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Abstract

In incomplete information games with ambiguous information, rational behavior de-

pends on fundamental ambiguity (ambiguity about states) and strategic ambiguity (ambi-

guity about others’ actions). We study the impact of strategic ambiguity in global games,

which is evident when one of the actions yields a constant payoff. Ambiguous-quality

information makes more players choose this action, whereas (unambiguous) low-quality

information makes more players choose an ex-ante best response to the uniform belief over

the opponents’ actions. If the ex-ante best-response action yields a constant payoff, suffi-

ciently ambiguous-quality information makes most players choose this action, thus induc-

ing a unique equilibrium, whereas sufficiently low-quality information generates multiple

equilibria. In applications to financial crises, we demonstrate that news of more ambiguous

quality triggers a debt rollover crisis, whereas news of less ambiguous quality triggers a

currency crisis.
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1 Introduction

Consider an incomplete information game with players who have ambiguous beliefs about a

payoff-relevant state.1 Players receive signals about a state, but they do not exactly know the

true joint distribution of signals and a state. In this game, players’ beliefs about the opponents’

actions are also ambiguous even if players know the opponents’ strategies, which assign an

action to each signal, because their beliefs about the opponents’ signals are ambiguous. Thus,

rational behavior depends not only on fundamental ambiguity (ambiguity about states) but also

on strategic ambiguity (ambiguity about others’ actions).

Strategic ambiguity can have a substantial impact on equilibrium outcomes. To illustrate it,

consider a continuum of players who decide whether or not to invest in a project. The payoff

to “investing” is 2 if the project succeeds and −1 if the project fails, while the payoff to “not

investing” is 0. The project’s success depends upon the proportion of players to invest and a

state, which is either g (good) or b (bad) with an equal probability 1/2. The project succeeds

if and only if the state is g and more than two thirds of the players invest. If players have no

additional information about the state, this game has two symmetric pure-strategy equilibria,

where all players invest, and no players invest, respectively.

We now assume that each player receives a private signal about the state: he receives G

(resp. B) with probability p ≥ 1/2 when the state is g (resp. b), and signals are conditionally

independent across players. We also assume that players do not know the true value of p and

make a decision on the basis of the most pessimistic assessment of p conforming to maxmin

expected utility (MEU) preferences (Gilboa and Schmeidler, 1989) and prior-by-prior (full

Bayesian) updating (Fagin and Halpern, 1990; Jaffray, 1992; Pires, 2002). Then, this game has

a unique equilibrium, where no players invest. To see why, consider first a player who receives

signal B. The conditional probability of state b is p by Bayes rule, so the worst-case scenario

for investing is that the state is bad with probability 1. Facing such fundamental ambiguity,

this player does not invest as if the signal were precise. Consider next a player who receives

signal G. The expected proportion of the opponents with signal B is 2p(1 − p) ≤ 1/2 by Bayes

rule and the law of large numbers, so the worst-case scenario for investing is that half of the

opponents receive signal B and do not invest. Facing such strategic ambiguity, this player does

not invest as if the signal were imprecise. To summarize, ambiguous signals with unknown

1See Gilboa and Marinacci (2013) and Machina and Siniscalchi (2014) for a survey of the motivation and
history of ambiguity and ambiguity aversion.
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p ∈ [1/2, 1] give rise to a unique rationalizable strategy,2 wheres uninformative signals with

known p = 1/2 result in multiple equilibria.

This paper studies the impact of strategic ambiguity in binary-action supermodular games of

incomplete information in which players receive noisy private signals about a state, i.e., global

games (Carlsson and van Damme, 1993).3 Our model is a global game equipped with multiple

priors, where players make a decision conforming to MEU preferences and prior-by-prior up-

dating. In contrast to the above example, only a tiny portion of players have a dominant action

facing fundamental ambiguity. However, strategic ambiguity amplifies the effect of fundamen-

tal ambiguity through ambiguous belief hierarchies on the opponents’ dominant actions. As a

result, the role of ambiguous-quality information can be quite different from that of low-quality

information.

We first show that our model is also a supermodular game in terms of MEU preferences and

develop a tractable procedure to analyze it. Because players evaluate each action by the most

pessimistic beliefs, they behave as if they adopted different priors to evaluate different actions.

Thus, we can analyze the model using a fictitious game with a pair of priors, each of which is

in the set of priors and separately assigned to each action. We show that if every fictitious game

admits a unique equilibrium, then our model also admits a unique equilibrium that survives

iterated deletion of strictly interim-dominated strategies in terms of MEU preferences.

A fictitious game with a pair of priors is reduced to a single-prior game if one of the actions

yields a constant payoff, which is referred to as a safe action (Morris and Shin, 2002). Our

model with a safe action has a unique equilibrium not only when every single-prior game

has a unique equilibrium but also when some have multiple equilibria. The latter is the case

if the following holds: information quality is sufficiently ambiguous, and a safe action is an

ex-ante best response (a best response before receiving a signal) to the uniform belief over the

opponents’ actions, which is referred to as an ex-ante Laplacian action. The unique equilibrium

coincides with the equilibrium of the single prior game that maximizes the range of signals to

which the safe action is assigned, where the maximum is taken over the set of all equilibria and

the set of priors.

In summary, we find two effects of ambiguous information on equilibrium outcomes when

one action is a safe action. First, ambiguous information enlarges the range of signals assigned

2In this example, players have a set of priors given by p ∈ [1/2, 1], but we can obtain the same conclusion by
replacing [1/2, 1] with [p, p], where 1/2 ≤ p < 1/2 +

√
3/6 and 2/3 < p ≤ 1.

3See the surveys in Morris and Shin (2002) and Angeletos and Lian (2016).

3



to a safe action, whereas it is known that low-quality information enlarges the range of signals

assigned to an ex-ante Laplacian action. Thus, if a safe action is not ex-ante Laplacian, the

effect of ambiguous information is opposite to that of low-quality information.4 Even if a

safe action is ex-ante Laplacian, the former is also distinct from the latter in another sense.

In this case, sufficiently ambiguous information induces a unique equilibrium, whereas it is

known that sufficiently low-quality information induces multiple equilibria. These effects of

ambiguous information are attributed to ambiguous belief hierarchies and MEU preferences,

which make a safe action more survivable in iterated deletion of strictly interim-dominated

strategies. In contrast, a safe action does not play such a special role in standard global games

because two actions’ payoff differential determines best responses.

Our findings have the following implications for the question of whether ambiguous in-

formation contributes to financial crises originating from coordination failures, which can be

modeled as global games of regime change. In the model of a currency crisis (Obstfeld, 1996;

Morris and Shin, 1998), speculators must decide whether to attack a currency, where a crisis oc-

curs if sufficiently many speculators attack the currency. We find that news of more ambiguous

quality decreases the likelihood of the crisis because not to attack is a safe action. In the model

of a debt rollover crisis (Calvo, 1988; Morris and Shin, 2004), creditors must decide whether

to roll over a loan, where a crisis occurs if sufficiently many creditors do not roll over the loan.

We find that news of more ambiguous quality increases the likelihood of the crisis because not

to roll over is a safe action. These results complement and contrast with the findings of Iachan

and Nenov (2015) on the effects of low-quality information in standard global games of regime

change. They show that news of lower quality increases the likelihood of a currency crisis, but

it does not influence that of a debt rollover crisis,5 which is in sharp contrast to the above effects

of ambiguous information.

The rest of this paper is organized as follows. Section 2 illustrates our findings using an

example. In Section 3, we set up our model and report the main results. In Section 4, we

discuss applications to financial crises. Section 5 provides several extensions. The last section

concludes the paper.

4Kawagoe and Ui (2013) conducted a laboratory experiment using a two-player global game and obtained data
supporting this result.

5This is true in the model of Morris and Shin (2004). Iachan and Nenov (2015) study another model of a debt
rollover crisis, where news of lower quality influences the likelihood of the crisis.
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1.1 Related literature

This paper joins a growing literature on the theory and applications of incomplete information

games with MEU players. There are many applications to auctions and mechanism design.

Earlier papers examined equilibria of first price sealed bid auctions with MEU agents (Salo

and Weber, 1995; Lo, 1998). More recent papers study optimal mechanism design (Bose et al.,

2006; Bose and Daripa, 2009; Bodoh-Creed, 2012) and implementability of social choice func-

tions (Wolitzky, 2016; Song, 2018; De Castro and Yannelis, 2018; Guo and Yannelis, 2021).

Ambiguous beliefs are exogenously given in these papers, whereas Bose and Renou (2014) and

Di Tillio et al. (2017) allow a mechanism designer to endogenously engineer ambiguity. Us-

ing ambiguous mechanisms, Bose and Renou (2014) characterize implementable social choice

functions, and Di Tillio et al. (2017) solve revenue maximization problems. Other recent ap-

plications include strategic voting (Ellis, 2016; Fabrizi et al., 2019; Pan, 2019; Ryan, 2021).

