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Abstra
tNatural language pro
essing involves very 
ompli
ated and hard-to-formalize design issues be-
ause it has to treat a wide range of di�erent kinds of linguisti
 knowledge, su
h as morphologi
al,synta
ti
, semanti
 and 
ontextual, with regularity and ex
eptionality. Various kinds of gram-mar and knowledge representation frameworks and their pro
essing algorithms are proposed inea
h linguisti
 level. Morphologi
al pro
essing is one of the most developed and establishedte
hnologies in the area of natural language analysis (NLA). Semanti
 pro
essing needs morefuture resear
hes. The synta
ti
 layer, whi
h is a bridge to the semanti
 layer, has been studiedintensively for years and various approa
hes have been proposed in the �elds of 
omputationallinguisti
s and linguisti
s.Phrase stru
ture syntax (Chomsky, 1956) and dependen
y syntax (Tesni�ere, 1969) are twomajor synta
ti
 theories, and phrase stru
ture and dependen
y stru
ture are widely used forthe synta
ti
 representation of senten
es. These stru
tures are 
onsidered to show di�erentdimensions of the senten
e stru
ture and 
an be used for 
ompensating ea
h other. However,insuÆ
ient e�orts have been made for the integrated use of these synta
ti
 stru
tures, espe
iallyin dependen
y analysis resear
h.This thesis proposes a novel dependen
y analysis method 
alled \Preferen
e Dependen
yGrammar (PDG)," whi
h adopts multilevel ar
hite
ture utilizing the morphologi
al stru
ture,phrase stru
ture, and dependen
y stru
ture representations. Ea
h of the representations is akind of pa
ked shared data stru
ture that en
ompasses all possible senten
e interpretations in itsinterpretation spa
e. This PDG ar
hite
ture is introdu
ed based on the following design prin-
iples obtained through dis
ussions on the NLA framework, whi
h utilizes multilevel linguisti
representations with respe
t to preferen
e and 
onstraint knowledge.(a) Avoiding over pruning as well as suppressing 
ombinatorial explosion as mu
h as possible(b) Adopting e�e
tive pruning by applying possible 
onstraints in the lower level(
) Enabling optimum sear
h in the uppermost level to utilize various levels of preferen
eknowledgePDG is more advantageous than traditional dependen
y analysis methods in that it 
an handlePOS ambiguities in 
onjun
tion with dependen
y ambiguities and 
an in
orporate more detailedi



des
riptions for both preferen
e and 
onstraint knowledge for the dependen
y stru
ture. The
ore te
hnologies of PDG for enabling these features are a new data stru
ture \dependen
yforest" and a new algorithm \graph bran
h algorithm," whi
h are the main 
ontributions of thisthesis.The dependen
y forest is a new pa
ked shared data stru
ture for representing a set of de-penden
y trees with their preferen
e s
ores. The dependen
y forest 
onsists of the dependen
ygraph, the 
onstraint matrix and the preferen
e matrix. The multilevel preferen
es and 
on-straints are integrated into the preferen
e matrix and the 
onstraint matrix of a dependen
yforest. The dependen
y forest has a 
omplete and sound mapping to the 
orresponding phrasestru
ture forest. Be
ause of this feature, the phrase stru
ture grammar (CFG grammar) 
anfun
tion as a �lter for the dependen
y stru
tures for an input senten
e, and the POS ambiguitiesretaining all possible POS sequen
es 
an be introdu
ed to dependen
y analysis. This thesis givesthe proof of the 
ompleteness and soundness of the dependen
y forest.The dependen
y forest provides a pre
ise de�nition of a set of dependen
y trees be
ause the
onstraint matrix 
an express 
o-o

urren
e restri
tions between two arbitrary dependen
y rela-tions. This 
exibility enables PDG to handle non-proje
tive dependen
ies and the single valen
eo

upation 
onstraint. On the other hand, the preferen
e matrix, whi
h 
an express prefer-en
es for two arbitrary dependen
y relations, enables the integrated use of tree-lo
al information(preferen
e on dependen
y relation) and string-lo
al information (preferen
e on word sequen
e).This thesis proposes a new sear
h method 
alled the \graph bran
h algorithm" for dependen
yforests. This algorithm sear
hes for the best dependen
y tree with respe
t to the preferen
ematrix and the 
onstraint matrix based on the bran
h and bound prin
iple. The DP-basedalgorithm, widely used in the optimum tree sear
h task, 
annot be applied to the dependen
yforest sear
h due to its high des
ription abilities.This thesis �nally reports the experimental results using a prototype PDG system for ex-amining the various aspe
ts of the PDG framework in
luding the dependen
y forest, the graphbran
h algorithm and the e�e
t of the multilevel knowledge integration using the prototype PDGgrammar.
ii
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1
Chapter 1Introdu
tion
The �nal goal of natural language senten
e analysis is to bene�t human kind by making 
om-puters understand the meanings of senten
es. The basis of natural language analysis (NLA),i.e., linguisti
s and 
omputational linguisti
s, 
onsists of layers of theories su
h as morphology,syntax, semanti
s and 
ontext. The purpose of senten
e analysis is to obtain mapping from aninput senten
e to a 
orre
t interpretation in an appropriate linguisti
 layer. This is performed byidentifying the senten
e stru
ture by applying various kinds of linguisti
 and real world knowl-edge.NLA systems adopt the linguisti
 layer stru
ture expli
itly or impli
itly. There are varioustypes of appli
ations in ea
h linguisti
 layer. Information retrieval systems utilize morphologi
alanalysis for 
omparing in
e
ted words. Ma
hine translation systems analyze sour
e senten
es toobtain their synta
ti
 and/or semanti
 representations to transform them to the target languagesenten
es. Dialogue systems require the 
ontextual or intentional stru
tures for the utteran
efrom a user. Interpretations in some linguisti
 layer are naturally 
onsidered to be intermediatestru
tures between the 
orresponding stru
tures in its lower and upper linguisti
 layers. Mor-phologi
al stru
tures bridge the input senten
e to the synta
ti
 stru
tures, whi
h bridge them tothe semanti
 stru
tures. The ability of an NLA system is basi
ally determined by the expressiveabilities of the senten
e interpretation, knowledge des
ription power and quantity adopted by theNLA system. Therefore, the most important and fundamental issues of the NLA system designare what kinds of knowledge in linguisti
 layers are des
ribed and how they should be appliedproperly.Synta
ti
 layer has been studied intensively for years and various approa
hes have been pro-posed in 
omputational linguisti
s as well as in linguisti
s. Phrase stru
ture syntax (Chomsky,1956) and dependen
y syntax (Tesni�ere, 1969) proposed in the same era are two major synta
ti
theories and the phrase stru
ture and the dependen
y stru
ture are widely used as synta
ti
representation for senten
es. These stru
tures are 
onsidered to show di�erent dimensions of thesenten
e stru
ture and 
an be used for 
ompensating ea
h other. However, insuÆ
ient e�ortshave been made for resear
h in this area, espe
ially in 
omputational linguisti
s.The goal of this thesis is to dis
uss the NLA frameworks that utilize multilevel linguisti
 repre-sentations and to propose a novel dependen
y analysis method that integrates the morphologi
al



2stru
ture, phrase stru
ture, and dependen
y stru
ture representations. As des
ribed below, theintegration of multilevel preferen
e and 
onstraint knowledge is the most basi
 issues in multi-level NLA system*1 design. The remainder of this 
hapter des
ribes the traditional approa
hesfor the two major synta
ti
 frameworks and the 
ontributions of this thesis.1.1 Ba
kground to the Resear
hPhrase stru
ture (or 
onstituen
y) syntax (Chomsky, 1956) and dependen
y syntax (Tesni�ere,1969) are two major synta
ti
 frameworks in linguisti
 and 
omputational linguisti
s; that is,these are two major interpretation des
ription s
hemes (or data stru
tures) for representingthe synta
ti
 stru
tures of senten
es. This se
tion des
ribes the phrase stru
ture and depen-den
y stru
ture s
hemes and the traditional approa
hes for integrating these two representations
hemes.1.1.1 Phrase Stru
ture and Dependen
y Stru
turePhrase stru
ture grammars des
ribe the stru
ture of a senten
e in terms of 
onstituen
y rela-tions on the words of the phrases of the senten
e. Ea
h word in the senten
e has its POS (partof spee
h). Phrases are represented as a sequen
e of POSs or phrasal labels (non-terminal labelsor symbols) ea
h of whi
h de�nes a set of possible sequen
e of phrases. The set of the phrasestru
ture relations that 
an be de�ned on a senten
e forms a tree, known as the phrase stru
turetree.Dependen
y grammars des
ribe the stru
ture of a senten
e in terms of binary head-modi�er(also known as dependen
y) relations on the words of the senten
e. A dependen
y relation isan asymmetri
 relation between a word 
alled the governor (head, parent) and a word 
alledthe dependent (modi�er, daughter). A word in the senten
e 
an play the role of the governor inseveral dependen
y relations, i.e., it 
an have several dependents; however, ea
h word 
an playthe role of the modi�er exa
tly on
e in a majority of dependen
y grammar frameworks. Oneparti
ular word does not play the role of the modi�er in any relation, and this is named the root.The set of the dependen
y relations that 
an be de�ned on a senten
e form a tree, known as thedependen
y tree (Lombardo and Lesmo, 1996).Fig.1.1 shows the phrase stru
ture tree and dependen
y tree for the senten
e \Time 
ies likean arrow." The phrase stru
ture expli
itly represents phrases (nonterminal nodes), stru
tural
ategories (nonterminal labels), and possibly some fun
tional 
ategories (grammati
al fun
tions).On the other hand, the dependen
y stru
ture represents head-dependent relations (dire
tedar
s*2 ), fun
tional 
ategories (ar
 labels), and possibly some stru
tural 
ategories (POS) (Nivreand Sandra, 2006). The phrase stru
ture follows a horizontal organization prin
iple: it 
ombines*1 NLA system with more than one senten
e interpretation data stru
tures.*2 There are two 
onventions to represent the dire
tion of dependen
y relations. The sour
e and the target ofan arrow shows the dependent node and the governor node, respe
tively, in this thesis.
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Fig.1.1 Phrase stru
ture and dependen
y stru
turethe 
onstituents into phrases (larger stru
tures) until the entire senten
e is formed. On the otherhand, dependen
y is an asymmetri
al relation between a head and a dependent, i.e., it followsthe verti
al organization prin
iple (Kruij�, 2001).Context free grammar (CFG) has been studied in depth and adopted as the 
omputationalbasis of the phrase stru
ture s
heme. The 
ontext free grammar G is formally de�ned by thefollowing four 
omponents.G =< Vt; Vn; P; S >Vt : �nite set of terminal symbolsVn : �nite set of nonterminal symbolsP : �nite set of rewriting rulesS : �nite set of start symbols (S�Vn)On the other hand, there is no established standard for the formal representation of the depen-den
y grammar framework. This thesis 
ategorizes the existing dependen
y grammar frameworksinto three dependen
y models, i.e., the Tesniere model, the single dependen
y model, and thelexi
al rule model*3.(1) Tesniere modelThe Tesniere model of dependen
y grammar is a formal grammar framework (Gaifman, 1965;Hays, 1964) based on the grammati
al theory known as dependen
y grammar (DG), whi
h wasproposed by the Fren
h linguist Tesniere (Tesni�ere, 1969). Resear
hes on parsing algorithms(Lai and Huang, 1994; Lombardo and Lesmo, 1996; Courtin and Genthial, 1998; Lombardo andLesmo, 1998) and the analysis of the grammati
al equivalen
e between CFG and DG (Gaifman,1965; Abney, 1994) have been 
ondu
ted based on this model.The dependen
y grammar G of the Tesniere model is de�ned as follows (Lombardo and Lesmo,1996):G =< S;C;W;L; T >*3 These are not generally established terms.
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Y1 Y2 … Y i-1 Y i+1  … Ym

X

Y1 Y2 … Y i-1 Y i+1  … Ym

X

Fig.1.2 Dependen
y rule in the Tesniere modelW : a �nite set of symbols (vo
abulary of words in a natural language)C : a set of synta
ti
 
ategories (preterminals, in 
onstituen
y terms)S : a non-empty set of root 
ategories (C�S)L : a set of 
ategory assignment rules of the form X : x, where X2C, x2WT : a set of dependen
y rules of the form X(Y1 Y2 ::: Yi�1 # Yi+l ::: Ym)where X2C, Y12C; ::: Ym2C, and # is a spe
ial symbol that does not belong to C.A tree resulting from the dependen
y rules is essentially an ordered tree of depth one, whereinthe nodes are labeled as shown in Fig.1.2. A dependen
y rule de�nes the simultaneous existen
eof multiple dependen
y relations in order. This is somewhat similar to a CFG rewriting rule thatde�nes the simultaneous existen
e of multiple phrases or words in order.The dependen
y tree for a senten
e x(= a1a2::ap2W�) should satisfy the following 
ondi-tions*4:(a) The nodes are the symbols ai2W (l�i�p).(b) The tree has to be 
overed by a proper set of grammar rules.(
) The tree satis�es the proje
tivity 
ondition*5 with respe
t to the order in x.(d) The root is a unique symbol as su
h that As : as2L and As2S.(2) Single dependen
y modelThe single dependen
y model is basi
ally an analyti
 grammar model that generates depen-den
y trees for a given senten
e. This model 
overs many dependen
y parsers su
h as \kakari-uke"*6 analyzers (Yoshida, 1972; Shudo et al., 1980; Hitaka and Yoshida, 1980; Ozeki, 1986;Nakagawa and Ito, 1987; Matsunaga and Kohda, 1988; Hirakawa and Amano, 1989a; Kuro-hashi and Nagao, 1994; Ozeki, 1994; Hirakawa, 2001; Kudo and Matsumoto, 2005), dependen
yparsers (Covington, 1990; Kubon, 2001; Yamada and Matsumoto, 2003; Nivre and S
holz, 2004;M
Donald et al., 2005), and CDG (
onstraint dependen
y grammar) parsers (Maruyama, 1990;Harper et al., 1999; Wang and Harper, 2004).In this model, dependen
y grammar is de�ned by two 
omponents, i.e., a set of dependen
y*4 Refer to (Lombardo and Lesmo, 1996) for the detailed formal de�nition*5 The proje
tivity 
ondition 
onsists of two 
onditions, i.e., \no 
ross dependen
y exits" and \no dependen
y
overs the top node" (Mel'
uk, 1988). The se
ond 
ondition is unne
essary when a spe
ial root node isintrodu
ed at the top or end of a senten
e. Dependen
y stru
tures whi
h violate the proje
tivity 
onditionare 
alled \non-proje
tive" stru
tures.*6 Kakari-uke is a type of dependen
y relation. The details are explained in Se
tion 1.3.
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Fig.1.3 Single dependen
y modelgeneration rules G, whi
h generates a set of dependen
y relations between two nodes (words) anda set of well-formedness 
onstraints C, whi
h de�nes well-formed dependen
y trees. As shown inFig.1.3, a set of dependen
y relation ar
s are obtained by applying G to an input senten
e (wordsequen
e W1;W2; :::Wn). A set of possible dependen
y trees for the senten
e is de�ned as a setof dependen
y trees su
h that ea
h 
onsists of the subset of the generated dependen
y relationar
s and satis�es the well-formedness 
onstraints C. This framework 
an distinguish senten
esfrom non-senten
es with respe
t to the grammar (G and C). It 
an also generate all possiblegrammati
al senten
es and their grammati
al stru
tures by 
ombining a module that generatesall possible word sequen
es. Therefore, the single dependen
y model is a type of grammar forlanguages.G 
an be de�ned as a fun
tion that returns a set of dependen
y pie
es for the given two words.Here, \dependen
y pie
e" is de�ned as a triple < DN;GN;A >, where DN is a dependentnode, GN is a governor node, and A is an ar
 between the two nodes. This is represented inthe form \DN A�! GN ." There are several types of fun
tions a

ording to the types of nodesand ar
s. For example, one type of fun
tion may produ
e simple dependen
y pie
es su
h as\time �! 
y" and \time  � 
y" from the words \time" and \
y." Another type of fun
tionmay return dependen
y pie
es su
h as \time/n subj���! 
y/v," \time/n nmod���! 
y/n" and \time/vobj �� 
y/n," where subj, obj, and nmod represent subje
t, obje
t, and nominal modi�
ationrelations, respe
tively. Chapter 4 provides a more detailed dis
ussion on the node and ar
 typesfor dependen
y stru
tures.The de�nition of the well-formedness 
onstraints C pres
ribes various types of depen-den
y grammars. The most well-known well-formedness 
onstraints are the axioms of thewell-formedness of the dependen
y stru
ture, as de�ned by Robinson (1970).(a) One and only one element is independent.(b) All others depend dire
tly on some element.(
) No element depends dire
tly on more than one other. (unique head)



6 (d) If element A depends dire
tly on element B and some element C intervenes between them(in linear order of string), then C depends dire
tly on A or on B or some other interveningelement. (proje
tivity)Some di�erent versions of dependen
y stru
tures are obtained by 
hanging the well-formedness
onditions. As des
ribed in (Kruij�, 2002), if the \unique head" 
onstraint de�ned above isrelaxed, the dependen
y stru
tures form graphs instead of trees. This type of dependen
y gram-mar allows dependents to have multiple heads (Johnson et al., 1985; Hudson, 1984; Hudson,1991). Relaxing the \proje
tivity 
onstraint" leads to a non-proje
tive dependen
y grammar(Covington, 1990; Kubon, 2001; M
Donald et al., 2005). These types of general 
onstraints areinsuÆ
ient to de�ne a proper set of senten
es of some natural language. CDG allows arbitraryunary and binary 
onstraints for des
ribing detailed well-formedness 
onstraints.(3) Lexi
al rule modelThe lexi
al rule model is a dependen
y grammar framework where the dependen
y stru
ture is
onstru
ted by 
ombining the partial dependen
y patterns de�ned in the lexi
ons. Nasr (2000)proposed a dependen
y parsing algorithm 
ombining the partial dependen
y trees 
orrespondingto the words in a senten
e using a graph sta
k me
hanism. Mertens (2002) proposed a 
hart-parser-based method for 
onstru
ting the dependen
y stru
ture for a senten
e by 
ombining thebasi
 partial dependen
y stru
tures in lexi
ons. Link grammar 
onstru
ts dependen
y stru
-tures based on the partial 
onne
tion patterns de�ned in lexi
ons (Sleator and Temperley, 1991;Grinberg et al., 1995; La�erty et al., 1992)*7.1.1.2 Relation between Phrase Stru
ture and Dependen
y Stru
tureIt is sometimes pointed out that the merit of the dependen
y syntax over the phrase stru
-ture is that the dependen
y stru
ture has the immediate mapping on the predi
ate-argumentsstru
tures, i.e., the semanti
 stru
tures needed for the next stage of interpretation (Sgall et al.,1986; Mel'
uk, 1988; Hudson, 1991) and is not ne
essary to \read o�" head-modi�er or head-
omplement relations from a tree (Covington, 1990). On the other hand, the phrase stru
turesyntax 
an express the 
onstru
tion rules related to the word or phrasal order naturally, whi
his not expli
itly represented by the dependen
y relation.The phrase and dependen
y stru
tures are not 
ompeting representations; instead, they de-s
ribe di�erent aspe
ts of the senten
e stru
tures (Kruij�, 2002; Nivre and Sandra, 2006). Kruij�mentioned that \A phrase-stru
ture tree is 
losely related to a derivation, whereas a dependen
ytree rather des
ribes the produ
t of a pro
ess of derivation. Usually, given a phrase-stru
turetree, we 
an get very 
lose to a dependen
y tree by 
onstru
ting the transitive 
ollapse of headed*7 Link grammar is not 
onsidered as an instan
e of dependen
y grammar by its 
reators, and it departsfrom the traditional view of dependen
y by using undire
ted links; however, the representations used inlink grammar parsing are similar to the dependen
y representations in that they 
onsist of words linked bybinary relations (Nivre, 2005).



7stru
tures over non-terminals." Further, \Constituen
y and dependen
y are not adversaries,they are 
omplementary notions. Using them together we 
an over
ome the problems that ea
hnotion has individually." From the linguisti
 viewpoint, Kodama (1987) dis
ussed the linguis-ti
 information required for obtaining the senten
e interpretation in the 
ontext of dependen
ygrammars and positioned the dependen
y stru
ture as a bridge for 
ombining or integrating thesynta
ti
 information and the semanti
 information.A senten
e has a set of possible synta
ti
 interpretations in general, and 
onsequently hasa set of 
orresponding phrase stru
ture interpretations (trees) and the dependen
y stru
tureinterpretations (trees). If phrase stru
ture trees and dependen
y stru
ture trees for a senten
eare di�erent representations for the synta
ti
 interpretations of the senten
e, there should be
onsistent 
orresponden
es between these two di�erent kinds of synta
ti
 trees. Sin
e synta
ti
grammars de�ne the synta
ti
 stru
tures of a senten
e, there should be some 
onsistent mappingbetween phrase stru
ture grammar and the dependen
y grammar if both of them de�ne thesynta
ti
 stru
tures of senten
es.Gaifman (1965) studied the equivalen
e between CFG and the Tesniere model DG. As shownin Se
tion 1.1.1, the grammar rule formalism of the Tesniere model DG is similar to that ofCFG. There are two types of equivalen
e relations de�ned between the two grammars. The twogrammars are 
alled \weakly equivalent" if the set of strings de�ned by them are equivalent.They are 
alled \strongly equivalent" if the set of senten
e stru
tures generated by them areequivalent. A de�nition for the equivalen
e between the senten
e stru
tures of the two grammarsis ne
essary for 
he
king the strong equivalen
e between the two grammars. Gaifman adoptedthe 
on
ept of \rami�
ation" to 
he
k the equivalen
e between a phrase stru
ture tree and adependen
y tree. Rami�
ation is a parenthesized stru
ture that represents information that issimilar to the phrase boundary. Pro
edures are outlined for obtaining the rami�
ation from aphrase stru
ture tree and a dependen
y tree and 
he
king their equivalen
e. Gaifman provedthat CFG and DG were weakly equivalent, i.e., there exists a DG that is weakly equivalent to agiven CFG and vi
e versa. On the other hand, there exists a CFG that is strongly equivalent to agiven DG; however, the inverse has not been proven to be true. Although a detailed explanationis not provided here, the 
ondition for CFG to be strongly equivalent to DG is that \a phrasestru
ture system*8 is equivalent to some d-system*9 i� its degree is 0 or 1" (Gaifman, 1965). ACFG grammar with a re
ursive derivation has an in�nite degree. This 
ondition is very strongand Gaifman's dis
ussion disproved the strong equivalen
e between CFG and DG.Abney (1994) pointed out a problem in Gaifman's framework and studied the equivalen
ebetween CFG and DG using a revised framework. Gaifman's mapping method for obtainingthe rami�
ation from a dependen
y tree may produ
e multiple results due to the la
k of in-formation. To resolve this mapping ambiguity, Abney assumed that the heads of phrases werepredetermined. Abney assumed a headed CFG (HCFG) and then dis
ussed the equivalen
e be-*8 This is equivalent to CFG*9 This implies the Tesniere model DG



8tween CFG and DG derived from this HCFG based on Gaifman's framework. The derived CFGis known as a \
hara
teristi
 grammar" and the derived DG is known as a \proje
tion gram-mar." The result shows that the 
hara
teristi
 and proje
tion grammars are not equivalent, i.e.,there exist HCFGs that have equivalent 
hara
teristi
 grammars and di�erent proje
tion gram-mars, and inversely, there exist HCFGs that have equivalent proje
tion grammars and di�erent
hara
teristi
 grammars.As des
ribed in Nivre (2005), these results on the equivalen
e between CFG and DG havebeen mentioned to explain the relative la
k of interest in dependen
y grammars within naturallanguage pro
essing. If the strong equivalen
e between CFG and DG is disproved, a 
ompleteformal mapping between the phrase and dependen
y stru
tures of senten
es 
annot be 
on-stru
ted. Dis
ussions by Gaifman and Abney have at least two important premises. First, thedis
ussed dependen
y grammar is limited to the Tesniere model DG. Other dependen
y grammarframeworks are not dis
ussed. Se
ond, as already mentioned by Gaifman (1965), the 
riterionfor the equivalen
e between the phrase stru
ture tree and dependen
y tree, i.e., rami�
ation, isnatural for the former but not for the latter. The 
riteria for the equivalen
e between these twostru
tures should be a basi
 and important issue in dis
ussing the equivalen
e between CFG andDG.The dis
ussion on the equivalen
e or 
orresponden
e between the phrase stru
ture grammarand dependen
y grammar does not fall within the s
ope of this thesis; however, this thesispresents a method for 
reating not one-to-one but 
onsistent 
orresponden
es between a set ofphrase stru
ture trees and dependen
y trees for a senten
e as des
ribed in Chapter 3.1.2 Phrase Stru
ture AnalysisAs des
ribed in Se
tion 1.1.1, CFG is established as a basis of phrase stru
ture grammar to ob-tain the phrase stru
tures for a senten
e. EÆ
ient CFG parsing algorithms su
h as CKY, Early,Chart, and LR algorithms are widely used. In the 1980s, the framework for atta
hing arbitrarypro
essing 
odes to CFG grammar rules was developed on the basis of the logi
 programminglanguage Prolog (Colmerauer et al., 1973; Clo
ksin and Mellish, 1984), su
h as DCG (De�niteClause Grammar) (Pereira and Warren, 1980), and BUP (Bottom Up Parser) (Matsumoto etal., 1983). This me
hanism enables a more detailed grammar des
ription by introdu
ing extra
onstraints referring to various kinds of grammati
al and/or semanti
 features, and stru
turebuilding fun
tion (Dahl and M
Cord, 1983). The uni�
ation operation*10 in Prolog played animportant role in grammar des
ription. In 
onjun
tion with the uni�
ation framework, linguis-ti
 investigations resulted in new grammar frameworks, su
h as FUG (Fun
tional Uni�
ationGrammar) (Kay, 1984), LFG (Lexi
al Fun
tional Grammar) (Kaplan, 1989; Riezler et al., 2002),PATR-II (Shieber et al., 1983), GPSG (Generalized Phrase Stru
ture Grammar) (Gazdar et al.,*10 Operation to make equivalent two terms with or without variables by assigning appropriate values to thevariables, or operation attempting to make a one-time assignment of 
ontents to the variables for a set oflogi
al equations.



91985), HPSG (Head-driven Phrase Stru
ture Grammar) (Pollard and Sag, 1994; Tsuruoka etal., 2004), and CCG (Combinatory Categori
al Grammar) (Steedman, 2000; Clark and Curran,2003)*11. These are 
alled uni�
ation grammars or lexi
al uni�
ation grammars be
ause theyintrodu
e lexi
al information su
h as linguisti
 features and sub
ategorization information. A setof equations that represent linguisti
 stru
ture and/or 
onstraints are generated from a phrasestru
ture tree for a senten
e. The interpretation of a senten
e is well-formed (or grammati
al)if and only if these equations have proper variable assignments. Uni�
ation grammars providemu
h more detailed and lexi
alized linguisti
 
onstraints 
ompared with the skeleton CFG frame-work. Uni�
ation grammar parsers are 
alled deep parsers be
ause they generate deep and fullsenten
e stru
tures.The elaboration of grammar rules provides more opportunities to obtain 
orre
t senten
e in-terpretations. However, this is not suÆ
ient be
ause natural language senten
es generally haveplausible well-formed interpretations as well as implausible interpretations. Ambiguity resolutionis indispensable for obtaining the most plausible interpretation from grammati
al interpretations.Disambiguation is performed by assigning a preferen
e degree for ea
h of the available interpreta-tions and 
hoosing the best one among them. The knowledge assigning this preferen
e degree is
alled preferen
e knowledge. Intensive studies on the disambiguation method utilizing statisti
sfrom 
orpora began from the late 1980s to 1990s. The so-
alled 
orpus-oriented methods providea disambiguation me
hanism by means of three 
omponents, i.e., a statisti
al model that de�nesthe plausibility of a senten
e interpretation, a method for learning parameters from 
orpora anda method for de
oding (or 
omputing) the best interpretation for a senten
e from among its pos-sible interpretations. PCFG (Probabilisti
 CFG) is proposed for a CFG framework (Jelinek etal., 1992). PCFG 
onsists of the probabilisti
 model based on the probabilities of CFG rules thatare obtained by the inside/outside algorithm and the algorithm similar to the Biterbi algorithmfor 
omputing the most plausible phrase stru
ture tree in the parse forest of an input senten
e.One signi�
ant improvement on the 
orpus based method is obtained by introdu
ing the lexi
alinformation to the probabilisti
 model of the PCFG (Carroll and Charniak, 1992; Eisner, 1996a;Charniak, 1995; Charniak, 1997; Collins, 1999; Charniak, 2000; Bikel, 2004). Su
h a method isknown as the lexi
alized PCFG. The head of phrase (or phrase head)*12 plays an important rolein lexi
alized PCFGs. Charniak (1995) reported the signi�
ant improvement of parse a

ura
y byintrodu
ing head information su
h as POS of head, parent's head, grandparent's head, and rulesele
tion by head information into the probabilisti
 model. Collins (1999) introdu
ed history-based lexi
alized CFG (Head-Driven Statisti
al Model) based on the so-
alled history-basedparsing method (Bla
k et al., 1992) and proposed a bottom-up 
hart parser based on someprobabilisti
 models. Based on this method, Bikel (2004) analyzed that lexi
al information su
has lexi
al relations and sub-
ategorization information were e�e
tive for improving the parsing*11 CCG is not CFG but has a 
lose relation to CFG.*12 \the head of phrase" is de�ned as \an element with X 
ategory in X bar theory" (Chomsky, 1970) or \theelement that determines the synta
ti
 fun
tion of the whole phrase" or simply \most important word ofphrase"



10a

ura
y.Resear
h on feature stru
ture grammars (Abney, 1997) promoted the resear
hes on lexi
alsto
hasti
 uni�
ation grammars su
h as HPSG (Oepen et al., 2002; Toutanova and Manning,2002), CCG (Clark and Curran, 2003), and LFG (Johnson et al., 1999; Riezler et al., 2002;Kaplan et al., 2004). Lexi
al dependen
y information is also utilized as features of the maximumentropy model (Bouma et al., 2001).One approa
h for utilizing the dependen
y information in phrase stru
ture analysis is to utilizethe output from some independent dependen
y analyzer. Sagae et al. (2007) in
orporates theoutput from a shallow dependen
y parser as a hard dependen
y 
onstraint or soft dependen
y
onstraint to improve the a

ura
y of the target HPSG deep parser. Mapping between the phrasestru
ture and dependen
y stru
ture is obtained through an intermediate HPSG stru
ture.As shown above, the CFG-based approa
h has a
hieved higher senten
e a

ura
y by introdu
-ing frameworks for more pre
ise 
onstraint knowledge and sophisti
ated preferen
e knowledge.Lexi
al relations in
luding the dependen
y relation are widely introdu
ed to lexi
alized PCFGand improved parsing a

ura
y (Bikel, 2004). Re
ent studies on phrase stru
ture oriented pars-ing systems (Bouma et al., 2001; Charniak and Johnson, 2005; Sagae et al., 2007) show thetenden
y for utilizing lexi
al dependen
y relations for improving the parsing a

ura
y.1.3 Dependen
y Stru
ture AnalysisAlthough the Tesniere model dependen
y grammar (Tesni�ere, 1969; Gaifman, 1965; Hays,1964) was proposed as a formal grammar framework in the 1960s, resear
hes on dependen
yanalysis systems for Tesniere model were 
ondu
ted relatively re
ently (Lai and Huang, 1994;Lombardo and Lesmo, 1996; Courtin and Genthial, 1998; Lombardo and Lesmo, 1998). A
onsiderably greater number of studies have been 
ondu
ted within the framework of the singledependen
y model. In parti
ular, Japanese grammar and the Japanese analysis system based onkakari-uke grammar has been studied (Hashimoto, 1946; Yoshida, 1972; Shudo et al., 1980; Hitakaand Yoshida, 1980; Nakagawa and Ito, 1987; Matsunaga and Kohda, 1988), where a senten
estru
ture is represented by a set of kakari-uke (dependen
y) relations between two linguisti
units 
alled \bunsetsu," whi
h is a sequen
e of morphemes 
ontaining at least one 
ontents word.Kakari-uke grammar has a well-formedness axiom: the \dependent always lo
ates to the left ofits governor (no ba
kward dependen
y)." Kakari-uke grammar is a kind of dependen
y grammarwith this axiom pe
uliar to Japanese language in addition to the axioms by Robinson (1970).Kakari-uke parsing algorithms in
luding the sta
k-based algorithm and DP based algorithm areproposed (Shudo et al., 1980; Hitaka and Yoshida, 1980; Nakagawa and Ito, 1987; Matsunaga andKohda, 1988; Ozeki, 1986; Ozeki, 1994; Kurohashi and Nagao, 1994). Katoh and Ehara (1989)proposed a DP-based dependen
y parsing algorithm allowing ba
kward dependen
y, i.e., analgorithm for general dependen
y grammar with Robinson's axiom, by extending the algorithmproposed by Ozeki (1986).As des
ribed in Se
tion 1.1.1, CDG is a kind of single dependen
y model grammar. Constraints



11dependen
y grammar G, whi
h determines a set of possible assignments of a given senten
e, isformally de�ned by the following four 
omponents (Maruyama, 1990).G =< �; R; L; C >� : �nite set of terminal symbolsR : �nite set of role-idsL : �nite set of labelsC : 
onstraint that an assignment A should satisfyC is a set of arbitrary unary and binary 
onstraints for des
ribing detailed well-formedness
onstraints (Maruyama, 1990; Harper et al., 1999). CDG adopts the eliminative parsing methodwhere senten
e analysis is de�ned as a 
onstraint satisfa
tion problem (CSP) for all possibleinterpretations of a senten
e*13. CDG generates a dependen
e graph whi
h en
ompasses all pos-sible dependen
y trees by assuming all dependen
y relations between every two nodes (or words)in an input senten
e. The 
onstraints in C are propagated over the network by the 
onstraintpropagation me
hanism (Waltz, 1975; Montanari, 1976) to eliminate ill-formed dependen
y inter-pretations. The original CDG parser (Maruyama, 1990) is extended to support the simultaneousanalysis of senten
es with multiple alternative lexi
al 
ategories (POS ambiguity) and features(Harper and Helzerman, 1995).The treatment of preferen
e knowledge in dependen
y analysis, as well as in phrase stru
tureanalysis, is studied in both the heuristi
 approa
h (Bouma et al., 2001; Hirakawa, 2001) and
orpus-based approa
h (Carroll and Charniak, 1992; Collins, 1996; Eisner, 1996b; Eisner, 1996
;Lee and Choi, 1997). Eisner (1996b) proposed a dependen
y parsing algorithm whi
h analysesa whole senten
e as a non-
onstituent span based on the DP algorithm similar to the CKYparsing algorithm and Eisner (1996
) examined four probabilisti
 models*14. Eisner's thirdmodel (Model C 
alled the \generative model" or \edge fa
tored model") de�nes the probabilityof a dependen
y tree based on the probabilities of dependen
y ar
s in the tree 
orresponds tothe preferen
e priority and is widely used in the single dependen
y model. Lee and Choi (1997)presented an unsupervised learning method based on the inside-outside algorithm and a de
odingmethod similar to Eisner's parsing algorithm. As is the 
ase in the probabilisti
 CFG resear
h�eld, maximum entropy models for dependen
y parsing are proposed (Stol
ke et al., 1997; Chelbaet al., 1997). Moreover, the probabilisti
 model is introdu
ed in the CDG framework (Wang andHarper, 2004).Re
ently, intensive resear
hes on dependen
y analysis have been 
ondu
ted on the data drivendependen
y parsing framework, and the Conferen
e on Computational Natural Language Learn-ing (CoNLL) 2007 has been devoted to dependen
y parsing. In this CoNLL-X shared task ondependen
y parsing, there are two dominant models for data-driven dependen
y parsing (Bu
h-holz and Marsi, 2006; M
Donald and Nivre, 2007). The �rst is the \all-pairs" approa
h in whi
h*13 The parsing method that generates possible interpretations in ea
h linguisti
 level in a step-by-step manneris 
alled the generative parsing method.*14 More detailed explanation are given later in this se
tion



12every possible ar
 is 
onsidered in the 
onstru
tion of the optimal parse. The MSTParser (Max-imum Spanning Tree parser) (M
Donald et al., 2005), whi
h sear
hes the optimum tree from thedependen
y graph that en
ompasses all possible dependen
y trees for one WPP*15 sequen
e fora senten
e, is a typi
al example of the all-pairs approa
h. The se
ond is the \stepwise" approa
hor \history-based" approa
h (Bla
k et al., 1992), where the optimal parse is built stepwise de-pending on the previous de
isions in parsing pro
ess. The Yamada-Matsumoto parser (Yamadaand Matsumoto, 2003) and the MaltParser (Nivre and S
holz, 2004) are typi
al examples of thestepwise approa
h. These two approa
hes adopt the dis
riminative learning method.All-pairs parsers 
an learn the features of the global senten
e stru
ture and ex
el in longsenten
e analysis. On the other hand, stepwise parsers 
an learn ri
her lo
al features 
omparedwith the all-pairs parser and ex
els in shorter senten
e analysis. The result of the CoNLL-X shared task shows almost the same senten
e analysis a

ura
ies for these di�erent types ofdependen
y parsers (M
Donald and Nivre, 2007).The multi-agent method obtains a better output by utilizing or 
ombining the multiple outputsfrom the di�erent types of agents. This idea is appli
able to senten
e analysis for improvingthe parsing a

ura
y (Inui and Inui, 2000; Zeman and �Zabokrtsk�y, 2005). Sagae and Lavie(2006) proposed a new parser ensemble method for dependen
y parsing where outputs from somedependen
y parsers are de
omposed into their 
onstituents and the best well-formed dependen
ytree is sear
hed from the set of de
omposed 
onstituents. This method is examined using a singledependen
y parser with some di�erent set-ups (Sagae and Tsujii, 2007).As shown in Se
tion 1.2, information from a dependen
y relation is widely utilized mainlyas a preferen
e sour
e. In 
ontrast, the phrase stru
ture information is not widely utilized independen
y parsers. As des
ribed in Se
tion 1.1.1, phrase stru
ture and dependen
y stru
tureare two major data stru
tures for representing di�erent aspe
ts of the synta
ti
 stru
ture of asenten
e and are expe
ted to be used for 
ompensating ea
h other. However, it is not 
lear howand for what purpose the phrase stru
ture should be used in dependen
y analysis. To 
larifythis matter, some problems in 
urrent dependen
y analysis methods are dis
ussed below.The �rst problem is related to the size of the possible dependen
y tree spa
e to sear
h. Twopopular parsers, i.e., the MSTParser and the MaltParser, a

ept a sequen
e of words with POStags as their input. The disambiguation of POS ambiguity is left for the task for some tagger.This poses a problem be
ause the disambiguation errors in the tagging pro
ess 
annot be solvedby improving the ability of a dependen
y parser (Yamada and Matsumoto, 2003). On theother hand, a CDG parser generates inherent dependen
y trees for the �rst step by performingpossible role value assignments, and then a set of 
onstraints are applied to these role valuesto eliminate ungrammati
al assignments. This approa
h 
auses poor parsing eÆ
ien
y due tothe size of possible interpretation spa
e. Optimization methods su
h as the enhan
ed pruningmethod based on modi�er and modi�ee features and the role assignment restri
tion based on*15 WPP is a pair of a word and a part of spee
h (POS). The word \time" has WPPs su
h as \time/n" and\time/v." A 
ompound word 
an be one WPP su
h as \
ying sau
er/n" whi
h 
orresponds to two inputwords (or positions).



13grammar and 
orpus information are introdu
ed for this problem (Harper et al., 1999; Harper etal., 2000). However, a problem persists for the all-pair parsing approa
h be
ause the introdu
tionof POS ambiguity 
auses a magni�
ation of the sear
h spa
e. In addition to this spa
e problem,the introdu
tion of POS ambiguity poses another 
ru
ial problem to the MSTParser. One ofthe parsing algorithms adopted in MSTParser for applying non-proje
tive dependen
y analysis,i.e., Chu-Liu Edmonds algorithm, has the assumption that a well-formed dependen
y tree is aspanning tree of the dependen
y graph. This algorithm is not appli
able to the dependen
ygraphs 
ontaining multiple nodes for one word. This kind of graph is 
alled \single-node graph"in this thesis*16The se
ond issue is about a des
ription power of the single dependen
y model. Sin
e the outputof a senten
e analysis system is pres
ribed by its preferen
e knowledge and 
onstraint knowledge,the potential ability of the senten
e analysis system is pres
ribed by the des
ription abilities forthese two kinds of knowledge. As far as the preferen
e knowledge model for the dependen
ystru
tures is 
on
erned, Eisner (1996
) proposed and examined four probabilisti
 models, i.e.,bigram lexi
al aÆnities (model A), sele
tional preferen
es (model B), re
ursive generation oredge fa
tored model (model C) and realisti
 sele
tional preferen
es (model D). The majority ofdependen
y parsers based on the single dependen
y model adopt the edge fa
tored model. How-ever, the sele
tional preferen
e and the realisti
 sele
tional preferen
e models outperformed theedge fa
tored model and the integrated use of tree-lo
al information (preferen
e on dependen
yrelation), and string-lo
al information (preferen
e on word sequen
e) results in better parsinga

ura
y (Eisner, 1996
). This suggests that the dependen
y analyzer with the edge fa
toredpreferen
e model 
an a
hieve more a

ura
y by introdu
ing a more pre
ise preferen
e model withword sequen
e preferen
e. On the other hand, the 
onstraint des
ription ability for the singledependen
y model is not suÆ
ient in some 
ases. For example, the MSTParser 
an handle non-proje
tive and proje
tive parsing by swit
hing two parsing algorithms (M
Donald et al., 2005),i.e., the Chu-Liu-Edmonds maximum spanning tree algorithm (Chu and Liu, 1965; Edmonds,1967) and the Eisner's algorithm (Eisner, 1996b). This implies that the well-formedness 
on-straint for the dependen
y tree is bound to the algorithms. It is diÆ
ult to give the system amore detailed 
onstraint for pres
ribing the well-formed non-proje
tive dependen
y trees. Theenhan
ement of the des
riptive power of the 
onstraint knowledge is one solution to this problem.1.4 Integrated Use of Phrase Stru
ture and Dependen
yStru
tureThis thesis investigates the idea of the integrated use of the phrase and dependen
y stru
-tures. This integration requires mapping between these two stru
tures of a senten
e. This isbe
ause senten
e analyzers 
annot 
ombine any linguisti
 information without 
orresponden
e*16 The dependen
y graph that has nodes representing multiple roles for ea
h of the input words is 
alled\multiple-node graph" in this thesis.



14between the two stru
tures. The following shows some traditional approa
hes for 
onstru
tingthis mapping.(1) Conversion from/to phrase stru
ture to/from dependen
y stru
tureCollins (1999) presented a method for 
onverting a phrase stru
ture tree to a dependen
ytree. The 
orresponding dependen
y tree is uniquely generated from a headed phrase stru
turetree, as shown in Fig.1.4. The head of a phrase is determined by using heuristi
 rules basedon nonterminal symbols, POS information, et
. The dependen
y relation is unlabeled and 
om-prises four elements, i.e., parent node label, head daughter label, non-head daughter label, andnon-head daughter dire
tion. The 
orresponding dependen
y tree is automati
ally obtained byde�ning the head of ea
h phrase stru
ture node. The generated dependen
y tree re
e
ts thestru
ture of the original phrase stru
ture tree, whi
h indi
ates the simpli
ity of the mapping.The dependen
y trees obtained from the phrase stru
ture trees are mainly used for evaluatingthe a

ura
ies of phrase stru
ture parsers (Clark and Curran, 2004). The evaluation methodsbased on the dependen
y stru
ture are 
onsidered to be more stable and reliable as 
omparedto those dire
tly based on the phrase stru
ture, be
ause the former methods are dependent onlyon the word information (system independent) and not on the phrase boundaries and phrase
ategories (system dependent), as des
ribed in 6.1.1.Xia and Palmer (2000) presented the following three methods for 
onverting dependen
ystru
tures into phrase stru
tures; the X-bar-theory-based method, Collins' method, and an-other heuristi
 method. The 
onversion is performed in order to build the dependen
y stru
tureannotated 
orpora from the phrase stru
ture annotated 
orpora.These stru
ture 
onversion methods basi
ally provide a mapping between the phrase and de-penden
y stru
tures by adopting some heuristi
s along with the advantages a�orded by 
onvertedstru
tures, su
h as the evaluation of parsing systems and the 
onstru
tion of di�erent types of
orpora. These 
onversion methods are not intended for the integrated use of the phrase anddependen
y stru
tures in the senten
e analysis pro
ess.Rambow and Joshi (1995) studied the relation among three grammar formalisms, namely,CFG, TSG (tree substitution grammar), and DG*17, from the viewpoint of the main fa
torsof grammar formalism, i.e., elementary stru
tures and 
ombining operators. Rambow showedthat the pro
ess of lexi
alizing CFG naturally led to a TAG (tree adjoining grammar), and the
S (will)

NP (Vinken) VP (will)

Pierre  Vinken will  join  the  dependency relation <S,VP,NP,left>

Parent node label : S

Head daughter label : VP

Non-head daughter label : NP

Non-head daughter direction : left

S (will)

NP (Vinken) VP (will)

Pierre  Vinken will  join  the  dependency relation <S,VP,NP,left>

Parent node label : S

Head daughter label : VP

Non-head daughter label : NP

Non-head daughter direction : leftFig.1.4 Collins' dependen
y tree*17 TAG (tree adjoining grammar) and MTT (meaning-text theory) are mentioned.



