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AbstratNatural language proessing involves very ompliated and hard-to-formalize design issues be-ause it has to treat a wide range of di�erent kinds of linguisti knowledge, suh as morphologial,syntati, semanti and ontextual, with regularity and exeptionality. Various kinds of gram-mar and knowledge representation frameworks and their proessing algorithms are proposed ineah linguisti level. Morphologial proessing is one of the most developed and establishedtehnologies in the area of natural language analysis (NLA). Semanti proessing needs morefuture researhes. The syntati layer, whih is a bridge to the semanti layer, has been studiedintensively for years and various approahes have been proposed in the �elds of omputationallinguistis and linguistis.Phrase struture syntax (Chomsky, 1956) and dependeny syntax (Tesni�ere, 1969) are twomajor syntati theories, and phrase struture and dependeny struture are widely used forthe syntati representation of sentenes. These strutures are onsidered to show di�erentdimensions of the sentene struture and an be used for ompensating eah other. However,insuÆient e�orts have been made for the integrated use of these syntati strutures, espeiallyin dependeny analysis researh.This thesis proposes a novel dependeny analysis method alled \Preferene DependenyGrammar (PDG)," whih adopts multilevel arhiteture utilizing the morphologial struture,phrase struture, and dependeny struture representations. Eah of the representations is akind of paked shared data struture that enompasses all possible sentene interpretations in itsinterpretation spae. This PDG arhiteture is introdued based on the following design prin-iples obtained through disussions on the NLA framework, whih utilizes multilevel linguistirepresentations with respet to preferene and onstraint knowledge.(a) Avoiding over pruning as well as suppressing ombinatorial explosion as muh as possible(b) Adopting e�etive pruning by applying possible onstraints in the lower level() Enabling optimum searh in the uppermost level to utilize various levels of prefereneknowledgePDG is more advantageous than traditional dependeny analysis methods in that it an handlePOS ambiguities in onjuntion with dependeny ambiguities and an inorporate more detailedi



desriptions for both preferene and onstraint knowledge for the dependeny struture. Theore tehnologies of PDG for enabling these features are a new data struture \dependenyforest" and a new algorithm \graph branh algorithm," whih are the main ontributions of thisthesis.The dependeny forest is a new paked shared data struture for representing a set of de-pendeny trees with their preferene sores. The dependeny forest onsists of the dependenygraph, the onstraint matrix and the preferene matrix. The multilevel preferenes and on-straints are integrated into the preferene matrix and the onstraint matrix of a dependenyforest. The dependeny forest has a omplete and sound mapping to the orresponding phrasestruture forest. Beause of this feature, the phrase struture grammar (CFG grammar) anfuntion as a �lter for the dependeny strutures for an input sentene, and the POS ambiguitiesretaining all possible POS sequenes an be introdued to dependeny analysis. This thesis givesthe proof of the ompleteness and soundness of the dependeny forest.The dependeny forest provides a preise de�nition of a set of dependeny trees beause theonstraint matrix an express o-ourrene restritions between two arbitrary dependeny rela-tions. This exibility enables PDG to handle non-projetive dependenies and the single valeneoupation onstraint. On the other hand, the preferene matrix, whih an express prefer-enes for two arbitrary dependeny relations, enables the integrated use of tree-loal information(preferene on dependeny relation) and string-loal information (preferene on word sequene).This thesis proposes a new searh method alled the \graph branh algorithm" for dependenyforests. This algorithm searhes for the best dependeny tree with respet to the preferenematrix and the onstraint matrix based on the branh and bound priniple. The DP-basedalgorithm, widely used in the optimum tree searh task, annot be applied to the dependenyforest searh due to its high desription abilities.This thesis �nally reports the experimental results using a prototype PDG system for ex-amining the various aspets of the PDG framework inluding the dependeny forest, the graphbranh algorithm and the e�et of the multilevel knowledge integration using the prototype PDGgrammar.
ii
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1
Chapter 1Introdution
The �nal goal of natural language sentene analysis is to bene�t human kind by making om-puters understand the meanings of sentenes. The basis of natural language analysis (NLA),i.e., linguistis and omputational linguistis, onsists of layers of theories suh as morphology,syntax, semantis and ontext. The purpose of sentene analysis is to obtain mapping from aninput sentene to a orret interpretation in an appropriate linguisti layer. This is performed byidentifying the sentene struture by applying various kinds of linguisti and real world knowl-edge.NLA systems adopt the linguisti layer struture expliitly or impliitly. There are varioustypes of appliations in eah linguisti layer. Information retrieval systems utilize morphologialanalysis for omparing ineted words. Mahine translation systems analyze soure sentenes toobtain their syntati and/or semanti representations to transform them to the target languagesentenes. Dialogue systems require the ontextual or intentional strutures for the utteranefrom a user. Interpretations in some linguisti layer are naturally onsidered to be intermediatestrutures between the orresponding strutures in its lower and upper linguisti layers. Mor-phologial strutures bridge the input sentene to the syntati strutures, whih bridge them tothe semanti strutures. The ability of an NLA system is basially determined by the expressiveabilities of the sentene interpretation, knowledge desription power and quantity adopted by theNLA system. Therefore, the most important and fundamental issues of the NLA system designare what kinds of knowledge in linguisti layers are desribed and how they should be appliedproperly.Syntati layer has been studied intensively for years and various approahes have been pro-posed in omputational linguistis as well as in linguistis. Phrase struture syntax (Chomsky,1956) and dependeny syntax (Tesni�ere, 1969) proposed in the same era are two major syntatitheories and the phrase struture and the dependeny struture are widely used as syntatirepresentation for sentenes. These strutures are onsidered to show di�erent dimensions of thesentene struture and an be used for ompensating eah other. However, insuÆient e�ortshave been made for researh in this area, espeially in omputational linguistis.The goal of this thesis is to disuss the NLA frameworks that utilize multilevel linguisti repre-sentations and to propose a novel dependeny analysis method that integrates the morphologial



2struture, phrase struture, and dependeny struture representations. As desribed below, theintegration of multilevel preferene and onstraint knowledge is the most basi issues in multi-level NLA system*1 design. The remainder of this hapter desribes the traditional approahesfor the two major syntati frameworks and the ontributions of this thesis.1.1 Bakground to the ResearhPhrase struture (or onstitueny) syntax (Chomsky, 1956) and dependeny syntax (Tesni�ere,1969) are two major syntati frameworks in linguisti and omputational linguistis; that is,these are two major interpretation desription shemes (or data strutures) for representingthe syntati strutures of sentenes. This setion desribes the phrase struture and depen-deny struture shemes and the traditional approahes for integrating these two representationshemes.1.1.1 Phrase Struture and Dependeny StruturePhrase struture grammars desribe the struture of a sentene in terms of onstitueny rela-tions on the words of the phrases of the sentene. Eah word in the sentene has its POS (partof speeh). Phrases are represented as a sequene of POSs or phrasal labels (non-terminal labelsor symbols) eah of whih de�nes a set of possible sequene of phrases. The set of the phrasestruture relations that an be de�ned on a sentene forms a tree, known as the phrase struturetree.Dependeny grammars desribe the struture of a sentene in terms of binary head-modi�er(also known as dependeny) relations on the words of the sentene. A dependeny relation isan asymmetri relation between a word alled the governor (head, parent) and a word alledthe dependent (modi�er, daughter). A word in the sentene an play the role of the governor inseveral dependeny relations, i.e., it an have several dependents; however, eah word an playthe role of the modi�er exatly one in a majority of dependeny grammar frameworks. Onepartiular word does not play the role of the modi�er in any relation, and this is named the root.The set of the dependeny relations that an be de�ned on a sentene form a tree, known as thedependeny tree (Lombardo and Lesmo, 1996).Fig.1.1 shows the phrase struture tree and dependeny tree for the sentene \Time ies likean arrow." The phrase struture expliitly represents phrases (nonterminal nodes), struturalategories (nonterminal labels), and possibly some funtional ategories (grammatial funtions).On the other hand, the dependeny struture represents head-dependent relations (diretedars*2 ), funtional ategories (ar labels), and possibly some strutural ategories (POS) (Nivreand Sandra, 2006). The phrase struture follows a horizontal organization priniple: it ombines*1 NLA system with more than one sentene interpretation data strutures.*2 There are two onventions to represent the diretion of dependeny relations. The soure and the target ofan arrow shows the dependent node and the governor node, respetively, in this thesis.
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Fig.1.1 Phrase struture and dependeny struturethe onstituents into phrases (larger strutures) until the entire sentene is formed. On the otherhand, dependeny is an asymmetrial relation between a head and a dependent, i.e., it followsthe vertial organization priniple (Kruij�, 2001).Context free grammar (CFG) has been studied in depth and adopted as the omputationalbasis of the phrase struture sheme. The ontext free grammar G is formally de�ned by thefollowing four omponents.G =< Vt; Vn; P; S >Vt : �nite set of terminal symbolsVn : �nite set of nonterminal symbolsP : �nite set of rewriting rulesS : �nite set of start symbols (S�Vn)On the other hand, there is no established standard for the formal representation of the depen-deny grammar framework. This thesis ategorizes the existing dependeny grammar frameworksinto three dependeny models, i.e., the Tesniere model, the single dependeny model, and thelexial rule model*3.(1) Tesniere modelThe Tesniere model of dependeny grammar is a formal grammar framework (Gaifman, 1965;Hays, 1964) based on the grammatial theory known as dependeny grammar (DG), whih wasproposed by the Frenh linguist Tesniere (Tesni�ere, 1969). Researhes on parsing algorithms(Lai and Huang, 1994; Lombardo and Lesmo, 1996; Courtin and Genthial, 1998; Lombardo andLesmo, 1998) and the analysis of the grammatial equivalene between CFG and DG (Gaifman,1965; Abney, 1994) have been onduted based on this model.The dependeny grammar G of the Tesniere model is de�ned as follows (Lombardo and Lesmo,1996):G =< S;C;W;L; T >*3 These are not generally established terms.
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Fig.1.2 Dependeny rule in the Tesniere modelW : a �nite set of symbols (voabulary of words in a natural language)C : a set of syntati ategories (preterminals, in onstitueny terms)S : a non-empty set of root ategories (C�S)L : a set of ategory assignment rules of the form X : x, where X2C, x2WT : a set of dependeny rules of the form X(Y1 Y2 ::: Yi�1 # Yi+l ::: Ym)where X2C, Y12C; ::: Ym2C, and # is a speial symbol that does not belong to C.A tree resulting from the dependeny rules is essentially an ordered tree of depth one, whereinthe nodes are labeled as shown in Fig.1.2. A dependeny rule de�nes the simultaneous existeneof multiple dependeny relations in order. This is somewhat similar to a CFG rewriting rule thatde�nes the simultaneous existene of multiple phrases or words in order.The dependeny tree for a sentene x(= a1a2::ap2W�) should satisfy the following ondi-tions*4:(a) The nodes are the symbols ai2W (l�i�p).(b) The tree has to be overed by a proper set of grammar rules.() The tree satis�es the projetivity ondition*5 with respet to the order in x.(d) The root is a unique symbol as suh that As : as2L and As2S.(2) Single dependeny modelThe single dependeny model is basially an analyti grammar model that generates depen-deny trees for a given sentene. This model overs many dependeny parsers suh as \kakari-uke"*6 analyzers (Yoshida, 1972; Shudo et al., 1980; Hitaka and Yoshida, 1980; Ozeki, 1986;Nakagawa and Ito, 1987; Matsunaga and Kohda, 1988; Hirakawa and Amano, 1989a; Kuro-hashi and Nagao, 1994; Ozeki, 1994; Hirakawa, 2001; Kudo and Matsumoto, 2005), dependenyparsers (Covington, 1990; Kubon, 2001; Yamada and Matsumoto, 2003; Nivre and Sholz, 2004;MDonald et al., 2005), and CDG (onstraint dependeny grammar) parsers (Maruyama, 1990;Harper et al., 1999; Wang and Harper, 2004).In this model, dependeny grammar is de�ned by two omponents, i.e., a set of dependeny*4 Refer to (Lombardo and Lesmo, 1996) for the detailed formal de�nition*5 The projetivity ondition onsists of two onditions, i.e., \no ross dependeny exits" and \no dependenyovers the top node" (Mel'uk, 1988). The seond ondition is unneessary when a speial root node isintrodued at the top or end of a sentene. Dependeny strutures whih violate the projetivity onditionare alled \non-projetive" strutures.*6 Kakari-uke is a type of dependeny relation. The details are explained in Setion 1.3.



5

Set of dependency relations

� �� �� �
Set of dependency trees

Well-formedness
Constraints

Dependency 
Generation

Rules

Sentence

W1 W2 ... Wn

Dependency Grammar

Set of dependency relations

� �� �� �
Set of dependency trees

Well-formedness
Constraints

Dependency 
Generation

Rules

Sentence

W1 W2 ... Wn

Dependency Grammar

Fig.1.3 Single dependeny modelgeneration rules G, whih generates a set of dependeny relations between two nodes (words) anda set of well-formedness onstraints C, whih de�nes well-formed dependeny trees. As shown inFig.1.3, a set of dependeny relation ars are obtained by applying G to an input sentene (wordsequene W1;W2; :::Wn). A set of possible dependeny trees for the sentene is de�ned as a setof dependeny trees suh that eah onsists of the subset of the generated dependeny relationars and satis�es the well-formedness onstraints C. This framework an distinguish sentenesfrom non-sentenes with respet to the grammar (G and C). It an also generate all possiblegrammatial sentenes and their grammatial strutures by ombining a module that generatesall possible word sequenes. Therefore, the single dependeny model is a type of grammar forlanguages.G an be de�ned as a funtion that returns a set of dependeny piees for the given two words.Here, \dependeny piee" is de�ned as a triple < DN;GN;A >, where DN is a dependentnode, GN is a governor node, and A is an ar between the two nodes. This is represented inthe form \DN A�! GN ." There are several types of funtions aording to the types of nodesand ars. For example, one type of funtion may produe simple dependeny piees suh as\time �! y" and \time  � y" from the words \time" and \y." Another type of funtionmay return dependeny piees suh as \time/n subj���! y/v," \time/n nmod���! y/n" and \time/vobj �� y/n," where subj, obj, and nmod represent subjet, objet, and nominal modi�ationrelations, respetively. Chapter 4 provides a more detailed disussion on the node and ar typesfor dependeny strutures.The de�nition of the well-formedness onstraints C presribes various types of depen-deny grammars. The most well-known well-formedness onstraints are the axioms of thewell-formedness of the dependeny struture, as de�ned by Robinson (1970).(a) One and only one element is independent.(b) All others depend diretly on some element.() No element depends diretly on more than one other. (unique head)



6 (d) If element A depends diretly on element B and some element C intervenes between them(in linear order of string), then C depends diretly on A or on B or some other interveningelement. (projetivity)Some di�erent versions of dependeny strutures are obtained by hanging the well-formednessonditions. As desribed in (Kruij�, 2002), if the \unique head" onstraint de�ned above isrelaxed, the dependeny strutures form graphs instead of trees. This type of dependeny gram-mar allows dependents to have multiple heads (Johnson et al., 1985; Hudson, 1984; Hudson,1991). Relaxing the \projetivity onstraint" leads to a non-projetive dependeny grammar(Covington, 1990; Kubon, 2001; MDonald et al., 2005). These types of general onstraints areinsuÆient to de�ne a proper set of sentenes of some natural language. CDG allows arbitraryunary and binary onstraints for desribing detailed well-formedness onstraints.(3) Lexial rule modelThe lexial rule model is a dependeny grammar framework where the dependeny struture isonstruted by ombining the partial dependeny patterns de�ned in the lexions. Nasr (2000)proposed a dependeny parsing algorithm ombining the partial dependeny trees orrespondingto the words in a sentene using a graph stak mehanism. Mertens (2002) proposed a hart-parser-based method for onstruting the dependeny struture for a sentene by ombining thebasi partial dependeny strutures in lexions. Link grammar onstruts dependeny stru-tures based on the partial onnetion patterns de�ned in lexions (Sleator and Temperley, 1991;Grinberg et al., 1995; La�erty et al., 1992)*7.1.1.2 Relation between Phrase Struture and Dependeny StrutureIt is sometimes pointed out that the merit of the dependeny syntax over the phrase stru-ture is that the dependeny struture has the immediate mapping on the prediate-argumentsstrutures, i.e., the semanti strutures needed for the next stage of interpretation (Sgall et al.,1986; Mel'uk, 1988; Hudson, 1991) and is not neessary to \read o�" head-modi�er or head-omplement relations from a tree (Covington, 1990). On the other hand, the phrase struturesyntax an express the onstrution rules related to the word or phrasal order naturally, whihis not expliitly represented by the dependeny relation.The phrase and dependeny strutures are not ompeting representations; instead, they de-sribe di�erent aspets of the sentene strutures (Kruij�, 2002; Nivre and Sandra, 2006). Kruij�mentioned that \A phrase-struture tree is losely related to a derivation, whereas a dependenytree rather desribes the produt of a proess of derivation. Usually, given a phrase-struturetree, we an get very lose to a dependeny tree by onstruting the transitive ollapse of headed*7 Link grammar is not onsidered as an instane of dependeny grammar by its reators, and it departsfrom the traditional view of dependeny by using undireted links; however, the representations used inlink grammar parsing are similar to the dependeny representations in that they onsist of words linked bybinary relations (Nivre, 2005).



7strutures over non-terminals." Further, \Constitueny and dependeny are not adversaries,they are omplementary notions. Using them together we an overome the problems that eahnotion has individually." From the linguisti viewpoint, Kodama (1987) disussed the linguis-ti information required for obtaining the sentene interpretation in the ontext of dependenygrammars and positioned the dependeny struture as a bridge for ombining or integrating thesyntati information and the semanti information.A sentene has a set of possible syntati interpretations in general, and onsequently hasa set of orresponding phrase struture interpretations (trees) and the dependeny strutureinterpretations (trees). If phrase struture trees and dependeny struture trees for a senteneare di�erent representations for the syntati interpretations of the sentene, there should beonsistent orrespondenes between these two di�erent kinds of syntati trees. Sine syntatigrammars de�ne the syntati strutures of a sentene, there should be some onsistent mappingbetween phrase struture grammar and the dependeny grammar if both of them de�ne thesyntati strutures of sentenes.Gaifman (1965) studied the equivalene between CFG and the Tesniere model DG. As shownin Setion 1.1.1, the grammar rule formalism of the Tesniere model DG is similar to that ofCFG. There are two types of equivalene relations de�ned between the two grammars. The twogrammars are alled \weakly equivalent" if the set of strings de�ned by them are equivalent.They are alled \strongly equivalent" if the set of sentene strutures generated by them areequivalent. A de�nition for the equivalene between the sentene strutures of the two grammarsis neessary for heking the strong equivalene between the two grammars. Gaifman adoptedthe onept of \rami�ation" to hek the equivalene between a phrase struture tree and adependeny tree. Rami�ation is a parenthesized struture that represents information that issimilar to the phrase boundary. Proedures are outlined for obtaining the rami�ation from aphrase struture tree and a dependeny tree and heking their equivalene. Gaifman provedthat CFG and DG were weakly equivalent, i.e., there exists a DG that is weakly equivalent to agiven CFG and vie versa. On the other hand, there exists a CFG that is strongly equivalent to agiven DG; however, the inverse has not been proven to be true. Although a detailed explanationis not provided here, the ondition for CFG to be strongly equivalent to DG is that \a phrasestruture system*8 is equivalent to some d-system*9 i� its degree is 0 or 1" (Gaifman, 1965). ACFG grammar with a reursive derivation has an in�nite degree. This ondition is very strongand Gaifman's disussion disproved the strong equivalene between CFG and DG.Abney (1994) pointed out a problem in Gaifman's framework and studied the equivalenebetween CFG and DG using a revised framework. Gaifman's mapping method for obtainingthe rami�ation from a dependeny tree may produe multiple results due to the lak of in-formation. To resolve this mapping ambiguity, Abney assumed that the heads of phrases werepredetermined. Abney assumed a headed CFG (HCFG) and then disussed the equivalene be-*8 This is equivalent to CFG*9 This implies the Tesniere model DG



8tween CFG and DG derived from this HCFG based on Gaifman's framework. The derived CFGis known as a \harateristi grammar" and the derived DG is known as a \projetion gram-mar." The result shows that the harateristi and projetion grammars are not equivalent, i.e.,there exist HCFGs that have equivalent harateristi grammars and di�erent projetion gram-mars, and inversely, there exist HCFGs that have equivalent projetion grammars and di�erentharateristi grammars.As desribed in Nivre (2005), these results on the equivalene between CFG and DG havebeen mentioned to explain the relative lak of interest in dependeny grammars within naturallanguage proessing. If the strong equivalene between CFG and DG is disproved, a ompleteformal mapping between the phrase and dependeny strutures of sentenes annot be on-struted. Disussions by Gaifman and Abney have at least two important premises. First, thedisussed dependeny grammar is limited to the Tesniere model DG. Other dependeny grammarframeworks are not disussed. Seond, as already mentioned by Gaifman (1965), the riterionfor the equivalene between the phrase struture tree and dependeny tree, i.e., rami�ation, isnatural for the former but not for the latter. The riteria for the equivalene between these twostrutures should be a basi and important issue in disussing the equivalene between CFG andDG.The disussion on the equivalene or orrespondene between the phrase struture grammarand dependeny grammar does not fall within the sope of this thesis; however, this thesispresents a method for reating not one-to-one but onsistent orrespondenes between a set ofphrase struture trees and dependeny trees for a sentene as desribed in Chapter 3.1.2 Phrase Struture AnalysisAs desribed in Setion 1.1.1, CFG is established as a basis of phrase struture grammar to ob-tain the phrase strutures for a sentene. EÆient CFG parsing algorithms suh as CKY, Early,Chart, and LR algorithms are widely used. In the 1980s, the framework for attahing arbitraryproessing odes to CFG grammar rules was developed on the basis of the logi programminglanguage Prolog (Colmerauer et al., 1973; Cloksin and Mellish, 1984), suh as DCG (De�niteClause Grammar) (Pereira and Warren, 1980), and BUP (Bottom Up Parser) (Matsumoto etal., 1983). This mehanism enables a more detailed grammar desription by introduing extraonstraints referring to various kinds of grammatial and/or semanti features, and struturebuilding funtion (Dahl and MCord, 1983). The uni�ation operation*10 in Prolog played animportant role in grammar desription. In onjuntion with the uni�ation framework, linguis-ti investigations resulted in new grammar frameworks, suh as FUG (Funtional Uni�ationGrammar) (Kay, 1984), LFG (Lexial Funtional Grammar) (Kaplan, 1989; Riezler et al., 2002),PATR-II (Shieber et al., 1983), GPSG (Generalized Phrase Struture Grammar) (Gazdar et al.,*10 Operation to make equivalent two terms with or without variables by assigning appropriate values to thevariables, or operation attempting to make a one-time assignment of ontents to the variables for a set oflogial equations.



91985), HPSG (Head-driven Phrase Struture Grammar) (Pollard and Sag, 1994; Tsuruoka etal., 2004), and CCG (Combinatory Categorial Grammar) (Steedman, 2000; Clark and Curran,2003)*11. These are alled uni�ation grammars or lexial uni�ation grammars beause theyintrodue lexial information suh as linguisti features and subategorization information. A setof equations that represent linguisti struture and/or onstraints are generated from a phrasestruture tree for a sentene. The interpretation of a sentene is well-formed (or grammatial)if and only if these equations have proper variable assignments. Uni�ation grammars providemuh more detailed and lexialized linguisti onstraints ompared with the skeleton CFG frame-work. Uni�ation grammar parsers are alled deep parsers beause they generate deep and fullsentene strutures.The elaboration of grammar rules provides more opportunities to obtain orret sentene in-terpretations. However, this is not suÆient beause natural language sentenes generally haveplausible well-formed interpretations as well as implausible interpretations. Ambiguity resolutionis indispensable for obtaining the most plausible interpretation from grammatial interpretations.Disambiguation is performed by assigning a preferene degree for eah of the available interpreta-tions and hoosing the best one among them. The knowledge assigning this preferene degree isalled preferene knowledge. Intensive studies on the disambiguation method utilizing statistisfrom orpora began from the late 1980s to 1990s. The so-alled orpus-oriented methods providea disambiguation mehanism by means of three omponents, i.e., a statistial model that de�nesthe plausibility of a sentene interpretation, a method for learning parameters from orpora anda method for deoding (or omputing) the best interpretation for a sentene from among its pos-sible interpretations. PCFG (Probabilisti CFG) is proposed for a CFG framework (Jelinek etal., 1992). PCFG onsists of the probabilisti model based on the probabilities of CFG rules thatare obtained by the inside/outside algorithm and the algorithm similar to the Biterbi algorithmfor omputing the most plausible phrase struture tree in the parse forest of an input sentene.One signi�ant improvement on the orpus based method is obtained by introduing the lexialinformation to the probabilisti model of the PCFG (Carroll and Charniak, 1992; Eisner, 1996a;Charniak, 1995; Charniak, 1997; Collins, 1999; Charniak, 2000; Bikel, 2004). Suh a method isknown as the lexialized PCFG. The head of phrase (or phrase head)*12 plays an important rolein lexialized PCFGs. Charniak (1995) reported the signi�ant improvement of parse auray byintroduing head information suh as POS of head, parent's head, grandparent's head, and ruleseletion by head information into the probabilisti model. Collins (1999) introdued history-based lexialized CFG (Head-Driven Statistial Model) based on the so-alled history-basedparsing method (Blak et al., 1992) and proposed a bottom-up hart parser based on someprobabilisti models. Based on this method, Bikel (2004) analyzed that lexial information suhas lexial relations and sub-ategorization information were e�etive for improving the parsing*11 CCG is not CFG but has a lose relation to CFG.*12 \the head of phrase" is de�ned as \an element with X ategory in X bar theory" (Chomsky, 1970) or \theelement that determines the syntati funtion of the whole phrase" or simply \most important word ofphrase"



10auray.Researh on feature struture grammars (Abney, 1997) promoted the researhes on lexialstohasti uni�ation grammars suh as HPSG (Oepen et al., 2002; Toutanova and Manning,2002), CCG (Clark and Curran, 2003), and LFG (Johnson et al., 1999; Riezler et al., 2002;Kaplan et al., 2004). Lexial dependeny information is also utilized as features of the maximumentropy model (Bouma et al., 2001).One approah for utilizing the dependeny information in phrase struture analysis is to utilizethe output from some independent dependeny analyzer. Sagae et al. (2007) inorporates theoutput from a shallow dependeny parser as a hard dependeny onstraint or soft dependenyonstraint to improve the auray of the target HPSG deep parser. Mapping between the phrasestruture and dependeny struture is obtained through an intermediate HPSG struture.As shown above, the CFG-based approah has ahieved higher sentene auray by introdu-ing frameworks for more preise onstraint knowledge and sophistiated preferene knowledge.Lexial relations inluding the dependeny relation are widely introdued to lexialized PCFGand improved parsing auray (Bikel, 2004). Reent studies on phrase struture oriented pars-ing systems (Bouma et al., 2001; Charniak and Johnson, 2005; Sagae et al., 2007) show thetendeny for utilizing lexial dependeny relations for improving the parsing auray.1.3 Dependeny Struture AnalysisAlthough the Tesniere model dependeny grammar (Tesni�ere, 1969; Gaifman, 1965; Hays,1964) was proposed as a formal grammar framework in the 1960s, researhes on dependenyanalysis systems for Tesniere model were onduted relatively reently (Lai and Huang, 1994;Lombardo and Lesmo, 1996; Courtin and Genthial, 1998; Lombardo and Lesmo, 1998). Aonsiderably greater number of studies have been onduted within the framework of the singledependeny model. In partiular, Japanese grammar and the Japanese analysis system based onkakari-uke grammar has been studied (Hashimoto, 1946; Yoshida, 1972; Shudo et al., 1980; Hitakaand Yoshida, 1980; Nakagawa and Ito, 1987; Matsunaga and Kohda, 1988), where a sentenestruture is represented by a set of kakari-uke (dependeny) relations between two linguistiunits alled \bunsetsu," whih is a sequene of morphemes ontaining at least one ontents word.Kakari-uke grammar has a well-formedness axiom: the \dependent always loates to the left ofits governor (no bakward dependeny)." Kakari-uke grammar is a kind of dependeny grammarwith this axiom peuliar to Japanese language in addition to the axioms by Robinson (1970).Kakari-uke parsing algorithms inluding the stak-based algorithm and DP based algorithm areproposed (Shudo et al., 1980; Hitaka and Yoshida, 1980; Nakagawa and Ito, 1987; Matsunaga andKohda, 1988; Ozeki, 1986; Ozeki, 1994; Kurohashi and Nagao, 1994). Katoh and Ehara (1989)proposed a DP-based dependeny parsing algorithm allowing bakward dependeny, i.e., analgorithm for general dependeny grammar with Robinson's axiom, by extending the algorithmproposed by Ozeki (1986).As desribed in Setion 1.1.1, CDG is a kind of single dependeny model grammar. Constraints



11dependeny grammar G, whih determines a set of possible assignments of a given sentene, isformally de�ned by the following four omponents (Maruyama, 1990).G =< �; R; L; C >� : �nite set of terminal symbolsR : �nite set of role-idsL : �nite set of labelsC : onstraint that an assignment A should satisfyC is a set of arbitrary unary and binary onstraints for desribing detailed well-formednessonstraints (Maruyama, 1990; Harper et al., 1999). CDG adopts the eliminative parsing methodwhere sentene analysis is de�ned as a onstraint satisfation problem (CSP) for all possibleinterpretations of a sentene*13. CDG generates a dependene graph whih enompasses all pos-sible dependeny trees by assuming all dependeny relations between every two nodes (or words)in an input sentene. The onstraints in C are propagated over the network by the onstraintpropagation mehanism (Waltz, 1975; Montanari, 1976) to eliminate ill-formed dependeny inter-pretations. The original CDG parser (Maruyama, 1990) is extended to support the simultaneousanalysis of sentenes with multiple alternative lexial ategories (POS ambiguity) and features(Harper and Helzerman, 1995).The treatment of preferene knowledge in dependeny analysis, as well as in phrase strutureanalysis, is studied in both the heuristi approah (Bouma et al., 2001; Hirakawa, 2001) andorpus-based approah (Carroll and Charniak, 1992; Collins, 1996; Eisner, 1996b; Eisner, 1996;Lee and Choi, 1997). Eisner (1996b) proposed a dependeny parsing algorithm whih analysesa whole sentene as a non-onstituent span based on the DP algorithm similar to the CKYparsing algorithm and Eisner (1996) examined four probabilisti models*14. Eisner's thirdmodel (Model C alled the \generative model" or \edge fatored model") de�nes the probabilityof a dependeny tree based on the probabilities of dependeny ars in the tree orresponds tothe preferene priority and is widely used in the single dependeny model. Lee and Choi (1997)presented an unsupervised learning method based on the inside-outside algorithm and a deodingmethod similar to Eisner's parsing algorithm. As is the ase in the probabilisti CFG researh�eld, maximum entropy models for dependeny parsing are proposed (Stolke et al., 1997; Chelbaet al., 1997). Moreover, the probabilisti model is introdued in the CDG framework (Wang andHarper, 2004).Reently, intensive researhes on dependeny analysis have been onduted on the data drivendependeny parsing framework, and the Conferene on Computational Natural Language Learn-ing (CoNLL) 2007 has been devoted to dependeny parsing. In this CoNLL-X shared task ondependeny parsing, there are two dominant models for data-driven dependeny parsing (Buh-holz and Marsi, 2006; MDonald and Nivre, 2007). The �rst is the \all-pairs" approah in whih*13 The parsing method that generates possible interpretations in eah linguisti level in a step-by-step manneris alled the generative parsing method.*14 More detailed explanation are given later in this setion



12every possible ar is onsidered in the onstrution of the optimal parse. The MSTParser (Max-imum Spanning Tree parser) (MDonald et al., 2005), whih searhes the optimum tree from thedependeny graph that enompasses all possible dependeny trees for one WPP*15 sequene fora sentene, is a typial example of the all-pairs approah. The seond is the \stepwise" approahor \history-based" approah (Blak et al., 1992), where the optimal parse is built stepwise de-pending on the previous deisions in parsing proess. The Yamada-Matsumoto parser (Yamadaand Matsumoto, 2003) and the MaltParser (Nivre and Sholz, 2004) are typial examples of thestepwise approah. These two approahes adopt the disriminative learning method.All-pairs parsers an learn the features of the global sentene struture and exel in longsentene analysis. On the other hand, stepwise parsers an learn riher loal features omparedwith the all-pairs parser and exels in shorter sentene analysis. The result of the CoNLL-X shared task shows almost the same sentene analysis auraies for these di�erent types ofdependeny parsers (MDonald and Nivre, 2007).The multi-agent method obtains a better output by utilizing or ombining the multiple outputsfrom the di�erent types of agents. This idea is appliable to sentene analysis for improvingthe parsing auray (Inui and Inui, 2000; Zeman and �Zabokrtsk�y, 2005). Sagae and Lavie(2006) proposed a new parser ensemble method for dependeny parsing where outputs from somedependeny parsers are deomposed into their onstituents and the best well-formed dependenytree is searhed from the set of deomposed onstituents. This method is examined using a singledependeny parser with some di�erent set-ups (Sagae and Tsujii, 2007).As shown in Setion 1.2, information from a dependeny relation is widely utilized mainlyas a preferene soure. In ontrast, the phrase struture information is not widely utilized independeny parsers. As desribed in Setion 1.1.1, phrase struture and dependeny strutureare two major data strutures for representing di�erent aspets of the syntati struture of asentene and are expeted to be used for ompensating eah other. However, it is not lear howand for what purpose the phrase struture should be used in dependeny analysis. To larifythis matter, some problems in urrent dependeny analysis methods are disussed below.The �rst problem is related to the size of the possible dependeny tree spae to searh. Twopopular parsers, i.e., the MSTParser and the MaltParser, aept a sequene of words with POStags as their input. The disambiguation of POS ambiguity is left for the task for some tagger.This poses a problem beause the disambiguation errors in the tagging proess annot be solvedby improving the ability of a dependeny parser (Yamada and Matsumoto, 2003). On theother hand, a CDG parser generates inherent dependeny trees for the �rst step by performingpossible role value assignments, and then a set of onstraints are applied to these role valuesto eliminate ungrammatial assignments. This approah auses poor parsing eÆieny due tothe size of possible interpretation spae. Optimization methods suh as the enhaned pruningmethod based on modi�er and modi�ee features and the role assignment restrition based on*15 WPP is a pair of a word and a part of speeh (POS). The word \time" has WPPs suh as \time/n" and\time/v." A ompound word an be one WPP suh as \ying sauer/n" whih orresponds to two inputwords (or positions).



13grammar and orpus information are introdued for this problem (Harper et al., 1999; Harper etal., 2000). However, a problem persists for the all-pair parsing approah beause the introdutionof POS ambiguity auses a magni�ation of the searh spae. In addition to this spae problem,the introdution of POS ambiguity poses another ruial problem to the MSTParser. One ofthe parsing algorithms adopted in MSTParser for applying non-projetive dependeny analysis,i.e., Chu-Liu Edmonds algorithm, has the assumption that a well-formed dependeny tree is aspanning tree of the dependeny graph. This algorithm is not appliable to the dependenygraphs ontaining multiple nodes for one word. This kind of graph is alled \single-node graph"in this thesis*16The seond issue is about a desription power of the single dependeny model. Sine the outputof a sentene analysis system is presribed by its preferene knowledge and onstraint knowledge,the potential ability of the sentene analysis system is presribed by the desription abilities forthese two kinds of knowledge. As far as the preferene knowledge model for the dependenystrutures is onerned, Eisner (1996) proposed and examined four probabilisti models, i.e.,bigram lexial aÆnities (model A), seletional preferenes (model B), reursive generation oredge fatored model (model C) and realisti seletional preferenes (model D). The majority ofdependeny parsers based on the single dependeny model adopt the edge fatored model. How-ever, the seletional preferene and the realisti seletional preferene models outperformed theedge fatored model and the integrated use of tree-loal information (preferene on dependenyrelation), and string-loal information (preferene on word sequene) results in better parsingauray (Eisner, 1996). This suggests that the dependeny analyzer with the edge fatoredpreferene model an ahieve more auray by introduing a more preise preferene model withword sequene preferene. On the other hand, the onstraint desription ability for the singledependeny model is not suÆient in some ases. For example, the MSTParser an handle non-projetive and projetive parsing by swithing two parsing algorithms (MDonald et al., 2005),i.e., the Chu-Liu-Edmonds maximum spanning tree algorithm (Chu and Liu, 1965; Edmonds,1967) and the Eisner's algorithm (Eisner, 1996b). This implies that the well-formedness on-straint for the dependeny tree is bound to the algorithms. It is diÆult to give the system amore detailed onstraint for presribing the well-formed non-projetive dependeny trees. Theenhanement of the desriptive power of the onstraint knowledge is one solution to this problem.1.4 Integrated Use of Phrase Struture and DependenyStrutureThis thesis investigates the idea of the integrated use of the phrase and dependeny stru-tures. This integration requires mapping between these two strutures of a sentene. This isbeause sentene analyzers annot ombine any linguisti information without orrespondene*16 The dependeny graph that has nodes representing multiple roles for eah of the input words is alled\multiple-node graph" in this thesis.