Because our focus is on global games with applications to financial crises, this paper is

also related to a theoretical literature on financial crises associated with ambiguity. Caballero

and Krishnamurthy (2008) explain flight to quality episodes using a variant of the Diamond-

Dybvig model (Diamond and Dybvig, 1983) with agents in the face of ambiguity about liq-

uidity shocks. Dicks and Fulghieri (2019) propose a theory of systemic risk using another

variant of the Diamond-Dybvig model with two banks investing in ambiguous assets. Our

work contributes to the literature6 by presenting the global game approach to financial crises

under ambiguity, which can also be applied to other global game models of financial crises.7

This paper builds on the following foundational studies. Epstein and Wang (1996) con-

struct hierarchies of general preferences, thus providing a foundation for rationalizability and

iterated deletion of strictly interim-dominated strategies in terms of MEU preferences (cf. Ep-

stein, 1997). Ahn (2007) constructs a universal type space with multiple beliefs analogous to

Mertens and Zamir (1985). Kajii and Ui (2005) introduce a general class of incomplete in-

formation games (Harsanyi, 1967–1968) with MEU players and two interim equilibrium con-

cepts;8 Kajii and Ui (2009) and Martins-da-Rocha (2010) study the corresponding “agreement

theorem” (Aumann, 1976) and its converse. Our solution concept corresponds to rationaliz-

ability in Epstein and Wang (1996) and one of the solution concepts in Kajii and Ui (2005).

6Other papers include Uhlig (2010) and Routledge and Zin (2009).
7See Angeletos and Lian (2016, Section 5) for a survey.
8Incomplete information games with more general preferences are studied by Azrieli and Teper (2011), Grant

et al. (2016), and Hanany et al. (2020).
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2 A linear example

This section illustrates our main findings using a canonical linear-normal global game (Morris

and Shin, 2001). A continuum of players have two actions, action 0 and action 1, which are

interpreted as not investing and investing, respectively. The payoff to action 1 is θ+ l−1, where

θ ∈ R is normally distributed with mean y ∈ (0, 1) and precision η > 0 (i.e. variance 1/η),

and l ∈ [0, 1] is the proportion of the opponents choosing action 1. The payoff to action 0 is a

constant 0, so we say that action 0 is a safe action. In summary, each player’s payoff function

is

u(a, l, θ) =


0 if a = 0 (not investing),

θ + l − 1 if a = 1 (investing).

Player i observes a private signal xi = θ + εi, where a noise term εi is independently normally

distributed with mean 0 and precision ξ > 0 (i.e. variance 1/ξ), which can be regarded as a

measure of information quality.

If it is common knowledge that 0 < θ < 1 or if players receive no signals about θ, this game

has two symmetric pure-strategy equilibria. If the interim expected value of θ is strictly greater

than 1, action 1 is a dominant action; if that of θ is strictly less than 0, action 0 is a dominant

action. When a player has the uniform belief over the opponents’ actions (i.e. the expected

value of l is 1/2), the ex-ante best response (the best response before receiving a signal) is

action 1 if y ≥ 1/2 and action 0 if y ≤ 1/2. We call it an ex-ante Laplacian action.9

We assume that information quality is ambiguous. Players have a set of priors indexed by

a measure of information quality ξ ∈ Ξ ≡ [ξ, ξ] ⊂ R++, and make a decision based on the most

pessimistic assessment conforming to maxmin expected utility (MEU) preferences (Gilboa and

Schmeidler, 1989) and prior-by-prior updating (Fagin and Halpern, 1990; Jaffray, 1992; Pires,

2002). Thus, after receiving a private signal, each player has a set of interim beliefs indexed by

ξ ∈ Ξ and evaluates each action in terms of the minimum expected payoff, where the minimum

is taken over Ξ.10

We denote this game by (u,Ξ). Consider a monotone strategy, where a player chooses

action 1 if and only if a private signal is above a cutoff point κ ∈ R ∪ {−∞,∞}. This strategy is

9The notion of an ex-ante Laplacian action is different from that of a Laplacian action in Morris and Shin
(2002), which is the best response to the uniform belief over the opponents’ actions when a player knows θ. A
Laplacian is action 1 if θ ≥ 1/2 and action 0 if θ ≤ 1/2.

10Players are assumed to have a common set of priors. See Kajii and Ui (2009) for an implication of this
assumption.
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referred to as a switching strategy (with cutoff κ) and denoted by s[κ] : R→ {0, 1}, i.e.,

s[κ](x) ≡


1 if x > κ,

0 if x ≤ κ.
(1)

To characterize a best response to s[κ], consider a player with a private signal x who believes

that the opponents follow s[κ]. The expected payoff to action 1 with respect to ξ is calculated

as

π1
ξ(x, κ) ≡ Eξ[θ|x] + Probξ[x′ > κ|x] − 1 =

ηy + ξx
η + ξ

− Φ

√
ξ(η + ξ)
η + 2ξ

(
κ − ηy + ξx

η + ξ

) , (2)

where Probξ[x′ > κ|x] is the probability that an opponent receives a private signal greater than

κ, and Φ is the cumulative distribution function of the standard normal distribution. Then, this

player prefers action 1 to action 0 if and only if minξ∈Ξ π1
ξ(x, κ) ≥ 0. Note that minξ∈Ξ π1

ξ(x, κ)

is strictly increasing in x and decreasing in κ. Thus, s[κ′] is the best response to s[κ] if

minξ∈Ξ π1
ξ(κ
′, κ) = 0. In particular, a strategy profile where all players follow s[κ] is an equilib-

rium if κ is a solution to

min
ξ∈Ξ
π1
ξ(κ, κ) = 0, (3)

which is referred to as a switching equilibrium (with cutoff κ). Consequently, a unique switch-

ing equilibrium exists if (3) has a unique solution, and its strategy is shown to be a unique strat-

egy surviving iterated deletion of strictly interim-dominated strategies with respect to MEU

preferences by an argument similar to that in the standard global game analysis.

An equilibrium of (u,Ξ) is related to an equilibrium of a single-prior game (u, {ξ}) with

ξ ∈ Ξ in several senses. Most importantly, the maximum equilibrium cutoff of (u,Ξ) coincides

with the maximum of the maximum equilibrium cutoffs of all the single-prior games, which

is denoted by k(Ξ) ≡ maxξ∈Ξmax{κ | π1
ξ(κ, κ) = 0}. This is because π1

ξ(κ, κ) > 0 for all

κ > k(Ξ) and ξ ∈ Ξ. It immediately implies that minξ∈Ξ π1
ξ(κ, κ) > 0 for all κ > k(Ξ) and

0 ≤ minξ∈Ξ π1
ξ(k(Ξ), k(Ξ)) ≤ π1

ξ̂
(k(Ξ), k(Ξ)) = 0, where ξ̂ ∈ arg maxξ∈Ξmax{κ | π1

ξ(κ, κ) = 0}.

Especially, if (u,Ξ) has a unique switching equilibrium, its cutoff must be k(Ξ). For ex-

ample, if a single-prior game (u, {ξ}) has a unique equilibrium for each ξ ∈ Ξ, s[k(Ξ)] is the

unique equilibrium strategy in (u,Ξ) because k(Ξ) is the unique solution to π1
ξ̂
(κ, κ) = 0, where

ξ̂ is given above, and minξ∈Ξ π1
ξ(κ, κ) ≤ π1

ξ̂
(κ, κ) < 0 for all κ < k(Ξ). As shown by Morris and

7
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Figure 1: Graphs of π1
ξ(κ, κ) with η = 2, ξ = 106 in the solid line, ξ = 1.1 in the dashed line,

ξ = 0.56 in the dash-dot line, and ξ = 0.37 in the dotted line. Cutoffs are given by κ-intercepts.

Shin (2001), this is the case if each ξ ∈ Ξ is strictly greater than a threshold value given by

ξ∗ ≡ η
(
η − 2π + (η2 + 12πη + 4π2)1/2

)
/(8π).

Claim 1. If the minimum precision in Ξ is strictly greater than ξ∗, there exists a unique switch-

ing equilibrium with cutoff k(Ξ).

In Figure 1, a solution to π1
ξ(κ, κ) = 0 corresponds to a horizontal intercept in the graph

of π1
ξ(κ, κ), and it is unique for each ξ , 0.37. For example, the graph of minξ∈Ξ π1

ξ(κ, κ) with

Ξ = [0.56, 1.1] is the lower envelope of the dashed line and the dash-dot line, which has a

unique horizontal intercept. The unique equilibrium cutoff k(Ξ) is the horizontal intercept of

the dashed line in Figure 1a if y = 0.52, and that of the dash-dot line in Figure 1b if y = 0.48.

Even if the minimum precision is less than ξ∗, (u,Ξ) can admit a unique equilibrium. This

is the case if action 0 is ex-ante Laplacian (i.e., y < 1/2) and the width of Ξ is sufficiently large;

that is, information quality is ambiguous enough.

We first give an intuition by informally discussing the limiting case as ξ → 0 (we assume

ξ > 0 in our formal analysis). Let Ξ = [0, ξ] with ξ > 0. Then, s[−∞] (always investing) is

not an equilibrium strategy because action 0 is a best response action to s[−∞] for a private

signal x < −ηy/ξ, i.e., minξ∈Ξ π1
ξ(x,−∞) < π1

ξ
(−ηy/ξ,−∞) = 0. In this case, the worst-case

scenario is that the precision is highest, under which a player chooses a safe action (i.e., action

0) believing that the state is bad. Furthermore, s[κ] with finite κ is not an equilibrium strategy

because action 0 is a best response action to s[κ] for any private signal x, i.e., minξ∈Ξ π1
ξ(x, κ) ≤

π1
0(x, κ) = y − 1/2 < 0 for every x. In this case, the worst-case scenario is that the precision is

lowest, under which a player chooses an ex-ante Laplacian action (i.e., action 0) believing that

the opponents’ signals are uniformly distributed, and thus so are their signals.11 Consequently,

s[∞] is the unique equilibrium strategy.
11Note that Probξ[x′ > κ|x]→ 1/2 as ξ → 0 because a private signal is uniformly distributed in the limit.
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More generally, we have the following claim.