15derivation trees generated in parallel with the phrase stru
ture trees of the TAG analysis werethe dependen
y trees that 
losely resemble those of MTT (meaning-text theory) (Mel'
uk, 1988;Wanner, 1994; Kahane, 2003). A derivation tree is 
onstru
ted algorithmi
ally by 
ombiningthe lexi
al nodes 
orresponding to two phrase stru
ture trees, t1 and t2, whi
h are adjoined inthe TAG analysis pro
ess. In some situations, derivation trees exhibit in
onsisten
ies in thedire
tions of dependen
ies with the MTT dependen
y trees as des
ribed by \... while tree t1 isadjoined into t2, but the lexemi
 element of t2 depends on that of t1. Thus, while adjun
tion
orresponds to the establishment of a synta
ti
 dependen
y relation, the dire
tion of the relation
annot be determined from the dire
tion of the adjun
tion alone." This method has an advantagein that it 
an automati
ally generate a dependen
y stru
ture, without providing any additionalinformation about the mapping between the phrase and dependen
y stru
tures. However, thisfeature also leads to the generation of unnatural dependen
y stru
tures, as des
ribed above.(2) Partial Stru
ture MappingThe rewriting rule of CFG represents a part of the phrase stru
ture, i.e., the partial tree.Seo and Simmons (1989) proposed a framework for mapping the phrase stru
ture trees anddependen
y trees based on a set of rules. Ea
h rule de�nes a headed CFG rewriting rule (partialphrase stru
ture tree) and a mapping to the partial dependen
y tree. The nodes in a partialdependen
y tree are linked to the heads of 
onstituents in the 
orresponding phrase stru
turerule. In this thesis, this mapping method is 
alled the \partial stru
ture mapping" method.Fig.1.5 shows the overall mapping framework based on the partial stru
ture mapping methodproposed in Seo and Simmons (1989). An extended CFG parser analyzes an input senten
e and
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16generates two pa
ked shared data stru
tures, i.e., the headed parse forest*18 en
ompassing allpossible phrase stru
ture trees and the \synta
ti
 graph" en
ompassing all possible 
orrespondingdependen
y trees. The later part of this thesis uses the term \phrase stru
ture forest" insteadof the parse forest to strike a 
lear 
ontrast to the dependen
y forest des
ribed in Se
tion 1.4.In 
omparison with Abney's framework des
ribed in Se
tion 1.1.2, the partial stru
ture map-ping rule de�nes not only the phrase head information but also the stru
tural mapping betweenCFG and DG partial trees. The partial stru
ture mapping rule is more 
exible be
ause it allowsan arbitrary depth in the dependen
y stru
ture 
orresponding to one CFG rule. The purpose ofSeo and Simmons' resear
h was to provide a 
ompa
t pa
ked shared data stru
ture 
orrespondingto the phrase stru
ture forest of a senten
e. Seo and Simmons did not dis
uss the equivalen
ebetween CFG and DG where the formal de�nition of DG as well as CFG was indispensable*19.Seo and Simmons de�ned the 
ompleteness and soundness of the synta
ti
 graph with respe
tto the two mapping relations between the phrase stru
ture forest and the synta
ti
 graph asfollows:(Completeness) All phrase stru
ture trees in the phrase stru
ture forest 
an be mapped fromthe dependen
y trees in the synta
ti
 graph.8PST (phrase stru
ture tree) 9DT (dependen
y tree) dependen
y tree 
orrespondingto PST is DT(Soundness) All phrase stru
ture trees mapped from the dependen
y trees in the synta
ti
graph are in the phrase stru
ture forest.8DT (dependen
y tree) 9PST (phrase stru
ture tree) dependen
y tree 
orrespondingto PT is DTSeo and Simmons (1989) proved the 
ompleteness but not the soundness of the synta
ti
 graph.Hirakawa (2006b) showed that the soundness of the synta
ti
 graph was not satis�ed, i.e., themappings between the phrase stru
ture trees and the dependen
y trees were in
omplete in thesynta
ti
 graph.There appears to be no method for 
onstru
ting the 
omplete mapping between the phrase anddependen
y stru
tures. PDG realizes the 
omplete mapping between the phrase and dependen
ystru
tures based on the partial stru
ture mapping by introdu
ing a new pa
ked shared datastru
ture 
alled the \dependen
y forest" instead of the synta
ti
 graph; furthermore, it realizesthe integrated usage of the phrase and dependen
y stru
tures at the syntax level. The details ofthe dependen
y forest are explained in Chapter 3.
*18 The formal name of the \parse forest" is \pa
ked shared parse forest" (Tomita, 1987).*19 Dependen
y grammar formalism based on the partial stru
ture mapping rules is an interesting resear
htopi
 that is beyond the s
ope of this thesis.



171.5 Contributions of This ThesisThis thesis proposes a new dependen
y analysis method through dis
ussions on the designprin
iples for multilevel NLA systems fo
using on the treatment of preferen
e and 
onstraintknowledge. The proposed senten
e analysis method (or framework) is 
alled the \preferen
edependen
y grammar (PDG)." PDG is an all-pair multilevel dependen
y analysis method withthe morphologi
al and synta
ti
 levels, and has the following features for the issues des
ribed in1.3.(a) Phrase stru
ture analysis is utilized in the dependen
y stru
ture analyzer(b) POS ambiguities are handled in dependen
y stru
ture analysis(
) Detailed des
riptions for preferen
e and 
onstraint knowledge for the dependen
y stru
tureare availableThe 
ore te
hnologies of PDG for enabling these features are a new data stru
ture \dependen
yforest" and a new algorithm \graph bran
h algorithm," whi
h are the main 
ontributions of thisthesis.(1) Dependen
y ForestThe dependen
y forest is a new pa
ked shared data stru
ture for representing a set of de-penden
y trees with their preferen
e s
ores. The dependen
y forest 
onsists of the dependen
ygraph, 
onstraint 
onditions, and preferen
e information. The details of the dependen
y for-est are des
ribed in Chapter 3. The following three are the main 
ontributions related to thedependen
y forest.(a) The method for obtaining the dependen
y forest for a senten
eBased on the partial stru
ture mapping method brie
y des
ribed in Se
tion 1.4, the sen-ten
e analysis algorithm proposed in Chapter 3 generates the dependen
y forest, whi
hhas the 
omplete and sound mapping to the 
orresponding phrase stru
ture forest. Thela
k of soundness of the traditional approa
h for the partial stru
ture mapping method,i.e., the synta
ti
 graph, is also shown in Chapter 3. The 
omplete mapping between thephrase stru
ture forest and dependen
y forest provides the basis of the integrated use ofthese stru
tures. The phrase stru
ture grammar (CFG grammar) 
an fun
tion as a �lterfor the dependen
y stru
tures for the input senten
e, and the POS ambiguities retainingall possible WPP sequen
es are introdu
ed into the dependen
y forests instead of adoptingonly one WPP sequen
e as an input to the dependen
y analyzer. Thus, the CFG �lteringenabled by the dependen
y forest suppresses the explosion of dependen
y trees found inthe all-pairs approa
h in the single dependen
y model.(b) Proof of the 
ompleteness and soundness of the dependen
y forestChapter 3 gives the proof of the 
ompleteness and the soundness of the dependen
y forest



18 with respe
t to the phrase stru
ture forest.(
) Pa
ked shared data stru
ture with detailed preferen
e and 
onstraint knowl-edge des
riptionThe dependen
y forest provides higher des
riptive ability 
ompared to the existingdependen
y-graph-based pa
ked shared data stru
tures employed in major all-pairsdependen
y parsers.[Constraint Matrix℄The dependen
y forest provides a pre
ise de�nition of a set of dependen
y trees en-
ompassed in the dependen
y graph by introdu
ing the 
onstraint matrix, whi
h 
anexpress 
o-o

urren
e 
onstraints between two arbitrary dependen
y relations in adependen
y tree. The dependen
y forest 
an handle POS ambiguity, non-proje
tivedependen
y trees, and the single valen
e o

upation 
onstraint*20. Traditional ap-proa
hes utilizing the dependen
y graph as a pa
ked shared data stru
ture 
annothandle these issues be
ause they have no expli
it means for expressing detailed 
on-straints. As des
ribed in Chapter 4 in detail, the dependen
y graph sear
hed by theChu-Liu-Edmonds maximum spanning tree algorithm is restri
ted to a single nodedependen
y graph and 
annot en
ode POS ambiguity. The s
ored dependen
y graphsear
hed by the DP based-algorithms su
h as Eisner (1996b) and Ozeki (1994) is re-stri
ted sin
e they 
annot handle non-proje
tive dependen
y trees and 
annot expressthe single valen
e o

upation 
onstraint between two dependen
y relations.[Preferen
e Matrix℄The edge fa
tored model is widely used in the all-pairs approa
h for expressing thepreferen
es of the dependen
y trees en
ompassed in a dependen
y graph. On theother hand, the preferen
es of the dependen
y trees in a dependen
y forest are de-�ned by the preferen
e matrix of the dependen
y forest. The preferen
e matrix 
anexpress preferen
es for arbitrary two dependen
y relations (
alled the binary prefer-en
e model of PDG) as well as the edge fa
tored model (
alled the unary preferen
emodel of PDG)*21. The unary preferen
e model of PDG 
an treat the word or WPPbigram preferen
e as well as the dependen
y 
o-o

urren
e preferen
e. The unary pref-eren
e model of PDG enables the integrated use of tree-lo
al information (preferen
eon dependen
y relation) and string-lo
al information (preferen
e on word sequen
e)des
ribed in Se
tion 1.3.(2) Graph Bran
h AlgorithmThis thesis proposes a new optimum sear
h algorithm 
alled the \graph bran
h algorithm"based on the bran
h and bound prin
iple (Land and Doig, 1960; Ibaraki, 1978). The graph*20 This is a kind of 
o-o

urren
e 
onstraint with respe
t to the valen
es of a predi
ate. The details aredes
ribed in Se
tion 4.1.4.*21 The details of the unary and binary preferen
e models are des
ribed in Chapter 4.



19bran
h algorithm 
an sear
h the optimum well-formed dependen
y tree in a dependen
y forest.The DP-based sear
h algorithms su
h as Eisner (1996b) and Ozeki (1994) as well as the maximumspanning tree algorithms 
annot be applied to the dependen
y forest sear
h due to its highdes
ription ability.(3) New Evaluation MeasuresIn addition to the widely adopted evaluation measure for evaluating the 
omprehensive analysisability, this thesis proposes two new evaluation measures for dependen
y-based NLA systems inChapter 6. The possibly 
orre
t senten
e ratio measures the hypothesis generation ability andthe ar
 disambiguation pre
ision ratio measures the disambiguation ability of dependen
y-basedNLA systems. This thesis reports an experimental result for 
he
king these measures using thePDG prototype system.1.6 Chapter SummariesThe main 
ontents of this thesis are divided into three parts. The �rst part, Chapter 2,dis
usses senten
e analysis models for integrating multilevel preferen
e and 
onstraint knowledgeand des
ribes the overall framework of PDG. The se
ond part, Chapters 3 to 5, des
ribes thedetailed data stru
tures and algorithms employed in PDG. The last part, Chapter 6, reportssome evaluation measures and the experimental results obtained using the experimental PDGsystem. The remaining 
hapters of this thesis are summarized as follows.Chapter 2 dis
usses senten
e analysis models for integrating multilevel linguisti
 knowledgeand shows the PDG design. This 
hapter explains basi
 senten
e analysis model 
onsistingof a senten
e interpretation spa
e, three kinds of linguisti
 knowledge (generation, 
onstraint,and preferen
e knowledge) and an optimum interpretation extra
tion mean. After dis
ussingthe properties of the basi
 senten
e analysis model, the multilevel senten
e analysis model isintrodu
ed and investigated for 
larifying the design prin
iples toward the integrated use ofphrase stru
ture and dependen
y stru
ture in a multilevel senten
e analysis system. Based onthis design investigation, this 
hapter explains the overall ar
hite
ture of the PDG system aswell as its pro
essing 
ow.Chapter 3 des
ribes the details of the pa
ked shared data stru
tures of PDG that wereintrodu
ed in Chapter 2, parti
ularly the two data stru
tures at the syntax level, i.e., the phrasestru
ture forest and the dependen
y forest. This 
hapter des
ribes the problems in traditionalpa
ked shared dependen
y stru
tures and explains the details of a new data stru
ture 
alledthe \dependen
y forest," whi
h has a 
omplete and sound mapping to the 
orresponding phrasestru
ture forest. This feature is indispensable for the data stru
ture used in the multilevelsenten
e analysis model des
ribed in Chapter 2. This 
hapter des
ribes the details of the PDGgrammar formalism, parsing algorithm, and the algorithm for generating the phrase stru
tureand dependen
y forests, and provides proof of the 
ompleteness and soundness of the dependen
yforest. This 
hapter also provides an experiment for analyzing prototypi
al ambiguous senten
es



20and dis
usses the mapping relations between the phrase stru
ture tree(s) and the dependen
ytree(s) as well as the treatment of non-proje
tive dependen
y stru
tures in PDG.Chapter 4 proposes a new algorithm known as the \graph bran
h algorithm" that 
omputesthe optimum dependen
y tree(s) from a dependen
y forest with preferen
e s
ores. As is true inthe dependen
y forest, a dependen
y graph with preferen
e s
ores on its ar
s is widely used forpa
ked shared data stru
tures for representing a set of s
ored dependen
y trees. This 
hapterformalizes the optimum tree sear
h problem on a s
ored dependen
y graph as a sear
h problemwith preferen
es as well as 
onstraints, and shows that traditional methods su
h as the spanningtree sear
h method and the dynami
 programming method are not appli
able to dependen
yforests. The graph bran
h algorithm enables the optimum solution sear
h for a dependen
y forest.This algorithm is based on the bran
h and bound prin
iple and inherently has an exponentialorder of 
omputational 
omplexity. An experiment using the prototype PDG system shows noserious 
ombinatorial explosions for ordinary senten
es and exhibits a very good performan
e forthe pruning strategy des
ribed in this 
hapter. Finally, Chapter 4 des
ribes an extension of adependen
y forest with only s
ored ar
s (
alled the unary model) to one with ar
 
o-o

urren
es
ores (
alled the binary model) and shows the graph bran
h algorithm for the binary model.Chapter 5 des
ribes a s
oring pro
ess that 
omputes the preferen
e s
ores for the dependen
yforest of a senten
e based on a various kind of preferen
e knowledge. PDG utilizes 
orpusstatisti
s of some partial linguisti
 stru
tures su
h as word/POS frequen
y, word/POS bigramfrequen
y and word/POS dependen
y frequen
y. Su
h statisti
al information that is obtainedfrom ea
h linguisti
 level is 
omputed and integrated into the preferen
e s
ores in the preferen
ematrix of the dependen
y forest for a senten
e. The optimum dependen
y tree(s) are obtainedfrom this dependen
y forest by the graph bran
h algorithm des
ribed in Chapter 4. Chapter 5explains the prin
iple and basis of s
ore integration and shows the formulas for 
omputing thepreferen
e matrix for a senten
e.Chapter 6 dis
usses and proposes three evaluation measures for dependen
y stru
tures andreports the experimental results obtained using the PDG prototype system. In addition tothe widely adopted evaluation measure for evaluating the 
omprehensive analysis ability of adependen
y-based NLA system, this 
hapter proposes two new measures for evaluating the hy-pothesis generation ability and disambiguation ability of NLA systems. An experiment for 
he
k-ing these measures is 
ondu
ted. Then, experiments for evaluating some aspe
ts of the PDGsystem performan
e with respe
t to the preferen
e knowledge are 
ondu
ted to demonstrate thee�e
t of the integration of multiple preferen
e knowledge.Chapter 7 presents some possible dire
tions for future resear
h.Chapter 8 summarizes and 
on
ludes this thesis.
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Chapter 2Senten
e Analysis Model and thePDG design
2.1 Multilevel Senten
e Analysis System2.1.1 Basi
 Senten
e Analysis ModelIn general, an NLA system 
omputes stru
tures for a senten
e by generating a set of itspossible interpretations (appli
ation of interpretation generation knowledge), reje
ting impos-sible interpretations (appli
ation of 
onstraint knowledge), and obtaining the preferen
e orderof the possible interpretations (appli
ation of preferen
e knowledge). Fig.2.1 presents this sen-ten
e analysis model*1. A set of interpretations of a senten
e exists in the interpretation spa
epres
ribed by the interpretation des
ription s
heme. Ea
h interpretation is either 
orre
t (�),plausible (�), or implausible (�) with respe
t to the real-world situation.(1) Interpretation Des
ription S
heme and Interpretation Spa
eA formal des
ription of linguisti
 interpretation requires a proper representational s
heme basedon some appropriate data stru
ture. The interpretation spa
e de�nes a set of stru
tural data forexpressing the interpretation of senten
es. For example, spa
es de�ning phrase stru
ture trees,dependen
y stru
ture trees, semanti
 graphs, or logi
al formula are widely used as interpretationspa
es. An interpretation des
ription s
heme de�nes the well-formedness of the stru
tural dataas data type. Well-formedness as an interpretation of a senten
e is de�ned by the 
onstraintknowledge.(2) Generation KnowledgeThe generation knowledge*2 generates a set of 
andidate interpretations in the interpretationspa
e (i.e., expressed in the interpretation des
ription s
heme) from the input data. Examplesof interpretation generation in
lude pro
essing su
h as assigning POSs to words by 
onsulting*1 Constraint knowledge 
an be de�ned as a type of preferen
e knowledge that does not provide any possi-bilities. However, the appli
ation of 
onstraint knowledge implies pruning in the 
omputation, whi
h is in
lear 
ontrast to the appli
ation of the preferen
e knowledge.*2 \Interpretation generation knowledge" is simply 
alled \generation knowledge" in this thesis.
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Fig.2.1 Natural language analysis system modeldi
tionary and generating possible phrase stru
ture trees by appling CFG rules. Generationknowledge is a kind of 
onstraint knowledge in the sense of the term, be
ause it fun
tions toextra
t the possible interpretations for a senten
e from the whole interpretation spa
e.(3) Constraint KnowledgeConstraint knowledge de�nes a set of well-formed interpretations for a senten
e and �ltersout the impossible interpretations in the 
andidate interpretations generated by the generationknowledge. The 
onstraint knowledge in 
onjun
tion with the generation knowledge (or sim-ply the 
onstraint knowledge in the wider sense) de�nes the senten
e 
overage, i.e., a set ofa

eptable senten
es, of the NLA system. Therefore, this knowledge 
orresponds to a grammarin linguisti
s from the Chomskyan viewpoint (Chomsky, 1957). Many 
omputational grammarframeworks have been proposed and studied, in whi
h a variety of linguisti
 knowledge hasbeen in
orporated. Grammar frameworks are based on interpretation des
ription s
hemes thatpres
ribe interpretation spa
es su
h as phrase stru
ture, dependen
y stru
ture, semanti
 graphstru
ture and logi
al formula.(4) Preferen
e knowledgePreferen
e knowledge provides the ordering of the interpretations in the interpretation spa
e.Many resear
hes on preferen
e knowledge, su
h as preferen
e semanti
s (Wilks, 1975), have been
ondu
ted in linguisti
s. In general, two approa
hes are followed for implementing preferen
eknowledge in NLA systems, i.e., the heuristi
 approa
h and the 
orpus-based approa
h. In theheuristi
 approa
h, a human grammarian extra
ts and en
odes the preferen
e rules based onhis/her linguisti
 insight to an NLA system and re�nes them through system development. The
orpus-based approa
h attempts to extra
t the optimum preferen
e knowledge from tagged orplain 
orpora by applying a learning te
hnique to obtain statisti
al rules and/or parameters. The
orpus-based approa
h is intensively studied in various appli
ation areas be
ause the heuristi
approa
h requires tremendous e�orts, and o

asionally, grasping the 
omplexity in heuristi
 ruledebugging is beyond the human ability.Preferen
e knowledge has been widely adopted for NLA systems through the use of the 
orpus



23based method adapted from spee
h te
hnology. As statisti
al methods extend their appli
ations
ope from the N-gram model (word sequen
e) to the 
ontext free grammar, dependen
y gram-mars, et
., more NLA systems 
an bene�t from the statisti
al power obtained from large-s
ale
orpora as des
ribed in Se
tions 1.2 and 1.3.(5) Optimum Interpretation Extra
tionThe output of the NLA system is the optimum interpretation extra
ted from among the re-maining interpretations a

ording to the preferen
e order. The optimum extra
tion is to sear
hthe interpretation spa
e for the best interpretation that satis�es the well-formed 
onstraints,i.e., a kind of 
ombinatorial optimization problem. This kind of problem has a lot of variationsfrom an easy one (requiring polynomial order 
omputational 
omplexity) to hard one (requiringexponential order 
omputational 
omplexity) depending on the 
hara
teristi
s of the target datastru
ture, 
onstraints, and preferen
es.Various types of linguisti
 preferen
e and 
onstraint knowledge usable in senten
e analysis liein ea
h linguisti
 layer. Fig.2.2 shows some examples of the preferen
e and 
onstraint knowledgeat ea
h linguisti
 analysis level*3. Constraint knowledge is divided into two 
ategories. Thelower part shows the basi
 language-independent 
onstraints *4 and the upper part shows themore detailed and language-dependent 
onstraints. A detailed explanation of the preferen
esand 
onstraints is provided in the latter part of this thesis.(6) Linguisti
 Knowledge and System ExamplesBefore providing a more detailed explanation of the basi
 senten
e analysis model or system,two examples are shown. Fig.2.3 
orresponds to the senten
e analysis model of the probabilisti
CFG (PCFG) (Jelinek et al., 1992). The generation knowledge, preferen
e knowledge, andinterpretation spa
e are the CFG rules, probabilities of the CFG rules, and phrase stru
turespres
ribed by the grammar rules, respe
tively. PCFG has no 
onstraint knowledge. The optimuminterpretation is 
omputed by using the algorithm similar to the Viterbi algorithm. Fig.2.4 shows���� ��� �����	
� ����
� ����
���� ����	��	
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Fig.2.2 Preferen
e knowledge and 
onstraint knowledge for ea
h linguisti
 layer*3 Not shown in Fig.2.2, 
ontextual pro
essing su
h as an anaphora resolution and so forth requires 
onstraintknowledge (Walker et al., 1994; Mori et al., 2000) and preferen
e knowledge (Seki et al., 2002).*4 This kind of 
onstraint is sometimes 
alled an axiom as shown in Robinson's axiom in Se
tion 1.3.
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Fig.2.3 Senten
e analysis model of the PCFGthe senten
e analysis model of the original CDG (Maruyama, 1990). CDG adopts the eliminativeparsing method in whi
h the parsing pro
eeds by �ltering out the in
orre
t interpretation fromall possible interpretations of a senten
e by applying the unary and binary 
onstraints. Theoriginal CDG has no preferen
e knowledge*5.Needless to say, in order to formally use preferen
e and 
onstraint knowledge, they must bedes
ribed on top of some formal s
hema or data stru
ture. However, the 
onstraint and preferen
eknowledge working for the data (or the interpretation) in the interpretation spa
e is independentof the des
ription s
hema or data stru
ture for the 
onstraint and preferen
e knowledge. Forexample, introdu
ing the semanti
 knowledge as the means for restri
ting the interpretationsin the synta
ti
 interpretation spa
e is a very popular te
hnique. CDG shown in Fig.2.4 is adependen
y grammar framework with unary or binary 
onstraints. These 
onstraints are usedfor in
orporating morphologi
al and semanti
 information (Maruyama, 1990). DCG (Pereira andWarren, 1980) and BUP (Matsumoto et al., 1983) have developed a me
hanism to extend theCFG framework to in
orporate arbitrary extra-
onditions using Prolog 
odes that, for example,
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Fig.2.4 Senten
e analysis model of the original CDG*5 CDG extensions su
h as an introdu
tion of graded 
onstraints (Heine
k et al., 1998) and probabilisti
 model(Wang and Harper, 2004) are proposed to treat preferen
e knowledge within the CDG framework.
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an be used for introdu
ing semanti
 
onstraints (Muresan and Rambow, 2007). Some of there
ent morphologi
al taggers utilize synta
ti
 data stru
tures su
h as supertags (phrase stru
turedata) (Bangalore and Joshi, 1999; Clark and Curran, 2004) and superARG (dependen
y data)(Wang and Harper, 2002; Wang and Harper, 2004). As shown in Se
tion 1.2, dependen
ystru
ture information and semanti
 information are utilized in phrase stru
ture analysis.In general, data stru
tures referred from the di�erent linguisti
 layer pro
essing are not inter-pretations of a senten
e but partial stru
tures or features in the senten
e.(7) Optimum Solution Sear
h AlgorithmAs brie
y explained in Se
tion 1.3, there are two approa
hes for the optimum tree extra
tion,i.e., the history-based approa
h and the all-pairs approa
h*6. The history-based approa
h (Bla
ket al., 1992) assumes that the probability of the parsed stru
ture is determined by the parsingpro
ess, i.e., ea
h tree-building pro
edure uses a probability model p(AlB) to weight any a
tionA based on the available 
ontext, or history, B. The all-pairs method obtains the optimum parsedstru
ture from among a set of possible parsed stru
tures based on the probability (or preferen
es
ore) de�ned on the parts of the parsed stru
tures. This is undertaken in three steps, i.e.,the generation of possible 
andidates, generation of preferen
e s
ores, and sear
h for the parsedstru
ture with the highest preferen
e s
ore. The pro
ess of 
al
ulating the preferen
e s
ores andsetting them to some data stru
ture is 
alled \s
oring" in this thesis.Generally speaking, the history-based method realizes higher speed eÆ
ien
y be
ause it fun
-tions deterministi
ally; o

asionally, however, it su�ers from the lo
al minimum problem be
ausethe de
isions during parsing are made based on lo
al information, whi
h may eventually lead tofailure in 
apturing the 
orre
t global stru
ture. On the other hand, the all-pairs method re-quires more 
omputational resour
es but 
an handle global stru
ture preferen
es and assures theoptimality of the obtained stru
ture. M
Donald and Nivre (2007) reported that the a

ura
iesof the Malt parser (history-based method) and MSTParser (all-pairs method) were almost iden-ti
al irrespe
tive of the methodologi
al di�eren
e between them. Resear
hes on the extension,improvement and integration of these dependen
y parsers has been 
ondu
ted (Charniak andJohnson, 2005; Xiaodong and Chen, 2007; Huang and Chiang, 2007; Hall, 2007). This thesis fo-
uses on the all-pairs full-de
oding dependen
y analysis method and thereby on optimum sear
halgorithms for the pa
ked shared dependen
y stru
tures. The appli
ability and performan
e ofan optimum sear
h algorithm is 
losely related to the 
hara
teristi
s of the target data stru
ture,
onstraints and preferen
es.2.1.2 Multilevel Senten
e Analysis ModelFrom the viewpoint of the multilevel knowledge integration, senten
e analysis frameworks are
lassi�ed as either a single-level model or a multilevel model. The single-level model has oneinterpretation spa
e and is merely the basi
 senten
e model des
ribed in the previous se
tion.*6 The \all-pairs approa
h" is not restri
ted to dependen
y parsing in this thesis.
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Level 2 Interpretation: Level 3 Interpretation: Fig.2.5 Multilevel senten
e analysis modelThe multilevel model has more than one interpretation spa
es and possibly multiple des
riptions
hemes. Fig.2.5 shows the basi
 
onstru
tions of the multilevel models. The multilevel modelis basi
ally a 
as
aded 
onne
tion of some basi
 senten
e models. However, this does not implya sequen
e of 
as
aded pro
essing modules. It shows the 
onstru
tion of linguisti
 knowledgeand data stru
tures. Ea
h interpretation spa
e represents the interpretations of a senten
e insome layer of linguisti
 theory, su
h as morphology, syntax and semanti
s. The multilevel modelassumes a layer stru
ture among its levels, i.e., linguisti
 data stru
tures. The input senten
eside is referred to as the lower level and the output side, the upper level. The data stru
ture ofan intermediate level is 
onsidered to be an intermediate data stru
ture bridging the interpreta-tions from the lower adja
ent level to the upper adja
ent level. For example, a WPP sequen
efor a senten
e (morphologi
al analysis result) is the intermediate data stru
ture bridging theinterpretation from a 
hara
ter sequen
e (input senten
e) to a phrase stru
ture tree (synta
ti
analysis result).Ea
h level 
an have its generation, preferen
e, and 
onstraint knowledge. The generationknowledge generates possible interpretations from a set of its lower-level interpretations. Everyinterpretation of a senten
e in some interpretation spa
e should have a mapping 
alled the \in-terpretation mapping" (represented by the dotted line labeled \mapping") to its 
ounterpart inthe lower adja
ent level of the interpretation spa
e; however, the inverse is not ne
essarily true.For example, there 
an be a morphologi
al interpretation of a senten
e having no 
orrespond-ing synta
ti
 interpretations; however, there 
annot be a synta
ti
 interpretation of a senten
ehaving no 
orresponding morphologi
al interpretations. One interpretation has 0 to M(M�1)interpretation mappings toward the upper level and 1 to N(N�2) interpretation mappings to-ward the lower level, re
e
ting the existen
e of the ambiguities in natural languages. Thus, themultilevel model should satisfy the following two 
onditions related to interpretation mapping.De�nition 2.1.1 [Multilevel model mapping 
ondition℄(a) Every interpretation in an intermediate level has at least one mapping to an interpretationin its lower level(b) The interpretation in one level has a mapping to at least one mapping to an interpretation



27in its upper level i� there is no pruning by some 
onstraintConditions (a) and (b) are respe
tively 
alled the soundness 
ondition and 
ompleteness 
onditionfor the multilevel model mapping 
ondition. The di�eren
e with the mapping 
ondition for thesynta
ti
 graph lies in the 
ompleteness 
ondition.An optimum solution sear
h is performed at the uppermost level to obtain the �nal outputof the senten
e in Fig.2.5. The interpretation mapping 
an be used for sear
hing the optimuminterpretation based on the upper-level de
ision and not on the 
urrent-level de
ision by tra
ingba
k the mapping from the optimum interpretation at the upper level to the 
orrespondinginterpretation at the 
urrent level. For example, the tagger based on the optimum semanti
analysis result 
an be 
onstru
ted naturally.A senten
e analysis system based on the multilevel model is 
alled the \multilevel system"in this thesis. Multilevel systems 
an refer to interpretations in the intermediate levels andhave ri
her linguisti
 knowledge des
riptions 
ompared to single-level systems. However, theyalso have 
onsiderably more design 
omplexities on a

ount of having two degrees in knowledgeintegration design, i.e., knowledge integration in one level and knowledge integration in multilevel
onstru
tion.De�ning the data stru
ture is one of the most important issues in NLA system design. Thereare two major approa
hes for data stru
ture implementation, i.e., the enumeration approa
h (ork-best approa
h) and the pa
king approa
h. The enumeration method maintains the possibleinterpretations as a set of independent data. The pa
king method utilizes pa
ked-shared datastru
tures for expressing a set of interpretations eÆ
iently to avoid the 
ombinatorial explosionproblem. In general, the set of interpretations of a senten
e is de�ned by three 
omponents,i.e., a pa
ked shared data stru
ture, an interpretation extra
tion s
hema, and a set of well-formedness 
onstraints on the stru
tures. O

asionally, some of the well-formedness 
onstraintsare embedded in the interpretation extra
tion s
heme.The enumeration method is superior to the pa
king method in des
riptive power or freedombe
ause it has no restri
tion for expressing a set of interpretations. For example, though simpleWPP trellis, whi
h is widely used as a pa
ked data stru
ture for expressing a set of possible WPPsequen
es of a senten
e, 
an express word bigram 
onstraint eÆ
iently, it 
annot en
ode a wordtrigram or more 
onstraint*7. In 
ontrast, the enumeration method simply lists a set of possibleWPP sequen
es. From the viewpoint of 
omputational resour
e, the enumeration method easilybe
omes intra
table due to the 
ombinatorial explosion of the possible interpretations. In manyimplementations, the k-best pruning method is adopted for avoiding this problem. The 
ombi-natorial explosion is suppressed by the k-best threshold in intermediate level; however, this maylead to overpruning. k-best pruning requires the appli
ation of preferen
e knowledge for thatlevel of interpretation spa
e.The pa
king method avoids the pruning of interpretations to the maximum extent possible*7 The word trigram or more 
onstraint 
an be expressed by a set of independent 
onstraints in 
onjun
tionwith the WPP trellis.



28by suppressing the 
ombinatorial explosion possibly into a polynomial order 
omplexity. Sin
ethe representable sets of interpretations are pres
ribed by the 
onstr
ution of a pa
ked-shareddata stru
ture, the 
onstraint representation s
hema and the interpretation extra
tion s
hema(enumeration algorithm or optimum solution sear
h algorithm) are key design issues. In 
ontrastto the k-best method, the pa
king method does not require intermediate pruning as well as theintermediate appli
ation of preferen
e knowledge.Thus, the antinomy between resour
e (
omputational and spa
e 
omplexity) and a

ura
y(pruning and knowledge des
ription ability) lies between the enumeration and pa
king methods.Various resear
hes in
luding the integration of these two methods have been 
ondu
ted, as de-s
ribed in the next se
tion. There are no de�nite and 
on
rete 
riteria for 
omparing these twomethods. Determining whi
h of the methods is appropriate for a given problem seems to be adesign issue. This thesis fo
uses on the multilevel system based on the pa
king method. Ea
hanalysis level en
ompasses all possible senten
e interpretations in its interpretation spa
e in theform of ea
h pa
ked shared data stru
ture. This model is referred to as the \multilevel pa
kedshared data 
onne
tion (MPDC)" model in this thesis.Finallly, some relation of the multilevel issues to the linguisti
 theory is des
ribed. The mul-tilevel model explained in this se
tion 
an be seen as a model based on MTT (meaning-texttheory) (Mel'
uk, 1988; Wanner, 1994; Kahane, 2003). MTT proposes a multilevel languagemodel wherein the mappings between meanings and texts are established through multilevelinterpretation data stru
tures. The mappings between interpretations (or data stru
tures) inadja
ent levels of interpretation spa
es assures the overall mappings. Basi
ally, MTT is a bidi-re
tional linguisti
 theory 
overing senten
e analysis and senten
e generation. However, MTTis developed and presented stri
tly in the synthesis dire
tion and has thus far been dis
ussedinsuÆ
iently with regard to the analysis dire
tion. As Kahane (2003) des
ribed, \If we want topresent a real pro
edure of analysis or synthesis, it is mu
h more 
ompli
ated be
ause we haveto take into a

ount the question of multiple 
hoi
es between rules (and, 
onsequently, problemsof memorization, 
hoi
es, ba
ktra
king and parallelism)." The treatment of multiple 
hoi
es,i.e., the ambiguities in senten
e analysis, is not fo
used on; 
onsequently, the treatment of thepreferen
e knowledge seems to be beyond the s
ope of the MTT framework so far. The prob-lem of multiple 
hoi
es is not 
ru
ial, in some sense, for senten
e generation be
ause multiple
hoi
es simply generate di�erent texts representing the same meaning. On the other hand, itis 
ru
ial for senten
e analysis be
ause it generates di�erent (i.e., in
orre
t) meanings from onetext expression. Multiple 
hoi
es indu
e the 
omputational problems of memorization, 
hoi
es,ba
ktra
king, and parallelism along with the 
ombinatorial explosion of senten
e interpretations.The multilevel model is a type of MTT-based framework that is 
apable of managing the multiple
hoi
es and preferen
e knowledge.



292.1.3 Conventional Multilevel Synta
ti
 Analysis SystemsAs des
ribed in the previous se
tion, the output of an NLA system is an interpretation in a
ertain interpretation spa
e (for example, the phrase stru
ture tree and the dependen
y tree).One of the interpretation spa
es of the multilevel system is sele
ted as its output level, andthe well-formedness 
onditions and preferen
e measure are de�ned on the interpretations inthe spa
e. Theoreti
ally, the output level need not be the uppermost level. The output datastru
ture de�nes the linguisti
 layer of the NLA system. For example, even if a tagger utilizesphrase stru
ture information or semanti
 information, it is a morphologi
al analyzer. This se
tionoverviews 
onventional NLA systems or te
hnologies from the viewpoint of the multilevel modelto dis
uss design prin
iples for multilevel systems.Many 
onventional synta
ti
 analysis systems adopt a two-level 
onstru
tion with the datastru
tures in morphologi
al and synta
ti
 layers, i.e., WPP sequen
e and synta
ti
 stru
ture.Some adopt the 1-best method for phrase stru
ture analysis (Collins, 1999; Charniak, 2000;Bikel, 2004) and dependen
y stru
ture analysis (Hirakawa, 2001; M
Donald et al., 2005; Ya-mada and Matsumoto, 2003; Nivre and S
holz, 2004). In this 
onstru
tion, the disambiguationof POS ambiguity is left as the task for the adopted tagger and issues a problem be
ause thedisambiguation errors in the tagging pro
ess 
annot be solved by improving the ability of adependen
y parser. One appli
able solution to this problem is adopting the k-best system 
on-stru
tion.Parsing iteration (or pipeline parsing) proposes a senten
e analysis ar
hite
ture with multipleanalysis modules 
onne
ted in the pipeline (Charniak, 2000; Hollingshead and Roark, 2007). Theearlier stage analyzer generates k-best solutions eÆ
iently by utilizing simpler preferen
e knowl-edge and the later stage module sele
ts the best result based on more sophisti
ated preferen
eknowledge, whi
h requires more 
omputational resour
es. Charniak (2000) applies a grammar ina simpli�ed manner in the �rst stage and then applies the same grammar fully in the later stage.Charniak and Johnson (2005) use the generative parsing model for the �rst stage to obtain thek-best 
andidates and then reranks the 
andidates based on the maximum entropy model tosele
t the optimum solution.Resear
hes on multilevel systems with a 
ombination of shallow parsing and deep parsing havebeen 
ondu
ted. The shallow parser identi�es the partial or super�
ial stru
tures of a senten
ebased on the lo
al information observed in a senten
e. It need not generate the overall stru
tureof a senten
e. In 
ontrast, the deep parser analyzes the deep 
onstru
tion of a senten
e, su
has synta
ti
 relations and semanti
 relations, and generates the overall stru
ture of a senten
e.One typi
al shallow parser in this 
onstru
tion is the supertagger. A supertag represents somestru
tural information in a higher level interpretation spa
e su
h as a partial phrase stru
turetree. Supertagging, or the sele
tion of a supertag for every word in a senten
e, is almost equivalentto parsing (almost parsing) be
ause a supertag sequen
e almost de�nes the synta
ti
 stru
ture of



30a senten
e (Bangalore and Joshi, 1999)*8. A supertagger is used as a shallow parser for improvingthe parsing speed without the deterioration of parsing a

ura
y of deep parsers *9 su
h as theCCG parser (Clark and Curran, 2004; Djordjevi
 et al., 2007), HPSG parser (Ninomiya et al.,2006; Ninomiya et al., 2007), and CDG parser (Wang and Harper, 2002; Wang and Harper, 2004).This suggests the design prin
iple that it is important to have a

urate k-best implementationsin the lower levels of multilevel systems.Trellis (or latti
e) is widely a

epted as a pa
ked shared data stru
ture for representing themorphologi
al interpretations of a senten
e in multilevel systems. This data stru
ture representsthe possible adja
en
y relation between WPPs. Constraints on WPP adja
en
y is one of theimportant kinds of 
onstraint knowledge in Japanese. The use of this morphologi
al 
onstraintknowledge in the synta
ti
 parsing stage signi�
antly improves the eÆ
ien
y of the parsingpro
ess (Shirai et al., 2000).2.2 Proposal for a Dependen
y Analysis System Utilizingthe Phrase Stru
ture2.2.1 The Integrated Use of Linguisti
 Knowledge in a Multilevel Sen-ten
e Analysis SystemThere are two types of knowledge integrations, i.e., the di�erent-type knowledge integration(how to treat the 
onstraint and preferen
e knowledge) and the multilevel knowledge integra-tion (how to treat di�erent levels of linguisti
 knowledge). These integrations pose a problemin satisfying two 
on
i
ting requirements, i.e., the suppression of the 
ombinatorial explosionand the suppression of the overpruning of the possible interpretations of a senten
e. In ea
hlevel of a natural language, the number of 
omputationally possible interpretations of a senten
egenerally in
reases exponentially with its length. This 
auses a serious problem with regard tothe time and spa
e in the 
omputation of the senten
e analysis. The pruning of possible inter-pretations by applying 
onstraint knowledge is an e�e
tive method to avoid the 
ombinatorialexplosion. However, the overpruning of the possible interpretations may degrade the systema

ura
y. Therefore, NLA systems must have a proper me
hanism to integrate the preferen
eand 
onstraint knowledge.Multilevel knowledge integration also poses the same problem. Pruning is more e�e
tive atthe morphologi
al level than at higher levels su
h as the synta
ti
 and semanti
 levels sin
ean interpretation at the morphologi
al level 
orresponds to multiple higher level interpretations.However, pruning of the lower level interpretations based on lower level linguisti
 knowledge mayfail to provide the 
orre
t interpretation due to the la
k of upper level linguisti
 information.Therefore, it is important for NLA systems to have a proper me
hanism to integrate the multilevel*8 The well-formedness 
he
k and generation of the senten
e interpretation remain to be undertaken in theuppermost level.*9 Parsing a

ura
y o

asionally improves by the 
ombined use of shallow and deep information.



31linguisti
 knowledge.(1) Integration of multilevel 
onstraint knowledgeAs des
ribed in Se
tion 2.1.2, 
onstraint knowledge 
an be applied in either the intermediatelevel or last level of a multilevel system 
onstru
tion. The appli
ation in an intermediate level
orresponds to the pruning of interpretations, whi
h is propagated naturally to the upper levelsdue to the multilevel model mapping 
ondition. Prunings in the lower levels are very e�e
tive foreÆ
ien
y improvement. Therefore, the appli
ation of 
onstraint knowledge should be undertakenin the lower level to the maximum extent possible. On the other hand, the �nal level de�nesthe output interpretation. This implies that the 
onstraints in this level are well-formedness
onditions that 
annot be fully des
ribed in the lower level stru
ture.(2) Integration of multilevel preferen
e knowledgeThe preferen
e knowledge in various linguisti
 layers is appli
able to interpretations in onelevel interpretation spa
e. The appli
ation of preferen
e knowledge to the intermediate levelsimply de�nes the preferrential order of interpretations in that level and, unlike the 
onstraintknowledge, has no dire
t in
uen
e on the preferen
e orders of the interpretations in the otherspa
es*10. The appli
ation of preferen
e knowledge in the intermediate level is ne
essary forthe k-best approa
h to sele
t a set of interpretations. This is a use of preferen
e knowledge forpruning, i.e., 
onstraint appli
ation.The appli
ation of preferen
e knowledge in the uppermost level de�nes the output of theNLA system. Ninomiya et al. (2007) 
ompared two di�erent use 
ases of preferen
e knowledgein an NLA system, whi
h 
onsists of a supertagger and a HPSG parser. The �rst 
ase utilizesthe supertagger preferen
e (word trigram and POS 5-gram model) to sele
t k-best morphologi
alinterpretations and the best deep interpretation based on the HPSG sto
hasti
 preferen
e model.In the se
ond 
ase, both the supertagger and HPSG preferen
e models are integrated to sele
t thebest HPSG parse. The latter showed 
onsiderably superior a

ura
y 
ompared to the former.Wang and Harper (2004) 
ompared two 
ases for 
ombining the SuperARV tagger and CDGparser, i.e., 
ombining them by the k-best method (loosely 
oupled system) and applying twopreferen
es simultaneously (tightly 
oupled system) and reported that the tightly 
oupled systemoutperformed the loosely 
oupled system. Charniak and Johnson (2005) utilize the dis
riminativemaximum entropy model for the reranking of the pipeline parser (Charniak, 2000) and obtainedthe improvement in the parsing a

ura
y. The fa
t that this dis
riminative maximum entropymodel in
ludes various features in multiple linguisti
 layers suggests that the integrated use ofvarious levels of preferen
e knowledge is a key to a

ura
y improvement. These resear
h resultsshow the importan
e of preferen
e knowledge integration in the uppermost level of a multilevelsystem.*10 There 
an be a system 
onstru
tion in whi
h the optimum interpretation is sear
hed in some lower level toobtain the higher level interpretation by tra
ing the interpretation mapping. In this 
ase, some appli
ationof preferen
e knowledge is required be
ause the lower interpretation may have multiple 
ounterparts in theupper level spa
es. For example, one synta
ti
 stru
ture 
an have many possible semanti
 interpretations(Harada and Mizuno, 2001).