14between the two strutures. The following shows some traditional approahes for onstrutingthis mapping.(1) Conversion from/to phrase struture to/from dependeny strutureCollins (1999) presented a method for onverting a phrase struture tree to a dependenytree. The orresponding dependeny tree is uniquely generated from a headed phrase struturetree, as shown in Fig.1.4. The head of a phrase is determined by using heuristi rules basedon nonterminal symbols, POS information, et. The dependeny relation is unlabeled and om-prises four elements, i.e., parent node label, head daughter label, non-head daughter label, andnon-head daughter diretion. The orresponding dependeny tree is automatially obtained byde�ning the head of eah phrase struture node. The generated dependeny tree reets thestruture of the original phrase struture tree, whih indiates the simpliity of the mapping.The dependeny trees obtained from the phrase struture trees are mainly used for evaluatingthe auraies of phrase struture parsers (Clark and Curran, 2004). The evaluation methodsbased on the dependeny struture are onsidered to be more stable and reliable as omparedto those diretly based on the phrase struture, beause the former methods are dependent onlyon the word information (system independent) and not on the phrase boundaries and phraseategories (system dependent), as desribed in 6.1.1.Xia and Palmer (2000) presented the following three methods for onverting dependenystrutures into phrase strutures; the X-bar-theory-based method, Collins' method, and an-other heuristi method. The onversion is performed in order to build the dependeny strutureannotated orpora from the phrase struture annotated orpora.These struture onversion methods basially provide a mapping between the phrase and de-pendeny strutures by adopting some heuristis along with the advantages a�orded by onvertedstrutures, suh as the evaluation of parsing systems and the onstrution of di�erent types oforpora. These onversion methods are not intended for the integrated use of the phrase anddependeny strutures in the sentene analysis proess.Rambow and Joshi (1995) studied the relation among three grammar formalisms, namely,CFG, TSG (tree substitution grammar), and DG*17, from the viewpoint of the main fatorsof grammar formalism, i.e., elementary strutures and ombining operators. Rambow showedthat the proess of lexializing CFG naturally led to a TAG (tree adjoining grammar), and the
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15derivation trees generated in parallel with the phrase struture trees of the TAG analysis werethe dependeny trees that losely resemble those of MTT (meaning-text theory) (Mel'uk, 1988;Wanner, 1994; Kahane, 2003). A derivation tree is onstruted algorithmially by ombiningthe lexial nodes orresponding to two phrase struture trees, t1 and t2, whih are adjoined inthe TAG analysis proess. In some situations, derivation trees exhibit inonsistenies in thediretions of dependenies with the MTT dependeny trees as desribed by \... while tree t1 isadjoined into t2, but the lexemi element of t2 depends on that of t1. Thus, while adjuntionorresponds to the establishment of a syntati dependeny relation, the diretion of the relationannot be determined from the diretion of the adjuntion alone." This method has an advantagein that it an automatially generate a dependeny struture, without providing any additionalinformation about the mapping between the phrase and dependeny strutures. However, thisfeature also leads to the generation of unnatural dependeny strutures, as desribed above.(2) Partial Struture MappingThe rewriting rule of CFG represents a part of the phrase struture, i.e., the partial tree.Seo and Simmons (1989) proposed a framework for mapping the phrase struture trees anddependeny trees based on a set of rules. Eah rule de�nes a headed CFG rewriting rule (partialphrase struture tree) and a mapping to the partial dependeny tree. The nodes in a partialdependeny tree are linked to the heads of onstituents in the orresponding phrase struturerule. In this thesis, this mapping method is alled the \partial struture mapping" method.Fig.1.5 shows the overall mapping framework based on the partial struture mapping methodproposed in Seo and Simmons (1989). An extended CFG parser analyzes an input sentene and
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16generates two paked shared data strutures, i.e., the headed parse forest*18 enompassing allpossible phrase struture trees and the \syntati graph" enompassing all possible orrespondingdependeny trees. The later part of this thesis uses the term \phrase struture forest" insteadof the parse forest to strike a lear ontrast to the dependeny forest desribed in Setion 1.4.In omparison with Abney's framework desribed in Setion 1.1.2, the partial struture map-ping rule de�nes not only the phrase head information but also the strutural mapping betweenCFG and DG partial trees. The partial struture mapping rule is more exible beause it allowsan arbitrary depth in the dependeny struture orresponding to one CFG rule. The purpose ofSeo and Simmons' researh was to provide a ompat paked shared data struture orrespondingto the phrase struture forest of a sentene. Seo and Simmons did not disuss the equivalenebetween CFG and DG where the formal de�nition of DG as well as CFG was indispensable*19.Seo and Simmons de�ned the ompleteness and soundness of the syntati graph with respetto the two mapping relations between the phrase struture forest and the syntati graph asfollows:(Completeness) All phrase struture trees in the phrase struture forest an be mapped fromthe dependeny trees in the syntati graph.8PST (phrase struture tree) 9DT (dependeny tree) dependeny tree orrespondingto PST is DT(Soundness) All phrase struture trees mapped from the dependeny trees in the syntatigraph are in the phrase struture forest.8DT (dependeny tree) 9PST (phrase struture tree) dependeny tree orrespondingto PT is DTSeo and Simmons (1989) proved the ompleteness but not the soundness of the syntati graph.Hirakawa (2006b) showed that the soundness of the syntati graph was not satis�ed, i.e., themappings between the phrase struture trees and the dependeny trees were inomplete in thesyntati graph.There appears to be no method for onstruting the omplete mapping between the phrase anddependeny strutures. PDG realizes the omplete mapping between the phrase and dependenystrutures based on the partial struture mapping by introduing a new paked shared datastruture alled the \dependeny forest" instead of the syntati graph; furthermore, it realizesthe integrated usage of the phrase and dependeny strutures at the syntax level. The details ofthe dependeny forest are explained in Chapter 3.
*18 The formal name of the \parse forest" is \paked shared parse forest" (Tomita, 1987).*19 Dependeny grammar formalism based on the partial struture mapping rules is an interesting researhtopi that is beyond the sope of this thesis.



171.5 Contributions of This ThesisThis thesis proposes a new dependeny analysis method through disussions on the designpriniples for multilevel NLA systems fousing on the treatment of preferene and onstraintknowledge. The proposed sentene analysis method (or framework) is alled the \preferenedependeny grammar (PDG)." PDG is an all-pair multilevel dependeny analysis method withthe morphologial and syntati levels, and has the following features for the issues desribed in1.3.(a) Phrase struture analysis is utilized in the dependeny struture analyzer(b) POS ambiguities are handled in dependeny struture analysis() Detailed desriptions for preferene and onstraint knowledge for the dependeny strutureare availableThe ore tehnologies of PDG for enabling these features are a new data struture \dependenyforest" and a new algorithm \graph branh algorithm," whih are the main ontributions of thisthesis.(1) Dependeny ForestThe dependeny forest is a new paked shared data struture for representing a set of de-pendeny trees with their preferene sores. The dependeny forest onsists of the dependenygraph, onstraint onditions, and preferene information. The details of the dependeny for-est are desribed in Chapter 3. The following three are the main ontributions related to thedependeny forest.(a) The method for obtaining the dependeny forest for a senteneBased on the partial struture mapping method briey desribed in Setion 1.4, the sen-tene analysis algorithm proposed in Chapter 3 generates the dependeny forest, whihhas the omplete and sound mapping to the orresponding phrase struture forest. Thelak of soundness of the traditional approah for the partial struture mapping method,i.e., the syntati graph, is also shown in Chapter 3. The omplete mapping between thephrase struture forest and dependeny forest provides the basis of the integrated use ofthese strutures. The phrase struture grammar (CFG grammar) an funtion as a �lterfor the dependeny strutures for the input sentene, and the POS ambiguities retainingall possible WPP sequenes are introdued into the dependeny forests instead of adoptingonly one WPP sequene as an input to the dependeny analyzer. Thus, the CFG �lteringenabled by the dependeny forest suppresses the explosion of dependeny trees found inthe all-pairs approah in the single dependeny model.(b) Proof of the ompleteness and soundness of the dependeny forestChapter 3 gives the proof of the ompleteness and the soundness of the dependeny forest



18 with respet to the phrase struture forest.() Paked shared data struture with detailed preferene and onstraint knowl-edge desriptionThe dependeny forest provides higher desriptive ability ompared to the existingdependeny-graph-based paked shared data strutures employed in major all-pairsdependeny parsers.[Constraint Matrix℄The dependeny forest provides a preise de�nition of a set of dependeny trees en-ompassed in the dependeny graph by introduing the onstraint matrix, whih anexpress o-ourrene onstraints between two arbitrary dependeny relations in adependeny tree. The dependeny forest an handle POS ambiguity, non-projetivedependeny trees, and the single valene oupation onstraint*20. Traditional ap-proahes utilizing the dependeny graph as a paked shared data struture annothandle these issues beause they have no expliit means for expressing detailed on-straints. As desribed in Chapter 4 in detail, the dependeny graph searhed by theChu-Liu-Edmonds maximum spanning tree algorithm is restrited to a single nodedependeny graph and annot enode POS ambiguity. The sored dependeny graphsearhed by the DP based-algorithms suh as Eisner (1996b) and Ozeki (1994) is re-strited sine they annot handle non-projetive dependeny trees and annot expressthe single valene oupation onstraint between two dependeny relations.[Preferene Matrix℄The edge fatored model is widely used in the all-pairs approah for expressing thepreferenes of the dependeny trees enompassed in a dependeny graph. On theother hand, the preferenes of the dependeny trees in a dependeny forest are de-�ned by the preferene matrix of the dependeny forest. The preferene matrix anexpress preferenes for arbitrary two dependeny relations (alled the binary prefer-ene model of PDG) as well as the edge fatored model (alled the unary preferenemodel of PDG)*21. The unary preferene model of PDG an treat the word or WPPbigram preferene as well as the dependeny o-ourrene preferene. The unary pref-erene model of PDG enables the integrated use of tree-loal information (prefereneon dependeny relation) and string-loal information (preferene on word sequene)desribed in Setion 1.3.(2) Graph Branh AlgorithmThis thesis proposes a new optimum searh algorithm alled the \graph branh algorithm"based on the branh and bound priniple (Land and Doig, 1960; Ibaraki, 1978). The graph*20 This is a kind of o-ourrene onstraint with respet to the valenes of a prediate. The details aredesribed in Setion 4.1.4.*21 The details of the unary and binary preferene models are desribed in Chapter 4.



19branh algorithm an searh the optimum well-formed dependeny tree in a dependeny forest.The DP-based searh algorithms suh as Eisner (1996b) and Ozeki (1994) as well as the maximumspanning tree algorithms annot be applied to the dependeny forest searh due to its highdesription ability.(3) New Evaluation MeasuresIn addition to the widely adopted evaluation measure for evaluating the omprehensive analysisability, this thesis proposes two new evaluation measures for dependeny-based NLA systems inChapter 6. The possibly orret sentene ratio measures the hypothesis generation ability andthe ar disambiguation preision ratio measures the disambiguation ability of dependeny-basedNLA systems. This thesis reports an experimental result for heking these measures using thePDG prototype system.1.6 Chapter SummariesThe main ontents of this thesis are divided into three parts. The �rst part, Chapter 2,disusses sentene analysis models for integrating multilevel preferene and onstraint knowledgeand desribes the overall framework of PDG. The seond part, Chapters 3 to 5, desribes thedetailed data strutures and algorithms employed in PDG. The last part, Chapter 6, reportssome evaluation measures and the experimental results obtained using the experimental PDGsystem. The remaining hapters of this thesis are summarized as follows.Chapter 2 disusses sentene analysis models for integrating multilevel linguisti knowledgeand shows the PDG design. This hapter explains basi sentene analysis model onsistingof a sentene interpretation spae, three kinds of linguisti knowledge (generation, onstraint,and preferene knowledge) and an optimum interpretation extration mean. After disussingthe properties of the basi sentene analysis model, the multilevel sentene analysis model isintrodued and investigated for larifying the design priniples toward the integrated use ofphrase struture and dependeny struture in a multilevel sentene analysis system. Based onthis design investigation, this hapter explains the overall arhiteture of the PDG system aswell as its proessing ow.Chapter 3 desribes the details of the paked shared data strutures of PDG that wereintrodued in Chapter 2, partiularly the two data strutures at the syntax level, i.e., the phrasestruture forest and the dependeny forest. This hapter desribes the problems in traditionalpaked shared dependeny strutures and explains the details of a new data struture alledthe \dependeny forest," whih has a omplete and sound mapping to the orresponding phrasestruture forest. This feature is indispensable for the data struture used in the multilevelsentene analysis model desribed in Chapter 2. This hapter desribes the details of the PDGgrammar formalism, parsing algorithm, and the algorithm for generating the phrase strutureand dependeny forests, and provides proof of the ompleteness and soundness of the dependenyforest. This hapter also provides an experiment for analyzing prototypial ambiguous sentenes



20and disusses the mapping relations between the phrase struture tree(s) and the dependenytree(s) as well as the treatment of non-projetive dependeny strutures in PDG.Chapter 4 proposes a new algorithm known as the \graph branh algorithm" that omputesthe optimum dependeny tree(s) from a dependeny forest with preferene sores. As is true inthe dependeny forest, a dependeny graph with preferene sores on its ars is widely used forpaked shared data strutures for representing a set of sored dependeny trees. This hapterformalizes the optimum tree searh problem on a sored dependeny graph as a searh problemwith preferenes as well as onstraints, and shows that traditional methods suh as the spanningtree searh method and the dynami programming method are not appliable to dependenyforests. The graph branh algorithm enables the optimum solution searh for a dependeny forest.This algorithm is based on the branh and bound priniple and inherently has an exponentialorder of omputational omplexity. An experiment using the prototype PDG system shows noserious ombinatorial explosions for ordinary sentenes and exhibits a very good performane forthe pruning strategy desribed in this hapter. Finally, Chapter 4 desribes an extension of adependeny forest with only sored ars (alled the unary model) to one with ar o-ourrenesores (alled the binary model) and shows the graph branh algorithm for the binary model.Chapter 5 desribes a soring proess that omputes the preferene sores for the dependenyforest of a sentene based on a various kind of preferene knowledge. PDG utilizes orpusstatistis of some partial linguisti strutures suh as word/POS frequeny, word/POS bigramfrequeny and word/POS dependeny frequeny. Suh statistial information that is obtainedfrom eah linguisti level is omputed and integrated into the preferene sores in the preferenematrix of the dependeny forest for a sentene. The optimum dependeny tree(s) are obtainedfrom this dependeny forest by the graph branh algorithm desribed in Chapter 4. Chapter 5explains the priniple and basis of sore integration and shows the formulas for omputing thepreferene matrix for a sentene.Chapter 6 disusses and proposes three evaluation measures for dependeny strutures andreports the experimental results obtained using the PDG prototype system. In addition tothe widely adopted evaluation measure for evaluating the omprehensive analysis ability of adependeny-based NLA system, this hapter proposes two new measures for evaluating the hy-pothesis generation ability and disambiguation ability of NLA systems. An experiment for hek-ing these measures is onduted. Then, experiments for evaluating some aspets of the PDGsystem performane with respet to the preferene knowledge are onduted to demonstrate thee�et of the integration of multiple preferene knowledge.Chapter 7 presents some possible diretions for future researh.Chapter 8 summarizes and onludes this thesis.
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Chapter 2Sentene Analysis Model and thePDG design
2.1 Multilevel Sentene Analysis System2.1.1 Basi Sentene Analysis ModelIn general, an NLA system omputes strutures for a sentene by generating a set of itspossible interpretations (appliation of interpretation generation knowledge), rejeting impos-sible interpretations (appliation of onstraint knowledge), and obtaining the preferene orderof the possible interpretations (appliation of preferene knowledge). Fig.2.1 presents this sen-tene analysis model*1. A set of interpretations of a sentene exists in the interpretation spaepresribed by the interpretation desription sheme. Eah interpretation is either orret (�),plausible (�), or implausible (�) with respet to the real-world situation.(1) Interpretation Desription Sheme and Interpretation SpaeA formal desription of linguisti interpretation requires a proper representational sheme basedon some appropriate data struture. The interpretation spae de�nes a set of strutural data forexpressing the interpretation of sentenes. For example, spaes de�ning phrase struture trees,dependeny struture trees, semanti graphs, or logial formula are widely used as interpretationspaes. An interpretation desription sheme de�nes the well-formedness of the strutural dataas data type. Well-formedness as an interpretation of a sentene is de�ned by the onstraintknowledge.(2) Generation KnowledgeThe generation knowledge*2 generates a set of andidate interpretations in the interpretationspae (i.e., expressed in the interpretation desription sheme) from the input data. Examplesof interpretation generation inlude proessing suh as assigning POSs to words by onsulting*1 Constraint knowledge an be de�ned as a type of preferene knowledge that does not provide any possi-bilities. However, the appliation of onstraint knowledge implies pruning in the omputation, whih is inlear ontrast to the appliation of the preferene knowledge.*2 \Interpretation generation knowledge" is simply alled \generation knowledge" in this thesis.
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Fig.2.1 Natural language analysis system modelditionary and generating possible phrase struture trees by appling CFG rules. Generationknowledge is a kind of onstraint knowledge in the sense of the term, beause it funtions toextrat the possible interpretations for a sentene from the whole interpretation spae.(3) Constraint KnowledgeConstraint knowledge de�nes a set of well-formed interpretations for a sentene and �ltersout the impossible interpretations in the andidate interpretations generated by the generationknowledge. The onstraint knowledge in onjuntion with the generation knowledge (or sim-ply the onstraint knowledge in the wider sense) de�nes the sentene overage, i.e., a set ofaeptable sentenes, of the NLA system. Therefore, this knowledge orresponds to a grammarin linguistis from the Chomskyan viewpoint (Chomsky, 1957). Many omputational grammarframeworks have been proposed and studied, in whih a variety of linguisti knowledge hasbeen inorporated. Grammar frameworks are based on interpretation desription shemes thatpresribe interpretation spaes suh as phrase struture, dependeny struture, semanti graphstruture and logial formula.(4) Preferene knowledgePreferene knowledge provides the ordering of the interpretations in the interpretation spae.Many researhes on preferene knowledge, suh as preferene semantis (Wilks, 1975), have beenonduted in linguistis. In general, two approahes are followed for implementing prefereneknowledge in NLA systems, i.e., the heuristi approah and the orpus-based approah. In theheuristi approah, a human grammarian extrats and enodes the preferene rules based onhis/her linguisti insight to an NLA system and re�nes them through system development. Theorpus-based approah attempts to extrat the optimum preferene knowledge from tagged orplain orpora by applying a learning tehnique to obtain statistial rules and/or parameters. Theorpus-based approah is intensively studied in various appliation areas beause the heuristiapproah requires tremendous e�orts, and oasionally, grasping the omplexity in heuristi ruledebugging is beyond the human ability.Preferene knowledge has been widely adopted for NLA systems through the use of the orpus



23based method adapted from speeh tehnology. As statistial methods extend their appliationsope from the N-gram model (word sequene) to the ontext free grammar, dependeny gram-mars, et., more NLA systems an bene�t from the statistial power obtained from large-saleorpora as desribed in Setions 1.2 and 1.3.(5) Optimum Interpretation ExtrationThe output of the NLA system is the optimum interpretation extrated from among the re-maining interpretations aording to the preferene order. The optimum extration is to searhthe interpretation spae for the best interpretation that satis�es the well-formed onstraints,i.e., a kind of ombinatorial optimization problem. This kind of problem has a lot of variationsfrom an easy one (requiring polynomial order omputational omplexity) to hard one (requiringexponential order omputational omplexity) depending on the harateristis of the target datastruture, onstraints, and preferenes.Various types of linguisti preferene and onstraint knowledge usable in sentene analysis liein eah linguisti layer. Fig.2.2 shows some examples of the preferene and onstraint knowledgeat eah linguisti analysis level*3. Constraint knowledge is divided into two ategories. Thelower part shows the basi language-independent onstraints *4 and the upper part shows themore detailed and language-dependent onstraints. A detailed explanation of the preferenesand onstraints is provided in the latter part of this thesis.(6) Linguisti Knowledge and System ExamplesBefore providing a more detailed explanation of the basi sentene analysis model or system,two examples are shown. Fig.2.3 orresponds to the sentene analysis model of the probabilistiCFG (PCFG) (Jelinek et al., 1992). The generation knowledge, preferene knowledge, andinterpretation spae are the CFG rules, probabilities of the CFG rules, and phrase struturespresribed by the grammar rules, respetively. PCFG has no onstraint knowledge. The optimuminterpretation is omputed by using the algorithm similar to the Viterbi algorithm. Fig.2.4 shows���� ��� �����	
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Fig.2.2 Preferene knowledge and onstraint knowledge for eah linguisti layer*3 Not shown in Fig.2.2, ontextual proessing suh as an anaphora resolution and so forth requires onstraintknowledge (Walker et al., 1994; Mori et al., 2000) and preferene knowledge (Seki et al., 2002).*4 This kind of onstraint is sometimes alled an axiom as shown in Robinson's axiom in Setion 1.3.
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Fig.2.3 Sentene analysis model of the PCFGthe sentene analysis model of the original CDG (Maruyama, 1990). CDG adopts the eliminativeparsing method in whih the parsing proeeds by �ltering out the inorret interpretation fromall possible interpretations of a sentene by applying the unary and binary onstraints. Theoriginal CDG has no preferene knowledge*5.Needless to say, in order to formally use preferene and onstraint knowledge, they must bedesribed on top of some formal shema or data struture. However, the onstraint and prefereneknowledge working for the data (or the interpretation) in the interpretation spae is independentof the desription shema or data struture for the onstraint and preferene knowledge. Forexample, introduing the semanti knowledge as the means for restriting the interpretationsin the syntati interpretation spae is a very popular tehnique. CDG shown in Fig.2.4 is adependeny grammar framework with unary or binary onstraints. These onstraints are usedfor inorporating morphologial and semanti information (Maruyama, 1990). DCG (Pereira andWarren, 1980) and BUP (Matsumoto et al., 1983) have developed a mehanism to extend theCFG framework to inorporate arbitrary extra-onditions using Prolog odes that, for example,
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Fig.2.4 Sentene analysis model of the original CDG*5 CDG extensions suh as an introdution of graded onstraints (Heinek et al., 1998) and probabilisti model(Wang and Harper, 2004) are proposed to treat preferene knowledge within the CDG framework.



25an be used for introduing semanti onstraints (Muresan and Rambow, 2007). Some of thereent morphologial taggers utilize syntati data strutures suh as supertags (phrase struturedata) (Bangalore and Joshi, 1999; Clark and Curran, 2004) and superARG (dependeny data)(Wang and Harper, 2002; Wang and Harper, 2004). As shown in Setion 1.2, dependenystruture information and semanti information are utilized in phrase struture analysis.In general, data strutures referred from the di�erent linguisti layer proessing are not inter-pretations of a sentene but partial strutures or features in the sentene.(7) Optimum Solution Searh AlgorithmAs briey explained in Setion 1.3, there are two approahes for the optimum tree extration,i.e., the history-based approah and the all-pairs approah*6. The history-based approah (Blaket al., 1992) assumes that the probability of the parsed struture is determined by the parsingproess, i.e., eah tree-building proedure uses a probability model p(AlB) to weight any ationA based on the available ontext, or history, B. The all-pairs method obtains the optimum parsedstruture from among a set of possible parsed strutures based on the probability (or preferenesore) de�ned on the parts of the parsed strutures. This is undertaken in three steps, i.e.,the generation of possible andidates, generation of preferene sores, and searh for the parsedstruture with the highest preferene sore. The proess of alulating the preferene sores andsetting them to some data struture is alled \soring" in this thesis.Generally speaking, the history-based method realizes higher speed eÆieny beause it fun-tions deterministially; oasionally, however, it su�ers from the loal minimum problem beausethe deisions during parsing are made based on loal information, whih may eventually lead tofailure in apturing the orret global struture. On the other hand, the all-pairs method re-quires more omputational resoures but an handle global struture preferenes and assures theoptimality of the obtained struture. MDonald and Nivre (2007) reported that the auraiesof the Malt parser (history-based method) and MSTParser (all-pairs method) were almost iden-tial irrespetive of the methodologial di�erene between them. Researhes on the extension,improvement and integration of these dependeny parsers has been onduted (Charniak andJohnson, 2005; Xiaodong and Chen, 2007; Huang and Chiang, 2007; Hall, 2007). This thesis fo-uses on the all-pairs full-deoding dependeny analysis method and thereby on optimum searhalgorithms for the paked shared dependeny strutures. The appliability and performane ofan optimum searh algorithm is losely related to the harateristis of the target data struture,onstraints and preferenes.2.1.2 Multilevel Sentene Analysis ModelFrom the viewpoint of the multilevel knowledge integration, sentene analysis frameworks arelassi�ed as either a single-level model or a multilevel model. The single-level model has oneinterpretation spae and is merely the basi sentene model desribed in the previous setion.*6 The \all-pairs approah" is not restrited to dependeny parsing in this thesis.
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Level 2 Interpretation: Level 3 Interpretation: Fig.2.5 Multilevel sentene analysis modelThe multilevel model has more than one interpretation spaes and possibly multiple desriptionshemes. Fig.2.5 shows the basi onstrutions of the multilevel models. The multilevel modelis basially a asaded onnetion of some basi sentene models. However, this does not implya sequene of asaded proessing modules. It shows the onstrution of linguisti knowledgeand data strutures. Eah interpretation spae represents the interpretations of a sentene insome layer of linguisti theory, suh as morphology, syntax and semantis. The multilevel modelassumes a layer struture among its levels, i.e., linguisti data strutures. The input senteneside is referred to as the lower level and the output side, the upper level. The data struture ofan intermediate level is onsidered to be an intermediate data struture bridging the interpreta-tions from the lower adjaent level to the upper adjaent level. For example, a WPP sequenefor a sentene (morphologial analysis result) is the intermediate data struture bridging theinterpretation from a harater sequene (input sentene) to a phrase struture tree (syntatianalysis result).Eah level an have its generation, preferene, and onstraint knowledge. The generationknowledge generates possible interpretations from a set of its lower-level interpretations. Everyinterpretation of a sentene in some interpretation spae should have a mapping alled the \in-terpretation mapping" (represented by the dotted line labeled \mapping") to its ounterpart inthe lower adjaent level of the interpretation spae; however, the inverse is not neessarily true.For example, there an be a morphologial interpretation of a sentene having no orrespond-ing syntati interpretations; however, there annot be a syntati interpretation of a sentenehaving no orresponding morphologial interpretations. One interpretation has 0 to M(M�1)interpretation mappings toward the upper level and 1 to N(N�2) interpretation mappings to-ward the lower level, reeting the existene of the ambiguities in natural languages. Thus, themultilevel model should satisfy the following two onditions related to interpretation mapping.De�nition 2.1.1 [Multilevel model mapping ondition℄(a) Every interpretation in an intermediate level has at least one mapping to an interpretationin its lower level(b) The interpretation in one level has a mapping to at least one mapping to an interpretation



27in its upper level i� there is no pruning by some onstraintConditions (a) and (b) are respetively alled the soundness ondition and ompleteness onditionfor the multilevel model mapping ondition. The di�erene with the mapping ondition for thesyntati graph lies in the ompleteness ondition.An optimum solution searh is performed at the uppermost level to obtain the �nal outputof the sentene in Fig.2.5. The interpretation mapping an be used for searhing the optimuminterpretation based on the upper-level deision and not on the urrent-level deision by traingbak the mapping from the optimum interpretation at the upper level to the orrespondinginterpretation at the urrent level. For example, the tagger based on the optimum semantianalysis result an be onstruted naturally.A sentene analysis system based on the multilevel model is alled the \multilevel system"in this thesis. Multilevel systems an refer to interpretations in the intermediate levels andhave riher linguisti knowledge desriptions ompared to single-level systems. However, theyalso have onsiderably more design omplexities on aount of having two degrees in knowledgeintegration design, i.e., knowledge integration in one level and knowledge integration in multilevelonstrution.De�ning the data struture is one of the most important issues in NLA system design. Thereare two major approahes for data struture implementation, i.e., the enumeration approah (ork-best approah) and the paking approah. The enumeration method maintains the possibleinterpretations as a set of independent data. The paking method utilizes paked-shared datastrutures for expressing a set of interpretations eÆiently to avoid the ombinatorial explosionproblem. In general, the set of interpretations of a sentene is de�ned by three omponents,i.e., a paked shared data struture, an interpretation extration shema, and a set of well-formedness onstraints on the strutures. Oasionally, some of the well-formedness onstraintsare embedded in the interpretation extration sheme.The enumeration method is superior to the paking method in desriptive power or freedombeause it has no restrition for expressing a set of interpretations. For example, though simpleWPP trellis, whih is widely used as a paked data struture for expressing a set of possible WPPsequenes of a sentene, an express word bigram onstraint eÆiently, it annot enode a wordtrigram or more onstraint*7. In ontrast, the enumeration method simply lists a set of possibleWPP sequenes. From the viewpoint of omputational resoure, the enumeration method easilybeomes intratable due to the ombinatorial explosion of the possible interpretations. In manyimplementations, the k-best pruning method is adopted for avoiding this problem. The ombi-natorial explosion is suppressed by the k-best threshold in intermediate level; however, this maylead to overpruning. k-best pruning requires the appliation of preferene knowledge for thatlevel of interpretation spae.The paking method avoids the pruning of interpretations to the maximum extent possible*7 The word trigram or more onstraint an be expressed by a set of independent onstraints in onjuntionwith the WPP trellis.



28by suppressing the ombinatorial explosion possibly into a polynomial order omplexity. Sinethe representable sets of interpretations are presribed by the onstrution of a paked-shareddata struture, the onstraint representation shema and the interpretation extration shema(enumeration algorithm or optimum solution searh algorithm) are key design issues. In ontrastto the k-best method, the paking method does not require intermediate pruning as well as theintermediate appliation of preferene knowledge.Thus, the antinomy between resoure (omputational and spae omplexity) and auray(pruning and knowledge desription ability) lies between the enumeration and paking methods.Various researhes inluding the integration of these two methods have been onduted, as de-sribed in the next setion. There are no de�nite and onrete riteria for omparing these twomethods. Determining whih of the methods is appropriate for a given problem seems to be adesign issue. This thesis fouses on the multilevel system based on the paking method. Eahanalysis level enompasses all possible sentene interpretations in its interpretation spae in theform of eah paked shared data struture. This model is referred to as the \multilevel pakedshared data onnetion (MPDC)" model in this thesis.Finallly, some relation of the multilevel issues to the linguisti theory is desribed. The mul-tilevel model explained in this setion an be seen as a model based on MTT (meaning-texttheory) (Mel'uk, 1988; Wanner, 1994; Kahane, 2003). MTT proposes a multilevel languagemodel wherein the mappings between meanings and texts are established through multilevelinterpretation data strutures. The mappings between interpretations (or data strutures) inadjaent levels of interpretation spaes assures the overall mappings. Basially, MTT is a bidi-retional linguisti theory overing sentene analysis and sentene generation. However, MTTis developed and presented stritly in the synthesis diretion and has thus far been disussedinsuÆiently with regard to the analysis diretion. As Kahane (2003) desribed, \If we want topresent a real proedure of analysis or synthesis, it is muh more ompliated beause we haveto take into aount the question of multiple hoies between rules (and, onsequently, problemsof memorization, hoies, baktraking and parallelism)." The treatment of multiple hoies,i.e., the ambiguities in sentene analysis, is not foused on; onsequently, the treatment of thepreferene knowledge seems to be beyond the sope of the MTT framework so far. The prob-lem of multiple hoies is not ruial, in some sense, for sentene generation beause multiplehoies simply generate di�erent texts representing the same meaning. On the other hand, itis ruial for sentene analysis beause it generates di�erent (i.e., inorret) meanings from onetext expression. Multiple hoies indue the omputational problems of memorization, hoies,baktraking, and parallelism along with the ombinatorial explosion of sentene interpretations.The multilevel model is a type of MTT-based framework that is apable of managing the multiplehoies and preferene knowledge.



292.1.3 Conventional Multilevel Syntati Analysis SystemsAs desribed in the previous setion, the output of an NLA system is an interpretation in aertain interpretation spae (for example, the phrase struture tree and the dependeny tree).One of the interpretation spaes of the multilevel system is seleted as its output level, andthe well-formedness onditions and preferene measure are de�ned on the interpretations inthe spae. Theoretially, the output level need not be the uppermost level. The output datastruture de�nes the linguisti layer of the NLA system. For example, even if a tagger utilizesphrase struture information or semanti information, it is a morphologial analyzer. This setionoverviews onventional NLA systems or tehnologies from the viewpoint of the multilevel modelto disuss design priniples for multilevel systems.Many onventional syntati analysis systems adopt a two-level onstrution with the datastrutures in morphologial and syntati layers, i.e., WPP sequene and syntati struture.Some adopt the 1-best method for phrase struture analysis (Collins, 1999; Charniak, 2000;Bikel, 2004) and dependeny struture analysis (Hirakawa, 2001; MDonald et al., 2005; Ya-mada and Matsumoto, 2003; Nivre and Sholz, 2004). In this onstrution, the disambiguationof POS ambiguity is left as the task for the adopted tagger and issues a problem beause thedisambiguation errors in the tagging proess annot be solved by improving the ability of adependeny parser. One appliable solution to this problem is adopting the k-best system on-strution.Parsing iteration (or pipeline parsing) proposes a sentene analysis arhiteture with multipleanalysis modules onneted in the pipeline (Charniak, 2000; Hollingshead and Roark, 2007). Theearlier stage analyzer generates k-best solutions eÆiently by utilizing simpler preferene knowl-edge and the later stage module selets the best result based on more sophistiated prefereneknowledge, whih requires more omputational resoures. Charniak (2000) applies a grammar ina simpli�ed manner in the �rst stage and then applies the same grammar fully in the later stage.Charniak and Johnson (2005) use the generative parsing model for the �rst stage to obtain thek-best andidates and then reranks the andidates based on the maximum entropy model toselet the optimum solution.Researhes on multilevel systems with a ombination of shallow parsing and deep parsing havebeen onduted. The shallow parser identi�es the partial or super�ial strutures of a sentenebased on the loal information observed in a sentene. It need not generate the overall strutureof a sentene. In ontrast, the deep parser analyzes the deep onstrution of a sentene, suhas syntati relations and semanti relations, and generates the overall struture of a sentene.One typial shallow parser in this onstrution is the supertagger. A supertag represents somestrutural information in a higher level interpretation spae suh as a partial phrase struturetree. Supertagging, or the seletion of a supertag for every word in a sentene, is almost equivalentto parsing (almost parsing) beause a supertag sequene almost de�nes the syntati struture of



30a sentene (Bangalore and Joshi, 1999)*8. A supertagger is used as a shallow parser for improvingthe parsing speed without the deterioration of parsing auray of deep parsers *9 suh as theCCG parser (Clark and Curran, 2004; Djordjevi et al., 2007), HPSG parser (Ninomiya et al.,2006; Ninomiya et al., 2007), and CDG parser (Wang and Harper, 2002; Wang and Harper, 2004).This suggests the design priniple that it is important to have aurate k-best implementationsin the lower levels of multilevel systems.Trellis (or lattie) is widely aepted as a paked shared data struture for representing themorphologial interpretations of a sentene in multilevel systems. This data struture representsthe possible adjaeny relation between WPPs. Constraints on WPP adjaeny is one of theimportant kinds of onstraint knowledge in Japanese. The use of this morphologial onstraintknowledge in the syntati parsing stage signi�antly improves the eÆieny of the parsingproess (Shirai et al., 2000).2.2 Proposal for a Dependeny Analysis System Utilizingthe Phrase Struture2.2.1 The Integrated Use of Linguisti Knowledge in a Multilevel Sen-tene Analysis SystemThere are two types of knowledge integrations, i.e., the di�erent-type knowledge integration(how to treat the onstraint and preferene knowledge) and the multilevel knowledge integra-tion (how to treat di�erent levels of linguisti knowledge). These integrations pose a problemin satisfying two oniting requirements, i.e., the suppression of the ombinatorial explosionand the suppression of the overpruning of the possible interpretations of a sentene. In eahlevel of a natural language, the number of omputationally possible interpretations of a sentenegenerally inreases exponentially with its length. This auses a serious problem with regard tothe time and spae in the omputation of the sentene analysis. The pruning of possible inter-pretations by applying onstraint knowledge is an e�etive method to avoid the ombinatorialexplosion. However, the overpruning of the possible interpretations may degrade the systemauray. Therefore, NLA systems must have a proper mehanism to integrate the prefereneand onstraint knowledge.Multilevel knowledge integration also poses the same problem. Pruning is more e�etive atthe morphologial level than at higher levels suh as the syntati and semanti levels sinean interpretation at the morphologial level orresponds to multiple higher level interpretations.However, pruning of the lower level interpretations based on lower level linguisti knowledge mayfail to provide the orret interpretation due to the lak of upper level linguisti information.Therefore, it is important for NLA systems to have a proper mehanism to integrate the multilevel*8 The well-formedness hek and generation of the sentene interpretation remain to be undertaken in theuppermost level.*9 Parsing auray oasionally improves by the ombined use of shallow and deep information.



31linguisti knowledge.(1) Integration of multilevel onstraint knowledgeAs desribed in Setion 2.1.2, onstraint knowledge an be applied in either the intermediatelevel or last level of a multilevel system onstrution. The appliation in an intermediate levelorresponds to the pruning of interpretations, whih is propagated naturally to the upper levelsdue to the multilevel model mapping ondition. Prunings in the lower levels are very e�etive foreÆieny improvement. Therefore, the appliation of onstraint knowledge should be undertakenin the lower level to the maximum extent possible. On the other hand, the �nal level de�nesthe output interpretation. This implies that the onstraints in this level are well-formednessonditions that annot be fully desribed in the lower level struture.(2) Integration of multilevel preferene knowledgeThe preferene knowledge in various linguisti layers is appliable to interpretations in onelevel interpretation spae. The appliation of preferene knowledge to the intermediate levelsimply de�nes the preferrential order of interpretations in that level and, unlike the onstraintknowledge, has no diret inuene on the preferene orders of the interpretations in the otherspaes*10. The appliation of preferene knowledge in the intermediate level is neessary forthe k-best approah to selet a set of interpretations. This is a use of preferene knowledge forpruning, i.e., onstraint appliation.The appliation of preferene knowledge in the uppermost level de�nes the output of theNLA system. Ninomiya et al. (2007) ompared two di�erent use ases of preferene knowledgein an NLA system, whih onsists of a supertagger and a HPSG parser. The �rst ase utilizesthe supertagger preferene (word trigram and POS 5-gram model) to selet k-best morphologialinterpretations and the best deep interpretation based on the HPSG stohasti preferene model.In the seond ase, both the supertagger and HPSG preferene models are integrated to selet thebest HPSG parse. The latter showed onsiderably superior auray ompared to the former.Wang and Harper (2004) ompared two ases for ombining the SuperARV tagger and CDGparser, i.e., ombining them by the k-best method (loosely oupled system) and applying twopreferenes simultaneously (tightly oupled system) and reported that the tightly oupled systemoutperformed the loosely oupled system. Charniak and Johnson (2005) utilize the disriminativemaximum entropy model for the reranking of the pipeline parser (Charniak, 2000) and obtainedthe improvement in the parsing auray. The fat that this disriminative maximum entropymodel inludes various features in multiple linguisti layers suggests that the integrated use ofvarious levels of preferene knowledge is a key to auray improvement. These researh resultsshow the importane of preferene knowledge integration in the uppermost level of a multilevelsystem.*10 There an be a system onstrution in whih the optimum interpretation is searhed in some lower level toobtain the higher level interpretation by traing the interpretation mapping. In this ase, some appliationof preferene knowledge is required beause the lower interpretation may have multiple ounterparts in theupper level spaes. For example, one syntati struture an have many possible semanti interpretations(Harada and Mizuno, 2001).



