Monte Carlo Simulation of Positronium Cooling for Bose-Einstein Condensation

A. Ishida¹, K. Shu¹*, T. Murayoshi¹, X. Fan¹, T. Yamazaki¹, T. Namba¹, S. Asai¹, K. Yoshioka², and M. Kuwata-Gonokami¹

¹Department of Physics, Graduate School of Science, and International Center for Elementary Particle Physics (ICEPP), **The University of Tokyo**, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN ²Photon Science Center, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, JAPAN <u>ishida@icepp.s.u-Tokyo.ac.jp</u> (A. Ishida), <u>ks</u>hu@icepp.s.u-Tokyo.ac.jp (K. Shu)

B

B

I(

 $\omega_{_0}$

 X_{1}

Positronium and its Bose-Einstein Condensation (BEC)

Positronium (Ps)

- The bound state of an electron (e-) and a positron (e+).
- The lightest and exotic atom.

Ps BEC

High critical temperature. Our target: 14 K @ 10¹⁸/cm³

Scientific goal and application **Antimatter gravity** measurement

Setup

 $n\lambda_{\rm D}^3 = n \left(\frac{2\pi\hbar^2}{mk_{\rm B}T_{\rm C}}\right)^{3/2} = 2.612, \ (1)$ n : number density, $\lambda_{\rm D}$: de Broglie wave length, \hbar : reduced Planck constant, m: atom mass, $k_{\scriptscriptstyle \mathrm{D}}$: Boltzmann constant,

$$B(t, \vec{x}, \vec{v}) = \int d\omega \frac{I(t, \vec{x}, \omega)}{\hbar \omega} \cdot \frac{4}{3} \pi^2 \alpha \omega_0 |X_{12}| \cdot \frac{1}{2\pi} \\ \times \frac{\Gamma/2}{\left[\omega \left(1 - \vec{k} \cdot \vec{v} / c\right) - \omega_0\right]^2 + \left(\Gamma / 2\right)^2}, \quad (6)$$

$$B(t, \vec{x}, \vec{v}) : \text{Einstein } B \text{ coefficient}, \\ \vec{x} : \text{Ps position}, \\ \vec{v} : \text{Ps velocity}, \\ \omega : \text{laser frequency}, \\ I(t, \vec{x}, \omega) : \text{laser intensity per frequency}, \\ \alpha : \text{fine structure constant}, \\ \omega_0 : 1s - 2p \text{ resonant frequency}, \\ X_{12} : 1s - 2p \text{ transition matrix element}, \\ \Gamma = 313 \text{ MHz (natural linewidth)}, \end{cases}$$

 \hat{k} : laser photons' direction,

Thermalization

- Thermalization is too slow.

uncertainty of M.

- Huge uncertainty because of

in silica cavity is necessary.

Table 1 Assumed cooling laser specifications.

Parameters	Values
Pulse energy	40 µJ
Center frequency	1.23 PHz – Δ(<i>t</i>)
Frequency detune $\Delta(t)$	Δ(0 ns) = 300 GHz Δ(300 ns) = 240 GHz
Bandwidth (2σ)	140 GHz
Time duration (2σ)	300 ns
P_{a} (2σ)	200

Gamma-ray laser

Fig. 1 BEC critical temperatures. $T_{\rm C}$: BEC critical temperature.

 $200 \,\mu\text{m}$

Results

Combination of Thermalization and Laser cooling

BEC can be realized by our new method (thermalization + laser cooling)!

- 5 keV, $10^7 e^+$ /bunch beam. - Silica cavity (1 K) and cooling lasers. - (100 nm)³ cube internal void traps 4000 fully polarized Ps

 $(n = 4 \times 10^{18} \text{ cm}^{-3}).$

Initial conditions

- 10⁴ fully polarized Ps.

- 0.8 eV monochromatic kinetic energy.

- Isotropic velocities, uniform position distributions.

Method

- Velocity and internal state of every Ps are traced at the same time (brute-force method).
- Time evolutions are calculated with short time steps.
- Random numbers are generated at each step to determine whether and which interaction each Ps does.
- Step size is only ~0.1 ps, which is short so that probabilities of all interactions are less than 1%.
- One execution without averaging.

Cooled cavity made by silica which is transparent to the lasers Fig. 2 Conceptual view of the setup.

- Positions of Ps are not traced. 100 nm cube is much smaller than the laser beam size. - Initial Ps number of 10⁴ is larger than 4 x 10³, which is the assumed number of fully polarized Ps survived in the silica cavity, in order to decrease the statistical uncertainty. Ps-Ps scattering rate is scaled to compensate the difference.

Interactions

1. Thermalization

- Ps lose energy by collisions with silica cavity walls.
- Each Ps kinetic energy is assumed to evolve by the same way as the mean kinetic energy.
- The following differential equation (2) is solved by the Euler method.

fractions with different laser and Ps temperature (bottom) frequency chirp conditions. with laser cooling (Best-fit *M* is used). **Frequency chirp is important!**

Time evolutions of some parameters:

- Ps lifetime is longer with laser cooling because of 1s-2p transitions (2p has long lifetime).

Effect of uncertainty of silica effective mass *M*

2. Ps-Ps scatterings

- Two-body elastic *s*-wave scatterings.
- Cross section and mean free time are calculated by Eqs. (4) and (5).

 $\sigma = 4\pi a^2,$ (4) σ : scattering total cross section, a = 0.16 nm (scattering length).

 $\tau = ----$ (5) $n\sigma\overline{v}$ τ : scattering mean free time, \overline{v} : Ps mean velocity.

3. Ps decays

- 1s o-Ps annihilation (lifetime is 142 ns). Annihilated Ps are removed.
- 2p o-Ps annihilation is ignored because of long lifetime.
- Lyman- spontaneous de-excitation (3.2 ns) is included in the simulation.

4. Interaction with lasers

- Rates are calculated using Eq. (6) (right top of this poster).
- Laser intensity profile is approximated to be uniform at the peak intensity.