322.2.2 PDG DesignThis se
tion des
ribes a new multilevel NLA method, 
alled PDG, utilizing the phrase stru
tureand dependen
y stru
ture levels. PDG employs a three level ar
hite
ture with two intermedi-ate levels (morphologi
al stru
ture and phrase stru
ture) and the uppermost level (dependen
ystru
ture). The dependen
y stru
ture is sele
ted as the output of PDG be
ause it has an aÆn-ity with the semanti
 stru
ture, whi
h lies within the s
ope of future resear
h, as des
ribed inChapter 7. Based on the previous dis
ussions on multilevel systems, the following three issuesare settled for PDG design prin
iples.(a) Avoiding overpruning as well as suppressing 
ombinatorial explosion as mu
h as possible(b) Adopting e�e
tive pruning by applying possible 
onstraints in the lower level(
) Enabling the optimum sear
h in the uppermost level to utilize various levels of preferen
eknowledgePDG adopts the MPDC model to a
hieve (a). This requires pa
ked shared data stru
tures formorphologi
al stru
ture, phrase stru
ture, and dependen
y stru
ture, whi
h satisfy the multilevelmodel mapping 
ondition (De�nition 2.1.1). To ful�ll this requirement, this thesis proposes anew method for obtaining a pa
ked shared dependen
y data stru
ture 
alled the dependen
yforest, whi
h satis�es the mapping 
ondition against the phrase stru
ture forest. Based on (b),the phrase stru
ture level is utilized as a �lter for the dependen
y level. This unique 
onstru
tionis an answer to the sear
h spa
e problem 
aused by introdu
ing POS ambiguities to dependen
yanalysis, as des
ribed in Se
tion 1.3. In the three level ar
hite
ture of PDG, the phrase stru
ture�lter suppresses the explosion of dependen
y trees and enables all-pairs dependen
y parsing for allPOS ambiguities*11. Following prin
iple (
), PDG adopts the preferen
e knowledge des
riptions
heme 
alled the preferen
e matrix in the dependen
y stru
ture level. The preferen
e matrix isa more powerful des
riptive s
heme 
ompared to the edge fa
tored model, whi
h is widely usedfor the single dependen
y model parsers. A new optimum tree sear
h algorithm 
alled the graphbran
h algorithm is proposed to realize the optimum tree sear
h in the dependen
y forest, whi
his not a
hieved by the 
onventional graph sear
h algorithms, as des
ribed in Chapter 4.Finally, the PDG system is de�ned as an all-pairs dependen
y parsing system with the followingfeatures:(a) Consisting of three level spa
es (data stru
tures) for WPP sequen
e, phrase stru
ture tree,and dependen
y tree(b) Utilizing three pa
ked shared data stru
tures, i.e., WPP trellis, phrase stru
ture forest,and dependen
y forest*11 The des
riptive power of the partial mapping model, i.e., mapping between the CFG rule stru
ture andpartial dependen
y stru
ture, is one important issue for the appropriateness of the use of its CFG �ltering.There 
an be a more powerful model with mapping between the arbitrary partial phrase stru
ture tree andpartial dependen
y tree stru
ture. This issue lies beyond the s
ope of this thesis.



33(
) Utilizing the graph bran
h algorithm for sear
hing the optimum interpretation from adependen
y forest2.2.3 The Data Stru
ture/Pro
essing Model of PDGFig.2.6 shows the PDG analysis model. PDG has two basi
 linguisti
 layers, i.e., morphologyand syntax. The syntax layer is further divided into two levels. In total, PDG has three levels ofinterpretation spa
e, des
ription s
heme, and pa
ked shared data stru
ture. Fig.2.7 presents abrief explanation of the data stru
tures and examples of the preferen
e knowledge, the 
onstraintknowledge, the pa
ked shared data stru
ture and the senten
e interpretation at ea
h level.Morphologi
al interpretations for a senten
e are represented by sequen
es (or strings) of WPPnodes, whi
h represent the adja
en
y relations between words. The WPP trellis is used as apa
ked shared data stru
ture for representing a set of sequen
es of WPP nodes. The nodes inthe PDG data stru
ture 
an possess arbitrary linguisti
 attributes su
h as number, gender, andtense (not shown in the �gure). A senten
e interpretaion in the morphologi
al level is a sequen
eof the WPP nodes in the line from \start" to \end" in the Figure. These two spe
ial nodes aresometimes not expli
itly shown in this thesis.The syntax level of PDG 
ontains two types of data stru
tures, i.e., phrase stru
ture anddependen
y stru
ture. A phrase stru
ture tree represents the sub-
ategorization (or adja
en
y)relations of phrases. A set of phrase stru
ture trees is represented by a phrase stru
ture forest.Synta
ti
 preferen
e knowledge (e.g., phrase frequen
y) and 
onstraint knowledge (e.g., numberagreements) 
an be des
ribed on top of the phrase stru
ture*12. The dependen
y stru
ture isanother data stru
ture in the syntax level of PDG. A dependen
y tree 
onsists of WPP nodes
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Fig.2.6 PDG implementation model*12 Constraints su
h as the number agreements 
an be des
ribed as 
onstraints at another level or 
an bedes
ribed in more than one level in parallel. This is a design issue in a
tual grammar development. Ingeneral, the number agreement 
onstraint should be applied to the phrase stru
ture level based on thedesign prin
iple (b).



34
WPP

trellis

Phrase

Structure

Forest

Dependency

Forest

WPP

Phrase

Category

WPP

Node

Relation

adjacency

Sub-
categorization

Syntactic
Dependency

np npvp

s s
vp

root

top

objsub

toptop

ExamplePacked Sha-

red Structure
One Interpretation

WPP sequence

Phrase 
structure tree

np vp

s

fly/vtime/n

root

top

sub

top

Dependency tree

time/n fly/n

fly/vtime/n

time/v fly/n

fly/v

time/n

time/v

fly/n

fly/v

time/n

time/v

fly/n

fly/v

time/n

Ex. of PK

Ex. of CK

WPP frequency

Adjacency
constraint

Number
agreements

Phrase
probability

Dependency
probability

Projectivity
constraint

endstartWPP

trellis

Phrase

Structure

Forest

Dependency

Forest

WPP

Phrase

Category

WPP

Node

Relation

adjacency

Sub-
categorization

Syntactic
Dependency

np npvp

s s
vp

root

top

objsub

toptop

ExamplePacked Sha-

red Structure
One Interpretation

WPP sequence

Phrase 
structure tree

np vp

s

fly/vtime/n

root

top

sub

top

Dependency tree

time/n fly/n

fly/vtime/n

time/v fly/n

fly/v

time/n

time/v

fly/n

fly/v

time/n

time/v

fly/n

fly/v

time/n

Ex. of PK

Ex. of CK

WPP frequency

Adjacency
constraint

Number
agreements

Phrase
probability

Dependency
probability

Projectivity
constraint

endstart endstart

Fig.2.7 Pa
ked shared data stru
tures in PDGand ar
s labeled with synta
ti
 (or fun
tional) dependen
y relations su
h as subje
t and obje
t.A set of dependen
y trees representing the synta
ti
 interpretations of a senten
e is representedby a dependen
y forest. The dependen
y forest is a pa
ked shared data stru
ture that utilizesa dependen
y graph with a framework for des
ribing the preferen
e and 
onstraint informa-tion for the ar
s in the graph*13. The dependen
y probability and the proje
tivity 
onstraintrepresentable by the dependen
y representation are examples of the preferen
e and 
onstraintknowledge, respe
tively.Fig.2.8 shows the relations in the multilevel data stru
tures of PDG for the example senten
e\Time 
ies." Ea
h pa
ked shared data stru
ture 
orresponds to a set of interpretations in ea
h
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35interpretation spa
e for a senten
e. The WPP trellis en
ompasses four WPP sequen
es, i.e.,\time/n+
y/v", \time/n+
y/n", \time/v+
y/v" and \time/v+
y/n." The phrase stru
turelevel has two phrase stru
ture trees. One of them 
orresponds to the de
larative interpretationof the senten
e with mapping to \time/n+
y/v" and the other 
orresponds to the impera-tive interpretation of the senten
e with mapping to \time/v+
y/n." The remaining two WPPsequen
es (the morphologi
al interpretations) have no interpretation mappings to the phrasestru
ture level in this example. The optimum interpretation of a senten
e has a mapping to theinput senten
e through a series of interpretation mappings in multiple levels.2.2.4 S
oring and Optimum Solution Sear
h in PDGIn the MPDC model, the optimum well-formed interpretation 
an be basi
ally de�ned in ea
hinterpretation spa
e. However, it is not ne
essary to obtain or de�ne the optimum well-formed in-terpretation of every interpretation spa
e. The s
oring and optimum solution (or interpretation)sear
h methods for the WPP trellis and phrase stru
ture forest are not des
ribed in this thesisbe
ause PDG is a framework for obtaining the optimum dependen
y tree for a senten
e. TheViterbi algorithm is widely used for sear
hing the optimum sequen
e in trellises with preferen
es
ores. A similar algorithm adopted in PCFG is a popular method for obtaining the optimumphrase stru
ture tree from a phrase stru
ture forest (Jelinek et al., 1992).Fig.2.9 explains the s
oring and optimum solution sear
h for a dependen
y tree. The WPPsequen
e, phrase stru
ture and dependen
y preferen
e s
ores imply the preferen
e s
ores 
om-putable based on the WPP trellis, phrase stru
ture forest, and dependen
y forest, respe
tively.Examples of the referen
e knowledge of ea
h data stru
ture are shown in Fig.2.7. Su
h kindsof preferen
e knowledge are integrated into a data stru
ture 
alled preferen
e matrix de�ned in
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36the dependen
y forest by the s
ore integration module*14. The preferen
e matrix 
an representtwo kind of preferen
e s
ores, i.e. unary preferen
e s
ore and binary preferen
e s
ore. Unarys
ore represents the plausibility of one dependen
y relation and the binary s
ore represents theplausibility of the 
o-o

urren
e between two dependen
y relations. Preferen
e s
ores obtainedfrom ea
h level are 
onverted and integrated into these preferen
e s
ores. Two versions of thedependen
y forest, i.e., the unary and binary models are proposed and implemented in this the-sis. The details of the s
ore integration is des
ribed in 5. The optimum tree is sear
hed fromthe unary or binary dependen
y forest using an algorithm 
alled the \graph bran
h algorithm,"whi
h is des
ribed in detail in Chapter 4.2.2.5 Pro
essing Flow of the Experimental PDG SystemFig.2.10 shows the overall pro
essing 
ow of the PDG experimental system. The morpholog-i
al and synta
ti
 parsing 
omponents are 
onne
ted through data stru
tures en
ompassing allambiguities at ea
h level. The morphologi
al analysis module inputs a senten
e and generatesthe WPP trellis by 
onsulting the di
tionary. This module is 
onstru
ted by using standardte
hnologies. The synta
ti
 analysis module based on the 
hart parsing algorithm applies thePDG grammar rules to generate the PDG 
hart. PDG grammar rule 
onsists of a CFG-basedgrammar rule (partial phrase stru
ture) and partial dependen
y stru
ture. The mapping betweenthe phrase stru
ture and dependen
y forests is essentially de�ned in the grammar rules. The
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ow of the PDG experimental system*14 Not all preferen
e knowledge kinds listed in Fig.2.7 are implemented in the PDG prototype system. Detailsare shown in Chapter 5



37forest generation module extra
ts the phrase stru
ture forest and the dependen
y forest 
alledthe \initial dependen
y forest" de�ned in Chapter 3 from the 
hart generated by the synta
ti
parser. The dependen
y forest redu
tion module generates the dependen
y forest from the initialdependen
y forest. The details of the synta
ti
 analysis and dependen
y forest generation aredes
ribed in Chapter 3.The preferen
e s
ores are integrated by the s
oring module and are atta
hed to the depen-den
y forest. The dependen
y forest with the preferen
e s
ore is sometimes 
alled the \s
oreddependen
y forest" expli
itly. The morphologi
al level preferen
e knowledge (the WPP unigramand bigram frequen
ies) and the dependen
y level preferen
e knowledge (the unary and binaryar
 frequen
ies) are utilized; however, the phrase stru
ture oriented preferen
e s
ores are notutilized in the 
urrent implementation of the PDG prototype system.The optimum solution sear
h module 
omputes the most preferable well-formed interpretationof the senten
e based on the preferen
e s
ores generated by the s
oring module based on thegraph bran
h algorithm proposed in this thesis. The details of the optimum solution sear
halgorithm are des
ribed in Chapter 4.Currently, an experimental version of the PDG system has been implemented in Prolog aimedat the feasibility study of the PDG framework. The preferen
e knowledge of this prototype systemis extra
ted automati
ally from an English 
orpus by using the existing senten
e analysis system(Amano et al., 1989) and the basi
 PDG grammar with around 1000 CFG rules is developed asdes
ribed in Chapter 6. This thesis des
ribes the details of the PDG and experiments using theexperimental PDG system.
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Chapter 3Pa
ked Shared Data Stru
tures
3.1 Prerequisites for Pa
ked Shared Data Stru
turesThe following are prerequisites for the data stru
ture at ea
h level of the multilevel pa
kedshared data stru
ture 
onne
tion model.(a) no 
ombinatorial explosion(b) a set of proportionate interpretations(
) satisfy the multilevel model mappping 
ondition(a) is a very important issue with regard to 
onstru
ting pra
ti
al NLA systems. In general,the enumerative treatment of interpretations leads to a la
k of time and spa
e or it degradesthe analyti
al 
apability due to overpruning. (b) implies that the pa
ked shared data stru
tureat ea
h level en
ompasses all possible solutions 
orre
tly, i.e., it assures there is no pruning ofexisting interpretations and no generation of nonexistent interpretations originating from thepa
ked shared data stru
tures. Provided this requirement is assured, it is bene�
ial for an NLAsystem to be 
apable of introdu
ing possible pruning (appli
ation of 
onstraint knowledge) inthe early stage of senten
e analysis 
onsidering the system performan
e. (
) is a prerequisite forthe multilevel system des
ribed in Se
tion 2.1.2.3.2 Traditional Methods for the Pa
ked Shared DataStru
tures3.2.1 The WPP TrellisPDG utilizes WPP trellis as the basis for the morphologi
al analysis level. The WPP trellis isa pa
ked shared data stru
ture en
ompassing all WPP sequen
es for a senten
e. Fig.3.1 shows anexample of a WPP trellis for the senten
e \Time 
ies like an arrow." Ea
h node is labeled withthe WPPs of ea
h word in a senten
e and has a variety of features su
h as word input position*1,lexi
al information, and morphologi
al features. Ar
s between the WPP nodes represent possible*1 The word position is represented by zero origin basis.
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start Fig.3.1 WPP trellis for \Time 
ies like an arrow"adja
en
y relations. A WPP node sequen
e obtained by tra
ing from the top to the bottom ofthe trellis through the ar
s 
orresponds to one morphologi
al interpretation of the senten
e.For example, the WPP node sequen
e \time/n 
y/v like/pre an/det arrow/n" in Fig.3.1 is oneinterpretation of \Time 
ies like an arrow." Compound words o

upy multiple input positionsa

ording to their word lengths. In general, a WPP sequen
e has 0 to N 
orresponding phrasestru
ture trees and is 
onsidered to be an intension of the 
ounterpart phrase stru
ture trees.3.2.2 The Pa
ked Shared Phrase Stru
ture ForestThe pa
ked shared phrase stru
ture forest, or simply phrase stru
ture forest, is a well-knownpa
ked shared data stru
ture for en
ompassing all phrase stru
ture trees (Tomita, 1987). Fig.3.2shows the pa
ked shared phrase stru
ture forest for the example senten
e. A sub-tree headedwith a non-terminal symbol that has multiple in-
oming ar
s is shared by its upper trees. Abox 
ontaining the same nonterminal symbols, i.e., \s" or \vp," shows the pa
ked sub-trees thathave the same phrase boundaries (senten
e span).The WPP trellis and the pa
ked shared phrase stru
ture forest satisfy the interpretation map-ping 
ondition of the multilevel pa
ked shared data stru
ture 
onne
tion model be
ause ea
h
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Fig.3.2 Phrase stru
ture forest for \Time 
ies like an arrow"



41phrase stru
ture tree in the pa
ked shared phrase stru
ture forest 
orresponds to a WPP se-quen
e in the WPP trellis.3.2.3 The Synta
ti
 GraphSeo and Simmons (1989) proposed the \synta
ti
 graph", whi
h en
ompasses all dependen
ytrees 
orresponding to phrase stru
ture trees in the phrase stru
ture forest for a senten
e (Rimet al., 1990). The synta
ti
 graph is a promising 
andidate for a pa
ked shared data stru
turein PDG but it 
annot be adopted as it is be
ause it has a problem in satisfying the prerequisite(
) in Se
tion 3.1 for the multilevel pa
ked shared data stru
ture 
onne
tion model.The synta
ti
 graph is a dire
ted graph, whi
h 
onsists of nodes representingWPPs and labeledar
s representing the synta
ti
 relations between nodes. The synta
ti
 graph de�nes a set ofdependen
y trees (interpretations) for a senten
e in 
ombination with the \ex
lusion matrix",whi
h represents ex
lusive 
o-o

urren
e relations between ar
s. The synta
ti
 graph is a setof Triples 
ontaining ar
 name and two nodes (
ontaining WPP, surfa
e position et
.). Fig.3.3shows the synta
ti
 graph and the ex
lusion matrix for a senten
e \Time 
ies like an arrow." Thenumbers in ar
s are ar
-IDs. Multiple ar
s targeting one node represent modi�
ation ambiguities.S 
orresponds to the starting symbol.The ex
lusion matrix is a matrix whose rows and 
olumns are a set of ar
s in the synta
ti
graph that pres
ribes the 
o-o

urren
e relation between ar
s. When (i,j) position in the ex
lusionmatrix is set to 1, i-th ar
 and j-th ar
s must not 
o-o

ur in any dependen
y tree (interpretation)

�����
�1 to 13 are arcs in the dependency
graph�“1” in a cell means exclusion of arc
occurrence  in dependency trees

ex. EM(5,6)=“1”� No dependency tree can contains
both arc5 (vpp fly like) and arc6 
(pp fly like)

Exclusion Matrix

Syntactic Graph

[1,fly,v][0,time,n]

[0,time,v] [1,fly,n]

[2,like,p]

[2,like,v]

[3,an,det] [4,arrow,n]

mod(4) pp(6)
vnp(1)

det
(2)

ppn(3)vpp(10)

vpp
(5)

snp
(7)

snp
(8)

vnp
(9)

SS

S

(12)(11)

(13)

� � 	 
 � � 
 � � �� �� �� �	� � � � � � � � ��	 � � � �
 � � � � � � � �� � � � � � � � �� � � � � � � � �
 � � � � � � � �� � � � � � � � �� � � � � � � ��� � � � � � � � ��� � � � � � � ��� � � � � � � � ��	 � � � � � � � �
�1 to 13 are arcs in the dependency
graph�“1” in a cell means exclusion of arc
occurrence  in dependency trees

ex. EM(5,6)=“1”� No dependency tree can contains
both arc5 (vpp fly like) and arc6 
(pp fly like)

Exclusion Matrix

Syntactic Graph

[1,fly,v][0,time,n]

[0,time,v] [1,fly,n]

[2,like,p]

[2,like,v]

[3,an,det] [4,arrow,n]

mod(4) pp(6)
vnp(1)

det
(2)

ppn(3)vpp(10)

vpp
(5)

snp
(7)

snp
(8)

vnp
(9)

SS

S

(12)(11)

(13)

� � 	 
 � � 
 � � �� �� �� �	� � � � � � � � ��	 � � � �
 � � � � � � � �� � � � � � � � �� � � � � � � � �
 � � � � � � � �� � � � � � � � �� � � � � � � ��� � � � � � � � ��� � � � � � � ��� � � � � � � � ��	 � � � � � � � �Fig.3.3 Synta
ti
 graph and ex
lusion matrix for the example senten
e



42obtained from the synta
ti
 graph. The synta
ti
 graph and the ex
lusion matrix are generatedfrom a kind of pa
ked shared phrase stru
ture forest. PDG adopts the same data stru
ture andit is 
alled a headed phrase stru
ture forest. The detail of the headed phrase stru
ture forest isdes
ribed in Se
tion 3.3. In the rest of this thesis, phrase stru
ture forest means headed phrasestru
ture forest. The traditional phrase stru
ture forest (pa
ked shared phrase stru
ture forest)is 
alled the headless phrase stru
ture forest.Seo and Simmons (1989) dis
ussed the 
ompleteness and the soundness of the 
orresponden
ebetween the phrase stru
ture forest and the synta
ti
 graph. The 
ompleteness is satis�ed if ea
hphrase stru
ture tree in the phrase stru
ture forest has its 
ounterpart(s) in the synta
ti
 graph.The soundness is satis�ed if ea
h dependen
y tree in the synta
ti
 graph has its 
ounterpart(s)in the phrase stru
ture forest. The 
ompleteness of the synta
ti
 graph is shown in (Seo andSimmons, 1989) but the soundness is not assured. All ex
lusion matrix 
ells are initially set to1 (this means no two triples 
o-o

ur). Then the 
ells for all the triple pairs in the dependen
ytree generated from phrase stru
ture trees are set to 0. Sin
e the ex
lusion matrix pres
ribes the
o-o

urren
e relations for all dependen
y trees in the dependen
y graph*2, the allowan
e of a
o-o

urren
e of two triples (set 1 to the 
ell for two triples) is safe if and only if the restri
tionof these two triples is not ne
essary for all other interpretations (dependen
y trees). AppendixA shows an example in whi
h the synta
ti
 graph 
annot satisfy the soundness 
ondition.3.3 Pa
ked Shared Data Stru
tures in PDGPDG adopts the phrase stru
ture forest and the dependen
y forest for the pa
ked shared datastru
tures for phrase stru
ture and dependen
y stru
ture representations, respe
tively.3.3.1 Phrase Stru
ture ForestThe phrase stru
ture forest is a kind of pa
ked shared parse forest and 
onsists of edges
orresponding to rewriting rules in CFG. The sub-trees, whi
h satisfy the following 
onditions,are pa
ked and shared.Sub-trees have(a) the same nonterminal symbol (
ategory)(b) the same 
overage (phrase boundary)(
) the same phrase head*3 (head 
onstituent)Conditions (a) and (b) 
onstitute the headless phrase stru
ture forest (S
hiehlen, 1996). Thephrase stru
ture trees in the headed phrase stru
ture forest have mapping to the phrase stru
turetrees in the headless phrase stru
ture forest. An example of the edges and the phrase stru
tureforest in PDG is shown in Se
tion 3.4 along with the parsing algorithm.*2 The 
onstraint in the ex
lusion matrix is global in a sense.*3 Phrase head is a WPP in PDG.



433.3.2 Dependen
y ForestThe dependen
y forest (DF) 
onsists of a \dependen
y graph" (DG) and a \
onstraint matrix"(CM, C-Matrix) expressed as DF=<DG,CM>*4. Fig.3.4 shows a dependen
y graph for theexample senten
e \Time 
ies like an arrow." The dependen
y graph 
onsists of nodes anddire
ted ar
s. A node represents a WPP*5 and an ar
 shows the dependen
y relation betweennodes*6. An ar
 has its ID. The dependen
y graph has one spe
ial node 
alled a top node,whi
h is a root of all dependen
y trees in the dependen
y graph*7. In pra
ti
e, the dependen
ygraph is represented by a set of \dependen
y pie
es". A dependen
y pie
e 
onsists of one ar
and its dependant (or modi�er) node and governor (or modi�
and) node. Sin
e dependen
ypie
e and ar
 have one to one 
orresponden
e, dependen
y pie
e is referred to as ar
 in thisthesis. The number of ar
s in the dependen
y graph is 
alled a \size of the dependen
y forest".Dependen
y tree is a subset of dependen
y graph that forms a tree. Dependen
y trees representinterpretations of senten
es or phrases at dependen
y relation level.CM is a matrix whose rows and 
olumns are a set of ar
s in DG that pres
ribes the 
o-
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tp : topFig.3.4 Initial dependen
y forest for the example senten
e*4 The di�nition of the dependen
y forest is extended to in
lude the preferen
e matrix PM in Chapter 4.*5 Node 
ontains various information in the lexi
on and surfa
e position number.*6 The dire
tion of dependen
y ar
 obeys the 
onvention of the Japanese kakari-uke grammar (dependen
ygrammar). The dependant node of an ar
 is the node lo
ated at the sour
e of the ar
. This is 
ontrary tothe 
onvention in the synta
ti
 graph, but not substantially di�erent.*7 In this thesis, root of the dependen
y tree is 
alled top node to distinguish it from the root of a phrasestru
ture tree.



44o

urren
e relation between ar
s. Only when CM(i,j) is �, ar
i and ar
j are 
o-o

urable inone dependen
y tree. The 
o-o

urren
e relation is symmetri
 and CM is a symmetri
 matrix.3.3.3 Well-formed Dependen
y TreeDe�nition 3.3.1 [Well-formed dependen
y tree℄\Well-formed dependen
y tree" is a dependen
y tree DT in the dependen
y forest that satis�esthe following 
onditions 
alled the \well-formed dependen
y tree 
onstraint".[Well-formed dependen
y tree 
onstraint℄(a) Every input word has a 
orresponding node in DT. (
overage 
onstraint)(b) No two nodes in DT o

upy the same input position. (single role 
onstraint)(
) Ea
h ar
 pair in DT has a 
o-o

urren
e relation in CM. (ar
 
o-o

urren
e 
onstraint)(a) and (b) are 
olle
tively referred to as the \
overing 
onstraint". A dependen
y tree satis-fying the 
overing 
onstraint is 
alled the \well 
overed dependen
y tree". A dependen
y treesatisfying (
) is 
alled the \well 
o-o

urred dependen
y tree". A set of well-formed dependen
ytrees is the set of possible interpretations for an input senten
e. The dependen
y forest in Fig.3.4has four well-formed dependen
y trees. In PDG, a set of one WPP node is 
onsidered to be aspe
ial 
ase of dependen
y tree with no ar
s, whi
h satis�es the well-formed dependen
y tree
onstraint.3.3.4 Initial Dependen
y Forest and Redu
ed Dependen
y ForestThere 
an be more than one di�erent-sized dependen
y forest en
ompassing the equivalent setof dependen
y trees with respe
t to the degree of ar
 sharing. PDG treats the \initial dependen
yforest" and the \redu
ed dependen
y forest" that is obtained from the initial dependen
y forest.The initial dependen
y forest 
onsists of the \initial dependen
y graph" and the \initial C-matrix". The redu
ed dependen
y forest is simply 
alled dependen
y forest in this thesis. Thedependen
y graph of the initial dependen
y forest in Fig.3.4 is di�erent from the synta
ti
 graphin Fig.3.3 in terms of the number of ar
s between \
y/n" and \time/v."3.4 Generation of the Phrase Stru
ture Forest and theInitial Dependen
y ForestPDG generates the dependen
y forest from an input senten
e through four pro
esses, i.e., themorphologi
al analysis, the synta
ti
 analysis, the phrase stru
ture/dependen
y forest generationand the dependen
y forest redu
tion.
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Fig.3.5 Di
tionary lookup result for the example senten
e3.4.1 Morphologi
al AnalysisAs des
ribed in Se
tion 2.2.3, morphologi
al interpretations of a senten
e are a set of WPPnode sequen
es 
overing whole senten
e, represented by WPP trellis. The upper adja
ent inter-pretation spa
e is represented by phrase stru
ture forest. It is obvious that the interpretationmapping 
an be assured for these two data stru
tures.Morphologi
al analysis is a well-established te
hnology for major languages. PDG utilizesexisting te
hnologies for ea
h language. This thesis gives simply illustrative explanation of themorphologi
al analysis from the viewpoint des
ribed in Chapter 2.Possible WPPs for a word are obtained by 
onsulting a PDG di
tionary. Fig.3.5 shows possibleWPPs for ea
h word in the example senten
e \Time 
ies like an arrow." If no 
onstraint existsfor the adja
en
y relation between words, 32 ( 2 � 2� 4� 1� 2) WPP sequen
es are obtainedfrom the input senten
e. Assuming the 
onstraints that the adja
ent sequen
es verb+verb \vv," adje
tive+determiner \adj det," determiner+verb \det v" are inhibited, a graph shown inFig.3.6 is obtained by putting the available ar
s between the WPPs. WPP nodes whi
h have nopossible path from the start or to the end position, for example \like/adj" and \arrow/v," 
an
time/n

time/v
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like/v

an/det arrow/n
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time/v
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Fig.3.6 WPP Adja
en
y relation for the example senten
e



46be removed from the graph be
ause it does not e�e
t the total morphologi
al interpretations ofthe senten
e. This redu
tion of WPP nodes produ
es the WPP trellis shown in Fig.3.1. Thistrellis en
ompasses six WPP sequen
es, i.e., six morphologi
al interpretations.3.4.2 Grammar RuleGrammar rules in PDG are extended CFG rules, whi
h de�ne the possible phrase stru
turesand mapping from the phrase stru
tures to the 
orresponding dependen
y stru
tures. Grammarrules are written in the following format.y/Y ! x1/X1,: : :,xn/Xn : [ar
(ar
name1,Xi,Xj),: : :,ar
(ar
namen�1,Xk,Xl)℄ (0< i,j,k,l�n)ex. vp/V ! v=V ,np=NP ,pp=PP : [ar
(obj,NP ,V ),ar
(vpp,PP ,V )℄A grammar rule 
onsists of two parts separated by \:", the rewriting rule part and the dependen
ystru
ture part. The left side of the rewriting rule \y/Y " and 
onstituent \xi/Xi" mean \synta
ti

ategory/variable." Y is a head 
onstituent 
alled a \phrase head" and is the same as one of thevariables \X1: : :Xn" in the \rule body". The dependen
y stru
ture part is a set of ar
s in theform \ar
(ar
name,variable1,variable2)"*8. A variable is bound to a WPP node, whi
h is a phrasehead of a 
onstituent in the rewriting rule. In the example above, dependen
y stru
ture wheredependants NP and PP are 
onne
ted to the governor phrase head V by means of the obj ar
and the vpp ar
, respe
tively. The dependen
y stru
ture part 
onstitutes a partial dependen
ytree, whi
h satis�es the following \partial dependen
y stru
ture 
onditions".De�nition 3.4.1 [Partial dependen
y stru
ture 
ondition℄(a) Partial dependen
y stru
ture 
onstitutes a tree stru
ture whose top node is a phrase headof the head 
onstituent Y . Phrase heads of non-head 
onstituents are the dependants ofthe phrase heads of the other 
onstituents.(b) The phrase heads of the 
onstituents in the rule body have one to one 
orresponden
ewith the variables in the partial dependen
y stru
ture.Fig.3.7 shows the grammar rules and lexi
ons for analyzing an example senten
e \Time 
ieslike an arrow." Rule (R0) whose rule head and rule body are \root" (prede�ned spe
ial symbol)and \s"(starting symbol) as rule body is a spe
ial rule for 
reating a \root edge" of the phrasestru
ture forest and a \top node" [top℄-x of the dependen
y forest*9.3.4.3 The Stru
ture of EdgeThe synta
ti
 analysis of PDG is implemented by extending the bottom-up 
hart-parsingalgorithm to generate a dependen
y stru
ture. Ordinal 
hart parser utilizes edges 
omposed*8 The dependen
y stru
ture is a set of ar
s but represented by list format using [ ℄. In this thesis, sets aresometimes represented by [ ℄ in program 
odes.*9 This rule is introdu
ed for 
onvenien
e in the treatment of data stru
tures.
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root/[root]-x � s/S   : [arc(top,S,[top]-x)] (R0)
s/VP � np/NP,vp/VP     : [arc(sub,NP,VP)] (R1)
s/VP � vp/VP           : [] (R2)
np/N � det/DET,n/N     : [arc(det,DET,N)] (R3)
np/N � n/N             : [] (R4)
np/N2 � n/N1,n/N2       : [arc(nc,N1,N2)] (R5)
np/NP � np/NP,pp/PP     : [arc(npp,PP,NP)] (R6)
vp/V � v/V             : [] (R7)
vp/V � v/V,pp/PP       : [arc(vpp,PP,V)] (R8)
vp/V � v/V,np/NP       : [arc(obj,NP,V)] (R9)
vp/V � v/V,np/NP,pp/PP : [arc(obj,NP,V),arc(vpp,PP,V)] (R10)
pp/P � pre/P,np/NP     : [arc(pre,NP,P)] (R11)

word(n,[time]). word(n,[flies]). word(pre,[like]). word(det,[an]).
word(v,[time]). word(v,[flies]). word(v,[like]). word(n,[arrow]).Fig.3.7 Grammar and lexi
on for the example senten
eof �ve elements <FP,TP,C,FCS,RCS> , i.e., the from-position (FP), the to-position (TP), the
ategory (C), the found 
onstituent sequen
e (FCS) and the remaining 
onstituent sequen
e(RCS). The head of the grammar rule 
orresponds to the 
ategory. The body of the grammarrule 
orresponds to both the found 
onstituents and the remaining 
onstituents and is partitionedby the dot (�) whi
h shows the boundary of FCS and RCS as shown in the following edge writtenin diagrammati
 form.<0,1, s ! np �vp pp>This edge is generated from the grammar rule \s ! np vp pp" and has elements FP=0,TP=1,C=s, FCS=[np℄ and RCS=[vp,pp℄. The result of the di
tionary look-up for an input word is anina
tive edge whose 
ategory is the POS of the word and whose found 
onstituent sequen
e is aword list as follows:<0,1, n ! [time℄ �>The parsing algorithm of PDG has two extensions, i.e., the treatment for the dependen
ystru
ture part in a grammar rule and the 
onstru
tion of the pa
ked shared data stru
ture. Theedge for PDG parsing has two additional elements, i.e., the phrase head (PH) and the dependen
ystru
ture (DS) as follows:Standard edge : <0,1, s ! np �vp pp>PDG edge : <0,1, s/PH ! np/n1 �vp/PH pp/PP : DS>As des
ribed in 3.4.2, PH and DS represent a phrase head (node) and dependen
y stru
ture (aset of ar
s), respe
tively. n1 shows a node (WPP), whi
h is a head of np phrase. PDG utilizesanother data stru
ture 
alled the \pa
ked edge", whi
h is obtained by pa
king ina
tive edgesinto one. The pa
ked edge has the list of FCS and the list of DS instead of the FCS and theDS in PDG edge. The PDG edge with FSC and DS is 
alled \single edge" in 
ontrast to pa
kededge. The pa
ked edge is equivalent to a set of single edges. The following shows the relationbetween single edge and pa
ked edge diagrammati
ally.



48 Single edge : <0,5, s/n2 ! np/n1 vp/n2 pp/n3 �: DS1><0,5, s/n2 ! np/n1 vp/n2 �: DS2>Pa
ked edge : <0,5, s/n2 ! [[np/n1 vp/n2 pp/n3℄, [np/n1 vp/n2℄℄ �: [DS1,DS2℄>n1 to n3 are nodes (WPPs) and n2 is a phrase head. [np/n1 vp/n2 pp/n3℄ and [np/n1 vp/n2℄ are
onstituent sequen
es with their phrase head (nodes). DS1 and DS2 are dependen
y stru
tures(partial dependen
y trees). For 
onvenien
e, a pa
ked edge is represented in the form \E," \<E: : :>" or \edge E" and a single edge is represented in \e," \<e : : :>" or \edge e." \edge" is usedfor representing \pa
ked edge" or \single edge" when it is not ambiguous. Ina
tive edges arerepresented by adding \*" at the top of edge symbol. Edge *E and *e are an ina
tive pa
kededge and an ina
tive single edge, respe
tively.The synta
ti
 parsing of PDG des
ribed below utilizes pa
ked edges. Fig.3.8 shows the formal
onstitution of a pa
ked edge. A pa
ked edge 
onsists of eight elements. FCSL and DSL arelists (or sequen
es) with the same length. The pair (FCSi,DSi) obtained by extra
ting the i-thelements of FCSL and DSL is 
alled \CSDS pair." CSDS pair 
orresponds to the single edgedes
ribed above.The edges E1 to *E3 in Fig.3.8 shows a growth of the edge generated form a grammar rulefor noun phrase. The edge *E3 is the ina
tive edge showing the interpretation that the inputwords \an arrow" 
onstitute a noun phrase and its dependen
y stru
ture is far
(det-14,[an℄-det-3,[arrow℄-n-4)g. [arrow℄-n-4 is a node for word [arrow℄, pos \n" and word position 4. The edge*E4 is an edge with more than one interpretation. Ea
h two elements in FCSL and DSL have��������� �� ��	� 
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orresponden
e and 
onstitute two CSDS pairs, i.e., ([103,169℄ fobj-25g))*10 and ([103,119,165℄fobj-4,vpp-20g). The edge �E5 is an example of an edge generated from di
tionary look-upoperation, 
alled a \lexi
al edge". The data stru
ture of a lexi
al edge is a set of one node
orresponding to the 
onsulted word. The lexi
al edge is expli
itly represented by adding \�."3.4.4 Parsing AlgorithmFig.3.9 shows the parsing algorithm of PDG. Basi
ally, this algorithm is a standard bottom-up
hart-parsing algorithm using agenda (Winograd, 1983). This algorithm inputs words from leftto right one by one and adds lexi
al edges generated from the input words to the agenda (Fig.3.9(a),(b)) , and 
ombines the edges in the agenda to ina
tive edges in the 
hart or in the grammarrules until the agenda be
omes empty (Fig.3.9 (e),(f)). Pa
ked edges are generated by 
he
king
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h edge in the agenda is mergable or not ((
),(j)) and then merging it to the existing edge ifpossible. The detailed explanation of the algorithm is omitted. The following part explains the
onstru
tion of the data stru
ture, whi
h is pe
uliar to the PDG parsing.The PDG parser 
reates dependen
y stru
tures in parallel with the generation of edges. This isdone by binding variables in the dependen
y stru
tures in an edge. Variable binding is performedby bind var, whi
h binds the phrase head (node) of the ina
tive edge to the variable in the �rst
onstituent of the remaining 
onstituent sequen
e of the edge, when a new edge is 
reated from agrammar rule (Fig.3.9 (g)) or an a
tive edge in the agenda (Fig.3.9 (h)). If this binding generatesan ar
 whose dependant and governor are bound, add ar
id generates a unique ar
-ID and itis atta
hed to the ar
 (Fig.3.9 (i)). The ar
 with a bound dependant and governor is 
alled\�xed ar
". The edge *E3 in Fig.3.8 is generated by binding the variable $2 in E2 to the node[arrow℄-n-4.Edges are asso
iated through edge-IDs. The lower edge 
an be tra
ed from the upper edge.The edge *E3 (edge#160) in Fig.3.8 is an edge generated from the grammar rule \np ! detn." The edges in the 
onstituent sequen
e [153,156℄ in edge#160 , i.e., edge#153 and edge#156,have the phrase 
ategory \det" and \n," respe
tively. The edge#153 and edge#156 are 
alledrea
hable from the edge#160. This \rea
hable" relation is asso
iative. Edges with more thanone CSDS pair like *E4 in Fig.3.8 are generated by merge 
sds(Fig.3.9 (d)). Sin
e only ina
tiveedges are merged, no a
tive edge has more than one CSDS pair in this algorithm. If the wholesenten
e is parsed su

essfully, the 
hart has one ina
tive edge with phrase head [top℄-x 
overingwhole senten
e. This edge is 
alled \root edge" and des
ribed as *Eroot.3.4.5 Generation of Phrase Stru
ture Forest and Initial Dependen
yForestWhen parsing is �nished, the 
hart has a
tive and ina
tive edges. The phrase stru
ture forestfor an ina
tive edge *E, hpf(*E), is de�ned as a set of edges rea
hable from the edge *E. Thephrase stru
ture forest PF is de�ned as hpf(*Eroot). PF is a subset of the ina
tive edges inthe 
hart be
ause there exist ina
tive edges unrea
hable from *Eroot. The initial dependen
ygraph IDG is a set of ar
s in the dependen
y stru
tures of the edges in PF. Fig.3.10 shows thealgorithm to 
ompute PF, IDG and the initial C-Matrix ICM from *Eroot. Fig.3.11 shows PFfor the example senten
e 
omputed by the algorithm using the grammar in Fig.3.7. All RCSLof the edges in PF are [ ℄ and are not shown in Fig.3.11. The number of edges in the phrasestru
ture forest is 
alled a size of the phrase stru
ture forest. The size of the headed phrasestru
ture forest is more than or equal to that of the headless phrase stru
ture forest be
ause theedge merge 
ondition of the headed phrase stru
ture forest (Fig.3.9 (j)) is more stri
t 
omparedwith that of the headless phrase stru
ture forest.The algorithm in Fig.3.10 traverses the 
hart by using three mutually re
ursive fun
tions,try edge, try FCSL and try CS whi
h 
ompute PF, IDG and ICM for their arguments, i.e.,the pa
ked edge, the 
onstituent sequen
e list and the 
onstituent, respe
tively. try edge 
alls
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Fig.3.10 Algorithm for 
omputing phrase stru
uture forest and initial dependen
y foresttry FCSL (Fig.3.10 (d)), try FCSL 
alls try CS (Fig.3.10 (h)) and try CS 
alls try edge(Fig.3.10 (j)). The ar
 in the ar
 sets returned from try edge(E),try FCSL(FCSL) andtry CS(CS) are 
alled the ar
 governed by E, FCSL and CS, respe
tively.The algorithm starts from the Fig.3.10 (a) by 
alling try edge(*Eroot). try edge judges theargument is already 
omputed or not at (b). If it has already been 
omputed, try edge simplyreturns the set of ar
s re
orded in TER. The registration of a set of ar
s is performed in (g)when new result is obtained. At (
) and (e), new edges are added to PF . As shown at (f), thear
s governed by the edge E are the union of the DSL in E and the ar
s governed by FCSL.try FCSL pro
esses a set of CSDS pairs and try CS pro
esses one CSDS pair in it. As shownat (i), the set of ar
s governed by FCSL is the union of the ar
s governed by the CSs in theFCSL. As shown at (k), the set of ar
s governed by CS is the union of the ar
s governed by thepa
ked edges in the CS.Fig.3.12 shows the exe
ution pro
ess for the E#170 in Fig.3.11. (
#) shows a fun
tion 
alland (r#) shows the return value, i.e., the set of ar
s, of the fun
tion. (
1) to (
4) 
orrespond tothe fun
tion 
alls (j), (d) and (h) in Fig.3.10, respe
tively. (
4) returns fg at (r4) be
ause theE#103 is a lexi
al edge. The fun
tion 
all (
4) returns result (r4). Then the se
ond CSDS pair([103,119,165℄,fobj-4,vpp-20g) is pro
essed by the fun
tion 
all (
5). The se
ond time exe
utionfor \try edge(E#103)" o

urs at (
6). This time, the exe
ution result stored in TER at Fig.3.10(b) is sear
hed and returned. Finally the set of ar
s at (r1) is obtained.The generation of CM is performed based on the following C-Matrix setting 
onditions whi
h
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Time flies like an arrow 
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��� Fig.3.11 Phrase stru
ture forest for \time 
ies like an arrow"work to allow 
o-o

urren
e between all ar
s in the set of edges 
onstituting a phrase stru
turetree in the phrase stru
ture forest.De�nition 3.4.2 [C-Matrix setting 
onditions℄The \C-Matrix setting 
ondition" is either of the following three 
onditions(CM1) The ar
s in the same DS 
o-o

ur with one another.(CM2) Given a CSDS pair (CS,DS), the ar
s in DS 
o-o

ur with the ar
s governed by CS.(CM3) The ar
s governed by one CS 
o-o

ur with one another.(CM1) to (CM3) 
orrespond to the CM pro
essing (1) to (3) in Fig.3.10. In pro
essing E#170,set CM(fobj-4,vpp-20g,fobj-4,vpp-20g) (set CM is de�ned in Fig.3.10) is exe
uted at the CMpro
essing (1) be
ause the ar
s in the se
ond CSDS pair ([103,119,165℄,fobj-4,vpp-20g) satisfythe 
o-o

urren
e setting 
ondition (CM1). At the CM pro
essing (2), A CS has been set to theset of ar
s shown at (r5) in Fig.3.12 and set CM(fobj-4,vpp-20g,fpre-15,det-14g) is exe
uteddue to (CM2). In pro
essing try CS([103,119,165℄), the CM pro
essing (3) set CM from amongthe ar
s governed by E#103,E#119 and E#165 due to (CM3). The outputs PF and IDF areshown in Fig.3.11 and Fig.3.4, respe
tively. E#181, E#176 and E#174 have the same 
ategory\s" and the same 
overage (from 0 to 5), but they are not shared be
ause their phrase heads aredi�erent.
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ution3.5 Generation of the Redu
ed Dependen
y ForestThe two ar
s obj4 and obj25 in IDF in Fig.3.4 have the same stru
ture ex
ept for their ar
-IDs. IDF may 
ontain ar
s of this kind 
alled \equivalent ar
s". Equivalent ar
s are sometimesgenerated from one grammar rule and sometimes generated from di�erent grammar rules. Forexample, obj4 and obj25 are generated from the 
onstituent sequen
e \vp np" in (R9) and(R10) in Fig.3.7. In fa
t, (R9) and (R10) di�er in terms of the existen
e of the prepositionalphrase, but the interpretation of the \obj" relations in (R9) and (R10) are 
onsidered to be thesame. A
tually, if (R9) and (R10) are merged into one grammar rule \vp/V ! v/V ,np/NP ,,pp/PP-: [ar
(obj,NP ,V ),ar
(vpp,PP ,V )℄" by introdu
ing the des
ription s
hema \fg" foroptional elements. This grammar rule does not generate the equivalent ar
s for obj relation.Now, some de�nitions are given for treating equivalent ar
s. The \generalized ar
" is an ar
with ar
-ID `?'. Ar
s with number IDs are 
alled IDed ar
s. The generalized ar
 for an IDed ar
is obtained by simply repla
ing the ar
-ID in the IDed ar
 with `?'. A dependen
y tree 
onsistingof generalized ar
s is 
alled a \generalized dependen
y tree". A dependen
y tree 
onsisting ofIDed ar
s is 
alled an \IDed dependen
y tree". The generalized ar
 for an IDed ar
 X is writtenas ?X. The generalized tree for an IDed tree DT is written as ?DT. Two dependen
y trees thathave the same generalized tree are 
alled equivalent. The redu
ed dependen
y forest is obtainedby redu
ing the initial dependen
y forest. The redu
tion of the dependen
y forest is an operationin that more than one equivalent ar
 is merged into one ar
 without in
reasing the number of thegeneralized dependen
y trees in the dependen
y forests. The redu
ed dependen
y has smallersize 
ompared with the original dependen
y forest before the merge operation.