Claim 2. Suppose that y < 1/2. There exists a unique switching equilibrium with cutoff k(Ξ) if

either of the following conditions holds.

(i) For any minimum precision ξ > 0, the maximum precision ξ > 0 is sufficiently high.

(ii) For any maximum precision ξ > 0, the minimum precision ξ > 0 is sufficiently low.

Moreover, limξ→0 k(Ξ) = ∞ for all ξ > 0.

This claim is based upon the following two observations. First, (3) has no solution less than

−ηy/ξ because minξ∈Ξ π1
ξ(κ, κ) < π

1
ξ
(−ηy/ξ,−∞) = 0 for κ < −ηy/ξ. Second, (3) has exactly

one solution greater than y because π1
ξ(y, y) = y − 1/2 < 0 for all ξ ∈ Ξ, minξ∈Ξ π1

ξ(κ, κ) > 0 for

sufficiently large κ, and d2π1
ξ(κ, κ)/dκ

2 is strictly positive for all κ > y and ξ ∈ Ξ. Therefore,

Claim 2 is true if each of (i) and (ii) implies that (3) has no solution on the interval [−ηy/ξ, y],

or equivalently,

min
ξ∈Ξ
π1
ξ(κ, κ) < 0 for all κ ∈ [−ηy/ξ, y]. (4)

The condition (i) implies (4) if ξ > ξ∗. In this case, minξ∈Ξ π1
ξ(κ, κ) ≤ π1

ξ
(κ, κ) < 0 for all

κ ≤ y because π1
ξ
(y, y) < 0 and π1

ξ
(κ, κ) = 0 has a unique solution, which is greater than

y.12 The condition (ii) implies (4) if ξ satisfies π1
ξ(y,−ηy/ξ) < 0 (such ξ exists because

limξ→0 π
1
ξ(y,−ηy/ξ) = y − 1/2 < 0). In this case, minξ∈Ξ π1

ξ(κ, κ) ≤ π1
ξ(κ, κ) ≤ π1

ξ(y,−ηy/ξ) < 0

for all κ ∈ [−ηy/ξ, y]. Moreover,

lim
ξ→0

k(Ξ) ≥ lim
ξ→0

max{κ | π1
ξ(κ, κ) = 0} ≥ lim

ξ→0
sup{κ | π1

ξ(κ, κ) < 0} = ∞

because limξ→0 π
1
ξ(κ, κ) = y−1/2 < 0. As illustrated in Figure 2, the unique horizontal intercept

can be very large if ξ is very small.

We contrast the above effects of ambiguous-quality information with those of low-quality

information using a benchmark game (u, {ξ0}) with ξ0 > ξ∗, a game with low-quality informa-

tion (u, {ξ}) with ξ0 > ξ, and a game with ambiguous-quality information (u,Ξ) with ξ > ξ0 > ξ.

Ambiguous-quality information and low-quality information have different effects in the fol-

lowing two respects.
12We can illustrate this case using Figure 1b. The graph of minξ∈Ξ π1

ξ(κ, κ) with Ξ = [0.37, 0.56] is the lower
envelope of the dash-dot line and the dotted line, and the unique horizontal intercept is the rightmost horizontal
intercept of the dotted line.
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Figure 2: Graphs of min
ξ∈Ξ
π1
ξ(κ, κ) with y = 0.4, η = 2, Ξ = [1/104, 1/10] in the solid line, and

Ξ = {1/20} in the dashed line.
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(a) Ambiguous quality with Ξ = [1, 3]
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Figure 3: Graphs of min
ξ∈Ξ
π1
ξ(κ, κ) with y = 0.55, η = 2, and Ξ = {2} in the dashed line.

First, assume that y > 1/2; that is, action 1 is ex-ante Laplacian. It is well known that if

ξ > ξ∗, then the unique equilibrium cutoff k({ξ}) in (u, {ξ}) increases with ξ (see Figure 1a) and

converges to 1/2 as ξ approaches infinity (Morris and Shin, 2001). Thus, low-quality informa-

tion decreases the equilibrium cutoff, i.e., k({ξ}) < k({ξ0}) (see Figure 3b), whereas ambiguous-

quality information increases the equilibrium cutoff, i.e., k({ξ0}) < k(Ξ) (see Figure 3a).

Second, assume that y < 1/2; that is, action 0 is ex-ante Laplacian. If ξ > 0 is suffi-

ciently small, (u, {ξ}) has three equilibria (see the horizontal intercepts of the dotted line Figure

1b). Thus, low-quality information induces multiple equilibria, whereas ambiguous-quality in-

formation induces a unique equilibrium by Claim 2. To contrast the difference, consider the

limiting case of (u, {ξ}) when ξ = 0 and that of (u,Ξ) when Ξ = [0, ξ] with ξ > 0. In (u, {0}),

a player regards his private signal as uninformative, and both s[−∞] and s[∞] are equilibrium

strategies. In (u, [0, ξ]), contrastingly, a player regards his private signal as either informative or

uninformative depending upon the worst-case scenario. Thus, s[−∞] cannot be an equilibrium

as discussed before, while s[∞] is an equilibrium strategy as in the case of (u, {0}).

10



3 Main results

In this section, we introduce a general model and present our main results. All proofs are

relegated to the appendix.

There is a continuum of players indexed by i ∈ [0, 1].13 Each player has a binary action set

{0, 1} and a payoff function u : {0, 1} × [0, 1] × R → R, where u(a, l, θ) is a payoff to action

a ∈ {0, 1} when a proportion l ∈ [0, 1] of the opponents choose action 1 and a payoff state is

θ ∈ R. An action a ∈ {0, 1} is called a safe action if u(a, l, θ) is independent of (l, θ).

Player i observes a noisy private signal xi = θ + εi, where εi is an independent noise term.

Each player with each private signal has MEU preferences determined by a payoff function u

and a set of beliefs indexed by a set of parameters Ξ. For each ξ ∈ Ξ, let pξ(θ), qξ(εi), and

pξ(θ|xi) denote the probability density function of θ, that of εi, and the conditional probability

density function of θ given xi, respectively.14 We assume that Ξ is a compact and connected set.

A game is denoted by a pair (u,Ξ). A strategy in (u,Ξ) is a measurable mapping σ :

R → {0, 1}, which assigns an action to each private signal. To formally define an equilibrium

concept, consider a player with a private signal x who believes that the opponents follow σ.

The expected payoff to action a ∈ {0, 1} with respect to ξ is

Eξ[u(a, Eξ[σ|θ], θ)|x] ≡
∫

u(a, Eξ[σ|θ], θ)pξ(θ|x)dθ,

where Eξ[σ|θ] ≡
∫
σ(x)qξ(x− θ)dx is the proportion of the opponents taking action 1 when the

state is θ. Thus, this player prefers action a to action a′ if and only if

min
ξ∈Ξ

Eξ[u(a, Eξ[σ|θ], θ)|x] ≥ min
ξ∈Ξ

Eξ[u(a′, Eξ[σ|θ], θ)|x]. (5)

A strategy profile in which all players follow σ is an equilibrium if σ(x) = a implies (5) for

a′ , a. We focus on a pure-strategy equilibrium, which may not satisfy the requirement of a

mixed-strategy equilibrium in incomplete information games with MEU players, as discussed

in Kajii and Ui (2005). We discuss this issue in Section 5.2.

To characterize a switching equilibrium, where all players follow a switching strategy s[κ]

13We consider a continuum of players because many applications of global games assume so. It is straightfor-
ward to translate our results for a symmetric two-player case as in Carlsson and van Damme (1993).

14Thus, pξ(θ|xi) = pξ(θ)qξ(xi − θ)/
∫

pξ(θ)qξ(xi − θ)dxi. However, our discussion goes through even if pξ(θ|xi)
is not a conditional probability density function under a common prior.
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given by (1), let

πa
ξ(x, κ) ≡ Eξ[u(a, Eξ[s[κ]|θ], θ)|x]

denote the expected payoff to action a ∈ {0, 1} with respect to ξ when a player receives a private

signal x and the opponents follow s[κ]. Then, s[κ] is an equilibrium strategy if and only if

min
ξ∈Ξ
π1
ξ(x, κ) −min

ξ∈Ξ
π0
ξ(x, κ)


≥ 0 if x > κ,

≤ 0 if x ≤ κ.
(6)

If the left-hand side of (6) is continuous and increasing in x, (6) is reduced to

min
ξ∈Ξ
π1
ξ(κ, κ) −min

ξ∈Ξ
π0
ξ(κ, κ) = 0. (7)

We assume the following conditions on (u,Ξ).

A1 (Action Monotonicity) For each θ, u(1, l, θ) is increasing in l; u(0, l, θ) is decreasing in l.

A2 (State Monotonicity) For each l, u(1, l, θ) is increasing in θ; u(0, l, θ) is decreasing in θ.

A3 (Stochastic Dominance) If x > x′, pξ(θ|x) first-order stochastically dominates pξ(θ|x′) for

each ξ ∈ Ξ.

A4 (Continuity) πa
ξ(x, κ) exists for all (x, κ, ξ) ∈ R × R ∪ {−∞,∞} × Ξ, and the function

(x, κ, ξ) 7→ πa
ξ(x, κ) is continuous for each a ∈ {0, 1}.

A5 (Limit Dominance) There exist θ, θ ∈ R satisfying

u(1, 1, θ) − u(0, 1, θ) < 0, lim
x→−∞

∫ θ

−∞
pξ(θ|x)dθ = 1 for each ξ,

u(1, 0, θ) − u(0, 0, θ) > 0, lim
x→∞

∫ ∞

θ

pξ(θ|x)dθ = 1 for each ξ.

