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Abstract

Can one hear the shape of a drum? It proposed by Kac in 1966. The simple answer is NO

as shown through the construction of iso-spectral domains. However, the method and the idea

to detect the shape of the domain can be applied to many fields. In this paper, we give an

analytic method to detect the dislocation of the lattice. Moreover, if the dislocation became

the acute trapezoid, we give a method to distinguish the shape by getting the eigenvalue.

格子の固有値と転位

林徳燮 (東京大学数理科学研究科)

概要

太鼓の形が聞こえますか. それは 1966年に Kacによって提案されました .簡単な答えは等スペ
クト ル領域の構築を通して示されるよう に NOです. しかしながら , ド メ インの形状を検出する方
法およびアイデアは, 多く の分野に適用することができる . 本論文では, 格子の転位を検出するた
めの解析法を与える . さらに , 転位が鋭い梯形になった場合, 固有値を求めることで形状を区別す
る方法を示します.

1 Introduction

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions

or molecules in a crystalline material [3]. Ordered structures occur from the intrinsic nature of the

constituent particles to form symmetric patterns that repeat along the principal directions of three-

dimensional space in matter. The dislocation of lattice is one of popular tops in studying the lattice,

in this paper we focus on the two-dimensional lattice and show how to detect the dislocation by

analysis techniques. The theory describing the elastic fields of the defects was originally developed

by Volterra [9]. The term ’dislocation’ referring to a defect on the atomic scale, which was coined

by Taylor [8]. Some types of dislocations can be visualized as being caused by the termination

of a plane of atoms in the middle of a crystal. In such a case, the surrounding planes are not

straight, however they bend around the edge of the terminating plane so that the crystal structure

is perfectly ordered on either side. This phenomenon is analogous to the following situation related

to a stack of paper: If half of a piece of paper is inserted into a stack of paper, the defect in the

stack is noticeable only at the edge of the half sheet. In this paper, we give an analytic method

to detect the dislocation and categorize the dislocation into some cases. From Oct. 2017 to Oct.

2018, the author joined the program of Mathematical science practice research(数理科学実践研究)

at Graduate School of Mathematical Sciences, The University of Tokyo. During the practice, the

author found the relation between eigenvalues and dislocation. The purpose of this paper is to

understand the dislocation from the viewpoint of the eigenvalue or equation.

In this paper, we focus on 2-dimensional crystallography. First, we give a brief introduction to

the Kac problem in mathematical viewpoint to the readers who are not so familiar with. On the

plane R
2, given a bounded region Ω. If one makes drum with exactly the same shape of Ω, then we

can hear the rhythms of the drum. Weyl [10] discovered the first geometric spectral invariant: If

two drums sound the same, then they have the same area. Kac [6] posed a question: whether or

not the drum must have the same shape? The methods used to understand this problem draw on

diverse areas: e.g. partial differential equations, dynamical systems, group theory, number theory

and probability.
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We translate the problem into mathematical language as following: Suppose that we know all

the eigenvalues 0 < λ1 < λ2 < · · · → ∞ of a bounded region Ω, i.e. each λi solves the equation







−∆u = λiu in Ω,

u = 0 on ∂Ω,
(1)

where ∆ = ∂2

∂x2 + ∂2

∂y2 . Then, can we determine the shape of Ω uniquely?

For example, in 1-dimensional case, as for any connected bounded set Ω of R is an interval with

length l. Without loss of generality, we assume Ω = [0, l].







−∆u = λu (0, l),

u = 0 {0, l}.
(2)

We know λn = (nπ/l)2, un(t) = sin(nπ
l
t). Thus, if we get all the eigenvalues, we know the length of

this region, i.e. it is uniquely determined. However, the answer is NO in 2-dimensional case. The

example was given by Carol Gordon, David Webb, and Scott Wolpert [5]. The following pictures

show that even though they are different, their corresponding eigenvalues are exactly the same.

Figure 1: different shapes with the same eigenvalues

In this paper, we introduce an analytic method to distinguish the shape of some special trapezoid.

For a two-dimensional lattice, by hearing the spectrum, we know the the shape, i.e. width and

height of each unit. To distinguish the shapes of the dislocation, we need some assumptions:

Assumption 1 We assume that the standard crystallography is a rectangle. Moreover, we assume

that dislocation becomes a trapezoid.

Under the above Assumption 1, we can distinguish the dislocations by the following Theorem.