322.2.2 PDG DesignThis setion desribes a new multilevel NLA method, alled PDG, utilizing the phrase strutureand dependeny struture levels. PDG employs a three level arhiteture with two intermedi-ate levels (morphologial struture and phrase struture) and the uppermost level (dependenystruture). The dependeny struture is seleted as the output of PDG beause it has an aÆn-ity with the semanti struture, whih lies within the sope of future researh, as desribed inChapter 7. Based on the previous disussions on multilevel systems, the following three issuesare settled for PDG design priniples.(a) Avoiding overpruning as well as suppressing ombinatorial explosion as muh as possible(b) Adopting e�etive pruning by applying possible onstraints in the lower level() Enabling the optimum searh in the uppermost level to utilize various levels of prefereneknowledgePDG adopts the MPDC model to ahieve (a). This requires paked shared data strutures formorphologial struture, phrase struture, and dependeny struture, whih satisfy the multilevelmodel mapping ondition (De�nition 2.1.1). To ful�ll this requirement, this thesis proposes anew method for obtaining a paked shared dependeny data struture alled the dependenyforest, whih satis�es the mapping ondition against the phrase struture forest. Based on (b),the phrase struture level is utilized as a �lter for the dependeny level. This unique onstrutionis an answer to the searh spae problem aused by introduing POS ambiguities to dependenyanalysis, as desribed in Setion 1.3. In the three level arhiteture of PDG, the phrase struture�lter suppresses the explosion of dependeny trees and enables all-pairs dependeny parsing for allPOS ambiguities*11. Following priniple (), PDG adopts the preferene knowledge desriptionsheme alled the preferene matrix in the dependeny struture level. The preferene matrix isa more powerful desriptive sheme ompared to the edge fatored model, whih is widely usedfor the single dependeny model parsers. A new optimum tree searh algorithm alled the graphbranh algorithm is proposed to realize the optimum tree searh in the dependeny forest, whihis not ahieved by the onventional graph searh algorithms, as desribed in Chapter 4.Finally, the PDG system is de�ned as an all-pairs dependeny parsing system with the followingfeatures:(a) Consisting of three level spaes (data strutures) for WPP sequene, phrase struture tree,and dependeny tree(b) Utilizing three paked shared data strutures, i.e., WPP trellis, phrase struture forest,and dependeny forest*11 The desriptive power of the partial mapping model, i.e., mapping between the CFG rule struture andpartial dependeny struture, is one important issue for the appropriateness of the use of its CFG �ltering.There an be a more powerful model with mapping between the arbitrary partial phrase struture tree andpartial dependeny tree struture. This issue lies beyond the sope of this thesis.



33() Utilizing the graph branh algorithm for searhing the optimum interpretation from adependeny forest2.2.3 The Data Struture/Proessing Model of PDGFig.2.6 shows the PDG analysis model. PDG has two basi linguisti layers, i.e., morphologyand syntax. The syntax layer is further divided into two levels. In total, PDG has three levels ofinterpretation spae, desription sheme, and paked shared data struture. Fig.2.7 presents abrief explanation of the data strutures and examples of the preferene knowledge, the onstraintknowledge, the paked shared data struture and the sentene interpretation at eah level.Morphologial interpretations for a sentene are represented by sequenes (or strings) of WPPnodes, whih represent the adjaeny relations between words. The WPP trellis is used as apaked shared data struture for representing a set of sequenes of WPP nodes. The nodes inthe PDG data struture an possess arbitrary linguisti attributes suh as number, gender, andtense (not shown in the �gure). A sentene interpretaion in the morphologial level is a sequeneof the WPP nodes in the line from \start" to \end" in the Figure. These two speial nodes aresometimes not expliitly shown in this thesis.The syntax level of PDG ontains two types of data strutures, i.e., phrase struture anddependeny struture. A phrase struture tree represents the sub-ategorization (or adjaeny)relations of phrases. A set of phrase struture trees is represented by a phrase struture forest.Syntati preferene knowledge (e.g., phrase frequeny) and onstraint knowledge (e.g., numberagreements) an be desribed on top of the phrase struture*12. The dependeny struture isanother data struture in the syntax level of PDG. A dependeny tree onsists of WPP nodes
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Fig.2.6 PDG implementation model*12 Constraints suh as the number agreements an be desribed as onstraints at another level or an bedesribed in more than one level in parallel. This is a design issue in atual grammar development. Ingeneral, the number agreement onstraint should be applied to the phrase struture level based on thedesign priniple (b).
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Fig.2.7 Paked shared data strutures in PDGand ars labeled with syntati (or funtional) dependeny relations suh as subjet and objet.A set of dependeny trees representing the syntati interpretations of a sentene is representedby a dependeny forest. The dependeny forest is a paked shared data struture that utilizesa dependeny graph with a framework for desribing the preferene and onstraint informa-tion for the ars in the graph*13. The dependeny probability and the projetivity onstraintrepresentable by the dependeny representation are examples of the preferene and onstraintknowledge, respetively.Fig.2.8 shows the relations in the multilevel data strutures of PDG for the example sentene\Time ies." Eah paked shared data struture orresponds to a set of interpretations in eah
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35interpretation spae for a sentene. The WPP trellis enompasses four WPP sequenes, i.e.,\time/n+y/v", \time/n+y/n", \time/v+y/v" and \time/v+y/n." The phrase struturelevel has two phrase struture trees. One of them orresponds to the delarative interpretationof the sentene with mapping to \time/n+y/v" and the other orresponds to the impera-tive interpretation of the sentene with mapping to \time/v+y/n." The remaining two WPPsequenes (the morphologial interpretations) have no interpretation mappings to the phrasestruture level in this example. The optimum interpretation of a sentene has a mapping to theinput sentene through a series of interpretation mappings in multiple levels.2.2.4 Soring and Optimum Solution Searh in PDGIn the MPDC model, the optimum well-formed interpretation an be basially de�ned in eahinterpretation spae. However, it is not neessary to obtain or de�ne the optimum well-formed in-terpretation of every interpretation spae. The soring and optimum solution (or interpretation)searh methods for the WPP trellis and phrase struture forest are not desribed in this thesisbeause PDG is a framework for obtaining the optimum dependeny tree for a sentene. TheViterbi algorithm is widely used for searhing the optimum sequene in trellises with preferenesores. A similar algorithm adopted in PCFG is a popular method for obtaining the optimumphrase struture tree from a phrase struture forest (Jelinek et al., 1992).Fig.2.9 explains the soring and optimum solution searh for a dependeny tree. The WPPsequene, phrase struture and dependeny preferene sores imply the preferene sores om-putable based on the WPP trellis, phrase struture forest, and dependeny forest, respetively.Examples of the referene knowledge of eah data struture are shown in Fig.2.7. Suh kindsof preferene knowledge are integrated into a data struture alled preferene matrix de�ned in
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36the dependeny forest by the sore integration module*14. The preferene matrix an representtwo kind of preferene sores, i.e. unary preferene sore and binary preferene sore. Unarysore represents the plausibility of one dependeny relation and the binary sore represents theplausibility of the o-ourrene between two dependeny relations. Preferene sores obtainedfrom eah level are onverted and integrated into these preferene sores. Two versions of thedependeny forest, i.e., the unary and binary models are proposed and implemented in this the-sis. The details of the sore integration is desribed in 5. The optimum tree is searhed fromthe unary or binary dependeny forest using an algorithm alled the \graph branh algorithm,"whih is desribed in detail in Chapter 4.2.2.5 Proessing Flow of the Experimental PDG SystemFig.2.10 shows the overall proessing ow of the PDG experimental system. The morpholog-ial and syntati parsing omponents are onneted through data strutures enompassing allambiguities at eah level. The morphologial analysis module inputs a sentene and generatesthe WPP trellis by onsulting the ditionary. This module is onstruted by using standardtehnologies. The syntati analysis module based on the hart parsing algorithm applies thePDG grammar rules to generate the PDG hart. PDG grammar rule onsists of a CFG-basedgrammar rule (partial phrase struture) and partial dependeny struture. The mapping betweenthe phrase struture and dependeny forests is essentially de�ned in the grammar rules. The
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Fig.2.10 Analysis ow of the PDG experimental system*14 Not all preferene knowledge kinds listed in Fig.2.7 are implemented in the PDG prototype system. Detailsare shown in Chapter 5



37forest generation module extrats the phrase struture forest and the dependeny forest alledthe \initial dependeny forest" de�ned in Chapter 3 from the hart generated by the syntatiparser. The dependeny forest redution module generates the dependeny forest from the initialdependeny forest. The details of the syntati analysis and dependeny forest generation aredesribed in Chapter 3.The preferene sores are integrated by the soring module and are attahed to the depen-deny forest. The dependeny forest with the preferene sore is sometimes alled the \soreddependeny forest" expliitly. The morphologial level preferene knowledge (the WPP unigramand bigram frequenies) and the dependeny level preferene knowledge (the unary and binaryar frequenies) are utilized; however, the phrase struture oriented preferene sores are notutilized in the urrent implementation of the PDG prototype system.The optimum solution searh module omputes the most preferable well-formed interpretationof the sentene based on the preferene sores generated by the soring module based on thegraph branh algorithm proposed in this thesis. The details of the optimum solution searhalgorithm are desribed in Chapter 4.Currently, an experimental version of the PDG system has been implemented in Prolog aimedat the feasibility study of the PDG framework. The preferene knowledge of this prototype systemis extrated automatially from an English orpus by using the existing sentene analysis system(Amano et al., 1989) and the basi PDG grammar with around 1000 CFG rules is developed asdesribed in Chapter 6. This thesis desribes the details of the PDG and experiments using theexperimental PDG system.
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Chapter 3Paked Shared Data Strutures
3.1 Prerequisites for Paked Shared Data StruturesThe following are prerequisites for the data struture at eah level of the multilevel pakedshared data struture onnetion model.(a) no ombinatorial explosion(b) a set of proportionate interpretations() satisfy the multilevel model mappping ondition(a) is a very important issue with regard to onstruting pratial NLA systems. In general,the enumerative treatment of interpretations leads to a lak of time and spae or it degradesthe analytial apability due to overpruning. (b) implies that the paked shared data strutureat eah level enompasses all possible solutions orretly, i.e., it assures there is no pruning ofexisting interpretations and no generation of nonexistent interpretations originating from thepaked shared data strutures. Provided this requirement is assured, it is bene�ial for an NLAsystem to be apable of introduing possible pruning (appliation of onstraint knowledge) inthe early stage of sentene analysis onsidering the system performane. () is a prerequisite forthe multilevel system desribed in Setion 2.1.2.3.2 Traditional Methods for the Paked Shared DataStrutures3.2.1 The WPP TrellisPDG utilizes WPP trellis as the basis for the morphologial analysis level. The WPP trellis isa paked shared data struture enompassing all WPP sequenes for a sentene. Fig.3.1 shows anexample of a WPP trellis for the sentene \Time ies like an arrow." Eah node is labeled withthe WPPs of eah word in a sentene and has a variety of features suh as word input position*1,lexial information, and morphologial features. Ars between the WPP nodes represent possible*1 The word position is represented by zero origin basis.
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start Fig.3.1 WPP trellis for \Time ies like an arrow"adjaeny relations. A WPP node sequene obtained by traing from the top to the bottom ofthe trellis through the ars orresponds to one morphologial interpretation of the sentene.For example, the WPP node sequene \time/n y/v like/pre an/det arrow/n" in Fig.3.1 is oneinterpretation of \Time ies like an arrow." Compound words oupy multiple input positionsaording to their word lengths. In general, a WPP sequene has 0 to N orresponding phrasestruture trees and is onsidered to be an intension of the ounterpart phrase struture trees.3.2.2 The Paked Shared Phrase Struture ForestThe paked shared phrase struture forest, or simply phrase struture forest, is a well-knownpaked shared data struture for enompassing all phrase struture trees (Tomita, 1987). Fig.3.2shows the paked shared phrase struture forest for the example sentene. A sub-tree headedwith a non-terminal symbol that has multiple in-oming ars is shared by its upper trees. Abox ontaining the same nonterminal symbols, i.e., \s" or \vp," shows the paked sub-trees thathave the same phrase boundaries (sentene span).The WPP trellis and the paked shared phrase struture forest satisfy the interpretation map-ping ondition of the multilevel paked shared data struture onnetion model beause eah
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41phrase struture tree in the paked shared phrase struture forest orresponds to a WPP se-quene in the WPP trellis.3.2.3 The Syntati GraphSeo and Simmons (1989) proposed the \syntati graph", whih enompasses all dependenytrees orresponding to phrase struture trees in the phrase struture forest for a sentene (Rimet al., 1990). The syntati graph is a promising andidate for a paked shared data struturein PDG but it annot be adopted as it is beause it has a problem in satisfying the prerequisite() in Setion 3.1 for the multilevel paked shared data struture onnetion model.The syntati graph is a direted graph, whih onsists of nodes representingWPPs and labeledars representing the syntati relations between nodes. The syntati graph de�nes a set ofdependeny trees (interpretations) for a sentene in ombination with the \exlusion matrix",whih represents exlusive o-ourrene relations between ars. The syntati graph is a setof Triples ontaining ar name and two nodes (ontaining WPP, surfae position et.). Fig.3.3shows the syntati graph and the exlusion matrix for a sentene \Time ies like an arrow." Thenumbers in ars are ar-IDs. Multiple ars targeting one node represent modi�ation ambiguities.S orresponds to the starting symbol.The exlusion matrix is a matrix whose rows and olumns are a set of ars in the syntatigraph that presribes the o-ourrene relation between ars. When (i,j) position in the exlusionmatrix is set to 1, i-th ar and j-th ars must not o-our in any dependeny tree (interpretation)
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42obtained from the syntati graph. The syntati graph and the exlusion matrix are generatedfrom a kind of paked shared phrase struture forest. PDG adopts the same data struture andit is alled a headed phrase struture forest. The detail of the headed phrase struture forest isdesribed in Setion 3.3. In the rest of this thesis, phrase struture forest means headed phrasestruture forest. The traditional phrase struture forest (paked shared phrase struture forest)is alled the headless phrase struture forest.Seo and Simmons (1989) disussed the ompleteness and the soundness of the orrespondenebetween the phrase struture forest and the syntati graph. The ompleteness is satis�ed if eahphrase struture tree in the phrase struture forest has its ounterpart(s) in the syntati graph.The soundness is satis�ed if eah dependeny tree in the syntati graph has its ounterpart(s)in the phrase struture forest. The ompleteness of the syntati graph is shown in (Seo andSimmons, 1989) but the soundness is not assured. All exlusion matrix ells are initially set to1 (this means no two triples o-our). Then the ells for all the triple pairs in the dependenytree generated from phrase struture trees are set to 0. Sine the exlusion matrix presribes theo-ourrene relations for all dependeny trees in the dependeny graph*2, the allowane of ao-ourrene of two triples (set 1 to the ell for two triples) is safe if and only if the restritionof these two triples is not neessary for all other interpretations (dependeny trees). AppendixA shows an example in whih the syntati graph annot satisfy the soundness ondition.3.3 Paked Shared Data Strutures in PDGPDG adopts the phrase struture forest and the dependeny forest for the paked shared datastrutures for phrase struture and dependeny struture representations, respetively.3.3.1 Phrase Struture ForestThe phrase struture forest is a kind of paked shared parse forest and onsists of edgesorresponding to rewriting rules in CFG. The sub-trees, whih satisfy the following onditions,are paked and shared.Sub-trees have(a) the same nonterminal symbol (ategory)(b) the same overage (phrase boundary)() the same phrase head*3 (head onstituent)Conditions (a) and (b) onstitute the headless phrase struture forest (Shiehlen, 1996). Thephrase struture trees in the headed phrase struture forest have mapping to the phrase struturetrees in the headless phrase struture forest. An example of the edges and the phrase strutureforest in PDG is shown in Setion 3.4 along with the parsing algorithm.*2 The onstraint in the exlusion matrix is global in a sense.*3 Phrase head is a WPP in PDG.



433.3.2 Dependeny ForestThe dependeny forest (DF) onsists of a \dependeny graph" (DG) and a \onstraint matrix"(CM, C-Matrix) expressed as DF=<DG,CM>*4. Fig.3.4 shows a dependeny graph for theexample sentene \Time ies like an arrow." The dependeny graph onsists of nodes anddireted ars. A node represents a WPP*5 and an ar shows the dependeny relation betweennodes*6. An ar has its ID. The dependeny graph has one speial node alled a top node,whih is a root of all dependeny trees in the dependeny graph*7. In pratie, the dependenygraph is represented by a set of \dependeny piees". A dependeny piee onsists of one arand its dependant (or modi�er) node and governor (or modi�and) node. Sine dependenypiee and ar have one to one orrespondene, dependeny piee is referred to as ar in thisthesis. The number of ars in the dependeny graph is alled a \size of the dependeny forest".Dependeny tree is a subset of dependeny graph that forms a tree. Dependeny trees representinterpretations of sentenes or phrases at dependeny relation level.CM is a matrix whose rows and olumns are a set of ars in DG that presribes the o-
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tp : topFig.3.4 Initial dependeny forest for the example sentene*4 The di�nition of the dependeny forest is extended to inlude the preferene matrix PM in Chapter 4.*5 Node ontains various information in the lexion and surfae position number.*6 The diretion of dependeny ar obeys the onvention of the Japanese kakari-uke grammar (dependenygrammar). The dependant node of an ar is the node loated at the soure of the ar. This is ontrary tothe onvention in the syntati graph, but not substantially di�erent.*7 In this thesis, root of the dependeny tree is alled top node to distinguish it from the root of a phrasestruture tree.



44ourrene relation between ars. Only when CM(i,j) is �, ari and arj are o-ourable inone dependeny tree. The o-ourrene relation is symmetri and CM is a symmetri matrix.3.3.3 Well-formed Dependeny TreeDe�nition 3.3.1 [Well-formed dependeny tree℄\Well-formed dependeny tree" is a dependeny tree DT in the dependeny forest that satis�esthe following onditions alled the \well-formed dependeny tree onstraint".[Well-formed dependeny tree onstraint℄(a) Every input word has a orresponding node in DT. (overage onstraint)(b) No two nodes in DT oupy the same input position. (single role onstraint)() Eah ar pair in DT has a o-ourrene relation in CM. (ar o-ourrene onstraint)(a) and (b) are olletively referred to as the \overing onstraint". A dependeny tree satis-fying the overing onstraint is alled the \well overed dependeny tree". A dependeny treesatisfying () is alled the \well o-ourred dependeny tree". A set of well-formed dependenytrees is the set of possible interpretations for an input sentene. The dependeny forest in Fig.3.4has four well-formed dependeny trees. In PDG, a set of one WPP node is onsidered to be aspeial ase of dependeny tree with no ars, whih satis�es the well-formed dependeny treeonstraint.3.3.4 Initial Dependeny Forest and Redued Dependeny ForestThere an be more than one di�erent-sized dependeny forest enompassing the equivalent setof dependeny trees with respet to the degree of ar sharing. PDG treats the \initial dependenyforest" and the \redued dependeny forest" that is obtained from the initial dependeny forest.The initial dependeny forest onsists of the \initial dependeny graph" and the \initial C-matrix". The redued dependeny forest is simply alled dependeny forest in this thesis. Thedependeny graph of the initial dependeny forest in Fig.3.4 is di�erent from the syntati graphin Fig.3.3 in terms of the number of ars between \y/n" and \time/v."3.4 Generation of the Phrase Struture Forest and theInitial Dependeny ForestPDG generates the dependeny forest from an input sentene through four proesses, i.e., themorphologial analysis, the syntati analysis, the phrase struture/dependeny forest generationand the dependeny forest redution.
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Fig.3.5 Ditionary lookup result for the example sentene3.4.1 Morphologial AnalysisAs desribed in Setion 2.2.3, morphologial interpretations of a sentene are a set of WPPnode sequenes overing whole sentene, represented by WPP trellis. The upper adjaent inter-pretation spae is represented by phrase struture forest. It is obvious that the interpretationmapping an be assured for these two data strutures.Morphologial analysis is a well-established tehnology for major languages. PDG utilizesexisting tehnologies for eah language. This thesis gives simply illustrative explanation of themorphologial analysis from the viewpoint desribed in Chapter 2.Possible WPPs for a word are obtained by onsulting a PDG ditionary. Fig.3.5 shows possibleWPPs for eah word in the example sentene \Time ies like an arrow." If no onstraint existsfor the adjaeny relation between words, 32 ( 2 � 2� 4� 1� 2) WPP sequenes are obtainedfrom the input sentene. Assuming the onstraints that the adjaent sequenes verb+verb \vv," adjetive+determiner \adj det," determiner+verb \det v" are inhibited, a graph shown inFig.3.6 is obtained by putting the available ars between the WPPs. WPP nodes whih have nopossible path from the start or to the end position, for example \like/adj" and \arrow/v," an
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46be removed from the graph beause it does not e�et the total morphologial interpretations ofthe sentene. This redution of WPP nodes produes the WPP trellis shown in Fig.3.1. Thistrellis enompasses six WPP sequenes, i.e., six morphologial interpretations.3.4.2 Grammar RuleGrammar rules in PDG are extended CFG rules, whih de�ne the possible phrase struturesand mapping from the phrase strutures to the orresponding dependeny strutures. Grammarrules are written in the following format.y/Y ! x1/X1,: : :,xn/Xn : [ar(arname1,Xi,Xj),: : :,ar(arnamen�1,Xk,Xl)℄ (0< i,j,k,l�n)ex. vp/V ! v=V ,np=NP ,pp=PP : [ar(obj,NP ,V ),ar(vpp,PP ,V )℄A grammar rule onsists of two parts separated by \:", the rewriting rule part and the dependenystruture part. The left side of the rewriting rule \y/Y " and onstituent \xi/Xi" mean \syntatiategory/variable." Y is a head onstituent alled a \phrase head" and is the same as one of thevariables \X1: : :Xn" in the \rule body". The dependeny struture part is a set of ars in theform \ar(arname,variable1,variable2)"*8. A variable is bound to a WPP node, whih is a phrasehead of a onstituent in the rewriting rule. In the example above, dependeny struture wheredependants NP and PP are onneted to the governor phrase head V by means of the obj arand the vpp ar, respetively. The dependeny struture part onstitutes a partial dependenytree, whih satis�es the following \partial dependeny struture onditions".De�nition 3.4.1 [Partial dependeny struture ondition℄(a) Partial dependeny struture onstitutes a tree struture whose top node is a phrase headof the head onstituent Y . Phrase heads of non-head onstituents are the dependants ofthe phrase heads of the other onstituents.(b) The phrase heads of the onstituents in the rule body have one to one orrespondenewith the variables in the partial dependeny struture.Fig.3.7 shows the grammar rules and lexions for analyzing an example sentene \Time ieslike an arrow." Rule (R0) whose rule head and rule body are \root" (prede�ned speial symbol)and \s"(starting symbol) as rule body is a speial rule for reating a \root edge" of the phrasestruture forest and a \top node" [top℄-x of the dependeny forest*9.3.4.3 The Struture of EdgeThe syntati analysis of PDG is implemented by extending the bottom-up hart-parsingalgorithm to generate a dependeny struture. Ordinal hart parser utilizes edges omposed*8 The dependeny struture is a set of ars but represented by list format using [ ℄. In this thesis, sets aresometimes represented by [ ℄ in program odes.*9 This rule is introdued for onveniene in the treatment of data strutures.
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root/[root]-x � s/S   : [arc(top,S,[top]-x)] (R0)
s/VP � np/NP,vp/VP     : [arc(sub,NP,VP)] (R1)
s/VP � vp/VP           : [] (R2)
np/N � det/DET,n/N     : [arc(det,DET,N)] (R3)
np/N � n/N             : [] (R4)
np/N2 � n/N1,n/N2       : [arc(nc,N1,N2)] (R5)
np/NP � np/NP,pp/PP     : [arc(npp,PP,NP)] (R6)
vp/V � v/V             : [] (R7)
vp/V � v/V,pp/PP       : [arc(vpp,PP,V)] (R8)
vp/V � v/V,np/NP       : [arc(obj,NP,V)] (R9)
vp/V � v/V,np/NP,pp/PP : [arc(obj,NP,V),arc(vpp,PP,V)] (R10)
pp/P � pre/P,np/NP     : [arc(pre,NP,P)] (R11)

word(n,[time]). word(n,[flies]). word(pre,[like]). word(det,[an]).
word(v,[time]). word(v,[flies]). word(v,[like]). word(n,[arrow]).Fig.3.7 Grammar and lexion for the example senteneof �ve elements <FP,TP,C,FCS,RCS> , i.e., the from-position (FP), the to-position (TP), theategory (C), the found onstituent sequene (FCS) and the remaining onstituent sequene(RCS). The head of the grammar rule orresponds to the ategory. The body of the grammarrule orresponds to both the found onstituents and the remaining onstituents and is partitionedby the dot (�) whih shows the boundary of FCS and RCS as shown in the following edge writtenin diagrammati form.<0,1, s ! np �vp pp>This edge is generated from the grammar rule \s ! np vp pp" and has elements FP=0,TP=1,C=s, FCS=[np℄ and RCS=[vp,pp℄. The result of the ditionary look-up for an input word is aninative edge whose ategory is the POS of the word and whose found onstituent sequene is aword list as follows:<0,1, n ! [time℄ �>The parsing algorithm of PDG has two extensions, i.e., the treatment for the dependenystruture part in a grammar rule and the onstrution of the paked shared data struture. Theedge for PDG parsing has two additional elements, i.e., the phrase head (PH) and the dependenystruture (DS) as follows:Standard edge : <0,1, s ! np �vp pp>PDG edge : <0,1, s/PH ! np/n1 �vp/PH pp/PP : DS>As desribed in 3.4.2, PH and DS represent a phrase head (node) and dependeny struture (aset of ars), respetively. n1 shows a node (WPP), whih is a head of np phrase. PDG utilizesanother data struture alled the \paked edge", whih is obtained by paking inative edgesinto one. The paked edge has the list of FCS and the list of DS instead of the FCS and theDS in PDG edge. The PDG edge with FSC and DS is alled \single edge" in ontrast to pakededge. The paked edge is equivalent to a set of single edges. The following shows the relationbetween single edge and paked edge diagrammatially.



48 Single edge : <0,5, s/n2 ! np/n1 vp/n2 pp/n3 �: DS1><0,5, s/n2 ! np/n1 vp/n2 �: DS2>Paked edge : <0,5, s/n2 ! [[np/n1 vp/n2 pp/n3℄, [np/n1 vp/n2℄℄ �: [DS1,DS2℄>n1 to n3 are nodes (WPPs) and n2 is a phrase head. [np/n1 vp/n2 pp/n3℄ and [np/n1 vp/n2℄ areonstituent sequenes with their phrase head (nodes). DS1 and DS2 are dependeny strutures(partial dependeny trees). For onveniene, a paked edge is represented in the form \E," \<E: : :>" or \edge E" and a single edge is represented in \e," \<e : : :>" or \edge e." \edge" is usedfor representing \paked edge" or \single edge" when it is not ambiguous. Inative edges arerepresented by adding \*" at the top of edge symbol. Edge *E and *e are an inative pakededge and an inative single edge, respetively.The syntati parsing of PDG desribed below utilizes paked edges. Fig.3.8 shows the formalonstitution of a paked edge. A paked edge onsists of eight elements. FCSL and DSL arelists (or sequenes) with the same length. The pair (FCSi,DSi) obtained by extrating the i-thelements of FCSL and DSL is alled \CSDS pair." CSDS pair orresponds to the single edgedesribed above.The edges E1 to *E3 in Fig.3.8 shows a growth of the edge generated form a grammar rulefor noun phrase. The edge *E3 is the inative edge showing the interpretation that the inputwords \an arrow" onstitute a noun phrase and its dependeny struture is far(det-14,[an℄-det-3,[arrow℄-n-4)g. [arrow℄-n-4 is a node for word [arrow℄, pos \n" and word position 4. The edge*E4 is an edge with more than one interpretation. Eah two elements in FCSL and DSL have��������� �� ��	� 
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49orrespondene and onstitute two CSDS pairs, i.e., ([103,169℄ fobj-25g))*10 and ([103,119,165℄fobj-4,vpp-20g). The edge �E5 is an example of an edge generated from ditionary look-upoperation, alled a \lexial edge". The data struture of a lexial edge is a set of one nodeorresponding to the onsulted word. The lexial edge is expliitly represented by adding \�."3.4.4 Parsing AlgorithmFig.3.9 shows the parsing algorithm of PDG. Basially, this algorithm is a standard bottom-uphart-parsing algorithm using agenda (Winograd, 1983). This algorithm inputs words from leftto right one by one and adds lexial edges generated from the input words to the agenda (Fig.3.9(a),(b)) , and ombines the edges in the agenda to inative edges in the hart or in the grammarrules until the agenda beomes empty (Fig.3.9 (e),(f)). Paked edges are generated by heking
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50eah edge in the agenda is mergable or not ((),(j)) and then merging it to the existing edge ifpossible. The detailed explanation of the algorithm is omitted. The following part explains theonstrution of the data struture, whih is peuliar to the PDG parsing.The PDG parser reates dependeny strutures in parallel with the generation of edges. This isdone by binding variables in the dependeny strutures in an edge. Variable binding is performedby bind var, whih binds the phrase head (node) of the inative edge to the variable in the �rstonstituent of the remaining onstituent sequene of the edge, when a new edge is reated from agrammar rule (Fig.3.9 (g)) or an ative edge in the agenda (Fig.3.9 (h)). If this binding generatesan ar whose dependant and governor are bound, add arid generates a unique ar-ID and itis attahed to the ar (Fig.3.9 (i)). The ar with a bound dependant and governor is alled\�xed ar". The edge *E3 in Fig.3.8 is generated by binding the variable $2 in E2 to the node[arrow℄-n-4.Edges are assoiated through edge-IDs. The lower edge an be traed from the upper edge.The edge *E3 (edge#160) in Fig.3.8 is an edge generated from the grammar rule \np ! detn." The edges in the onstituent sequene [153,156℄ in edge#160 , i.e., edge#153 and edge#156,have the phrase ategory \det" and \n," respetively. The edge#153 and edge#156 are alledreahable from the edge#160. This \reahable" relation is assoiative. Edges with more thanone CSDS pair like *E4 in Fig.3.8 are generated by merge sds(Fig.3.9 (d)). Sine only inativeedges are merged, no ative edge has more than one CSDS pair in this algorithm. If the wholesentene is parsed suessfully, the hart has one inative edge with phrase head [top℄-x overingwhole sentene. This edge is alled \root edge" and desribed as *Eroot.3.4.5 Generation of Phrase Struture Forest and Initial DependenyForestWhen parsing is �nished, the hart has ative and inative edges. The phrase struture forestfor an inative edge *E, hpf(*E), is de�ned as a set of edges reahable from the edge *E. Thephrase struture forest PF is de�ned as hpf(*Eroot). PF is a subset of the inative edges inthe hart beause there exist inative edges unreahable from *Eroot. The initial dependenygraph IDG is a set of ars in the dependeny strutures of the edges in PF. Fig.3.10 shows thealgorithm to ompute PF, IDG and the initial C-Matrix ICM from *Eroot. Fig.3.11 shows PFfor the example sentene omputed by the algorithm using the grammar in Fig.3.7. All RCSLof the edges in PF are [ ℄ and are not shown in Fig.3.11. The number of edges in the phrasestruture forest is alled a size of the phrase struture forest. The size of the headed phrasestruture forest is more than or equal to that of the headless phrase struture forest beause theedge merge ondition of the headed phrase struture forest (Fig.3.9 (j)) is more strit omparedwith that of the headless phrase struture forest.The algorithm in Fig.3.10 traverses the hart by using three mutually reursive funtions,try edge, try FCSL and try CS whih ompute PF, IDG and ICM for their arguments, i.e.,the paked edge, the onstituent sequene list and the onstituent, respetively. try edge alls
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Fig.3.10 Algorithm for omputing phrase struuture forest and initial dependeny foresttry FCSL (Fig.3.10 (d)), try FCSL alls try CS (Fig.3.10 (h)) and try CS alls try edge(Fig.3.10 (j)). The ar in the ar sets returned from try edge(E),try FCSL(FCSL) andtry CS(CS) are alled the ar governed by E, FCSL and CS, respetively.The algorithm starts from the Fig.3.10 (a) by alling try edge(*Eroot). try edge judges theargument is already omputed or not at (b). If it has already been omputed, try edge simplyreturns the set of ars reorded in TER. The registration of a set of ars is performed in (g)when new result is obtained. At () and (e), new edges are added to PF . As shown at (f), thears governed by the edge E are the union of the DSL in E and the ars governed by FCSL.try FCSL proesses a set of CSDS pairs and try CS proesses one CSDS pair in it. As shownat (i), the set of ars governed by FCSL is the union of the ars governed by the CSs in theFCSL. As shown at (k), the set of ars governed by CS is the union of the ars governed by thepaked edges in the CS.Fig.3.12 shows the exeution proess for the E#170 in Fig.3.11. (#) shows a funtion alland (r#) shows the return value, i.e., the set of ars, of the funtion. (1) to (4) orrespond tothe funtion alls (j), (d) and (h) in Fig.3.10, respetively. (4) returns fg at (r4) beause theE#103 is a lexial edge. The funtion all (4) returns result (r4). Then the seond CSDS pair([103,119,165℄,fobj-4,vpp-20g) is proessed by the funtion all (5). The seond time exeutionfor \try edge(E#103)" ours at (6). This time, the exeution result stored in TER at Fig.3.10(b) is searhed and returned. Finally the set of ars at (r1) is obtained.The generation of CM is performed based on the following C-Matrix setting onditions whih
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	 ����#��� Fig.3.11 Phrase struture forest for \time ies like an arrow"work to allow o-ourrene between all ars in the set of edges onstituting a phrase struturetree in the phrase struture forest.De�nition 3.4.2 [C-Matrix setting onditions℄The \C-Matrix setting ondition" is either of the following three onditions(CM1) The ars in the same DS o-our with one another.(CM2) Given a CSDS pair (CS,DS), the ars in DS o-our with the ars governed by CS.(CM3) The ars governed by one CS o-our with one another.(CM1) to (CM3) orrespond to the CM proessing (1) to (3) in Fig.3.10. In proessing E#170,set CM(fobj-4,vpp-20g,fobj-4,vpp-20g) (set CM is de�ned in Fig.3.10) is exeuted at the CMproessing (1) beause the ars in the seond CSDS pair ([103,119,165℄,fobj-4,vpp-20g) satisfythe o-ourrene setting ondition (CM1). At the CM proessing (2), A CS has been set to theset of ars shown at (r5) in Fig.3.12 and set CM(fobj-4,vpp-20g,fpre-15,det-14g) is exeuteddue to (CM2). In proessing try CS([103,119,165℄), the CM proessing (3) set CM from amongthe ars governed by E#103,E#119 and E#165 due to (CM3). The outputs PF and IDF areshown in Fig.3.11 and Fig.3.4, respetively. E#181, E#176 and E#174 have the same ategory\s" and the same overage (from 0 to 5), but they are not shared beause their phrase heads aredi�erent.
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	�"�$�� ! "$�%&&"#��+&&"���� ! "#� ) ����Fig.3.12 Example of algorithm exeution3.5 Generation of the Redued Dependeny ForestThe two ars obj4 and obj25 in IDF in Fig.3.4 have the same struture exept for their ar-IDs. IDF may ontain ars of this kind alled \equivalent ars". Equivalent ars are sometimesgenerated from one grammar rule and sometimes generated from di�erent grammar rules. Forexample, obj4 and obj25 are generated from the onstituent sequene \vp np" in (R9) and(R10) in Fig.3.7. In fat, (R9) and (R10) di�er in terms of the existene of the prepositionalphrase, but the interpretation of the \obj" relations in (R9) and (R10) are onsidered to be thesame. Atually, if (R9) and (R10) are merged into one grammar rule \vp/V ! v/V ,np/NP ,,pp/PP-: [ar(obj,NP ,V ),ar(vpp,PP ,V )℄" by introduing the desription shema \fg" foroptional elements. This grammar rule does not generate the equivalent ars for obj relation.Now, some de�nitions are given for treating equivalent ars. The \generalized ar" is an arwith ar-ID `?'. Ars with number IDs are alled IDed ars. The generalized ar for an IDed aris obtained by simply replaing the ar-ID in the IDed ar with `?'. A dependeny tree onsistingof generalized ars is alled a \generalized dependeny tree". A dependeny tree onsisting ofIDed ars is alled an \IDed dependeny tree". The generalized ar for an IDed ar X is writtenas ?X. The generalized tree for an IDed tree DT is written as ?DT. Two dependeny trees thathave the same generalized tree are alled equivalent. The redued dependeny forest is obtainedby reduing the initial dependeny forest. The redution of the dependeny forest is an operationin that more than one equivalent ar is merged into one ar without inreasing the number of thegeneralized dependeny trees in the dependeny forests. The redued dependeny has smallersize ompared with the original dependeny forest before the merge operation.