By A1 and A2, the payoff to action 1 (resp. action 0) is increasing (resp. decreasing) in

the proportion of the opponents choosing action 1 and the state. In a single-prior game, it

is enough to assume monotonicity of the payoff differential u(1, l, θ) − u(0, l, θ) (cf. Morris and

Shin, 2002). In a multiple-priors game, however, we need monotonicity of u(1, l, θ) and u(0, l, θ)

separately because worst-case beliefs depend upon actions. A3 implies that high signals convey

good news for θ. If qξ satisfies the monotone likelihood ratio property, A3 holds (Milgrom,
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1981). Many probability distributions including the normal, the exponential, and the uniform

distributions satisfy this property. A4 is a technical assumption, and it is satisfied if a payoff

function is continuous and bounded. In some applications of global games, a payoff function is

discontinuous or unbounded, yet A4 is satisfied in most cases. A5 requires that action 1 (resp.

action 0) be a dominant strategy for sufficiently high (resp. low) signals.

Under these assumptions, s[κ] is an equilibrium strategy if and only if κ is a solution to (7)

because the following lemma implies the equivalence of (6) and (7).

Lemma 1. The function (x, κ) 7→ minξ∈Ξ π1
ξ(x, κ) − minξ∈Ξ π0

ξ(x, κ) is continuous, increasing in

x, and decreasing in κ.

Moreover, (u,Ξ) exhibits strategic complementarities in the following sense.

Lemma 2. If σ(x) ≥ σ′(x) for all x ∈ R, then

min
ξ∈Ξ

Eξ[u(1, Eξ[σ|θ], θ)|x] −min
ξ∈Ξ

Eξ[u(0, Eξ[σ|θ], θ)|x]

≥ min
ξ∈Ξ

Eξ[u(1, Eξ[σ′|θ], θ)|x] −min
ξ∈Ξ

Eξ[u(0, Eξ[σ′|θ], θ)|x] for all x ∈ R.

Therefore, the set of strategies surviving iterated deletion of strictly interim-dominated

strategies includes the maximum and minimum elements, which are the maximum and min-

imum equilibrium strategies (Milgrom and Roberts, 1990; Vives, 1990; Van Zandt and Vives,

2007). In particular, this set is a singleton if and only if (7) has a unique solution.

Proposition 1. Let κ, κ ∈ R be the minimum and maximum solutions to (7), respectively. Then,

s[κ] and s[κ] are equilibrium strategies in (u,Ξ), and s[κ](x) ≤ σ(x) ≤ s[κ](x) for all x ∈ R if a

strategyσ survives iterated deletion of strictly interim-dominated strategies. In particular, s[κ∗]

is the (essentially)15 unique strategy surviving the iterated deletion if and only if κ∗ = κ = κ.

To study a unique equilibrium in (u,Ξ), we consider a fictitious game with a pair of priors

indexed by (ξ0, ξ1) ∈ Ξ×Ξ, where players evaluate actions 0 and 1 using ξ0 and ξ1, respectively.

If each fictitious game has a unique switching equilibrium, (u,Ξ) also has a unique switching

equilibrium, and the equilibrium cutoff equals the “maxmin” of the equilibrium cutoffs in the

fictitious games, as shown by the next proposition, which generalizes Claim 1.

15An action of a player with a private signal κ∗ can be any action in an equilibrium strategy surviving iterated
deletion, as in the standard global game analysis.
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Proposition 2. Suppose that there exists a unique value κ = k(ξ0, ξ1) solving

π1
ξ1

(κ, κ) − π0
ξ0

(κ, κ) = 0 (8)

for each (ξ0, ξ1) ∈ Ξ × Ξ, and that k : Ξ × Ξ → R is bounded. Then, s[κ∗] is the (essentially)

unique strategy surviving iterated deletion of strictly interim-dominated strategies, where

κ∗ = min
ξ0∈Ξ

max
ξ1∈Ξ

k(ξ0, ξ1) = max
ξ1∈Ξ

min
ξ0∈Ξ

k(ξ0, ξ1). (9)

For example, suppose that π0
ξ(κ, κ) is independent of ξ, which is typically the case when

action 0 is a safe action.16 Then, we can use a single-prior game as a fictitious game because

π1
ξ1

(κ, κ) − π0
ξ0

(κ, κ) = π1
ξ1

(κ, κ) − π0
ξ1

(κ, κ). Hence, if each single-prior game with ξ ∈ Ξ has

a unique equilibrium, (u,Ξ) also has a unique equilibrium, whose cutoff coincides with the

maximum of the equilibrium cutoffs of the single-prior games with ξ ∈ Ξ by (9). As argued

by Carlsson and van Damme (1993) and Morris and Shin (2002), each single-prior game has a

unique equilibrium in the following two typical cases: the variance of εi is sufficiently small,

which is assumed in Claim 1, and the variance of θ is sufficiently large, which will be assumed

in Section 4.

More generally, when (u,Ξ) has one or more equilibria and π0
ξ(κ, κ) is independent of ξ, the

maximum equilibrium cutoff of (u,Ξ) equals the maximum of the maximum equilibrium cutoffs

of the single-prior games, as shown by the next proposition. Note that if no other equilibrium

cutoff is less than the maximum one, (u,Ξ) obviously has a unique equilibrium, which can be

the case even if some single-prior game with ξ ∈ Ξ has multiple equilibria. A similar result

holds when π1
ξ(κ, κ) is independent of ξ, although we formally state it in the case when π0

ξ(κ, κ)

is independent of ξ.

Proposition 3. Suppose that c0(κ) = π0
ξ(κ, κ) is independent of ξ. Then, κ0 ≡ maxξ∈Ξ max{κ |

π1
ξ(κ, κ) = c0(κ)} is the maximum equilibrium cutoff in (u,Ξ). If minξ∈Ξ π1

ξ(κ, κ) < c0(κ) for

all κ < κ0, then s[κ0] is the (essentially) unique strategy surviving iterated deletion of strictly

interim-dominated strategies.

One of the implications is the following corollary, which generalizes the first half of Claim 2.

16Even if no action is a safe action, π0
ξ(κ, κ) can be independent of ξ, which is the case in the bank run model of

Goldstein and Pauzner (2005). See Section 5.1.
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Corollary 4. Suppose that c0(κ) = π0
ξ(κ, κ) is independent of ξ and that (u, {ξ0}) has a unique

switching equilibrium for some ξ0 ∈ arg maxξ∈Ξ max{κ | π1
ξ(κ, κ) = c0(κ)}. Then, s[κ0] is the

(essentially) unique strategy surviving iterated deletion of strictly interim-dominated strategies.

This corollary focuses on a single-prior game (u, {ξ0}) with ξ0 ∈ Ξ such that its maximum

equilibrium cutoff equals κ0, i.e., the maximum of the maximum equilibrium cutoffs of the

single-prior games. It says that if (u, {ξ0}) has a unique equilibrium, then (u,Ξ) also has a

unique equilibrium with the same cutoff κ0. This is an immediate consequence of Proposition 3

because a solution to π1
ξ0

(κ, κ) − π0
ξ0

(κ, κ) = 0 is unique, and thus minξ∈Ξ π1
ξ(κ, κ) − π0

ξ(κ, κ) ≤

π1
ξ0

(κ, κ) − π0
ξ0

(κ, κ) < 0 for all κ < κ0.

Recall that, in the example of Section 2, (u, [ξ, ξ]) has a unique equilibrium for arbitrary

ξ if y < 1/2 and ξ > ξ∗. Corollary 4 explains why: a single-prior game (u, {ξ}) has a unique

equilibrium if ξ > ξ∗, and its cutoff equals the maximum of the maximum equilibrium cutoffs

of the single-prior games if y < 1/2, which implies that (u, [ξ, ξ]) has a unique equilibrium by

Corollary 4.

We can also generalize the second half of Claim 2. Let Ξ ≡ [ξ, ξ] ⊂ R++, where ξ ∈ Ξ is the

precision of a noise term in a private signal. Assume that qξ(εi) has a support R and satisfies∫
εiqξ(εi)dεi = 0,

∫
ε2

i qξ(εi)dεi = 1/ξ2, qξ(εi) = qξ(−εi), and qξ(εi) ≤ qξ(ε′i) if εi ≤ ε′i < 0.

Let action 0 be a safe and ex-ante Laplacian action; that is, u(1, l, θ) = c0 ∈ R for each l

and θ and c0 >
∫ ∞
−∞ u(1, 1/2, θ)p(θ)dθ, where

∫ ∞
−∞ u(1, 1/2, θ)p(θ)dθ is the ex-ante expected

payoff to action 1 when a player has the uniform belief over the opponents’ actions. The next

proposition shows that the minimum equilibrium cutoff can be arbitrarily large if the minimum

precision ξ is sufficiently small, and there exists a unique equilibrium if a single-prior game

with sufficiently small ξ has at most one switching equilibrium with a sufficiently large cutoff.

Proposition 5. Consider (u, [ξ, ξ]) described above with arbitrarily fixed ξ > 0. Suppose

that action 0 is a safe and ex-ante Laplacian action. Then, for every κ, there exists δ(κ) > 0

such that, if ξ ≤ δ(κ), then the minimum equilibrium cutoff in (u, [ξ, ξ]) is greater than κ. In

addition, suppose that there exists κ such that (u, {ξ}) has at most one switching equilibrium

with a cutoff greater than κ for every ξ ≤ δ(κ). Then, there exists δ′ ∈ (0, δ(κ)) such that,

if ξ ≤ δ′, then s[κ0] is the (essentially) unique strategy surviving iterated deletion of strictly

interim-dominated strategies in (u, [ξ, ξ]), where κ0 is given in Proposition 3.