Theorem 2 Let Ω be a bounded in region of R2. Suppose that we know all the eigenvalues 0 <

λ1 < λ2 < · · · → ∞, of Laplacian operator with Dirichlet boundary on ∂Ω ,i.e. each λi solves the

following equation






−∆u = λiu in Ω,

u = 0 on ∂Ω.
(3)

If Ω is either acute trapezoid, isosceles trapezoid or right trapezoid, then the exact shape of Ω can

be uniquely determined.

The organization of the paper is the following: in Section 2, we give a preliminary to the heat

kernel and asymptotic formula about the trace of the heat kernel, asymptotic formula about the

trace of the heat kernel and the sketch proof of Theorem 2.
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2 History and sketch proof of Theorem 2

Firstly, we recall the heat kernel of the Euclidean space. The heat kernel in R
2 is given by

H(p, q, t) =
1

4πt
exp

(

−dist2(p, q)

4t

)

,

where dist(p, q) denotes the Euclidean distance between the two points p and q. If we take a trace,

we have
∞
∑

i=1

e−λit = Tr(H(p, q; t)) =: H(t).

By Weyl [1, Chapert 1], we know that

H(t) ∼ A

4πt
− P

8
√
πt

+O(1),

where A denotes the area of Ω and P denotes the perimeter of ∂Ω. On polygon , Grieser and

Maronna [4] gave an asymptotic formula,

H(t) ∼ A

4πt
− P

8
√
πt

+
1

24
(

n
∑

i=1

π

θi
− θi

π
), (4)

where θi denotes the interior angles. Therefore, we have the following theorem.

Theorem 3 (Grieser and Maronna) Let Ω be a triangle of the 2-dimensional Euclid space R
2.

Suppose that the eigenvalues of the Laplacian operator with Dirichlet boundary condition are known.

Then we can determinate the shape of Ω.

Proof For any triangle, let A denote its area, P denote its perimeter and θi denote the three angles

for i = 1, 2, 3. The idea is straightforward. Since any triangle is uniquely determined by

θ1

θ2

θ3

Figure 2: triangle

• its area A，

• A/P 2 = cot(θ1/2) + cot(θ2/2) + cot(θ3/2),

• 1
θ1

+ 1
θ2

+ 1
θ2

.

Together with the formula 4, we have our desired result.

However to determinate a trapezoid or a convex quadrilateral, the above conditions are not suffi-

cient. On the other hand, Duistermaat and Guillemin [2] showed that the singularities of the wave

trace
∞
∑

i=1

ei
√
λit =: W (t),

are contained in the length spectrum, i.e. h ∈ Sing(W (t)).

Now we give the proof of our main theorem.

Proof(of Theorem 2) We divide the proof into three cases and begin from the easiest case.

(1) Isosceles trapezoid.
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b

B

ll h

α

Figure 3: isosceles trapezoid

By the similar argument of Theorem 3, we have that: If Ω is an isosceles trapezoid and we get the

eigenvalues

λ1 < λ2, · · · ,

of the equation (3), then we know the height h, Perimeter P , and area A. Let l denote the length

of a leg. By the straightforward calculation, we have that

A =
1

2
(b+B)h, h/ sinα = l.

Under the hypothesis, one gets

l =
1

2
(P − 2A/h), α = sin−1(

2h

P − 2A
h

),

which implies that the shape of isosceles trapezoid is uniquely determined.

(2) Right trapezoid. Since one angle is known π
2 , we can apply the methods to determine the

b

B

l′l

β

α

Figure 4: right trapezoid

shape, here we omit the proof.

(3) For the acute trapezoid, i.e. the sum of the bottom angles is less than π
2 .

b

B

l′l h

α β

Figure 5: acute trapezoid

Clearly, given the eigenvalues, we have the the following four identities:

l =
h

sinα
, l′ =

h

sinβ
,
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B + b =
2A

h
, l + l′ = P − (B + b).

Therefore, it suffices to determine α and β. The following lemma provides us an answer to deter-

mining the bottom angles.

Lemma 4 (Lu and Rowlett [7]) Let p, q ∈ R satisfy







cscα+ cscβ = p,

1
α(π−α) +

1
α(π−α) = q.

(5)

If 0 < β ≤ α < π
2 , for any p and q satisfy the above equation, then there exists a unique solution

(α, β).

So far, we have shown our main theorem. But for the other cases, e.g. random trapezoid, it is not

clear whether the eigenvalues can determine the shape or not.
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