543.5.1 Merge Operation of Equivalent ArsThe merge operation for the equivalent ars X ,Y (written in equiv(X ,Y )) is de�ned as follows:De�nition 3.5.1 [Ar merge operation℄(1) Compute a new dependeny graph DG' by removing Y from DG. (DG'=DG�fY g)(2) Generate a new C-Matrix CM' from CM by applying set CM(X; I) for ar I(I2DG,I 6=X ,I 6=Y ,CM(Y ,I)=�)The merge operation generates a new dependeny forest <DG',CM'>. Fig.3.13 shows anexample of merge operation diagrammatially. In the following setions, hanges of various valuesare disussed, for example, the numbers of generalized dependeny trees in the dependeny forestbefore and after merge operation. To make this distintion, the expression \wrt <DG,CM>" or\wrt DF" (wrt: with respet to) is used. For example, the set of ars that o-ours with an arA is de�ned as o(A). Then \o(A) wrt <DG,CM>" and \o(A) wrt <DG',CM'>" represent theset of ars before and after merge operation. \o(A) wrt <DG,CM> = o(A) wrt <DG',CM'>"means the set of ars is not hanged by the merge operation. In order to make the desriptionsimple, \wrt <DG,CM>" is not shown in default.3.5.2 Merge Condition for Equivalent ArsFrom the de�nition, the ondition of the dependeny forest redution is to preserve the sound-ness, i.e., no new generalized dependeny tree (interpretation) inrease by the merge operation.[Merge Condition for Equivalent Ars℄When the dependeny forest DF' is generated from DF by merging ar Y to X in the dependenygraph of DF, the ondition for the forest redution is \a set of generalized dependeny trees inDF = a set of generalized dependeny trees in DF' ."
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55This ondition is veri�able by searhing a new generalized dependeny tree in DF'. The on-dition for the existene of a generalized dependeny tree not in DF but in DF' is alled the\inrease ondition for generalized dependeny trees" (ICG) in this thesis. The merge onditionis represented as \ICG is not satis�ed."A dependeny forest is a set of IDed ars and presribes the set of IDed dependeny trees andthe set of generalized dependeny trees. The ondition for the existene of an IDed dependenytree not in DF but in DF' (this kind of tree is alled a \new" dependeny tree) is alled the\inrease ondition for IDed dependeny trees" (ICI). Obviously, if no IDed dependeny treeinreases by the merge operation, no generalized dependeny tree inreases. Moreover, even ifthere exist new IDed dependeny trees in DF', no generalized dependeny trees inrease if thegeneralized dependeny trees of the new IDed dependeny trees are equivalent to those in DF.This means ICI is a neessary ondition for ICG. In the following, ICI is disussed �rst, thenICG is veri�ed to obtain a detailed merge ondition for equivalent ars.3.5.3 Inrease Condition for IDed Dependeny TreesInrease of a new IDed dependeny tree is aused by allowing a new o-ourrene relationbetween ars aused by a merge of equivalent ars. The allowane of the o-ourrene relation inCM, i.e., the hange from CM(U,V)6= � to CM(U,V)= � for ars U, V, is alled the \allowaneof the ar pair (U,V)". The following lemma is established.Lemma 3.5.1 (The allowane of ar pair and the inrease of dependeny trees) Ifa new well-formed dependeny tree inreases by the allowane of the ar pair (U,V), thedependeny tree inludes U and V.Proof: This lemma is obvious beause well-formed dependeny trees in DG' whih do notinlude both U and V exist in DG.Here, uniq and di� are the sets of ars de�ned for the equivalent ars X and Y as follows:uniq(X,Y)=fI j CM(X,I)=�,CM(Y,I)6= �,I2DGgdi�(X,Y)=f(I ,J)jI2uniq(X,Y),J2uniq(Y,X)gFor the ars X, Y in Fig.3.13, uniq(X,Y)=fj,ng,uniq(Y,X)=fkgand di�(X,Y)=f(j,k),(n,k)g. Thefollowing lemma is established.Lemma 3.5.2 (Ars in a new well-formed dependeny tree) In the ase that a well-formed dependeny tree is generated by the merge of the equivalent ars X,Y, the new treeinludes at least two ars A,B suh that (A,B) 2 di�(X,Y).Proof: Let DF and DF' be the dependeny forests before and after the merge of X and Y.Assuming that a new dependeny tree DTx is obtained by the allowane of the ar pair (X,Bi)aused by the merge of X and Y, X and Bi are inluded in DTx aording to the lemma 3.5.1.



56Here, let R=DTx�fX,Big. CM(X,U)=� wrt DF',CM(Bi,U)=� wrt DF' for U2R beause DTxis a well-formed dependeny tree.Assuming that there is no ar U suh that CM(Y,U)6= � wrt DF (i.e., CM(Y,U)= � wrtDF,U2R), DTy=fY,Big+R is a well-formed dependeny tree in DF. DTx is not a new generalizeddependeny tree beause DTx and DTy di�er only in the equivalent ar X and Y, i.e., DTx andDTy are equivalent. Therefore, DTx must inlude at least one Ui suh that CM(Y,Ui)6= � wrtDF is a new generalized dependeny tree. This lemma is established beause (Bi,Ui)2di�(X,Y).The following theorem is derived from lemma 3.5.2,Theorem 3.5.1 (The inrease ondition for IDed dependeny tree)Let ar pair (A,B)2di�(X,Y) for equivalent ars X,Y in DG of the dependeny forest <DG,CM>.The inrease of IDed dependeny trees ours if and only if <DG',CM'> obtained by the mergeof Y to X have IDed dependeny tree NDT whih inludes fX,A,Bg.Proof: This theorem is proved by showing a new well-formed IDed dependeny tree inludesfX,A,Bg and a well-formed IDed dependeny tree whih inludes fX,A,Bg is a new well-formedIDed dependeny tree. Assuming that NDT is a new IDed dependeny tree existing in<DG',CM'>, there exists at least one ar pair (Ai,Bi)2di�(X,Y),Ai2NDT,Bi2NDT. On theother hand, X2NDT is true due to lemma 3.5.1. Therefore, a new well-formed IDed dependenytree inludes fX,A,Bg. Moreover, no IDed well-formed dependeny trees exist in <DG,CM>beause (A,B)2di�(X,Y). Therefore, an IDed well-formed dependeny tree whih inludesfX,A,Bg is a new well-formed IDed dependeny tree.Some funtions and notations are introdued for the disussion on the inrease ondition ofdependeny trees.same position(U ,V ) : The positions of dependant nodes of U and V are the same.dts(S) wrt <DG,CM> : a set of IDed well-formed dependeny trees whih onsist of arsin ar set S�DG and satisfy the ar o-ourrene onstrainto(U) wrt <DG,CM> : a set of ars whih o-our with ar U inluding U, i.e., fX jX=U or CM(X ,U)=�, X2DGgdts with ars(A1,A2,: : :,An) wrt <DG,CM> : a set of the well-formed dependeny treesin <DG,CM> whih inlude ars A1,A2,: : :,An, i.e., dts(o(A1)[� � �[o(An)) wrt<DG,CM>ICI with respet to the ar pair (A,B) 2 di�(X,Y), equiv(X,Y) an be heked by searhingthe existene of a well-formed dependeny tree inluding fX,A,Bg in <DG',CM'> aording to



57theorem 3.5.1. To make this searh proess more eÆient, the following three ases with respetto ar X, A and B are onsidered.(RC1) Any of same position(A,B), same position(X,A) or same position(X,B) is true(RC2) CM(A,B)6= � is true(RC3) Exept for (RC1) and (RC2)In ases (RC1) and (RC2), no well-formed dependeny trees whih inlude fX,A,Bg existin <DG',CM'> beause of the existene of the single role onstraint and the o-ourreneonstraint, respetively. In the ase of (RC3), the existene of a well-formed dependeny treewhih inludes fX,A,Bg, i.e., dts with ars(X,A,B) wrt <DG',CM'>=fg, should be heked forICI.3.5.4 Inrease Condition for Generalized Dependeny TreesAs desribed above, ICI is a neessary ondition for ICG. Therefore, ICG is de�ned as follows:[The inrease ondition for generalized dependeny tree℄Let DF' be a dependeny forest generated from the dependeny forest DF by merging ar Y toX where X and Y are equivalent ars and let DTnew be the set of IDed dependeny trees whihare in DF' but not in DF. There exists at least one IDed dependeny tree DT 2 DTnew suhthat the generalized dependeny tree ?DT is not inluded in DF.The merge ondition for equivalent ars is the negation of ICG for the ars.3.5.5 Dependeny Forest Redution AlgorithmFig.3.14 shows the dependeny forest redution algorithm for <DG,CM> based on the mergeondition for equivalent ars (i.e., the ondition for the forest redution) desribed in the previoussetion. In this algorithm, CM is represented as a set of o-ourable ar pairs. Ar X and Yare o-ourable if <X,Y>2CM.Fig.3.14 (a) piks up a pair of the equivalent ars X,Y in DG, heks if a new generalizeddependeny tree is generated in the dependeny forest when ar pair (A,B) is allowed from (b)to (h) in Fig.3.14. If all ar pairs in diff(X,Y) do not generate any new generalized dependenytrees, the forest redution is performed at (i).The availability of the allowane of (A,B) is determined by heking ICG after heking ICI.At Fig.3.14 (b), onditions (RC1) and (RC2) in Setion 3.5.3 are heked. If either of theonditions is satis�ed, the proessing proeeds to the next ar pair in diff(X,Y) beause theallowane of (A,B) generates no new IDed dependeny trees. If not, the proessing proeedsto the hek of ICI. At (), <DG',CM'> is generated by merging Y to X. Sine the existenehek of a new IDed tree is basially performed by tree searh for <DG',CM'>, the redution ofsearh spae improves the eÆieny. Based on theorem 3.5.1, the searh spae is redued fromDG' to DG XAB(=o(X)\o(A)\o(B)) at (d). Then searh dt at (e) searhes a new IDed
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8���I(*�)+' ��� ����������������(.�=���+ 	 ��J� ��� .� �� �� ���� =� ���������� �����9 ��� ������ ���� �� K) )8=�5(6.�)78��+� ����� �� ������ ���L�������(���0+ 	 . �� �� ���� � ��� �������� 0 �� ������I��J�����(�>������+ 	 .�� I��J���� ���� �� ��� ��� �� ������� �� �>9L ��� �># M2�NO� �� I��J���� ���� �� 2 ��� N �� M3�AO ��� MO (�� �����+ ������J������I��J�����(M2�NO������+ P M2�3�A�NOFig.3.14 Algorithm for redution of dependeny forestdependeny tree for DG XAB. If no dependeny tree is obtained, allowane of (A,B) satis�esthe merge ondition for equivalent ars. If a dependeny tree DT is obtained, DT is an IDeddependeny tree, whih inludes fX,A,Bg. new generalized dt(DT,CM,DG) at (f) heks if thegeneralized dependeny tree ?DT is new or not new by searhing ?DT for <DG,CM>. Thedetailed explanation of new generalized dt is omitted here, but it realizes the searh for thegeneralized dependeny tree by limiting the ar set DG X so that it has only the equivalent arsof the ars in DT by add equiv ars at (q). When ?DT is a new generalized dependeny tree, themerge between X and Y is not available. The proessing for ars X and Y is terminated by (g)



59and (h), and proeeds to the hek of the next equivalent ar pair. If ?DT is not new, the mergeof X and Y, i.e., the forest redution, is performed at (i). Furthermore, when ?DT is proved to benot new at (f), the searh of other dependeny trees for DG XAB is performed at (e). searh dtsearhes a dependeny tree whih satis�es the o-ourrene ondition in depth �rst manner withrespet to input position P. searh dt selets one ar from the ar set ars at(DG,P) that is aset of ars with position P. searh dt searhes all possible dependeny trees by seleting anotherar at (k) when there are no solutions for ars from P+1 to the end position.3.5.6 Exeution Example of the Dependeny Forest Redution Algo-rithmThis setion explains the exeution proess of the algorithm in Fig.3.14 for the example sentene\Tokyo taxi driver all enter" in appendix A. The redued dependeny forest for this examplehas equivalent ars. Fig.3.15 (a) shows the initial dependeny forest for the example sentene. Ithas four sets of equivalent ars, (1, 2),(5,7),(13,15),(25,26,27) whih are surrounded with doublelines.The forest redution is performed along with the algorithm in Fig.3.14. The �rst equivalent arpair (1,2) is seleted to set X=1,Y=2. diff(X ,Y ) is omputed as f(5,14),(5,15),(5,27),: : :g byombining the elements in uniq(X;Y )=f5,24,25g and uniq(Y;X)=f14,15,27g. The �rst ar pair
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60(5,14) is skipped by the ondition hek for (RC1) at Fig.3.14 (b) beause same position(5,14)is true. The seond ar pair (5,15) is tried. (5,15) does not math the onditions at (b), CM' andDG' are generated at (). CM'=CM+f<1,14>,<1,15>,<1,27>g as shown in Fig.3.15 (b). ThenDG XAB is omputed at (d). X =1,A =5 and B =15 result in DG XAB =o(1)\o(5)\o(15)wrt <DG',CM'>=f1,28g. The allowane of (5,15) generates no new dependeny trees beausethe searh of the dependeny tree forDG XAB by searh dt at (e) fails. The proessing proeedsto the hek of the next ar pair (5,27). In a similar way, all ar pairs in diff(1,2) are assuredto generate no new dependeny trees, and then DG' and CM' is set to DG and CM at (i),respetively.Fig.3.15 () shows the redued dependeny forest �nally obtained by the algorithm. It has threeequivalent ars 25, 16 and 27. The proessing of the algorithm for this dependeny forest is de-sribed. Let X =25,Y =26. Then, uniq(X;Y ) =f1,24g,uniq(Y;X) =f6,13g,diff(X;Y ) =f(1,6),(1,13),(24,6),(24,23)g. The ar pair (1,6) is skipped by the ondition hek for (RC1). The arpair (1,13) is not skipped by the ondition hek for (RC1) and (RC2). Then, DG XAB isomputed at Fig.3.14 (d). X = 25,A = 1 and B = 13 result in DG XAB =o(25)\o(1)\o(13)wrt <DG',CM'> =f25,1,13,5,28g. A new IDed dependeny tree f25,1,13,5,28g is obtained bysearh dt at (e) for DG XAB*11. Then, new generalized dt at (f) is alled and add equiv arsat (q) omputes a set of ars DG X where the equivalent ars of the ars in DT are added. Inthe ase of Fig.3.15 (), ar 25 has equivalent ars 26 and 27. Addition of these ars resultsin DG X =f25,26,27,1,13,5,28g. searh dt at Fig.3.14 (r) tries to get a dependeny tree forDG X but it fails beause all equivalent ars 25, 26 and 27 have inonsistent ars in DG X , i.e.,<25,13>,<26,1> and <27,5> are not in CM. As a result, new generalized dt at (f) beomestrue, that is, the inrease of the generalized dependeny tree ours. Therefore, the merge ofX=25 and Y=26 is not performed. The dependeny forest in Fig.3.15 () inludes the depen-deny trees in Fig.A.1 (a) to () and retains the soundness.The above algorithm does not assure generation of one redued dependeny forest. The outputdependeny forest may vary by the appliation order of the merge operations for the equivalentars. There exist di�erent dependeny forests ontaining the same three generalized dependenyforest for the above example. The algorithm in Fig.3.14 does not assure that it generates the min-imum dependeny forest. In fat, there exists a dependeny forest smaller than the Fig.3.15 ().Moreover, there is room for improving the omputational amount in the above algorithm. Theonstrution of the smallest redued dependeny forest and the improvement of the performaneof the algorithm are future tasks*12.*11 This tree orresponds to the tree in Fig.26 (d).*12 PDG allows arbitrary mapping between the onstituent sequenes and the partial dependeny trees de�nedin grammar rules. Therefore, any dependeny struture an be assigned for any onstituent sequeneprovided that they satisfy the partial dependeny struture ondition. This feature suggests that not onlythe optimization tehniques in the general algorithm but also the tehniques based on the strutural analysisof the grammar rules are e�etive.



613.6 Proof of the Completeness and Soundness of theDependeny Forest3.6.1 Proof of the Completeness and Soundness of the Initial Depen-deny ForestThe phrase struture forest PF and the dependeny forest DF=<DG,CM> is assumed in thefollowing proof. Before showing the proof, some relations between the phrase struture forestand the dependeny forest generated from the algorithms explained in Setion 3.4.4, and somelemmas required for the proof are desribed.[Paked Edge and Single Edge℄The phrase struture forest is a set of paked edges. As desribed in setion 3.4.3, a pakededge is equivalent to a set of single edges. In this proof, paked edges are treated as a set ofsingle edges. The following paked edge is shown in Fig.3.8.Paked edge �<ID,FP,TP,C,PH,FCSL,RCS,DSL>where FCSL=[CS1,: : :,CSn℄,DSL=[DS1,: : :,DSn℄is equal to the following set of single edges.*e1 : <ID-1,FP,TP,C,PH,(CS1 DS1),RCS>:*en : <ID-n,FP,TP,C,PH,(CSn DSn),RCS>For example, *E4 in Fig.3.8 is a set of ars *e1,*e2*13Single edge *e1: <170-1,0,5,vp, [time℄-v-0, [103,169℄, [℄, far(obj-25,[ies℄-n-1,[time℄-v-0)g>Single edge *e2: <170-2,0,5,vp, [time℄-v-0, [103,119,165℄,[℄,far(obj-4,[ies℄-n-1,[time℄-v-0),ar(vpp-20,[like℄-pre-2,[time℄-v-0)g>Every single edge is identi�ed in the phrase struture forest by the paked edge-ID and theposition in the CSDS pair of the paked edge. For example *e1 is identi�ed by 170-1. The lexialedge is treated as a set onsisting of a single lexial edge. �E5 in Fig.3.8 is equal to the set �e3.Single edge �e3: <156-1,4,5,n,[arrow℄-n-4,[lex([arrow℄-n)℄,f[[arrow℄-n-4℄g>Various elements inluded in a paked edge and a single edge have orrespondenes with oneanother. The following shows the de�nitions of terms and relations.
*13 The partial dependeny tree is represented in fg beause it is a set of ars.



62Edge and its elementss(X) : The onstituent sequene of the single edge X .ex. s(*e1) =[103,169℄ where 103 and 169 are paked edge-IDs.ds(X) : The dependeny struture DS of the single edge X or the node of the single lexialedge X . ex. ds(*e1)=far(obj-25,[ies℄-n-1,[time℄-v-0)g, ds(�e3)=f[arrow℄-n-4gArs in the dependeny forest and edge : The ars in a single edge X mean a2ds(X). Anar in a paked edge Y means a2ds(X),X2Y . An ar in the phrase struture forestmeans a2ds(X),X2Y ,Y 2PF.Relations between ars and nodesgov(X) : The governor node of the ar X .ex. gov(ar(obj-25,[ies℄-n-1,[time℄-v-0)) = [time℄-v-0dep(X) : The dependant node of the ar X .ex. dep(ar(obj-25,[ies℄-n-1,[time℄-v-0) = [ies℄-n-1top node(X) : The top node of the dependeny tree X (The node whih is not a dependantof any ars in X).Relations between ars X , Y in the dependeny tree DTsib(X ,Y ) : gov(X)=gov(Y ). X and Y are alled the sibling ars.X 1��!DT Y : dep(X)=gov(Y ). X is a parent of Y and Y is a hild of X . This relation isalled parent relation.X +��!DT Y : There is a parent relation hain from X to Y . X is an anestor ar of Y andY is a desendant ar of X .X ���!DT Y : X = Y or X +��!DT Y[Edges and Phrase Struture Trees in the Phrase Struture Forest℄The phrase struture forest PF is a direted ayli graph onsisting of paked edges wherethe root is the root edge *Eroot and the leaves are lexial edges. The \path in PF" is de�ned asfollows:De�nition 3.6.1 [Path in the phrase struture forest℄A path in the phrase struture forest is a sequene onsisting of paked edges and single edgesobtained by traing a paked edge and a single edge one after another by seleting one single edgefrom a paked edge (a set of single edges) and seleting one paked edge from the onstituentsequene (a sequene of paked edges) of a single edge.Now, let *E0,*E1,*E2� � � in the phrase struture forest as follows:*E0 =f*e1,*e2g, *E1 =f*e3g, *E2 =f*e4,*e5g, *E3 =f*e6,*e7g : : :s(*e1)=[*E1,*E2℄, s(*e2)=[*E3℄, s(*e3)=[*E4,*E5℄ : : :



63The following are examples of paths.[*E0,*e1,*E2,*e5℄, [*E0,*e1,*E2℄, [*e1,*E1,*e3,*E5℄, [*e1,*E1,*e3℄The following shows the de�nitions of terms and relations used in the latter part.Terms and relations related to the phrase struture forestX +��!PF Y : There is a path [X; : : :; Y ℄ from a paked or single edge X to a paked or singleedge Y . X is an anestor of Y .X ���!PF Y : X = Y or X +��!PF Y is true for single or paked edges X and Y . Y is alled\reahable" from X .X .[PF℄& Y : X 6=Y ,:(X ���!PF Y ),:(Y ���!PF X) are true for single or paked edges X and Y ,and there exists at least one single or paked edge Z in the phrase struture forest PFsuh that Z ���!PF X and Z ���!PF Y .Ars governed by an edge : Ar X is governed by paked edge *E if X2ds(*e),*E ���!PF *e istrue.From the de�nition of the phrase struture forest, there exists a path from the root paked edge*Eroot to every single or paked edge in the phrase struture forest. Using the de�nition above,the C-Matrix setting onditions in setion 3.4.5 are de�ned as follows:De�nition 3.6.2 [The C-Matrix setting onditions℄Ars X , Y are o-ourable if any of the following onditions is satis�ed.(C1) There exists a single edge *e suh that X ,Y 2ds(*e),*e2*E,*E2PF(C2) There exist *ex and *ey suh that X2ds(*ex),Y 2ds(*ey),*ex +��!PF *ey or *ey +��!PF *ex.(C3) There exist *ex and *ey suh that X2ds(*ex),Y 2ds(*ey),*ex.[PF℄&*ey.A phrase struture tree is de�ned as follows:De�nition 3.6.3 [Phrase Struture Tree℄A phrase struture tree for a paked edge *E is a set of single ars obtained by a reursiveproedure get tree(*E) de�ned in Fig.3.16� ������� � �	
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64selet(RPE) in the �gure selets one arbitrary ar inluded in a paked edge RPE. lexi-al edge(SE) is true if SE is a lexial edge. A phrase struture tree overs the words fromthe from-position to the to-position of the edge *E.De�nition 3.6.4 [All phrase struture trees℄ps trees(*E) is a set of all phrase struture trees for *E.[Relations between Edges and Ars/Partial Dependeny Trees℄Although the parsing algorithm is onstruted using paked edges as basi data strutures, thepaking of edges is performed only when inative edges are generated (Fig.3.9 (),(d)). Therefore,every ative paked edge has one single edge*14 and one ative paked edge orresponds to onesingle ative edge and vie versa. In the following disussion, the word \edge" is used forrepresenting a paked edge.Parsing proeeds by generating new edges by ombining an inative edge to an ative edge.Using a diagrammati expression as desribed in setion 3.4.3, a ombination of two ars generatesa new edge by moving ' �' in the ative edge to the right neighbor position and binding the variablefor the onstituent at ' �' to the phrase head (node) of the inative edge to ombine. Fig.3.17 isa tree alled \edge ombination tree," whih represents the generation proess of inative edgesfrom a grammar rule by edge ombinations. The inative edges loated at the leaf of the edge
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Fig.3.17 Edge ombination tree*14 The parsing algorithm utilizes paked edges beause another algorithm, whih shares ative edges, an beonstruted.



65ombination tree are generated from a grammar rule loated at the root of the tree*15 throughthe ative edges in between. The grammar rule is as follows:y=Xh ! x1=X1� � �xh=Xh� � �xn=Xn : fA1; A2; : : :; An�1gAi is an ar in the form of ar(ai,Xk,Xl) where ai is an arname, 1�k�n, 1�l�n, k 6=l. A setof ars fA1, : : :, An�1g satis�es the partial dependeny struture ondition in setion 3.4.2.The edges in the edge ombination tree are expressed in diagrammati form using ' �', neglet-ing the from and to positions. The arrows between edges represent the edge ombinations wherethe edge at the soure of the arrow is ombined with the inative edge attahed to the arrow togenerate the resulting edge at the target position of the arrow. For example, E11 (Fig.3.17 (a))is ombined with <*E x2/n21! : : : > ((b)) to generate E21 (()). Sine ' �' moves to the rightneighbor position, the depth of the tree, i.e., the number of ars from E0 to eah inative edge,is equal to n, i.e., the number of elements in the rule body in the grammar rule.The phrase head (node) is bound to a variable in the ative edge during edge ombination.The variable bindings are shown at the right of the edge by f g. For example, the ombinationof E0 and the edge (d) whose phrase head is n11 generates E11, and then it is ombined with theedge (b) whose phrase head is n21 to produe E21. As a result, the variable bindings of E21 arefX1:=n11,X2:=n21g*16. An ar whose governor and dependant are bound is alled \�xed ar"and has a new unique ar-ID generated by add arid at Fig.3.9 (i). Fixed ars are representedby a small letter suh as a1 in Fig.3.17 (e). One variable binding may generate zero or more thanzero �xed ars. The generated �xed ar has one unique variable binding orresponding to oneedge ombination. This edge ombination generates one unique edge. This unique edge is alledthe edge whih generated the �xed ar or simply \soure edge" of the �xed ar, and is referredto as sr Edge(a) where 'a' is a �xed ar. For example, in the edge ombination between (e)and (f) in Fig.3.17, provided that the binding of the node nim (let it [like℄-pre-3) to the variableXi generates the �xed ar ai (let it ar(pre-28,[like℄-pre-3,[time℄-v-0)) from the un�xed ar Ai(ar(pre,Xi,[time℄-v-0)), the edge whih generated the �xed ar ai, i.e., sr Edge(ai) is Eim inFig.3.17 (g).Every inative edge (leaf of the ombination tree) (ex. Fig.3.17 (h)) has only �xed ars beauseall variables inluding phrase head variable in the edge are bound due to the partial dependenystruture ondition. Inative edge represents a result of a sequene of variable bindings ausedby the edge bindings from the root to the leaf of the edge ombination tree. The following showsthe de�nitions of terms and relations related to the edge ombination tree.
*15 The grammar rule is written in edge form in the edge ombination tree. This edge is not generated in thereal parsing proess but is introdued for onveniene of explanation.*16 Sope of a variable is within edge.



66 �xed ar : Ar whose governor and dependant nodes are �xed by the variable bindingsaused by edge ombinations.sr Edge(a) (soure edge) : The ative or inative edge whih generated a �xed ar a.Mapping from a �xed ar to its orresponding edge is one to one, whereas the reverseis 1 to 0 - many.X ���!CT Y (origin) : EdgeX is loated on a route from the root node to the edge Y orX = Y .X is alled an origin of Y .origin relation : EdgesX , Y in an edge ombination tree CT are said to be in origin relationif X ���!CT Y or Y ���!CT X is true.edge(a,DT ) �orresponding edge) : The orresponding edge for a �xed ar a and a well-formed dependeny tree DT is a single edge e whih satis�es the following ondition(de�ned in lemma 3.6.4).DT�ds(e); a2ds(e)Aording to the struture of the edge ombination tree desribed above, two �xed ars ai andaj have the following relations.Lemma 3.6.1 (Relation between ars in one partial dependeny tree) Let ai andaj be �xed ars ai,aj2ds(e) where e is a single edge. Their soure edges sr Edge(ai) andsr Edge(aj) are in origin relation.A �xed ar in edge e in the edge ombination tree is in the edges that have e as their origins.For example, �xed ar ai generated at (g) is ontained in (h).Lemma 3.6.2 (Relation between an ar and the edge whih generated the ar)Suppose that �xed ars ai,aj satisfy sr Edge(ai) ���!CT sr Edge(aj), aj2ds(*e) implies ai2ds(*e)for every single ar *e in PF (*e2*E,*E2PF).Sine a unique ar-ID is assigned to eah ar, all inative single edges in the inative pakededges in an ar ombination tree, i.e., the leaves of the tree *En1� � �*Eno: : :*Enw in Fig.3.17, havedi�erent partial dependeny trees. Therefore, ds(*ei)6=ds(*ej) for arbitrary ars *ei,*ej(*ei 6=*ej)in PF. A single inative edge and a partial dependeny tree have one-to-one mapping. In theparsing proess, inative edges whih satisfy the onditions shown in Fig.3.9 (j) are merged intoone and this merged edge beomes an element of the phrase struture forest. The one-to-onemapping relation between a single edge and a partial dependeny tree is assured in the phrasestruture forest beause this merge operation does not hange the dependeny strutures in thesingle edges.Lemma 3.6.3 (Constraints with respet to the ars in the edges inluded in a path)Suppose ars ai2ds(ei),aj2ds(ej). If ei +��!PF ej , then dep(ai)6=dep(aj) is true. Inversely, ifdep(ai)=dep(aj), then :(ei +��!PF ej) is true.



67Proof: This lemma is established beause data strutures in the single edges are trees whosetop nodes are phrase heads aording to the partial dependeny struture ondition in 3.4.2.Lemma 3.6.4 (Existene of orresponding edge) Suppose an ar ai in a well-formed de-pendeny tree DT (ai2DT). There exists one and only one paked edge E2PF and single edgee2E whih satisfy the following ondition.DT � ds(e),ai2ds(e)Proof: Let number of nodes in DT n (Number of ars is n � 1). Divide ar set DT into thefollowing two ar sets IN ARCS,OUT ARCS with respet to ai.IN ARCS = f aj j sr Edge(ai) ���!CT sr Edge(aj) or sr Edge(aj) ���!CT sr Edge(ai)gOUT ARCS = DT�IN ARCSLet SRC EDGES be a set of soure edges orresponding to the ars in IN ARCS.SRC EDGES = fE j E=sr Edge(a), a2IN ARCSgFirst, the following statement is to be established.\Arbitrary edges in SRC EDGES are in origin relation00 (A)Suppose edges U ,V 2SRC EDGES. U and V are in origin relation by de�nition and in one of thefollowing three ases.(a) One ar is an origin of Ei and Ei is an origin of the other ar. U ���!CT Ei,Ei ���!CT V(b) Both ars are origins of Ei. U ���!CT Ei,V ���!CT Ei() Ei is an origin of both ars. Ei ���!CT U ,Ei ���!CT VIn ases (a) and (b), the statement (A) obviously holds aording to the struture of the edgeombination tree. The following shows that a ontradition is derived from the assumption thatU and V are not in origin relation in ase ().Suppose that U and V are not in origin relation. There exist ars au, av2DT suh thatU=sr Edge(au), V=sr Edge(av) aording to the premise. Sine all ars in DT are in thepaked shared forest, there exist inative edges that have U and V as their origin, respetively.Let *Eu and *Ev be origins of U and V , respetively. Let eu in *Eu and *ev in *Ev be edges suhthat au2*eu, av2*ev. From Lemma 3.6.2, both *eu and *ev ontain ai. Ars au and av in thewell-formed dependeny tree DT satisfy either of the C-Matrix setting onditions (C1) to (C3).au and av do not satisfy (C1) beause the ontradition for the assumption that U and V are notin origin relation is dedued from (C1), i.e., the existene of e suh that au,av2ds(e) aording tolemma 3.6.1. (C2) is that *eu +��!PF *ev is true (The reverse ase is shown in the same way). Nodesinluded in ars in ds(*eu) are phrase heads of the onstituents in s(*eu) aording to the partialdependeny struture ondition. This implies that either dep(ai) or gov(ai) of ai2ds(*eu) is anode whih loates outside of the overage of *ev. On the other hand, both dep(ai) and gov(ai)



68must be in the overage of *ev beause ai2ds(*ev) is true. From this ontradition, au and av donot satisfy (C2). (C3), i.e., *eu.[PF℄&*ev , is not satis�ed by au and av beause the overage of*eu and *ev have to be overlapped due to the premise that ai is in both *eu and *ev. From theabove, the supposition that U and V are not in origin relation ontradits the C-Matrix settingonditions between au and av. Therefore statement (A) is true.Now, let Elast be the last edge onneted from Ei, i.e., the edge whih satis�es the followingonditions.Ei ���!CT ElastElast is the only edge Ej suh that Elast ���!CT Ej (Ej2SRC EDGES)Fig.3.18 shows the relation between IN ARCS and SRC EDGES diagrammatially. Estartorresponds to a grammar rule. The grammar rule is as follows:y/Xh ! x1/X1� � � xz/Xz :fA1,: : :,Az�1gSRC EDGES onstitutes a route on the edge ombination tree CT with root Estart, ontainingE1,: : :,Elast. The soure edge Ei for ai exists somewhere on this route. There exists at least onear alast whih is generated by Elast in IN ARCS.Elast is either an ative edge or an inative edge. Fig.3.18 shows a ase where Elast is an ativeedge. Elast is proved to be an inative edge as follows:Suppose that Elast is an ative edge. As shown in Fig.3.19, Elast (Fig.3.19 (a)) has at leastone remaining onstituent xu+1 (Fig.3.19 (b). Variable for the onstituent is not shown). Let s1and t1 be a from-position and a to-position of Elast, respetively.From the premise alast2DT, there exists at least one inative edge *Ex (Fig.3.27 ()) whihhas Elast, the soure edge of alast, as its origin in the phrase struture forest PF. As shown inthe �gure, *Ex has the from-position equal to the from-position s1 of Elast and the to-positiongreater than the to-position t1 of Elast.Consider the node nt1+1 at the position t1+1 (Fig.3.19 (d))*17. DT has one ar
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Fig.3.18 Edges orresponding to ars in DT*17 One nt1+1 exists due to the well-formedness ondition of DT
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Fig.3.19 Existene of orresponding edgeanext(dep(anext)=nt1+1 (Fig.3.19 (e)). anext is an element of OUT ARCS due to the de�-nition of alast. anext2DT implies that at least one inative edge *Ey whose origin is Enext,the soure edge of anext, exists in the phrase struture forest PF. Sine Enext has anext withinits overage, Enext has the from-position s1 less than or equal to t1 (Fig.3.19 (f)) and theto-position t2 is greater than or equal to t1+1 (Fig.3.19 (g)). Therefore, the from-position of*Ey is less than or equal to t1. From the above, *Ex whih has its origin Elast overlaps *Eywhih has its origin Enext at the t1 position.Now, no o-ourrene setting onditions for alast and anext hold as follows:Ars alast and anext do not satisfy (C3) beause *Ex and *Ey overlap as explained above. (C1)is not satis�ed from the premise *Ex 6=*Ey. Consider (C2) meaning that *Ex +��!PF *Ey is true (thereverse ase is shown in the same way). Let am be the ar in *Ex, whose dependant node is nt1+1.am 6=anext*18. Aording to lemma 3.6.3, if *Ex +��!PF *Ey is not true, then (C2) is not satis�ed.From the above, alast and anext satisfy no o-ourrene setting onditions. This ontradits thepremise that DT is a well-formed dependeny tree. Therefore, Elast is not an ative edge.Let Elast be an inative edge *Elast.(a) *Elast, the soure edge of alast, is an inative edge (a leaf of the edge ombination tree)then no other paked edges ontain alast. Moreover, there exist only one *elast suh thatalast2ds(*elast),*elast2*Elast.(b) *Elast2PF is true due to alast2DT.() Aording to the premise alast2DT and lemma 3.6.2, DT�ds(*elast) is true.Lemma 3.6.2 is true due to (a) to ().
*18 If am=anext, sr Edge(anext) and Ei are in origin relation. This ontradits the premise anext2OUT ARCS.



70[Relation between Conneted Ars and their Corresponding Edges℄Ars ai,aj(ai 1��!DT aj or sib(ai,aj)) are alled \onneted ars." The following two lemmas areestablished with respet to onneted ars in a well-formed dependeny tree DT.Lemma 3.6.5 (Conneted ars and their orresponding edges) Suppose *ei=edge(ai,DT)�*ej=edge(aj ,DT) for onneted ars ai,aj in DT. At least one of (a), (b), () is true.(a) *ei =*ej(b) *ei +��!PF *ej() *ej +��!PF *eiLemma 3.6.5 means that if two ars in DT are onneted, one of their orresponding edges isreahable from another edge in PF.Proof: *ei and *ej satisfy at least one of the C-Matrix setting onditions (r1) to (r3) beause*ei and *ej o-ours in DT.(r1) *ei=*ej(r2) *ei +��!PF *ej or *ej +��!PF *ei(r3) *ei.[PF℄& *ejLet n be a node shared by the onneted ars ai and aj . Both *ei and *ej overs n. Therefore,(r3) is not satis�ed by *ei and *ej . *ei and *ej has to satisfy (r1) or (r2).Lemma 3.6.6 (Anestor-desendant ars and their orresponding ars) Suppose*ei=edge(ai,DT)�*ej=edge(aj ,DT) for ai,aj(ai +��!DT aj).*ei ���!PF *ejProof: In the ase that dep(ai)=gov(aj), one of (a), (b) or () in lemma 3.6.5 is true. Fromthe node positioning relation presribed by the partial dependeny struture ondition in setion3.4.2, () is not satis�ed by ai and aj beause :(*ej +��!PF *ei) is true for *ej and *ei. Therefore,parent-hild ars satisfy either (a) or (b). Lemma 3.6.6 is established for ai ���!DT aj due to theassoiativity of the relation ���!PF .[Top single edge top edge(DT)℄De�nition 3.6.5 [Top single edge℄A \top single edge" for DT top edge(DT) is the single edge whih loates in the topmostposition in PF among the edges whih orrespond to the ar just under the top node of DT.That is, top edge(DT) is edge ai satisfying the following onditions.