Recall that, in the example of Section 2, (u, [ξ, ξ]) has a unique equilibrium for arbitrary ξ

if y < 1/2 and ξ is sufficiently small. Proposition 5 explains why: if y < 1/2, then action 0 is
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a safe and ex-ante Laplacian action, and (u, {ξ}) has exactly one switching equilibrium with a

cutoff greater than y for every ξ > 0, which implies that (u, [ξ, ξ]) has a unique equilibrium by

Proposition 5.

4 Applications to regime change

We apply our main results to global games of regime change (Angeletos et al., 2007), which

have applications to financial crises such as currency crises (Morris and Shin, 1998), debt

rollover crises (Morris and Shin, 2004), and bank runs (Goldstein and Pauzner, 2005) among

others. We study the effect of ambiguous-quality information on the likelihood of currency

crises and debt rollover crises and compare it with that of low-quality information studied by

Iachan and Nenov (2015).

In a game of regime change, one of two regimes, R ∈ {0, 1}, is realized depending upon the

proportion of players choosing action 0 and a state θ. More specifically, regime 0 occurs if and

only if the proportion of players choosing action 0 is greater than θ, and the payoff differential

u(1, l, θ) − u(0, l, θ) equals dR(θ) if regime R ∈ {0, 1} occurs:

u(1, l, θ) − u(0, l, θ) =


d0(θ) if 1 − l ≥ θ,

d1(θ) if 1 − l < θ,

where d0(θ) and d1(θ) are non-decreasing in θ, bounded, and satisfies d0(θ) < 0 < d1(θ). Later,

we will assume that either action 0 or 1 is a safe action.

A state θ is drawn from the improper uniform distribution over the real line, and a noise

term εi is drawn from a normal distribution with mean zero and precision ξ. Then, pξ(θ|x) =
√
ξϕ(
√
ξ(θ − x)) and qξ(ε) =

√
ξϕ(
√
ξε), where ϕ is the probability density function of the

standard normal distribution. When the state is θ and each player follows s[κ], the proportion

of players choosing action 0 is Φ(
√
ξ(κ − θ)), where Φ is the cumulative distribution function

of the standard normal distribution. Let θ = θ∗(κ, ξ) ∈ (0, 1) be the unique solution to

Φ(
√
ξ(κ − θ)) = θ. (10)

Then, regime 0 occurs if and only if θ ≤ θ∗(κ, ξ), which is referred to as a regime-change cutoff.

We can readily show that θ∗(κ, ξ) is strictly increasing in κ because regime 0 is more likely to
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occur when more players choose action 0.

A single-prior game (u, {ξ}) conforms to the global game of regime change in Iachan and

Nenov (2015), and it admits a unique switching equilibrium with cutoff κ = k(ξ), which is the

unique solution to

π1
ξ(κ, κ)−π0

ξ(κ, κ) =
∫ θ∗(κ,ξ)

−∞
d0(θ)

√
ξϕ(

√
ξ(θ−κ))dθ+

∫ ∞

θ∗(κ,ξ)
d1(θ)

√
ξϕ(

√
ξ(θ−κ))dθ = 0. (11)

As a special case, assume that d0(θ) = d0 and d1(θ) = d1 are constant. Then, (11) is reduced to

d0Φ(
√
ξ(θ∗(κ, ξ) − κ)) + d1(1 − Φ(

√
ξ(θ∗(κ, ξ) − κ))) = d0 + (d1 − d0)θ∗(κ, ξ) = 0 (12)

by (10), which implies that the regime-change cutoff is a constant d0/(d0 − d1), and k(ξ) =

d0/(d0 − d1) + Φ−1(d0/(d0 − d1))/
√
ξ.

We consider (u,Ξ) with Ξ = [ξ, ξ] ⊂ R++ assuming that one of the actions is a safe action.17

It is readily shown that (u,Ξ) satisfies the condition in Proposition 2. Thus, (u,Ξ) has a unique

switching equilibrium with the following cutoff.

κ∗ =


maxξ∈Ξ k(ξ) if action 0 is a safe action,

minξ∈Ξ k(ξ) if action 1 is a safe action.
(13)

Therefore, if action 0 is a safe action, ambiguous-quality information increases the regime-

change cutoff and makes regime 0 more likely because

θ∗(κ∗, ξ) = θ∗(max
ξ′∈Ξ

k(ξ′), ξ) = max
ξ′∈Ξ
θ∗(k(ξ′), ξ) ≥ θ∗(k(ξ), ξ) for each ξ ∈ Ξ. (14)

Similarly, if action 1 is a safe action, ambiguous-quality information decreases the regime-

change cutoff and makes regime 1 more likely because

θ∗(κ∗, ξ) = θ∗(min
ξ′∈Ξ

k(ξ′), ξ) = min
ξ′∈Ξ
θ∗(k(ξ′), ξ) ≤ θ∗(k(ξ), ξ) for each ξ ∈ Ξ. (15)

Note that low-quality information does not always have a similar effect in a single-prior game.

For example, if d0(θ) and d1(θ) are constant, the regime-change cutoff is also constant, so

information quality has no influence.

17We can relax this assumption. See Section 5.1.
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To elaborate on the difference between ambiguous quality and low quality, we use the result

of Iachan and Nenov (2015). They find that the effect of low-quality information in (u, {ξ}) is

determined by the sensitivity of d0(θ) and d1(θ) with respect to θ and obtain the following

result.18

Proposition 6. If d0(θ) is constant, θ∗(k(ξ), ξ) is increasing in ξ. If d1(θ) is constant, θ∗(k(ξ), ξ)

is decreasing in ξ. If d0(θ) and d1(θ) are constant, θ∗(k(ξ), ξ) is independent of ξ.

Suppose that one of the regimes has a constant payoff differential and one of the actions is

a safe action. Then, we can determine and compare the effects of low-quality information and

ambiguous-quality information. For example, if d1(θ) is constant, then low-quality information

increases the regime-change cutoff. Thus, if action 0 is a safe action, ambiguous-quality infor-

mation and low-quality information have a similar effect. However, if action 1 is a safe action,

they have opposite effects, which is the case in the model of currency crises, as is discussed

next.

Currency crises

We study the effect of ambiguous-quality information on the likelihood of currency crises using

the currency attack model of Morris and Shin (1998). Speculators decide whether to attack the

currency by selling it short. The current value of the currency is e∗. If an attack is successful, the

currency collapses and floats to the shadow rate f (θ) < e∗, where θ is the state of fundamentals

and f (θ) is increasing in θ. There is a fixed transaction cost t ∈ (0, e∗− f (θ)) of attacking. Thus,

the net payoff to a successful attack is e∗− f (θ)− t, while that to an unsuccessful attack is −t. An

attack is successful if and only if the proportion of speculators attacking the currency is greater

than θ. Writing 1 for the action not to attack (and 0 for that to attack), we have the following

payoff function:

u(a, l, θ) =


0 if a = 1,

e∗ − f (θ) − t if a = 0 and 1 − l ≥ θ,

−t if a = 0 and 1 − l < θ,

(16)

where l is the proportion of the opponents not attacking the currency.

18Iachan and Nenov (2015) obtain more general results without assuming that either d0(θ) or d1(θ) is constant.
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Consider a game of regime change with (16), where d0(θ) = −(e∗ − f (θ) − t), d1(θ) = t, and

a currency crisis corresponds to regime 0. Because action 1 is a safe action, the regime-change

cutoff is given by (15). Thus, ambiguous-quality information decreases the regime-change

cutoff and makes a currency crisis less likely. Contrastingly, by Proposition 6, low-quality

information increases the regime-change cutoff and makes a currency crisis more likely because

d1(θ) is constant.

Debt rollover crises

We study the effect of ambiguous-quality information on the likelihood of debt rollover crises

using the creditor coordination model of Morris and Shin (2004). Creditors hold a loan secured

on collateral and decide whether to roll over the loan. A creditor who rolls over the loan receives

1 if an underlying investment project succeeds, and receives 0 if the project fails. A creditor

who does not roll over the loan receives the value of the collateral λ ∈ (0, 1). The project

succeeds if and only if the proportion of creditors not rolling over the loan is less than θ ∈ R.

Writing 1 for the action to roll over (and 0 for that not to roll over), we have the following

payoff function:

u(a, l, θ) =


λ if a = 0,

1 if a = 1 and 1 − l < θ,

0 if a = 1 and 1 − l ≥ θ,

(17)

where l is the proportion of creditors rolling over the loan.