543.5.1 Merge Operation of Equivalent Ar
sThe merge operation for the equivalent ar
s X ,Y (written in equiv(X ,Y )) is de�ned as follows:De�nition 3.5.1 [Ar
 merge operation℄(1) Compute a new dependen
y graph DG' by removing Y from DG. (DG'=DG�fY g)(2) Generate a new C-Matrix CM' from CM by applying set CM(X; I) for ar
 I(I2DG,I 6=X ,I 6=Y ,CM(Y ,I)=�)The merge operation generates a new dependen
y forest <DG',CM'>. Fig.3.13 shows anexample of merge operation diagrammati
ally. In the following se
tions, 
hanges of various valuesare dis
ussed, for example, the numbers of generalized dependen
y trees in the dependen
y forestbefore and after merge operation. To make this distin
tion, the expression \wrt <DG,CM>" or\wrt DF" (wrt: with respe
t to) is used. For example, the set of ar
s that 
o-o

urs with an ar
A is de�ned as 
o(A). Then \
o(A) wrt <DG,CM>" and \
o(A) wrt <DG',CM'>" represent theset of ar
s before and after merge operation. \
o(A) wrt <DG,CM> = 
o(A) wrt <DG',CM'>"means the set of ar
s is not 
hanged by the merge operation. In order to make the des
riptionsimple, \wrt <DG,CM>" is not shown in default.3.5.2 Merge Condition for Equivalent Ar
sFrom the de�nition, the 
ondition of the dependen
y forest redu
tion is to preserve the sound-ness, i.e., no new generalized dependen
y tree (interpretation) in
rease by the merge operation.[Merge Condition for Equivalent Ar
s℄When the dependen
y forest DF' is generated from DF by merging ar
 Y to X in the dependen
ygraph of DF, the 
ondition for the forest redu
tion is \a set of generalized dependen
y trees inDF = a set of generalized dependen
y trees in DF' ."
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Fig.3.13 Merge operation for the equivalent ar
 pair (X,Y)



55This 
ondition is veri�able by sear
hing a new generalized dependen
y tree in DF'. The 
on-dition for the existen
e of a generalized dependen
y tree not in DF but in DF' is 
alled the\in
rease 
ondition for generalized dependen
y trees" (ICG) in this thesis. The merge 
onditionis represented as \ICG is not satis�ed."A dependen
y forest is a set of IDed ar
s and pres
ribes the set of IDed dependen
y trees andthe set of generalized dependen
y trees. The 
ondition for the existen
e of an IDed dependen
ytree not in DF but in DF' (this kind of tree is 
alled a \new" dependen
y tree) is 
alled the\in
rease 
ondition for IDed dependen
y trees" (ICI). Obviously, if no IDed dependen
y treein
reases by the merge operation, no generalized dependen
y tree in
reases. Moreover, even ifthere exist new IDed dependen
y trees in DF', no generalized dependen
y trees in
rease if thegeneralized dependen
y trees of the new IDed dependen
y trees are equivalent to those in DF.This means ICI is a ne
essary 
ondition for ICG. In the following, ICI is dis
ussed �rst, thenICG is veri�ed to obtain a detailed merge 
ondition for equivalent ar
s.3.5.3 In
rease Condition for IDed Dependen
y TreesIn
rease of a new IDed dependen
y tree is 
aused by allowing a new 
o-o

urren
e relationbetween ar
s 
aused by a merge of equivalent ar
s. The allowan
e of the 
o-o

urren
e relation inCM, i.e., the 
hange from CM(U,V)6= � to CM(U,V)= � for ar
s U, V, is 
alled the \allowan
eof the ar
 pair (U,V)". The following lemma is established.Lemma 3.5.1 (The allowan
e of ar
 pair and the in
rease of dependen
y trees) Ifa new well-formed dependen
y tree in
reases by the allowan
e of the ar
 pair (U,V), thedependen
y tree in
ludes U and V.Proof: This lemma is obvious be
ause well-formed dependen
y trees in DG' whi
h do notin
lude both U and V exist in DG.Here, uniq and di� are the sets of ar
s de�ned for the equivalent ar
s X and Y as follows:uniq(X,Y)=fI j CM(X,I)=�,CM(Y,I)6= �,I2DGgdi�(X,Y)=f(I ,J)jI2uniq(X,Y),J2uniq(Y,X)gFor the ar
s X, Y in Fig.3.13, uniq(X,Y)=fj,ng,uniq(Y,X)=fkgand di�(X,Y)=f(j,k),(n,k)g. Thefollowing lemma is established.Lemma 3.5.2 (Ar
s in a new well-formed dependen
y tree) In the 
ase that a well-formed dependen
y tree is generated by the merge of the equivalent ar
s X,Y, the new treein
ludes at least two ar
s A,B su
h that (A,B) 2 di�(X,Y).Proof: Let DF and DF' be the dependen
y forests before and after the merge of X and Y.Assuming that a new dependen
y tree DTx is obtained by the allowan
e of the ar
 pair (X,Bi)
aused by the merge of X and Y, X and Bi are in
luded in DTx a

ording to the lemma 3.5.1.



56Here, let R=DTx�fX,Big. CM(X,U)=� wrt DF',CM(Bi,U)=� wrt DF' for U2R be
ause DTxis a well-formed dependen
y tree.Assuming that there is no ar
 U su
h that CM(Y,U)6= � wrt DF (i.e., CM(Y,U)= � wrtDF,U2R), DTy=fY,Big+R is a well-formed dependen
y tree in DF. DTx is not a new generalizeddependen
y tree be
ause DTx and DTy di�er only in the equivalent ar
 X and Y, i.e., DTx andDTy are equivalent. Therefore, DTx must in
lude at least one Ui su
h that CM(Y,Ui)6= � wrtDF is a new generalized dependen
y tree. This lemma is established be
ause (Bi,Ui)2di�(X,Y).The following theorem is derived from lemma 3.5.2,Theorem 3.5.1 (The in
rease 
ondition for IDed dependen
y tree)Let ar
 pair (A,B)2di�(X,Y) for equivalent ar
s X,Y in DG of the dependen
y forest <DG,CM>.The in
rease of IDed dependen
y trees o

urs if and only if <DG',CM'> obtained by the mergeof Y to X have IDed dependen
y tree NDT whi
h in
ludes fX,A,Bg.Proof: This theorem is proved by showing a new well-formed IDed dependen
y tree in
ludesfX,A,Bg and a well-formed IDed dependen
y tree whi
h in
ludes fX,A,Bg is a new well-formedIDed dependen
y tree. Assuming that NDT is a new IDed dependen
y tree existing in<DG',CM'>, there exists at least one ar
 pair (Ai,Bi)2di�(X,Y),Ai2NDT,Bi2NDT. On theother hand, X2NDT is true due to lemma 3.5.1. Therefore, a new well-formed IDed dependen
ytree in
ludes fX,A,Bg. Moreover, no IDed well-formed dependen
y trees exist in <DG,CM>be
ause (A,B)2di�(X,Y). Therefore, an IDed well-formed dependen
y tree whi
h in
ludesfX,A,Bg is a new well-formed IDed dependen
y tree.Some fun
tions and notations are introdu
ed for the dis
ussion on the in
rease 
ondition ofdependen
y trees.same position(U ,V ) : The positions of dependant nodes of U and V are the same.dts(S) wrt <DG,CM> : a set of IDed well-formed dependen
y trees whi
h 
onsist of ar
sin ar
 set S�DG and satisfy the ar
 
o-o

urren
e 
onstraint
o(U) wrt <DG,CM> : a set of ar
s whi
h 
o-o

ur with ar
 U in
luding U, i.e., fX jX=U or CM(X ,U)=�, X2DGgdts with ar
s(A1,A2,: : :,An) wrt <DG,CM> : a set of the well-formed dependen
y treesin <DG,CM> whi
h in
lude ar
s A1,A2,: : :,An, i.e., dts(
o(A1)[� � �[
o(An)) wrt<DG,CM>ICI with respe
t to the ar
 pair (A,B) 2 di�(X,Y), equiv(X,Y) 
an be 
he
ked by sear
hingthe existen
e of a well-formed dependen
y tree in
luding fX,A,Bg in <DG',CM'> a

ording to



57theorem 3.5.1. To make this sear
h pro
ess more eÆ
ient, the following three 
ases with respe
tto ar
 X, A and B are 
onsidered.(RC1) Any of same position(A,B), same position(X,A) or same position(X,B) is true(RC2) CM(A,B)6= � is true(RC3) Ex
ept for (RC1) and (RC2)In 
ases (RC1) and (RC2), no well-formed dependen
y trees whi
h in
lude fX,A,Bg existin <DG',CM'> be
ause of the existen
e of the single role 
onstraint and the 
o-o

urren
e
onstraint, respe
tively. In the 
ase of (RC3), the existen
e of a well-formed dependen
y treewhi
h in
ludes fX,A,Bg, i.e., dts with ar
s(X,A,B) wrt <DG',CM'>=fg, should be 
he
ked forICI.3.5.4 In
rease Condition for Generalized Dependen
y TreesAs des
ribed above, ICI is a ne
essary 
ondition for ICG. Therefore, ICG is de�ned as follows:[The in
rease 
ondition for generalized dependen
y tree℄Let DF' be a dependen
y forest generated from the dependen
y forest DF by merging ar
 Y toX where X and Y are equivalent ar
s and let DTnew be the set of IDed dependen
y trees whi
hare in DF' but not in DF. There exists at least one IDed dependen
y tree DT 2 DTnew su
hthat the generalized dependen
y tree ?DT is not in
luded in DF.The merge 
ondition for equivalent ar
s is the negation of ICG for the ar
s.3.5.5 Dependen
y Forest Redu
tion AlgorithmFig.3.14 shows the dependen
y forest redu
tion algorithm for <DG,CM> based on the merge
ondition for equivalent ar
s (i.e., the 
ondition for the forest redu
tion) des
ribed in the previousse
tion. In this algorithm, CM is represented as a set of 
o-o

urable ar
 pairs. Ar
 X and Yare 
o-o

urable if <X,Y>2CM.Fig.3.14 (a) pi
ks up a pair of the equivalent ar
s X,Y in DG, 
he
ks if a new generalizeddependen
y tree is generated in the dependen
y forest when ar
 pair (A,B) is allowed from (b)to (h) in Fig.3.14. If all ar
 pairs in diff(X,Y) do not generate any new generalized dependen
ytrees, the forest redu
tion is performed at (i).The availability of the allowan
e of (A,B) is determined by 
he
king ICG after 
he
king ICI.At Fig.3.14 (b), 
onditions (RC1) and (RC2) in Se
tion 3.5.3 are 
he
ked. If either of the
onditions is satis�ed, the pro
essing pro
eeds to the next ar
 pair in diff(X,Y) be
ause theallowan
e of (A,B) generates no new IDed dependen
y trees. If not, the pro
essing pro
eedsto the 
he
k of ICI. At (
), <DG',CM'> is generated by merging Y to X. Sin
e the existen
e
he
k of a new IDed tree is basi
ally performed by tree sear
h for <DG',CM'>, the redu
tion ofsear
h spa
e improves the eÆ
ien
y. Based on theorem 3.5.1, the sear
h spa
e is redu
ed fromDG' to DG XAB(=
o(X)\
o(A)\
o(B)) at (d). Then sear
h dt at (e) sear
hes a new IDed
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tion of dependen
y forestdependen
y tree for DG XAB. If no dependen
y tree is obtained, allowan
e of (A,B) satis�esthe merge 
ondition for equivalent ar
s. If a dependen
y tree DT is obtained, DT is an IDeddependen
y tree, whi
h in
ludes fX,A,Bg. new generalized dt(DT,CM,DG) at (f) 
he
ks if thegeneralized dependen
y tree ?DT is new or not new by sear
hing ?DT for <DG,CM>. Thedetailed explanation of new generalized dt is omitted here, but it realizes the sear
h for thegeneralized dependen
y tree by limiting the ar
 set DG X so that it has only the equivalent ar
sof the ar
s in DT by add equiv ar
s at (q). When ?DT is a new generalized dependen
y tree, themerge between X and Y is not available. The pro
essing for ar
s X and Y is terminated by (g)



59and (h), and pro
eeds to the 
he
k of the next equivalent ar
 pair. If ?DT is not new, the mergeof X and Y, i.e., the forest redu
tion, is performed at (i). Furthermore, when ?DT is proved to benot new at (f), the sear
h of other dependen
y trees for DG XAB is performed at (e). sear
h dtsear
hes a dependen
y tree whi
h satis�es the 
o-o

urren
e 
ondition in depth �rst manner withrespe
t to input position P. sear
h dt sele
ts one ar
 from the ar
 set ar
s at(DG,P) that is aset of ar
s with position P. sear
h dt sear
hes all possible dependen
y trees by sele
ting anotherar
 at (k) when there are no solutions for ar
s from P+1 to the end position.3.5.6 Exe
ution Example of the Dependen
y Forest Redu
tion Algo-rithmThis se
tion explains the exe
ution pro
ess of the algorithm in Fig.3.14 for the example senten
e\Tokyo taxi driver 
all 
enter" in appendix A. The redu
ed dependen
y forest for this examplehas equivalent ar
s. Fig.3.15 (a) shows the initial dependen
y forest for the example senten
e. Ithas four sets of equivalent ar
s, (1, 2),(5,7),(13,15),(25,26,27) whi
h are surrounded with doublelines.The forest redu
tion is performed along with the algorithm in Fig.3.14. The �rst equivalent ar
pair (1,2) is sele
ted to set X=1,Y=2. diff(X ,Y ) is 
omputed as f(5,14),(5,15),(5,27),: : :g by
ombining the elements in uniq(X;Y )=f5,24,25g and uniq(Y;X)=f14,15,27g. The �rst ar
 pair
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60(5,14) is skipped by the 
ondition 
he
k for (RC1) at Fig.3.14 (b) be
ause same position(5,14)is true. The se
ond ar
 pair (5,15) is tried. (5,15) does not mat
h the 
onditions at (b), CM' andDG' are generated at (
). CM'=CM+f<1,14>,<1,15>,<1,27>g as shown in Fig.3.15 (b). ThenDG XAB is 
omputed at (d). X =1,A =5 and B =15 result in DG XAB =
o(1)\
o(5)\
o(15)wrt <DG',CM'>=f1,28g. The allowan
e of (5,15) generates no new dependen
y trees be
ausethe sear
h of the dependen
y tree forDG XAB by sear
h dt at (e) fails. The pro
essing pro
eedsto the 
he
k of the next ar
 pair (5,27). In a similar way, all ar
 pairs in diff(1,2) are assuredto generate no new dependen
y trees, and then DG' and CM' is set to DG and CM at (i),respe
tively.Fig.3.15 (
) shows the redu
ed dependen
y forest �nally obtained by the algorithm. It has threeequivalent ar
s 25, 16 and 27. The pro
essing of the algorithm for this dependen
y forest is de-s
ribed. Let X =25,Y =26. Then, uniq(X;Y ) =f1,24g,uniq(Y;X) =f6,13g,diff(X;Y ) =f(1,6),(1,13),(24,6),(24,23)g. The ar
 pair (1,6) is skipped by the 
ondition 
he
k for (RC1). The ar
pair (1,13) is not skipped by the 
ondition 
he
k for (RC1) and (RC2). Then, DG XAB is
omputed at Fig.3.14 (d). X = 25,A = 1 and B = 13 result in DG XAB =
o(25)\
o(1)\
o(13)wrt <DG',CM'> =f25,1,13,5,28g. A new IDed dependen
y tree f25,1,13,5,28g is obtained bysear
h dt at (e) for DG XAB*11. Then, new generalized dt at (f) is 
alled and add equiv ar
sat (q) 
omputes a set of ar
s DG X where the equivalent ar
s of the ar
s in DT are added. Inthe 
ase of Fig.3.15 (
), ar
 25 has equivalent ar
s 26 and 27. Addition of these ar
s resultsin DG X =f25,26,27,1,13,5,28g. sear
h dt at Fig.3.14 (r) tries to get a dependen
y tree forDG X but it fails be
ause all equivalent ar
s 25, 26 and 27 have in
onsistent ar
s in DG X , i.e.,<25,13>,<26,1> and <27,5> are not in CM. As a result, new generalized dt at (f) be
omestrue, that is, the in
rease of the generalized dependen
y tree o

urs. Therefore, the merge ofX=25 and Y=26 is not performed. The dependen
y forest in Fig.3.15 (
) in
ludes the depen-den
y trees in Fig.A.1 (a) to (
) and retains the soundness.The above algorithm does not assure generation of one redu
ed dependen
y forest. The outputdependen
y forest may vary by the appli
ation order of the merge operations for the equivalentar
s. There exist di�erent dependen
y forests 
ontaining the same three generalized dependen
yforest for the above example. The algorithm in Fig.3.14 does not assure that it generates the min-imum dependen
y forest. In fa
t, there exists a dependen
y forest smaller than the Fig.3.15 (
).Moreover, there is room for improving the 
omputational amount in the above algorithm. The
onstru
tion of the smallest redu
ed dependen
y forest and the improvement of the performan
eof the algorithm are future tasks*12.*11 This tree 
orresponds to the tree in Fig.26 (d).*12 PDG allows arbitrary mapping between the 
onstituent sequen
es and the partial dependen
y trees de�nedin grammar rules. Therefore, any dependen
y stru
ture 
an be assigned for any 
onstituent sequen
eprovided that they satisfy the partial dependen
y stru
ture 
ondition. This feature suggests that not onlythe optimization te
hniques in the general algorithm but also the te
hniques based on the stru
tural analysisof the grammar rules are e�e
tive.



613.6 Proof of the Completeness and Soundness of theDependen
y Forest3.6.1 Proof of the Completeness and Soundness of the Initial Depen-den
y ForestThe phrase stru
ture forest PF and the dependen
y forest DF=<DG,CM> is assumed in thefollowing proof. Before showing the proof, some relations between the phrase stru
ture forestand the dependen
y forest generated from the algorithms explained in Se
tion 3.4.4, and somelemmas required for the proof are des
ribed.[Pa
ked Edge and Single Edge℄The phrase stru
ture forest is a set of pa
ked edges. As des
ribed in se
tion 3.4.3, a pa
kededge is equivalent to a set of single edges. In this proof, pa
ked edges are treated as a set ofsingle edges. The following pa
ked edge is shown in Fig.3.8.Pa
ked edge �<ID,FP,TP,C,PH,FCSL,RCS,DSL>where FCSL=[CS1,: : :,CSn℄,DSL=[DS1,: : :,DSn℄is equal to the following set of single edges.*e1 : <ID-1,FP,TP,C,PH,(CS1 DS1),RCS>:*en : <ID-n,FP,TP,C,PH,(CSn DSn),RCS>For example, *E4 in Fig.3.8 is a set of ar
s *e1,*e2*13Single edge *e1: <170-1,0,5,vp, [time℄-v-0, [103,169℄, [℄, far
(obj-25,[
ies℄-n-1,[time℄-v-0)g>Single edge *e2: <170-2,0,5,vp, [time℄-v-0, [103,119,165℄,[℄,far
(obj-4,[
ies℄-n-1,[time℄-v-0),ar
(vpp-20,[like℄-pre-2,[time℄-v-0)g>Every single edge is identi�ed in the phrase stru
ture forest by the pa
ked edge-ID and theposition in the CSDS pair of the pa
ked edge. For example *e1 is identi�ed by 170-1. The lexi
aledge is treated as a set 
onsisting of a single lexi
al edge. �E5 in Fig.3.8 is equal to the set �e3.Single edge �e3: <156-1,4,5,n,[arrow℄-n-4,[lex([arrow℄-n)℄,f[[arrow℄-n-4℄g>Various elements in
luded in a pa
ked edge and a single edge have 
orresponden
es with oneanother. The following shows the de�nitions of terms and relations.
*13 The partial dependen
y tree is represented in fg be
ause it is a set of ar
s.



62Edge and its elements
s(X) : The 
onstituent sequen
e of the single edge X .ex. 
s(*e1) =[103,169℄ where 103 and 169 are pa
ked edge-IDs.ds(X) : The dependen
y stru
ture DS of the single edge X or the node of the single lexi
aledge X . ex. ds(*e1)=far
(obj-25,[
ies℄-n-1,[time℄-v-0)g, ds(�e3)=f[arrow℄-n-4gAr
s in the dependen
y forest and edge : The ar
s in a single edge X mean a2ds(X). Anar
 in a pa
ked edge Y means a2ds(X),X2Y . An ar
 in the phrase stru
ture forestmeans a2ds(X),X2Y ,Y 2PF.Relations between ar
s and nodesgov(X) : The governor node of the ar
 X .ex. gov(ar
(obj-25,[
ies℄-n-1,[time℄-v-0)) = [time℄-v-0dep(X) : The dependant node of the ar
 X .ex. dep(ar
(obj-25,[
ies℄-n-1,[time℄-v-0) = [
ies℄-n-1top node(X) : The top node of the dependen
y tree X (The node whi
h is not a dependantof any ar
s in X).Relations between ar
s X , Y in the dependen
y tree DTsib(X ,Y ) : gov(X)=gov(Y ). X and Y are 
alled the sibling ar
s.X 1��!DT Y : dep(X)=gov(Y ). X is a parent of Y and Y is a 
hild of X . This relation is
alled parent relation.X +��!DT Y : There is a parent relation 
hain from X to Y . X is an an
estor ar
 of Y andY is a des
endant ar
 of X .X ���!DT Y : X = Y or X +��!DT Y[Edges and Phrase Stru
ture Trees in the Phrase Stru
ture Forest℄The phrase stru
ture forest PF is a dire
ted a
y
li
 graph 
onsisting of pa
ked edges wherethe root is the root edge *Eroot and the leaves are lexi
al edges. The \path in PF" is de�ned asfollows:De�nition 3.6.1 [Path in the phrase stru
ture forest℄A path in the phrase stru
ture forest is a sequen
e 
onsisting of pa
ked edges and single edgesobtained by tra
ing a pa
ked edge and a single edge one after another by sele
ting one single edgefrom a pa
ked edge (a set of single edges) and sele
ting one pa
ked edge from the 
onstituentsequen
e (a sequen
e of pa
ked edges) of a single edge.Now, let *E0,*E1,*E2� � � in the phrase stru
ture forest as follows:*E0 =f*e1,*e2g, *E1 =f*e3g, *E2 =f*e4,*e5g, *E3 =f*e6,*e7g : : :
s(*e1)=[*E1,*E2℄, 
s(*e2)=[*E3℄, 
s(*e3)=[*E4,*E5℄ : : :



63The following are examples of paths.[*E0,*e1,*E2,*e5℄, [*E0,*e1,*E2℄, [*e1,*E1,*e3,*E5℄, [*e1,*E1,*e3℄The following shows the de�nitions of terms and relations used in the latter part.Terms and relations related to the phrase stru
ture forestX +��!PF Y : There is a path [X; : : :; Y ℄ from a pa
ked or single edge X to a pa
ked or singleedge Y . X is an an
estor of Y .X ���!PF Y : X = Y or X +��!PF Y is true for single or pa
ked edges X and Y . Y is 
alled\rea
hable" from X .X .[PF℄& Y : X 6=Y ,:(X ���!PF Y ),:(Y ���!PF X) are true for single or pa
ked edges X and Y ,and there exists at least one single or pa
ked edge Z in the phrase stru
ture forest PFsu
h that Z ���!PF X and Z ���!PF Y .Ar
s governed by an edge : Ar
 X is governed by pa
ked edge *E if X2ds(*e),*E ���!PF *e istrue.From the de�nition of the phrase stru
ture forest, there exists a path from the root pa
ked edge*Eroot to every single or pa
ked edge in the phrase stru
ture forest. Using the de�nition above,the C-Matrix setting 
onditions in se
tion 3.4.5 are de�ned as follows:De�nition 3.6.2 [The C-Matrix setting 
onditions℄Ar
s X , Y are 
o-o

urable if any of the following 
onditions is satis�ed.(C1) There exists a single edge *e su
h that X ,Y 2ds(*e),*e2*E,*E2PF(C2) There exist *ex and *ey su
h that X2ds(*ex),Y 2ds(*ey),*ex +��!PF *ey or *ey +��!PF *ex.(C3) There exist *ex and *ey su
h that X2ds(*ex),Y 2ds(*ey),*ex.[PF℄&*ey.A phrase stru
ture tree is de�ned as follows:De�nition 3.6.3 [Phrase Stru
ture Tree℄A phrase stru
ture tree for a pa
ked edge *E is a set of single ar
s obtained by a re
ursivepro
edure get tree(*E) de�ned in Fig.3.16� ������� � �	
��� ��
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64sele
t(RPE) in the �gure sele
ts one arbitrary ar
 in
luded in a pa
ked edge RPE. lexi-
al edge(SE) is true if SE is a lexi
al edge. A phrase stru
ture tree 
overs the words fromthe from-position to the to-position of the edge *E.De�nition 3.6.4 [All phrase stru
ture trees℄ps trees(*E) is a set of all phrase stru
ture trees for *E.[Relations between Edges and Ar
s/Partial Dependen
y Trees℄Although the parsing algorithm is 
onstru
ted using pa
ked edges as basi
 data stru
tures, thepa
king of edges is performed only when ina
tive edges are generated (Fig.3.9 (
),(d)). Therefore,every a
tive pa
ked edge has one single edge*14 and one a
tive pa
ked edge 
orresponds to onesingle a
tive edge and vi
e versa. In the following dis
ussion, the word \edge" is used forrepresenting a pa
ked edge.Parsing pro
eeds by generating new edges by 
ombining an ina
tive edge to an a
tive edge.Using a diagrammati
 expression as des
ribed in se
tion 3.4.3, a 
ombination of two ar
s generatesa new edge by moving ' �' in the a
tive edge to the right neighbor position and binding the variablefor the 
onstituent at ' �' to the phrase head (node) of the ina
tive edge to 
ombine. Fig.3.17 isa tree 
alled \edge 
ombination tree," whi
h represents the generation pro
ess of ina
tive edgesfrom a grammar rule by edge 
ombinations. The ina
tive edges lo
ated at the leaf of the edge
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Fig.3.17 Edge 
ombination tree*14 The parsing algorithm utilizes pa
ked edges be
ause another algorithm, whi
h shares a
tive edges, 
an be
onstru
ted.
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ombination tree are generated from a grammar rule lo
ated at the root of the tree*15 throughthe a
tive edges in between. The grammar rule is as follows:y=Xh ! x1=X1� � �xh=Xh� � �xn=Xn : fA1; A2; : : :; An�1gAi is an ar
 in the form of ar
(ai,Xk,Xl) where ai is an ar
name, 1�k�n, 1�l�n, k 6=l. A setof ar
s fA1, : : :, An�1g satis�es the partial dependen
y stru
ture 
ondition in se
tion 3.4.2.The edges in the edge 
ombination tree are expressed in diagrammati
 form using ' �', negle
t-ing the from and to positions. The arrows between edges represent the edge 
ombinations wherethe edge at the sour
e of the arrow is 
ombined with the ina
tive edge atta
hed to the arrow togenerate the resulting edge at the target position of the arrow. For example, E11 (Fig.3.17 (a))is 
ombined with <*E x2/n21! : : : > ((b)) to generate E21 ((
)). Sin
e ' �' moves to the rightneighbor position, the depth of the tree, i.e., the number of ar
s from E0 to ea
h ina
tive edge,is equal to n, i.e., the number of elements in the rule body in the grammar rule.The phrase head (node) is bound to a variable in the a
tive edge during edge 
ombination.The variable bindings are shown at the right of the edge by f g. For example, the 
ombinationof E0 and the edge (d) whose phrase head is n11 generates E11, and then it is 
ombined with theedge (b) whose phrase head is n21 to produ
e E21. As a result, the variable bindings of E21 arefX1:=n11,X2:=n21g*16. An ar
 whose governor and dependant are bound is 
alled \�xed ar
"and has a new unique ar
-ID generated by add ar
id at Fig.3.9 (i). Fixed ar
s are representedby a small letter su
h as a1 in Fig.3.17 (e). One variable binding may generate zero or more thanzero �xed ar
s. The generated �xed ar
 has one unique variable binding 
orresponding to oneedge 
ombination. This edge 
ombination generates one unique edge. This unique edge is 
alledthe edge whi
h generated the �xed ar
 or simply \sour
e edge" of the �xed ar
, and is referredto as sr
 Edge(a) where 'a' is a �xed ar
. For example, in the edge 
ombination between (e)and (f) in Fig.3.17, provided that the binding of the node nim (let it [like℄-pre-3) to the variableXi generates the �xed ar
 ai (let it ar
(pre-28,[like℄-pre-3,[time℄-v-0)) from the un�xed ar
 Ai(ar
(pre,Xi,[time℄-v-0)), the edge whi
h generated the �xed ar
 ai, i.e., sr
 Edge(ai) is Eim inFig.3.17 (g).Every ina
tive edge (leaf of the 
ombination tree) (ex. Fig.3.17 (h)) has only �xed ar
s be
auseall variables in
luding phrase head variable in the edge are bound due to the partial dependen
ystru
ture 
ondition. Ina
tive edge represents a result of a sequen
e of variable bindings 
ausedby the edge bindings from the root to the leaf of the edge 
ombination tree. The following showsthe de�nitions of terms and relations related to the edge 
ombination tree.
*15 The grammar rule is written in edge form in the edge 
ombination tree. This edge is not generated in thereal parsing pro
ess but is introdu
ed for 
onvenien
e of explanation.*16 S
ope of a variable is within edge.



66 �xed ar
 : Ar
 whose governor and dependant nodes are �xed by the variable bindings
aused by edge 
ombinations.sr
 Edge(a) (sour
e edge) : The a
tive or ina
tive edge whi
h generated a �xed ar
 a.Mapping from a �xed ar
 to its 
orresponding edge is one to one, whereas the reverseis 1 to 0 - many.X ���!CT Y (origin) : EdgeX is lo
ated on a route from the root node to the edge Y orX = Y .X is 
alled an origin of Y .origin relation : EdgesX , Y in an edge 
ombination tree CT are said to be in origin relationif X ���!CT Y or Y ���!CT X is true.edge(a,DT ) �
orresponding edge) : The 
orresponding edge for a �xed ar
 a and a well-formed dependen
y tree DT is a single edge e whi
h satis�es the following 
ondition(de�ned in lemma 3.6.4).DT�ds(e); a2ds(e)A

ording to the stru
ture of the edge 
ombination tree des
ribed above, two �xed ar
s ai andaj have the following relations.Lemma 3.6.1 (Relation between ar
s in one partial dependen
y tree) Let ai andaj be �xed ar
s ai,aj2ds(e) where e is a single edge. Their sour
e edges sr
 Edge(ai) andsr
 Edge(aj) are in origin relation.A �xed ar
 in edge e in the edge 
ombination tree is in the edges that have e as their origins.For example, �xed ar
 ai generated at (g) is 
ontained in (h).Lemma 3.6.2 (Relation between an ar
 and the edge whi
h generated the ar
)Suppose that �xed ar
s ai,aj satisfy sr
 Edge(ai) ���!CT sr
 Edge(aj), aj2ds(*e) implies ai2ds(*e)for every single ar
 *e in PF (*e2*E,*E2PF).Sin
e a unique ar
-ID is assigned to ea
h ar
, all ina
tive single edges in the ina
tive pa
kededges in an ar
 
ombination tree, i.e., the leaves of the tree *En1� � �*Eno: : :*Enw in Fig.3.17, havedi�erent partial dependen
y trees. Therefore, ds(*ei)6=ds(*ej) for arbitrary ar
s *ei,*ej(*ei 6=*ej)in PF. A single ina
tive edge and a partial dependen
y tree have one-to-one mapping. In theparsing pro
ess, ina
tive edges whi
h satisfy the 
onditions shown in Fig.3.9 (j) are merged intoone and this merged edge be
omes an element of the phrase stru
ture forest. The one-to-onemapping relation between a single edge and a partial dependen
y tree is assured in the phrasestru
ture forest be
ause this merge operation does not 
hange the dependen
y stru
tures in thesingle edges.Lemma 3.6.3 (Constraints with respe
t to the ar
s in the edges in
luded in a path)Suppose ar
s ai2ds(ei),aj2ds(ej). If ei +��!PF ej , then dep(ai)6=dep(aj) is true. Inversely, ifdep(ai)=dep(aj), then :(ei +��!PF ej) is true.



67Proof: This lemma is established be
ause data stru
tures in the single edges are trees whosetop nodes are phrase heads a

ording to the partial dependen
y stru
ture 
ondition in 3.4.2.Lemma 3.6.4 (Existen
e of 
orresponding edge) Suppose an ar
 ai in a well-formed de-penden
y tree DT (ai2DT). There exists one and only one pa
ked edge E2PF and single edgee2E whi
h satisfy the following 
ondition.DT � ds(e),ai2ds(e)Proof: Let number of nodes in DT n (Number of ar
s is n � 1). Divide ar
 set DT into thefollowing two ar
 sets IN ARCS,OUT ARCS with respe
t to ai.IN ARCS = f aj j sr
 Edge(ai) ���!CT sr
 Edge(aj) or sr
 Edge(aj) ���!CT sr
 Edge(ai)gOUT ARCS = DT�IN ARCSLet SRC EDGES be a set of sour
e edges 
orresponding to the ar
s in IN ARCS.SRC EDGES = fE j E=sr
 Edge(a), a2IN ARCSgFirst, the following statement is to be established.\Arbitrary edges in SRC EDGES are in origin relation00 (A)Suppose edges U ,V 2SRC EDGES. U and V are in origin relation by de�nition and in one of thefollowing three 
ases.(a) One ar
 is an origin of Ei and Ei is an origin of the other ar
. U ���!CT Ei,Ei ���!CT V(b) Both ar
s are origins of Ei. U ���!CT Ei,V ���!CT Ei(
) Ei is an origin of both ar
s. Ei ���!CT U ,Ei ���!CT VIn 
ases (a) and (b), the statement (A) obviously holds a

ording to the stru
ture of the edge
ombination tree. The following shows that a 
ontradi
tion is derived from the assumption thatU and V are not in origin relation in 
ase (
).Suppose that U and V are not in origin relation. There exist ar
s au, av2DT su
h thatU=sr
 Edge(au), V=sr
 Edge(av) a

ording to the premise. Sin
e all ar
s in DT are in thepa
ked shared forest, there exist ina
tive edges that have U and V as their origin, respe
tively.Let *Eu and *Ev be origins of U and V , respe
tively. Let eu in *Eu and *ev in *Ev be edges su
hthat au2*eu, av2*ev. From Lemma 3.6.2, both *eu and *ev 
ontain ai. Ar
s au and av in thewell-formed dependen
y tree DT satisfy either of the C-Matrix setting 
onditions (C1) to (C3).au and av do not satisfy (C1) be
ause the 
ontradi
tion for the assumption that U and V are notin origin relation is dedu
ed from (C1), i.e., the existen
e of e su
h that au,av2ds(e) a

ording tolemma 3.6.1. (C2) is that *eu +��!PF *ev is true (The reverse 
ase is shown in the same way). Nodesin
luded in ar
s in ds(*eu) are phrase heads of the 
onstituents in 
s(*eu) a

ording to the partialdependen
y stru
ture 
ondition. This implies that either dep(ai) or gov(ai) of ai2ds(*eu) is anode whi
h lo
ates outside of the 
overage of *ev. On the other hand, both dep(ai) and gov(ai)



68must be in the 
overage of *ev be
ause ai2ds(*ev) is true. From this 
ontradi
tion, au and av donot satisfy (C2). (C3), i.e., *eu.[PF℄&*ev , is not satis�ed by au and av be
ause the 
overage of*eu and *ev have to be overlapped due to the premise that ai is in both *eu and *ev. From theabove, the supposition that U and V are not in origin relation 
ontradi
ts the C-Matrix setting
onditions between au and av. Therefore statement (A) is true.Now, let Elast be the last edge 
onne
ted from Ei, i.e., the edge whi
h satis�es the following
onditions.Ei ���!CT ElastElast is the only edge Ej su
h that Elast ���!CT Ej (Ej2SRC EDGES)Fig.3.18 shows the relation between IN ARCS and SRC EDGES diagrammati
ally. Estart
orresponds to a grammar rule. The grammar rule is as follows:y/Xh ! x1/X1� � � xz/Xz :fA1,: : :,Az�1gSRC EDGES 
onstitutes a route on the edge 
ombination tree CT with root Estart, 
ontainingE1,: : :,Elast. The sour
e edge Ei for ai exists somewhere on this route. There exists at least onear
 alast whi
h is generated by Elast in IN ARCS.Elast is either an a
tive edge or an ina
tive edge. Fig.3.18 shows a 
ase where Elast is an a
tiveedge. Elast is proved to be an ina
tive edge as follows:Suppose that Elast is an a
tive edge. As shown in Fig.3.19, Elast (Fig.3.19 (a)) has at leastone remaining 
onstituent xu+1 (Fig.3.19 (b). Variable for the 
onstituent is not shown). Let s1and t1 be a from-position and a to-position of Elast, respe
tively.From the premise alast2DT, there exists at least one ina
tive edge *Ex (Fig.3.27 (
)) whi
hhas Elast, the sour
e edge of alast, as its origin in the phrase stru
ture forest PF. As shown inthe �gure, *Ex has the from-position equal to the from-position s1 of Elast and the to-positiongreater than the to-position t1 of Elast.Consider the node nt1+1 at the position t1+1 (Fig.3.19 (d))*17. DT has one ar
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Fig.3.18 Edges 
orresponding to ar
s in DT*17 One nt1+1 exists due to the well-formedness 
ondition of DT



69

���
���� �� 	
 ��
 � ��������������� �������� �! 	! �
"# � "$ ����"$%# � "&�

'()*)+,'-.,
…

��/01 �� 	� ��
��
+,2, 3453676�8936

:; <=�>?@A B CDEF( B
Nodes in DT

GHIJIKLMN�>?@A
���1 �! 	O �
"# � "& �����

') 'D
(a) (b)

(c)

(d)

(e)

(g)

(f)

Node Position

…

P ',
…

QRSTCDEF(UV'(W*)C) X CW X C-YZ(
���� �� 	
 ��
 � ��������������� �������� �! 	! �
"# � "$ ����"$%# � "&�

'()*)'()*)+,'-'-.,
…

��/01 �� 	� ��
��
+,2, 3453676�8936

:; <=�>?@A B CDEF( B
Nodes in DT

GHIJIKLMN�>?@A
���1 �! 	O �
"# � "& �����

')') 'D'D
(a) (b)

(c)

(d)

(e)

(g)

(f)

Node Position

…

P ',
…

QRSTCDEF(UV'(W*)C) X CW X C-YZ(

Fig.3.19 Existen
e of 
orresponding edgeanext(dep(anext)=nt1+1 (Fig.3.19 (e)). anext is an element of OUT ARCS due to the de�-nition of alast. anext2DT implies that at least one ina
tive edge *Ey whose origin is Enext,the sour
e edge of anext, exists in the phrase stru
ture forest PF. Sin
e Enext has anext withinits 
overage, Enext has the from-position s1 less than or equal to t1 (Fig.3.19 (f)) and theto-position t2 is greater than or equal to t1+1 (Fig.3.19 (g)). Therefore, the from-position of*Ey is less than or equal to t1. From the above, *Ex whi
h has its origin Elast overlaps *Eywhi
h has its origin Enext at the t1 position.Now, no 
o-o

urren
e setting 
onditions for alast and anext hold as follows:Ar
s alast and anext do not satisfy (C3) be
ause *Ex and *Ey overlap as explained above. (C1)is not satis�ed from the premise *Ex 6=*Ey. Consider (C2) meaning that *Ex +��!PF *Ey is true (thereverse 
ase is shown in the same way). Let am be the ar
 in *Ex, whose dependant node is nt1+1.am 6=anext*18. A

ording to lemma 3.6.3, if *Ex +��!PF *Ey is not true, then (C2) is not satis�ed.From the above, alast and anext satisfy no 
o-o

urren
e setting 
onditions. This 
ontradi
ts thepremise that DT is a well-formed dependen
y tree. Therefore, Elast is not an a
tive edge.Let Elast be an ina
tive edge *Elast.(a) *Elast, the sour
e edge of alast, is an ina
tive edge (a leaf of the edge 
ombination tree)then no other pa
ked edges 
ontain alast. Moreover, there exist only one *elast su
h thatalast2ds(*elast),*elast2*Elast.(b) *Elast2PF is true due to alast2DT.(
) A

ording to the premise alast2DT and lemma 3.6.2, DT�ds(*elast) is true.Lemma 3.6.2 is true due to (a) to (
).
*18 If am=anext, sr
 Edge(anext) and Ei are in origin relation. This 
ontradi
ts the premise anext2OUT ARCS.



70[Relation between Conne
ted Ar
s and their Corresponding Edges℄Ar
s ai,aj(ai 1��!DT aj or sib(ai,aj)) are 
alled \
onne
ted ar
s." The following two lemmas areestablished with respe
t to 
onne
ted ar
s in a well-formed dependen
y tree DT.Lemma 3.6.5 (Conne
ted ar
s and their 
orresponding edges) Suppose *ei=edge(ai,DT)�*ej=edge(aj ,DT) for 
onne
ted ar
s ai,aj in DT. At least one of (a), (b), (
) is true.(a) *ei =*ej(b) *ei +��!PF *ej(
) *ej +��!PF *eiLemma 3.6.5 means that if two ar
s in DT are 
onne
ted, one of their 
orresponding edges isrea
hable from another edge in PF.Proof: *ei and *ej satisfy at least one of the C-Matrix setting 
onditions (r1) to (r3) be
ause*ei and *ej 
o-o

urs in DT.(r1) *ei=*ej(r2) *ei +��!PF *ej or *ej +��!PF *ei(r3) *ei.[PF℄& *ejLet n be a node shared by the 
onne
ted ar
s ai and aj . Both *ei and *ej 
overs n. Therefore,(r3) is not satis�ed by *ei and *ej . *ei and *ej has to satisfy (r1) or (r2).Lemma 3.6.6 (An
estor-des
endant ar
s and their 
orresponding ar
s) Suppose*ei=edge(ai,DT)�*ej=edge(aj ,DT) for ai,aj(ai +��!DT aj).*ei ���!PF *ejProof: In the 
ase that dep(ai)=gov(aj), one of (a), (b) or (
) in lemma 3.6.5 is true. Fromthe node positioning relation pres
ribed by the partial dependen
y stru
ture 
ondition in se
tion3.4.2, (
) is not satis�ed by ai and aj be
ause :(*ej +��!PF *ei) is true for *ej and *ei. Therefore,parent-
hild ar
s satisfy either (a) or (b). Lemma 3.6.6 is established for ai ���!DT aj due to theasso
iativity of the relation ���!PF .[Top single edge top edge(DT)℄De�nition 3.6.5 [Top single edge℄A \top single edge" for DT top edge(DT) is the single edge whi
h lo
ates in the topmostposition in PF among the edges whi
h 
orrespond to the ar
 just under the top node of DT.That is, top edge(DT) is edge ai satisfying the following 
onditions.