71top node(DT)=gov(ai)edge(ai) ���!PF edge(aj) for all aj suh that top node(DT)=gov(aj)If DT is a tree onsisting of one node, top node(DT) is the single lexial edge orrespondingto the node.Lemma 3.6.7 (Relation between top edge(DT) and edge(aj,DT)) *et ���!PF *ej is true for*et=top edge(DT) and *ej=edge(aj ,DT) (aj2DT).Proof: If aj is an ar just under the top node of DT, i.e., gov(aj)=top node(DT), *et ���!PF *ej ,is true aording to lemma 3.6.5 and the de�nition of top edge. If not, aj is a desendant of oneof the ars just under the top node of DT. *et ���!PF *ej is true aording to lemma 3.6.6.[Division of Well-formed Dependeny Tree℄The \division of a well-formed dependeny tree DT" means the reation of a set of partialdependeny trees DT1,: : :,DTm by removing a set of ars in ds(top edge(DT)) from DT,where m is a number of nodes in ds(top edge(DT)). Nodes isolated from all other nodes bythis operation are dependeny trees that onsist of one node. For example, suppose thatds(top edge(DT))=fas,at,au,awg in Fig.3.20, DT is divided into partial dependeny treesDTs,DTt,DTu,DTv ,DTw whose top nodes are ns,nt,nu,nv , nw, respetively. Sine nodes ns, nware isolated from other nodes, DTs and DTw are dependeny trees onsisting of single node,i.e.,fnsg and fnwg, respetively. The phrase heads of the paked edges in s(e) of a single edgee have one-to-one orrespondene with the nodes in the partial dependeny tree df(e) due tothe partial dependeny struture ondition in setion 3.4.2. Therefore, there exists one paked
<*ev cv/nv (csv dsv) >

<*Es  cs/ns>

Dependency tree DT

nv

<*Ew cw/nw><*Et  spt tpt ct/nt… >

nt

nt
nwns

spt tpt

nu

The phrase structure forest PF

au

nw

ataw

top_edge(DT)

DTt

ns

as

<*Eu …> <*Ev …>

… …

top_node(DTt)

DTu

root_Edge(DTt)

DTs

DTv

ds(top_edge(DT))

<*ev cv/nv (csv dsv) >

<*Es  cs/ns>

Dependency tree DT

nv

<*Ew cw/nw><*Et  spt tpt ct/nt… >

nt

nt
nwns

spt tpt

nu

The phrase structure forest PF

au

nw

ataw

top_edge(DT)

DTt

ns

as

<*Eu …> <*Ev …>

… …

top_node(DTt)

DTu

root_Edge(DTt)

DTs

DTv

ds(top_edge(DT))

Fig.3.20 Division of well-formed DT
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Dependency tree DT The phrase structure forest PFFig.3.21 Well-formed DTi obtained from division of DTedge *Ei (1�i�m) whose phrase head is a top node ni of DTi(1�i�m). *Ei is alled the \rootpaked edge" for DTi and is referred to as root Edge(DTi).De�nition 3.6.6 [Root paked edge℄Suppose DTi and its top node ni (1�i�m) is obtained by the division of DT. Aroot Edge(DTi) is a paked edge whih is an element of s(top edge(DT)) and whosephrase head is top node(DTi).For example, in Fig.3.20, *ev is top edge(DT) and has the onstituent sequene *Es,*Et,*Eu,*Ev,*Ew whose phrase heads are ns,nt,nu,nv ,nw, respetively. Then, root Edge(DTt) is *Et. Thefollowing two lemmas are explained with referene to Fig.3.21.Lemma 3.6.8 (Relation between root paked edge and top single edge) Suppose par-tial dependeny trees DTi obtained from the division of the well-formed dependeny treeDT. *Ei +��!PF *eo is true for the root paked edge *Ei=root Edge(DTi) and the top single edge*eo =top edge(DTi).Proof: Let *et be top edge(DT) and ni be the top node of DTi (Fig.3.21). Consider the asewhere DT is a tree onsisting of a single node, i.e., DTi =fnig. *eo is the single lexial edgeorresponding to ni. *Ei +��!PF *eo is true beause the phrase head of *Ei is ni. Consider anotherase where DT is a tree onsisting of ars. *et ���!PF *eo is true aording to lemma 3.6.6. Therefore,X ���!PF *eo is true for some paked edge X in s(*et). X=*Ei is true beause *Ei2s(*et) fromde�nition and the phrase heads of *Ei and *eo are the same.Lemma 3.6.9 (Well-formedness of partial trees obtained by division of DT) Supposepartial dependeny trees DTi and its root paked edge *Ei with the from-position spi and



73to-position tpi obtained from the division of the well-formed dependeny tree DT. DTi is awell-formed dependeny tree, whih overs from spi to tpi.Proof: DTi is a well-formed dependeny tree if it satis�es the o-ourrene onstraint andthe well overing onstraint. Obviously DTi satis�es the o-ourrene onstraint beause DTsatis�es the o-ourrene onstraint. The following part shows the well overing onstraint.In the ase that DT is a tree onsisting of a single node, it satis�es the well overing onstraintfrom the de�nition. Consider the ase where DT is a tree onsisting of ars. Let ni and nj bethe top node of DT and one of any other nodes in DT (nj 6=ni). There exists ar aj suh thatnj= dep(aj) in DT. Moreover, there exists ak2DTi suh that gov(ak)=ni,ak ���!DT aj for aj2DTi.Let *ej and *ek be *ej=edge(aj,DT), *ek=edge(ak,DT). *ek ���!PF *ej is true due to lemma 3.6.6beause ak is equal to aj or ak is an anestor of aj . Now, let *et be the top single node of DT,*et ���!PF *ek is true aording to lemma 3.6.7. *ek is reahable from one of the paked edges ins(*et). *Ei ���!PF *ek is true beause the phrase head of *ek is ni.From the above, *Ei ���!PF *ek ���!PF *ej is true and nj is in the overage of *Ei, that is, all nodesin DTi are in the overage from spi to tpi. Furthermore, the nodes in DTk(k 6=i) are not in theoverage from spi to tpi. Sine DT satis�es the well overing onstraint, all nodes in DTi oupywhole positions from spi to tpi.[Proof of the Completeness and Soundness of the Dependeny Forest℄A orresponding dependeny tree dependeny tree(PT) for a phrase struture tree PT =f*e1,: : :,*emg is de�ned as follows:De�nition 3.6.7 [Dependeny tree for a phrase struture tree PT℄dependeny tree(PT) = ds(*e1) ℄� � �℄ ds(*em)The operator ℄ is similar to the union operator [ , whih is introdued to manage the union ofdependeny strutures whih may be either a set of ars or a set of a node. ℄ removes nodesfrom the union of dependeny strutures if it has at least one ar. The following are examplesof ℄ where ni and ai represent node and ar, respetively.fn1g℄fa1,a2g = fa1,a2gfa1g℄fa2,a3g = fa1,a2,a3gfn1g℄fg = fn1gdependeny tree(PT) is a tree beause it is onstruted by ombining eah partial dependenytree ds(*ei).Theorem 3.6.1 (The Completeness of the dependeny forest)Let PT be a phrase struture tree in the phrase struture forest PF. DT=dependeny tree(PT)is a well-formed dependeny tree in the dependeny forest DF.



74Proof: From the de�nition of the dependeny forest, DT is inluded in DG. Nodes ontainedin DT and PT have one-to-one relation aording to the partial dependeny struture ondition.Sine PT overs whole sentene, DT is a well overed dependeny tree. Aording to the C-Matrix setting onditions, every two ars in DT satisfy the o-ourrene onstraint. Therefore,dependeny tree(PT) is a well overing and well o-ourred dependeny tree in DFTheorem 3.6.2 (The soundness of the dependeny forest)Let DT be a well-formed dependeny tree in the dependeny forest DT. There exists a phrasestruture tree PT in the phrase struture forest PF suh that DT=dependeny tree(PT).Proof: The existene of a phrase struture tree PT whih satis�es PT2ps trees(*Eroot) anddependeny tree(PT)=DT is shown below.Let n be a number of input words. The following is an algorithm, alled the phrase struturetree generation algorithm, whih generates a phrase struture tree from a paked edge *Er withfrom-position spr and to-position tpr (1�spr<tpr�n) and a well-formed dependeny tree DT,whih overs from spr to tpr. The proof that the phrase struture tree generation algorithmgenerates a phrase struture tree, whih satis�es the above onditions, is shown below usingmathematial indution for the number of ars in the dependeny tree.[Phrase Struture Tree Generation Algorithm℄In the ase that DT is a set of ars:A-Step1(Identi�ation of the Top Single Edge) : Let *et be the top single edgetop edge(DT).A-Step2 (Identi�ation of a Path) : Identify a path from *Er to *et. Let PATH be a setof single edges in the path exept for *et.A-Step3 (Division of DT) : Divide DT by removing edges in ds(top edge(DT)) to get a setof partial dependeny trees DTi(1�i�m) and root paked edges *Ei=root Edge(DTi).A-Step4 (Computation of Partial Phrase Struture Trees) : Apply the phrase struturetree generation algorithm to eah DTi and *Ei(1�i�m) and ompute eah PTi.A-Step5 (Constrution of Phrase Struture Tree) : Returns PT=PATH [ f*etg [ PT1[� � �[PTm as a phrase struture tree for DT,*Er.In the ase that DT is a set of a node (DT=fng):N-Step1 (Identi�ation of Lexial Edge) : Identify the lexial edge �elex whih generatednode n.N-Step2 (Identi�ation of a Path) : Identify a path from *Er to elex and returns a set ofsingle edges in the path as a phrase struture tree for DT,*Er.When DT is s a set of ars, phrase struture tree PT is onstruted through A-Step1 to A-Step5. Fig.3.22 shows the behavior of the algorithm diagrammatially. A-Step1 omputes the
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Dependency tree DT The phrase structure forest PFFig.3.22 Generation of PT from DT and *Ertop single edge *et(=top edge(DT)) (Fig.3.22 (S1)). A-Step2 identi�es a path from *Er to *etand omputes PATH, a set of single edges. The existene of this path (*Er +��!PF *et) is assuredas follows: In the ase that *Er is *Eroot, it is obvious. In the ase that *Er is obtained by thedivision of a dependeny graph (*Ei in A-Step4), it is assured by lemma 3.6.8. The dependenystruture parts of the single edges in PATH are fg. This is obvious beause *Er and *et havethe same overage sine all nodes in DT are in the overage of *et.dependeny tree(PATH) = fg (A)A-Step3 performs the division of DT and generates DTi,*Ei(1�i�m) as shown in Fig.3.22 (S3).Aording to lemma 3.6.9, DTi is a well-formed dependeny tree overing the overage of *Eiand the phrase struture tree generation algorithm is appliable reursively at A-Step4. A-Step5 omputes the phrase struture tree PT (Fig.3.22 (S5)). From the de�nition of the phrasestruture tree, it is obvious that PT is a phrase struture tree if eah PTi is phrase struturetree.When DT is a set of a node (DT=fng), N-Step1 and N-Step2 omputes a phrase struturetree PT. The existene of a path from *Er to elex is assured for the same reason desribed in theexplanation of A-Step1.The phrase struture tree PT generated by the phrase struture tree generation algorithmsatisfying DT=dependeny tree(PT) is shown as follows:In the ase that DT=fnrg, the algorithm generates PT at N-Step2. PT is a phrase struturetree ontaining one node nr. From the de�nition of dependeny tree, dependeny tree(PT)=fnrgis true. In the ase that DT is a dependeny tree whih onsists of a set of ars, the phrasestruture tree generation algorithm, the de�nition of dependeny tree and (A) make the followingequation.dependeny tree(PT)= dependeny tree(PATH [ f*etg [ PT1 [� � �[ PTm)= dependeny tree(PATH)℄dependeny tree(f*etg) ℄dependeny tree(PT1)℄� � �℄ depen-



76deny tree(PTm)= dependeny tree(f*etg) ℄ dependeny tree(PT1) ℄� � �℄ dependeny tree(PTm)Assume that PTi orresponding to DTi,*Ei in A-Step4 satis�es the following.dependeny tree(PTi)=DTi (1�i�m)Now, PT generated at A-Step5 generates DT as shown below.dependeny tree(PT)= dst ℄ DT1 ℄� � �℄ DTm= DT
3.6.2 Correspondene between Phrase Struture Forest and Depen-deny ForestSetion 3.6.1 showed that the initial dependeny forest satis�es the ompleteness and sound-ness with respet to the phrase struture forest. Sine the redued dependeny forest has thesame set of generalized dependeny trees as the initial dependeny forest, the soundness andthe ompleteness between the (redued) dependeny forest and the phrase struture forest areassured. The orrespondenes between the phrase struture trees (phrase struture trees) in thephrase struture forest and the dependeny trees in the dependeny forest are not neessarilysimple one to one relations. One phrase struture tree may orrespond to more than one de-pendeny tree, whereas more than one phrase struture tree may orrespond to one dependenytree. Considering the variety (one meaning an be expressed by more than one expression) andthe ambiguity (one expression expresses more than one meaning) enoded in natural languages,these multiple-orrespondenes may be natural. The orrespondenes between phrase struturetrees and dependeny trees are disussed in the next setion by referring to the experiments forsentene analysis using a PDG prototype system.3.7 Experiment for Analysis of Example SentenesOne of the design targets of PDG is the suppression of the ombinatorial explosion ausedby a variety of ambiguities using the paked shared data strutures. This setion desribesthe experiment for analyzing typial ambiguous sentenes using PDG grammar rules, whihontain various kinds of ambiguities. This setion also disusses the relation between the phrasestruture forest and the dependeny forest, and the generation of non-projetive dependenytrees based on real analysis examples. The performane of the algorithm is also one of theimportant fators from a pratial point of view. The algorithms for parsing, generation ofphrase struture forest and initial dependeny forest and dependeny forest redution desribedin this thesis are implemented for verifying the PDG's analysis. The pratial implementation
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78R8 and R9 are similar sine both rules presribe the relation between noun and verb as objet.However they have di�erent interpretations in phrase head and generate the di�erent struturesof dependeny trees. The grammar ontains delarative form (R1) and imperative senteneform (R2) to produe strutural ambiguities in ombination with POS ambiguities of wordsfor sentenes like \Time ies like an arrow." (R19) is a rule for generating a non-projetivedependeny struture.3.7.2 Analysis of Prototypial Ambiguous SentenesThe example for the ambiguous sentene with POS ambiguities has already been shown in theprevious setions in detail. The examples in the following setions show prototypial syntatiambiguities, i.e., PP-attahment ambiguity, oordination sope ambiguity and ambiguities instrutural interpretations.(1) PP-attahment AmbiguityFig.3.24 shows the dependeny forest for the sentene \I saw a girl with a telesope in theforest," whih has PP-attahment ambiguities. Eah ar in the dependeny graph has an arname attahed by ar-ID and preferene sore*19. The table in Fig.3.24 shows POS and posi-tion information of eah node. This sentene has no POS ambiguities but has PP-attahmentambiguities for preposition \with" (two ambiguities: npp13,vpp14) and \in" (three ambiguities:npp23,npp25,vpp26). CM in Fig.3.24 inhibits some of the ombinations of these ambiguous ars.npp13 and vpp14 (or npp23, npp25 and vpp26) have no o-ourrene relation beause they havethe same position (the single role onstraint). The o-ourrene between vpp14 and npp25 isalso inhibited. If this o-ourrene onstraint does not exist, the dependeny forest has sixinterpretations aused by two PP-attahment ambiguities (2 � 3 = 6). CM(14,25)6= �, whih
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79orresponds to the projetivity onstraint, exludes a non-projetive dependeny tree from aset of well-formed dependeny trees in the dependeny forest. This dependeny forest has �vewell-formed dependeny trees, whih are possible interpretations for the example sentene.The sizes of the phrase struture forest, the initial dependeny forest and the redued depen-deny forest for this example are 25, 18 and 13, respetively. The phrase struture forest ontains�ve phrase struture trees*20 orresponding to the �ve interpretations of the sentene. The initialdependeny forest and the redued dependeny forest have �ve IDed dependeny trees, whihorrespond to the �ve generalized dependeny trees. obj5,npp13, vpp14 and pre11 have 2, 1, 1and 1 equivalent ars in the initial dependeny forest. For example, obj5 and its equivalent arsare generated from the edges, shown below in diagrammati form, originated in the grammarrule (R14).<1, 4, vp/([saw℄-v-1) ! v(ID:109) np(ID:126) �, far(obj-5,[girl℄-n-3,[saw℄-v-1)g><1, 7, vp/([saw℄-v-1) ! v(ID:109) np(ID:163) �, far(obj-15,[girl℄-n-3,[saw℄-v-1)g><1,10, vp/([saw℄-v-1) ! v(ID:109) np(ID:203) �, far(obj-28,[girl℄-n-3,[saw℄-v-1)g>The �rst edge has the overage from 1 to 4 (\saw a girl"), phrase head [saw℄-v-1, onstituentsequene v(ID:109)*21 np(ID:126) and the obj ar with ar-ID 5. The above equivalent arsare generated from the ombination with edges np(ID:126), np(ID:163) and np(ID:203) thatorrespond to noun phrases with di�erent overage. The redued dependeny forest has noequivalent ars beause all equivalent ars in the initial dependeny forest are merged.(2) Coordination Sope AmbiguityFig.3.25 shows the dependeny forest for the sentene \Earth and Moon or Jupiter andGanymede," whih has oordination sope ambiguities. \Earth" and \Moon" have two and
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Fig.3.25 DF for the example sentene inluding onjuntions*20 In judging the equivalene of the phrase struture trees, phase heads (head nodes) are taken into onsider-ation.*21 The paked edge whose ategory is v and edge-ID is 109.



80three outgoing ars, respetively, orresponding to oordination sope ambiguities. CM(22,12)6=�, whih orresponds to the projetivity onstraint, exludes a non-projetive dependeny treefrom a set of well-formed dependeny trees in the dependeny forest. This dependeny forest has�ve well-formed dependeny trees, whih are possible interpretations for the example sentene.The sizes of the phrase struture forest, the initial dependeny forest and the redued de-pendeny forest for this example are 18, 17 and 10, respetively. The phrase struture forestontains �ve phrase struture trees orresponding to the �ve interpretations of the sentene. Theinitial dependeny forest and the redued dependeny forest have �ve IDed dependeny trees,whih orrespond to the �ve generalized dependeny trees. or22,or9,nj6, and18 and nj14have 1, 1, 1, 2, and 2 equivalent ars in the initial dependeny forest, respetively. The redueddependeny forest has no equivalent ars beause all equivalent ars in the initial dependenyforest are merged. The oordination sope ambiguity is similar to the PP-attahment ambiguityin the previous setion but is di�erent from the PP-attahment ambiguity beause it has themodi�ation sope problem desribed below.(3) Ambiguity in Strutural InterpretationFig.3.26 shows the dependeny forest for the sentene \My hobby is wathing birds witha telesope," whih has ambiguities suh as the interpretation of be-verb (present progressiveform or opula), the interpretation of \wathing birds" (adjs3,adjo4, obj5), and PP-attahment(npp21,vpp22,npp24,vpp25). This sentene has ten interpretations.The sizes of the phrase struture forest, the initial dependeny forest and the redued de-pendeny forest for this example are 23, 24 and 16, respetively. The phrase struture forestontains eight phrase struture trees orresponding to ten interpretations of the sentene. Theinitial dependeny forest and the redued dependeny forest have ten IDed dependeny trees,whih orrespond to the ten generalized dependeny trees. ds9,ds8,obj5, npp21 and vpp22 have
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Fig.3.26 DF for the example sentene inluding strutural ambiguities



812, 2, 5, 2, and 2 equivalent ars in the initial dependeny forest, respetively. In ontrast to theexample in Setion 3.7.2, the equivalent ars are generated from more than one grammar rule.For example, the equivalent ars of obj5 are generated from the edges, shown below, originatedin the grammar rule (R9), (R10) and (R15)(R9) � <3, 5, np/([wathing℄-ving-3) ! ving(ID:121) np(ID:130) �,far(obj-5,[birds℄-n-4,[wathing℄-ving-3)g>(R10) � <3, 7, np/([wathing℄-ving-3) ! ving(ID:121) np(ID:130) pp(ID:176) �,far(obj-6,[birds℄-n-4,[wathing℄-ving-3),ar(vpp-22,[with℄-pre-5,[wathing℄-ving-3)g >(R15) � <2,5, vp/([wathing℄-ving-3) ! be(ID:117) ving(ID:121) np(ID:130) �,far(prg-2,[is℄-be-2,[wathing℄-ving-3),ar(obj-7,[birds℄-n-4,[wathing℄-ving-3)g >The redued dependeny forest has no equivalent ars. In this example, the number of thephrase struture trees in the phrase struture forest is smaller than number of the generalizeddependeny trees in the dependeny forest. One phrase struture tree orresponds to morethan one dependeny tree. The following setion disusses the orrespondene between phrasestruture trees and dependeny trees.3.7.3 1 to N Correspondene from Phrase Struture Tree to Depen-deny TreesThe orrespondene between a phrase struture tree and a dependeny tree is assured in PDG,but sometimes one phrase struture tree has more than one orresponding dependeny tree andmore than one phrase struture tree has one orresponding dependeny tree.When one phrase struture has more than one interpretation, one phrase struture tree mayorrespond to more than one dependeny tree. For example, when \wathing birds" is assignedone phrasal struture where the verb in present partile form modi�es the noun, two dependenystrutures \wathing subj���! birds" and \wathing obj��! birds" are assigned to the phrasal struture.This happens when there exists more than one grammar rule, whih has the same rewriting rulebut has di�erent dependeny struture parts. This is the ase for (R7) and (R8) in Fig.3.23.(R7) and (R8) are arbitrary rules introdued for verifying the dependeny forest. Two kinds ofambiguities in 1 to N mapping from phrase struture tree to dependeny trees are onsidered, i.e.,the ambiguities in syntati relation and semanti relation. The former means the ambiguitiesin funtional assignments (subjet, objet, et.) for phrase strutures. The funtional struturesand phrase strutures have lose relation and the di�erene in funtional strutures an bereeted by the di�erene of phrase struture*22. Therefore, it seems not to be usual for more thanone funtional struture to be assigned to one rewriting rule. In ontrast, the assignment of morethan one semanti struture seems to be quite a general phenomenon. However, introdution of*22 For example, the ategory in the rewriting rule is segmented into more detailed ategories reeting thedi�erene of funtional assignments. This segmentation works to remove ambiguous mapping from onephrase struture to more than one funtional struture.
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������(�� +� ,�	��#%-� ����������� +� ,����-� � ��������Fig.3.27 Mapping from one phrase struture tree to two dependeny tree1 to N mapping (from phrase struture to dependeny strutures) into grammar rules may auseproblems in terms of system performane and grammar rule maintenane. In general, senteneanalysis approahes, whih treat syntati analysis and semanti analysis independently, arewidely proposed and utilized. The framework itself, for mapping one phrase struture tree tomore than one dependeny tree, is independent of the linguisti disussion here. Rules withmappings to semanti strutures an be utilized properly with respet to the requirements fromthe design and development of the grammar.The example in Setion 3.7.2 (Fig.3.26) ontains a phrase struture tree whih orresponds totwo dependeny strutures generated from (R7) and (R8). Fig.3.27 shows this phrase struturetree and dependeny trees.3.7.4 N to 1 Correspondene from Phrase Struture Trees to One De-pendeny TreeSpurious ambiguity (Noro et al., 2002) is one of the examples of N to 1 mapping from phrasestrutures to dependeny struture. The real ambiguity is an ambiguity where the di�erene insyntati strutures represents the di�erene in semanti interpretations. The spurious ambigu-ity is an ambiguity where the di�erene in syntati strutures does not represent the di�erenein semanti interpretations, or an ambiguity aused by linguistially illegal syntati struturegenerated by inomplete grammar rules. The spurious ambiguity is an important issue in gram-mar development from orpora (Noro et al., 2005). Although it is not CFG, CCG (CombinatoryCategorial Grammar) has a lot of spurious ambiguities due to the exibility of rule appliation.The method for obtaining one normal form tree is proposed (Eisner, 1996a). This method assuresthat one phrase struture tree among the phrase struture trees in one semanti lass is obtainedbased on the de�nition that phrase struture trees whih have the same set of leaf CCG ategoryhave the same meaning. In PDG, phrase struture trees orresponding to the same generalizeddependeny tree (interpretation of a sentene) an be lassi�ed into one semanti lass.
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 	Fig.3.28 DF ontaining the mapping from N phrase struture trees to 1 dependeny tree(spurious ambiguity)Fig.3.28 shows the dependeny forest for \She uriously saw a at in the forest" using theexample grammar whih has a spurious ambiguity. There is only one o-ourrene onstraintbetween npp17 and vpp18 that orresponds to the single role onstraint. The dependeny foresthas two dependeny trees, whih has di�erent governors for the part \in the forest." The phrasestruture forest has three phrase struture trees. The initial dependeny forest has three IDeddependeny trees and two generalized dependeny trees and the redued dependeny forest hastwo IDed dependeny trees and two generalized dependeny trees. The spurious ambiguitiesare generated from the di�erene of rule appliation order of (R17) and (R18) for attahinga modi�ation phrase to a verb phrase. Fig.3.29 shows the phrase struture trees and thedependeny tree.Obviously, the method of identifying the semanti lass based on dependeny tree does notapture all semanti aspets in natural languages. For example, the subtle semanti di�erene(Eisner, 1996a)*23 and the ambiguities in number/quanti�er sope*24 have to be onsidered indisussing the equivalent semanti lass. The treatment of di�erene in semanti interpretationrequires further study. Mel'uk (1988) desribes some linguisti strutures where ordinary depen-deny struture fails to express the interpretations of a sentene. These strutures are lassi�edinto two ategories, the strutures, whih annot be treated by phrase struture properly, andthe others. The former inludes the model theoreti interpretation of a sentene. The latter isobserved when a dependeny struture has a head word whih has dependants loated at theright-hand side and the left-hand side of the headword. In this ase, the dependeny struturehas ambiguities in modi�ation sope, i.e., the right-hand modi�er modi�es only the headword*23 For example, \softly knok twie" has two equivalent semanti interpretations softly(twie(knok)) andtwie(softly(knok)), whereas \intentionally knok twie" has two di�erent semanti interpretations inten-tionally(twie(knok)) and twie(intentionally(knok)).*24 The model theoreti ambiguities as observed in \Three men bought ten ups" annot be distinguished bystandard phrase struture and dependeny struture representations.
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Fig.3.29 The example of mapping from N phrase struture trees to 1 dependeny tree(spurious ambiguity)or the phrase inluding the left-hand modi�er. This problem is alled the \modi�ation sopeproblem" in this thesis.Fig.3.30 shows the dependeny forest for \Earth and Jupiter in the Solar System." This sen-tene has two interpretations, i.e., the prepositional phrase modi�es only the headword \Jupiter"or the phrase \Earth and Jupiter." The phrase struture forest has two phrase struture treesorresponding to these two interpretations. On the other hand, the initial dependeny forest has
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Fig.3.30 DF ontaining the mapping from N phrase struture trees to 1 dependeny tree(real ambiguity)



85two IDed dependeny trees and one generalized dependeny tree and the redued dependenyforest has one IDed dependeny tree orresponding to one generalized dependeny tree. The twophrase struture trees and one dependeny tree are shown in Fig.3.31.Mel'uk (1988) proposes introduing a onept alled \grouping" into the dependeny strutureframework to solve the modi�ation sope problem. Grouping is theoretially equivalent to phrasein the sense that it spei�es the word overage information. However, grouping information is notattahed to every part of the struture but to some spei� strutures inluding the \onjoinedstruture" and \operator word" suh as \not" and \only." The grammar framework for a mahinetranslation system (Amano et al., 1989) inorporates a mehanism similar to the grouping*25.In this grammar development for the real-world appliation, the sope nodes are used onlyfor onjoined strutures*26. This experiene suggests the limitation of the appliation sope ofgrouping proposed by Mel'uk is reasonable. Moreover, the treatment of the modi�ation sopeambiguity di�ers from language to language. Aording to Mel'uk (1988), some modi�ationsope ambiguities are distinguishable by lexial or syntati marking in Russian. Japanese doesnot have the modi�ation sope problem inherently beause Japanese has the basi grammatialonstraint that modi�ers should be loated at the left-hand side of their modi�and. In the PDG
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Fig.3.31 The example of mapping from N phrase struture trees to 1 dependeny tree (realambiguity)*25 A speial node alled \soping node" is introdued to speify the sope of a dependeny modi�ation asrequired.*26 This is the ase for an English-to-Japanese system. The requirement level may di�er aording to thelanguage pairs. For example, translation between languages in the same family may not require a groupingmehanism beause the modi�ation sope ambiguities are avoided by bypassing, i.e., an ambiguous sourelanguage struture is mapped to the orresponding target language struture without disambiguation.



86framework, equivalent ars represent the di�erene of modi�ation sope as shown in the previoussetion. Therefore, the modi�ation sope problem may be avoided by introduing grouping intothe treatment of equivalent ars. This is a future task.3.7.5 Generation of Non-projetive Dependeny TreeThe projetivity onstraint*27 is a basi onstraint adopted by many dependeny analysis sys-tems and these parsers are alled projetive parsers. Projetive parsers fail to analyze senteneswith non-projetive strutures. Almost all sentenes in many languages are projetive, but sometypes of non-projetive sentenes exist (Mel'uk, 1988). For example, \John saw a dog yesterdaywhih was a Yorkshire Terrier." in English, \����������	
�����"( I went toTokyo to buy a book yesterday) in Japanese have projetive dependeny strutures. MDonaldet al. (2005) reported the non-projetive parser outperformed the projetive parser in overallauray for the analysis of Czeh, whih has a high degree of word order freedom omparedwith English.As desribed in Setion 3.4.2, the mapping between the onstituent sequene (the body ofgrammar rule) and the partial dependeny tree (the dependeny struture of the grammar rule) isde�ned in the grammar rule in PDG. This framework in ombination with the desription abilityof the C-Matrix enables a ontrolled non-projetivity instead of all-or-nothing non-projetivity.The ontrolled non-projetivity means that the non-projetive strutures are de�ned by somerules, whih presribe the well-formedness onditions. (R19) in Fig.3.23 is a grammar rule for aphrase pattern where an adverb is inserted before a relative lause, and produes a well-formednon-projetive dependeny struture. Fig.3.32 shows the dependeny tree for \She saw the aturiously whih was Persian."*28 obtained by the example PDG grammar. The dependeny
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87forest has one non-projetive dependeny tree.3.8 Conluding Remarks for Chapter 3This hapter desribed the multilevel paked shared data onnetion model that is the basianalysis model adopted by PDG and explained two paked shared data strutures of PDG, i.e.,the phrase struture forest and the dependeny forest. The ompleteness and the soundness ofthe orrespondene between the phrase struture forest and the dependeny forest are assured.This means the sentene interpretations represented in paked shared phrase struture and thesentene interpretations represented in paked shared dependeny struture have mappings. Thisthesis also desribed the experimental results for analyzing some typial ambiguous sentenesusing an example PDG grammar.The urrent implementation of the PDG system fouses on the feasibility study of the PDGframework. The pratial PDG system and its performane evaluation are future tasks. Exten-sion of the PDG grammar formalism (suh as the introdution of optional element spei�ationand feature onditions) and improvement in performane by eÆient odes and optimizing meth-ods based on grammar analysis, should be studied in order to realize a pratial system.
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Chapter 4Optimum Solution Searh
PDG is a kind of framework for dependeny analysis beause the �nal output of PDG is one ormore dependeny trees. This hapter desribes the optimum solution searh algorithm for PDGand shows some experiments for estimating the behavior and omputational omplexity of thealgorithm.As desribed in (MDonald et al., 2005), various dependeny analysis methods are proposed.Some methods utilize lexialized phrase-struture parsers with the ability to output dependenyinformation (Collins, 1999; Charniak, 2000) and some methods obtain dependeny trees diretly(Ozeki, 1994; Katoh and Ehara, 1989; Eisner, 1996b; Yamada and Matsumoto, 2003; Nivre andSholz, 2004). In this thesis, parsers in the former ategory are alled phrase-struture baseddependeny parsers and those in the latter ategory are alled diret dependeny parsers. PDG isin the former ategory beause it utilizes a lexialized phrase-struture parser to generate pakedshared data struture (dependeny forest) based on struture mapping information in grammarrules.(Collins, 1999; Charniak, 2000) are basially lexialized phrase struture parsers and workas dependeny parsers by attahing a funtion for onversion from a phrase-struture to a de-pendeny struture. The dependeny tree for a sentene is generated from the headed phrasestruture tree obtained by the phrase struture parser. For example, eah nonterminal symboland its hild onstituents in the phrase struture tree orrespond to the dependeny struturethat has one governor node (the phrase head of the nonterminal symbol) and its dependantnodes (the phrase heads of the hild onstituents) in (Collins, 1999). On the other hand, PDGgenerates a dependeny struture based on struture mapping information in grammar rules Thismehanism enables generation of exible dependeny strutures with dependeny relation labels.For example, PDG an provide phrase struture rules whih generate non-projetive dependenystrutures whih are not produed by (Collins, 1999; Charniak, 2000) and the majority of diretdependeny parsers as desribed in Setion 4.1.3. The phrase-struture based dependeny parsershave a possibility to utilize the desriptive power of the phrase struture rules to presribe thedependeny strutures.Training orpora and statistial information are used for omputing the most appropriatedependeny tree in many parsers. As shown in Chapter 1, one lass of parsers adopts a history-



90based approah (Blak et al., 1992) in whih eah tree-building proedure uses a probabilitymodel p(AlB) to weight any ation A based on the available ontext, or history, B. (Yamada andMatsumoto, 2003; Nivre and Sholz, 2004) an be regarded as history-based diret dependenyparsers whih hoose the optimum deision during the parsing proess based on informationobtained from the training data. Another lass of parsers generates various dependeny graphsenompassing all possible dependeny trees for a sentene*1 and searhes for the optimum treebased on preferene sores*2 attahed to the dependeny graph (Ozeki, 1994; Katoh and Ehara,1989; Hirakawa, 2001; MDonald et al., 2005). This method is alled the all-pairs based approahand a dependeny graph with preferene sores is alled sored dependeny graph in this thesis.In general, the history-based method seems to be more eÆient than the all-pairs based methodbeause it makes deisions before ompleting the full parse. However, the history-based methodmay fail to obtain the optimum solution beause it does not utilize the full parse information.PDG is lassi�ed as a all-pairs based method sine it searhes for the optimum tree in a de-pendeny forest with a sored dependeny graph. A dependeny forest with preferene sores issometimes expliitely alled sored dependeny forest.Rest of this thesis fouses on all-pairs based methods and disusses some approahes to theoptimum tree searh for dependeny graphs and proposes an optimum tree searh algorithmfor the dependeny forest named the \graph branh algorithm." PDG (and the graph branhalgorithm) is an suessor to the sentene analysis method based on semanti dependeny graph(Hirakawa and Amano, 1989b; Hirakawa, 2001).4.1 Optimum Dependeny Tree Searh Methods forDependeny Graphs4.1.1 Basi FrameworkSored dependeny graphs are widely used as paked shared data strutures representing a setof dependeny trees. Fig.4.1 shows the basi framework of the optimum dependeny tree searhin a dependeny graph. In general, nodes in a dependeny graph orrespond to words in thesentene and the ars show some kind of labeled or non-labeled dependeny relations betweennodes. Eah ar has a preferene sore representing plausibility of the relation. The well-formeddependeny tree onstraint is a set of well-formed onstraints whih should be satis�ed by alldependeny trees representing sentene interpretations. A pair of a dependeny graph and awell-formed dependeny tree onstraint de�nes a set of well-formed dependeny trees. The soreof a dependeny tree is the sum total of ar sores*3. The optimum tree is a dependeny tree*1 In fat, a set of possible dependeny trees is represented by a dependeny graph and a set of onstraints asshown in Setion 4.1.*2 Preferene sore represents the plausibility of the ar.*3 Dependeny ar numbers in eah well-formed dependeny tree for a sentene are not neessarily be thesame beause some of them have ompound word WPPs. The adjustment of the sores for ompound WPPnodes are introdued in the soring proess desribed in Chapter 5



91

���
Scored Dependency Graph

Dependency
Tree

Set of Scored Well-formed 
Dependency Trees

Well-formed dependency 
tree constraint

Optimum Tree
Search Algorithm

Well-formed Dependency Tree
with the highest score

s1

�
Each arc has its score� s2

s3

s4 s5

(score=s1+s2+s3+s4+s5 )

Scored Dependency Graph

Dependency
Tree

Set of Scored Well-formed 
Dependency Trees

Well-formed dependency 
tree constraint

Optimum Tree
Search Algorithm

Well-formed Dependency Tree
with the highest score

s1

�
Each arc has its score� s2

s3

s4 s5

(score=s1+s2+s3+s4+s5 )Fig.4.1 Framework of optimum tree searh in a sored dependeny graphwith the highest sore in the set of dependeny trees de�ned by the dependeny graph and thewell-formed dependeny tree onstraint.4.1.2 Dependeny GraphDependeny graphs are lassi�ed into some lasses based on the types of nodes and ars.This thesis assumes three types of nodes, i.e., word-type, WPP-type and onept-type*4. Thetypes of dependeny graphs are alled a word dependeny graph, a WPP dependeny graph and aonept dependeny graph, respetively, in this thesis. Dependeny graphs are also lassi�ed intonon-labeled and labeled graphs. There are some types of ar labels suh as syntati label (ex.\subjet," \objet") and semanti label (ex. \agent,"\target"). Various types of dependenygraphs are used in existing systems aording to these lassi�ations, suh as non-label worddependeny graph (Lee and Choi, 1997; Eisner, 1996b; MDonald et al., 2005), syntati-labelword dependeny graph (Maruyama, 1990), semanti-label word dependeny graph (Hirakawa,2001), non-label WPP dependeny graph (Ozeki, 1994; Katoh and Ehara, 1989), syntati-labelWPP dependeny graph (Wang and Harper, 2004), semanti-label onept dependeny graph(Harada and Mizuno, 2001) *5.4.1.3 Well-formedness Constraints for Dependeny TreeThere an be a variety of well-formedness onstraints for dependeny trees from very basi andlanguage-independent onstraints to spei� language-dependent onstraints. This thesis fouseson the following four basi and language-independent onstraints whih may be embedded in datastruture and/or the optimum tree searh algorithm.(C1) Coverage onstraint: Every input word has a orresponding node in the tree(C2) Single role onstraint: No two nodes in a dependeny tree oupy the same input position(C3) Projetivity onstraint: No ar rosses another ar*4 \onept" orresopnds to lexial onept de�ned in a system ditionary.*5 This data struture enompasses semanti dependeny trees for one word-dependeny tree.