Consider a game of regime change with (17), where d0(θ) = −λ, d1(θ) = 1 − λ, and a debt

rollover crisis corresponds to regime 0. Because action 0 is a safe action, the regime-change

cutoff is given by (14). Thus, ambiguous-quality information increases the regime-change

cutoff and makes a debt rollover crisis more likely. Contrastingly, low-quality information has

no influence on the regime-change cutoff because d0(θ) and d1(θ) are constant and thus the

regime-change cutoff in a single-prior game (u, {ξ}) is θ∗(k(ξ), ξ) = λ by (12).
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We can obtain the regime-change cutoff in (u,Ξ) using (12), (13), and (14):19

max
ξ′∈Ξ
θ∗(k(ξ′), ξ) = max

ξ′∈Ξ
θ∗(λ + Φ−1(λ)/ξ′1/2, ξ) =


θ∗(λ + Φ−1(λ)/ξ

1/2
, ξ) if λ < 1/2,

θ∗(λ + Φ−1(λ)/ξ1/2, ξ) if λ > 1/2

because Φ−1(λ) ≷ 0 if and only if λ ≷ 1/2, where we interpret ξ ∈ Ξ as the true precision. We

can also evaluate the range of the regime-change cutoff over all Ξ ⊂ R++ and ξ ∈ Ξ, which

is useful to study under what conditions ambiguous information triggers the crisis. Denote

the infimum and the supremum of the regime-change cutoff by θ∗ and θ
∗
, respectively. Then,

θ∗ = θ∗(k(ξ), ξ) = λ by (14), which is the minimum achieved at Ξ = {ξ}. If λ < 1/2,

θ
∗
= sup
ξ≥ξ≥ξ>0

θ∗(λ + Φ−1(λ)/ξ
1/2
, ξ) = sup

ξ>0
lim
ξ→∞
θ∗(λ + Φ−1(λ)/ξ

1/2
, ξ) = θ∗(λ, 0) = 1/2

since λ < θ∗(λ, ξ) < 1/2 for all ξ > 0.20 Thus, the regime-change cutoff is close to the

supremum if the maximum of Ξ is very large and both the minimum of Ξ and the true precision

is very small. If λ > 1/2,

θ
∗
= sup
ξ≥ξ≥ξ>0

θ∗(λ + Φ−1(λ)/ξ1/2, ξ) = lim
ξ→0
θ∗(λ + Φ−1(λ)/ξ1/2, ξ) = 1

since θ∗(κ, ξ) < 1 for all κ ∈ R and ξ > 0. Thus, the regime-change cutoff is close to the

supremum if the minimum of Ξ is very small. In summary, θ
∗
= 1/2 if λ < 1/2, and θ

∗
= 1 if

λ > 1/2.21

We can partition the space of fundamentals into three intervals: (−∞, θ∗], (θ∗, θ
∗
), and

[θ
∗
,∞). If θ ∈ (−∞, θ∗], the crisis occurs; if θ ∈ [θ

∗
,∞), it does not occur. Suppose that

θ ∈ (θ∗, θ
∗
). Then, the crisis does not occur if the width of Ξ is sufficiently small; it occurs

either (i) if λ > 1/2 and the minimum of Ξ is very small, or (ii) if λ < 1/2, the maximum of Ξ

is very large, and both the minimum of Ξ and the true precision is very small.

19We assume λ , 1/2 to simplify our discussion.
20If θ ≥ 1/2 > κ, the left-hand side of (10) is strictly less than 1/2, and if θ ≤ κ < 1/2, it is greater than or equal

to 1/2, each of which is a contradiction.
21This discontinuity is analogous to Dow and Werlang (1992): they study portfolio decisions of an MEU agent

and show the existence of an interval of prices within which the agent neither buys nor sells short the asset.
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5 Discussion

In this section, we discuss some extensions of our analysis.

5.1 An action yielding a sate-independent payoff and a bank run

In Section 4, we assume that one of the actions is a safe action and θ is drawn from the improper

uniform distribution. We can obtain the same results under a slightly weaker requirement.

Suppose that action a ∈ {0, 1} yields a state-independent payoff; that is, u(a, l, θ) = f (l), where

f : [0, 1]→ R. Then, πa
ξ(κ, κ) is independent of ξ and κ because

πa
ξ(κ, κ) =

∫ ∞

−∞
u(a, 1 − Qξ(κ − θ), θ)qξ(κ − θ)dθ =

∫ 1

0
u(a, l, κ − Q−1

ξ (1 − l))dl =
∫ 1

0
f (l)dl,

where Qξ(κ − θ) = Φ(
√
ξ(κ − θ)) and qξ(κ − θ) =

√
ξϕ(
√
ξ(κ − θ)). Thus, the discussion in

Section 4 remains valid even if a safe action is replaced with an action with a state-independent

payoff.

An example with such an action is the global game model of bank runs studied by Goldstein

and Pauzner (2005), which is a variant of the Diamond-Dybvig model with noisy private sig-

nals. Depositors must decide whether to withdraw money from a bank in period 1 or wait until

period 2. If a depositor withdraws money in period 1, the bank pays a fixed amount of money

to him until it runs out of money, following a sequential-service constraint. Thus, the payoff to

early withdrawal is determined solely by depositors’ decisions and independent of a state. An

argument similar to that in Section 4 shows that ambiguous-quality information makes a bank

run more likely. This result also complements that of Iachan and Nenov (2015), who show that

low-quality information makes a bank run less likely. These results together imply that a bank

run is less likely under unambiguous low-quality information.

5.2 Mixed-strategy equilibria

Players are assumed to use pure strategies, which is common in the ambiguity literature. How-

ever, we can also consider mixed strategies. Let σ̄ : R → [0, 1] denote a mixed strategy that

assigns action 1 to a private signal x with probability σ̄(x). Kajii and Ui (2005) consider two

equilibrium concepts, a mixed-strategy equilibrium and an equilibrium in belief. A strategy

profile in which all players follow σ̄ is a mixed-strategy equilibrium if the following condition
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is satisfied: when a player receives a private signal x and the opponents follow σ̄, the minimum

expected payoff to the mixed action σ̄(x) is greater than or equal to that to any other mixed

action. The same strategy profile is an equilibrium in belief if the following condition is satis-

fied: when a player receives a private signal x and the opponents follow σ̄, if σ̄(x) > 0, then the

minimum expected payoff to action 1 is greater than or equal to that to action 0, and if σ̄(x) < 1,

then the minimum expected payoff to action 0 is greater than or equal to that to action 1.

A pure-strategy equilibrium in this paper satisfies the condition of an equilibrium in belief,

but it may not satisfy that of a mixed-strategy equilibrium because ambiguity-averse players

may prefer objective randomization.22 However, if one of the actions is a safe action, a pure-

strategy equilibrium is also a mixed strategy-equilibrium. To see this, suppose that action 0

is a safe action with u(0, l, θ) = c0 ∈ R. If σ : R → {0, 1} is a pure-strategy equilibrium,

then minξ∈Ξ Eξ[u(σ(x), Eξ[σ|θ], θ)|x] ≥ minξ∈Ξ pEξ[u(1, Eξ[σ|θ], θ)|x] + (1 − p)c0 for all x ∈ R

and p ∈ [0, 1], so σ is also a mixed-strategy equilibrium. This implies that the discussions

in Sections 2 and 4 and the propositions except Proposition 1 remain valid even if we adopt a

mixed-strategy equilibrium as an equilibrium concept.

5.3 Heterogeneous information quality

In Sections 2 and 4, each player is assumed to believe that the probability distribution of a

private signal is the same for all the players. Laskar (2014) makes this observation based upon

an earlier version of this paper (Ui, 2009)23 and studies a linear-normal global game with two

MEU players whose private signals may follow different probability distributions, where the

expected value of a private signal is ambiguous.

On the other hand, the general model in Section 3 allows the probability distributions to be

different across players, for which the main results remain valid. For example, we can consider

a game of regime change (u,Ξ) with Ξ = Ξ1×Ξ2, where ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2 are the precision of

a noise term in a player’s private signal and that in his opponents’ private signals, respectively.

When the state is θ and each opponent follows s[κ] in (u, {ξ}) with ξ = (ξ1, ξ2), the proportion

of the opponents choosing action 0 is Φ(
√
ξ2(κ − θ)), so the regime-change cutoff in (u, {ξ}) is

22See Section 4.3 of Kajii and Ui (2005). This property plays an essential in Ellis (2016).
23This contains the linear example and the models of financial crises together with some of the main results.
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θ∗(κ, ξ2) by (10). Thus, the equilibrium cutoff in (u, {ξ}) solves

π1
ξ(κ, κ) − π0

ξ(κ, κ) =
∫ θ∗(κ,ξ2)

−∞
d0(θ)

√
ξ1ϕ(

√
ξ1(θ − κ))dθ +

∫ ∞

θ∗(κ,ξ2)
d1(θ)

√
ξ1ϕ(

√
ξ1(θ − κ))dθ = 0

because pξ(θ|x) =
√
ξ1ϕ(
√
ξ1(θ − x)). Then, the equilibrium cutoff in (u,Ξ) is given by (13),

and the same discussion goes through even with heterogeneous information quality.

5.4 Monotone payoff differentials

The assumptions A1 and A2 require that u(1, l, θ) and u(0, l, θ) be increasing and decreasing in

(l, θ), respectively. They guarantee the monotone comparative statics in Lemmas 1 and 2, while

monotonicity of u(1, l, θ) − u(0, l, θ) suffices in single-prior games. This is a limitation of our

analysis because we cannot apply the main results to the class of global games with monotone

payoff differentials that do not satisfy A1 and A2. We will be able to overcome this limitation

by using recent ideas of Dziewulski and Quah (2021). Dziewulski and Quah (2021) introduce

the notion of first-order stochastic dominance for sets of priors. If the set of interim beliefs with

a higher private signal first-order stochastically dominates that with a lower private signal in

the sense of Dziewulski and Quah (2021), then monotonicity of payoff differentials guarantees

the monotone comparative statics in Lemmas 1 and 2. Such an extension of our analysis is left

as a promising direction for future research.