71top node(DT)=gov(ai)edge(ai) ���!PF edge(aj) for all aj su
h that top node(DT)=gov(aj)If DT is a tree 
onsisting of one node, top node(DT) is the single lexi
al edge 
orrespondingto the node.Lemma 3.6.7 (Relation between top edge(DT) and edge(aj,DT)) *et ���!PF *ej is true for*et=top edge(DT) and *ej=edge(aj ,DT) (aj2DT).Proof: If aj is an ar
 just under the top node of DT, i.e., gov(aj)=top node(DT), *et ���!PF *ej ,is true a

ording to lemma 3.6.5 and the de�nition of top edge. If not, aj is a des
endant of oneof the ar
s just under the top node of DT. *et ���!PF *ej is true a

ording to lemma 3.6.6.[Division of Well-formed Dependen
y Tree℄The \division of a well-formed dependen
y tree DT" means the 
reation of a set of partialdependen
y trees DT1,: : :,DTm by removing a set of ar
s in ds(top edge(DT)) from DT,where m is a number of nodes in ds(top edge(DT)). Nodes isolated from all other nodes bythis operation are dependen
y trees that 
onsist of one node. For example, suppose thatds(top edge(DT))=fas,at,au,awg in Fig.3.20, DT is divided into partial dependen
y treesDTs,DTt,DTu,DTv ,DTw whose top nodes are ns,nt,nu,nv , nw, respe
tively. Sin
e nodes ns, nware isolated from other nodes, DTs and DTw are dependen
y trees 
onsisting of single node,i.e.,fnsg and fnwg, respe
tively. The phrase heads of the pa
ked edges in 
s(e) of a single edgee have one-to-one 
orresponden
e with the nodes in the partial dependen
y tree df(e) due tothe partial dependen
y stru
ture 
ondition in se
tion 3.4.2. Therefore, there exists one pa
ked
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Dependency tree DT The phrase structure forest PFFig.3.21 Well-formed DTi obtained from division of DTedge *Ei (1�i�m) whose phrase head is a top node ni of DTi(1�i�m). *Ei is 
alled the \rootpa
ked edge" for DTi and is referred to as root Edge(DTi).De�nition 3.6.6 [Root pa
ked edge℄Suppose DTi and its top node ni (1�i�m) is obtained by the division of DT. Aroot Edge(DTi) is a pa
ked edge whi
h is an element of 
s(top edge(DT)) and whosephrase head is top node(DTi).For example, in Fig.3.20, *ev is top edge(DT) and has the 
onstituent sequen
e *Es,*Et,*Eu,*Ev,*Ew whose phrase heads are ns,nt,nu,nv ,nw, respe
tively. Then, root Edge(DTt) is *Et. Thefollowing two lemmas are explained with referen
e to Fig.3.21.Lemma 3.6.8 (Relation between root pa
ked edge and top single edge) Suppose par-tial dependen
y trees DTi obtained from the division of the well-formed dependen
y treeDT. *Ei +��!PF *eo is true for the root pa
ked edge *Ei=root Edge(DTi) and the top single edge*eo =top edge(DTi).Proof: Let *et be top edge(DT) and ni be the top node of DTi (Fig.3.21). Consider the 
asewhere DT is a tree 
onsisting of a single node, i.e., DTi =fnig. *eo is the single lexi
al edge
orresponding to ni. *Ei +��!PF *eo is true be
ause the phrase head of *Ei is ni. Consider another
ase where DT is a tree 
onsisting of ar
s. *et ���!PF *eo is true a

ording to lemma 3.6.6. Therefore,X ���!PF *eo is true for some pa
ked edge X in 
s(*et). X=*Ei is true be
ause *Ei2
s(*et) fromde�nition and the phrase heads of *Ei and *eo are the same.Lemma 3.6.9 (Well-formedness of partial trees obtained by division of DT) Supposepartial dependen
y trees DTi and its root pa
ked edge *Ei with the from-position spi and



73to-position tpi obtained from the division of the well-formed dependen
y tree DT. DTi is awell-formed dependen
y tree, whi
h 
overs from spi to tpi.Proof: DTi is a well-formed dependen
y tree if it satis�es the 
o-o

urren
e 
onstraint andthe well 
overing 
onstraint. Obviously DTi satis�es the 
o-o

urren
e 
onstraint be
ause DTsatis�es the 
o-o

urren
e 
onstraint. The following part shows the well 
overing 
onstraint.In the 
ase that DT is a tree 
onsisting of a single node, it satis�es the well 
overing 
onstraintfrom the de�nition. Consider the 
ase where DT is a tree 
onsisting of ar
s. Let ni and nj bethe top node of DT and one of any other nodes in DT (nj 6=ni). There exists ar
 aj su
h thatnj= dep(aj) in DT. Moreover, there exists ak2DTi su
h that gov(ak)=ni,ak ���!DT aj for aj2DTi.Let *ej and *ek be *ej=edge(aj,DT), *ek=edge(ak,DT). *ek ���!PF *ej is true due to lemma 3.6.6be
ause ak is equal to aj or ak is an an
estor of aj . Now, let *et be the top single node of DT,*et ���!PF *ek is true a

ording to lemma 3.6.7. *ek is rea
hable from one of the pa
ked edges in
s(*et). *Ei ���!PF *ek is true be
ause the phrase head of *ek is ni.From the above, *Ei ���!PF *ek ���!PF *ej is true and nj is in the 
overage of *Ei, that is, all nodesin DTi are in the 
overage from spi to tpi. Furthermore, the nodes in DTk(k 6=i) are not in the
overage from spi to tpi. Sin
e DT satis�es the well 
overing 
onstraint, all nodes in DTi o

upywhole positions from spi to tpi.[Proof of the Completeness and Soundness of the Dependen
y Forest℄A 
orresponding dependen
y tree dependen
y tree(PT) for a phrase stru
ture tree PT =f*e1,: : :,*emg is de�ned as follows:De�nition 3.6.7 [Dependen
y tree for a phrase stru
ture tree PT℄dependen
y tree(PT) = ds(*e1) ℄� � �℄ ds(*em)The operator ℄ is similar to the union operator [ , whi
h is introdu
ed to manage the union ofdependen
y stru
tures whi
h may be either a set of ar
s or a set of a node. ℄ removes nodesfrom the union of dependen
y stru
tures if it has at least one ar
. The following are examplesof ℄ where ni and ai represent node and ar
, respe
tively.fn1g℄fa1,a2g = fa1,a2gfa1g℄fa2,a3g = fa1,a2,a3gfn1g℄fg = fn1gdependen
y tree(PT) is a tree be
ause it is 
onstru
ted by 
ombining ea
h partial dependen
ytree ds(*ei).Theorem 3.6.1 (The Completeness of the dependen
y forest)Let PT be a phrase stru
ture tree in the phrase stru
ture forest PF. DT=dependen
y tree(PT)is a well-formed dependen
y tree in the dependen
y forest DF.



74Proof: From the de�nition of the dependen
y forest, DT is in
luded in DG. Nodes 
ontainedin DT and PT have one-to-one relation a

ording to the partial dependen
y stru
ture 
ondition.Sin
e PT 
overs whole senten
e, DT is a well 
overed dependen
y tree. A

ording to the C-Matrix setting 
onditions, every two ar
s in DT satisfy the 
o-o

urren
e 
onstraint. Therefore,dependen
y tree(PT) is a well 
overing and well 
o-o

urred dependen
y tree in DFTheorem 3.6.2 (The soundness of the dependen
y forest)Let DT be a well-formed dependen
y tree in the dependen
y forest DT. There exists a phrasestru
ture tree PT in the phrase stru
ture forest PF su
h that DT=dependen
y tree(PT).Proof: The existen
e of a phrase stru
ture tree PT whi
h satis�es PT2ps trees(*Eroot) anddependen
y tree(PT)=DT is shown below.Let n be a number of input words. The following is an algorithm, 
alled the phrase stru
turetree generation algorithm, whi
h generates a phrase stru
ture tree from a pa
ked edge *Er withfrom-position spr and to-position tpr (1�spr<tpr�n) and a well-formed dependen
y tree DT,whi
h 
overs from spr to tpr. The proof that the phrase stru
ture tree generation algorithmgenerates a phrase stru
ture tree, whi
h satis�es the above 
onditions, is shown below usingmathemati
al indu
tion for the number of ar
s in the dependen
y tree.[Phrase Stru
ture Tree Generation Algorithm℄In the 
ase that DT is a set of ar
s:A-Step1(Identi�
ation of the Top Single Edge) : Let *et be the top single edgetop edge(DT).A-Step2 (Identi�
ation of a Path) : Identify a path from *Er to *et. Let PATH be a setof single edges in the path ex
ept for *et.A-Step3 (Division of DT) : Divide DT by removing edges in ds(top edge(DT)) to get a setof partial dependen
y trees DTi(1�i�m) and root pa
ked edges *Ei=root Edge(DTi).A-Step4 (Computation of Partial Phrase Stru
ture Trees) : Apply the phrase stru
turetree generation algorithm to ea
h DTi and *Ei(1�i�m) and 
ompute ea
h PTi.A-Step5 (Constru
tion of Phrase Stru
ture Tree) : Returns PT=PATH [ f*etg [ PT1[� � �[PTm as a phrase stru
ture tree for DT,*Er.In the 
ase that DT is a set of a node (DT=fng):N-Step1 (Identi�
ation of Lexi
al Edge) : Identify the lexi
al edge �elex whi
h generatednode n.N-Step2 (Identi�
ation of a Path) : Identify a path from *Er to elex and returns a set ofsingle edges in the path as a phrase stru
ture tree for DT,*Er.When DT is s a set of ar
s, phrase stru
ture tree PT is 
onstru
ted through A-Step1 to A-Step5. Fig.3.22 shows the behavior of the algorithm diagrammati
ally. A-Step1 
omputes the
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nt
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Dependency tree DT The phrase structure forest PFFig.3.22 Generation of PT from DT and *Ertop single edge *et(=top edge(DT)) (Fig.3.22 (S1)). A-Step2 identi�es a path from *Er to *etand 
omputes PATH, a set of single edges. The existen
e of this path (*Er +��!PF *et) is assuredas follows: In the 
ase that *Er is *Eroot, it is obvious. In the 
ase that *Er is obtained by thedivision of a dependen
y graph (*Ei in A-Step4), it is assured by lemma 3.6.8. The dependen
ystru
ture parts of the single edges in PATH are fg. This is obvious be
ause *Er and *et havethe same 
overage sin
e all nodes in DT are in the 
overage of *et.dependen
y tree(PATH) = fg (A)A-Step3 performs the division of DT and generates DTi,*Ei(1�i�m) as shown in Fig.3.22 (S3).A

ording to lemma 3.6.9, DTi is a well-formed dependen
y tree 
overing the 
overage of *Eiand the phrase stru
ture tree generation algorithm is appli
able re
ursively at A-Step4. A-Step5 
omputes the phrase stru
ture tree PT (Fig.3.22 (S5)). From the de�nition of the phrasestru
ture tree, it is obvious that PT is a phrase stru
ture tree if ea
h PTi is phrase stru
turetree.When DT is a set of a node (DT=fng), N-Step1 and N-Step2 
omputes a phrase stru
turetree PT. The existen
e of a path from *Er to elex is assured for the same reason des
ribed in theexplanation of A-Step1.The phrase stru
ture tree PT generated by the phrase stru
ture tree generation algorithmsatisfying DT=dependen
y tree(PT) is shown as follows:In the 
ase that DT=fnrg, the algorithm generates PT at N-Step2. PT is a phrase stru
turetree 
ontaining one node nr. From the de�nition of dependen
y tree, dependen
y tree(PT)=fnrgis true. In the 
ase that DT is a dependen
y tree whi
h 
onsists of a set of ar
s, the phrasestru
ture tree generation algorithm, the de�nition of dependen
y tree and (A) make the followingequation.dependen
y tree(PT)= dependen
y tree(PATH [ f*etg [ PT1 [� � �[ PTm)= dependen
y tree(PATH)℄dependen
y tree(f*etg) ℄dependen
y tree(PT1)℄� � �℄ depen-



76den
y tree(PTm)= dependen
y tree(f*etg) ℄ dependen
y tree(PT1) ℄� � �℄ dependen
y tree(PTm)Assume that PTi 
orresponding to DTi,*Ei in A-Step4 satis�es the following.dependen
y tree(PTi)=DTi (1�i�m)Now, PT generated at A-Step5 generates DT as shown below.dependen
y tree(PT)= dst ℄ DT1 ℄� � �℄ DTm= DT
3.6.2 Corresponden
e between Phrase Stru
ture Forest and Depen-den
y ForestSe
tion 3.6.1 showed that the initial dependen
y forest satis�es the 
ompleteness and sound-ness with respe
t to the phrase stru
ture forest. Sin
e the redu
ed dependen
y forest has thesame set of generalized dependen
y trees as the initial dependen
y forest, the soundness andthe 
ompleteness between the (redu
ed) dependen
y forest and the phrase stru
ture forest areassured. The 
orresponden
es between the phrase stru
ture trees (phrase stru
ture trees) in thephrase stru
ture forest and the dependen
y trees in the dependen
y forest are not ne
essarilysimple one to one relations. One phrase stru
ture tree may 
orrespond to more than one de-penden
y tree, whereas more than one phrase stru
ture tree may 
orrespond to one dependen
ytree. Considering the variety (one meaning 
an be expressed by more than one expression) andthe ambiguity (one expression expresses more than one meaning) en
oded in natural languages,these multiple-
orresponden
es may be natural. The 
orresponden
es between phrase stru
turetrees and dependen
y trees are dis
ussed in the next se
tion by referring to the experiments forsenten
e analysis using a PDG prototype system.3.7 Experiment for Analysis of Example Senten
esOne of the design targets of PDG is the suppression of the 
ombinatorial explosion 
ausedby a variety of ambiguities using the pa
ked shared data stru
tures. This se
tion des
ribesthe experiment for analyzing typi
al ambiguous senten
es using PDG grammar rules, whi
h
ontain various kinds of ambiguities. This se
tion also dis
usses the relation between the phrasestru
ture forest and the dependen
y forest, and the generation of non-proje
tive dependen
ytrees based on real analysis examples. The performan
e of the algorithm is also one of theimportant fa
tors from a pra
ti
al point of view. The algorithms for parsing, generation ofphrase stru
ture forest and initial dependen
y forest and dependen
y forest redu
tion des
ribedin this thesis are implemented for verifying the PDG's analysis. The pra
ti
al implementation
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��Fig.3.23 Grammar for the example senten
esand its evaluation are subje
ts for future work. The following experiment utilizes a prototypePDG system implemented in Prolog.3.7.1 PDG Grammar Rules for Example Senten
esFig.3.23 shows PDG grammar rules used for analyzing the example senten
es 
ontaining var-ious kinds of prototypi
al ambiguities. The POSs in the grammar rules are determiner(det),n(noun), be-verb(be), present parti
le of verb (ving), verb (v), preposition (pre), adverb (adv)and relational phrase (relp). The grammar rules are not for linguisti
 analysis but for experimentwith respe
t to the PDG framework and algorithms. The grammar rules in
lude the followingkinds of ambiguities.PP-atta
hment : Two kinds of atta
hment ambiguities in R6(noun atta
hment) andR10,R17(verb atta
hment)Coordination s
ope : R11(and) and R12(or) are 
oordination noun phrase rulesBe-verb interpretation : Two stru
tural ambiguities 
aused by be-verb interpretations, i.e.,R15(present progressive) and R16(
opula)Interpretation of the present progressive form of verb : the following three ambiguities ofthe present progressive form of verb are des
ribed(a) adje
tive usage where modi�ed noun o

upies the subje
t role (R7)(b) adje
tive usage where modi�ed noun o

upies the obje
t role (R8)(
) gerund usage (R9,R10)



78R8 and R9 are similar sin
e both rules pres
ribe the relation between noun and verb as obje
t.However they have di�erent interpretations in phrase head and generate the di�erent stru
turesof dependen
y trees. The grammar 
ontains de
larative form (R1) and imperative senten
eform (R2) to produ
e stru
tural ambiguities in 
ombination with POS ambiguities of wordsfor senten
es like \Time 
ies like an arrow." (R19) is a rule for generating a non-proje
tivedependen
y stru
ture.3.7.2 Analysis of Prototypi
al Ambiguous Senten
esThe example for the ambiguous senten
e with POS ambiguities has already been shown in theprevious se
tions in detail. The examples in the following se
tions show prototypi
al synta
ti
ambiguities, i.e., PP-atta
hment ambiguity, 
oordination s
ope ambiguity and ambiguities instru
tural interpretations.(1) PP-atta
hment AmbiguityFig.3.24 shows the dependen
y forest for the senten
e \I saw a girl with a teles
ope in theforest," whi
h has PP-atta
hment ambiguities. Ea
h ar
 in the dependen
y graph has an ar
name atta
hed by ar
-ID and preferen
e s
ore*19. The table in Fig.3.24 shows POS and posi-tion information of ea
h node. This senten
e has no POS ambiguities but has PP-atta
hmentambiguities for preposition \with" (two ambiguities: npp13,vpp14) and \in" (three ambiguities:npp23,npp25,vpp26). CM in Fig.3.24 inhibits some of the 
ombinations of these ambiguous ar
s.npp13 and vpp14 (or npp23, npp25 and vpp26) have no 
o-o

urren
e relation be
ause they havethe same position (the single role 
onstraint). The 
o-o

urren
e between vpp14 and npp25 isalso inhibited. If this 
o-o

urren
e 
onstraint does not exist, the dependen
y forest has sixinterpretations 
aused by two PP-atta
hment ambiguities (2 � 3 = 6). CM(14,25)6= �, whi
h
0,I 1,saw 2,a

top

4,with 6,telescope 8,the 9,forest3,girl 5,a 7,in

det4,0 det10,0 det20,0

sub30,20 obj5,20

vpp14,15
vpp26,5

npp13,10
pre11,10 pre21,10

npp25,5

npp23,5
top35,0

0,I : [i]-n-0
1,saw : [saw]-v-1
2,a : [a]-det-2
3,girl : [girl]-n-3
4,with : [with]-pre-4
5,a : [a]-det-5
6,telescope : [telescope]-n-6
7,in : [in]-pre-7
8,the : [the]-det-8
9,forest : [forest]-n-9
top : [top]-x-top
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vpp14,15
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top35,0

0,I : [i]-n-0
1,saw : [saw]-v-1
2,a : [a]-det-2
3,girl : [girl]-n-3
4,with : [with]-pre-4
5,a : [a]-det-5
6,telescope : [telescope]-n-6
7,in : [in]-pre-7
8,the : [the]-det-8
9,forest : [forest]-n-9
top : [top]-x-top
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e in
luding PP-atta
hments*19 Preferen
e s
ores show the degree of preferen
e of ar
s (Hirakawa, 2006a). The preferen
e s
ore is not usedin this 
hapter.
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orresponds to the proje
tivity 
onstraint, ex
ludes a non-proje
tive dependen
y tree from aset of well-formed dependen
y trees in the dependen
y forest. This dependen
y forest has �vewell-formed dependen
y trees, whi
h are possible interpretations for the example senten
e.The sizes of the phrase stru
ture forest, the initial dependen
y forest and the redu
ed depen-den
y forest for this example are 25, 18 and 13, respe
tively. The phrase stru
ture forest 
ontains�ve phrase stru
ture trees*20 
orresponding to the �ve interpretations of the senten
e. The initialdependen
y forest and the redu
ed dependen
y forest have �ve IDed dependen
y trees, whi
h
orrespond to the �ve generalized dependen
y trees. obj5,npp13, vpp14 and pre11 have 2, 1, 1and 1 equivalent ar
s in the initial dependen
y forest. For example, obj5 and its equivalent ar
sare generated from the edges, shown below in diagrammati
 form, originated in the grammarrule (R14).<1, 4, vp/([saw℄-v-1) ! v(ID:109) np(ID:126) �, far
(obj-5,[girl℄-n-3,[saw℄-v-1)g><1, 7, vp/([saw℄-v-1) ! v(ID:109) np(ID:163) �, far
(obj-15,[girl℄-n-3,[saw℄-v-1)g><1,10, vp/([saw℄-v-1) ! v(ID:109) np(ID:203) �, far
(obj-28,[girl℄-n-3,[saw℄-v-1)g>The �rst edge has the 
overage from 1 to 4 (\saw a girl"), phrase head [saw℄-v-1, 
onstituentsequen
e v(ID:109)*21 np(ID:126) and the obj ar
 with ar
-ID 5. The above equivalent ar
sare generated from the 
ombination with edges np(ID:126), np(ID:163) and np(ID:203) that
orrespond to noun phrases with di�erent 
overage. The redu
ed dependen
y forest has noequivalent ar
s be
ause all equivalent ar
s in the initial dependen
y forest are merged.(2) Coordination S
ope AmbiguityFig.3.25 shows the dependen
y forest for the senten
e \Earth and Moon or Jupiter andGanymede," whi
h has 
oordination s
ope ambiguities. \Earth" and \Moon" have two and
0,Earth : [Earth]-n-0
1,and : [and]-and-1
2,Moon : [Moon]-n-2
3,or : [or]-or-3
4,Jupiter : [Jupiter]-n-4
5,and : [and]-and-5
6,Ganymede : [Ganymede]-n-6
top : [top]-x-top

0,Earth 2,Moon 3,or 4,Jupiter

top

5,and

and12,10

and4,20

cnj2,0

or22,4

cnj6,0

or9,3 cnj14,0

and18,12 top26,0

and25,5
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5,and : [and]-and-5
6,Ganymede : [Ganymede]-n-6
top : [top]-x-top
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top

5,and

and12,10

and4,20

cnj2,0

or22,4

cnj6,0

or9,3 cnj14,0

and18,12 top26,0

and25,5
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Fig.3.25 DF for the example senten
e in
luding 
onjun
tions*20 In judging the equivalen
e of the phrase stru
ture trees, phase heads (head nodes) are taken into 
onsider-ation.*21 The pa
ked edge whose 
ategory is v and edge-ID is 109.



80three outgoing ar
s, respe
tively, 
orresponding to 
oordination s
ope ambiguities. CM(22,12)6=�, whi
h 
orresponds to the proje
tivity 
onstraint, ex
ludes a non-proje
tive dependen
y treefrom a set of well-formed dependen
y trees in the dependen
y forest. This dependen
y forest has�ve well-formed dependen
y trees, whi
h are possible interpretations for the example senten
e.The sizes of the phrase stru
ture forest, the initial dependen
y forest and the redu
ed de-penden
y forest for this example are 18, 17 and 10, respe
tively. The phrase stru
ture forest
ontains �ve phrase stru
ture trees 
orresponding to the �ve interpretations of the senten
e. Theinitial dependen
y forest and the redu
ed dependen
y forest have �ve IDed dependen
y trees,whi
h 
orrespond to the �ve generalized dependen
y trees. or22,or9,
nj6, and18 and 
nj14have 1, 1, 1, 2, and 2 equivalent ar
s in the initial dependen
y forest, respe
tively. The redu
eddependen
y forest has no equivalent ar
s be
ause all equivalent ar
s in the initial dependen
yforest are merged. The 
oordination s
ope ambiguity is similar to the PP-atta
hment ambiguityin the previous se
tion but is di�erent from the PP-atta
hment ambiguity be
ause it has themodi�
ation s
ope problem des
ribed below.(3) Ambiguity in Stru
tural InterpretationFig.3.26 shows the dependen
y forest for the senten
e \My hobby is wat
hing birds witha teles
ope," whi
h has ambiguities su
h as the interpretation of be-verb (present progressiveform or 
opula), the interpretation of \wat
hing birds" (adjs3,adjo4, obj5), and PP-atta
hment(npp21,vpp22,npp24,vpp25). This senten
e has ten interpretations.The sizes of the phrase stru
ture forest, the initial dependen
y forest and the redu
ed de-penden
y forest for this example are 23, 24 and 16, respe
tively. The phrase stru
ture forest
ontains eight phrase stru
ture trees 
orresponding to ten interpretations of the senten
e. Theinitial dependen
y forest and the redu
ed dependen
y forest have ten IDed dependen
y trees,whi
h 
orrespond to the ten generalized dependen
y trees. ds
9,ds
8,obj5, npp21 and vpp22 have
0,my 2,is 4,birds
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Fig.3.26 DF for the example senten
e in
luding stru
tural ambiguities



812, 2, 5, 2, and 2 equivalent ar
s in the initial dependen
y forest, respe
tively. In 
ontrast to theexample in Se
tion 3.7.2, the equivalent ar
s are generated from more than one grammar rule.For example, the equivalent ar
s of obj5 are generated from the edges, shown below, originatedin the grammar rule (R9), (R10) and (R15)(R9) � <3, 5, np/([wat
hing℄-ving-3) ! ving(ID:121) np(ID:130) �,far
(obj-5,[birds℄-n-4,[wat
hing℄-ving-3)g>(R10) � <3, 7, np/([wat
hing℄-ving-3) ! ving(ID:121) np(ID:130) pp(ID:176) �,far
(obj-6,[birds℄-n-4,[wat
hing℄-ving-3),ar
(vpp-22,[with℄-pre-5,[wat
hing℄-ving-3)g >(R15) � <2,5, vp/([wat
hing℄-ving-3) ! be(ID:117) ving(ID:121) np(ID:130) �,far
(prg-2,[is℄-be-2,[wat
hing℄-ving-3),ar
(obj-7,[birds℄-n-4,[wat
hing℄-ving-3)g >The redu
ed dependen
y forest has no equivalent ar
s. In this example, the number of thephrase stru
ture trees in the phrase stru
ture forest is smaller than number of the generalizeddependen
y trees in the dependen
y forest. One phrase stru
ture tree 
orresponds to morethan one dependen
y tree. The following se
tion dis
usses the 
orresponden
e between phrasestru
ture trees and dependen
y trees.3.7.3 1 to N Corresponden
e from Phrase Stru
ture Tree to Depen-den
y TreesThe 
orresponden
e between a phrase stru
ture tree and a dependen
y tree is assured in PDG,but sometimes one phrase stru
ture tree has more than one 
orresponding dependen
y tree andmore than one phrase stru
ture tree has one 
orresponding dependen
y tree.When one phrase stru
ture has more than one interpretation, one phrase stru
ture tree may
orrespond to more than one dependen
y tree. For example, when \wat
hing birds" is assignedone phrasal stru
ture where the verb in present parti
le form modi�es the noun, two dependen
ystru
tures \wat
hing subj���! birds" and \wat
hing obj��! birds" are assigned to the phrasal stru
ture.This happens when there exists more than one grammar rule, whi
h has the same rewriting rulebut has di�erent dependen
y stru
ture parts. This is the 
ase for (R7) and (R8) in Fig.3.23.(R7) and (R8) are arbitrary rules introdu
ed for verifying the dependen
y forest. Two kinds ofambiguities in 1 to N mapping from phrase stru
ture tree to dependen
y trees are 
onsidered, i.e.,the ambiguities in synta
ti
 relation and semanti
 relation. The former means the ambiguitiesin fun
tional assignments (subje
t, obje
t, et
.) for phrase stru
tures. The fun
tional stru
turesand phrase stru
tures have 
lose relation and the di�eren
e in fun
tional stru
tures 
an bere
e
ted by the di�eren
e of phrase stru
ture*22. Therefore, it seems not to be usual for more thanone fun
tional stru
ture to be assigned to one rewriting rule. In 
ontrast, the assignment of morethan one semanti
 stru
ture seems to be quite a general phenomenon. However, introdu
tion of*22 For example, the 
ategory in the rewriting rule is segmented into more detailed 
ategories re
e
ting thedi�eren
e of fun
tional assignments. This segmentation works to remove ambiguous mapping from onephrase stru
ture to more than one fun
tional stru
ture.
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-� � ��������Fig.3.27 Mapping from one phrase stru
ture tree to two dependen
y tree1 to N mapping (from phrase stru
ture to dependen
y stru
tures) into grammar rules may 
auseproblems in terms of system performan
e and grammar rule maintenan
e. In general, senten
eanalysis approa
hes, whi
h treat synta
ti
 analysis and semanti
 analysis independently, arewidely proposed and utilized. The framework itself, for mapping one phrase stru
ture tree tomore than one dependen
y tree, is independent of the linguisti
 dis
ussion here. Rules withmappings to semanti
 stru
tures 
an be utilized properly with respe
t to the requirements fromthe design and development of the grammar.The example in Se
tion 3.7.2 (Fig.3.26) 
ontains a phrase stru
ture tree whi
h 
orresponds totwo dependen
y stru
tures generated from (R7) and (R8). Fig.3.27 shows this phrase stru
turetree and dependen
y trees.3.7.4 N to 1 Corresponden
e from Phrase Stru
ture Trees to One De-penden
y TreeSpurious ambiguity (Noro et al., 2002) is one of the examples of N to 1 mapping from phrasestru
tures to dependen
y stru
ture. The real ambiguity is an ambiguity where the di�eren
e insynta
ti
 stru
tures represents the di�eren
e in semanti
 interpretations. The spurious ambigu-ity is an ambiguity where the di�eren
e in synta
ti
 stru
tures does not represent the di�eren
ein semanti
 interpretations, or an ambiguity 
aused by linguisti
ally illegal synta
ti
 stru
turegenerated by in
omplete grammar rules. The spurious ambiguity is an important issue in gram-mar development from 
orpora (Noro et al., 2005). Although it is not CFG, CCG (CombinatoryCategorial Grammar) has a lot of spurious ambiguities due to the 
exibility of rule appli
ation.The method for obtaining one normal form tree is proposed (Eisner, 1996a). This method assuresthat one phrase stru
ture tree among the phrase stru
ture trees in one semanti
 
lass is obtainedbased on the de�nition that phrase stru
ture trees whi
h have the same set of leaf CCG 
ategoryhave the same meaning. In PDG, phrase stru
ture trees 
orresponding to the same generalizeddependen
y tree (interpretation of a senten
e) 
an be 
lassi�ed into one semanti
 
lass.
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top
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0,She : [she]-n-0
1,curiously : [curiously]-adv-1
2,saw : [saw]-v-2
3,a : [a]-det-3
4,cat : [cat]-n-4
5,in : [in]-pre-5
6,the : [the]-det-6
7,forest : [forest]-n-7
top : [top]-x-top

�� � � � �� �� �� �� ���� 	 
 
 
 
 
 
 
 
� 
 	 
 
 
 
 
 
 
� 
 
 	 
 
 
 
 
 
� 
 
 
 	 
 
 
 
 
�� 
 
 
 
 	 
 
 
�� 
 
 
 
 	 
 
 
�� 
 
 
 
 
 
 	 
 
�� 
 
 
 
 
 
 
 	 
�� 
 
 
 
 
 
 
 
 	
2,saw 3,a

top

5,in 7,forest0,She 1,curiously 4,cat 6,the

det6,0 det14,0adv9,8

sub23,20 obj7,20

vpp18,15

npp17,10 pre15,10

top26,0

0,She : [she]-n-0
1,curiously : [curiously]-adv-1
2,saw : [saw]-v-2
3,a : [a]-det-3
4,cat : [cat]-n-4
5,in : [in]-pre-5
6,the : [the]-det-6
7,forest : [forest]-n-7
top : [top]-x-top

�� � � � �� �� �� �� ���� 	 
 
 
 
 
 
 
 
� 
 	 
 
 
 
 
 
 
� 
 
 	 
 
 
 
 
 
� 
 
 
 	 
 
 
 
 
�� 
 
 
 
 	 
 
 
�� 
 
 
 
 	 
 
 
�� 
 
 
 
 
 
 	 
 
�� 
 
 
 
 
 
 
 	 
�� 
 
 
 
 
 
 
 
 	Fig.3.28 DF 
ontaining the mapping from N phrase stru
ture trees to 1 dependen
y tree(spurious ambiguity)Fig.3.28 shows the dependen
y forest for \She 
uriously saw a 
at in the forest" using theexample grammar whi
h has a spurious ambiguity. There is only one 
o-o

urren
e 
onstraintbetween npp17 and vpp18 that 
orresponds to the single role 
onstraint. The dependen
y foresthas two dependen
y trees, whi
h has di�erent governors for the part \in the forest." The phrasestru
ture forest has three phrase stru
ture trees. The initial dependen
y forest has three IDeddependen
y trees and two generalized dependen
y trees and the redu
ed dependen
y forest hastwo IDed dependen
y trees and two generalized dependen
y trees. The spurious ambiguitiesare generated from the di�eren
e of rule appli
ation order of (R17) and (R18) for atta
hinga modi�
ation phrase to a verb phrase. Fig.3.29 shows the phrase stru
ture trees and thedependen
y tree.Obviously, the method of identifying the semanti
 
lass based on dependen
y tree does not
apture all semanti
 aspe
ts in natural languages. For example, the subtle semanti
 di�eren
e(Eisner, 1996a)*23 and the ambiguities in number/quanti�er s
ope*24 have to be 
onsidered indis
ussing the equivalent semanti
 
lass. The treatment of di�eren
e in semanti
 interpretationrequires further study. Mel'
uk (1988) des
ribes some linguisti
 stru
tures where ordinary depen-den
y stru
ture fails to express the interpretations of a senten
e. These stru
tures are 
lassi�edinto two 
ategories, the stru
tures, whi
h 
annot be treated by phrase stru
ture properly, andthe others. The former in
ludes the model theoreti
 interpretation of a senten
e. The latter isobserved when a dependen
y stru
ture has a head word whi
h has dependants lo
ated at theright-hand side and the left-hand side of the headword. In this 
ase, the dependen
y stru
turehas ambiguities in modi�
ation s
ope, i.e., the right-hand modi�er modi�es only the headword*23 For example, \softly kno
k twi
e" has two equivalent semanti
 interpretations softly(twi
e(kno
k)) andtwi
e(softly(kno
k)), whereas \intentionally kno
k twi
e" has two di�erent semanti
 interpretations inten-tionally(twi
e(kno
k)) and twi
e(intentionally(kno
k)).*24 The model theoreti
 ambiguities as observed in \Three men bought ten 
ups" 
annot be distinguished bystandard phrase stru
ture and dependen
y stru
ture representations.
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Fig.3.29 The example of mapping from N phrase stru
ture trees to 1 dependen
y tree(spurious ambiguity)or the phrase in
luding the left-hand modi�er. This problem is 
alled the \modi�
ation s
opeproblem" in this thesis.Fig.3.30 shows the dependen
y forest for \Earth and Jupiter in the Solar System." This sen-ten
e has two interpretations, i.e., the prepositional phrase modi�es only the headword \Jupiter"or the phrase \Earth and Jupiter." The phrase stru
ture forest has two phrase stru
ture trees
orresponding to these two interpretations. On the other hand, the initial dependen
y forest has

0,Earth : [Earth]-n-0
1,and : [and]-and-1
4,Jupiter : [Jupiter]-n-4
5,in : [in]-pre-5
6,Solar System : [solar_system]-n-6
top : [top]-x-top

0,Earth 1,and 2,Jupiter 3,in 4,Solar System

top

and4,20
npp8,0 . / 0 1 2/. 3 4 4 4 4/ 4 3 4 4 40 4 4 3 4 41 4 4 4 3 42/ 4 4 4 4 3

pre7,0
cnj2,0

top12,0

0,Earth : [Earth]-n-0
1,and : [and]-and-1
4,Jupiter : [Jupiter]-n-4
5,in : [in]-pre-5
6,Solar System : [solar_system]-n-6
top : [top]-x-top

0,Earth 1,and 2,Jupiter 3,in 4,Solar System

top

and4,20
npp8,0 . / 0 1 2/. 3 4 4 4 4/ 4 3 4 4 40 4 4 3 4 41 4 4 4 3 42/ 4 4 4 4 3

pre7,0
cnj2,0

top12,0

Fig.3.30 DF 
ontaining the mapping from N phrase stru
ture trees to 1 dependen
y tree(real ambiguity)



85two IDed dependen
y trees and one generalized dependen
y tree and the redu
ed dependen
yforest has one IDed dependen
y tree 
orresponding to one generalized dependen
y tree. The twophrase stru
ture trees and one dependen
y tree are shown in Fig.3.31.Mel'
uk (1988) proposes introdu
ing a 
on
ept 
alled \grouping" into the dependen
y stru
tureframework to solve the modi�
ation s
ope problem. Grouping is theoreti
ally equivalent to phrasein the sense that it spe
i�es the word 
overage information. However, grouping information is notatta
hed to every part of the stru
ture but to some spe
i�
 stru
tures in
luding the \
onjoinedstru
ture" and \operator word" su
h as \not" and \only." The grammar framework for a ma
hinetranslation system (Amano et al., 1989) in
orporates a me
hanism similar to the grouping*25.In this grammar development for the real-world appli
ation, the s
ope nodes are used onlyfor 
onjoined stru
tures*26. This experien
e suggests the limitation of the appli
ation s
ope ofgrouping proposed by Mel'
uk is reasonable. Moreover, the treatment of the modi�
ation s
opeambiguity di�ers from language to language. A

ording to Mel'
uk (1988), some modi�
ations
ope ambiguities are distinguishable by lexi
al or synta
ti
 marking in Russian. Japanese doesnot have the modi�
ation s
ope problem inherently be
ause Japanese has the basi
 grammati
al
onstraint that modi�ers should be lo
ated at the left-hand side of their modi�
and. In the PDG
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Fig.3.31 The example of mapping from N phrase stru
ture trees to 1 dependen
y tree (realambiguity)*25 A spe
ial node 
alled \s
oping node" is introdu
ed to spe
ify the s
ope of a dependen
y modi�
ation asrequired.*26 This is the 
ase for an English-to-Japanese system. The requirement level may di�er a

ording to thelanguage pairs. For example, translation between languages in the same family may not require a groupingme
hanism be
ause the modi�
ation s
ope ambiguities are avoided by bypassing, i.e., an ambiguous sour
elanguage stru
ture is mapped to the 
orresponding target language stru
ture without disambiguation.



86framework, equivalent ar
s represent the di�eren
e of modi�
ation s
ope as shown in the previousse
tion. Therefore, the modi�
ation s
ope problem may be avoided by introdu
ing grouping intothe treatment of equivalent ar
s. This is a future task.3.7.5 Generation of Non-proje
tive Dependen
y TreeThe proje
tivity 
onstraint*27 is a basi
 
onstraint adopted by many dependen
y analysis sys-tems and these parsers are 
alled proje
tive parsers. Proje
tive parsers fail to analyze senten
eswith non-proje
tive stru
tures. Almost all senten
es in many languages are proje
tive, but sometypes of non-proje
tive senten
es exist (Mel'
uk, 1988). For example, \John saw a dog yesterdaywhi
h was a Yorkshire Terrier." in English, \����������	
��
���"( I went toTokyo to buy a book yesterday) in Japanese have proje
tive dependen
y stru
tures. M
Donaldet al. (2005) reported the non-proje
tive parser outperformed the proje
tive parser in overalla

ura
y for the analysis of Cze
h, whi
h has a high degree of word order freedom 
omparedwith English.As des
ribed in Se
tion 3.4.2, the mapping between the 
onstituent sequen
e (the body ofgrammar rule) and the partial dependen
y tree (the dependen
y stru
ture of the grammar rule) isde�ned in the grammar rule in PDG. This framework in 
ombination with the des
ription abilityof the C-Matrix enables a 
ontrolled non-proje
tivity instead of all-or-nothing non-proje
tivity.The 
ontrolled non-proje
tivity means that the non-proje
tive stru
tures are de�ned by somerules, whi
h pres
ribe the well-formedness 
onditions. (R19) in Fig.3.23 is a grammar rule for aphrase pattern where an adverb is inserted before a relative 
lause, and produ
es a well-formednon-proje
tive dependen
y stru
ture. Fig.3.32 shows the dependen
y tree for \She saw the 
at
uriously whi
h was Persian."*28 obtained by the example PDG grammar. The dependen
y
1,saw 2,the

top

5,which was Persian0,She 4,curiously3,cat

det4,0sub12,20

obj6,20

adv10,15

top14,0

0,She : [she]-n-0
1,saw : [saw]-v-1
2,the : [the]-det-2
3,cat : [cat]-n-3
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: [which_was_percian]-relc-5
top : [top]-x-top
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4, curiously : [curiously]-adv-4
5,which was Persian
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�� � � �� �� ���� � � � � � �� � � � � � �� � � � � � ��� � � � � � ��� � � � � ���� � � � � � �Fig.3.32 Example of non-proje
tive dependen
y tree generation*27 The proje
tivity 
ondition 
onsists of two 
onditions, i.e., \no 
ross dependen
y exits" and \no dependen
y
overs the top node." The se
ond 
ondition is unne
essary when a spe
ial top node is introdu
ed at thetop or end of a senten
e.*28 This is an arti�
ial example only for showing the rule appli
ability.



87forest has one non-proje
tive dependen
y tree.3.8 Con
luding Remarks for Chapter 3This 
hapter des
ribed the multilevel pa
ked shared data 
onne
tion model that is the basi
analysis model adopted by PDG and explained two pa
ked shared data stru
tures of PDG, i.e.,the phrase stru
ture forest and the dependen
y forest. The 
ompleteness and the soundness ofthe 
orresponden
e between the phrase stru
ture forest and the dependen
y forest are assured.This means the senten
e interpretations represented in pa
ked shared phrase stru
ture and thesenten
e interpretations represented in pa
ked shared dependen
y stru
ture have mappings. Thisthesis also des
ribed the experimental results for analyzing some typi
al ambiguous senten
esusing an example PDG grammar.The 
urrent implementation of the PDG system fo
uses on the feasibility study of the PDGframework. The pra
ti
al PDG system and its performan
e evaluation are future tasks. Exten-sion of the PDG grammar formalism (su
h as the introdu
tion of optional element spe
i�
ationand feature 
onditions) and improvement in performan
e by eÆ
ient 
odes and optimizing meth-ods based on grammar analysis, should be studied in order to realize a pra
ti
al system.
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Chapter 4Optimum Solution Sear
h
PDG is a kind of framework for dependen
y analysis be
ause the �nal output of PDG is one ormore dependen
y trees. This 
hapter des
ribes the optimum solution sear
h algorithm for PDGand shows some experiments for estimating the behavior and 
omputational 
omplexity of thealgorithm.As des
ribed in (M
Donald et al., 2005), various dependen
y analysis methods are proposed.Some methods utilize lexi
alized phrase-stru
ture parsers with the ability to output dependen
yinformation (Collins, 1999; Charniak, 2000) and some methods obtain dependen
y trees dire
tly(Ozeki, 1994; Katoh and Ehara, 1989; Eisner, 1996b; Yamada and Matsumoto, 2003; Nivre andS
holz, 2004). In this thesis, parsers in the former 
ategory are 
alled phrase-stru
ture baseddependen
y parsers and those in the latter 
ategory are 
alled dire
t dependen
y parsers. PDG isin the former 
ategory be
ause it utilizes a lexi
alized phrase-stru
ture parser to generate pa
kedshared data stru
ture (dependen
y forest) based on stru
ture mapping information in grammarrules.(Collins, 1999; Charniak, 2000) are basi
ally lexi
alized phrase stru
ture parsers and workas dependen
y parsers by atta
hing a fun
tion for 
onversion from a phrase-stru
ture to a de-penden
y stru
ture. The dependen
y tree for a senten
e is generated from the headed phrasestru
ture tree obtained by the phrase stru
ture parser. For example, ea
h nonterminal symboland its 
hild 
onstituents in the phrase stru
ture tree 
orrespond to the dependen
y stru
turethat has one governor node (the phrase head of the nonterminal symbol) and its dependantnodes (the phrase heads of the 
hild 
onstituents) in (Collins, 1999). On the other hand, PDGgenerates a dependen
y stru
ture based on stru
ture mapping information in grammar rules Thisme
hanism enables generation of 
exible dependen
y stru
tures with dependen
y relation labels.For example, PDG 
an provide phrase stru
ture rules whi
h generate non-proje
tive dependen
ystru
tures whi
h are not produ
ed by (Collins, 1999; Charniak, 2000) and the majority of dire
tdependen
y parsers as des
ribed in Se
tion 4.1.3. The phrase-stru
ture based dependen
y parsershave a possibility to utilize the des
riptive power of the phrase stru
ture rules to pres
ribe thedependen
y stru
tures.Training 
orpora and statisti
al information are used for 
omputing the most appropriatedependen
y tree in many parsers. As shown in Chapter 1, one 
lass of parsers adopts a history-



90based approa
h (Bla
k et al., 1992) in whi
h ea
h tree-building pro
edure uses a probabilitymodel p(AlB) to weight any a
tion A based on the available 
ontext, or history, B. (Yamada andMatsumoto, 2003; Nivre and S
holz, 2004) 
an be regarded as history-based dire
t dependen
yparsers whi
h 
hoose the optimum de
ision during the parsing pro
ess based on informationobtained from the training data. Another 
lass of parsers generates various dependen
y graphsen
ompassing all possible dependen
y trees for a senten
e*1 and sear
hes for the optimum treebased on preferen
e s
ores*2 atta
hed to the dependen
y graph (Ozeki, 1994; Katoh and Ehara,1989; Hirakawa, 2001; M
Donald et al., 2005). This method is 
alled the all-pairs based approa
hand a dependen
y graph with preferen
e s
ores is 
alled s
ored dependen
y graph in this thesis.In general, the history-based method seems to be more eÆ
ient than the all-pairs based methodbe
ause it makes de
isions before 
ompleting the full parse. However, the history-based methodmay fail to obtain the optimum solution be
ause it does not utilize the full parse information.PDG is 
lassi�ed as a all-pairs based method sin
e it sear
hes for the optimum tree in a de-penden
y forest with a s
ored dependen
y graph. A dependen
y forest with preferen
e s
ores issometimes expli
itely 
alled s
ored dependen
y forest.Rest of this thesis fo
uses on all-pairs based methods and dis
usses some approa
hes to theoptimum tree sear
h for dependen
y graphs and proposes an optimum tree sear
h algorithmfor the dependen
y forest named the \graph bran
h algorithm." PDG (and the graph bran
halgorithm) is an su

essor to the senten
e analysis method based on semanti
 dependen
y graph(Hirakawa and Amano, 1989b; Hirakawa, 2001).4.1 Optimum Dependen
y Tree Sear
h Methods forDependen
y Graphs4.1.1 Basi
 FrameworkS
ored dependen
y graphs are widely used as pa
ked shared data stru
tures representing a setof dependen
y trees. Fig.4.1 shows the basi
 framework of the optimum dependen
y tree sear
hin a dependen
y graph. In general, nodes in a dependen
y graph 
orrespond to words in thesenten
e and the ar
s show some kind of labeled or non-labeled dependen
y relations betweennodes. Ea
h ar
 has a preferen
e s
ore representing plausibility of the relation. The well-formeddependen
y tree 
onstraint is a set of well-formed 
onstraints whi
h should be satis�ed by alldependen
y trees representing senten
e interpretations. A pair of a dependen
y graph and awell-formed dependen
y tree 
onstraint de�nes a set of well-formed dependen
y trees. The s
oreof a dependen
y tree is the sum total of ar
 s
ores*3. The optimum tree is a dependen
y tree*1 In fa
t, a set of possible dependen
y trees is represented by a dependen
y graph and a set of 
onstraints asshown in Se
tion 4.1.*2 Preferen
e s
ore represents the plausibility of the ar
.*3 Dependen
y ar
 numbers in ea
h well-formed dependen
y tree for a senten
e are not ne
essarily be thesame be
ause some of them have 
ompound word WPPs. The adjustment of the s
ores for 
ompound WPPnodes are introdu
ed in the s
oring pro
ess des
ribed in Chapter 5
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(score=s1+s2+s3+s4+s5 )Fig.4.1 Framework of optimum tree sear
h in a s
ored dependen
y graphwith the highest s
ore in the set of dependen
y trees de�ned by the dependen
y graph and thewell-formed dependen
y tree 
onstraint.4.1.2 Dependen
y GraphDependen
y graphs are 
lassi�ed into some 
lasses based on the types of nodes and ar
s.This thesis assumes three types of nodes, i.e., word-type, WPP-type and 
on
ept-type*4. Thetypes of dependen
y graphs are 
alled a word dependen
y graph, a WPP dependen
y graph and a
on
ept dependen
y graph, respe
tively, in this thesis. Dependen
y graphs are also 
lassi�ed intonon-labeled and labeled graphs. There are some types of ar
 labels su
h as synta
ti
 label (ex.\subje
t," \obje
t") and semanti
 label (ex. \agent,"\target"). Various types of dependen
ygraphs are used in existing systems a

ording to these 
lassi�
ations, su
h as non-label worddependen
y graph (Lee and Choi, 1997; Eisner, 1996b; M
Donald et al., 2005), synta
ti
-labelword dependen
y graph (Maruyama, 1990), semanti
-label word dependen
y graph (Hirakawa,2001), non-label WPP dependen
y graph (Ozeki, 1994; Katoh and Ehara, 1989), synta
ti
-labelWPP dependen
y graph (Wang and Harper, 2004), semanti
-label 
on
ept dependen
y graph(Harada and Mizuno, 2001) *5.4.1.3 Well-formedness Constraints for Dependen
y TreeThere 
an be a variety of well-formedness 
onstraints for dependen
y trees from very basi
 andlanguage-independent 
onstraints to spe
i�
 language-dependent 
onstraints. This thesis fo
useson the following four basi
 and language-independent 
onstraints whi
h may be embedded in datastru
ture and/or the optimum tree sear
h algorithm.(C1) Coverage 
onstraint: Every input word has a 
orresponding node in the tree(C2) Single role 
onstraint: No two nodes in a dependen
y tree o

upy the same input position(C3) Proje
tivity 
onstraint: No ar
 
rosses another ar
*4 \
on
ept" 
orresopnds to lexi
al 
on
ept de�ned in a system di
tionary.*5 This data stru
ture en
ompasses semanti
 dependen
y trees for one word-dependen
y tree.