92 (C4) Single valene oupation onstraint: No two ars in a tree oupy the same valene ofa prediate(C1) and (C2) are basi onstraints adopted by almost all dependeny parsers. (C1) and (C2)are olletively referred to as \overing onstraint." (C3) is also adopted by the majority ofdependeny parsers whih are alled projetive dependeny parsers. A projetive dependenyparser fails to analyze non-projetive sentenes. Most sentenes of a language are projetive, butseveral types of non-projetive sentenes exist (Mel'uk, 1988). The non-projetive parsing modelobtained improvement in overall auray ompared with the projetive model in an experimenton Czeh, whih has more exible word order than English (MDonald et al., 2005). In this ase,all possible non-projetive dependeny trees are andidates for the sentene struture beauseno projetivity onstraint is applied in ontrast to projetive parsing model. This type of non-projetivity is alled an unontrolled non-projetivity in this thesis. As desribed below, PDGdoes not adopt (C3) diretly. Therefore PDG an generate non-projetive dependeny trees forinput sentenes. (C4) is a basi onstraint for valeny but is not adopted by the majority ofdependeny parsers.(C2)-(C4) an be desribed as a set of o-ourrene onstraints between two ars in a depen-deny graph. As desribed below, PDG adopts o-ourrene onstraints between two arbitraryars in a dependeny graph using onstraint matrix (CM). Constraints represented by CM arealled ar o-ourrene onstraints.(C5) Ar o-ourrene onstraint: Eah ar pair in a tree has a o-ourrene relation in CMMore preise onstraints ompared with (C2) - (C4) are representable by means of CM. Forexample, it an allow non-projetivity for only some speial ars. In PDG, the mapping betweena sequene of onstituents (the body of a CFG rule) and a set of ars (a partial dependenytree) is de�ned in an extended CFG rule. As desribed below, this grammar framework allowsgenerating non-projetive strutures de�ned by grammar rules. This type of non-projetivityis alled a ontrolled non-projetivity in this thesis. The ontrolled non-projetivity an reduethe generation of illegal non-projetive dependeny trees ompared with the unontrolled non-projetivity. Treatment of non-projetivity as desribed in (Kahane et al., 1998; Nivre andNilsson, 2005) is an important topi out of the sope of this thesis.The optimum tree searh in a sored dependeny graph is a task of searhing for a dependenytree with the highest sore satisfying the well-formed dependeny tree onstraint. The algo-rithm for this task is losely related to the types of dependeny graphs and/or well-formednessonstraints. Graph searh algorithms, suh as the Chu-Liu-Edmonds maximum spanning treealgorithm (Chu and Liu, 1965; Edmonds, 1967), algorithms based on the dynami program-ming(DP) priniple (Ozeki, 1994; Eisner, 1996b) and the algorithm based on the branh andbound (B&B) method (Hirakawa, 2001), are used for optimum tree searh in sored dependenygraphs. The Chu-Liu-Edmonds algorithm is very fast (O(n2) for sentene length n), but it worksorretly only on word dependeny graphs. Maximum spanning tree algorithms annot satisfy



93the single role onstraint for WPP and onept dependeny graphs. DP-based algorithms ansatisfy (C1) - (C3) and run eÆiently, but seems not to satisfy (C4). Hirakawa (2001) proposeda B&B-based algorithm working on word dependeny graphs satisfying (C1) - (C4). This the-sis extends this algorithm to work on WPP and onept dependeny graphs. The next setionexplains the problems of the DP-based method in treating (C4).4.1.4 Single Valene Oupation Constraint and Dynami Program-mingOzeki proposed an algorithm for obtaining the optimum kakari-uke tree and its sore from aset of all possible sored kakari-uke relations (Ozeki, 1986; Ozeki, 1994). This algorithm anbe extended to treat general dependeny relations (Katoh and Ehara, 1989). This algorithmis generalized into the minimum ost partitioning method (MCPM), whih is a partitioningomputation based on the reurrene equation given below (Ozeki and Zhang, 1999). MCPM isalso a generalization of the probabilisti CKY algorithm and the Viterbi algorithm*6.Considering the phrase (wi;�wj ; ai;�; aj ;A) partitioned into (wi;�; wk; ai;�; ak;B) and(wk+1;�; wj ; ak+1;�; aj : C) where wx, ax, and A-C mean word, analog information (suhas prosodi information), and features like phrase name, respetively. MCPM omputes theoptimum solution based on the following reurrene equation for total ost F.F (i; j; A) = min[F (i; k; B) + F (k + 1; j; C) + ost(wi;�; wj ; ai;�; aj ; k; A;B;C)℄F (i; j; A) is the total ost of phrase A overing from the i-th to the j-th word in a given sentene.ost(wi; :::wj ; ai; :::; aj ; k; A;B;C) is a ost funtion where k is a partitioning position. Theminimum ost partition of the whole sentene is alulated very eÆiently by the DP priniplefor this equation. The optimum partitioning obtained by this method onstitutes a tree overingthe whole sentene satisfying the single role and projetivity onstraints. However, it is notassured that the single valene oupation onstraint adopted in PDG for basi semanti levelonstraint is satis�ed by MCPM.Fig.4.2 shows a dependeny graph for the Japanese phrase \Isha-mo wakaranai byouki-nokanjya" enompassing dependeny trees orresponding to \a patient su�ering from a diseasethat the dotor doesn't know," \a sik patient who does not know the dotor," and so on. Thedependeny graph has two kinds of ambiguities, i.e., semanti role ambiguity and attahmentambiguity. For example, wakaranai(not know) has four outgoing ars with di�erent semantiroles (agent and target) and di�erent attahments (byouki(sikness) and kanjya(patient)) inFig.4.2. The single valene oupation onstraint prevents wakaranai(not know) from beingonneted with the same two semanti role ars. OS1 - OS4 represent the optimum solutionsfor the phrases spei�ed by their brakets omputed based on MCPM. For example, OS3 givesan optimum tree with a sore of 22 (onsisting of agent1 and target4) for the phrase \Isha-*6 Spei�ally, MTCM orresponds to probabilisti CKY and the Viterbi algorithm beause it omputes boththe optimum tree sore and its struture.
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Well-formed optimum solutions for covering whole phraseFig.4.2 Optimum solution searh satisfying the single valene oupation onstraintmo wakaranai byouki-no." The optimum solution for the whole phrase is either OS1 + OS4 orOS3 +OS2 due to MCPM. The former has the highest sore 40(= 15+ 25) but does not satisfythe single valene oupation onstraint beause it has agent1 and agent5 simultaneously. Theoptimum solutions satisfying this onstraint are NOS1 + OS4 and OS1 + NOS2 shown at thebottom of Fig.4.2. NOS1 and NOS2 are not optimum solutions for their word overages. Inthis ase, MCPM generates a non-optimum tree in OS3 + OS2 if it adopts the strategy ofnegleting inonsistent trees. Otherwise, MCPM generates a high sore but an ill-formed treein OS1 + OS4. This shows that it is not assured that MCPM will obtain the optimum solutionsatisfying the single valene oupation onstraint. On the ontrary, it is assured that the graphbranh algorithm will ompute the optimum solution(s) satisfying any o-ourrene onstraintsin the onstraint matrix inluding the single valene oupation onstraint. It is an open problemwhether an algorithm based on the DP framework exists whih an handle the single valeneoupation onstraint and arbitrary ar o-ourrene onstraints.4.2 Semanti Dependeny Graph and Dependeny ForestThe semanti dependeny graph, as shown in Setion 4.2.1, is a semanti-label word depen-deny graph designed for Japanese sentene analysis (Hirakawa and Amano, 1989a). The op-timum solution for a sentene is obtained by searhing for the optimum tree in a semantidependeny graph with preferene sores (Hirakawa, 2001).The sentene analysis method based on the semanti dependeny graph, the predeessor ofPDG, is e�etive beause it employs linguisti onstraints as well as linguisti preferenes. How-ever, this method is laking in terms of generality in that it annot handle bakward dependenyand multiple WPP beause it depends on some linguisti features peuliar to Japanese. PDGemploys the dependeny forest instead of the semanti dependeny graph. Sine the dependeny



95forest has none of the language-dependent premises that the semanti dependeny graph has, itis appliable to English and other languages. PDG has one more advantage in that it an gener-ate non-projetive dependeny trees beause the mapping from phrase struture to dependenystruture is de�ned in grammar rules.The optimum tree searh algorithm for the semanti dependeny graph is not appliable tothe dependeny forest. This thesis gives a brief explanation of the dependeny forest and showsthe graph branh algorithm for obtaining the optimum solution (tree) in the dependeny forest.4.2.1 Semanti Dependeny Graph and its DrawbaksFig.4.3 shows a semanti dependeny graph for \Watashi-mo Kare-ga Tukue-wo Katta Mise-niUtta" (Hirakawa, 2001). The nodes in the graph orrespond to the ontent words in the senteneand the ars show possible semanti dependeny relations between the nodes. Eah ar has anar ID and a preferene sore. Interpretations of a sentene are well-formed spanning trees thatsatisfy the projetivity onstraint and the single valene oupation onstraint. The bold ars inthe graph in Fig.4.3 show the optimum interpretation with a maximum sore of 130.The semanti dependeny graph is designed based on the Japanese kakari-uke relation andassumes the following features of Japanese.(a) A dependant always loates to the left of its governor (no bakward dependeny)(b) POS ambiguities are quite minor ompared with English*7The semanti dependeny graph and its optimum solution searh algorithm adopt these as theirpremises. Therefore, this method is inherently inappliable to languages like English that require
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Fig.4.3 Example of semanti dependeny graph and its optimum solution*7 Word boundary ambiguity orresponding to the ompound word boundary ambiguity in English exists inJapanese. Treatment of this ambiguity is a pratial problem for the semanti dependeny graph even whenapplied to Japanese sentene analysis.
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Fig.4.4 Sored DF for \Time ies like an arrow"bakward dependeny and multiple POS analysis.4.2.2 Dependeny ForestAs desribed in Chapter 3, the dependeny forest is a paked shared data struture enompass-ing all possible dependeny trees for a sentene. A dependeny forest onsists of a dependenygraph (DG) and a onstraint matrix (CM). A dependeny forest with a sored dependeny graphis alled a sored dependeny forest. Fig.4.4 shows a sored dependeny forest for the examplesentene \Time ies like an arrow."The dependeny forest has orrespondene with the phrase struture forest. This means thatthe dependeny forest provides a means to treat all possible interpretations of a sentene independeny struture representation. One sentene interpretation is represented by one well-formed dependeny tree whih satis�es the well-formed dependeny tree onstraint, i.e., theovering onstraint and the ar o-ourrene onstraint desribed in Setion 4.1.3. The algorithmfor the dependeny forest has to treat the overing onstraint.Fig.4.5 shows four well-formed dependeny trees for the dependeny forest in Fig.4.4. Topnodes are omitted in the �gure for simpliity. Tree (a) is the optimum dependeny tree with thehighest sore of 51.4.2.3 Relation between Semanti Dependeny Graph and DependenyForestThe dependeny forest and the semanti dependeny graph utilize the WPP dependeny graphand the word graph, respetively. The word dependeny graph an be seen as a speial ase ofthe WPP dependeny graph. Therefore, the semanti dependeny graph is a subset of the depen-deny graph of the dependeny forest. On the other hand, well-formedness onstraints introdued
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(c) Clock flies as an arrow do�score:42) (d) Clock flies similar to an arrow�score:41)Fig.4.5 Well-formed dependeny trees for the example senteneto a semanti dependeny graph, i.e., the projetivity and single valene oupation onstraints,are a type of ar o-ourrene onstraints representable by means of CM. Therefore, the depen-deny forest is a generalized and more powerful data struture overing the representative powerof the semanti dependeny graph.4.3 Optimum Tree Searh for Dependeny Forest Basedon Graph Branh MethodThe graph branh method works on the branh and bound priniple and searhes for theoptimum well-formed tree from a dependeny graph by applying partial sub-problem expansionsalled graph branhing. The algorithm in (Hirakawa, 2001) applies the graph branh method tothe semanti dependeny graph. Unfortunately, this algorithm is not diretly appliable to thedependeny forest searh problem. The following shows a new algorithm for applying the graphbranh method to the dependeny forest.4.3.1 Outline of Branh and Bound MethodThe branh and bound method is a priniple for solving omputationally hard problems suhas NP-omplete problems. The basi strategy is that the original problem is deomposed intoeasier partial-problems (branhing) and the original problem is solved by solving them. Pruningalled a bound operation is applied if it turns out that the optimum solution to a partial-problemis inferior to the solution obtained from some other partial-problem (dominane test), or if itturns out that a partial-problem gives no optimum solutions to the original problem (maximum



98value test). The dominane test is not used in the graph branh method. Usually, the branhand bound algorithm is onstruted to minimize the value of the solution. The graph branhalgorithm in this thesis is onstruted to maximize the sore of the solution beause the bestsolution is the maximum tree in the dependeny forest.The following features for the maximum bound value test with respet to the problem P andits partial-problem P must be satis�ed in the branh and bound method.(MC1) g(P)�f(P ) where g(P) is the maximum value of P, and f(P ) is the maximum valueof P .(MC2) If g(P) = l(P ) where l gives a value of a feasible solution to P, then the feasiblesolution is a solution to P.(MC3) If P has no feasible solutions then P has no solutions.(MC4) If a feasible solution with an inumbent value z is obtained for some partial-problem,and if g(P)�z, then partial-problems branhed from problem P have no better solutionsthan z.These onditions are alled model onditions in this thesis. In the ase of MC2-MC4., partial-problem P an be terminated. Fig.4.6 shows a general branh and bound algorithm for obtainingone optimum solution (Ibaraki, 1978).� ���� �� ���	
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994.3.2 Graph Branh AlgorithmFig.4.6 shows a skeleton of the algorithm. In order to make it running ode, eah operation inthe algorithm must be realized for the target problem. The graph branh algorithm applies thebranh and bound method to the optimum tree searh problem with the binary ar o-ourreneonstraint by introduing the graph branh operation for the partial-problem expansion oper-ation. Fig.4.7 shows the graph branh algorithm whih has been extended from the originalskeleton to searh for all optimum trees for a dependeny graph. The following setions explainhow the omponents of the branh and bound method in Fig.4.6 are implemented in the graphbranh algorithm.(1) Partial-problemPartial-problem Pi in the graph branh method is a problem searhing for all the well-formedoptimum trees in a dependeny forest DFi onsisting of the dependeny graph DGi and on-straint matrix CMi. Partial-problem Pi onsists of the following elements.(a) Dependeny graph DGi�� � ������� 	
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100(b) Constraint matrix CMi() Feasible solution value LBi (orresponding to l(P ) in Fig.4.6)(d) Upper bound value UBi (orresponding to g(P ) in Fig.4.6)(e) Inonsistent ar pair list IAPLi.The onstraint matrix is ommon to all partial-problems, so one CM is shared by all partial-problems. DGi is represented by \rem[::℄" whih shows a set of ars to be removed from thewhole dependeny graphDGi, i.e., DGi is obtained by removing rem[::℄ from DGi. For example,\rem[b; d℄" represents a partial dependeny graph [a; ; e℄ in the ase DG = [a; b; ; d; e℄. Thisredues the memory spae and the omputation for a feasible solution as desribed below. IAPLiis a list of inonsistent ar pairs. An inonsistent ar pair is an ar pair whih does not satisfysome o-ourrene onstraint.(2) Algorithm for Obtaining Feasible Solution and Lower Bound ValueIn the graph branh method, a well-formed dependeny tree in the dependeny graphDG of thepartial-problem P is assigned as the feasible solution FS (orresponding to x in Fig.4.6) of P *8.The sore of the feasible solution FS is assigned as the lower bound value LB (orresponding to
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101l(P ) in Fig.4.6). The funtion for omputing these values get fs is alled a feasible solution/lowerbound value funtion. Fig.4.8 shows the algorithm of get fs. Basially, get fs searhes for onefeasible solution in higher-sore-�rst and depth-�rst manner. When an ar whih violate o-ourrene onstraint against one of the seleted ars is found, get fs baktraks at step5 to thenearest hoie point whih resolves the ontradition. This assures that the obtained solutionsatis�es the o-ourrene onstraint. Furthermore, if get fs �nds no solution, then the problemP has no solution. Sine get fs selets one ar for eah position in a sentene, the obtained arssatis�es the well-overed onstraint.Ar groups S1 to Sn are sorted aording to their sores in step1. This operation is introduedto obtain a better (higher sore) feasible solution, sine the better feasible solution lead to ahigher inumbent value whih bounds more partial-problems.(3) Algorithm for Obtaining Upper Bound ValueGiven a set of ars A whih is a subset of a dependeny graph DG, if the set of dependentnodes of ars in A satis�es the overing onstraint desribed above, the ar set A is alledthe well-overed ar set. The \maximum well-overed ar set" is de�ned as a well-overed arset with the highest sore. In general, the maximum well-overed ar set does not satisfy thesingle role onstraint and does not form a tree. In the graph branh method, the sore of themaximum well-overed ar set of a dependeny graph G is assigned as the upper bound valueUB (orresponding to g(P ) in Fig.4.6) of the partial-problem P . Upper bound funtion get ubalulates UB by sanning the ar lists sorted by the surfae position of the dependent nodes ofthe ars.The above settings satisfy the model onditions. In these settings, P and get ub orrespondsto P and g(P), respetively. (MC1) is satis�ed beause get ub(P )�f(P ) is true for f(P ) (thesore of the optimum tree). (MC2) and (MC4) are satis�ed beause get ub is the sore ofthe maximum well-overed ar set. (MC3) is satis�ed sine get ub(P ) always has its solution.Therefore, partial-problem P is prunable if the inumbent value z satis�es z�g(P )*9.(4) Branh OperationFig.4.9 shows a branh operation in the graph branh method alled a graph branh operation.Child partial-problems of P are onstruted as follows:(a) Searh for an inonsistent ar pair (ari; arj) in the maximum well-overed ar set forthe dependeny graph of P .(b) Create hild partial-problems Pi, Pj whih have new dependeny graphs DGi = DG �farjg and DGj = DG� farig, respetively.Sine a solution to P annot have both ari and arj simultaneously due to the o-ourreneonstraint, the optimum solution of P is obtained from either/both Pi or/and Pj . The hildpartial-problem is easier than the parent partial-problem beause the size of the dependeny*9 In the ase of obtaining all optimum solutions ,the terminate ondition should be hanged to z > g(P ).
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Fig.4.9 Graph Branhinggraph of the hild partial-problem is less than that of its parent.In Fig.4.7, get iapl omputes the list of inonsistent ar pairs IAPL(Inonsistent Ar Pair List)for the maximum well-overed ar set of Pi. Then the graph branh funtion graph branh seletsone inonsistent ar pair (ari; arj) from IAPL for branh operation. The seletion riteria for(ari; arj) a�ets the eÆieny of the algorithm. graph branh selets the inonsistent ar pairontaining the highest sore ar in BACL(Branh Ar Candidates List). graph branh alulatesthe upper bound value for a hild partial-problem by get ub and sets it to the hild partial-problem. Simultaneously, graph branh exeutes bound operation by immediately pruning thehild partial-problem whose upper bound value is less than the inumbent value z.(5) Seletion of Partial-problem from Ative Partial-problemsselet problem in Fig.4.8 orresponds to the searh s(A) in Fig.4.6. The best bound searh isemployed for selet problem, i.e., it selets the partial-problem whih has the maximum boundvalue among the ative partial-problems. It is known that the number of partial-problems de-omposed during omputation is minimized by this strategy in the ase that no dominane testsare applied (Ibaraki, 1978).(6) Computing All Optimum SolutionsIn order to obtain all optimum solutions, partial-problems whose upper bound values are equalto the sore of the optimum solution(s) are expanded at S8(SearhMoreOptimumSolutions).In the ase that at least one inonsistent ar pair remains in a partial-problem (i.e., IAPL6=fg),graph branh is performed based on the inonsistent ar pair. Otherwise, the obtained optimumsolution FS is heked if one of the ars in FS has an equal rival ar by ars with alternativesfuntion in Figure 4.6. The equal rival ar of ar A is an ar whose position and sore are equalto those of ar A. If an equal rival ar of an ar in FS exists, a new partial-problem is generatedby removing the ar in FS. S8 assures that no partial-problem has an upper bound value greater



103than or equal to the sore of the optimum solutions when the omputation stopped.(7) Corretness of the Graph Branh AlgorithmAll Dependeny trees are generated by the feasible solution and lower bound value funtionget fs. get fs does not violate the overing onstraint(the single role onstraint and the overageonstraint) beause it selets one ar for one input position at the step7 in Fig.4.8. It alsoassures the o-ourrene onstraint by heking the CM value for every two ars in a tree atstep5. Therefore, output dependeny trees of the graph branh algorithm satisfy the well-formeddependeny tree onstraint.4.4 Example of Optimum Tree SearhThis setion presents an example showing the behavior of the graph branh algorithm usingthe dependeny forest in Fig.4.4.4.4.1 Feasible Solution/Lower Bound Value FuntionThe following setion shows the behavior of feasible solution/lower bound value funtion get fsfor the example sentene.step1(grouping and sorting of ars) in Fig.4.8 is performed one at the beginning for theinitial dependeny forest. The result of step1 is shown in Fig.4.10. Pos and MaxSore meanthe position of the ar in the sentene and the maximum ar sore at that position respetively.Ars with no rival ar have MaxSore 1 and are loated at the top of the ar group list.Ar groups with start positions 3,0,4,1 and 2 are assigned to S1,S2,S3,S4 and S5, respetively.�������� ���� ������������ � � � 	
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104step2(initialize) initializes variables. After step3 and step4 are exeuted, step5 heks thata(i; j) = a(1; 1) = 14(= det14) an be registered to FS. In this ase, no violation of the o-ourrene onstraint ours, and then step7 registers a(1; 1) to FS *10, then baktrak pointBP [1℄ at the position i(= 1) is set to j(= 1).FS = [a(1; 1)℄(= [14℄), BP = [1;�;�;�;�℄, i = 2, j = 1, k = 1, l = 0Next, step3-5 try the �rst ar a(2; 1)(= n2) in S2. Sine CM(a(1; 1); a(2; 1)) = CM(14; 2) = �in Fig.4.4, a(2; 1) and a(1; 1) satisfy the o-ourrene onstraint and then a(2; 1) is registeredto FS.FS = [a(1; 1); a(2; 1)℄(= [14; 2℄), BP = [1; 1;�;�;�℄, i = 3, j = 1, k = 1, l = 0a(3; 1)(= pre15) is skipped beause CM(a(3; 1); a(2; 1)) = CM(15; 2)6=�. Then a(3; 2) is tried.FS = [a(1; 1); a(2; 1); a(3; 2)℄(= [14; 2; 16℄)BP = [1; 1; 2;�;�℄, i = 4, j = 1, k = 1, l = 1In a similar manner, a(4; 1)(= sub23) and a(5; 4)(= rt29) are added to FS, then the terminationondition at step3 is satis�ed.FS = [a(1; 1); a(2; 1); a(3; 2); a(4; 1); a(5; 4)℄(= [14; 2; 16; 23; 29℄),BP = [1; 1; 2; 1; 4℄, i = 6, j = 1, k = 4, l = 4,The FS here is a feasible solution and the sum total of ar sores, i.e., 17+ 17+ 6+ 10+ 0 = 50is the sore of the feasible solution.No baktraking ourred in this example. Baktraking ours when all ars in Si are foundto be inonsistent with either of the ars in FS at that point. In this ase, step6(baktraking)baktraks to the l position. l is assured to be the rightmost position, where some element in Si isinonsistent with the seleted ar in FS. This mehanism is introdued to optimize baktraking.4.4.2 Example of Graph Branh AlgorithmThe searh proess of the branh and bound method an be shown as a searh diagramonstruting a partial-problem tree representing the parent-hild relation between the partial-problems. Fig.4.11 is a searh diagram for the example dependeny forest showing the searhproess of the graph branh method.In this �gure, box Pi is a partial-problem with its dependeny graph rem, upper bound valueUB, feasible solution and lower bound value LB and inonsistent ar pair list IAPL. SuÆx i ofPi indiates the generation order of partial-problems. Updating of global variable z (inumbentvalue) and O (set of inumbent solutions) is shown under the box. The value of the left-handside of the arrow is updated to that of right-hand side of the arrow during the partial-problemproessing. Details of the behavior of the algorithm in Fig.4.7 are desribed below.In S1(initialize), z, O and AP are set to �1, fg and fP0g, respetively. The dependeny graph*10 In fat, the ar ID 14 is registered to FS. The a(i; j) form is used here for larity.
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106rem[24; 2℄ is pruned immediately, beause its upper bound value (=46) is smaller than theinumbent value (=51) (termination by the upper bound test). Therefore, graph branh returnsfP3(rem[23; 2℄)g. The upper bound value UB of P3 is 58 whih is less than that of its parentproblem P1. The proessing for P1 is ompleted and P1 is removed from AP . selet problemselets P2 by omparing the upper bound values of P2 and P3 in AP . Partial-problem P2is terminated beause it has no feasible solution (FS = no solution). Then, the next partial-problem P3 is proessed. P3 has a feasible solution with a sore of 41. Updating of the inumbentvalue does not our beause the obtained sore is lower than the existing inumbent value. Thenext partial-problem P4 has no feasible solution, so all proessing is terminated at S8(stop). Atthis time, the values of O and z are the optimum solution(=f[14; 24; 15; 31; 18℄g) and its sore(=51) respetively. This solution orresponds to the dependeny tree (a) in Fig.4.5.4.4.3 Prototypial Ambiguous SentenesIn addition to the previous example for homophone ambiguities, this setion shows two exam-ples of prototypial ambiguous sentenes.(1) PP-attahment AmbiguityFig.4.12 shows a dependeny forest for \I saw a girl with a telesope in the forest." Thereare no homophones in the forest but two prepositional phrases with attahment ambiguities.The preposition \with" has two possible dependenies (npp14,vpp16) and \in" has three(vpp27,npp26,npp29). The ombination number of these ars is 2 � 3 = 6, but there exists �vewell-formed dependeny trees due to the existene of the o-ourrene onstraint between ars16 and 29 (CM(16; 29)6=�) orresponding to the projetivity onstraint. The sores of thesears are assumed to be alulated based on the preposition, the governor and dependant nodes ofthe preposition. vpp16 has a higher sore ompared with npp14 beause \telesope" is a tool forseeing something. On the other hand, vpp27,npp26 and npp29 have the same sores. The searh
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Fig.4.13 Searh diagram for the example sentene inluding PP attahmentsdiagram for this example is shown in Fig.4.13. P0 generates the optimum solution (UB = LB)with a sore of 70. S8(searh more optimum solution) in Fig.4.7 is exeuted. P0 has no graphbranh andidates in the inonsistent ar pair list (IAPL == fg). ars with alternatives(FS)selets ar vpp27 as a andidate of graph branhing beause it has rival ars with the same sore(npp26,npp29). Then P1 is generated to obtain the seond optimum solution inluding npp26.Next P2 with rem[26; 27℄ is generated and a feasible solution to P2 is alulated. This solutionis not added to the inumbent solution list beause it has a lower sore (65) than the obtainedoptimum solutions. This example has two optimum solutions.(2) Coordination Sope AmbiguityFig.4.14 shows a dependeny forest for \Earth and Moon or Jupitor and Gamymede." Cor-responding to the ombination of the sopes of the three oordinations, \Earth" and \Moon"have three and two outgoing ars, respetively. Sine there exists a o-ourrene onstraint
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Fig.4.14 DF for the example sentene inluding oordinates



108(projetivity onstraint) between and12 and or22, the dependeny forest has �ve well-formeddependeny trees. Ar sored are assigned assuming preferene knowledge like \Planet namestend to o-our" and \The name of a planet and its seondary planet tend to o-our."The searh diagram for this example is shown in Fig.4.15. The feasible solution to the initialproblem P0 happens to be the optimum solution. No branh operation is performed beauseIAPL of P0 is [℄ and all ars in the optimum solution have no rival ars.
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Fig.4.16 DF for the example sentene inluding strutural ambiguities
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�	� # ��� ���� ��Fig.4.17 Searh diagram for the example sentene inluding strutural ambiguities40 is the optimum solution.4.5 Experiment for Graph Branh AlgorithmThis setion desribes some experimental results showing the omputational omplexity of thegraph branh algorithm.4.5.1 Environment and Performane Metri of the ExperimentAn English text orpus, PDG grammar and preferene knowledge are prepared. Prefereneknowledge soure in this experiment is the WPP frequenies (node frequenies) and the depen-deny relation frequenies (ar frequenies) in the orpus. Preferene sore is alulated fromthese statistial data and attahed to the ars in the dependeny graphs.Experiment data of 125,320 sentenes extrated from English tehnial douments is dividedinto open data (8605 sentenes) and losed data (116,715 sentenes). The losed data is usedfor produing WPP and dependeny frequenies. An existing sentene analysis system (alledthe orale system) is used as a generator of these frequenies. The orale system is a real-worldrule-based system with a long development history (Amano et al., 1989; Hirakawa et al., 2000).PDG grammar alled a basi grammar is prepared. The basi grammar onsists of basigrammar rules whih over sentene variations suh as noun/verb/adjetive/adverbial/ preposi-tional phrases, simple/omplex/ompound sentenes, relative/subordinate lauses and Onions'5 sentene patterns*11. The basi grammar does not aept insertion, omission, inversion andidiomati strutures (ex. not only .. but also ..). More detailed information on the environment*11 S+V,S+V+C,S+V+O,S+V+O+O and S+V+O+C patterns



110of this experiment is desribed in Setion 6.1.4.The expanded problem number, a prinipal omputational omplexity fator of the B&Bmethod, is adopted for performane metri. The following three metris are used in this ex-periment.(a) Expanded Problem Number in Total (EPN-T): The number of the expanded problemswhih are generated in the entire searh proess.(b) Expanded Problem Number for the First Optimum Solution (EPN-F): EPN-F is the num-ber of the expanded problems when the �rst optimum solution is obtained.() Expanded Problem Number for the Last Optimum Solution (EPN-L): EPN-L is the num-ber of the expanded problems when the last optimum solution is obtained. At this point,all optimum solutions are obtained.Optimum solution number (OSN) for a problem, i.e., the number of optimum dependeny trees ina given dependeny forest, gives the lower bound value for all these metris beause one problemgenerates at most one solution. The minimum value of OSN is 1 beause every dependenyforest has at least one dependeny tree. As the searh proess proeeds, the algorithm �ndsthe �rst optimum solution, then the last optimum solution, and �nally terminates the proessby on�rming no better solution is left. Therefore, the three metris have the relation EPN-F� EPN-L � EPN-T. Average values for these are desribed as Ave:EPN-F, Ave:EPN-L andAve:EPN-T. Average values for the optimum solution number is desribed as Ave:OSN.4.5.2 Experimental ResultsAn evaluation experiment for the open data is performed using a prototype PDG systemimplemented in Prolog. The test sentenes ontaining more than 22 words are negleted due tothe limitation of Prolog system resoures in the parsing proess. 4334 sentenes out of 6882 testsentenes are parsable. Without applying speial treatment suh as onstrution of the wholephrase struture tree from partial phrase struture trees, unparsable sentenes (2584 sentenes)are simply negleted in this experiment.All optimum trees are omputed by the graph branh algorithm desribed in Setion 4.3.2.Fig.4.18 shows averages of EPN-T, EPN-L, EPN-F and OSN with respet to sentene length.Overall averages of EPN-T, EPN-L, EPN-F and OSN for the test sentenes are 3.0, 1.67, 1.43and 1.15. The result shows that the average number of problems required is relatively small.The CFG �ltering by the phrase struture level redues the searh spae for the dependeny leveland the feasible solution searh funtion based on the greedy algorithm in Fig.4.8 seems to give agood feasible solution for a given problem and suppresses the number of expanded problems. Thegap between Ave:EPN-T and Ave:EPN-L (3.0-1.67=1.33) is muh greater than the gap betweenAve:EPN-L and Ave:OSN(1.67-1.15=0.52). This means that the major part of the omputationis performed only for heking if the obtained feasible solutions are optimum or not.Hirakawa (2001) reported the experiment for the B&B-based optimum searh algorithm im-
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Fig.4.18 Total problem number, problem number for the �rst optimum solution and opti-mum solution numberplemented in C language using the semanti dependeny graphs obtained from 100 sentenesrandomly seleted from Japanese tehnial douments. Compared with the experiment re-ported in this thesis, the previous experiment was performed in di�erent onditions and settingswith regard to, for example, the target language(English vs. Japanese), the target dependenygraph(syntati-label WPP dependeny graph vs. semanti-label word dependeny graph), thesoring method(statistis-based vs. rule-based) and the searh target(all optimum solution searhvs. one optimum solution searh). However, the two experiments have the same basi struture,i.e., the optimum tree searh for sored dependeny graphs with ar onstraints based on theB&B priniple. The B&B-based algorithms of the two experiments have very similar ompo-nents of the branh and bound method and the main fator of the omputational omplexityis the number of the expanded problems. The previous experiment shows that overall averagesof EPN-T, EPN-F are 2.91, 1.33*12. These result values are very similar to those in the newexperiment. The tendeny for the optimum solution to be obtained in the early stage of thesearh proess was observed in the previous experiment just as it is in this experiment. Hirakawa(2001) introdued two improvements of the algorithm, i.e., the introdution of an improved upperbound funtion g'(P) and the optimized feasible solution searh. As a result, the Ave:EPN-Tis redued from 2.91 to 1.82 and the Ave:EPN-F is inreased from 1.33 to 1.35. The averageCPU time is redued from 305.8ms to 162.1ms (on engineering work station AS-4260). In thenew experiment, the g'(P) is introdued to the graph branh algorithm and has obtained theredution of the Ave:EPN-T from 3.00 to 2.68 and the redution of the Ave:EPN-F from 1.43 to1.36. g'(P) is also e�etive to some extent in this experiment.The tendeny for the optimum solution to be obtained in the early stage of the searh proesssuggests that limiting the number of problems to expand is an e�etive pruning strategy. Fig.4.19 shows the ratios of the sentenes obtaining the whole problem expansion, the �rst optimumsolution and the last optimum solution to whole sentenes with respet to the expanded problemnumbers. This kind of ratio is alled an ahievement ratio (AR) in this thesis. From Fig. 4.19,*12 OSN and EPN-L was not measured beause the algorithm searhes for only one optimum solution.
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�� ��� ����� ����� �� !�� ��� ����� ����� �� !�� ��� ����" ����� �� !�� ��� ����" �#$%��&' !Fig.4.19 Ahievement ratios for full expansion, �rst optimum solution expansion and lastoptimum solution expansion ases with respet to max problem expansion numberthe ARs for EPN-T, EPN-L, EPN-F (plotted in solid lines) are 97.1%,99.6%,99.8%, respetivelyat the expanded solution number 10. The dotted line shows the AR for EPN-T of the improvedalgorithm using g'(P). The use of g'(P) inreases the AR for EPN-T from 97.1% to 99.1% atthe expanded solution number 10. However, the e�et of g'(P) is quite small for EPN-F andEPN-L. ARs for EPN-F and EPN-L in using g'(P) is almost the same as those shown in Fig.4.19. This result shows that the pruning strategy based on the expanded problem number ise�etive and g'(P) works for the redution of the problems generated in the posterior part of thesearh proesses.Behavior of the searh proess should be a�eted by the soring strategy (resoures of prefereneknowledge and their appliation methods) and the struture of dependeny graphs de�ned bygrammar rules. The searh proess should be analyzed in greater detail along with soringstrategies and dependeny graph strutures. The performane of the algorithm desribed in(Hirakawa, 2001) is suÆient for real-world appliations. The pratial ode implementationof the graph branh algorithm and its performane evaluation with an extended grammar aresubjets for future work.4.6 Extension to the Binary Preferene ModelAll optimum solution searh methods for sored dependeny graphs inluding PDG desribedin 4.1 treat preferene sores attahed to the ars in a dependeny graph. The ar sores areindependent of eah other or onstant for all possible dependeny trees. This type of dependenygraph framework is alled a \unary preferene model" (or unary model) in this thesis. Thissetion desribes the extension of PDG to the \binary preferene model" (or binary model)whih an treat the preferene knowledge represented by two ars, alled binary ar preferene.



1134.6.1 Extension of the Dependeny ForestThis setion gives the extension of the dependeny forest and the de�nition of the optimumdependeny tree in the binary preferene model.(1) Preferene matrixBinary ar preferenes are represented by a new data struture alled \preferene matrix"(PM). Fig.4.20 shows an example of the dependeny forest of the binary preferene model.Preferene sore between ari and arj is represented by the sore (number) in the ell PM(i,j).PM(i,i) and PM(i,j) (i6=j) represent the \unary ar sore" and the \binary ar sore," respe-tively. The unary preferene sore of ari is the ar sore of the unary model. The preferenesore an be a negative value that represents the negative preferene, Sore 0, represented byempty ell, represents the neutral preferene.Fig.4.20 shows an example of the dependeny forest <DG,CM,PM> of the binary model.The onstraint matrix of the binary preferene model is the same as that of the unary preferenemodel, but is alled \onstraint matrix" (CM) in the binary model in order to make lear ontrastwith the preferene matrix. The numbers in the diagonal ells in PM are unary ar sores and theother numbers are binary ar sores. This dependeny forest has two well-formed dependenytrees, i.e., f1,3,5,7g and f2,4,6,8g.(2) The optimum dependeny tree of the binary modelThe sore of a dependeny tree in the unary model is de�ned as the sum total of the soresof the ars in the tree. The sore of the dependeny tree DT in the binary model is de�ned asfollows: sore(DT ) = Xai;aj2DT;i�jPM(ai; aj) (4.1)This sore is expressed by the sum total of the ar sores in DT as follows:
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114 sore(DT ) = Xai2DT ar sore(ai;DT) (4.2)ar sore(ai;DT) = PM(ai; ai) + 12 Xaj2DT;aj 6=ai PM(ai; aj) (4.3)The sore de�nition of the binary model is a generalization of that of the unary model.The sore of the dependeny tree f1,3,5,7g in Fig.4.20 is omputed as follows:sore(fa1; a3; a5; a7g) = Xai;aj2fa1;a3;a5;a7g;i�j PM(ai; aj)= PM(1; 1) + PM(3; 3) + PM(5; 5) + PM(7; 7) +PM(1; 3) + PM(1; 5) + PM(1; 7) + PM(3; 5) + PM(3; 7) + PM(5; 7)= 10 + 0 + 10 + 20 + 0+ 0+ 5 + 0 + 0� 5 = 40The sore of eah ar is as follows:ar sore(a1; fa1; a3; a5; a7g) = PM(1; 1) + 12(PM(1; 3) + PM(1; 5) + PM(1; 7)) = 15ar sore(a3; fa1; a3; a5; a7g) = PM(3; 3) + 12(PM(1; 3) + PM(3; 5) + PM(3; 7)) = 0ar sore(a5; fa1; a3; a5; a7g) = PM(5; 5) + 12(PM(1; 5) + PM(3; 5) + PM(5; 7)) = 17:5ar sore(a7; fa1; a3; a5; a7g) = PM(7; 7) + 12(PM(1; 7) + PM(3; 7) + PM(5; 7)) = 7:5The sum total of the ar sores, i.e., the sore of the tree, is 40.4.6.2 Extension of the Graph Branh AlgorithmThe basi skeleton of the graph branh algorithm for the binary model is the same as that ofthe unary model desribed in Setion 4.3.1. This setion desribes the binary model version ofeah omponent of the graph branh algorithm desribed in Setion 4.3.2.(1) Partial-problemPM is added to the partial-problem of the unary model for the binary model. PM is sharedwith all partial problems beause it is ommon to all partial-problems.(2) Algorithm for Obtaining Feasible Solution and Lower Bound ValueThe algorithm for obtaining a feasible solution and lower bound value for the binary model isbasially equal to that of the unary model. The di�erene is the alulation of the ar sore. Theunary model simply alulates the sum total of unary ar sores of the feasible solution. Thebinary model alulates the ar sore aording to formula (4.3) desribed above.