5.5 Smooth ambiguity preferences

As a model with more general ambiguity-averse preferences, we can consider global games

with smooth ambiguity preferences (Klibanoff et al., 2005). To briefly illustrate such a model,

let Ξ = [ξ, ξ] be a closed and bounded interval. Assume that when the opponents follow s[κ], a

player with a private signal x prefers action a to action a′ if and only if

1

ξ − ξ

∫ ξ

ξ

ϕα
(
πa
ξ(x, κ)

)
dξ ≥ 1

ξ − ξ

∫ ξ

ξ

ϕα(πa′
ξ (x, κ))dξ,

where ϕα(x) ≡ − 1
α
e−αx with α > 0. The constant α is the coefficient of ambiguity aversion,

and it is a measure of ambiguity attitude, while Ξ is a measure of ambiguity perception. This

model converges to the MEU model as α approaches infinity. Thus, the effects of ambiguous

information studied in this paper are understood as those of ambiguity perception when the
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coefficient of ambiguity aversion is extremely large. Even if α is finite, we can readily show this

model exhibits strategic complementarities in terms of smooth ambiguity preferences, and we

can conduct a similar analysis, where the effects of ambiguous information should be weaker

than those in the MEU model. We leave a further study of this model as a future research topic,

where this paper’s results serve as a benchmark.

6 Conclusion

In our analysis, we exploit both similarities and differences between a multiple-priors game

and a single-prior game. A multiple-priors game inherits strategic complementarities from

a single-prior game, but the payoff differential alone does not determine the best responses

in a multiple-priors game. Notably, a safe action plays a special role, e.g., if action 0 is a

safe action, the maximum equilibrium cutoff coincides with the maximum of the maximum

equilibrium cutoffs of all the fictitious single-prior games. This result is a consequence of the

inherited strategic complementarities, which leads us to the following findings. Ambiguous-

quality information and low-quality information can have opposite effects on the equilibrium

outcomes, the number of equilibria, and the likelihood of financial crises.

We have focused on exogenously fixed ambiguity. However, we can extend our frame-

work to study a social planner’s decision problem who is interested in implementing desirable

outcomes by engineering ambiguity, analogous to Bose and Renou (2014) and Di Tillio et al.

(2017). Such a problem can be referred to as ambiguous information design,24 a many player

generalization of ambiguous persuasion described by Beauchêne et al. (2019). Beauchêne et al.

(2019) study a Bayesian persuasion problem (Kamenica and Gentzkow, 2011) with an MEU

receiver, where a sender can choose an ambiguous communication device. One of the most

successful results in information design is obtained in binary-action supermodular games (e.g.,

Inostroza and Pavan, 2020; Li et al., 2020; Morris et al., 2020). Thus, its ambiguous version

should be an important topic for future research.

Appendix A Proofs of Proposition 1

We first prove Lemmas 1 and 2.

24See Bergemann and Morris (2019) for a survey on information design.
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Proof of Lemma 1. This function is continuous by Continuity, increasing in x by Action Mono-

tonicity, State Monotonicity, and Stochastic Dominance, and decreasing in κ by Action Mono-

tonicity. □

Proof of Lemma 2. Because Eξ[σ|θ] ≥ Eξ[σ′|θ], it holds that u(1, Eξ[σ|θ], θ) ≥ u(1, Eξ[σ′|θ], θ)

and u(0, Eξ[σ|θ], θ) ≤ u(0, Eξ[σ′|θ], θ) by Action Monotonicity, which implies this lemma. □

We also use the following lemma, which ensures that action 0 is a dominant action when

a private signal is sufficiently low, and action 1 is a dominant action when a private signal is

sufficiently high.

Lemma A. There exist x, x ∈ R such that minξ∈Ξ π1
ξ(x, κ)−minξ∈Ξ π0

ξ(x, κ) < 0 for all x ≤ x and

κ ∈ R and minξ∈Ξ π1
ξ(x, κ) −minξ∈Ξ π0

ξ(x, κ) > 0 for all x ≥ x and κ ∈ R.

Proof. We prove the existence of x (we can prove that of x similarly). For ξ0 ∈ arg minξ∈Ξ π0
ξ(x, κ),

which exists by Continuity and the compactness of Ξ,

min
ξ∈Ξ
π1
ξ(x, κ) −min

ξ∈Ξ
π0
ξ(x, κ) ≤ π1

ξ0
(x, κ) − π0

ξ0
(x, κ) ≤ max

ξ∈Ξ
Eξ[u(1, 1, θ) − u(0, 1, θ)|x]

by Action Monotonicity. Thus, it is enough to show that limx→−∞maxξ∈Ξ Eξ[u(1, 1, θ)−u(0, 1, θ)|x] <

0, which is true if

lim
x→−∞

Eξ[u(1, 1, θ) − u(0, 1, θ)|x] < 0 (A.1)

for each ξ by Dini’s theorem because Eξ[u(1, 1, θ) − u(0, 1, θ)|x] is increasing in x by State

Monotonicity and Stochastic Dominance, and ξ 7→ Eξ[u(1, 1, θ) − u(0, 1, θ)|x] is continuous on

a compact set Ξ.

Let ε = −(u(1, 1, θ) − u(0, 1, θ)) > 0, where θ ∈ R is given in Limit Dominance. Note that

u(1, 1, θ) − u(0, 1, θ) ≤ −ε for all θ ≤ θ by State Monotonicity, and thus

Eξ[u(1, 1, θ) − u(0, 1, θ)|x] ≤ −ε
∫ θ

−∞
pξ(θ|x)dθ +

∫ ∞

θ

(u(1, 1, θ) − u(0, 1, θ))pξ(θ|x)dθ. (A.2)

Then, (A.1) holds for the following reason. First, by Limit Dominance,

lim
x→−∞

(
−ε

∫ θ

−∞
pξ(θ|x)dθ

)
= −ε. (A.3)

Next, for arbitrary x′ ∈ R, there exists θ̂ > θ such that
∫ ∞
θ̂

(u(1, 1, θ)−u(0, 1, θ))pξ(θ|x′)dθ < ε/2,
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which implies that

lim
x→−∞

∫ ∞

θ̂

(u(1, 1, θ) − u(0, 1, θ))pξ(θ|x)dθ ≤
∫ ∞

θ̂

(u(1, 1, θ) − u(0, 1, θ))pξ(θ|x′)dθ < ε/2

by State Monotonicity and Stochastic Dominance. Because

lim
x→−∞

∣∣∣∣∣∣∣
∫ θ̂

θ

(u(1, 1, θ) − u(0, 1, θ))pξ(θ|x)dθ

∣∣∣∣∣∣∣ ≤ c lim
x→−∞

∫ θ̂

θ

pξ(θ|x)dθ = 0

by Limit Dominance, where c = maxθ∈[θ,θ̂] |u(1, 1, θ) − u(0, 1, θ)|, we have

lim
x→−∞

∫ ∞

θ

(u(1, 1, θ) − u(0, 1, θ))pξ(θ|x)dθ < ε/2. (A.4)

Therefore, (A.1 ) holds by (A.2 ), (A.3 ), and (A.4 ). □

Using the above three lemmas, we can prove Proposition 1 by a standard argument (e.g.,

Morris and Shin, 2002), so we provide only a sketch of the proof (the full proof is available

upon request). Let Σn ≡ {σ | s[κn](x) ≤ σ(x) ≤ s[κn](x)}, where κ0 = −∞ and κ0 = ∞, and κn
and κn are defined inductively by

κn+1 = min{x ∈ R | min
ξ∈Ξ
π1
ξ(x, κn) −min

ξ∈Ξ
π0
ξ(x, κn) = 0},

κn+1 = max{x ∈ R | min
ξ∈Ξ
π1
ξ(x, κn) −min

ξ∈Ξ
π0
ξ(x, κn) = 0}.

Then, we can show by induction that Σn is the set of strategies surviving n rounds of iterated

deletion of strictly interim-dominated strategies. Furthermore, we can show that κ = limn→∞ κn

and κ = limn→∞ κn, which implies Proposition 1.

Appendix B Proof of Proposition 2

We use the following lemma.

Lemma B. Let f : R × Ξ → R be a continuous function, where Ξ is a compact set. Assume

that, for each ξ ∈ Ξ, f (x, ξ) = 0 has a unique solution x∗(ξ) such that f (x, ξ) < 0 if and only

if x < x∗(ξ), and x∗(ξ) is bounded over Ξ. Then, max
ξ∈Ξ

x∗(ξ) and min
ξ∈Ξ

x∗(ξ) exist, and they are

unique solutions of min
ξ∈Ξ

f (x, ξ) = 0 and max
ξ∈Ξ

f (x, ξ) = 0, respectively.
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Proof. If x∗(ξ) is continuous, max
ξ∈Ξ

x∗(ξ) and min
ξ∈Ξ

x∗(ξ) exist because Ξ is compact. So we first

show that x∗(ξ) is continuous. Note that, for any convergent sequence {ξk}∞k=1 with a limit ξ̄,

there exists a subsequence {ξkl}∞l=1 such that liml→∞ x∗(ξkl) = x̄ for some x̄ because {x∗(ξk)}∞k=1 is

a bounded sequence. Then, liml→∞ f (x∗(ξkl), ξkl) = f (x̄, ξ̄) = 0, and thus x̄ = x∗(ξ̄). That is, the

limit of any convergent subsequence of {x∗(ξk)}∞k=1 is x̄, which implies that limk→∞ x∗(ξk) = x̄.

We show that x∗ ≡ maxξ∈Ξ x∗(ξ) is a unique solution to minξ∈Ξ f (x, ξ) = 0. Note that

f (x, ξ) > 0 for all x > x∗ ≥ x(ξ) and ξ ∈ Ξ, which implies that minξ∈Ξ f (x, ξ) > 0 for all

x > x∗ because f (x, ξ) is continuous in ξ and Ξ is compact. Note also that f (x, ξ∗) < 0 for

all x < x∗ if x∗(ξ∗) = x∗, which implies that minξ∈Ξ f (x, ξ) ≤ f (x, ξ∗) < 0 for all x < x∗.