92 (C4) Single valen
e o

upation 
onstraint: No two ar
s in a tree o

upy the same valen
e ofa predi
ate(C1) and (C2) are basi
 
onstraints adopted by almost all dependen
y parsers. (C1) and (C2)are 
olle
tively referred to as \
overing 
onstraint." (C3) is also adopted by the majority ofdependen
y parsers whi
h are 
alled proje
tive dependen
y parsers. A proje
tive dependen
yparser fails to analyze non-proje
tive senten
es. Most senten
es of a language are proje
tive, butseveral types of non-proje
tive senten
es exist (Mel'
uk, 1988). The non-proje
tive parsing modelobtained improvement in overall a

ura
y 
ompared with the proje
tive model in an experimenton Cze
h, whi
h has more 
exible word order than English (M
Donald et al., 2005). In this 
ase,all possible non-proje
tive dependen
y trees are 
andidates for the senten
e stru
ture be
auseno proje
tivity 
onstraint is applied in 
ontrast to proje
tive parsing model. This type of non-proje
tivity is 
alled an un
ontrolled non-proje
tivity in this thesis. As des
ribed below, PDGdoes not adopt (C3) dire
tly. Therefore PDG 
an generate non-proje
tive dependen
y trees forinput senten
es. (C4) is a basi
 
onstraint for valen
y but is not adopted by the majority ofdependen
y parsers.(C2)-(C4) 
an be des
ribed as a set of 
o-o

urren
e 
onstraints between two ar
s in a depen-den
y graph. As des
ribed below, PDG adopts 
o-o

urren
e 
onstraints between two arbitraryar
s in a dependen
y graph using 
onstraint matrix (CM). Constraints represented by CM are
alled ar
 
o-o

urren
e 
onstraints.(C5) Ar
 
o-o

urren
e 
onstraint: Ea
h ar
 pair in a tree has a 
o-o

urren
e relation in CMMore pre
ise 
onstraints 
ompared with (C2) - (C4) are representable by means of CM. Forexample, it 
an allow non-proje
tivity for only some spe
ial ar
s. In PDG, the mapping betweena sequen
e of 
onstituents (the body of a CFG rule) and a set of ar
s (a partial dependen
ytree) is de�ned in an extended CFG rule. As des
ribed below, this grammar framework allowsgenerating non-proje
tive stru
tures de�ned by grammar rules. This type of non-proje
tivityis 
alled a 
ontrolled non-proje
tivity in this thesis. The 
ontrolled non-proje
tivity 
an redu
ethe generation of illegal non-proje
tive dependen
y trees 
ompared with the un
ontrolled non-proje
tivity. Treatment of non-proje
tivity as des
ribed in (Kahane et al., 1998; Nivre andNilsson, 2005) is an important topi
 out of the s
ope of this thesis.The optimum tree sear
h in a s
ored dependen
y graph is a task of sear
hing for a dependen
ytree with the highest s
ore satisfying the well-formed dependen
y tree 
onstraint. The algo-rithm for this task is 
losely related to the types of dependen
y graphs and/or well-formedness
onstraints. Graph sear
h algorithms, su
h as the Chu-Liu-Edmonds maximum spanning treealgorithm (Chu and Liu, 1965; Edmonds, 1967), algorithms based on the dynami
 program-ming(DP) prin
iple (Ozeki, 1994; Eisner, 1996b) and the algorithm based on the bran
h andbound (B&B) method (Hirakawa, 2001), are used for optimum tree sear
h in s
ored dependen
ygraphs. The Chu-Liu-Edmonds algorithm is very fast (O(n2) for senten
e length n), but it works
orre
tly only on word dependen
y graphs. Maximum spanning tree algorithms 
annot satisfy



93the single role 
onstraint for WPP and 
on
ept dependen
y graphs. DP-based algorithms 
ansatisfy (C1) - (C3) and run eÆ
iently, but seems not to satisfy (C4). Hirakawa (2001) proposeda B&B-based algorithm working on word dependen
y graphs satisfying (C1) - (C4). This the-sis extends this algorithm to work on WPP and 
on
ept dependen
y graphs. The next se
tionexplains the problems of the DP-based method in treating (C4).4.1.4 Single Valen
e O

upation Constraint and Dynami
 Program-mingOzeki proposed an algorithm for obtaining the optimum kakari-uke tree and its s
ore from aset of all possible s
ored kakari-uke relations (Ozeki, 1986; Ozeki, 1994). This algorithm 
anbe extended to treat general dependen
y relations (Katoh and Ehara, 1989). This algorithmis generalized into the minimum 
ost partitioning method (MCPM), whi
h is a partitioning
omputation based on the re
urren
e equation given below (Ozeki and Zhang, 1999). MCPM isalso a generalization of the probabilisti
 CKY algorithm and the Viterbi algorithm*6.Considering the phrase (wi;�wj ; ai;�; aj ;A) partitioned into (wi;�; wk; ai;�; ak;B) and(wk+1;�; wj ; ak+1;�; aj : C) where wx, ax, and A-C mean word, analog information (su
has prosodi
 information), and features like phrase name, respe
tively. MCPM 
omputes theoptimum solution based on the following re
urren
e equation for total 
ost F.F (i; j; A) = min[F (i; k; B) + F (k + 1; j; C) + 
ost(wi;�; wj ; ai;�; aj ; k; A;B;C)℄F (i; j; A) is the total 
ost of phrase A 
overing from the i-th to the j-th word in a given senten
e.
ost(wi; :::wj ; ai; :::; aj ; k; A;B;C) is a 
ost fun
tion where k is a partitioning position. Theminimum 
ost partition of the whole senten
e is 
al
ulated very eÆ
iently by the DP prin
iplefor this equation. The optimum partitioning obtained by this method 
onstitutes a tree 
overingthe whole senten
e satisfying the single role and proje
tivity 
onstraints. However, it is notassured that the single valen
e o

upation 
onstraint adopted in PDG for basi
 semanti
 level
onstraint is satis�ed by MCPM.Fig.4.2 shows a dependen
y graph for the Japanese phrase \Isha-mo wakaranai byouki-nokanjya" en
ompassing dependen
y trees 
orresponding to \a patient su�ering from a diseasethat the do
tor doesn't know," \a si
k patient who does not know the do
tor," and so on. Thedependen
y graph has two kinds of ambiguities, i.e., semanti
 role ambiguity and atta
hmentambiguity. For example, wakaranai(not know) has four outgoing ar
s with di�erent semanti
roles (agent and target) and di�erent atta
hments (byouki(si
kness) and kanjya(patient)) inFig.4.2. The single valen
e o

upation 
onstraint prevents wakaranai(not know) from being
onne
ted with the same two semanti
 role ar
s. OS1 - OS4 represent the optimum solutionsfor the phrases spe
i�ed by their bra
kets 
omputed based on MCPM. For example, OS3 givesan optimum tree with a s
ore of 22 (
onsisting of agent1 and target4) for the phrase \Isha-*6 Spe
i�
ally, MTCM 
orresponds to probabilisti
 CKY and the Viterbi algorithm be
ause it 
omputes boththe optimum tree s
ore and its stru
ture.
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Well-formed optimum solutions for covering whole phraseFig.4.2 Optimum solution sear
h satisfying the single valen
e o

upation 
onstraintmo wakaranai byouki-no." The optimum solution for the whole phrase is either OS1 + OS4 orOS3 +OS2 due to MCPM. The former has the highest s
ore 40(= 15+ 25) but does not satisfythe single valen
e o

upation 
onstraint be
ause it has agent1 and agent5 simultaneously. Theoptimum solutions satisfying this 
onstraint are NOS1 + OS4 and OS1 + NOS2 shown at thebottom of Fig.4.2. NOS1 and NOS2 are not optimum solutions for their word 
overages. Inthis 
ase, MCPM generates a non-optimum tree in OS3 + OS2 if it adopts the strategy ofnegle
ting in
onsistent trees. Otherwise, MCPM generates a high s
ore but an ill-formed treein OS1 + OS4. This shows that it is not assured that MCPM will obtain the optimum solutionsatisfying the single valen
e o

upation 
onstraint. On the 
ontrary, it is assured that the graphbran
h algorithm will 
ompute the optimum solution(s) satisfying any 
o-o

urren
e 
onstraintsin the 
onstraint matrix in
luding the single valen
e o

upation 
onstraint. It is an open problemwhether an algorithm based on the DP framework exists whi
h 
an handle the single valen
eo

upation 
onstraint and arbitrary ar
 
o-o

urren
e 
onstraints.4.2 Semanti
 Dependen
y Graph and Dependen
y ForestThe semanti
 dependen
y graph, as shown in Se
tion 4.2.1, is a semanti
-label word depen-den
y graph designed for Japanese senten
e analysis (Hirakawa and Amano, 1989a). The op-timum solution for a senten
e is obtained by sear
hing for the optimum tree in a semanti
dependen
y graph with preferen
e s
ores (Hirakawa, 2001).The senten
e analysis method based on the semanti
 dependen
y graph, the prede
essor ofPDG, is e�e
tive be
ause it employs linguisti
 
onstraints as well as linguisti
 preferen
es. How-ever, this method is la
king in terms of generality in that it 
annot handle ba
kward dependen
yand multiple WPP be
ause it depends on some linguisti
 features pe
uliar to Japanese. PDGemploys the dependen
y forest instead of the semanti
 dependen
y graph. Sin
e the dependen
y



95forest has none of the language-dependent premises that the semanti
 dependen
y graph has, itis appli
able to English and other languages. PDG has one more advantage in that it 
an gener-ate non-proje
tive dependen
y trees be
ause the mapping from phrase stru
ture to dependen
ystru
ture is de�ned in grammar rules.The optimum tree sear
h algorithm for the semanti
 dependen
y graph is not appli
able tothe dependen
y forest. This thesis gives a brief explanation of the dependen
y forest and showsthe graph bran
h algorithm for obtaining the optimum solution (tree) in the dependen
y forest.4.2.1 Semanti
 Dependen
y Graph and its Drawba
ksFig.4.3 shows a semanti
 dependen
y graph for \Watashi-mo Kare-ga Tukue-wo Katta Mise-niUtta" (Hirakawa, 2001). The nodes in the graph 
orrespond to the 
ontent words in the senten
eand the ar
s show possible semanti
 dependen
y relations between the nodes. Ea
h ar
 has anar
 ID and a preferen
e s
ore. Interpretations of a senten
e are well-formed spanning trees thatsatisfy the proje
tivity 
onstraint and the single valen
e o

upation 
onstraint. The bold ar
s inthe graph in Fig.4.3 show the optimum interpretation with a maximum s
ore of 130.The semanti
 dependen
y graph is designed based on the Japanese kakari-uke relation andassumes the following features of Japanese.(a) A dependant always lo
ates to the left of its governor (no ba
kward dependen
y)(b) POS ambiguities are quite minor 
ompared with English*7The semanti
 dependen
y graph and its optimum solution sear
h algorithm adopt these as theirpremises. Therefore, this method is inherently inappli
able to languages like English that require
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Fig.4.3 Example of semanti
 dependen
y graph and its optimum solution*7 Word boundary ambiguity 
orresponding to the 
ompound word boundary ambiguity in English exists inJapanese. Treatment of this ambiguity is a pra
ti
al problem for the semanti
 dependen
y graph even whenapplied to Japanese senten
e analysis.
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Meaning of Arc Name
sub : subject
obj : object
npp : noun-preposition
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Fig.4.4 S
ored DF for \Time 
ies like an arrow"ba
kward dependen
y and multiple POS analysis.4.2.2 Dependen
y ForestAs des
ribed in Chapter 3, the dependen
y forest is a pa
ked shared data stru
ture en
ompass-ing all possible dependen
y trees for a senten
e. A dependen
y forest 
onsists of a dependen
ygraph (DG) and a 
onstraint matrix (CM). A dependen
y forest with a s
ored dependen
y graphis 
alled a s
ored dependen
y forest. Fig.4.4 shows a s
ored dependen
y forest for the examplesenten
e \Time 
ies like an arrow."The dependen
y forest has 
orresponden
e with the phrase stru
ture forest. This means thatthe dependen
y forest provides a means to treat all possible interpretations of a senten
e independen
y stru
ture representation. One senten
e interpretation is represented by one well-formed dependen
y tree whi
h satis�es the well-formed dependen
y tree 
onstraint, i.e., the
overing 
onstraint and the ar
 
o-o

urren
e 
onstraint des
ribed in Se
tion 4.1.3. The algorithmfor the dependen
y forest has to treat the 
overing 
onstraint.Fig.4.5 shows four well-formed dependen
y trees for the dependen
y forest in Fig.4.4. Topnodes are omitted in the �gure for simpli
ity. Tree (a) is the optimum dependen
y tree with thehighest s
ore of 51.4.2.3 Relation between Semanti
 Dependen
y Graph and Dependen
yForestThe dependen
y forest and the semanti
 dependen
y graph utilize the WPP dependen
y graphand the word graph, respe
tively. The word dependen
y graph 
an be seen as a spe
ial 
ase ofthe WPP dependen
y graph. Therefore, the semanti
 dependen
y graph is a subset of the depen-den
y graph of the dependen
y forest. On the other hand, well-formedness 
onstraints introdu
ed
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(a) Time is like an arrow�score:51)

(b) “Time flies” go for an arrow�score:50)

(c) Clock flies as an arrow do�score:42) (d) Clock flies similar to an arrow�score:41)
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(b) “Time flies” go for an arrow�score:50)

(c) Clock flies as an arrow do�score:42) (d) Clock flies similar to an arrow�score:41)Fig.4.5 Well-formed dependen
y trees for the example senten
eto a semanti
 dependen
y graph, i.e., the proje
tivity and single valen
e o

upation 
onstraints,are a type of ar
 
o-o

urren
e 
onstraints representable by means of CM. Therefore, the depen-den
y forest is a generalized and more powerful data stru
ture 
overing the representative powerof the semanti
 dependen
y graph.4.3 Optimum Tree Sear
h for Dependen
y Forest Basedon Graph Bran
h MethodThe graph bran
h method works on the bran
h and bound prin
iple and sear
hes for theoptimum well-formed tree from a dependen
y graph by applying partial sub-problem expansions
alled graph bran
hing. The algorithm in (Hirakawa, 2001) applies the graph bran
h method tothe semanti
 dependen
y graph. Unfortunately, this algorithm is not dire
tly appli
able to thedependen
y forest sear
h problem. The following shows a new algorithm for applying the graphbran
h method to the dependen
y forest.4.3.1 Outline of Bran
h and Bound MethodThe bran
h and bound method is a prin
iple for solving 
omputationally hard problems su
has NP-
omplete problems. The basi
 strategy is that the original problem is de
omposed intoeasier partial-problems (bran
hing) and the original problem is solved by solving them. Pruning
alled a bound operation is applied if it turns out that the optimum solution to a partial-problemis inferior to the solution obtained from some other partial-problem (dominan
e test), or if itturns out that a partial-problem gives no optimum solutions to the original problem (maximum



98value test). The dominan
e test is not used in the graph bran
h method. Usually, the bran
hand bound algorithm is 
onstru
ted to minimize the value of the solution. The graph bran
halgorithm in this thesis is 
onstru
ted to maximize the s
ore of the solution be
ause the bestsolution is the maximum tree in the dependen
y forest.The following features for the maximum bound value test with respe
t to the problem P andits partial-problem P
 must be satis�ed in the bran
h and bound method.(MC1) g(P
)�f(P ) where g(P
) is the maximum value of P
, and f(P ) is the maximum valueof P .(MC2) If g(P
) = l(P ) where l gives a value of a feasible solution to P, then the feasiblesolution is a solution to P.(MC3) If P
 has no feasible solutions then P has no solutions.(MC4) If a feasible solution with an in
umbent value z is obtained for some partial-problem,and if g(P
)�z, then partial-problems bran
hed from problem P have no better solutionsthan z.These 
onditions are 
alled model 
onditions in this thesis. In the 
ase of MC2-MC4., partial-problem P
 
an be terminated. Fig.4.6 shows a general bran
h and bound algorithm for obtainingone optimum solution (Ibaraki, 1978).� ���� �� ���	
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994.3.2 Graph Bran
h AlgorithmFig.4.6 shows a skeleton of the algorithm. In order to make it running 
ode, ea
h operation inthe algorithm must be realized for the target problem. The graph bran
h algorithm applies thebran
h and bound method to the optimum tree sear
h problem with the binary ar
 
o-o

urren
e
onstraint by introdu
ing the graph bran
h operation for the partial-problem expansion oper-ation. Fig.4.7 shows the graph bran
h algorithm whi
h has been extended from the originalskeleton to sear
h for all optimum trees for a dependen
y graph. The following se
tions explainhow the 
omponents of the bran
h and bound method in Fig.4.6 are implemented in the graphbran
h algorithm.(1) Partial-problemPartial-problem Pi in the graph bran
h method is a problem sear
hing for all the well-formedoptimum trees in a dependen
y forest DFi 
onsisting of the dependen
y graph DGi and 
on-straint matrix CMi. Partial-problem Pi 
onsists of the following elements.(a) Dependen
y graph DGi�� � ������� 	
���
�� �� � ��
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���
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100(b) Constraint matrix CMi(
) Feasible solution value LBi (
orresponding to l(P ) in Fig.4.6)(d) Upper bound value UBi (
orresponding to g(P ) in Fig.4.6)(e) In
onsistent ar
 pair list IAPLi.The 
onstraint matrix is 
ommon to all partial-problems, so one CM is shared by all partial-problems. DGi is represented by \rem[::℄" whi
h shows a set of ar
s to be removed from thewhole dependen
y graphDGi, i.e., DGi is obtained by removing rem[::℄ from DGi. For example,\rem[b; d℄" represents a partial dependen
y graph [a; 
; e℄ in the 
ase DG = [a; b; 
; d; e℄. Thisredu
es the memory spa
e and the 
omputation for a feasible solution as des
ribed below. IAPLiis a list of in
onsistent ar
 pairs. An in
onsistent ar
 pair is an ar
 pair whi
h does not satisfysome 
o-o

urren
e 
onstraint.(2) Algorithm for Obtaining Feasible Solution and Lower Bound ValueIn the graph bran
h method, a well-formed dependen
y tree in the dependen
y graphDG of thepartial-problem P is assigned as the feasible solution FS (
orresponding to x in Fig.4.6) of P *8.The s
ore of the feasible solution FS is assigned as the lower bound value LB (
orresponding to
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e. Therefore, it 
an beused as an approximate output when the sear
h pro
ess is aborted.



101l(P ) in Fig.4.6). The fun
tion for 
omputing these values get fs is 
alled a feasible solution/lowerbound value fun
tion. Fig.4.8 shows the algorithm of get fs. Basi
ally, get fs sear
hes for onefeasible solution in higher-s
ore-�rst and depth-�rst manner. When an ar
 whi
h violate 
o-o

urren
e 
onstraint against one of the sele
ted ar
s is found, get fs ba
ktra
ks at step5 to thenearest 
hoi
e point whi
h resolves the 
ontradi
tion. This assures that the obtained solutionsatis�es the 
o-o

urren
e 
onstraint. Furthermore, if get fs �nds no solution, then the problemP has no solution. Sin
e get fs sele
ts one ar
 for ea
h position in a senten
e, the obtained ar
ssatis�es the well-
overed 
onstraint.Ar
 groups S1 to Sn are sorted a

ording to their s
ores in step1. This operation is introdu
edto obtain a better (higher s
ore) feasible solution, sin
e the better feasible solution lead to ahigher in
umbent value whi
h bounds more partial-problems.(3) Algorithm for Obtaining Upper Bound ValueGiven a set of ar
s A whi
h is a subset of a dependen
y graph DG, if the set of dependentnodes of ar
s in A satis�es the 
overing 
onstraint des
ribed above, the ar
 set A is 
alledthe well-
overed ar
 set. The \maximum well-
overed ar
 set" is de�ned as a well-
overed ar
set with the highest s
ore. In general, the maximum well-
overed ar
 set does not satisfy thesingle role 
onstraint and does not form a tree. In the graph bran
h method, the s
ore of themaximum well-
overed ar
 set of a dependen
y graph G is assigned as the upper bound valueUB (
orresponding to g(P ) in Fig.4.6) of the partial-problem P . Upper bound fun
tion get ub
al
ulates UB by s
anning the ar
 lists sorted by the surfa
e position of the dependent nodes ofthe ar
s.The above settings satisfy the model 
onditions. In these settings, P and get ub 
orrespondsto P
 and g(P
), respe
tively. (MC1) is satis�ed be
ause get ub(P )�f(P ) is true for f(P ) (thes
ore of the optimum tree). (MC2) and (MC4) are satis�ed be
ause get ub is the s
ore ofthe maximum well-
overed ar
 set. (MC3) is satis�ed sin
e get ub(P ) always has its solution.Therefore, partial-problem P is prunable if the in
umbent value z satis�es z�g(P )*9.(4) Bran
h OperationFig.4.9 shows a bran
h operation in the graph bran
h method 
alled a graph bran
h operation.Child partial-problems of P are 
onstru
ted as follows:(a) Sear
h for an in
onsistent ar
 pair (ar
i; ar
j) in the maximum well-
overed ar
 set forthe dependen
y graph of P .(b) Create 
hild partial-problems Pi, Pj whi
h have new dependen
y graphs DGi = DG �far
jg and DGj = DG� far
ig, respe
tively.Sin
e a solution to P 
annot have both ar
i and ar
j simultaneously due to the 
o-o

urren
e
onstraint, the optimum solution of P is obtained from either/both Pi or/and Pj . The 
hildpartial-problem is easier than the parent partial-problem be
ause the size of the dependen
y*9 In the 
ase of obtaining all optimum solutions ,the terminate 
ondition should be 
hanged to z > g(P ).
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for child problem Pj

arcjarcj

DGi: Dependency graph 
for child problem Pi

arciarci

Remove arcj Remove arci

Fig.4.9 Graph Bran
hinggraph of the 
hild partial-problem is less than that of its parent.In Fig.4.7, get iapl 
omputes the list of in
onsistent ar
 pairs IAPL(In
onsistent Ar
 Pair List)for the maximum well-
overed ar
 set of Pi. Then the graph bran
h fun
tion graph bran
h sele
tsone in
onsistent ar
 pair (ar
i; ar
j) from IAPL for bran
h operation. The sele
tion 
riteria for(ar
i; ar
j) a�e
ts the eÆ
ien
y of the algorithm. graph bran
h sele
ts the in
onsistent ar
 pair
ontaining the highest s
ore ar
 in BACL(Bran
h Ar
 Candidates List). graph bran
h 
al
ulatesthe upper bound value for a 
hild partial-problem by get ub and sets it to the 
hild partial-problem. Simultaneously, graph bran
h exe
utes bound operation by immediately pruning the
hild partial-problem whose upper bound value is less than the in
umbent value z.(5) Sele
tion of Partial-problem from A
tive Partial-problemssele
t problem in Fig.4.8 
orresponds to the sear
h s(A) in Fig.4.6. The best bound sear
h isemployed for sele
t problem, i.e., it sele
ts the partial-problem whi
h has the maximum boundvalue among the a
tive partial-problems. It is known that the number of partial-problems de-
omposed during 
omputation is minimized by this strategy in the 
ase that no dominan
e testsare applied (Ibaraki, 1978).(6) Computing All Optimum SolutionsIn order to obtain all optimum solutions, partial-problems whose upper bound values are equalto the s
ore of the optimum solution(s) are expanded at S8(Sear
hMoreOptimumSolutions).In the 
ase that at least one in
onsistent ar
 pair remains in a partial-problem (i.e., IAPL6=fg),graph bran
h is performed based on the in
onsistent ar
 pair. Otherwise, the obtained optimumsolution FS is 
he
ked if one of the ar
s in FS has an equal rival ar
 by ar
s with alternativesfun
tion in Figure 4.6. The equal rival ar
 of ar
 A is an ar
 whose position and s
ore are equalto those of ar
 A. If an equal rival ar
 of an ar
 in FS exists, a new partial-problem is generatedby removing the ar
 in FS. S8 assures that no partial-problem has an upper bound value greater



103than or equal to the s
ore of the optimum solutions when the 
omputation stopped.(7) Corre
tness of the Graph Bran
h AlgorithmAll Dependen
y trees are generated by the feasible solution and lower bound value fun
tionget fs. get fs does not violate the 
overing 
onstraint(the single role 
onstraint and the 
overage
onstraint) be
ause it sele
ts one ar
 for one input position at the step7 in Fig.4.8. It alsoassures the 
o-o

urren
e 
onstraint by 
he
king the CM value for every two ar
s in a tree atstep5. Therefore, output dependen
y trees of the graph bran
h algorithm satisfy the well-formeddependen
y tree 
onstraint.4.4 Example of Optimum Tree Sear
hThis se
tion presents an example showing the behavior of the graph bran
h algorithm usingthe dependen
y forest in Fig.4.4.4.4.1 Feasible Solution/Lower Bound Value Fun
tionThe following se
tion shows the behavior of feasible solution/lower bound value fun
tion get fsfor the example senten
e.step1(grouping and sorting of ar
s) in Fig.4.8 is performed on
e at the beginning for theinitial dependen
y forest. The result of step1 is shown in Fig.4.10. Pos and MaxS
ore meanthe position of the ar
 in the senten
e and the maximum ar
 s
ore at that position respe
tively.Ar
s with no rival ar
 have MaxS
ore 1 and are lo
ated at the top of the ar
 group list.Ar
 groups with start positions 3,0,4,1 and 2 are assigned to S1,S2,S3,S4 and S5, respe
tively.�������� ���� ������������ � � � 	
���� � � 	
���� � � 	
���� � � 	
�������
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104step2(initialize) initializes variables. After step3 and step4 are exe
uted, step5 
he
ks thata(i; j) = a(1; 1) = 14(= det14) 
an be registered to FS. In this 
ase, no violation of the 
o-o

urren
e 
onstraint o

urs, and then step7 registers a(1; 1) to FS *10, then ba
ktra
k pointBP [1℄ at the position i(= 1) is set to j(= 1).FS = [a(1; 1)℄(= [14℄), BP = [1;�;�;�;�℄, i = 2, j = 1, k = 1, l = 0Next, step3-5 try the �rst ar
 a(2; 1)(= n
2) in S2. Sin
e CM(a(1; 1); a(2; 1)) = CM(14; 2) = �in Fig.4.4, a(2; 1) and a(1; 1) satisfy the 
o-o

urren
e 
onstraint and then a(2; 1) is registeredto FS.FS = [a(1; 1); a(2; 1)℄(= [14; 2℄), BP = [1; 1;�;�;�℄, i = 3, j = 1, k = 1, l = 0a(3; 1)(= pre15) is skipped be
ause CM(a(3; 1); a(2; 1)) = CM(15; 2)6=�. Then a(3; 2) is tried.FS = [a(1; 1); a(2; 1); a(3; 2)℄(= [14; 2; 16℄)BP = [1; 1; 2;�;�℄, i = 4, j = 1, k = 1, l = 1In a similar manner, a(4; 1)(= sub23) and a(5; 4)(= rt29) are added to FS, then the termination
ondition at step3 is satis�ed.FS = [a(1; 1); a(2; 1); a(3; 2); a(4; 1); a(5; 4)℄(= [14; 2; 16; 23; 29℄),BP = [1; 1; 2; 1; 4℄, i = 6, j = 1, k = 4, l = 4,The FS here is a feasible solution and the sum total of ar
 s
ores, i.e., 17+ 17+ 6+ 10+ 0 = 50is the s
ore of the feasible solution.No ba
ktra
king o

urred in this example. Ba
ktra
king o

urs when all ar
s in Si are foundto be in
onsistent with either of the ar
s in FS at that point. In this 
ase, step6(ba
ktra
king)ba
ktra
ks to the l position. l is assured to be the rightmost position, where some element in Si isin
onsistent with the sele
ted ar
 in FS. This me
hanism is introdu
ed to optimize ba
ktra
king.4.4.2 Example of Graph Bran
h AlgorithmThe sear
h pro
ess of the bran
h and bound method 
an be shown as a sear
h diagram
onstru
ting a partial-problem tree representing the parent-
hild relation between the partial-problems. Fig.4.11 is a sear
h diagram for the example dependen
y forest showing the sear
hpro
ess of the graph bran
h method.In this �gure, box Pi is a partial-problem with its dependen
y graph rem, upper bound valueUB, feasible solution and lower bound value LB and in
onsistent ar
 pair list IAPL. SuÆx i ofPi indi
ates the generation order of partial-problems. Updating of global variable z (in
umbentvalue) and O (set of in
umbent solutions) is shown under the box. The value of the left-handside of the arrow is updated to that of right-hand side of the arrow during the partial-problempro
essing. Details of the behavior of the algorithm in Fig.4.7 are des
ribed below.In S1(initialize), z, O and AP are set to �1, fg and fP0g, respe
tively. The dependen
y graph*10 In fa
t, the ar
 ID 14 is registered to FS. The a(i; j) form is used here for 
larity.
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h diagram for the example senten
eof P0 is that of the example dependen
y forest. This is represented by rem = [℄. get ub sets theupper bound value (=63) of P0 to UB. In pra
ti
e, this is 
al
ulated by obtaining the maximumwell-
overed ar
 set of P0. In S2(sear
h), sele
t problem sele
ts P0 and get fs(P0) is exe
uted.The feasible solution FS and its s
ore LB are 
al
ulated based on the algorithm in Fig.4.8 toset FS = [14; 2; 16; 23; 29℄, LB = 50 (P0 in the sear
h diagram). S3(in
umbent value update)updates z and O to new values. Then, get iapl(P0) 
omputes the in
onsistent ar
 pair list[(2; 15); (15; 23); (23; 18); (2; 18)℄ from the maximum well-
overed ar
 set [14; 2; 15; 23; 18℄ and setit to IAPL. S5(maximum value test) 
ompares the upper bound value UB and the feasiblesolution value LB. In this 
ase, LB < UB holds, so BACL is assigned the value of IAPL. Thenext step S6(bran
h operation) exe
utes the graph bran
h fun
tion. graph bran
h sele
ts thear
 pair with the highest ar
 s
ore and performs the graph bran
h operation with the sele
tedar
 pair. The following is a BACL shown with the ar
 names and ar
 s
ores.[(n
2[17℄; pre15[10℄); (pre15[10℄; sub23[10℄); (sub23[10℄; vpp18[9℄); (n
2[17℄; vpp18[9℄)℄S
ores are shown in [ ℄. The ar
 pair 
ontaining the highest ar
 s
ore is (2; 15) and (2; 18)
ontaining n
2[17℄. Here, (2; 15) is sele
ted and partial-problems P1(rem[2℄) and P2(rem[15℄)are generated. P0 is removed from AP and the new two partial-problems are added to APresulting in AP = fP1; P2g. Then, based on the best bound sear
h strategy, S2(sear
h) is triedagain. sele
t problem sele
ts P1 be
ause the upper bound value of P1 (=61) is greater thanthat of P2 (=59). Sin
e the upper bound of P1 (=61) is greater than the feasible solution s
ore(=51), get iapl is exe
uted and sets BACL to the value shown in P1 in Fig.4.11. The graphbran
h fun
tion graph bran
h gets two 
andidates for 
hild partial-problems 
orresponding torem[24; 2℄ and rem[23; 2℄ be
ause the in
onsistent ar
 pair (24; 23) is sele
ted as the sour
e ofthe graph bran
h operation (ar
 24 has the highest s
ore of 15). The former 
andidate for



106rem[24; 2℄ is pruned immediately, be
ause its upper bound value (=46) is smaller than thein
umbent value (=51) (termination by the upper bound test). Therefore, graph bran
h returnsfP3(rem[23; 2℄)g. The upper bound value UB of P3 is 58 whi
h is less than that of its parentproblem P1. The pro
essing for P1 is 
ompleted and P1 is removed from AP . sele
t problemsele
ts P2 by 
omparing the upper bound values of P2 and P3 in AP . Partial-problem P2is terminated be
ause it has no feasible solution (FS = no solution). Then, the next partial-problem P3 is pro
essed. P3 has a feasible solution with a s
ore of 41. Updating of the in
umbentvalue does not o

ur be
ause the obtained s
ore is lower than the existing in
umbent value. Thenext partial-problem P4 has no feasible solution, so all pro
essing is terminated at S8(stop). Atthis time, the values of O and z are the optimum solution(=f[14; 24; 15; 31; 18℄g) and its s
ore(=51) respe
tively. This solution 
orresponds to the dependen
y tree (a) in Fig.4.5.4.4.3 Prototypi
al Ambiguous Senten
esIn addition to the previous example for homophone ambiguities, this se
tion shows two exam-ples of prototypi
al ambiguous senten
es.(1) PP-atta
hment AmbiguityFig.4.12 shows a dependen
y forest for \I saw a girl with a teles
ope in the forest." Thereare no homophones in the forest but two prepositional phrases with atta
hment ambiguities.The preposition \with" has two possible dependen
ies (npp14,vpp16) and \in" has three(vpp27,npp26,npp29). The 
ombination number of these ar
s is 2 � 3 = 6, but there exists �vewell-formed dependen
y trees due to the existen
e of the 
o-o

urren
e 
onstraint between ar
s16 and 29 (CM(16; 29)6=�) 
orresponding to the proje
tivity 
onstraint. The s
ores of thesear
s are assumed to be 
al
ulated based on the preposition, the governor and dependant nodes ofthe preposition. vpp16 has a higher s
ore 
ompared with npp14 be
ause \teles
ope" is a tool forseeing something. On the other hand, vpp27,npp26 and npp29 have the same s
ores. The sear
h
0,I 1,saw 2,a

top
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e in
luding PP atta
hments
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Fig.4.13 Sear
h diagram for the example senten
e in
luding PP atta
hmentsdiagram for this example is shown in Fig.4.13. P0 generates the optimum solution (UB = LB)with a s
ore of 70. S8(sear
h more optimum solution) in Fig.4.7 is exe
uted. P0 has no graphbran
h 
andidates in the in
onsistent ar
 pair list (IAPL == fg). ar
s with alternatives(FS)sele
ts ar
 vpp27 as a 
andidate of graph bran
hing be
ause it has rival ar
s with the same s
ore(npp26,npp29). Then P1 is generated to obtain the se
ond optimum solution in
luding npp26.Next P2 with rem[26; 27℄ is generated and a feasible solution to P2 is 
al
ulated. This solutionis not added to the in
umbent solution list be
ause it has a lower s
ore (65) than the obtainedoptimum solutions. This example has two optimum solutions.(2) Coordination S
ope AmbiguityFig.4.14 shows a dependen
y forest for \Earth and Moon or Jupitor and Gamymede." Cor-responding to the 
ombination of the s
opes of the three 
oordinations, \Earth" and \Moon"have three and two outgoing ar
s, respe
tively. Sin
e there exists a 
o-o

urren
e 
onstraint
0,Earth : [Earth]-n-0
1,and : [and]-and-1
2,Moon : [Moon]-n-2
3,or : [or]-or-3
4,Jupiter : [Jupiter]-n-4
5,and : [and]-and-5
6,Ganymede : [Ganymede]-n-6
top : [top]-x-top

0,Earth 2,Moon 3,or 4,Jupiter

top

5,and

and12,10

and4,20

cnj2,0

or22,4

cnj6,0

or9,3 cnj14,0

and18,12 top26,0

and25,5

&' (& ) & && * + (, () &+&' - . . . . . . .(& - . . . . . .) - . . . . . . .& . . . - . . . . . .&& . . . - . . . .* . . . . - . . . .+ . . . . . . - . . .(, . . . . . . . - . .() . . . . . . . . - .&+ . . . . . . . . . -
6,Ganymede1,and

0,Earth : [Earth]-n-0
1,and : [and]-and-1
2,Moon : [Moon]-n-2
3,or : [or]-or-3
4,Jupiter : [Jupiter]-n-4
5,and : [and]-and-5
6,Ganymede : [Ganymede]-n-6
top : [top]-x-top

0,Earth 2,Moon 3,or 4,Jupiter

top

5,and

and12,10

and4,20

cnj2,0

or22,4

cnj6,0

or9,3 cnj14,0

and18,12 top26,0

and25,5

&' (& ) & && * + (, () &+&' - . . . . . . .(& - . . . . . .) - . . . . . . .& . . . - . . . . . .&& . . . - . . . .* . . . . - . . . .+ . . . . . . - . . .(, . . . . . . . - . .() . . . . . . . . - .&+ . . . . . . . . . -
6,Ganymede1,and

Fig.4.14 DF for the example senten
e in
luding 
oordinates



108(proje
tivity 
onstraint) between and12 and or22, the dependen
y forest has �ve well-formeddependen
y trees. Ar
 s
ored are assigned assuming preferen
e knowledge like \Planet namestend to 
o-o

ur" and \The name of a planet and its se
ondary planet tend to 
o-o

ur."The sear
h diagram for this example is shown in Fig.4.15. The feasible solution to the initialproblem P0 happens to be the optimum solution. No bran
h operation is performed be
auseIAPL of P0 is [℄ and all ar
s in the optimum solution have no rival ar
s.
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��� �Fig.4.15 Sear
h diagram for the example senten
e in
luding 
oordinates(3) Stru
tural AmbiguityFig.4.16 shows a dependen
y forest for "My hobby is wat
hing birds with a teles
ope." Thisexample has no homophone ambiguities but has ambiguities in the stru
tural interpretationof the word \be" (
opula vs. progressive form) and \wat
hing birds"(sub5,obj6,adj4) as wellas PP-atta
hment ambiguities(vpp24,npp27,npp23). This dependen
y forest en
ompasses eightwell-formed dependen
y trees. Fig.4.17 is a sear
h diagram for this example. P0 generates afeasible solution [22; 1; 6; 33; 44; 38; 24℄ 
orresponding to \My hobby = wat
hing birds using ateles
ope." Sin
e the s
ore of this feasible solution (40) is lower than the upper bound value(54), P0 is bran
hed to P1 and P2. P1 generates a feasible solution [22; 1; 6; 33; 44; 38; 23℄ butthe in
umbent value and the optimum solution list are not updated be
ause the feasible solutions
ore(38) is lower than the 
urrent in
umbent value(40). The su

eeding 
omputation pro
essgenerates no better solutions and terminates by guaranteeing that the solution with a s
ore of

0,my 2,is 4,birds

top

5,with 6,telescope

sub33,1

sub35,10 prg2,10 adjo4,12

dsc9,8

dsc8,10

obj5,15

adjs3,5

npp24,3

vpp22,7

top41,0

det1,0

pre20,0
top38,0

0,my : [my]-det-0
1,hobby : [hobby]-n-1
2,is : [is]-be-2
3,watching : [watching]-ving-3
4,birds : [birds]-n-4
5,with : [with]-pre-5
6,telescope: [telescope]-n-6
top : [top]-x-top
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Fig.4.16 DF for the example senten
e in
luding stru
tural ambiguities
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h diagram for the example senten
e in
luding stru
tural ambiguities40 is the optimum solution.4.5 Experiment for Graph Bran
h AlgorithmThis se
tion des
ribes some experimental results showing the 
omputational 
omplexity of thegraph bran
h algorithm.4.5.1 Environment and Performan
e Metri
 of the ExperimentAn English text 
orpus, PDG grammar and preferen
e knowledge are prepared. Preferen
eknowledge sour
e in this experiment is the WPP frequen
ies (node frequen
ies) and the depen-den
y relation frequen
ies (ar
 frequen
ies) in the 
orpus. Preferen
e s
ore is 
al
ulated fromthese statisti
al data and atta
hed to the ar
s in the dependen
y graphs.Experiment data of 125,320 senten
es extra
ted from English te
hni
al do
uments is dividedinto open data (8605 senten
es) and 
losed data (116,715 senten
es). The 
losed data is usedfor produ
ing WPP and dependen
y frequen
ies. An existing senten
e analysis system (
alledthe ora
le system) is used as a generator of these frequen
ies. The ora
le system is a real-worldrule-based system with a long development history (Amano et al., 1989; Hirakawa et al., 2000).PDG grammar 
alled a basi
 grammar is prepared. The basi
 grammar 
onsists of basi
grammar rules whi
h 
over senten
e variations su
h as noun/verb/adje
tive/adverbial/ preposi-tional phrases, simple/
omplex/
ompound senten
es, relative/subordinate 
lauses and Onions'5 senten
e patterns*11. The basi
 grammar does not a

ept insertion, omission, inversion andidiomati
 stru
tures (ex. not only .. but also ..). More detailed information on the environment*11 S+V,S+V+C,S+V+O,S+V+O+O and S+V+O+C patterns



110of this experiment is des
ribed in Se
tion 6.1.4.The expanded problem number, a prin
ipal 
omputational 
omplexity fa
tor of the B&Bmethod, is adopted for performan
e metri
. The following three metri
s are used in this ex-periment.(a) Expanded Problem Number in Total (EPN-T): The number of the expanded problemswhi
h are generated in the entire sear
h pro
ess.(b) Expanded Problem Number for the First Optimum Solution (EPN-F): EPN-F is the num-ber of the expanded problems when the �rst optimum solution is obtained.(
) Expanded Problem Number for the Last Optimum Solution (EPN-L): EPN-L is the num-ber of the expanded problems when the last optimum solution is obtained. At this point,all optimum solutions are obtained.Optimum solution number (OSN) for a problem, i.e., the number of optimum dependen
y trees ina given dependen
y forest, gives the lower bound value for all these metri
s be
ause one problemgenerates at most one solution. The minimum value of OSN is 1 be
ause every dependen
yforest has at least one dependen
y tree. As the sear
h pro
ess pro
eeds, the algorithm �ndsthe �rst optimum solution, then the last optimum solution, and �nally terminates the pro
essby 
on�rming no better solution is left. Therefore, the three metri
s have the relation EPN-F� EPN-L � EPN-T. Average values for these are des
ribed as Ave:EPN-F, Ave:EPN-L andAve:EPN-T. Average values for the optimum solution number is des
ribed as Ave:OSN.4.5.2 Experimental ResultsAn evaluation experiment for the open data is performed using a prototype PDG systemimplemented in Prolog. The test senten
es 
ontaining more than 22 words are negle
ted due tothe limitation of Prolog system resour
es in the parsing pro
ess. 4334 senten
es out of 6882 testsenten
es are parsable. Without applying spe
ial treatment su
h as 
onstru
tion of the wholephrase stru
ture tree from partial phrase stru
ture trees, unparsable senten
es (2584 senten
es)are simply negle
ted in this experiment.All optimum trees are 
omputed by the graph bran
h algorithm des
ribed in Se
tion 4.3.2.Fig.4.18 shows averages of EPN-T, EPN-L, EPN-F and OSN with respe
t to senten
e length.Overall averages of EPN-T, EPN-L, EPN-F and OSN for the test senten
es are 3.0, 1.67, 1.43and 1.15. The result shows that the average number of problems required is relatively small.The CFG �ltering by the phrase stru
ture level redu
es the sear
h spa
e for the dependen
y leveland the feasible solution sear
h fun
tion based on the greedy algorithm in Fig.4.8 seems to give agood feasible solution for a given problem and suppresses the number of expanded problems. Thegap between Ave:EPN-T and Ave:EPN-L (3.0-1.67=1.33) is mu
h greater than the gap betweenAve:EPN-L and Ave:OSN(1.67-1.15=0.52). This means that the major part of the 
omputationis performed only for 
he
king if the obtained feasible solutions are optimum or not.Hirakawa (2001) reported the experiment for the B&B-based optimum sear
h algorithm im-
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Fig.4.18 Total problem number, problem number for the �rst optimum solution and opti-mum solution numberplemented in C language using the semanti
 dependen
y graphs obtained from 100 senten
esrandomly sele
ted from Japanese te
hni
al do
uments. Compared with the experiment re-ported in this thesis, the previous experiment was performed in di�erent 
onditions and settingswith regard to, for example, the target language(English vs. Japanese), the target dependen
ygraph(synta
ti
-label WPP dependen
y graph vs. semanti
-label word dependen
y graph), thes
oring method(statisti
s-based vs. rule-based) and the sear
h target(all optimum solution sear
hvs. one optimum solution sear
h). However, the two experiments have the same basi
 stru
ture,i.e., the optimum tree sear
h for s
ored dependen
y graphs with ar
 
onstraints based on theB&B prin
iple. The B&B-based algorithms of the two experiments have very similar 
ompo-nents of the bran
h and bound method and the main fa
tor of the 
omputational 
omplexityis the number of the expanded problems. The previous experiment shows that overall averagesof EPN-T, EPN-F are 2.91, 1.33*12. These result values are very similar to those in the newexperiment. The tenden
y for the optimum solution to be obtained in the early stage of thesear
h pro
ess was observed in the previous experiment just as it is in this experiment. Hirakawa(2001) introdu
ed two improvements of the algorithm, i.e., the introdu
tion of an improved upperbound fun
tion g'(P) and the optimized feasible solution sear
h. As a result, the Ave:EPN-Tis redu
ed from 2.91 to 1.82 and the Ave:EPN-F is in
reased from 1.33 to 1.35. The averageCPU time is redu
ed from 305.8ms to 162.1ms (on engineering work station AS-4260). In thenew experiment, the g'(P) is introdu
ed to the graph bran
h algorithm and has obtained theredu
tion of the Ave:EPN-T from 3.00 to 2.68 and the redu
tion of the Ave:EPN-F from 1.43 to1.36. g'(P) is also e�e
tive to some extent in this experiment.The tenden
y for the optimum solution to be obtained in the early stage of the sear
h pro
esssuggests that limiting the number of problems to expand is an e�e
tive pruning strategy. Fig.4.19 shows the ratios of the senten
es obtaining the whole problem expansion, the �rst optimumsolution and the last optimum solution to whole senten
es with respe
t to the expanded problemnumbers. This kind of ratio is 
alled an a
hievement ratio (AR) in this thesis. From Fig. 4.19,*12 OSN and EPN-L was not measured be
ause the algorithm sear
hes for only one optimum solution.
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hievement ratios for full expansion, �rst optimum solution expansion and lastoptimum solution expansion 
ases with respe
t to max problem expansion numberthe ARs for EPN-T, EPN-L, EPN-F (plotted in solid lines) are 97.1%,99.6%,99.8%, respe
tivelyat the expanded solution number 10. The dotted line shows the AR for EPN-T of the improvedalgorithm using g'(P). The use of g'(P) in
reases the AR for EPN-T from 97.1% to 99.1% atthe expanded solution number 10. However, the e�e
t of g'(P) is quite small for EPN-F andEPN-L. ARs for EPN-F and EPN-L in using g'(P) is almost the same as those shown in Fig.4.19. This result shows that the pruning strategy based on the expanded problem number ise�e
tive and g'(P) works for the redu
tion of the problems generated in the posterior part of thesear
h pro
esses.Behavior of the sear
h pro
ess should be a�e
ted by the s
oring strategy (resour
es of preferen
eknowledge and their appli
ation methods) and the stru
ture of dependen
y graphs de�ned bygrammar rules. The sear
h pro
ess should be analyzed in greater detail along with s
oringstrategies and dependen
y graph stru
tures. The performan
e of the algorithm des
ribed in(Hirakawa, 2001) is suÆ
ient for real-world appli
ations. The pra
ti
al 
ode implementationof the graph bran
h algorithm and its performan
e evaluation with an extended grammar aresubje
ts for future work.4.6 Extension to the Binary Preferen
e ModelAll optimum solution sear
h methods for s
ored dependen
y graphs in
luding PDG des
ribedin 4.1 treat preferen
e s
ores atta
hed to the ar
s in a dependen
y graph. The ar
 s
ores areindependent of ea
h other or 
onstant for all possible dependen
y trees. This type of dependen
ygraph framework is 
alled a \unary preferen
e model" (or unary model) in this thesis. Thisse
tion des
ribes the extension of PDG to the \binary preferen
e model" (or binary model)whi
h 
an treat the preferen
e knowledge represented by two ar
s, 
alled binary ar
 preferen
e.