115In order to obtain a better (higher sore) feasible solution, the sorting of ar groups as shownin step1 of Fig.4.8 is onduted by using the upper bound sores of the ars obtained by theformula (4.5) desribed below.(3) Algorithm for Obtaining Upper Bound ValueGiven the dependeny forest <DG,CM,PM> for an input sentene with word length n, apartial problem P has its dependeny graph DG' whih is a subset of DG. The upper boundvalue G of P is de�ned with respet to the dependeny forest <DG',CM,PM> as follows.G = n�1Xi=0 maxA2ars at(i;DG0)ubs ar(A) (4.4)ubs ar(A) = n�1Xj=0 ub ar sore(A; j) (4.5)ub ar sore(A; j) =8<: PM(A;A) (position(A) = j)maxX2ars at(j;DG0);CM(A;X)=� PM(A;X)2 (position(A)6=j) (4.6)Formula (4.4) means that the upper bound value G is alulated by summing the maximumsore of ubs ar at eah position of the input sentene. ubs ar(A) is the upper bound of ar Awhih is the sum of the unary ar sore of A, i.e., PM(A,A) and the maximum binary ar soresbetween A and the ars of eah position as de�ned in formula (4.6). The set of ars seleted informula (4.4) for eah input position is alled the \maximum well-overed binary ar set" anddoes not neessarily onstitute a tree and is not neessarily onsistent with the ars seleted informula (4.6).The following shows the example of the upper bound omputation of the dependeny forest inFig.4.20. The input position of N1, N2, N3 and N4 are 0, 1, 2 and 3, respetively. At �rst, anexample of the omputation of ub ar sore for ar a1 and a2 is shown as follows:ub ar sore(a1; 0) = PM(1; 1) = 10ub ar sore(a1; 1) = 0:5�max(PM(1; 3);PM(1; 4)) = 0:5�max(0; 0) = 0ub ar sore(a1; 2) = 0:5�max(PM(1; 5);PM(1; 6)) = 0:5�max(0; 0) = 0ub ar sore(a1; 4) = 0:5�max(PM(1; 7);PM(1; 8)) = 0:5�max(10; 5) = 5ub ar sore(a2; 0) = PM(2; 2) = 15ub ar sore(a2; 1) = 0:5�max(PM(2; 3);PM(2; 4)) = 0:5�max(0; 5) = 2:5ub ar sore(a2; 2) = 0:5�max(PM(2; 5);PM(2; 6)) = 0:5�max(0; 0) = 0ub ar sore(a2; 4) = 0:5�max(PM(2; 7);PM(2; 8)) = 0:5�max(5; 20) = 10The ubs ar is the sum total of ub ar sore values, i.e., ubs ar(a1) = 15 and ubs ar(a2) =27.5. Ar a2 is seleted as a member of the maximum well-overed binary ar set for DG andPM, beause the ar whih has the maximum ubs ar sores at eah position is seleted as the



116upper bound ar at the position as desribed above. Similarly, the upper bound ars are seletedand the maximum well-overed binary ar set is omputed as fa2, a4, a5, a8g that has the upperbound sore 85 (27.5+17.5+20+20).(4) Branh OperationThe branh operation is basially equivalent to that of the unary model as desribed in 4.3.2.An inonsistent ar pair (ari; arj), i.e., CM(i,j)6= �, is searhed from the maximum well-overed binary ar set for graph branh operation. If no inonsistent ar pair is found, themaximum well-overed binary ar set is one of the optimum solutions for the partial problem.In the ase of the algorithm for searhing for all optimum solutions, branh operation ontinuesuntil all partial problems have proved to have no optimum solutions as desribed in (6) below.(5) Seletion of Partial-problem from Ative Partial-problemsThis proess is the same as that of the unary model, i.e., the best bound searh is employed.(6) Computing All Optimum SolutionsWhen a new optimum solution for a partial-problem is obtained, the optimum solution isreorded in the inumbent solution list and further branh operation is performed until the upperbounds of the partial-problems beome less than the inumbent value. Ars to be removed fromthe dependeny graph of the urrent partial-problem, i.e., the andidates for branh operation,are omputed by piking up the rival ars of the ars in the obtained optimum solution. Therival ar of ar A of the binary model is an ar whose position is equal to that of ar A and theupper bound sore is equal to or more than that of ar A. When all partial problems are provedto have upper bound sores less than the inumbent value, the searh proess terminates.4.7 Conluding Remarks for Chapter 4This setion has desribed the graph branh algorithm for obtaining the optimum solution fora dependeny forest used in the preferene dependeny grammar. In addition to the basi model,i.e., the unary model, the graph branh algorithm for the binary model is introdued for treatingthe ar o-ourrene preferene.The well-formedness dependeny tree onstraints are represented by the onstraint matrix ofthe dependeny forest, whih has exible and preise desription ability so that ontrolled non-projetivity is available in PDG framework. The graph branh algorithm assures the searhfor the optimum trees with arbitrary ar o-ourrene onstraints, inluding the single valeneoupation onstraint whih has not been treated in DP-based algorithms so far. The dependenyforest has wider appliability ompared with the semanti dependeny graph beause it anhandle whole morphologial ambiguity aused by homonyms and word boundary divisions. Theexperimental result shows the averages of EPN-T, EPN-L and EPN-F for English test sentenesare 3.0, 1.67 and 1.43, respetively. This suggests the graph branh algorithm for PDG wouldshow a performane omparable to the algorithm for the semanti dependeny graph applied inreal-world appliations.
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Chapter 5Soring
Various kinds of preferene knowledge exists at various analysis levels as shown in Fig.2.2. Thesoring proess gives preferene sores to the paked shared data strutures presribed by thegeneration and onstraint knowledge in PDG. The soring proess determines the output, i.e., theauray of the NLA system under the given generation and onstraint knowledge. The resouresof preferene knowledge, the integration method and the target appliation domain (sentenes)should be mutually related with respet to the performane of the soring proess of PDG-basedsystems. Investigating the way to onstrut the best soring method will require a great dealof researh. The purpose of this hapter is to show the basis of the soring framework withrespet to the dependeny forest and the optimum solution desribed in the previous hapters,and to show the �rst step of the soring method of PDG whih integrates some kind of multilevelpreferene knowledge enabling the experiment of the PDG framework.5.1 Preferene Knowledge and Sore Integration5.1.1 Priniple of Sore IntegrationIn designing the soring method of PDG, the following issues are taken into onsideration.(a) Corpus oriented data are used as the resoures of the preferene knowledge.(b) Di�erent kinds of preferene knowledge obtained from di�erent orpora an be the re-soures of the preferene knowledge. (knowledge resoure robustness)() Utilize learning methods to optimize the soring parameters.(a) seems to be the only and the best way to get a large amount and overage of prefereneknowledge, beause the hand oding of preferene sores is intratable. The ombination ofhuman insight (indutive ability) and the omputational power of omputers will be a goodapproah for large-sale knowledge development. This requires the ombination of the rule-based(human-based) and the statistis-based (omputer-based) methods (Su et al., 1996; Riezler etal., 2002). (b) is a requirement for the large-sale knowledge development. It seems to be verydiÆult to prepare the entire spetrum of preferene knowledge data for one very large orpus,



118if it requires human proessing. Robustness for the preferene knowledge resoures is one of thedesirable features for NLA systems. () is neessary for obtaining the optimum NLA system.Reently, a great deal of researh on learning methods for natural language sentene analysis hasbeen done for both generative (Eisner, 1996b; Collins, 1999; Charniak, 2000) and disriminativemodels (Riezler et al., 2002; Miyao and Tsujii, 2002; Clark and Curran, 2003; Clark and Curran,2004; Taskar et al., 2004; MDonald et al., 2005). These researh results should be onsideredand inorporated in the soring proess of PDG. As desribed above, the target of this researhis to show the �rst framework for integrating multilevel preferene knowledge. Introdution ofthe learning tehniques is an important subjet for future work.5.1.2 Basis of Sore IntegrationIn order to integrate the preferene knowledge, it should be onverted into some numerivalues, i.e., preferene sores. The desriptive power of the preferene knowledge is presribedby the desriptive ability of the interpretation desription sheme and the optimum solutionsearh method. For example, WPP bigram preferene sore an be represented as ar soresin the WPP trellis and the optimum WPP sequene is omputed by the Viterbi algorithm*1.WPP dependeny preferene sore an be represented as ar sores in the dependeny graphand the optimum dependeny tree is omputed by some algorithms as desribed in the previoushapter. PDG adopts the dependeny forest as the basis of the preferene sore integration. Allpreferene sores obtained from preferene knowledge at eah analysis level are integrated intothe preferene sores in the dependeny forest by use of the interpretation mappings among theWPP trellis, the phrase struture forest and and the dependeny forest. The desriptive powerof the preferene knowledge is presribed by the desriptive ability of the dependeny forest andthe graph branh algorithm in PDG.The dependeny graph of the dependeny forest an register the \unary node sores" and the\unary ar sores". The unary node sores an be represented by the unary ar sores beauseeah ar has one dependeny node and the top node has a onstant sore. As desribed in theprevious hapter, the preferene matrix PM registers the \binary ar sores" as well as the unaryar sores for a dependeny graph. PM an represent the \binary node sores" beause they anbe represented by the orresponding binary ar sores. These four sores, i.e., the unary nodesore, the unary ar sore, the binary node sore and the binary ar sore, onstitute the basisfor the soring for all kinds of preferene knowledge and are integrated into the sores of PM.Of ourse, PM has limitation in its representation ability, for example, it annot express higherorder preferene knowledges based on more than three elements, suh as sequenes with morethan three nodes and o-ourrenes of three or more ars (dependenies). PM an representthe preferene of the phrase struture rules with less than four onstituents beause they haveless than three ars. Phrase struture preferene for CFG in the Chomsky normal form an be*1 WPP trigram preferene sore annot be treated in this method.



119handled by unary model beause eah PDG rule has only one dependeny ar. As desribedin Chapter 1, majority of urrent dependeny analysis systems adopts the edge fatored modelwhih orresponds to the unary model of PDG. Higher order preferene sores should be availableby introduing higher order preferene matrix in exhange for higher omputational expenses.This is beyond the sope of this thesis.The value of the PM is de�ned by two major funtions, i.e., unary sore and binary sorefuntions, as follows:PM(ai; aj) = � � �unary sore(ai) (i = j)(1� �)�binary sore(ai; aj) (i6=j)� (0���1) is a parameter alled the \unary/binary sore distribution ratio" or simply \UBratio" that is used for adjusting the balane between the unary sore and the binary sore. Theunary and binary sores are desribed in the sueeding setions.The preferene knowledge about the relation onerning more than three nodes or three ars,for example N-gram sequene where N � 3 and phrase struture rule with more than or equalto four onstituents, are outside the sope of the urrent PDG soring proessing.5.2 Soring Funtion and Saling CoeÆientThe majority of the preferene knowledge obtained from orpora is represented as the frequen-ies of the linguisti elements or relations, suh as word, WPP, WPP sequene, phrase struturesand dependenies, in ombination with various kinds of attributes of the elements. The frequenydata should be onverted into preferene sores, whih are the basis of the integration opera-tion. These onversions are performed by heuristi funtions alled \soring funtions." Soringfuntions apply frequeny normalization beause PDG assumes that various kinds of orpora areused as the resoures of the preferene knowledge as desribed above. \logave" is the basi formof the soring funtions for an element E.basi sore(E) = logave(X;AddX;AveX) = BaseSore� log((X + 1) +AddX)log(AveX + 1)where X is the frequeny of the element E, AddX is an extra frequeny for E alled \frequenyompensation term" or \frequeny ompensation," and AveX is the average frequeny of thedata type to whih E belongs. BaseSore is a standard sore assigned to the average frequeniesand is set to 1000 urrently. For example, if the word 'theorem' has 99 frequeny and theaverage word frequeny is 9 in a orpus, the basi sore of 'theorem' is 2000 with no frequenyompensation as follows:basi sore(theorem) = logave(99; 0; 9) = 1000 � log(99 + 1)log(9 + 1) = 2000The frequeny in logave is biased by 1 so that zero frequeny element generates the zerosore. In the ase that X is equal to AveX , the basi sore is BaseSore(=1000) with nofrequeny ompensation. This is introdued to normalize the frequeny. \log" funtion is applied



120for leveling the frequenies. There is no theoretial reason for this leveling funtion but thesoring method without this leveling funtion leads to a poor result aording to the result ofthe preliminary experiments*2. The frequeny ompensation is used for, for example, adjustingthe frequeny of ompounds. The details are desribed below.PDG introdues another type of funtions alled \saling funtions," whih generate the \sal-ing oeÆients" for an element E. When saling funtion 'f' is de�ned for E, the total sore ofan element E is the produt of the soring funtion and the saling funtion of E as follows:sore(E) = f(E)�basi sore(E)Saling funtions are also heuristi funtions for representing the distribution or importane ofE in the soring proess. Examples are shown below.There is no theoretial or experimental grounding for the orretness or the optimality ofthe above soring funtion and the saling funtion that are determined by some preliminaryexperiments.5.3 Unary Sore FormulaThe \unary sore" (UnarySore) is a ombination of the unary node sore (UnaryNodeSore)and the unary ar sore (UnaryArSore) as follows:UnarySore = ��UnaryNodeSore + (1� �)�UnaryArSore2where � is the unary node/ar sore distribution ratio (UNA ratio) satisfying 0���1 .5.3.1 Unary Node Sore FormulaThe urrent implementation of the unary node sore formula ontains only one preferene sorealulated from the WPP frequenies in a orpus. The basi formula is very simple but it has tobe extended with a ompensation term in order to treat ompound words.The unary node sore for WPP node N is alulated by the following formula.unary node sore(N) = logave(freq(N); un omp(N);AveWPPF)= BaseSore� log(freq(N) + 1 + un omp(N))log(AveWPPF+ 1)where AveWPPF is the average WPP frequeny in the orpus*3. The un omp(N) (unary nodeompensation) is the frequeny ompensation term for ompound words de�ned as follows:*2 Introdution of statistial distribution model to the basi soring funtion may lead to better results.*3 This is the average ourrene number for the WPPs found in the orpus



121un omp(N) = � element freq(N) + AveWPPF�CWC�2wrdlen(N)�1 (N is ompound word)0 (Otherwise)where element freq(N) is the sum total of the frequenies of the words in N . CWC (ompoundword oeÆient) is a parameter for adjusting the preferene of ompound words against non-ompound words. wrdlen(N) is a word number of N .In general, ompound words have very small frequeny ompared with their onstituent wordsbut should have higher preferenes. The �rst term, i.e., element freq(N), assures that the om-pound word has higher frequeny and the seond term gives extra frequeny for the ompoundthat has more than two onstituents. The urrent setting of CWC is 3.5.3.2 Unary Ar Sore FormulaThe basi resoures of the unary ar sores are the dependeny frequenies, i.e., the frequeniesof the dependeny piees, in a orpus in the urrent implementation. The unary ar sore of arA is alulated by the following formula.unary ar sore(A) = basi ar sore(A)�distane ratio(A)�POS ratio(A)basi ar sore gives the basi unary ar sore for A. distane ratio and POS ratio are sal-ing oeÆients for the distane between the dependant node and the governor node and theompensation based on the type of the ar, respetively.(1) basi ar sore(A)basi ar sore alulates the basi ar sore for ar A based on the dependeny piee frequen-ies in a orpus. This frequeny is alled the asis ar frequeny*4. In addition to this standardar frequeny, three additional frequenies are used for the resoures of the preferene sore.(a) Asis ar frequeny(ASIS AF) �Frequeny of the dependeny piee(b) Generalized ar frequeny (GEND AF) �Frequeny of the generalized dependeny piee() Asis PP frequeny(ASIS PF) : Frequeny of the PP-attahment frequeny(d) Generalized PP frequeny(GEND PF) �Frequeny of the generalized PP-attahment fre-queny(a) is a basi ar frequeny, i.e., the frequeny of a dependeny piee. A dependeny pieeonsists of three elements, i.e., the dependant node, the governor node and the ar, and is amore ompliated data struture than a simple node. This auses the data sparseness problem.In order to manage this problem, a bako� method based on (b) is introdued. The abstratdependeny piee is obtained by generalizing the POSs of the dependant node and the governornode in the dependeny piee.*5 The generalization of the POS is done by simply taking the*4 Expression \ar frequeny" is used instead of \dependeny piee frequeny"*5 Various kinds of semanti abstration and word sense disambiguation methods (Hearst and Shutze, 1993;Resnik, 1993; Resnik, 1995a; Resnik, 1995b; Hirakawa et al., 1996; MCarthy, 1997; Seki et al., 1997;



122�rst harater of the POS as follows:Dependeny piee : [time/nx℄ subj���! [y/vt℄Generalized dependeny piee: [time/n℄ subj���! [y/v℄() and (d) are introdued for inorporating PP-attahment preferene whih annot be rep-resented orretly by (a) and (b). The following shows an example of PP-attahment for \seegirl with telesope."(e1) [see/vt℄ vpp �� [with/pre℄ pre �� [telesope/n℄(e2) [girl/n℄ npp �� [with/pre℄ pre �� [telesope/n℄The ar frequenies of the ars in (e1) and (e2) annot apture the ompetition between thePP-attahments \see with telesope" and \girl with telesope" beause \[see/vt℄ vpp �� [with/pre℄"and \[girl/n℄ npp �� [with/pre℄" are independent of \[with/pre℄ pre �� [telesope/n℄." This problemis solved by reduing the preposition node into an ar label as follows:(e3) [see/vt℄ vpp with ������ [telesope/n℄(e4) [girl/n℄ npp with ������ [telesope/n℄This method is not adopted in the urrent implementation of the PDG system beause theoutput of the data struture is the same as that of the existing NLA system for evaluation asdesribed in the setion below. Instead, () and (d) are introdued to solve this problem.The asis PP frequeny(ASIS PF) in () orresponds to the frequeny of the relation suh as(e3) or (e4). Generalized PP frequeny (GEND PF) is the frequeny of the generalized relationintrodued to manage the data sparseness problem. The generalized relation has the generalizedPOSs and ar name as shown in the following example, the generalized relation orrespondingto (e3).(e5) [see/v℄ with ��� [telesope/n℄The basi ar sore is de�ned as follows:basi ar sore(A) = ��asis ar sore(A) + (1� �)�generalized ar sore(A)asis ar sore and generalized ar sore represent the ar sores omputed from the asis ar fre-quenies and the generalized ar frequenies, respetively. � is alled the asis/generalized ar dis-tribution ratio whih is de�ned later in this setion. First, asis ar sore and generalized ar soreare desribed.[asis ar sore(A)℄asis ar sore(A) = logave(asis max freq(A); 0;AveASIS AF)= BaseSore� log(asis max freq(A) + 1)log(AveASIS AF + 1)Kimura and Hirakawa, 2000) are also andidates for the bako� method in future study.



123
asis max freq(A) = 8>><>>: maxffreq(Rel; I; J)jI�DN; J�GNg+PPC�asis pf(A)(DN and=or GN of A are=is ompound word(s))asis af(A) + PPC�asis pf(A)(Otherwise)where Rel,DN and GN is the relation, dependeny node and the governor node of ar A.freq(Rel,DN,GN) is the frequeny of the dependeny piee. asis af and asis pf are the frequeniesof (a) and () above, respetively. PPC(Prepositional Phrase CoeÆient) is the oeÆient foradjusting the e�et of the PP-attahment frequeny desribed above, whih is urrently set to5. AveASIS AF is the average of the asis ar frequeny in the orpus.[generalized ar sore(A)℄The generalized maximum frequeny of ar A is de�ned as follows:generalized ar sore(A) = logave(gend max freq(A); 0;AveGEND AF)= BaseSore� log(gend max freq(A) + 1)log(AveGEND AF + 1)gend max freq(A) = 8<: maxffreq(GEND Rel; I; J)jI�GEND DN; J�GEND GNg+PPC�gend pf(A)(GEND DN and=or GEND GN of A are=is ompound word(s))gend af(A) + PPC�gend pf(A) (Otherwise)where GEND Rel,GEND DN and GEND GN is the generalized relation, dependeny node andthe governor node of ar A. freq(GEND Rel,GEND DN,GEND GN) is the frequeny of thegeneralized dependeny piee. gend af and gend pf are the frequenies of (b) and (d) above,respetively. AveGEND AF is the average of the generalized ar frequeny in the orpus.[Asis/generalized ar distribution ratio �℄In the urrent implementation, the asis/generalized ar distribution ratio is de�ned suh thatthe inuene of the asis frequeny and the inuene of the generalized frequeny beome thesame in total as follows: � = ASIS KIND NUMASIS KIND NUM+GEND KIND NUMwhere ASIS KIND NUM and GEND KIND NUM are the ardinal numbers of the set of asisars and the set of generalized ars in the orpus, respetively.(2) Saling oeÆient: distane ratio(A)The distane ratio ompensates the ar sore based on the distane between the dependantnode and the governor node of an ar. Collins (1996) reported that 95.6% and 99.0% of thewords have dependant words within word distane 5 and 10, respetively. Distane parametersare utilized by many NLA systems (Eisner, 1996b; Collins, 1999; MDonald et al., 2005).Let the same(X ,Y ) mean that ar X and Y have the same relation, the same dependant nodeand the same governor node and let distane(A) mean the distane between the dependant node



124and the governor node of ar A. The following is the distane ratio formula in the urrentimplementation of the PDG system.distane ratio(A) = 1 +K� log(distane degree(A))where K is a parameter for adjusting the degree of the distane ratio. The urrent setting of Kis K = 0:5log(10) .*6 Basially, distane degree is a ratio of the ar frequeny with the distane Dagainst the average distane of the ar A.distane degree(A) = logave(df(A); df(A); average df(A))where df(A) is the frequeny of the ar X suh that same(X,A), distane(X)=distane(A).df is the distane frequeny ompensation de�ned as follows:df(A) = � 1 (df(A) = 0)0 (Otherwise)average df(A) is the average frequeny of the ar with respet to the node distane de�ned asfollows: average df(A) = 1jDSj XD2DS freq(A;D)where DS = fDijDi = distane(Ai); same(Ai; A); Ai2CorpusArsg. freq(A,D) is the frequenyof the ar X suh that same(X,A),distane(X)=D.(3) Saling oeÆient: POS ratio(A)The ar type ratio POS ratio(A) ompensates the ar sore based on the type of the ar. Thear type is mainly haraterized by the POS of the dependant node of the ar.POS ratio(A) = 8<: 0:01 (the POS of the dependant of A = det)0:2 (the dependant ofA = [be℄� v and the relation of A = subj)1 (Otherwise)The �rst ompensation is introdued to redue the inuene of the sore of the determinerbeause determiners have high frequenies or sores but are relatively unimportant for determin-ing the overall strutures. The seond ompensation is introdued to adjust the sore balane ofthe two usages of be-verb,i.e., opula and present progressive interpretation as ontained in thefollowing sentene. My hobby is wathing birds.These two ompensations are enoded by hand through a simple observation of the analysisresults. The urrent implementation of POS ratio(A) seems to be poor. Various ompensationsbased on the ar types should be introdued widely and their parameters should be optimizedby an appropriate learning method in future.*6 If the distane degree(A) is 10, the distane ratio is 1.5. This means the ar sore is multiplied by 1.5.



1255.4 Binary Sore FormulaThe binary sore (BinarySore) is a ombination of the binary node sore (BinaryNodeSore)and the binary ar sore (BinaryArSore) as follows:BinarySore = ��BinaryNodeSore + (1� �)�BinaryArSore2where � is the binary node/ar sore distribution ratio (BNA ratio) 0���1.5.4.1 Binary Node Sore FormulaThe urrent implementation of the binary node sore formula ontains a preferene sore basedon the WPP bigram frequenies in a orpus. Generalized WPP bigram frequenies are introduedas in the ase of unary node sore formula. The binary node sore for an WPP node N1 andN2 is alulated by the following formula:binary node sore(N1; N2) = basi binary node sore(N1; N2)No saling funtion is applied in the urrent implementation. basi binary node sore alu-lates the basi binary node sore for node N based on the following bigram frequenies in aorpus.(a) GWPP BGM frequeny(WPP BF) �Frequeny of the generalized WPP bigramex. [time/nx℄ [y/vt℄ (WPP bigram) ! [time/n℄ [y/v℄ (GWPP bigram)(b) POS BGM frequeny(POS BF) �Frequeny of the POS bigramex. [time/nx℄ [y/vt℄ (WPP bigram) ! [nx℄ [vt℄ (POS bigram)The basi binary node sore is de�ned as follows:basi binary node sore(N1; N2)= ��GWPP BGM sore(N1; N2) + (1� �)�POS BGM sore(N1; N2)GWPP BGM sore and POS BGM sore represent the node sores omputed from the GWPPbigram frequenies and the POS bigram frequenies, respetively. � is alled the bigram soredistribution ratio (BGM ratio) whih is de�ned later in this setion. First, GWPP BGM soreand POS BGM sore are desribed.[GWPP BGM sore(N1,N2)℄The GWPP BGM sore(N1,N2) is de�ned as follows:GWPP BGM sore(N1; N2)= logave(GWPPBGM freq(N1; N2);GWPPBGM omp(N1; N2);AveGWPP BF)= BaseSore� log(GWPPBGM freq(N1; N2) + 1 +GWPPBGM omp(N1; N2))log(AveGWPP BF + 1)



126AveGWPP BF is the average of the generalized WPP bigram frequeny in the orpus. GW-PPBGM freq (generalized WPP bigram ompensation) is the frequeny ompensation term forompound words de�ned as follows:GWPPBGM omp(N1; N2) = CBC�AveGWPP BF�(wrdnum(N1) + wrdnum(N2)� 2)where CBC(Compound Bigram CoeÆient) is the oeÆient for adjusting the degree of theompound word frequeny ompensation, whih is urrently set to 3.[POS BGM sore(N1,N2)℄The POS BGM sore(N1,N2) is de�ned as follows:POS BGM sore(N1; N2)= logave(POSPBGM freq(N1; N2);POSBGM omp(N1; N2);AvePOS BF)= BaseSore� log(POSBGM freq(N1; N2) + 1 + POSPBGM omp(N1; N2))log(AvePOS BF + 1)AvePOS BF is the average of the POS bigram frequeny in the orpus. POSBGM freq (POSbigram ompensation) is the frequeny ompensation term for ompound words de�ned as fol-lows: POSBGM omp(N1; N2) = CBC�AvePOS BF�(wrdnum(N1) + wrdnum(N2)� 2)where CBC is the oeÆient for adjusting the degree of the ompound word frequeny ompen-sation, whih is urrently set to 3.[Bigram sore distribution ratio �℄In the urrent implementation, the bigram distribution ratio is de�ned suh that the inueneof the generalized WPP bigram frequeny and the inuene of the POS bigram frequeny beomethe same in total as follows:� = GWPP BGM KIND NUMGWPP BGM KIND NUM+POS BGM KIND NUMwhere GWPP BGM KIND NUM and POS BGM KIND NUM are the ardinal numbers of theset of generalized WPP bigrams and the set of POS bigrams in the orpus, respetively.5.4.2 Binary Ar Sore FormulaThe binary ar sore provides the detailed preferene knowledge with wider ontext, whihmay ompete with the unary ar preferene. For example, \eat gasoline" has low preferenebeause of the semanti preferene that \gasoline" annot be eaten. However, this is not truein the sentene \This ar eats gasoline." The preferene sore for \eat gasoline" should behanged with respet to the subjet of \eat." This kind of preferene knowledge is representedby the binary ar o-ourrene preferene sore. In addition to the generalized dependeny



127piee introdued in Setion 5.3.2, word dependeny piee is introdued to get more abstratar frequeny in onsideration of lower frequenies of binary ars ompared to those of unaryars. The word dependeny piee is obtained by omitting the POS and dependeny relation ina dependeny piee as follows:Dependeny piee : [time/nx℄ subj���! [y/vt℄Word dependeny piee : [time℄ �! [y℄There an be various de�nitions for binary ar o-ourene. For example, the \the two arso-ouring within a sentene" is one of the possible de�nitions. Sine the purpose of the ar o-ourene sore is to measure the plausibility of a sentene interpretation, it should reet somegrammatial or semanti relation as muh as possible. From this onsideration, two onnetedars are ounted as o-oured ars in urrent implementation. There are two types of onnetionrelations, i.e., parent relation and sibling relation. Ars in parent relation have a ommon sharednode whih is a dependant node of one ar and is a governor node of another ar. Ars insibling relation have a ommon shared governor node. Sentene \This ar eats gasoline" showsan example of sibling ars onneted via the node orresponding to \eat" as follows;Sibling ars : [ar/n℄ subj���! [eat/vti℄, [gasoline/n℄ obj��! [eat/vti℄ *7The generalized dependeny ars (piees) and the word dependeny ars (piees) for these o-oured ares are as follows;Generalized sibling ars : [ar/n℄ subj���! [eat/v℄, [gasoline/n℄ obj��! [eat/v℄Word dependeny sibling ars : [ar℄ �! [eat℄, [gasoline℄ �! [eat℄The binary ar sore for two ars A1 and A2 is alulated by the following formula:binary ar sore(A1; A2) = basi binary ar sore(A1; A2)No saling funtion is applied in the urrent implementation. basi binary ar sore alulatesthe basi binary ar sore for ar A1 and A2 based on the following ar o-ourene frequeniesin a orpus.(a) CGA frequeny(CGAF) �Frequeny of the onneted generalized arsCGAF(A1,A2) is sum-total of the P CGAF(A1,A2) and S CGAF(A1,A2).*8P CGAF �Frequeny of the onneted generalized ars in parent relationS CGAF �Frequeny of the onneted generalized ars in sibling relation(b) CWA frequeny(CWAF) �Frequeny of the onneted word arsCWAF(A1,A2) is sum-total of the P CWAF(A1,A2) and S CWAF(A1,A2).P CWAF �Frequeny of the onneted word ars in parent relationS CGAF �Frequeny of the onneted word ars in sibling relation*7 POS \vti" spei�es the verb whih an either be intransitive or transitive.*8 P CGAF(A1,A2) and S CGAF(A1,A2) are 0 if the two ars are not in parent relation and in sibling relation,respetively.



128If A1 and A2 are in neither parent relation nor sibling relation, CGAF(A1,A2) andCWAF(A1,A2) have 0 value aording to the de�nition.The basi binary ar sore is de�ned as follows:basi binary ar sore(A1; A2) =  �CGA sore(A1; A2) + (1�  )�CWA sore(A1; A2)CGA sore and CWA sore represent the binary ar sores omputed from the CGA frequeniesand the CWA frequenies, respetively.  is alled the onneted ar sore distribution ratio (CASratio) whih is de�ned later in this setion. First, CGA sore and CWA sore are desribed.[CGA sore(A1,A2)℄The CGA sore(A1,A2) is de�ned as follows:CGA sore(A1; A2) = logave(CGAF(A1; A2);CGA omp(A1; A2);Ave CGAF)= BaseSore� log(CGAF(A1; A2) + 1 + CGA omp(A1; A2))log(Ave CGAF + 1)Ave CGAF is the average of the onneted generalized ar frequeny in the orpus. CGA omp(onneted generalized ar ompensation) is the frequeny ompensation term for ompoundwords de�ned as follows:CGA omp(A1; A2) = CCAC�Ave CGAF�(wrdnum(A1) + wrdnum(A2)� 4)where wrdnum(A) is the total number of words of the dependant node and the govoner node inar A. CCAC(Compound Conneted Ar CoeÆient) is the oeÆient for adjusting the degreeof the onneted frequeny ompensation, whih is urrently set to 3.[CWA sore(A1,A2)℄The CWA sore(A1,A2) is de�ned as follows:CWA sore(A1; A2) = logave(CWAF(A1; A2);CWA omp(A1; A2);Ave CWAF)= BaseSore� log(CWAF(A1; A2) + 1 + CWA omp(A1; A2))log(Ave CWAF + 1)Ave CWAF is the average of the onneted word ar frequeny in the orpus. CWA omp(onneted word ar ompensation) is the frequeny ompensation term for ompound wordsde�ned as follows:CWA omp(A1; A2) = CCAC�Ave CWAF�(wrdnum(A1) + wrdnum(A2)� 4)where wrdnum(A) is the total number of words of the dependant node and the govoner node inar A. CCAC(Compound Conneted Ar CoeÆient) is the oeÆient for adjusting the degreeof the onneted frequeny ompensation, whih is urrently set to 3.[Conneted ar sore distribution ratio  ℄In the urrent implementation, the onneted ar sore distribution ratio is de�ned suh thatthe inuene of the onneted generalized ar frequeny and the inuene of the onneted word



129ar frequeny beome the same in total as follows: = CGA KIND NUMCGA KIND NUM+CWA KIND NUMwhere CGA KIND NUM and CWA KIND NUM are the ardinal numbers of the set of onnetedgeneralized ars and the set of onneted word ars in the orpus, respetively.
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Chapter 6Evaluation
PDG is a new framework using multiple kinds of paked shared data strutures to utilizemultilevel preferene and onstraint knowledge. Traditional evaluation methods are not enoughfor evaluating some system abilities whih are targeted by PDG. This hapter �rst disuss howto evaluate the performane of PDG-based systems, then shows the experiment for investigatingthe possibilities of the PDG framework.6.1 Evaluation Measures for Dependeny-graph-basedSystems6.1.1 Traditional Evaluation Measures and Points in the PDG Evalu-ationVarious methods are proposed for evaluating natural language analysis systems (Carroll etal., 1998). The method proposed by GEIG omputes reall and preision ratio based on phraseboundaries obtained from phrase struture trees (Grishman et al., 1992). This method hasa merit in that it an be appliable to various parsing systems, but has a problem in thatsometimes it produes evaluation results format variane to human intuition. Sampson proposedan evaluation method reeting the grammar ategory information in phrase struture trees andlaims that the evaluation results of this method are loser to human ones ompared with theboundary-based method (Sampson, 2000). However, Sampson's method has lower appliabilitysine it requires ompatibility in grammar ategories of the parsing systems in order to ompare.In general, every parsing system has its own phrase struture tree and grammar ategory systemdepending on its analysis grammar. From this point of view, a new evaluation shema alledrelational shema is adopted in several evaluation methods (Lin, 1998; Srinivas, 2000; Brisoe etal., 2002).The relational shema measures the auray of syntati or logial dependeny relations be-tween words obtained from phrase struture trees. The extration of word relation from phrasestruture tree is not straightforward and no standard method based on relational shema hasbeen established so far.