Hence, x∗ is the unique solution to minξ∈Ξ f (x, ξ) = 0 because minξ∈Ξ f (x, ξ) is continuous in

x (by the maximum theorem). We can similarly show that minξ∈Ξ x∗(ξ) is a unique solution to

maxξ∈Ξ f (x, ξ) = 0. □

Proof of Proposition 2. By Proposition 1, it suffices to prove that (9) is a unique solution to

(7). Let f (κ, ξ0, ξ1) ≡ π1
ξ1

(κ, κ) − π0
ξ0

(κ, κ). Then, (7) is written as minξ1 maxξ0 f (κ, ξ0, ξ1) =

maxξ0 minξ1 f (κ, ξ0, ξ1) = 0.

We first show that if κ < k(ξ0, ξ1), then f (κ, ξ0, ξ1) < 0. Let κ′ < min{x, infξ0,ξ1 k(ξ0, ξ1)},

where x is given in Lemma A. Then, it suffices to show f (κ′, ξ0, ξ1) < 0 because k(ξ0, ξ1) is

a unique solution to f (κ, ξ0, ξ1) = 0. Note that maxξ0 minξ1 f (κ′, ξ0, ξ1) < 0 by Lemma A, so

there exist ξ′0, ξ
′
1 ∈ Ξ such that f (κ′, ξ′0, ξ

′
1) < 0. Note also that f (κ′, ξ0, ξ1) , 0 for all ξ0, ξ1 ∈ Ξ

because κ′ < infξ0,ξ1 k(ξ0, ξ1). Hence, we must have f (κ′, ξ0, ξ1) < 0 for all ξ0, ξ1 ∈ Ξ; otherwise,

there would exist ξ0, ξ1 ∈ Ξ such that f (κ′, ξ0, ξ1) = 0 by the intermediate value theorem.

Similarly, we can show that if κ > k(ξ0, ξ1), then f (κ, ξ0, ξ1) > 0.

By the above argument, we can apply Lemma B to the function (κ, ξ0) 7→ f (κ, ξ0, ξ1)

for each ξ1; that is, minξ0 k(ξ0, ξ1) is the unique solution of maxξ0 f (κ, ξ0, ξ1) = 0. Note that

maxξ0 f (κ, ξ0, ξ1) < 0 if and only if κ < minξ0 k(ξ0, ξ1) (see the proof of Lemma B). Thus, we can

again apply Lemma B to the function (κ, ξ1) 7→ maxξ0 f (κ, ξ0, ξ1); that is, maxξ1 minξ0 k(ξ0, ξ1) is

the unique solution of minξ1 maxξ0 f (κ, ξ0, ξ1) = 0. Similarly, minξ0 maxξ1 k(ξ0, ξ1) is the unique

solution of maxξ0 minξ1 f (κ, ξ0, ξ1) = minξ1 maxξ0 f (κ, ξ0, ξ1) = 0. □
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Appendix C Proof of Proposition 3

Proof of Proposition 3. If κ > κ0, then π1
ξ(κ, κ) − c0(κ) > 0 for all ξ ∈ Ξ because π1

ξ(κ, κ) −

c0(κ) , 0 and π1
ξ(x, x) − c0(x) > 0 for all x > x, where x is given in Lemma A. Thus, if

κ > κ0, then minξ π1
ξ(κ, κ) − c0(κ) > 0 by Continuity and compactness of Ξ. On the other hand,

minξ π1
ξ(κ

0, κ0) − c0(κ0) ≤ π1
ξ0

(κ0, κ0) − c0(κ0) = 0 for ξ0 ∈ arg maxξ∈Ξ max{κ | π1
ξ(κ, κ) = c0(κ)}.

Because minξ π1
ξ(κ, κ) − c0(κ) is continuous in κ (by Continuity and the maximum theorem), κ0

is the maximum solution to minξ π1
ξ(κ, κ) − c0(κ) = 0, i.e., the maximum equilibrium cutoff in

(u,Ξ). If minξ π1
ξ(κ, κ) < c0(κ) for all κ < κ0, κ0 is a unique solution to minξ π1

ξ(κ, κ) − c0(κ) = 0,

so s[κ0] is the unique strategy surviving iterated deletion of strictly interim-dominated strategies

by Proposition 1. □

Appendix D Proof of Proposition 5

We write qξ(εi) =
√
ξq(
√
ξεi), where q is a probability density function satisfying the following

conditions:
∫
εiq(εi)dεi = 0,

∫
ε2

i q(εi)dεi = 1, q(εi) = q(−εi), and q(εi) is increasing in εi if

εi < 0. To prove Proposition 5, we use the following lemma.

Lemma C. For any x, κ ∈ R, if action 0 is a safe and ex-ante Laplacian action, then

lim
ξ→0
π1
ξ(x, κ) = lim

ξ→0

∫
u(1, Eξ[s[κ]|θ], θ)pξ(θ|x)dθ =

∫
u(1, 1/2, θ)p(θ)dθ < c0. (A.5)

Thus, for any κ0, κ1 ∈ R with κ0 ≤ κ1, there exists δ > 0 such that if ξ < δ then π1
ξ(κ, κ) ≤

π1
ξ(κ1, κ0) < c0 for all κ ∈ [κ0, κ1].

Proof. It is enough to show the second equality in (A.5). Note that

π1
ξ(x, κ) =

∫
u(1, Eξ[s[κ]|θ], θ)pξ(θ|x)dθ =

∫
u(1, Eξ[s[κ]|θ], θ)p(θ)q(

√
ξ(x − θ))dθ∫

p(θ)q(
√
ξ(x − θ))dθ

.

Consider the limit of the denominator. By the monotone convergence theorem,
∫

p(θ)q(
√
ξ(x−

θ))dθ →
∫

p(θ)q(0)dθ = q(0) as ξ → 0 because q(
√
ξ(θ − x)) is decreasing in ξ (recall the

assumption that q(ε) = q(−ε) and q(ε) is increasing in ε if ε < 0). Next, consider the limit of

the numerator. By the dominated convergence theorem,

∫
u(1, Eξ[s[κ]|θ], θ)p(θ)q(

√
ξ(θ − x))dθ →

∫
u(1, 1/2, θ)p(θ)q(0)dθ
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as ξ → 0 because Eξ[s[κ]|θ] =
∫ ∞
κ

√
ξq(
√
ξ(x − θ))dx = 1 − Q(

√
ξ(κ − θ)) → 1/2, where Q is

the cumulative distribution function, and

|u(1, Eξ[s[κ]|θ], θ)p(θ)q(
√
ξ(x − θ))| ≤ (|u(1, 1, θ)| + |u(1, 0, θ)|)p(θ)q(0),

where the right-hand side is integrable. □

Proof of Proposition 5. Fix κ. Let x < κ be such that π1
ξ
(κ, κ) < c0 = π0

ξ
(κ, κ) for all κ < x,

which exists by Lemma A. Lemma C implies that there exists δ ∈ (0, ξ) such that if ξ < δ then

π1
ξ(κ, κ) < c0 for all κ ∈ [x, κ]. Let ξ < δ. Then,

min
ξ∈[ξ,ξ]

π1
ξ(κ, κ) ≤


π1
ξ
(κ, κ) < c0 if κ < x,

π1
ξ(κ, κ) < c0 if κ ∈ [x, κ].

This implies that every equilibrium cutoff in (u, [ξ, ξ]) is greater than κ.

Let δ be given above. Suppose that, for each ξ < δ, π1
ξ(κ, κ) = c0 has at most one solution

greater than κ. Let x > κ be such that minξ∈[δ,ξ] π
1
ξ(κ, κ) > c0 for all κ > x, which exists by

Lemma A. By Lemma C, there exists δ′ ∈ (0, δ) such that if ξ < δ′ then π1
ξ(κ, κ) < c0 for all

κ ∈ [x, x]. Let ξ′ < δ′. Then,

min
ξ∈[ξ′,ξ]

π1
ξ(κ, κ) ≤


π1
ξ
(κ, κ) < c0 if κ < x,

π1
ξ′(κ, κ) < c0 if κ ∈ [x, x],

(A.6)

so κ0 = maxξ∈[ξ′,ξ] max{κ | π1
ξ(κ, κ) = c0} > x because, by Proposition 3, κ0 is the maximum

solution to minξ∈[ξ′,ξ] π
1
ξ(κ, κ) = c0. Let ξ0 ∈ arg maxξ∈[ξ′,ξ] max{κ | π1

ξ(κ, κ) = c0}; that is,

π1
ξ0

(κ0, κ0) = c0. Then, we must have ξ0 < δ because κ0 > x implies minξ∈[δ,ξ] π
1
ξ(κ

0, κ0) > c0.

Thus, π1
ξ0

(κ, κ) < c0 for all κ ∈ [x, κ] by the definition of δ. Note that π1
ξ0

(κ, κ) , c0 for all

κ ∈ (κ, κ0) by the assumption. Accordingly, minξ∈[ξ′,ξ] π
1
ξ(κ, κ) ≤ π1

ξ0
(κ, κ) < c0 for all κ ∈ (κ, κ0)

by Continuity. This implies that minξ∈[ξ′,ξ] π
1
ξ(κ, κ) < c0 for all κ < κ0 by (A.6 ). Therefore,

by Proposition 3, s[κ0] is the unique strategy surviving iterated deletion of strictly interim-

dominated strategies in (u, [ξ′, ξ]). □
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