1134.6.1 Extension of the Dependen
y ForestThis se
tion gives the extension of the dependen
y forest and the de�nition of the optimumdependen
y tree in the binary preferen
e model.(1) Preferen
e matrixBinary ar
 preferen
es are represented by a new data stru
ture 
alled \preferen
e matrix"(PM). Fig.4.20 shows an example of the dependen
y forest of the binary preferen
e model.Preferen
e s
ore between ar
i and ar
j is represented by the s
ore (number) in the 
ell PM(i,j).PM(i,i) and PM(i,j) (i6=j) represent the \unary ar
 s
ore" and the \binary ar
 s
ore," respe
-tively. The unary preferen
e s
ore of ar
i is the ar
 s
ore of the unary model. The preferen
es
ore 
an be a negative value that represents the negative preferen
e, S
ore 0, represented byempty 
ell, represents the neutral preferen
e.Fig.4.20 shows an example of the dependen
y forest <DG,CM,PM> of the binary model.The 
onstraint matrix of the binary preferen
e model is the same as that of the unary preferen
emodel, but is 
alled \
onstraint matrix" (CM) in the binary model in order to make 
lear 
ontrastwith the preferen
e matrix. The numbers in the diagonal 
ells in PM are unary ar
 s
ores and theother numbers are binary ar
 s
ores. This dependen
y forest has two well-formed dependen
ytrees, i.e., f1,3,5,7g and f2,4,6,8g.(2) The optimum dependen
y tree of the binary modelThe s
ore of a dependen
y tree in the unary model is de�ned as the sum total of the s
oresof the ar
s in the tree. The s
ore of the dependen
y tree DT in the binary model is de�ned asfollows: s
ore(DT ) = Xai;aj2DT;i�jPM(ai; aj) (4.1)This s
ore is expressed by the sum total of the ar
 s
ores in DT as follows:
N1 N2 N3 N4

top

a1

a2

a4
a3

a5

a6
a7

a8

DG

� � � � � � � �� �� �� �� �� � � ���� � ��� �� 	��� �� � 	� ��� � �� ��

�


�

� 
� 
�
�
�
�

PM

� � 
 � � � � �� � � � �� � � � �
 � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
�� ���
��

�
 ������
CM

N1 N2 N3 N4

top

a1

a2

a4
a3

a5

a6
a7

a8
N1 N2 N3 N4

top

a1

a2

a4
a3

a5

a6
a7

a8

DG

� � � � � � � �� �� �� �� �� � � ���� � ��� �� 	��� �� � 	� ��� � �� ��

�


�

� 
� 
�
�
�
�

PM

� � 
 � � � � �� � � � �� � � � �
 � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
�� ���
��

�
 ������
CMFig.4.20 Example of the dependen
y forest of binary model



114 s
ore(DT ) = Xai2DT ar
 s
ore(ai;DT) (4.2)ar
 s
ore(ai;DT) = PM(ai; ai) + 12 Xaj2DT;aj 6=ai PM(ai; aj) (4.3)The s
ore de�nition of the binary model is a generalization of that of the unary model.The s
ore of the dependen
y tree f1,3,5,7g in Fig.4.20 is 
omputed as follows:s
ore(fa1; a3; a5; a7g) = Xai;aj2fa1;a3;a5;a7g;i�j PM(ai; aj)= PM(1; 1) + PM(3; 3) + PM(5; 5) + PM(7; 7) +PM(1; 3) + PM(1; 5) + PM(1; 7) + PM(3; 5) + PM(3; 7) + PM(5; 7)= 10 + 0 + 10 + 20 + 0+ 0+ 5 + 0 + 0� 5 = 40The s
ore of ea
h ar
 is as follows:ar
 s
ore(a1; fa1; a3; a5; a7g) = PM(1; 1) + 12(PM(1; 3) + PM(1; 5) + PM(1; 7)) = 15ar
 s
ore(a3; fa1; a3; a5; a7g) = PM(3; 3) + 12(PM(1; 3) + PM(3; 5) + PM(3; 7)) = 0ar
 s
ore(a5; fa1; a3; a5; a7g) = PM(5; 5) + 12(PM(1; 5) + PM(3; 5) + PM(5; 7)) = 17:5ar
 s
ore(a7; fa1; a3; a5; a7g) = PM(7; 7) + 12(PM(1; 7) + PM(3; 7) + PM(5; 7)) = 7:5The sum total of the ar
 s
ores, i.e., the s
ore of the tree, is 40.4.6.2 Extension of the Graph Bran
h AlgorithmThe basi
 skeleton of the graph bran
h algorithm for the binary model is the same as that ofthe unary model des
ribed in Se
tion 4.3.1. This se
tion des
ribes the binary model version ofea
h 
omponent of the graph bran
h algorithm des
ribed in Se
tion 4.3.2.(1) Partial-problemPM is added to the partial-problem of the unary model for the binary model. PM is sharedwith all partial problems be
ause it is 
ommon to all partial-problems.(2) Algorithm for Obtaining Feasible Solution and Lower Bound ValueThe algorithm for obtaining a feasible solution and lower bound value for the binary model isbasi
ally equal to that of the unary model. The di�eren
e is the 
al
ulation of the ar
 s
ore. Theunary model simply 
al
ulates the sum total of unary ar
 s
ores of the feasible solution. Thebinary model 
al
ulates the ar
 s
ore a

ording to formula (4.3) des
ribed above.



115In order to obtain a better (higher s
ore) feasible solution, the sorting of ar
 groups as shownin step1 of Fig.4.8 is 
ondu
ted by using the upper bound s
ores of the ar
s obtained by theformula (4.5) des
ribed below.(3) Algorithm for Obtaining Upper Bound ValueGiven the dependen
y forest <DG,CM,PM> for an input senten
e with word length n, apartial problem P has its dependen
y graph DG' whi
h is a subset of DG. The upper boundvalue G of P is de�ned with respe
t to the dependen
y forest <DG',CM,PM> as follows.G = n�1Xi=0 maxA2ar
s at(i;DG0)ubs ar
(A) (4.4)ubs ar
(A) = n�1Xj=0 ub ar
 s
ore(A; j) (4.5)ub ar
 s
ore(A; j) =8<: PM(A;A) (position(A) = j)maxX2ar
s at(j;DG0);CM(A;X)=� PM(A;X)2 (position(A)6=j) (4.6)Formula (4.4) means that the upper bound value G is 
al
ulated by summing the maximums
ore of ubs ar
 at ea
h position of the input senten
e. ubs ar
(A) is the upper bound of ar
 Awhi
h is the sum of the unary ar
 s
ore of A, i.e., PM(A,A) and the maximum binary ar
 s
oresbetween A and the ar
s of ea
h position as de�ned in formula (4.6). The set of ar
s sele
ted informula (4.4) for ea
h input position is 
alled the \maximum well-
overed binary ar
 set" anddoes not ne
essarily 
onstitute a tree and is not ne
essarily 
onsistent with the ar
s sele
ted informula (4.6).The following shows the example of the upper bound 
omputation of the dependen
y forest inFig.4.20. The input position of N1, N2, N3 and N4 are 0, 1, 2 and 3, respe
tively. At �rst, anexample of the 
omputation of ub ar
 s
ore for ar
 a1 and a2 is shown as follows:ub ar
 s
ore(a1; 0) = PM(1; 1) = 10ub ar
 s
ore(a1; 1) = 0:5�max(PM(1; 3);PM(1; 4)) = 0:5�max(0; 0) = 0ub ar
 s
ore(a1; 2) = 0:5�max(PM(1; 5);PM(1; 6)) = 0:5�max(0; 0) = 0ub ar
 s
ore(a1; 4) = 0:5�max(PM(1; 7);PM(1; 8)) = 0:5�max(10; 5) = 5ub ar
 s
ore(a2; 0) = PM(2; 2) = 15ub ar
 s
ore(a2; 1) = 0:5�max(PM(2; 3);PM(2; 4)) = 0:5�max(0; 5) = 2:5ub ar
 s
ore(a2; 2) = 0:5�max(PM(2; 5);PM(2; 6)) = 0:5�max(0; 0) = 0ub ar
 s
ore(a2; 4) = 0:5�max(PM(2; 7);PM(2; 8)) = 0:5�max(5; 20) = 10The ubs ar
 is the sum total of ub ar
 s
ore values, i.e., ubs ar
(a1) = 15 and ubs ar
(a2) =27.5. Ar
 a2 is sele
ted as a member of the maximum well-
overed binary ar
 set for DG andPM, be
ause the ar
 whi
h has the maximum ubs ar
 s
ores at ea
h position is sele
ted as the



116upper bound ar
 at the position as des
ribed above. Similarly, the upper bound ar
s are sele
tedand the maximum well-
overed binary ar
 set is 
omputed as fa2, a4, a5, a8g that has the upperbound s
ore 85 (27.5+17.5+20+20).(4) Bran
h OperationThe bran
h operation is basi
ally equivalent to that of the unary model as des
ribed in 4.3.2.An in
onsistent ar
 pair (ar
i; ar
j), i.e., CM(i,j)6= �, is sear
hed from the maximum well-
overed binary ar
 set for graph bran
h operation. If no in
onsistent ar
 pair is found, themaximum well-
overed binary ar
 set is one of the optimum solutions for the partial problem.In the 
ase of the algorithm for sear
hing for all optimum solutions, bran
h operation 
ontinuesuntil all partial problems have proved to have no optimum solutions as des
ribed in (6) below.(5) Sele
tion of Partial-problem from A
tive Partial-problemsThis pro
ess is the same as that of the unary model, i.e., the best bound sear
h is employed.(6) Computing All Optimum SolutionsWhen a new optimum solution for a partial-problem is obtained, the optimum solution isre
orded in the in
umbent solution list and further bran
h operation is performed until the upperbounds of the partial-problems be
ome less than the in
umbent value. Ar
s to be removed fromthe dependen
y graph of the 
urrent partial-problem, i.e., the 
andidates for bran
h operation,are 
omputed by pi
king up the rival ar
s of the ar
s in the obtained optimum solution. Therival ar
 of ar
 A of the binary model is an ar
 whose position is equal to that of ar
 A and theupper bound s
ore is equal to or more than that of ar
 A. When all partial problems are provedto have upper bound s
ores less than the in
umbent value, the sear
h pro
ess terminates.4.7 Con
luding Remarks for Chapter 4This se
tion has des
ribed the graph bran
h algorithm for obtaining the optimum solution fora dependen
y forest used in the preferen
e dependen
y grammar. In addition to the basi
 model,i.e., the unary model, the graph bran
h algorithm for the binary model is introdu
ed for treatingthe ar
 
o-o

urren
e preferen
e.The well-formedness dependen
y tree 
onstraints are represented by the 
onstraint matrix ofthe dependen
y forest, whi
h has 
exible and pre
ise des
ription ability so that 
ontrolled non-proje
tivity is available in PDG framework. The graph bran
h algorithm assures the sear
hfor the optimum trees with arbitrary ar
 
o-o

urren
e 
onstraints, in
luding the single valen
eo

upation 
onstraint whi
h has not been treated in DP-based algorithms so far. The dependen
yforest has wider appli
ability 
ompared with the semanti
 dependen
y graph be
ause it 
anhandle whole morphologi
al ambiguity 
aused by homonyms and word boundary divisions. Theexperimental result shows the averages of EPN-T, EPN-L and EPN-F for English test senten
esare 3.0, 1.67 and 1.43, respe
tively. This suggests the graph bran
h algorithm for PDG wouldshow a performan
e 
omparable to the algorithm for the semanti
 dependen
y graph applied inreal-world appli
ations.
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Chapter 5S
oring
Various kinds of preferen
e knowledge exists at various analysis levels as shown in Fig.2.2. Thes
oring pro
ess gives preferen
e s
ores to the pa
ked shared data stru
tures pres
ribed by thegeneration and 
onstraint knowledge in PDG. The s
oring pro
ess determines the output, i.e., thea

ura
y of the NLA system under the given generation and 
onstraint knowledge. The resour
esof preferen
e knowledge, the integration method and the target appli
ation domain (senten
es)should be mutually related with respe
t to the performan
e of the s
oring pro
ess of PDG-basedsystems. Investigating the way to 
onstru
t the best s
oring method will require a great dealof resear
h. The purpose of this 
hapter is to show the basis of the s
oring framework withrespe
t to the dependen
y forest and the optimum solution des
ribed in the previous 
hapters,and to show the �rst step of the s
oring method of PDG whi
h integrates some kind of multilevelpreferen
e knowledge enabling the experiment of the PDG framework.5.1 Preferen
e Knowledge and S
ore Integration5.1.1 Prin
iple of S
ore IntegrationIn designing the s
oring method of PDG, the following issues are taken into 
onsideration.(a) Corpus oriented data are used as the resour
es of the preferen
e knowledge.(b) Di�erent kinds of preferen
e knowledge obtained from di�erent 
orpora 
an be the re-sour
es of the preferen
e knowledge. (knowledge resour
e robustness)(
) Utilize learning methods to optimize the s
oring parameters.(a) seems to be the only and the best way to get a large amount and 
overage of preferen
eknowledge, be
ause the hand 
oding of preferen
e s
ores is intra
table. The 
ombination ofhuman insight (indu
tive ability) and the 
omputational power of 
omputers will be a goodapproa
h for large-s
ale knowledge development. This requires the 
ombination of the rule-based(human-based) and the statisti
s-based (
omputer-based) methods (Su et al., 1996; Riezler etal., 2002). (b) is a requirement for the large-s
ale knowledge development. It seems to be verydiÆ
ult to prepare the entire spe
trum of preferen
e knowledge data for one very large 
orpus,



118if it requires human pro
essing. Robustness for the preferen
e knowledge resour
es is one of thedesirable features for NLA systems. (
) is ne
essary for obtaining the optimum NLA system.Re
ently, a great deal of resear
h on learning methods for natural language senten
e analysis hasbeen done for both generative (Eisner, 1996b; Collins, 1999; Charniak, 2000) and dis
riminativemodels (Riezler et al., 2002; Miyao and Tsujii, 2002; Clark and Curran, 2003; Clark and Curran,2004; Taskar et al., 2004; M
Donald et al., 2005). These resear
h results should be 
onsideredand in
orporated in the s
oring pro
ess of PDG. As des
ribed above, the target of this resear
his to show the �rst framework for integrating multilevel preferen
e knowledge. Introdu
tion ofthe learning te
hniques is an important subje
t for future work.5.1.2 Basis of S
ore IntegrationIn order to integrate the preferen
e knowledge, it should be 
onverted into some numeri
values, i.e., preferen
e s
ores. The des
riptive power of the preferen
e knowledge is pres
ribedby the des
riptive ability of the interpretation des
ription s
heme and the optimum solutionsear
h method. For example, WPP bigram preferen
e s
ore 
an be represented as ar
 s
oresin the WPP trellis and the optimum WPP sequen
e is 
omputed by the Viterbi algorithm*1.WPP dependen
y preferen
e s
ore 
an be represented as ar
 s
ores in the dependen
y graphand the optimum dependen
y tree is 
omputed by some algorithms as des
ribed in the previous
hapter. PDG adopts the dependen
y forest as the basis of the preferen
e s
ore integration. Allpreferen
e s
ores obtained from preferen
e knowledge at ea
h analysis level are integrated intothe preferen
e s
ores in the dependen
y forest by use of the interpretation mappings among theWPP trellis, the phrase stru
ture forest and and the dependen
y forest. The des
riptive powerof the preferen
e knowledge is pres
ribed by the des
riptive ability of the dependen
y forest andthe graph bran
h algorithm in PDG.The dependen
y graph of the dependen
y forest 
an register the \unary node s
ores" and the\unary ar
 s
ores". The unary node s
ores 
an be represented by the unary ar
 s
ores be
auseea
h ar
 has one dependen
y node and the top node has a 
onstant s
ore. As des
ribed in theprevious 
hapter, the preferen
e matrix PM registers the \binary ar
 s
ores" as well as the unaryar
 s
ores for a dependen
y graph. PM 
an represent the \binary node s
ores" be
ause they 
anbe represented by the 
orresponding binary ar
 s
ores. These four s
ores, i.e., the unary nodes
ore, the unary ar
 s
ore, the binary node s
ore and the binary ar
 s
ore, 
onstitute the basisfor the s
oring for all kinds of preferen
e knowledge and are integrated into the s
ores of PM.Of 
ourse, PM has limitation in its representation ability, for example, it 
annot express higherorder preferen
e knowledges based on more than three elements, su
h as sequen
es with morethan three nodes and 
o-o

urren
es of three or more ar
s (dependen
ies). PM 
an representthe preferen
e of the phrase stru
ture rules with less than four 
onstituents be
ause they haveless than three ar
s. Phrase stru
ture preferen
e for CFG in the Chomsky normal form 
an be*1 WPP trigram preferen
e s
ore 
annot be treated in this method.



119handled by unary model be
ause ea
h PDG rule has only one dependen
y ar
. As des
ribedin Chapter 1, majority of 
urrent dependen
y analysis systems adopts the edge fa
tored modelwhi
h 
orresponds to the unary model of PDG. Higher order preferen
e s
ores should be availableby introdu
ing higher order preferen
e matrix in ex
hange for higher 
omputational expenses.This is beyond the s
ope of this thesis.The value of the PM is de�ned by two major fun
tions, i.e., unary s
ore and binary s
orefun
tions, as follows:PM(ai; aj) = � � �unary s
ore(ai) (i = j)(1� �)�binary s
ore(ai; aj) (i6=j)� (0���1) is a parameter 
alled the \unary/binary s
ore distribution ratio" or simply \UBratio" that is used for adjusting the balan
e between the unary s
ore and the binary s
ore. Theunary and binary s
ores are des
ribed in the su

eeding se
tions.The preferen
e knowledge about the relation 
on
erning more than three nodes or three ar
s,for example N-gram sequen
e where N � 3 and phrase stru
ture rule with more than or equalto four 
onstituents, are outside the s
ope of the 
urrent PDG s
oring pro
essing.5.2 S
oring Fun
tion and S
aling CoeÆ
ientThe majority of the preferen
e knowledge obtained from 
orpora is represented as the frequen-
ies of the linguisti
 elements or relations, su
h as word, WPP, WPP sequen
e, phrase stru
turesand dependen
ies, in 
ombination with various kinds of attributes of the elements. The frequen
ydata should be 
onverted into preferen
e s
ores, whi
h are the basis of the integration opera-tion. These 
onversions are performed by heuristi
 fun
tions 
alled \s
oring fun
tions." S
oringfun
tions apply frequen
y normalization be
ause PDG assumes that various kinds of 
orpora areused as the resour
es of the preferen
e knowledge as des
ribed above. \logave" is the basi
 formof the s
oring fun
tions for an element E.basi
 s
ore(E) = logave(X;AddX;AveX) = BaseS
ore� log((X + 1) +AddX)log(AveX + 1)where X is the frequen
y of the element E, AddX is an extra frequen
y for E 
alled \frequen
y
ompensation term" or \frequen
y 
ompensation," and AveX is the average frequen
y of thedata type to whi
h E belongs. BaseS
ore is a standard s
ore assigned to the average frequen
iesand is set to 1000 
urrently. For example, if the word 'theorem' has 99 frequen
y and theaverage word frequen
y is 9 in a 
orpus, the basi
 s
ore of 'theorem' is 2000 with no frequen
y
ompensation as follows:basi
 s
ore(theorem) = logave(99; 0; 9) = 1000 � log(99 + 1)log(9 + 1) = 2000The frequen
y in logave is biased by 1 so that zero frequen
y element generates the zeros
ore. In the 
ase that X is equal to AveX , the basi
 s
ore is BaseS
ore(=1000) with nofrequen
y 
ompensation. This is introdu
ed to normalize the frequen
y. \log" fun
tion is applied



120for leveling the frequen
ies. There is no theoreti
al reason for this leveling fun
tion but thes
oring method without this leveling fun
tion leads to a poor result a

ording to the result ofthe preliminary experiments*2. The frequen
y 
ompensation is used for, for example, adjustingthe frequen
y of 
ompounds. The details are des
ribed below.PDG introdu
es another type of fun
tions 
alled \s
aling fun
tions," whi
h generate the \s
al-ing 
oeÆ
ients" for an element E. When s
aling fun
tion 'f' is de�ned for E, the total s
ore ofan element E is the produ
t of the s
oring fun
tion and the s
aling fun
tion of E as follows:s
ore(E) = f(E)�basi
 s
ore(E)S
aling fun
tions are also heuristi
 fun
tions for representing the distribution or importan
e ofE in the s
oring pro
ess. Examples are shown below.There is no theoreti
al or experimental grounding for the 
orre
tness or the optimality ofthe above s
oring fun
tion and the s
aling fun
tion that are determined by some preliminaryexperiments.5.3 Unary S
ore FormulaThe \unary s
ore" (UnaryS
ore) is a 
ombination of the unary node s
ore (UnaryNodeS
ore)and the unary ar
 s
ore (UnaryAr
S
ore) as follows:UnaryS
ore = ��UnaryNodeS
ore + (1� �)�UnaryAr
S
ore2where � is the unary node/ar
 s
ore distribution ratio (UNA ratio) satisfying 0���1 .5.3.1 Unary Node S
ore FormulaThe 
urrent implementation of the unary node s
ore formula 
ontains only one preferen
e s
ore
al
ulated from the WPP frequen
ies in a 
orpus. The basi
 formula is very simple but it has tobe extended with a 
ompensation term in order to treat 
ompound words.The unary node s
ore for WPP node N is 
al
ulated by the following formula.unary node s
ore(N) = logave(freq(N); un 
omp(N);AveWPPF)= BaseS
ore� log(freq(N) + 1 + un 
omp(N))log(AveWPPF+ 1)where AveWPPF is the average WPP frequen
y in the 
orpus*3. The un 
omp(N) (unary node
ompensation) is the frequen
y 
ompensation term for 
ompound words de�ned as follows:*2 Introdu
tion of statisti
al distribution model to the basi
 s
oring fun
tion may lead to better results.*3 This is the average o

urren
e number for the WPPs found in the 
orpus



121un 
omp(N) = � element freq(N) + AveWPPF�CWC�2wrdlen(N)�1 (N is 
ompound word)0 (Otherwise)where element freq(N) is the sum total of the frequen
ies of the words in N . CWC (
ompoundword 
oeÆ
ient) is a parameter for adjusting the preferen
e of 
ompound words against non-
ompound words. wrdlen(N) is a word number of N .In general, 
ompound words have very small frequen
y 
ompared with their 
onstituent wordsbut should have higher preferen
es. The �rst term, i.e., element freq(N), assures that the 
om-pound word has higher frequen
y and the se
ond term gives extra frequen
y for the 
ompoundthat has more than two 
onstituents. The 
urrent setting of CWC is 3.5.3.2 Unary Ar
 S
ore FormulaThe basi
 resour
es of the unary ar
 s
ores are the dependen
y frequen
ies, i.e., the frequen
iesof the dependen
y pie
es, in a 
orpus in the 
urrent implementation. The unary ar
 s
ore of ar
A is 
al
ulated by the following formula.unary ar
 s
ore(A) = basi
 ar
 s
ore(A)�distan
e ratio(A)�POS ratio(A)basi
 ar
 s
ore gives the basi
 unary ar
 s
ore for A. distan
e ratio and POS ratio are s
al-ing 
oeÆ
ients for the distan
e between the dependant node and the governor node and the
ompensation based on the type of the ar
, respe
tively.(1) basi
 ar
 s
ore(A)basi
 ar
 s
ore 
al
ulates the basi
 ar
 s
ore for ar
 A based on the dependen
y pie
e frequen-
ies in a 
orpus. This frequen
y is 
alled the asis ar
 frequen
y*4. In addition to this standardar
 frequen
y, three additional frequen
ies are used for the resour
es of the preferen
e s
ore.(a) Asis ar
 frequen
y(ASIS AF) �Frequen
y of the dependen
y pie
e(b) Generalized ar
 frequen
y (GEND AF) �Frequen
y of the generalized dependen
y pie
e(
) Asis PP frequen
y(ASIS PF) : Frequen
y of the PP-atta
hment frequen
y(d) Generalized PP frequen
y(GEND PF) �Frequen
y of the generalized PP-atta
hment fre-quen
y(a) is a basi
 ar
 frequen
y, i.e., the frequen
y of a dependen
y pie
e. A dependen
y pie
e
onsists of three elements, i.e., the dependant node, the governor node and the ar
, and is amore 
ompli
ated data stru
ture than a simple node. This 
auses the data sparseness problem.In order to manage this problem, a ba
ko� method based on (b) is introdu
ed. The abstra
tdependen
y pie
e is obtained by generalizing the POSs of the dependant node and the governornode in the dependen
y pie
e.*5 The generalization of the POS is done by simply taking the*4 Expression \ar
 frequen
y" is used instead of \dependen
y pie
e frequen
y"*5 Various kinds of semanti
 abstra
tion and word sense disambiguation methods (Hearst and S
hutze, 1993;Resnik, 1993; Resnik, 1995a; Resnik, 1995b; Hirakawa et al., 1996; M
Carthy, 1997; Seki et al., 1997;



122�rst 
hara
ter of the POS as follows:Dependen
y pie
e : [time/nx℄ subj���! [
y/vt℄Generalized dependen
y pie
e: [time/n℄ subj���! [
y/v℄(
) and (d) are introdu
ed for in
orporating PP-atta
hment preferen
e whi
h 
annot be rep-resented 
orre
tly by (a) and (b). The following shows an example of PP-atta
hment for \seegirl with teles
ope."(e1) [see/vt℄ vpp �� [with/pre℄ pre �� [teles
ope/n℄(e2) [girl/n℄ npp �� [with/pre℄ pre �� [teles
ope/n℄The ar
 frequen
ies of the ar
s in (e1) and (e2) 
annot 
apture the 
ompetition between thePP-atta
hments \see with teles
ope" and \girl with teles
ope" be
ause \[see/vt℄ vpp �� [with/pre℄"and \[girl/n℄ npp �� [with/pre℄" are independent of \[with/pre℄ pre �� [teles
ope/n℄." This problemis solved by redu
ing the preposition node into an ar
 label as follows:(e3) [see/vt℄ vpp with ������ [teles
ope/n℄(e4) [girl/n℄ npp with ������ [teles
ope/n℄This method is not adopted in the 
urrent implementation of the PDG system be
ause theoutput of the data stru
ture is the same as that of the existing NLA system for evaluation asdes
ribed in the se
tion below. Instead, (
) and (d) are introdu
ed to solve this problem.The asis PP frequen
y(ASIS PF) in (
) 
orresponds to the frequen
y of the relation su
h as(e3) or (e4). Generalized PP frequen
y (GEND PF) is the frequen
y of the generalized relationintrodu
ed to manage the data sparseness problem. The generalized relation has the generalizedPOSs and ar
 name as shown in the following example, the generalized relation 
orrespondingto (e3).(e5) [see/v℄ with ��� [teles
ope/n℄The basi
 ar
 s
ore is de�ned as follows:basi
 ar
 s
ore(A) = ��asis ar
 s
ore(A) + (1� �)�generalized ar
 s
ore(A)asis ar
 s
ore and generalized ar
 s
ore represent the ar
 s
ores 
omputed from the asis ar
 fre-quen
ies and the generalized ar
 frequen
ies, respe
tively. � is 
alled the asis/generalized ar
 dis-tribution ratio whi
h is de�ned later in this se
tion. First, asis ar
 s
ore and generalized ar
 s
oreare des
ribed.[asis ar
 s
ore(A)℄asis ar
 s
ore(A) = logave(asis max freq(A); 0;AveASIS AF)= BaseS
ore� log(asis max freq(A) + 1)log(AveASIS AF + 1)Kimura and Hirakawa, 2000) are also 
andidates for the ba
ko� method in future study.
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asis max freq(A) = 8>><>>: maxffreq(Rel; I; J)jI�DN; J�GNg+PPC�asis pf(A)(DN and=or GN of A are=is 
ompound word(s))asis af(A) + PPC�asis pf(A)(Otherwise)where Rel,DN and GN is the relation, dependen
y node and the governor node of ar
 A.freq(Rel,DN,GN) is the frequen
y of the dependen
y pie
e. asis af and asis pf are the frequen
iesof (a) and (
) above, respe
tively. PPC(Prepositional Phrase CoeÆ
ient) is the 
oeÆ
ient foradjusting the e�e
t of the PP-atta
hment frequen
y des
ribed above, whi
h is 
urrently set to5. AveASIS AF is the average of the asis ar
 frequen
y in the 
orpus.[generalized ar
 s
ore(A)℄The generalized maximum frequen
y of ar
 A is de�ned as follows:generalized ar
 s
ore(A) = logave(gend max freq(A); 0;AveGEND AF)= BaseS
ore� log(gend max freq(A) + 1)log(AveGEND AF + 1)gend max freq(A) = 8<: maxffreq(GEND Rel; I; J)jI�GEND DN; J�GEND GNg+PPC�gend pf(A)(GEND DN and=or GEND GN of A are=is 
ompound word(s))gend af(A) + PPC�gend pf(A) (Otherwise)where GEND Rel,GEND DN and GEND GN is the generalized relation, dependen
y node andthe governor node of ar
 A. freq(GEND Rel,GEND DN,GEND GN) is the frequen
y of thegeneralized dependen
y pie
e. gend af and gend pf are the frequen
ies of (b) and (d) above,respe
tively. AveGEND AF is the average of the generalized ar
 frequen
y in the 
orpus.[Asis/generalized ar
 distribution ratio �℄In the 
urrent implementation, the asis/generalized ar
 distribution ratio is de�ned su
h thatthe in
uen
e of the asis frequen
y and the in
uen
e of the generalized frequen
y be
ome thesame in total as follows: � = ASIS KIND NUMASIS KIND NUM+GEND KIND NUMwhere ASIS KIND NUM and GEND KIND NUM are the 
ardinal numbers of the set of asisar
s and the set of generalized ar
s in the 
orpus, respe
tively.(2) S
aling 
oeÆ
ient: distan
e ratio(A)The distan
e ratio 
ompensates the ar
 s
ore based on the distan
e between the dependantnode and the governor node of an ar
. Collins (1996) reported that 95.6% and 99.0% of thewords have dependant words within word distan
e 5 and 10, respe
tively. Distan
e parametersare utilized by many NLA systems (Eisner, 1996b; Collins, 1999; M
Donald et al., 2005).Let the same(X ,Y ) mean that ar
 X and Y have the same relation, the same dependant nodeand the same governor node and let distan
e(A) mean the distan
e between the dependant node



124and the governor node of ar
 A. The following is the distan
e ratio formula in the 
urrentimplementation of the PDG system.distan
e ratio(A) = 1 +K� log(distan
e degree(A))where K is a parameter for adjusting the degree of the distan
e ratio. The 
urrent setting of Kis K = 0:5log(10) .*6 Basi
ally, distan
e degree is a ratio of the ar
 frequen
y with the distan
e Dagainst the average distan
e of the ar
 A.distan
e degree(A) = logave(df(A); df
(A); average df(A))where df(A) is the frequen
y of the ar
 X su
h that same(X,A), distan
e(X)=distan
e(A).df
 is the distan
e frequen
y 
ompensation de�ned as follows:df
(A) = � 1 (df(A) = 0)0 (Otherwise)average df(A) is the average frequen
y of the ar
 with respe
t to the node distan
e de�ned asfollows: average df(A) = 1jDSj XD2DS freq(A;D)where DS = fDijDi = distan
e(Ai); same(Ai; A); Ai2CorpusAr
sg. freq(A,D) is the frequen
yof the ar
 X su
h that same(X,A),distan
e(X)=D.(3) S
aling 
oeÆ
ient: POS ratio(A)The ar
 type ratio POS ratio(A) 
ompensates the ar
 s
ore based on the type of the ar
. Thear
 type is mainly 
hara
terized by the POS of the dependant node of the ar
.POS ratio(A) = 8<: 0:01 (the POS of the dependant of A = det)0:2 (the dependant ofA = [be℄� v and the relation of A = subj)1 (Otherwise)The �rst 
ompensation is introdu
ed to redu
e the in
uen
e of the s
ore of the determinerbe
ause determiners have high frequen
ies or s
ores but are relatively unimportant for determin-ing the overall stru
tures. The se
ond 
ompensation is introdu
ed to adjust the s
ore balan
e ofthe two usages of be-verb,i.e., 
opula and present progressive interpretation as 
ontained in thefollowing senten
e. My hobby is wat
hing birds.These two 
ompensations are en
oded by hand through a simple observation of the analysisresults. The 
urrent implementation of POS ratio(A) seems to be poor. Various 
ompensationsbased on the ar
 types should be introdu
ed widely and their parameters should be optimizedby an appropriate learning method in future.*6 If the distan
e degree(A) is 10, the distan
e ratio is 1.5. This means the ar
 s
ore is multiplied by 1.5.



1255.4 Binary S
ore FormulaThe binary s
ore (BinaryS
ore) is a 
ombination of the binary node s
ore (BinaryNodeS
ore)and the binary ar
 s
ore (BinaryAr
S
ore) as follows:BinaryS
ore = ��BinaryNodeS
ore + (1� �)�BinaryAr
S
ore2where � is the binary node/ar
 s
ore distribution ratio (BNA ratio) 0���1.5.4.1 Binary Node S
ore FormulaThe 
urrent implementation of the binary node s
ore formula 
ontains a preferen
e s
ore basedon the WPP bigram frequen
ies in a 
orpus. Generalized WPP bigram frequen
ies are introdu
edas in the 
ase of unary node s
ore formula. The binary node s
ore for an WPP node N1 andN2 is 
al
ulated by the following formula:binary node s
ore(N1; N2) = basi
 binary node s
ore(N1; N2)No s
aling fun
tion is applied in the 
urrent implementation. basi
 binary node s
ore 
al
u-lates the basi
 binary node s
ore for node N based on the following bigram frequen
ies in a
orpus.(a) GWPP BGM frequen
y(WPP BF) �Frequen
y of the generalized WPP bigramex. [time/nx℄ [
y/vt℄ (WPP bigram) ! [time/n℄ [
y/v℄ (GWPP bigram)(b) POS BGM frequen
y(POS BF) �Frequen
y of the POS bigramex. [time/nx℄ [
y/vt℄ (WPP bigram) ! [nx℄ [vt℄ (POS bigram)The basi
 binary node s
ore is de�ned as follows:basi
 binary node s
ore(N1; N2)= ��GWPP BGM s
ore(N1; N2) + (1� �)�POS BGM s
ore(N1; N2)GWPP BGM s
ore and POS BGM s
ore represent the node s
ores 
omputed from the GWPPbigram frequen
ies and the POS bigram frequen
ies, respe
tively. � is 
alled the bigram s
oredistribution ratio (BGM ratio) whi
h is de�ned later in this se
tion. First, GWPP BGM s
oreand POS BGM s
ore are des
ribed.[GWPP BGM s
ore(N1,N2)℄The GWPP BGM s
ore(N1,N2) is de�ned as follows:GWPP BGM s
ore(N1; N2)= logave(GWPPBGM freq(N1; N2);GWPPBGM 
omp(N1; N2);AveGWPP BF)= BaseS
ore� log(GWPPBGM freq(N1; N2) + 1 +GWPPBGM 
omp(N1; N2))log(AveGWPP BF + 1)



126AveGWPP BF is the average of the generalized WPP bigram frequen
y in the 
orpus. GW-PPBGM freq (generalized WPP bigram 
ompensation) is the frequen
y 
ompensation term for
ompound words de�ned as follows:GWPPBGM 
omp(N1; N2) = CBC�AveGWPP BF�(wrdnum(N1) + wrdnum(N2)� 2)where CBC(Compound Bigram CoeÆ
ient) is the 
oeÆ
ient for adjusting the degree of the
ompound word frequen
y 
ompensation, whi
h is 
urrently set to 3.[POS BGM s
ore(N1,N2)℄The POS BGM s
ore(N1,N2) is de�ned as follows:POS BGM s
ore(N1; N2)= logave(POSPBGM freq(N1; N2);POSBGM 
omp(N1; N2);AvePOS BF)= BaseS
ore� log(POSBGM freq(N1; N2) + 1 + POSPBGM 
omp(N1; N2))log(AvePOS BF + 1)AvePOS BF is the average of the POS bigram frequen
y in the 
orpus. POSBGM freq (POSbigram 
ompensation) is the frequen
y 
ompensation term for 
ompound words de�ned as fol-lows: POSBGM 
omp(N1; N2) = CBC�AvePOS BF�(wrdnum(N1) + wrdnum(N2)� 2)where CBC is the 
oeÆ
ient for adjusting the degree of the 
ompound word frequen
y 
ompen-sation, whi
h is 
urrently set to 3.[Bigram s
ore distribution ratio �℄In the 
urrent implementation, the bigram distribution ratio is de�ned su
h that the in
uen
eof the generalized WPP bigram frequen
y and the in
uen
e of the POS bigram frequen
y be
omethe same in total as follows:� = GWPP BGM KIND NUMGWPP BGM KIND NUM+POS BGM KIND NUMwhere GWPP BGM KIND NUM and POS BGM KIND NUM are the 
ardinal numbers of theset of generalized WPP bigrams and the set of POS bigrams in the 
orpus, respe
tively.5.4.2 Binary Ar
 S
ore FormulaThe binary ar
 s
ore provides the detailed preferen
e knowledge with wider 
ontext, whi
hmay 
ompete with the unary ar
 preferen
e. For example, \eat gasoline" has low preferen
ebe
ause of the semanti
 preferen
e that \gasoline" 
annot be eaten. However, this is not truein the senten
e \This 
ar eats gasoline." The preferen
e s
ore for \eat gasoline" should be
hanged with respe
t to the subje
t of \eat." This kind of preferen
e knowledge is representedby the binary ar
 
o-o

urren
e preferen
e s
ore. In addition to the generalized dependen
y



127pie
e introdu
ed in Se
tion 5.3.2, word dependen
y pie
e is introdu
ed to get more abstra
tar
 frequen
y in 
onsideration of lower frequen
ies of binary ar
s 
ompared to those of unaryar
s. The word dependen
y pie
e is obtained by omitting the POS and dependen
y relation ina dependen
y pie
e as follows:Dependen
y pie
e : [time/nx℄ subj���! [
y/vt℄Word dependen
y pie
e : [time℄ �! [
y℄There 
an be various de�nitions for binary ar
 
o-o

uren
e. For example, the \the two ar
s
o-o

uring within a senten
e" is one of the possible de�nitions. Sin
e the purpose of the ar
 
o-o

uren
e s
ore is to measure the plausibility of a senten
e interpretation, it should re
e
t somegrammati
al or semanti
 relation as mu
h as possible. From this 
onsideration, two 
onne
tedar
s are 
ounted as 
o-o

ured ar
s in 
urrent implementation. There are two types of 
onne
tionrelations, i.e., parent relation and sibling relation. Ar
s in parent relation have a 
ommon sharednode whi
h is a dependant node of one ar
 and is a governor node of another ar
. Ar
s insibling relation have a 
ommon shared governor node. Senten
e \This 
ar eats gasoline" showsan example of sibling ar
s 
onne
ted via the node 
orresponding to \eat" as follows;Sibling ar
s : [
ar/n℄ subj���! [eat/vti℄, [gasoline/n℄ obj��! [eat/vti℄ *7The generalized dependen
y ar
s (pie
es) and the word dependen
y ar
s (pie
es) for these 
o-o

ured are
s are as follows;Generalized sibling ar
s : [
ar/n℄ subj���! [eat/v℄, [gasoline/n℄ obj��! [eat/v℄Word dependen
y sibling ar
s : [
ar℄ �! [eat℄, [gasoline℄ �! [eat℄The binary ar
 s
ore for two ar
s A1 and A2 is 
al
ulated by the following formula:binary ar
 s
ore(A1; A2) = basi
 binary ar
 s
ore(A1; A2)No s
aling fun
tion is applied in the 
urrent implementation. basi
 binary ar
 s
ore 
al
ulatesthe basi
 binary ar
 s
ore for ar
 A1 and A2 based on the following ar
 
o-o

uren
e frequen
iesin a 
orpus.(a) CGA frequen
y(CGAF) �Frequen
y of the 
onne
ted generalized ar
sCGAF(A1,A2) is sum-total of the P CGAF(A1,A2) and S CGAF(A1,A2).*8P CGAF �Frequen
y of the 
onne
ted generalized ar
s in parent relationS CGAF �Frequen
y of the 
onne
ted generalized ar
s in sibling relation(b) CWA frequen
y(CWAF) �Frequen
y of the 
onne
ted word ar
sCWAF(A1,A2) is sum-total of the P CWAF(A1,A2) and S CWAF(A1,A2).P CWAF �Frequen
y of the 
onne
ted word ar
s in parent relationS CGAF �Frequen
y of the 
onne
ted word ar
s in sibling relation*7 POS \vti" spe
i�es the verb whi
h 
an either be intransitive or transitive.*8 P CGAF(A1,A2) and S CGAF(A1,A2) are 0 if the two ar
s are not in parent relation and in sibling relation,respe
tively.