132As shown above, PDG has both phrase struture trees and dependeny trees in the senteneanalysis proess. Therefore, both phrase-struture-tree-based and dependeny-struture-basedapproahes are appliable to PDG-based systems in priniple. Considering the trend towardrelational shema in sentene evaluation frameworks and the fat that PDG's �nal output isdependeny strutures, a dependeny-struture-based approah is adopted for evaluating PDG-based systems.Ratio of orret dependenies in output dependeny strutures / trees is used for evaluatingdependeny analysis systems (Ozeki, 1998; Kudo and Matsumoto, 2005; Harper et al., 1999).This thesis adopts this kind of measures named \ar preision ratio" (APR) and \word depen-deny preision ratio" (WDPR) as omprehensive evaluation measures for total analysis ability ofPDG-based systems. In addition to the omprehensive evaluation measures, this thesis proposestwo di�erent kinds of measures, i.e., \possibly orret sentene ratio" (PCSR) for evaluating thesystem ability to generate the orret hypothesis for the input sentene, and \ar disambiguationpreision ratio" (ADPR) for evaluating the system's disambiguation ability.This thesis fouses on the dependeny struture as evaluation target beause of the size ofpreparable data amount of the orret analysis results and preferene knowledge as desribedabove. However, evaluation methods are appliable to all dependeny strutures of the singledependeny model. In addition to the omprehensive evaluation measure, this thesis proposestwo more measures for evaluating hypothesis generation ability and disambiguation ability sinethe enhanement of these abilities in natural language analysis systems is a prinipal target ofPDG.6.1.2 Comprehensive Analysis AbilityThis setion desribes the ar preision ratio (APR) and the ar disambiguation preision ratio(ADPR) whih are adopted as omprehensive evaluation measures for PDG.[Ar Preision Ratio℄APR shows the auray of output dependeny trees as de�ned below.APR = Number of orret ars in ODTNumber of all ars in ODTODT is a set of ars in the optimum dependeny trees for the test sentenes. The omprehensiveanalysis ability of a system is measured by APR ranging from 0 to 1.Fig.6.1 shows the orret dependeny tree CDT and the optimum dependeny treesODT1,ODT2 for the example sentene \Time ies like an arrow"*1. The APR for this exampleis 0.6 sine there are six orret ars, i.e., oa1 - oa5 and oa9, exist in ten ars ontained in ODT1and ODT2.*1 Sores are not shown in Fig.6.1. The output trees in Fig.6.1 are not the solutions for the DF shown inFig.3.4



133[Word Dependeny Preision Ratio℄It is diÆult to apply APR to various sentene analysis systems sine it requires system-dependent information suh as WPP and dependeny relation. To avoid this problem, this thesisadopts another measure alled \word dependeny preision ratio" (WDPR) as a omprehensiveevaluation measure for dependeny trees with wide appliability. WDPR is the same as APRexept that eah output ar is judged orret if it has the same dependent and governor words asits orresponding orret ar. WDPR is obtained from the omputation algorithm for obtainingAPR by simply negleting the di�erene of POS and dependeny relation name in mathingbetween a orret ar and an output ar. WDPR for the previous example is 8=10 = 0:8 sinetwo more output ars, oa6 and oa10, are judged orret in addition to the orret ars for APR.6.1.3 Hypothesis Generation and Disambiguation Ability[Possibly Corret Sentene Ratio℄PDG has the following three funtionalities from the viewpoint of the treatment of hypothe-ses*2.(a) Generation of hypotheses for an input sentene (hypothesis generation)(b) Rejetion of hypotheses by onstraint knowledge (hypothesis rejetion)() Extration of optimum solutions based on the soring by preferene knowledge (hypothesisseletion) ������� �����	���
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134The hypothesis generation is suessful if a sentene analysis system an generate a orret inter-pretation or orret hypothesis as a andidate internally. The hypothesis rejetion is suessfulif a system rejets inorret hypotheses generated by the hypothesis generation proess. The hy-pothesis seletion is suessful if a system selets the orret hypothesis from possible hypothesesirrejetable by the onstraint knowledge. In PDG, dependeny forest is the result of proess(a) and (b) in total. Therefore, omprehensive hypothesis generation ability an be measuredby heking the existene of the orret dependeny tree in the obtained dependeny forest. Asentene whose dependeny forest ontains the orret answer is alled a possibly orret sen-tene, and the number ratio of the possibly orret sentenes to those of the whole sentenes isalled the \possibly orret sentene ratio" (PCSR). PCSR shows the omprehensive hypothesisgeneration ability of a PDG-based system. On the other hand, the hypothesis seletion abilityis basially measured by heking the orret ars in the dependeny forest. The next setiondesribes a measure for the hypothesis seletion ability.[Ar Disambiguation Preision Ratio℄ADPR measures the disambiguation ability of a PDG-based system. ADPR should reetthe omplexity of the disambiguation task. Choosing a orret answer from two andidates is�������� ��� 	 
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135easier than from ten andidates. This feature is inorporated into ADPR by assigning a soreproportional to the number of andidate ars in the disambiguation task. If the generateddependeny forest has no orret ars, no preferene knowledge exists on the basis of whih aorret answer an be seleted. Conversely, if the dependeny forest has no inorret ars, aorret answer an be seleted on the basis of any preferene knowledge. These ases are out ofthe sope of evaluation of the disambiguation ability and should be omitted in evaluation.Based on the above onsiderations, ar disambiguation preision ratio (sometimes alled dis-ambiguation preision) is de�ned as shown in Fig.6.2.This algorithm inputs a orret dependeny tree CDT , an output dependeny tree ODT1 toODTn (n is the number of the optimum trees), and a dependeny graphDG. Here, the olletionof the ars in ODT1 - ODTn is desribed as ODTArs. Step1 extrats one orret ar onearfrom CDT . If onear is not ontained in DG, it is not a target of evaluation (step2). onear isalso negleted when it has no ambiguities (step4). If there is an ambiguity for onear, step5 addsthe number of ars whih have a start position sp and exist in DG toMaxSrSore as a sore forurrent onear. In step6, ar orretion ratio CorretArRatio for urrent onear is omputedand the sore for onear is omputed as the produt of MaxSrSore and CorretArRatio.This sore is added to total ar sore ArSore. Ar disambiguation preision ratio is alulatedin step7 as the ratio of total ar sore ArSore to the maximum ar sore MaxArSore. Ardisambiguation preision ratio varies from 0 to 1.Fig.6.1 shows a orret dependeny tree and an output dependeny tree and Fig.6.3 shows DGfor the example sentene.In step1 of Fig.6.2, the �rst ar a1 in Fig.6.1 is set to onear. Step2 sets a start positionof node \[time℄-n-0," i.e., 0, to sp. Step3 does not neglet onear sine it is in DG. In step4,onear is judged as a target of evaluation sine ar num at position(0; DG) = 3. Step5 setsMaxArSore to 3. Step6 obtains CorretArRatio = 1=2 = 0:5�OneArSore = 3�0:5 = 1:5;then OneArSore is omputed as 1:5. The omputation ontinues in a similar way. Corret ara5 is negleted sine DG has only one ar pa11 on start position 3. The omputation results���������� ��	�
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136are as follows; Ar sp Arnum CrtArRto ArSra1 0 3 0.5 1.5a2 1 3 0.5 1.5a3 2 4 0.5 2.0a4 4 2 0.5 1.0total 12 6.0Arnum, CrtArRto, ArSr orrespond toArnum in DG, CorretArRatio, OneArSore,respetively.The �nal value ofMaxArSore is 12 (sum total of Arnum in DG) and that of ArSore is 6(sum total of OneArSore). Therefore, ArSeletionAbilityRatio=6=12=0:5. In this example,every ar auray is 0:5. If CorretArRatio of a3 is 1 then ArSeletionAbilityRatio is8=12= 0:67, whereas if CorretArRatio of a4 is 1 then ArSeletionAbilityRatio is 7=12 =0:58. This shows that ADPR reets the diÆulty of the ar disambiguation task.6.1.4 Environment of Experiment for Evaluation MeasuresThis setion and the next setion desribe some experimental results showing the behaviorsof the proposed evaluation measures with respet to some parameters suh as sentene length,preferene knowledge, grammar overage and so on.An English text orpus, orret dependeny trees, PDG grammar and ditionary and prefereneknowledge are prepared for evaluating the proposed evaluation methods. Preferene knowledgehere is a WPP frequeny in the orpus. Preferene sore PS(N) for node N (WPP) is de�nedas follows.PS(N) = log(X)= log(MF) (0�PS(X)�1)where X is the frequeny of N in the orpus, MF is the maximum frequeny of WPPs in the or-pus. The optimum tree has the highest total preferene sores among the well-formed dependenytrees for a given sentene.The text orpus onsists of tehnial douments ontaining around 620,000 sentenes (4,630,000words*3) in total. In order to prepare a large amount of orret dependeny trees and WPPfrequeny data, an existing sentene analysis system (alled the orale system) is used as thegenerator of those data. The orale system (Amano et al., 1989) is a real world rule based systemwith a long development history, whih is urrently used for translating tehnial douments,web pages, mail texts and so on.Data �ltering is applied to the original text orpus sine it ontains many tables, indiesharateristi of tehnial manuals and many ungrammatial sentenes originated from typingand sentene extration errors. The orret dependeny trees are not obtainable for the sentenes*3 ounted by unix \w" ommand
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Fig.6.4 Distribution of sentene length for sentenes in the open datawhih are not parsable by the orale system. The following sentenes are removed from theoriginal orpus.(a) Unparsable sentenes (around 71,000 sentenes)(b) Parsable sentenes whose last harater is not a period (around 204,000 sentenes)() Parsable and period-ending sentenes whose �rst harater is not a apital letter (around220,000 sentenes)The remaining orpus has 125,320 sentenes (1,844,758 words). The orale system generatesthe orret dependeny trees and WPPs for these sentenes. This orpus is divided into opendata (8,605 sentenes, 126,684 words) and lose data (116,715 sentenes, 1718074 words). Theopen data is used for evaluation test set and the lose data is used for preferene knowledgeresoure, i.e., the soure of WPP frequenies. The number of extrated WPPs is 1,869,000(44,470 kinds of WPP)*4. Fig.6.4. shows the distribution of word length of sentenes in the opendata. In order to see a brief auray of the orale system, 136 sentenes are seleted randomlybut with similar distribution shown in Fig.6.4 from a set of sentenes whih are parsable usingthe basi grammar desribed below*5. The APR for this sentene set with respet to humananalysis results is 97.2%. Therefore, the output of the orale system is a good approximation ofhuman orret data.Two PDG grammars alled a basi grammar (Grammar-B) and a mini grammar (Grammar-M)are prepared. The basi grammar onsists of basi grammar rules whih overs sentene varia-tions suh as noun/verb/adjetive/adverbial/prepositional phrases, simple/omplex/ompoundsentenes, relative/subordinate lauses and Onions' 5 sentene patterns. The basi grammardoes not aept insertion, omission, inversion and idiomati strutures (ex. not only .. but also..). The basi grammar is superior to the mini grammar in the generation and onstraint abil-*4 The number of WPPs here is not the same as that of words, sine WPP is ounted based on the result ofmorphologial analyzer*5 Sine unparsable sentenes have no output, they are negleted in the sueeding evaluation experiments.Some extra method is required for obtaining partial phrase struture trees for unparsable sentenes.



138ities. The basi grammar has higher generation ability ompared with the mini grammar sineit aepts syntati patterns with riher phrase variations (numeri/symbol expressions in nounphrase, double quote expression, optional expressions et.), oordinations (noun phrase, adjetivephrase, adverb phrase et.), greater number of optional elements (prepositional phrases, adverbset.) and so forth. The basi grammar has riher and more preise onstraints, suh as additionalnumber agreement*6 as found in \these desks," sequene of tenses, sub-ategorization frames ofverbs, strutural onstraint based on morphologial features and so on. The basi grammaronsists of 907 CFG rules whereas the mini grammar onsists of 377 CFG rules. These gram-mars produe the same type of dependeny strutures as the orale system. The morphologialanalyzer is shared with the PDG system and the orale system.6.1.5 Evaluation Experiment for Evaluation MeasuresAn evaluation experiment for the open data and basi grammar is performed using a prototypePDG system implemented in Prolog. The test sentenes ontaining more than 22 words arenegleted due to the limitation of Prolog system resoures. 4334 sentenes out of 6882 testsentenes are parsable by Grammar-B. The parse suess ratio is 63%. Without applying speialtreatment suh as onstrution of the whole phrase struture tree from partial phrase struturetrees, unparsable sentenes (2584 sentenes) are simply negleted in this experiment.[Comparison between APR and WDPR℄Fig.6.5 shows the omparison of APR and WDPR with/without the preferene knowledge(PK). Results obtained without the preferene knowledge are alled baseline performane in thisexperiment. In total, APR with PK (AK) is 85.1%, APR without PK (baseline) (AB) is 77.8%,WDPR with PK (WK) is 87.9% and WDPR without PK (DB) is 81.8%. Ar preision and worddependeny preision are equivalent measures and have the same utuation for sentene length.
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139Only a few syntati variations exists for very short sentenes. This seems to ause low APR forsentene length 2 and 3. AK and AB have an average gap of 7.3%, whereas WK and WB haveone of 6.1%. WDPR has a greater gap than APR. AK and WK have an average gap of 2.3%,whereas AB and WB have one of 4.0%. Fewer gaps is observed when the preferene knowledgeis utilized.In this experiment, English douments are used. English is a strutural language where wordorder has important roll in deiding funtional relations between words. Therefore, word depen-deny may have high orrelation with funtional relations between words. On the other hand, forexample in Japanese, word order is less important to deide funtional relation between words.The behavior of APR and WDPR may be di�erent in Japanese.[Comparison of APR and ADPR with respet to preferene knowledge℄Fig.6.6 shows the omparison of APR and ADPR with/without the preferene knowledge (PK).In total, APR with PK (AK) is 85.1%, APR without PK (baseline) (AB) is 77.8%, ADPR withPK (DK) is 65.8% and ADPR without PK (DB) is 42.0%. Although the preferene knowledgeis simple, both measures show signi�ant improvement by applying PK. For example, sentene"The integer onstant for the sentene bu�er." has two readings orresponding to \The integeronstant=n for ..." (orret) and \The integer onstant=adj for ..." (inorret). In this ase,the orret interpretation is seleted as the optimum solution sine WPP onstant=n has largerfrequeny than that of onstant=adj.The utuations of AK and DK show overall mutual relation. But a few exeptions are seen;e.g. in word length 14 and 15 where AK dereases in spite of inrease of DK. This is reasonablesine ADPR measures a disambiguation ability while APR measures a omprehensive senteneanalysis ability inluding the disambiguation ability as desribed above.DB is almost onstant with respet to sentene length. This means the diÆulty of the disam-biguation task (number of ambiguous ars) does not show remarkable inrease with respet tosentene length. In ontrast, DK dereases as sentene length inreases. This means the urrentstrategy for applying preferene knowledge provides less performane for longer sentenes.
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140[Comparison of APR and ADPR with respet to PCSR℄There are 3224 possibly orret sentenes out of 4334 parsable sentenes. The PCSR is 74.4%.To larify the inuene of PCSR, data for only the possibly orret sentenes, i.e., PCSR is100%, is estimated. Fig.6.7 shows the omparison of APR and ADPR obtained from the datawith 100%-PCSR (C: Corret answer ontained) and 74%-PCSR (A: All sentenes). In total,APR for 100%-PCSR (AC) is 90.4%, APR for 74%-PCSR (AA) is 85.1%, ADPR for 100%-PCSR(DC) is 85.1% and ADPR for 74%-PCSR (DA) is 42.0%. Very large improvement of APR andADPR is ahieved by inreasing the APR of the target sentene olletion.Comparing DC and DA, ADPR seems to be independent of PCSR and dereases as targetsentene length inreases. In ontrast, APR seems to be dependent on PCSR, sine AC (100%-PCSR) is almost onstant for sentenes with more than 6 words while AA (74%-PCSR) seems toderease as sentene length inreases. This suggests that PCSR has a relation with the dereaseof APR against sentene length and the improvement in omprehensive hypothesis generationability is e�etive for keeping high APR for longer sentenes.
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��� ������������������ ��!��� ����������	������ ��!"��#$%�&'#(��� ������������������ "�!"��#$%�&'#(��� ����������	������ "�!Fig.6.7 Comparison of APR and ADPR with respet to PCSR[Comparison of APR and ADPR (Coverage of Grammar)℄The experiment using the basi grammar (Grammar-B) and the mini grammar (Grammar-M)shows that Grammar-B has 4334 parsable sentenes (parse suess ratio 63.0%) ontaining 3224possibly orret sentenes (PCSR 74.4%), and Grammar-M has 3139 parsable sentenes (parsesuess ratio 45.6%) ontaining 2135 possibly orret sentenes (PCSR 68.0%). Fig.6.8 showsthe omparison of APR and ADPR obtained from Grammar-B and Grammar-M. In total, APRfor Grammar-B (AB) is 85.1%, APR for Grammar-M (AM) is 83.4%, ADPR for Grammar-B(AB) is 65.8% and ADPR for Grammar-M is 68.9%.DB and DM have almost the same values with some utuations for sentenes with length6 to 16. In ontrast, AB always has slightly higher values ompared with those of AM in thesame sentene length range. This suggests the reasonable assumption that ADPR is basiallyindependent of grammar, whereas ACR is dependent on grammar. If ADPR is independent of



141grammar, the derease of ADPR against sentene length should mainly be aused by the urrentstrategy for applying preferene knowledge.
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��� ����������������� �������� �����������������  �� �!����"�#$�%��� ����������������� ��!��!����"�#$�%��� �����������������  �! �Fig.6.8 Comparison of APR and ADPR with respet to di�erene of grammar6.2 System Evaluation with respet to PrefereneKnowledgeThe evaluation of the prototype PDG system desribed above is done with respet to theombination of various kinds of preferene knowledge desribed in Chapter 5. The urrentimplementation inorporates four types of preferene sores, i.e., the unary node sore based onWPP frequeny, the unary ar sore based on ar (i.e., dependeny piee) frequeny, the binarynode sore based on WPP bigram frequeny and the binary ar sore based on ar o-ourrenefrequeny. These preferene soures are expressed by UN (unary node), UA (unary ar), BN(binary node) and BA(binary ar), respetively. The ombination of preferene knowledge isrepresented by '+' operator. For example, PDG system using the UN and UA is written as'UN+UA'. Empty preferene knowledge, i.e., the baseline system performane, is representedby � symbol. The ombination of the measurement and preferene knowledge is represented by\/." For example, the measurement \APR (ar preision ratio)" for the knowledge ombination\UN+UA" is written as \APR/UN+UA." The test sentenes and the orpus are the same asthose desribed in Setion 6.1.4.The baseline evaluation is done with no preferene knowledge. This means all well-formeddependeny trees are the optimum solutions for the input sentene. In the following experiments,the number of solutions in baseline exeution is limited up to 100. This is beause the numberof the optimum solutions grows exponentially as the sentene length inreases and a whole setof dependeny trees annot be obtained due to omputational resoure limitation.There are a lot of ombinations of preferene knowledge. The following setion basially reportsthe baseline (�) performane, single knowledge (UN, UA, BN and BA) performanes and thethree ombined knowledge (UN+UA, UN+BN and UA+BN) performanes whih have shown



142good performane in the experiment.6.2.1 Evaluation of Comprehensive Sentene Analysis AbilityFig.6.9 shows the omparison of APR for whole sentenes with respet to the ombination ofpreferene knowledge soures. In total, as shown in the �gure, the average of APR/�, APR/UN,APR/UA, APR/BN, APR/BA, APR/UN+UA, APR/UN+BN and APR/UA+BN are 77.4%,84.6%, 87.4%, 83.6%, 80.4%, 88.3%, 84.3% and 88.3%, respetively. The PCSR for the testsentenes is 74% as desribed above. APR for the whole sentenes shows APR-74PCSR, i.e.,APR for 74% PCSR sentenes.
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��� �� ���� �������� ���� �������� ���� �������� ���� �!������"�� ���� ��������"�� ���� ��������"�� ���� ������#���� ������Fig.6.9 Comparison of APR w.r.t. preferene knowledge (whole sentenes)UA provides the best performane 87.4% in ase of single knowledge use. BA provides the worstperformane 80.4% but it still outperforms 3.0% ompaired with baseline �. The preformanesof binary relation BN and BA are relatively low. This may be aused by the data sparsenessproblem, i.e., the inadequey of the training orpus data. Experiment with muh larger trainingorpus is one of the future works. The ombination of the UN and UA gives better performaneompared with those obtained by independent knowledge soures.
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143Fig.6.10 shows the results for only the possibly orret sentenes, i.e., PCSR is 100%.In total, as shown in the �gure, the average of APR-100PCSR/�, APR-100PCSR/UN,APR-100PCSR/UA, APR-100PCSR/BN, APR-100PCSR/BA, APR-100PCSR/UN+UA, APR-100PCSR/UN+BN and APR-100PCSR/UA+BN are 82.4%, 90.1%, 93.2%, 88.9%, 85.3%,94.1%, 89.7% and 93.9%, respetively. The di�erenes between APR-74PCSRs and APR-100PCSR are within the range from 4.9% to 5.9%. APR-100PCSR is more onstant with respetto sentene length ompared with APR-74PCSR.6.2.2 Evaluation of Disambiguation AbilityFig.6.11 shows the omparison of ADPR for whole sentenes with respet to the ombination ofpreferene knowledge soures. In total, as shown in the �gure, the average of ADPR-74PCSR/ �,ADPR-74PCSR/UN, ADPR-74PCSR/UA, ADPR-74PCSR/BN, ADPR-74PCSR/BA, ADPR-74PCSR/UN+UA, ADPR-74PCSR/UN+BN and ADPR-74PCSR/UA+BN are 42.7%, 65.0%,74.6%, 62.1%, 51.6%, 77.6%, 64.6%, 77.6%, respetively. The ombination of the preferenesore UN and UA gives 12.6% and 3.0% improvements for ADPR-74PCSR/UN and ADPR-74PCSR/UA, respetively.

�����������������������	��
������
� � � 
 �� �� �� �� �
 �� ����

���� �� ���� �������� ����  !����"� ���� �#�$��"� ���� �$������%�� ����   ������%"� ���� �!������%"� ����   ����&���� !#� ��
Fig.6.11 Comparison of ADPR w.r.t. preferene knowledge (whole sentenes)Fig.6.12 shows the result for ADPR-100PCSR. In total, as shown in the �gure, the averageof ADPR-100PCSR/�, ADPR-100PCSR/UN, ADPR-100PCSR/UA, ADPR-100PCSR/BN,ADPR-100PCSR/BA, ADPR-100PCSR/UN+UA, ADPR-100PCSR/UN+BN and ADPR-100PCSR/UA+BN are 42.0%, 66.1%, 76.3%, 62.3%, 50.7%, 79.1%, 65.2%, 78.5%, respetively.In ontrast to the APR, PCSR has no strong e�et on ADPR as desribed in Setion 6.1.5. Thedi�erenes between ADPR-74PCSRs and ADPR-100PCSRs are within the range from -1.5% to0.9%. This di�erene is muh smaller ompared with the di�erenes between APR-74PCSRsand APR-100PCSRs. This result suggests that ADPR is almost independent of PCSR.
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Fig.6.12 Comparison of ADPR w.r.t. preferene knowledge (100% PCSR)6.2.3 Evaluation of Seletivity Performane[Average Optimum Solution Number℄Fig.6.13 shows the omparison of the average optimum solution number (AOSN) for wholesentenes with respet to the ombination of preferene knowledge soures, i.e., UN, UA, BN,BA and UN+UA *7. In total, as shown in the �gure, the average of AOSN/UN, AOSN/UA,AOSN/BN, AOSN/BA and AOSN/UN+UA are 5.1, 1.3, 5.3, 5.1 and 1.1, respetively. UN, BNand BA has lear growth of the AOSN with respet to sentene length whereas UA and UN+UAhave very small growth in AOSN. The ombination of preferene knowledge works to dereaseAOSN.The performanes of BN and BA may be improved by inreasing the training orpus size toavoid the data sparseness problem. This is one of the future works.
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Fig.6.13 Comparison of average optimum solution number w.r.t. preferene knowledge*7 The baseline data is not shown in the �gure beause the number of solutions is limited up to 100 in baselineexeution.



145[Average Expanded Problem Number in Total℄Fig.6.14 shows the omparison of the average expanded problem number (AEPN) for wholesentenes with respet to the ombination of preferene knowledge soures, i.e., UN, UA, BN, BAand UN+UA. In total, as shown in the �gure, the average of AEPN/UN, AEPN/UA, AEPN/BN,AEPN/BA and AEPN/UN+UA are 18.1, 3.7, 15.8, 15.2 and 3.3, respetively. This result showsthe same tendeny with the AOSN. In the AEPN evaluation, BN outperformed UN in ontrastto the AOSN evaluation. AEPN/� is not measured beause the number of solutions is limitedup to 100 in baseline exeution.
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Fig.6.14 Comparison of average expanded problem number w.r.t. preferene knowledge[Average Expanded Problem Number for the First Optimum Solution℄Fig.6.15 shows the omparison of the average expanded problem number for the �rst optimumsolution (AEPNF1OS) with respet to the ombination of preferene knowledge soures, i.e.,UN, UA, BN, BA and UN+UA. In total, as shown in the �gure, the average of AEPNF1OS/UN,AEPNF1OS/UA, AEPNF1OS/BN, AEPNF1OS/BA and AEPNF1OS/UN+UA are 2.3, 1.5, 1.6,1.1 and 1.6, respetively. AEPNF1OS/� (baseline) is always 1.0 beause all solutions are opti-mum solutions.AEPNF1OS/BA has the least value 1.1 whih is lose to the baseline value 1.0. This reetsthe fat that BA has the biggest number of average optimum solutions as shown above. BAneeds big amount of training orpus to obtain enough seletivity performane by avoiding thedata sparseness problem. AEPNF1OS/UN has the biggest value 2.3. This means that a set of themost frequent WPPs for the words in a sentene is not neessarily orrespond to the well-formeddependeny tree. The ombination of UN and UA (UN+UA) requires a bit more omputationfor obtaining the �rst optimum solution ompared with UA due to the inuene of UN.
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Fig.6.15 Comparison of average expanded problem number for the �rst optimum solutionw.r.t. preferene knowledge6.3 Conluding Remarks for the ExperimentsThis setion disussed the sentene analysis ability based on the PDG framework and proposedthree kinds of evaluation measures for dependeny strutures. The ar preision ratio (APR)and the word dependeny preision ratio (WDPR) measure omprehensive analysis ability. Thepossibly orret sentene ratio (PCSR) and the ar disambiguation preision ratio (ADPR) mea-sures a part of analysis abilities, i.e., omprehensive hypothesis generation ability and hypothesisseletion ability, respetively.The experiment using English tehnial douments suggests that ADPR is independent ofPCSR and the grammar overage. This means ADPR has good harateristis for measuringthe ability of preferene knowledge and appliation strategies. The urrent simple prefereneknowledge and strategy shows the derease of ADPR against sentene length.From the experiment reported in this thesis, extending the overage of the basi grammar is abasi task for improving the sentene analysis ability and improvement of PCSR and prefereneknowledge appliation strategy are e�etive for improving the system performane for longersentenes.The evaluation measures desribed in this setion are appliable not only to PDG-based sys-tems but also to other dependeny struture based sentene analysis systems. In addition, byignoring ar labels and POS ategories as desribed in 6.1.2, PCSR and ADPR an be revisedto the sentene measures suitable for omparing di�erent sentene analyzers with di�erent nodeategory and ar label systems.Setion 6.2.1 has shown that the evaluation of omprehensive sentene analysis ability is im-proved by introduing every kind of preferene knowledge. Among various kinds of the om-binations of preferene knowledge, the best APR 88.3% is obtained by UN+UA and UA+BNin this experiment. This is 10.9% improvement ompared with the baseline performane 77.4%APR. As shown in setion 6.1, the disambiguation ability is well measured or ompared by using



147ADPR instead of APR. The ADPR of both UN+UA and UA+BN is 77.6% whih shows greatimprovement ompared with baseline performane ADPR/� 42.7%.In omparison between UN+UA and UA+BN, ADPR-100PCSR/UN+UA (79.1%) is a little bitbetter than ADPR-100PCSR/UA+BN (78.5%). Furthermore, UN+UA is superior to UA+BNbeause the unary model, i.e., UN+UA, requires less omputational resoure than the binarymodel, i.e., UA+BN, in general. The ombination of UN and UA provides the best performanein this experiment. However, an experiment using big amount of training orpus should be donefor the binary knowledge to obtain enough performane by avoiding the data sparseness problemin future.Setion 6.2.3 has shown that the AOSN, AEPN and AEPNF1OS of UN+UA is 1.1, 3.3, 1.6,respetively. These are very small and show the very good seletivity performane of UN+UA.
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Chapter 7Future Work
7.1 Development of Real-world PDG SystemThe urrent PDG system is a Prolog-based prototype system aimed at the feasibility study ofthe PDG framework. The researh and development of a PDG system appliable to real-worldappliations is one of the important future works.Improvements in the auray and eÆieny of the PDG system are expeted by the enhane-ments of the grammar desription framework, suh as the introdution of more detailed ondi-tions based on feature desriptions and non-obligatory onstituent desription into a grammarrule. The introdution of non-obligatory onstituent desriptions redues not only the number ofedges generated during a parse proess but also the number of equivalent ars in the generatedinitial dependeny forest. The generated equivalent ars an also be redued if sharable arsare identi�ed before parsing by applying the pre-analysis of the grammar. This is an interestingresearh topi not only for building an eÆient system but also for understanding the relation(or exploring the equivalene) between onstitueny and dependeny. In onjuntion with thesemethodologial improvements, system implementation using programming languages like C andC++ should be onduted for the real-world PDG system along with the development of thePDG grammar.The urrent prototype PDG system adopts a heuristi approah instead of a learning approahfor tuning the soring parameters. Learning tehnologies have been one of the most advanedareas in natural language proessing for a number of years and several exellent learning methodsbased on annotated orpora have been proposed. In addition to the generative learning model,the disriminative learning model, whih an treat the strutural parameters based on the entiresentene struture, is studied in detail (MDonald et al., 2005). The introdution of suh learningmehanisms in the soring proess is one of the important and promising future works to obtainthe best auray using the PDG framework.



1507.2 Researh on Semanti StrutureSemanti proessing is a very important but diÆult NLP researh topi whih requires on-siderable researh. There is no ommon onsensus on the representation sheme for semantisentene strutures. MTT adopts the semanti graph struture representing prediate argumentrelations as its basi semanti representation. This kind of deep prediate argument relation willbe neessary for properly representing the meanings of various sentenes.One simple but basi extension of PDG framework toward the semanti layer analysis is tointrodue the semanti dependeny tree as a kind of semanti layer sentene interpretation. Thesemanti dependeny tree onsists of onept nodes and ars labeled with semanti dependenyrelations. The semanti dependeny tree is a simple but natural expansion of the syntatidependeny tree whih is in the urrent uppermost level of the PDG arhiteture. Eah WPPnode has some orresponding semanti nodes (onepts) and eah syntati ar has orrespondingsemanti ars (semanti roles). The possible onstrution of the semanti dependeny tree shouldbe guided by some lexialized prediate-argument information or the ase frame struture asintrodued by the semanti dependeny graph (Hirakawa, 2002).Fig.7.1 shows PDG model extended to the semanti dependeny level. A semanti dependenyforest is used to represent a set of semanti dependeny trees that represent the semanti in-terpretations of a sentene. The paked shared data struture for a set of semanti dependenytrees is a semanti dependeny forest. The semanti dependeny forest is expeted to be ob-tained from a (syntati) dependeny forest by two kinds of semanti expansions, i.e., semantinode expansion and semanti ar expansion. Fig.7.2 shows a oneptual example of semantiexpansion for the Japanese sentene \Kanojo no Me wa Ookii (��������)" (Her eyes are
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Fig.7.2 Semanti expansion proessbig). By applying semanti node expansion, the WPP nodes in a (syntati) dependeny forestare expanded to onept nodes. The WPP node labeled \eye/N" in the �gure orresponds to theword \Me (�)" (eye) in Japanese, whih has two meanings orresponding to \eye" and \enter."This WPP node is expanded to two onept nodes with labels \eye/N/EYE" and \eye/N/CTR."The lexial onepts an be provided by onept ditionaries suh as the EDR ditionary (EDR,1996), Nihongo-Goi-Taikei (Ikehara, 1999), and WordNet (Fellbaum, 1998).The semanti ar expansion operation generates more than one semanti ar from eah (syn-tati) dependeny ar in the (syntati) dependeny forest. One (syntati) dependeny arlabeled by the Japanese partile \no (�)" an represent various semanti relations suh as \pos-session," \reator," \agent," and \target" between two nouns inluding verbal nouns. In Fig.7.2,the syntati ar labeled with \no" is expanded to two semanti dependeny ars labeled withthe semanti dependeny relation \has" (possessive) and \make" (reator). The expansion froma syntati dependeny relation to semanti dependeny relations is performed by onsulting amapping table whih de�nes the mapping between them. Provided that the semanti expan-sion generates M onept nodes and N semanti dependeny ars from one WPP node and onesyntati dependeny ar, respetively, the expanded semanti forest has around M times nodesand M2 �N times ars as ompared to the syntati dependeny forest. Thus, the ombinato-rial explosion in the size of the semanti dependeny forest through the semanti expansion issuppressed beause the semanti dependeny forest is also a paked shared data struture.It is obvious that the interpretation mapping exists between the (syntati) dependeny forestand the semanti dependeny forest. Therefore, this framework satis�es the requirements of theMPDC model, beause the semanti expansion maintains the mapping between nodes and arsin the dependeny forest and those in the semanti dependeny forest. The soring and theoptimum searh methods are appliable to both the syntati and semanti dependeny forests.



152Needless to say, the approah desribed in this setion is a very rough approximation andsimply shows the researh diretion toward semanti proessing. This requires intensive researhfrom both linguisti and omputational perspetives.7.3 Bidiretional Model of PDGIn this thesis, PDG fouses on the sentene analysis diretion. However, its basi framework,i.e., the MPDC model, is inherently bidiretional as well as it is true in MTT. For example, thepartial struture mapping rule in Setion 3.4.2 simply desribes a mapping between a partialphrase struture and a partial dependeny struture and therefore it an be used bidiretionally.The generation of a phrase struture from a dependeny struture is an interesting future researhtopi.Researhes on the equivalene between the phrase struture grammar and the dependenygrammar have not sueeded in showing the strong equivalene between CFG and Tesnieremodel DG under the equivalene riteria \rami�ation" as desribed in Chapter 1. If a properformal dependeny grammar framework based on the partial struture mapping is established, itmay be possible to disuss the desriptive power and/or the equivalene of the phrase struturegrammar and the dependeny grammar based on the new framework. This would make learerand deeper understanding for both of the two major syntati representations and the relationbetween them.
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Chapter 8Conlusion
This thesis proposed a novel dependeny analysis framework alled the \preferene dependenygrammar (PDG)," whih utilized the two major syntati representations, i.e., the phrase stru-ture and the dependeny struture to obtain the bene�t from both representations. Based on thedisussion on the multilevel model with respet to the roles of preferene and onstraint knowl-edge, PDG adopts the three level MPDC arhiteture (multilevel system whih adopts pakingmethod) with two intermediate levels (morphologial struture and phrase struture) and theuppermost level (dependeny struture). In this arhiteture, the phrase struture level (CFGrules) works as a �lter for the dependeny struture level. This suppresses the magni�ation ofthe searh spae and enables PDG to inlude full POS ambiguities at dependeny level.In PDG design arhiteture, the higher desription ability of the dependeny level data stru-ture is required beause the uppermost level is the basis of the knowledge integration in theMPDC model. In order to realize PDG arhiteture, two ore tehnologies, i.e. a new datastruture \dependeny forest" and a new algorithm \graph branh algorithm" are proposed inthis thesis. The dependeny forest ful�ls the multilevel model mapping ondition required forthe MPDC model. The ompleteness and soundness of the dependeny forest with respet tothe phrase struture forest is assured by this thesis.The dependeny forest is a data struture with a high desriptive ability to integrate the pref-erene and onstraint knowledge by providing two matries, i.e., the preferene matrix and theonstraint matrix, whih represent the arbitrary ar o-ourrene preferenes and onstraints,respetively. This thesis proposed a new algorithm alled the \graph branh algorithm" thatsearhes the optimum well-formed dependeny tree in a dependeny forest based on the branhand bound priniple. By adopting these data strutures and algorithms, PDG enables the propertreatment of the single valene oupation onstraint and the non-projetive dependeny stru-ture, whih were not handled properly by the traditional methods. The desriptive power of thedependeny forest for ambiguous onstrutions is examined by using the experimental grammarwith the rules that generate typial types of syntati ambiguities as well as an non-projetiveonstrution.In addition to the ar preision ratio (APR) (measure for the omprehensive sentene analysisability), this thesis proposed two new evaluation measures for dependeny-based NLA systems



154to measure the performanes of their preferene and onstraint knowledge. The possibly orretsentene ratio (PCSR) measures the hypothesis generation ability, i.e., the performane of theonstraint knowledge inluding the generation knowledge. The ar disambiguation preisionratio (ADPR) whih measures disambiguation ability, i.e., the performane of the prefereneknowledge. This thesis reported an experimental result for heking these measures using thePDG prototype system. The disambiguation ability is well measured or ompared by usingADPR instead of APR.This thesis desribed the experimental results using the PDG prototype system with the proto-type basi English grammar. Four types of preferene knowledge (the WPP unigram frequeny,the WPP bigram frequeny, the unary dependeny frequeny and the binary dependeny fre-queny) are extrated from the dependeny tree orpus obtained by the orale system (existingmahine translation system). The evaluation of omprehensive sentene analysis ability is im-proved by introduing every kind of preferene knowledge. Among various kinds of the ombi-nations of preferene knowledge, the best APR 88.3% is obtained by UA+UN (unary ar andunary node sores) and UA+BN (unary ar and binary node sores) in this experiment. This is10.9% improvement ompared with the baseline performane 77.4% APR.This thesis introdued the foundations of PDG whih utilizes the two major syntati repre-sentations and showed its feasibility. There remain a lot of future works in PDG researh towardreal-world NLP appliations and semanti analysis.
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Appendix AProblem in the Syntati GraphConsider the parsing of \Tokyo taxi driver all enter" using the following grammar rules andlexions.[Grammar Rules℄np/NP ! np/NP : [℄np/Nb ! np1/NP1,n/Na,n/Nb : [ar(nj,NP1,Nb),ar(n,Na,Nb)℄np/Na ! np2/NP2,n/Na : [ar(n,NP2,Na)℄np/Na ! np3/NP3,n/Na : [ar(n,NP3,Na)℄np1/N ! n/Na,n/Nb,n/N : [ar(n,Na,Nb),ar(n,Nb,N)℄np2/Nd ! n/Na,n/Nb,n/N,n/Nd : [ar(nj,Na,N),ar(n,Nb,N),ar(n,N,Nd)℄np3/Nd ! n/Na,n/Nb,n/N,n/Nd : [ar(n,Na,Nb),ar(nj,Nb,Nd),ar(n,N,Nd)℄[Lexion℄word(n,[Tokyo℄). word(n,[taxi℄). word(n,[driver℄).word(n,[all℄). word(n,[enter℄).This example sentene has three well-formed dependeny trees shown in Fig.A.1 (a), (b) and(). The boxes np1, np2 and np3 in the dependeny trees are given only for showing the orre-spondenes between phrase strutures and dependeny strutures.
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156Sine n-1 and n-2 in (a), n-2 and n-3 in (b) and n-3 and n-1 in () have o-ourrenerelation, respetively, the values of the exlusion matrix for these three pairs are 0 (\ " inthe �gure). This allows the existene of the dependeny tree (d), whih has no orrespondingphrase struture tree in the phrase struture forest in the syntati graph/the exlusion matrix.Therefore, the syntati graph violates the soundness ondition.
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