)

These fluxes are time-integrated by the flux coupler in the atmospheric model with weights for
sea surface and sea ice extent, and then converted to the ocean grid by the coupled atmosphere-
ocean time step and passed to the ocean model.
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FLUXOAOGCM (LO) = ROCN(LO)

×
IJA(LO)∑
N=1

FLUXOAoc(IJC2O(LO,N))× SATM(LO,N)

SATMG(LO)
(4.26)

FLUXIAOGCM (LO) = ROCN(LO)

×
IJA(LO)∑
N=1

FLUXIAoc(IJC2O(LO,N))× SATM(LO,N)

SATMG(LO)
(4.27)

SATMG(LO) = ROCN(LO)×
IJA(LO)∑
N=1

SATM(LO,N) (4.28)

ROCN(LO) = SATMG(LO)/SOGCM (LO) (4.29)

FLUXOAoc = (1−AIoc)× FLUXOoc (4.30)

FLUXIAoc = AIoc × FLUXIoc (4.31)

where, IJA(LO)：Number of sea level grids in the atmospheric model corresponding to the
ocean grid (LO)

IJC2O(LO,N)：Location of the sea surface grid of the atmospheric model corresponding
to the ocean grid

SATM(LO,N)：Area of the sea surface grid of the atmospheric model corresponding to the
ocean grid

SATM(LO,N) = SOCN(LC,L), LC = IJC2O(LO,N), LO = IJO2C(LC,L)
SOGCM (LO)：Area of the ocean grid
The area of the ocean grid and the sum of the areas of the corresponding ocean grids should

match, although the coordinate systems of the atmospheric model and the ocean model are
different (the surface areas of the earth in the atmospheric model and the ocean model do not
match exactly).

When creating the conversion file, the grid of the atmospheric model is divided into small
areas, and the area of the corresponding ocean grid is estimated from the sum of these areas,
so they do not match exactly. For this reason, the flux balance between the atmosphere and
the ocean is adjusted by multiplying by the ratio (ROCN). The wind stresses to the ocean are
also calculated as wind stresses over sea level (TXO, TY O) and over sea ice (TXI, TY I), but
without multiplying the weights of sea level and sea ice area.

TXOOGCM (LO) =

+RU(LO)×ROCN(LO)×
IJA(LO)∑
N=1

[TXOoc(IJC2O(LO,N))× SATM(LO,N)]

SATMG(LO)

+RV (LO)×ROCN(LO)×
IJA(LO)∑
N=1

[TY Ooc(IJC2O(LO,N))× SATM(LO,N)]

SATMG(LO)
(4.32)
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TY OOGCM (LO) =

−RV (LO)×ROCN(LO)×
IJA(LO)∑
N=1

[TXOoc(IJC2O(LO,N))× SATM(LO,N)]

SATMG(LO)

+RU(LO)×ROCN(LO)×
IJA(LO)∑
N=1

[TY Ooc(IJC2O(LO,N))× SATM(LO,N)]

SATMG(LO)
(4.33)

where,
RU(LO)：cosine of the rotation angle of the vector
RV (LO)：sine of the rotation angle of the vector

4.1.3.3 Redistribution of Fluxes in the Ocean Model

The fluxes converted to the ocean grid are updated at each time step of the coupling. Since
the coupling time step is longer than the ocean model time step, the sea level/sea ice area
ratio in the ocean model is updated to a different value than the one used to calculate the
flux. Therefore, in order to obtain an accurate heat and water balance, the fluxes need to be
distributed according to the updated sea surface and sea ice area ratios. The fluxes FLUXOA
and FLUXIA at sea surface and sea ice surface are ocean grid-averaged values. Fluxes to each
sea ice category are currently distributed evenly independent of sea ice thickness.

FLUXIAM(L) = FLUXIA×AIM(L) (4.34)

FLUXOA = FLUXOA+ FLUXIA× [1.0−
LMAX∑
L=1

AIM(L)] (4.35)

where, AIM denotes the percentage of area covered by sea ice in the grid (sea ice concen-
tration), L denotes the type of sea ice thickness category, and LMAX denotes the number of
thickness categories. If there is no sea ice surface, all fluxes will be at sea surface. If sea ice
disappears in the middle of the coupling time step, the flux due to sublimation is divided into
the heat flux assuming a sea ice surface and the freshwater flux (sea ice loss). The heat flux is
directly reflected in the temperature change of the first layer of ocean. On the other hand, the
freshwater flux due to sublimation is converted into heat flux and freshwater flux and given to
the first layer of the ocean, assuming that sea ice is generated by the sublimation. As for the
wind stress, it is not weighted by sea level and sea ice area before the grid transformation, so it
is driven by the respective area weights in each sea ice thickness category in the ocean model.
For this reason, momentum is not conserved.

4.1.3.4 Water Runoff from Rivers to the Ocean

At the end of the river model, we calculate the water flowing from the estuary of river to
the ocean. Water arriving at the estuary of the river grid is first converted to the atmospheric
sea surface grid and time integrated in a flux coupler. After that, it is converted to the ocean
grid via an exchanger and passed to the ocean model in the same way as the atmospheric
precipitation data. At this point, the temperature of the river water is treated as the same as
the sea surface temperature, as is the case with precipitation. Therefore, strictly speaking, heat
is not conserved. Ice runoff is handled in the same way as snowfall.
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4.1.3.5 Number of Divisions in the Sea Surface Grid and Resolution of the Ocean
Model

The sea surface grid is created by dividing the latitude and longitude of the atmospheric grid,
but if the number of divisions is not sufficient and the ocean model grid has a higher resolution
than the atmospheric sea surface grid, the structure of the atmospheric grid size may remain
when the flux is converted to the ocean grid through the exchanger. . In addition, data such
as precipitation from the atmosphere is not interpolated when converting from the atmospheric
grid to the ocean grid, so the atmospheric grid structure remains in the ocean grid for these
fluxes. When linear interpolation is used instead of cubic spline interpolation when converting
to the sea surface grid, the atmospheric grid structure may remain for differential quantities
such as wind stress curl.
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4.2 Definition of Land-Sea Distribution

The land-sea distribution in MIROC is prioritized by the land-sea distribution defined by the
ocean model. While one grid in the ocean model is defined by land or sea only, the land and
ocean grids in the atmospheric model are determined in proportion to the land and sea to be
consistent with the ocean model’s land-sea distribution.

SA : area of the atmospheric grid, SLij : area of the land grid, SOij : area of the sea surface
grid, FLNDatm, FLNDland

ij , FLNDoc
ij : percentage of land surface is occupied by each grid.

Then, following equation is satisfied.

SA ∗ FLNDatm =

jldiv∑
j=1

ildiv∑
i=1

(SLij ∗ FLNDland
ij ) =

jodiv∑
j=1

iodiv∑
i=1

(SOij ∗ FLNDoc
ij ) (4.36)

where, (ildiv,jldiv) is the number of east-west and north-south divisions of the land surface
grid, and (iodiv,jodiv) is the number of east-west and north-south divisions of the sea surface
grid. In the land surface grid, if even a small amount of land is defined to exist, boundary values
such as land cover are required.
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