数理科学実践研究レター 2019-13 November 28, 2019

結晶格子の Growth の対称性と Ehrhart 理論との関係

by

小関 直紀

UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES KOMABA, TOKYO, JAPAN

結晶格子の Growth の対称性と Ehrhart 理論との関係

小関直紀1(東京大学大学院数理科学研究科)

Naoki Koseki (Graduate School of Mathematical Sciences, The University of Tokyo)

1 導入

本レポートは、社会数理実践研究における議論で得られたことのサーヴェイである。また、本レポートの内容は、中村勇哉氏との共同研究である。本研究の目的は、物質・材料学における中心的な研究対象である「結晶」を、数学的に定義し理解することである。より具体的には、結晶格子に対して定まる growth と呼ばれる関数 g(n) を通じて、結晶の対称性について研究することが目的である。以下の予想がある:

予想 1 ([4]) Growth g(n) の母関数 G(t) は対称性

$$G(1/t) = \pm G(t)$$

を満たす.

Growth 関数が良い性質を満たすと仮定すると、上記の予想1が正しいことを確認した.

定理 2 *Growth* g(t) が reflexive polytope P の拡大 nP の格子点の個数の増大から得られるとする. この時. 予想 1 が成り立つ.

2 母関数の対称性

まず結晶の growth を定義する.

定義 3 C を結晶とし、C 内の原子の一つを原点として固定する. 原点から n 個以下の原子結合でたどり着ける原子の数を h(n) とおく. この時、関数

$$q(n) := h(n) - h(n-1)$$

を結晶 C の **growth** と呼ぶ. また, *growth* の母関数 G(t) は,

$$G(t) := \sum_{n=0}^{\infty} g(n)t^n$$

で定義される.

以下では、予想 1 が成り立つための、growth g(n) が満たすべき十分条件を考察する.

定義 4 関数 $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ が 準多項式である とは、自然数 N>0 と有理数係数多項式 p_i $(i=1,\cdots,N-1)$ が存在して、

$$f(n) = p_i(n) \quad (n \equiv i \bmod N)$$

を満たすことである.

以下の命題が鍵となる:

命題 5 f(t) を準多項式とし、g(t):=f(t)-f(-t) とおく.この時、母関数 $G(t):=\sum_{n=0}^{\infty}g(n)t^n$ は 対称性 G(1/t)=G(t) を満たす.同様に、g'(t):=f(t)+f(-t) の母関数 G'(t) は、G'(1/t)=-G'(t) を満たす.

¹koseki@ms.u-tokyo.ac.jp

証明中に次の記号を用いる. 級数 $f(t) \in \mathbb{Q}(t)$ に対し, $Df, If \in \mathbb{Q}(t)$ を次のように定義する:

$$Df := \left(t\frac{df}{dt}\right)(t), \quad If(t) := f(1/t).$$

関係式

$$D \circ I = -I \circ D \tag{1}$$

が成り立つことに注意する.

証明 [命題 5 の証明] G(t) に関する主張のみ示す. G'(t) についても, 同様の議論が成り立つ.

$$f_l(n) = \begin{cases} n^l & (n \equiv n_0 \bmod N), \\ 0 & (\text{otherwise}) \end{cases}$$

の場合に示せば十分である. ここで, n_0,N,l は, $0 \le n_0 < N, l \ge 0$ を満たす整数である. まず $n_0 > 0$ の場合を考える. 各 $l \ge 0$ に対し, $g_l(t) := f_l(t) - f_l(-t)$, $G_l(t) = \sum_{n=0}^\infty g_l(n)t^n$ とおく. さらに, 級数 F_l,H_l を次のように定義する:

$$F_l(t) := \sum_{n \equiv n_0 \bmod N} n^l t^n, \quad H_l(t) := \sum_{n \equiv N - n_0 \bmod N} n^l t^n.$$

定義より, $G_l(t) = F_l(t) + (-1)^{l+1}H_l(t)$ に注意する. さらに, 関係式 (1) を用いて,

$$F_l(1/t) = (I \circ D^l)(F_0(t))$$

$$= (-1)^l (D^l \circ I)(F_0(t))$$

$$= (-1)^{l+1} D^l (H_0(t))$$

$$= (-1)^{l+1} H_l(t)$$

が成立. 同様にして,

$$H_l(1/t) = (-1)^{l+1} F_l(t)$$

が成り立つので、母関数 G(t) について対称性 G(1/t) = G(t) が成り立つ.

最後に, $n_0 = 0$ の場合についても,式 (1) を用いて同様に証明することができる.

さて、上記の命題の仮定が成り立つような代表的な状況として、有理多面体内の格子点の数え上げがある (Ehrhart 理論).

定理 6 ([1, 3]) $P \subset \mathbb{R}^d$ を有理多面体とし、その内部を P^0 とおく. この時、以下の性質を満たす有理数係数の準多項式 h(t)、 $h^0(t)$ が存在する.

- 1) すべての整数 $n \in \mathbb{Z}_{\geq 0}$ に対して, $h(n) = \sharp (nP \cap \mathbb{Z}^d)$ が成立.
- 2) すべての整数 $n \in \mathbb{Z}_{\geq 0}$ に対して, $h^0(n) = \sharp (nP^0 \cap \mathbb{Z}^d)$ が成立.
- 3) $h^0(t) = (-1)^{\dim P} h(-t)$ が成立.

準多項式 h(t), $h^0(t)$ を **Ehrhart** 準多項式 と呼ぶ.

命題5と定理6を合わせることで次の結論を得る:

命題 7 $P \subset \mathbb{R}^d$ を有理多面体とし、その内部を P^0 とおく、 $h(t),h^0(t)$ をその Ehrhart 準多項式とする. g(n):=h(n)-h(n-1) とし、その母関数を G(t) とおく、もし以下の同値な条件が成り立つと仮定すると、母関数の対称性 $G(1/t)=(-1)^{\dim P}G(t)$ が成り立つ:

- (1) $h(n-1) = (-1)^{\dim P} h(-n)$.
- $(2) \ \sharp ((n-1)P \cap \mathbb{Z}^d) = \sharp (nP^0 \cap \mathbb{Z}^d).$

さらに、P が整多面体である場合には、次の条件とも同値である (文献 [3] 参照).

- (3) P が reflexive, すなわち, P の dual polytope が整.
- (4) P に対応するトーリック多様体が Gorenstein Fano.

特に、定理2が成り立つ.

例 8 定理 2 が適用できる簡単な例を挙げる. 結晶 C として,実平面 \mathbb{R}^2 内の標準的な格子 \mathbb{Z}^2 \subset \mathbb{R}^2 を取り,原点 $(0,0) \in \mathbb{Z}^2$ からの growth 関数 g(n) を考える. この growth 関数は,4 点 (1,0),(0,1),(-1,0),(0,-1) を頂点とする $reflexive\ polytope\ P$ の拡大 nP の格子点の増大と一致する. したがって定理 2 を適用することができ,格子 C に関して予想 1 が成り立つ.

- 注意 9 1) reflexive polytope の分類は 4 次元までなされている. 2 次元: 16 種類, 3 次元: 4319 種類, 4 次元: 473800776 種類, である [3].
 - 2) 命題 7 (5) に現れるトーリックファノ多様体とは、代数幾何学における研究対象である. 最近、 $C.\ Birkar$ 氏によって、固定された次元の (トーリックとは限らない) ファノ多様体全体の集合 が、ある種の有界性を満たすことが示された (BAB 予想). Birkar 氏はこの業績により 2018 年 のフィールズ賞を受賞した [2].

3 まとめ

本研究により、reflexive polytope の格子点の数え上げと一致するような growth 関数に関しては、母関数の対称性に関する予想 1 が成り立つことがわかった。また、一般の状況でも、予想 1 は命題 7 (2) の条件をチェックすることに帰着された.

今後の研究の方向性として、具体的な結晶に対して命題 7(2) の条件をチェックすること、より一般の結晶格子に適用できる形に Erhart 理論を拡張することなどが挙げられる.

謝辞 2018 年度社会数理実践研究において, 一年間を通じてご指導いただいた中川淳一先生に厚く 御礼申し上げます. また, 本レターの執筆あたって議論にお付き合いいただいた中村勇哉先生にも厚 く御礼申し上げます.

参考文献

- [1] M. Beck, S. Robins. Computing the continuous discretely. Integer-point enumeration in polyhedra. Second edition. Undergraduate Texts in Mathematics. Springer, New York, 2015.
- [2] C. Birkar. Birational geometry of algebraic varieties. arXiv e-prints, 2017.
- [3] D.A. Cox, J.B Little, H.K. Schenck. Toric Varieties. Graduate Studies in Mathematics 124. American Mathematical Society, Providence, RI, 2011.
- [4] 若月駿. 結晶の growth について. 社会数理実践研究レター, 2018.