128If A1 and A2 are in neither parent relation nor sibling relation, CGAF(A1,A2) andCWAF(A1,A2) have 0 value a

ording to the de�nition.The basi
 binary ar
 s
ore is de�ned as follows:basi
 binary ar
 s
ore(A1; A2) =  �CGA s
ore(A1; A2) + (1�  )�CWA s
ore(A1; A2)CGA s
ore and CWA s
ore represent the binary ar
 s
ores 
omputed from the CGA frequen
iesand the CWA frequen
ies, respe
tively.  is 
alled the 
onne
ted ar
 s
ore distribution ratio (CASratio) whi
h is de�ned later in this se
tion. First, CGA s
ore and CWA s
ore are des
ribed.[CGA s
ore(A1,A2)℄The CGA s
ore(A1,A2) is de�ned as follows:CGA s
ore(A1; A2) = logave(CGAF(A1; A2);CGA 
omp(A1; A2);Ave CGAF)= BaseS
ore� log(CGAF(A1; A2) + 1 + CGA 
omp(A1; A2))log(Ave CGAF + 1)Ave CGAF is the average of the 
onne
ted generalized ar
 frequen
y in the 
orpus. CGA 
omp(
onne
ted generalized ar
 
ompensation) is the frequen
y 
ompensation term for 
ompoundwords de�ned as follows:CGA 
omp(A1; A2) = CCAC�Ave CGAF�(wrdnum(A1) + wrdnum(A2)� 4)where wrdnum(A) is the total number of words of the dependant node and the govoner node inar
 A. CCAC(Compound Conne
ted Ar
 CoeÆ
ient) is the 
oeÆ
ient for adjusting the degreeof the 
onne
ted frequen
y 
ompensation, whi
h is 
urrently set to 3.[CWA s
ore(A1,A2)℄The CWA s
ore(A1,A2) is de�ned as follows:CWA s
ore(A1; A2) = logave(CWAF(A1; A2);CWA 
omp(A1; A2);Ave CWAF)= BaseS
ore� log(CWAF(A1; A2) + 1 + CWA 
omp(A1; A2))log(Ave CWAF + 1)Ave CWAF is the average of the 
onne
ted word ar
 frequen
y in the 
orpus. CWA 
omp(
onne
ted word ar
 
ompensation) is the frequen
y 
ompensation term for 
ompound wordsde�ned as follows:CWA 
omp(A1; A2) = CCAC�Ave CWAF�(wrdnum(A1) + wrdnum(A2)� 4)where wrdnum(A) is the total number of words of the dependant node and the govoner node inar
 A. CCAC(Compound Conne
ted Ar
 CoeÆ
ient) is the 
oeÆ
ient for adjusting the degreeof the 
onne
ted frequen
y 
ompensation, whi
h is 
urrently set to 3.[Conne
ted ar
 s
ore distribution ratio  ℄In the 
urrent implementation, the 
onne
ted ar
 s
ore distribution ratio is de�ned su
h thatthe in
uen
e of the 
onne
ted generalized ar
 frequen
y and the in
uen
e of the 
onne
ted word



129ar
 frequen
y be
ome the same in total as follows: = CGA KIND NUMCGA KIND NUM+CWA KIND NUMwhere CGA KIND NUM and CWA KIND NUM are the 
ardinal numbers of the set of 
onne
tedgeneralized ar
s and the set of 
onne
ted word ar
s in the 
orpus, respe
tively.
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Chapter 6Evaluation
PDG is a new framework using multiple kinds of pa
ked shared data stru
tures to utilizemultilevel preferen
e and 
onstraint knowledge. Traditional evaluation methods are not enoughfor evaluating some system abilities whi
h are targeted by PDG. This 
hapter �rst dis
uss howto evaluate the performan
e of PDG-based systems, then shows the experiment for investigatingthe possibilities of the PDG framework.6.1 Evaluation Measures for Dependen
y-graph-basedSystems6.1.1 Traditional Evaluation Measures and Points in the PDG Evalu-ationVarious methods are proposed for evaluating natural language analysis systems (Carroll etal., 1998). The method proposed by GEIG 
omputes re
all and pre
ision ratio based on phraseboundaries obtained from phrase stru
ture trees (Grishman et al., 1992). This method hasa merit in that it 
an be appli
able to various parsing systems, but has a problem in thatsometimes it produ
es evaluation results format varian
e to human intuition. Sampson proposedan evaluation method re
e
ting the grammar 
ategory information in phrase stru
ture trees and
laims that the evaluation results of this method are 
loser to human ones 
ompared with theboundary-based method (Sampson, 2000). However, Sampson's method has lower appli
abilitysin
e it requires 
ompatibility in grammar 
ategories of the parsing systems in order to 
ompare.In general, every parsing system has its own phrase stru
ture tree and grammar 
ategory systemdepending on its analysis grammar. From this point of view, a new evaluation s
hema 
alledrelational s
hema is adopted in several evaluation methods (Lin, 1998; Srinivas, 2000; Bris
oe etal., 2002).The relational s
hema measures the a

ura
y of synta
ti
 or logi
al dependen
y relations be-tween words obtained from phrase stru
ture trees. The extra
tion of word relation from phrasestru
ture tree is not straightforward and no standard method based on relational s
hema hasbeen established so far.



132As shown above, PDG has both phrase stru
ture trees and dependen
y trees in the senten
eanalysis pro
ess. Therefore, both phrase-stru
ture-tree-based and dependen
y-stru
ture-basedapproa
hes are appli
able to PDG-based systems in prin
iple. Considering the trend towardrelational s
hema in senten
e evaluation frameworks and the fa
t that PDG's �nal output isdependen
y stru
tures, a dependen
y-stru
ture-based approa
h is adopted for evaluating PDG-based systems.Ratio of 
orre
t dependen
ies in output dependen
y stru
tures / trees is used for evaluatingdependen
y analysis systems (Ozeki, 1998; Kudo and Matsumoto, 2005; Harper et al., 1999).This thesis adopts this kind of measures named \ar
 pre
ision ratio" (APR) and \word depen-den
y pre
ision ratio" (WDPR) as 
omprehensive evaluation measures for total analysis ability ofPDG-based systems. In addition to the 
omprehensive evaluation measures, this thesis proposestwo di�erent kinds of measures, i.e., \possibly 
orre
t senten
e ratio" (PCSR) for evaluating thesystem ability to generate the 
orre
t hypothesis for the input senten
e, and \ar
 disambiguationpre
ision ratio" (ADPR) for evaluating the system's disambiguation ability.This thesis fo
uses on the dependen
y stru
ture as evaluation target be
ause of the size ofpreparable data amount of the 
orre
t analysis results and preferen
e knowledge as des
ribedabove. However, evaluation methods are appli
able to all dependen
y stru
tures of the singledependen
y model. In addition to the 
omprehensive evaluation measure, this thesis proposestwo more measures for evaluating hypothesis generation ability and disambiguation ability sin
ethe enhan
ement of these abilities in natural language analysis systems is a prin
ipal target ofPDG.6.1.2 Comprehensive Analysis AbilityThis se
tion des
ribes the ar
 pre
ision ratio (APR) and the ar
 disambiguation pre
ision ratio(ADPR) whi
h are adopted as 
omprehensive evaluation measures for PDG.[Ar
 Pre
ision Ratio℄APR shows the a

ura
y of output dependen
y trees as de�ned below.APR = Number of 
orre
t ar
s in ODTNumber of all ar
s in ODTODT is a set of ar
s in the optimum dependen
y trees for the test senten
es. The 
omprehensiveanalysis ability of a system is measured by APR ranging from 0 to 1.Fig.6.1 shows the 
orre
t dependen
y tree CDT and the optimum dependen
y treesODT1,ODT2 for the example senten
e \Time 
ies like an arrow"*1. The APR for this exampleis 0.6 sin
e there are six 
orre
t ar
s, i.e., oa1 - oa5 and oa9, exist in ten ar
s 
ontained in ODT1and ODT2.*1 S
ores are not shown in Fig.6.1. The output trees in Fig.6.1 are not the solutions for the DF shown inFig.3.4



133[Word Dependen
y Pre
ision Ratio℄It is diÆ
ult to apply APR to various senten
e analysis systems sin
e it requires system-dependent information su
h as WPP and dependen
y relation. To avoid this problem, this thesisadopts another measure 
alled \word dependen
y pre
ision ratio" (WDPR) as a 
omprehensiveevaluation measure for dependen
y trees with wide appli
ability. WDPR is the same as APRex
ept that ea
h output ar
 is judged 
orre
t if it has the same dependent and governor words asits 
orresponding 
orre
t ar
. WDPR is obtained from the 
omputation algorithm for obtainingAPR by simply negle
ting the di�eren
e of POS and dependen
y relation name in mat
hingbetween a 
orre
t ar
 and an output ar
. WDPR for the previous example is 8=10 = 0:8 sin
etwo more output ar
s, oa6 and oa10, are judged 
orre
t in addition to the 
orre
t ar
s for APR.6.1.3 Hypothesis Generation and Disambiguation Ability[Possibly Corre
t Senten
e Ratio℄PDG has the following three fun
tionalities from the viewpoint of the treatment of hypothe-ses*2.(a) Generation of hypotheses for an input senten
e (hypothesis generation)(b) Reje
tion of hypotheses by 
onstraint knowledge (hypothesis reje
tion)(
) Extra
tion of optimum solutions based on the s
oring by preferen
e knowledge (hypothesissele
tion) ������� �����	���
 �����
�� � � ��� ����������� ! "��# $���� % &'(� )* ��& *)��� ��+,��#$���� % &'���' )* ��- *)���� �%,,��$�.�� ,�� -��#$���� % &''� )* ��/ *)��� �,�������+0� ! 1��$�.�� ,�� -'� )* ��1 *)��� �2�����!� 2�� /�����+0� ! 1' ( )* ��3 *)45��5� �����	���
 ����6�7��8 � � ��� ����������� ! "��# $���� % &'(� )* +�& *)��� ��+,��#$���� % &'���'� )* +�- *)��� �%,,��$�.�� ,�� -��#$���� % &''� )* +�/ *)��� �,�������+0� ! 1��$�.�� ,�� -'� )* +�1 *)��� �2�����!� 2�� /�����+0� ! 1' ( )* +�3 *)7��9� � ��� �!���� ���� ! "��#$���� ! &'� )* +�: *)��� ������#$���� ! &��$�.�� % -'� )* +�; *)��� ��+,��$�.�� % -'���'� )* +�< *)��� �2�����!� 2�� /�����+0� ! 1'� )* +�= *)��� �+�>�����+0� ! 1��$�.�� % -' ( )* +�&" *)Fig.6.1 CDT and ODTs for the example senten
e*2 hypotheses here means possible interpretations inherently 
ontained in a senten
e



134The hypothesis generation is su

essful if a senten
e analysis system 
an generate a 
orre
t inter-pretation or 
orre
t hypothesis as a 
andidate internally. The hypothesis reje
tion is su

essfulif a system reje
ts in
orre
t hypotheses generated by the hypothesis generation pro
ess. The hy-pothesis sele
tion is su

essful if a system sele
ts the 
orre
t hypothesis from possible hypothesesirreje
table by the 
onstraint knowledge. In PDG, dependen
y forest is the result of pro
ess(a) and (b) in total. Therefore, 
omprehensive hypothesis generation ability 
an be measuredby 
he
king the existen
e of the 
orre
t dependen
y tree in the obtained dependen
y forest. Asenten
e whose dependen
y forest 
ontains the 
orre
t answer is 
alled a possibly 
orre
t sen-ten
e, and the number ratio of the possibly 
orre
t senten
es to those of the whole senten
es is
alled the \possibly 
orre
t senten
e ratio" (PCSR). PCSR shows the 
omprehensive hypothesisgeneration ability of a PDG-based system. On the other hand, the hypothesis sele
tion abilityis basi
ally measured by 
he
king the 
orre
t ar
s in the dependen
y forest. The next se
tiondes
ribes a measure for the hypothesis sele
tion ability.[Ar
 Disambiguation Pre
ision Ratio℄ADPR measures the disambiguation ability of a PDG-based system. ADPR should re
e
tthe 
omplexity of the disambiguation task. Choosing a 
orre
t answer from two 
andidates is�������� ��� 	 
���� ����� ��� �
 ��� �������� ���
� 	 ������ �
 ��� � �� ��� ���������� 
������������������� ���
� 	 ������ �
 ���� �� 
� ���� ��� ������ ����� �������� ��� ����� 	 ���������� ��������
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���� !/�� ����:	 &������ ��� '������-������ ���� ����� 9�� �� �����
��������������59���� 	 ���
�����������
����!Fig.6.2 Algorithm for 
omputing ADPR



135easier than from ten 
andidates. This feature is in
orporated into ADPR by assigning a s
oreproportional to the number of 
andidate ar
s in the disambiguation task. If the generateddependen
y forest has no 
orre
t ar
s, no preferen
e knowledge exists on the basis of whi
h a
orre
t answer 
an be sele
ted. Conversely, if the dependen
y forest has no in
orre
t ar
s, a
orre
t answer 
an be sele
ted on the basis of any preferen
e knowledge. These 
ases are out ofthe s
ope of evaluation of the disambiguation ability and should be omitted in evaluation.Based on the above 
onsiderations, ar
 disambiguation pre
ision ratio (sometimes 
alled dis-ambiguation pre
ision) is de�ned as shown in Fig.6.2.This algorithm inputs a 
orre
t dependen
y tree CDT , an output dependen
y tree ODT1 toODTn (n is the number of the optimum trees), and a dependen
y graphDG. Here, the 
olle
tionof the ar
s in ODT1 - ODTn is des
ribed as ODTAr
s. Step1 extra
ts one 
orre
t ar
 onear
from CDT . If onear
 is not 
ontained in DG, it is not a target of evaluation (step2). onear
 isalso negle
ted when it has no ambiguities (step4). If there is an ambiguity for onear
, step5 addsthe number of ar
s whi
h have a start position sp and exist in DG toMaxSr
S
ore as a s
ore for
urrent onear
. In step6, ar
 
orre
tion ratio Corre
tAr
Ratio for 
urrent onear
 is 
omputedand the s
ore for onear
 is 
omputed as the produ
t of MaxSr
S
ore and Corre
tAr
Ratio.This s
ore is added to total ar
 s
ore Ar
S
ore. Ar
 disambiguation pre
ision ratio is 
al
ulatedin step7 as the ratio of total ar
 s
ore Ar
S
ore to the maximum ar
 s
ore MaxAr
S
ore. Ar
disambiguation pre
ision ratio varies from 0 to 1.Fig.6.1 shows a 
orre
t dependen
y tree and an output dependen
y tree and Fig.6.3 shows DGfor the example senten
e.In step1 of Fig.6.2, the �rst ar
 
a1 in Fig.6.1 is set to onear
. Step2 sets a start positionof node \[time℄-n-0," i.e., 0, to sp. Step3 does not negle
t onear
 sin
e it is in DG. In step4,onear
 is judged as a target of evaluation sin
e ar
 num at position(0; DG) = 3. Step5 setsMaxAr
S
ore to 3. Step6 obtains Corre
tAr
Ratio = 1=2 = 0:5�OneAr
S
ore = 3�0:5 = 1:5;then OneAr
S
ore is 
omputed as 1:5. The 
omputation 
ontinues in a similar way. Corre
t ar

a5 is negle
ted sin
e DG has only one ar
 pa11 on start position 3. The 
omputation results���������� ��	�
��
 � � ��� �������������������� ����!"� #$ %�! $#��� � &'����������������� ��(�!"� #$ %�) $#��� ��*%��������(�����"� #$ %�+ $#��� �*',������ ����!��������(��"� #$ %�- $#��� � &'������ ����!����.���(�)"� #$ %�/ $#��� ��*%������ ��(�!���"� #$ %�0 $#��� ��*%����.���(�)���"� #$ %�1 $#��� ��%%����.���%���)������ ����!"� #$ %�2 $#��� �(%%����.���%���)������ ��(�!"� #$ %�3 $#��� �(%%����.���%���)��������(��"� #$ %�!� $#��� �4��������4���+�����*5����-"� #$ %�!! $#��� �*',�����*5����-����.���(�)"� #$ %�!) $#��� �%�������*5����-����.���%���)" 6 #$ %�!+ $#Fig.6.3 Dependen
y Graph for the example



136are as follows; Ar
 sp Ar
num Cr
tAr
Rto Ar
S
r
a1 0 3 0.5 1.5
a2 1 3 0.5 1.5
a3 2 4 0.5 2.0
a4 4 2 0.5 1.0total 12 6.0Ar
num, Cr
tAr
Rto, Ar
S
r 
orrespond toAr
num in DG, Corre
tAr
Ratio, OneAr
S
ore,respe
tively.The �nal value ofMaxAr
S
ore is 12 (sum total of Ar
num in DG) and that of Ar
S
ore is 6(sum total of OneAr
S
ore). Therefore, Ar
Sele
tionAbilityRatio=6=12=0:5. In this example,every ar
 a

ura
y is 0:5. If Corre
tAr
Ratio of 
a3 is 1 then Ar
Sele
tionAbilityRatio is8=12= 0:67, whereas if Corre
tAr
Ratio of 
a4 is 1 then Ar
Sele
tionAbilityRatio is 7=12 =0:58. This shows that ADPR re
e
ts the diÆ
ulty of the ar
 disambiguation task.6.1.4 Environment of Experiment for Evaluation MeasuresThis se
tion and the next se
tion des
ribe some experimental results showing the behaviorsof the proposed evaluation measures with respe
t to some parameters su
h as senten
e length,preferen
e knowledge, grammar 
overage and so on.An English text 
orpus, 
orre
t dependen
y trees, PDG grammar and di
tionary and preferen
eknowledge are prepared for evaluating the proposed evaluation methods. Preferen
e knowledgehere is a WPP frequen
y in the 
orpus. Preferen
e s
ore PS(N) for node N (WPP) is de�nedas follows.PS(N) = log(X)= log(MF) (0�PS(X)�1)where X is the frequen
y of N in the 
orpus, MF is the maximum frequen
y of WPPs in the 
or-pus. The optimum tree has the highest total preferen
e s
ores among the well-formed dependen
ytrees for a given senten
e.The text 
orpus 
onsists of te
hni
al do
uments 
ontaining around 620,000 senten
es (4,630,000words*3) in total. In order to prepare a large amount of 
orre
t dependen
y trees and WPPfrequen
y data, an existing senten
e analysis system (
alled the ora
le system) is used as thegenerator of those data. The ora
le system (Amano et al., 1989) is a real world rule based systemwith a long development history, whi
h is 
urrently used for translating te
hni
al do
uments,web pages, mail texts and so on.Data �ltering is applied to the original text 
orpus sin
e it 
ontains many tables, indi
es
hara
teristi
 of te
hni
al manuals and many ungrammati
al senten
es originated from typingand senten
e extra
tion errors. The 
orre
t dependen
y trees are not obtainable for the senten
es*3 
ounted by unix \w
" 
ommand
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Fig.6.4 Distribution of senten
e length for senten
es in the open datawhi
h are not parsable by the ora
le system. The following senten
es are removed from theoriginal 
orpus.(a) Unparsable senten
es (around 71,000 senten
es)(b) Parsable senten
es whose last 
hara
ter is not a period (around 204,000 senten
es)(
) Parsable and period-ending senten
es whose �rst 
hara
ter is not a 
apital letter (around220,000 senten
es)The remaining 
orpus has 125,320 senten
es (1,844,758 words). The ora
le system generatesthe 
orre
t dependen
y trees and WPPs for these senten
es. This 
orpus is divided into opendata (8,605 senten
es, 126,684 words) and 
lose data (116,715 senten
es, 1718074 words). Theopen data is used for evaluation test set and the 
lose data is used for preferen
e knowledgeresour
e, i.e., the sour
e of WPP frequen
ies. The number of extra
ted WPPs is 1,869,000(44,470 kinds of WPP)*4. Fig.6.4. shows the distribution of word length of senten
es in the opendata. In order to see a brief a

ura
y of the ora
le system, 136 senten
es are sele
ted randomlybut with similar distribution shown in Fig.6.4 from a set of senten
es whi
h are parsable usingthe basi
 grammar des
ribed below*5. The APR for this senten
e set with respe
t to humananalysis results is 97.2%. Therefore, the output of the ora
le system is a good approximation ofhuman 
orre
t data.Two PDG grammars 
alled a basi
 grammar (Grammar-B) and a mini grammar (Grammar-M)are prepared. The basi
 grammar 
onsists of basi
 grammar rules whi
h 
overs senten
e varia-tions su
h as noun/verb/adje
tive/adverbial/prepositional phrases, simple/
omplex/
ompoundsenten
es, relative/subordinate 
lauses and Onions' 5 senten
e patterns. The basi
 grammardoes not a

ept insertion, omission, inversion and idiomati
 stru
tures (ex. not only .. but also..). The basi
 grammar is superior to the mini grammar in the generation and 
onstraint abil-*4 The number of WPPs here is not the same as that of words, sin
e WPP is 
ounted based on the result ofmorphologi
al analyzer*5 Sin
e unparsable senten
es have no output, they are negle
ted in the su

eeding evaluation experiments.Some extra method is required for obtaining partial phrase stru
ture trees for unparsable senten
es.



138ities. The basi
 grammar has higher generation ability 
ompared with the mini grammar sin
eit a

epts synta
ti
 patterns with ri
her phrase variations (numeri
/symbol expressions in nounphrase, double quote expression, optional expressions et
.), 
oordinations (noun phrase, adje
tivephrase, adverb phrase et
.), greater number of optional elements (prepositional phrases, adverbset
.) and so forth. The basi
 grammar has ri
her and more pre
ise 
onstraints, su
h as additionalnumber agreement*6 as found in \these desks," sequen
e of tenses, sub-
ategorization frames ofverbs, stru
tural 
onstraint based on morphologi
al features and so on. The basi
 grammar
onsists of 907 CFG rules whereas the mini grammar 
onsists of 377 CFG rules. These gram-mars produ
e the same type of dependen
y stru
tures as the ora
le system. The morphologi
alanalyzer is shared with the PDG system and the ora
le system.6.1.5 Evaluation Experiment for Evaluation MeasuresAn evaluation experiment for the open data and basi
 grammar is performed using a prototypePDG system implemented in Prolog. The test senten
es 
ontaining more than 22 words arenegle
ted due to the limitation of Prolog system resour
es. 4334 senten
es out of 6882 testsenten
es are parsable by Grammar-B. The parse su

ess ratio is 63%. Without applying spe
ialtreatment su
h as 
onstru
tion of the whole phrase stru
ture tree from partial phrase stru
turetrees, unparsable senten
es (2584 senten
es) are simply negle
ted in this experiment.[Comparison between APR and WDPR℄Fig.6.5 shows the 
omparison of APR and WDPR with/without the preferen
e knowledge(PK). Results obtained without the preferen
e knowledge are 
alled baseline performan
e in thisexperiment. In total, APR with PK (AK) is 85.1%, APR without PK (baseline) (AB) is 77.8%,WDPR with PK (WK) is 87.9% and WDPR without PK (DB) is 81.8%. Ar
 pre
ision and worddependen
y pre
ision are equivalent measures and have the same 
u
tuation for senten
e length.
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onstraint is introdu
ed into both basi
 grammar and mini grammar.



139Only a few synta
ti
 variations exists for very short senten
es. This seems to 
ause low APR forsenten
e length 2 and 3. AK and AB have an average gap of 7.3%, whereas WK and WB haveone of 6.1%. WDPR has a greater gap than APR. AK and WK have an average gap of 2.3%,whereas AB and WB have one of 4.0%. Fewer gaps is observed when the preferen
e knowledgeis utilized.In this experiment, English do
uments are used. English is a stru
tural language where wordorder has important roll in de
iding fun
tional relations between words. Therefore, word depen-den
y may have high 
orrelation with fun
tional relations between words. On the other hand, forexample in Japanese, word order is less important to de
ide fun
tional relation between words.The behavior of APR and WDPR may be di�erent in Japanese.[Comparison of APR and ADPR with respe
t to preferen
e knowledge℄Fig.6.6 shows the 
omparison of APR and ADPR with/without the preferen
e knowledge (PK).In total, APR with PK (AK) is 85.1%, APR without PK (baseline) (AB) is 77.8%, ADPR withPK (DK) is 65.8% and ADPR without PK (DB) is 42.0%. Although the preferen
e knowledgeis simple, both measures show signi�
ant improvement by applying PK. For example, senten
e"The integer 
onstant for the senten
e bu�er." has two readings 
orresponding to \The integer
onstant=n for ..." (
orre
t) and \The integer 
onstant=adj for ..." (in
orre
t). In this 
ase,the 
orre
t interpretation is sele
ted as the optimum solution sin
e WPP 
onstant=n has largerfrequen
y than that of 
onstant=adj.The 
u
tuations of AK and DK show overall mutual relation. But a few ex
eptions are seen;e.g. in word length 14 and 15 where AK de
reases in spite of in
rease of DK. This is reasonablesin
e ADPR measures a disambiguation ability while APR measures a 
omprehensive senten
eanalysis ability in
luding the disambiguation ability as des
ribed above.DB is almost 
onstant with respe
t to senten
e length. This means the diÆ
ulty of the disam-biguation task (number of ambiguous ar
s) does not show remarkable in
rease with respe
t tosenten
e length. In 
ontrast, DK de
reases as senten
e length in
reases. This means the 
urrentstrategy for applying preferen
e knowledge provides less performan
e for longer senten
es.
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t to preferen
e knowledge



140[Comparison of APR and ADPR with respe
t to PCSR℄There are 3224 possibly 
orre
t senten
es out of 4334 parsable senten
es. The PCSR is 74.4%.To 
larify the in
uen
e of PCSR, data for only the possibly 
orre
t senten
es, i.e., PCSR is100%, is estimated. Fig.6.7 shows the 
omparison of APR and ADPR obtained from the datawith 100%-PCSR (C: Corre
t answer 
ontained) and 74%-PCSR (A: All senten
es). In total,APR for 100%-PCSR (AC) is 90.4%, APR for 74%-PCSR (AA) is 85.1%, ADPR for 100%-PCSR(DC) is 85.1% and ADPR for 74%-PCSR (DA) is 42.0%. Very large improvement of APR andADPR is a
hieved by in
reasing the APR of the target senten
e 
olle
tion.Comparing DC and DA, ADPR seems to be independent of PCSR and de
reases as targetsenten
e length in
reases. In 
ontrast, APR seems to be dependent on PCSR, sin
e AC (100%-PCSR) is almost 
onstant for senten
es with more than 6 words while AA (74%-PCSR) seems tode
rease as senten
e length in
reases. This suggests that PCSR has a relation with the de
reaseof APR against senten
e length and the improvement in 
omprehensive hypothesis generationability is e�e
tive for keeping high APR for longer senten
es.
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t to PCSR[Comparison of APR and ADPR (Coverage of Grammar)℄The experiment using the basi
 grammar (Grammar-B) and the mini grammar (Grammar-M)shows that Grammar-B has 4334 parsable senten
es (parse su

ess ratio 63.0%) 
ontaining 3224possibly 
orre
t senten
es (PCSR 74.4%), and Grammar-M has 3139 parsable senten
es (parsesu

ess ratio 45.6%) 
ontaining 2135 possibly 
orre
t senten
es (PCSR 68.0%). Fig.6.8 showsthe 
omparison of APR and ADPR obtained from Grammar-B and Grammar-M. In total, APRfor Grammar-B (AB) is 85.1%, APR for Grammar-M (AM) is 83.4%, ADPR for Grammar-B(AB) is 65.8% and ADPR for Grammar-M is 68.9%.DB and DM have almost the same values with some 
u
tuations for senten
es with length6 to 16. In 
ontrast, AB always has slightly higher values 
ompared with those of AM in thesame senten
e length range. This suggests the reasonable assumption that ADPR is basi
allyindependent of grammar, whereas ACR is dependent on grammar. If ADPR is independent of



141grammar, the de
rease of ADPR against senten
e length should mainly be 
aused by the 
urrentstrategy for applying preferen
e knowledge.
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t to di�eren
e of grammar6.2 System Evaluation with respe
t to Preferen
eKnowledgeThe evaluation of the prototype PDG system des
ribed above is done with respe
t to the
ombination of various kinds of preferen
e knowledge des
ribed in Chapter 5. The 
urrentimplementation in
orporates four types of preferen
e s
ores, i.e., the unary node s
ore based onWPP frequen
y, the unary ar
 s
ore based on ar
 (i.e., dependen
y pie
e) frequen
y, the binarynode s
ore based on WPP bigram frequen
y and the binary ar
 s
ore based on ar
 
o-o

urren
efrequen
y. These preferen
e sour
es are expressed by UN (unary node), UA (unary ar
), BN(binary node) and BA(binary ar
), respe
tively. The 
ombination of preferen
e knowledge isrepresented by '+' operator. For example, PDG system using the UN and UA is written as'UN+UA'. Empty preferen
e knowledge, i.e., the baseline system performan
e, is representedby � symbol. The 
ombination of the measurement and preferen
e knowledge is represented by\/." For example, the measurement \APR (ar
 pre
ision ratio)" for the knowledge 
ombination\UN+UA" is written as \APR/UN+UA." The test senten
es and the 
orpus are the same asthose des
ribed in Se
tion 6.1.4.The baseline evaluation is done with no preferen
e knowledge. This means all well-formeddependen
y trees are the optimum solutions for the input senten
e. In the following experiments,the number of solutions in baseline exe
ution is limited up to 100. This is be
ause the numberof the optimum solutions grows exponentially as the senten
e length in
reases and a whole setof dependen
y trees 
annot be obtained due to 
omputational resour
e limitation.There are a lot of 
ombinations of preferen
e knowledge. The following se
tion basi
ally reportsthe baseline (�) performan
e, single knowledge (UN, UA, BN and BA) performan
es and thethree 
ombined knowledge (UN+UA, UN+BN and UA+BN) performan
es whi
h have shown



142good performan
e in the experiment.6.2.1 Evaluation of Comprehensive Senten
e Analysis AbilityFig.6.9 shows the 
omparison of APR for whole senten
es with respe
t to the 
ombination ofpreferen
e knowledge sour
es. In total, as shown in the �gure, the average of APR/�, APR/UN,APR/UA, APR/BN, APR/BA, APR/UN+UA, APR/UN+BN and APR/UA+BN are 77.4%,84.6%, 87.4%, 83.6%, 80.4%, 88.3%, 84.3% and 88.3%, respe
tively. The PCSR for the testsenten
es is 74% as des
ribed above. APR for the whole senten
es shows APR-74PCSR, i.e.,APR for 74% PCSR senten
es.
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e knowledge (whole senten
es)UA provides the best performan
e 87.4% in 
ase of single knowledge use. BA provides the worstperforman
e 80.4% but it still outperforms 3.0% 
ompaired with baseline �. The preforman
esof binary relation BN and BA are relatively low. This may be 
aused by the data sparsenessproblem, i.e., the inadeque
y of the training 
orpus data. Experiment with mu
h larger training
orpus is one of the future works. The 
ombination of the UN and UA gives better performan
e
ompared with those obtained by independent knowledge sour
es.
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e knowledge (100% PCSR)



143Fig.6.10 shows the results for only the possibly 
orre
t senten
es, i.e., PCSR is 100%.In total, as shown in the �gure, the average of APR-100PCSR/�, APR-100PCSR/UN,APR-100PCSR/UA, APR-100PCSR/BN, APR-100PCSR/BA, APR-100PCSR/UN+UA, APR-100PCSR/UN+BN and APR-100PCSR/UA+BN are 82.4%, 90.1%, 93.2%, 88.9%, 85.3%,94.1%, 89.7% and 93.9%, respe
tively. The di�eren
es between APR-74PCSRs and APR-100PCSR are within the range from 4.9% to 5.9%. APR-100PCSR is more 
onstant with respe
tto senten
e length 
ompared with APR-74PCSR.6.2.2 Evaluation of Disambiguation AbilityFig.6.11 shows the 
omparison of ADPR for whole senten
es with respe
t to the 
ombination ofpreferen
e knowledge sour
es. In total, as shown in the �gure, the average of ADPR-74PCSR/ �,ADPR-74PCSR/UN, ADPR-74PCSR/UA, ADPR-74PCSR/BN, ADPR-74PCSR/BA, ADPR-74PCSR/UN+UA, ADPR-74PCSR/UN+BN and ADPR-74PCSR/UA+BN are 42.7%, 65.0%,74.6%, 62.1%, 51.6%, 77.6%, 64.6%, 77.6%, respe
tively. The 
ombination of the preferen
es
ore UN and UA gives 12.6% and 3.0% improvements for ADPR-74PCSR/UN and ADPR-74PCSR/UA, respe
tively.
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Fig.6.11 Comparison of ADPR w.r.t. preferen
e knowledge (whole senten
es)Fig.6.12 shows the result for ADPR-100PCSR. In total, as shown in the �gure, the averageof ADPR-100PCSR/�, ADPR-100PCSR/UN, ADPR-100PCSR/UA, ADPR-100PCSR/BN,ADPR-100PCSR/BA, ADPR-100PCSR/UN+UA, ADPR-100PCSR/UN+BN and ADPR-100PCSR/UA+BN are 42.0%, 66.1%, 76.3%, 62.3%, 50.7%, 79.1%, 65.2%, 78.5%, respe
tively.In 
ontrast to the APR, PCSR has no strong e�e
t on ADPR as des
ribed in Se
tion 6.1.5. Thedi�eren
es between ADPR-74PCSRs and ADPR-100PCSRs are within the range from -1.5% to0.9%. This di�eren
e is mu
h smaller 
ompared with the di�eren
es between APR-74PCSRsand APR-100PCSRs. This result suggests that ADPR is almost independent of PCSR.
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Fig.6.12 Comparison of ADPR w.r.t. preferen
e knowledge (100% PCSR)6.2.3 Evaluation of Sele
tivity Performan
e[Average Optimum Solution Number℄Fig.6.13 shows the 
omparison of the average optimum solution number (AOSN) for wholesenten
es with respe
t to the 
ombination of preferen
e knowledge sour
es, i.e., UN, UA, BN,BA and UN+UA *7. In total, as shown in the �gure, the average of AOSN/UN, AOSN/UA,AOSN/BN, AOSN/BA and AOSN/UN+UA are 5.1, 1.3, 5.3, 5.1 and 1.1, respe
tively. UN, BNand BA has 
lear growth of the AOSN with respe
t to senten
e length whereas UA and UN+UAhave very small growth in AOSN. The 
ombination of preferen
e knowledge works to de
reaseAOSN.The performan
es of BN and BA may be improved by in
reasing the training 
orpus size toavoid the data sparseness problem. This is one of the future works.
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Fig.6.13 Comparison of average optimum solution number w.r.t. preferen
e knowledge*7 The baseline data is not shown in the �gure be
ause the number of solutions is limited up to 100 in baselineexe
ution.



145[Average Expanded Problem Number in Total℄Fig.6.14 shows the 
omparison of the average expanded problem number (AEPN) for wholesenten
es with respe
t to the 
ombination of preferen
e knowledge sour
es, i.e., UN, UA, BN, BAand UN+UA. In total, as shown in the �gure, the average of AEPN/UN, AEPN/UA, AEPN/BN,AEPN/BA and AEPN/UN+UA are 18.1, 3.7, 15.8, 15.2 and 3.3, respe
tively. This result showsthe same tenden
y with the AOSN. In the AEPN evaluation, BN outperformed UN in 
ontrastto the AOSN evaluation. AEPN/� is not measured be
ause the number of solutions is limitedup to 100 in baseline exe
ution.
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Fig.6.14 Comparison of average expanded problem number w.r.t. preferen
e knowledge[Average Expanded Problem Number for the First Optimum Solution℄Fig.6.15 shows the 
omparison of the average expanded problem number for the �rst optimumsolution (AEPNF1OS) with respe
t to the 
ombination of preferen
e knowledge sour
es, i.e.,UN, UA, BN, BA and UN+UA. In total, as shown in the �gure, the average of AEPNF1OS/UN,AEPNF1OS/UA, AEPNF1OS/BN, AEPNF1OS/BA and AEPNF1OS/UN+UA are 2.3, 1.5, 1.6,1.1 and 1.6, respe
tively. AEPNF1OS/� (baseline) is always 1.0 be
ause all solutions are opti-mum solutions.AEPNF1OS/BA has the least value 1.1 whi
h is 
lose to the baseline value 1.0. This re
e
tsthe fa
t that BA has the biggest number of average optimum solutions as shown above. BAneeds big amount of training 
orpus to obtain enough sele
tivity performan
e by avoiding thedata sparseness problem. AEPNF1OS/UN has the biggest value 2.3. This means that a set of themost frequent WPPs for the words in a senten
e is not ne
essarily 
orrespond to the well-formeddependen
y tree. The 
ombination of UN and UA (UN+UA) requires a bit more 
omputationfor obtaining the �rst optimum solution 
ompared with UA due to the in
uen
e of UN.
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Fig.6.15 Comparison of average expanded problem number for the �rst optimum solutionw.r.t. preferen
e knowledge6.3 Con
luding Remarks for the ExperimentsThis se
tion dis
ussed the senten
e analysis ability based on the PDG framework and proposedthree kinds of evaluation measures for dependen
y stru
tures. The ar
 pre
ision ratio (APR)and the word dependen
y pre
ision ratio (WDPR) measure 
omprehensive analysis ability. Thepossibly 
orre
t senten
e ratio (PCSR) and the ar
 disambiguation pre
ision ratio (ADPR) mea-sures a part of analysis abilities, i.e., 
omprehensive hypothesis generation ability and hypothesissele
tion ability, respe
tively.The experiment using English te
hni
al do
uments suggests that ADPR is independent ofPCSR and the grammar 
overage. This means ADPR has good 
hara
teristi
s for measuringthe ability of preferen
e knowledge and appli
ation strategies. The 
urrent simple preferen
eknowledge and strategy shows the de
rease of ADPR against senten
e length.From the experiment reported in this thesis, extending the 
overage of the basi
 grammar is abasi
 task for improving the senten
e analysis ability and improvement of PCSR and preferen
eknowledge appli
ation strategy are e�e
tive for improving the system performan
e for longersenten
es.The evaluation measures des
ribed in this se
tion are appli
able not only to PDG-based sys-tems but also to other dependen
y stru
ture based senten
e analysis systems. In addition, byignoring ar
 labels and POS 
ategories as des
ribed in 6.1.2, PCSR and ADPR 
an be revisedto the senten
e measures suitable for 
omparing di�erent senten
e analyzers with di�erent node
ategory and ar
 label systems.Se
tion 6.2.1 has shown that the evaluation of 
omprehensive senten
e analysis ability is im-proved by introdu
ing every kind of preferen
e knowledge. Among various kinds of the 
om-binations of preferen
e knowledge, the best APR 88.3% is obtained by UN+UA and UA+BNin this experiment. This is 10.9% improvement 
ompared with the baseline performan
e 77.4%APR. As shown in se
tion 6.1, the disambiguation ability is well measured or 
ompared by using



147ADPR instead of APR. The ADPR of both UN+UA and UA+BN is 77.6% whi
h shows greatimprovement 
ompared with baseline performan
e ADPR/� 42.7%.In 
omparison between UN+UA and UA+BN, ADPR-100PCSR/UN+UA (79.1%) is a little bitbetter than ADPR-100PCSR/UA+BN (78.5%). Furthermore, UN+UA is superior to UA+BNbe
ause the unary model, i.e., UN+UA, requires less 
omputational resour
e than the binarymodel, i.e., UA+BN, in general. The 
ombination of UN and UA provides the best performan
ein this experiment. However, an experiment using big amount of training 
orpus should be donefor the binary knowledge to obtain enough performan
e by avoiding the data sparseness problemin future.Se
tion 6.2.3 has shown that the AOSN, AEPN and AEPNF1OS of UN+UA is 1.1, 3.3, 1.6,respe
tively. These are very small and show the very good sele
tivity performan
e of UN+UA.
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Chapter 7Future Work
7.1 Development of Real-world PDG SystemThe 
urrent PDG system is a Prolog-based prototype system aimed at the feasibility study ofthe PDG framework. The resear
h and development of a PDG system appli
able to real-worldappli
ations is one of the important future works.Improvements in the a

ura
y and eÆ
ien
y of the PDG system are expe
ted by the enhan
e-ments of the grammar des
ription framework, su
h as the introdu
tion of more detailed 
ondi-tions based on feature des
riptions and non-obligatory 
onstituent des
ription into a grammarrule. The introdu
tion of non-obligatory 
onstituent des
riptions redu
es not only the number ofedges generated during a parse pro
ess but also the number of equivalent ar
s in the generatedinitial dependen
y forest. The generated equivalent ar
s 
an also be redu
ed if sharable ar
sare identi�ed before parsing by applying the pre-analysis of the grammar. This is an interestingresear
h topi
 not only for building an eÆ
ient system but also for understanding the relation(or exploring the equivalen
e) between 
onstituen
y and dependen
y. In 
onjun
tion with thesemethodologi
al improvements, system implementation using programming languages like C andC++ should be 
ondu
ted for the real-world PDG system along with the development of thePDG grammar.The 
urrent prototype PDG system adopts a heuristi
 approa
h instead of a learning approa
hfor tuning the s
oring parameters. Learning te
hnologies have been one of the most advan
edareas in natural language pro
essing for a number of years and several ex
ellent learning methodsbased on annotated 
orpora have been proposed. In addition to the generative learning model,the dis
riminative learning model, whi
h 
an treat the stru
tural parameters based on the entiresenten
e stru
ture, is studied in detail (M
Donald et al., 2005). The introdu
tion of su
h learningme
hanisms in the s
oring pro
ess is one of the important and promising future works to obtainthe best a

ura
y using the PDG framework.



1507.2 Resear
h on Semanti
 Stru
tureSemanti
 pro
essing is a very important but diÆ
ult NLP resear
h topi
 whi
h requires 
on-siderable resear
h. There is no 
ommon 
onsensus on the representation s
heme for semanti
senten
e stru
tures. MTT adopts the semanti
 graph stru
ture representing predi
ate argumentrelations as its basi
 semanti
 representation. This kind of deep predi
ate argument relation willbe ne
essary for properly representing the meanings of various senten
es.One simple but basi
 extension of PDG framework toward the semanti
 layer analysis is tointrodu
e the semanti
 dependen
y tree as a kind of semanti
 layer senten
e interpretation. Thesemanti
 dependen
y tree 
onsists of 
on
ept nodes and ar
s labeled with semanti
 dependen
yrelations. The semanti
 dependen
y tree is a simple but natural expansion of the synta
ti
dependen
y tree whi
h is in the 
urrent uppermost level of the PDG ar
hite
ture. Ea
h WPPnode has some 
orresponding semanti
 nodes (
on
epts) and ea
h synta
ti
 ar
 has 
orrespondingsemanti
 ar
s (semanti
 roles). The possible 
onstru
tion of the semanti
 dependen
y tree shouldbe guided by some lexi
alized predi
ate-argument information or the 
ase frame stru
ture asintrodu
ed by the semanti
 dependen
y graph (Hirakawa, 2002).Fig.7.1 shows PDG model extended to the semanti
 dependen
y level. A semanti
 dependen
yforest is used to represent a set of semanti
 dependen
y trees that represent the semanti
 in-terpretations of a senten
e. The pa
ked shared data stru
ture for a set of semanti
 dependen
ytrees is a semanti
 dependen
y forest. The semanti
 dependen
y forest is expe
ted to be ob-tained from a (synta
ti
) dependen
y forest by two kinds of semanti
 expansions, i.e., semanti
node expansion and semanti
 ar
 expansion. Fig.7.2 shows a 
on
eptual example of semanti
expansion for the Japanese senten
e \Kanojo no Me wa Ookii (��������)" (Her eyes are
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Fig.7.2 Semanti
 expansion pro
essbig). By applying semanti
 node expansion, the WPP nodes in a (synta
ti
) dependen
y forestare expanded to 
on
ept nodes. The WPP node labeled \eye/N" in the �gure 
orresponds to theword \Me (�)" (eye) in Japanese, whi
h has two meanings 
orresponding to \eye" and \
enter."This WPP node is expanded to two 
on
ept nodes with labels \eye/N/EYE" and \eye/N/CTR."The lexi
al 
on
epts 
an be provided by 
on
ept di
tionaries su
h as the EDR di
tionary (EDR,1996), Nihongo-Goi-Taikei (Ikehara, 1999), and WordNet (Fellbaum, 1998).The semanti
 ar
 expansion operation generates more than one semanti
 ar
 from ea
h (syn-ta
ti
) dependen
y ar
 in the (synta
ti
) dependen
y forest. One (synta
ti
) dependen
y ar
labeled by the Japanese parti
le \no (�)" 
an represent various semanti
 relations su
h as \pos-session," \
reator," \agent," and \target" between two nouns in
luding verbal nouns. In Fig.7.2,the synta
ti
 ar
 labeled with \no" is expanded to two semanti
 dependen
y ar
s labeled withthe semanti
 dependen
y relation \has" (possessive) and \make" (
reator). The expansion froma synta
ti
 dependen
y relation to semanti
 dependen
y relations is performed by 
onsulting amapping table whi
h de�nes the mapping between them. Provided that the semanti
 expan-sion generates M 
on
ept nodes and N semanti
 dependen
y ar
s from one WPP node and onesynta
ti
 dependen
y ar
, respe
tively, the expanded semanti
 forest has around M times nodesand M2 �N times ar
s as 
ompared to the synta
ti
 dependen
y forest. Thus, the 
ombinato-rial explosion in the size of the semanti
 dependen
y forest through the semanti
 expansion issuppressed be
ause the semanti
 dependen
y forest is also a pa
ked shared data stru
ture.It is obvious that the interpretation mapping exists between the (synta
ti
) dependen
y forestand the semanti
 dependen
y forest. Therefore, this framework satis�es the requirements of theMPDC model, be
ause the semanti
 expansion maintains the mapping between nodes and ar
sin the dependen
y forest and those in the semanti
 dependen
y forest. The s
oring and theoptimum sear
h methods are appli
able to both the synta
ti
 and semanti
 dependen
y forests.



152Needless to say, the approa
h des
ribed in this se
tion is a very rough approximation andsimply shows the resear
h dire
tion toward semanti
 pro
essing. This requires intensive resear
hfrom both linguisti
 and 
omputational perspe
tives.7.3 Bidire
tional Model of PDGIn this thesis, PDG fo
uses on the senten
e analysis dire
tion. However, its basi
 framework,i.e., the MPDC model, is inherently bidire
tional as well as it is true in MTT. For example, thepartial stru
ture mapping rule in Se
tion 3.4.2 simply des
ribes a mapping between a partialphrase stru
ture and a partial dependen
y stru
ture and therefore it 
an be used bidire
tionally.The generation of a phrase stru
ture from a dependen
y stru
ture is an interesting future resear
htopi
.Resear
hes on the equivalen
e between the phrase stru
ture grammar and the dependen
ygrammar have not su

eeded in showing the strong equivalen
e between CFG and Tesnieremodel DG under the equivalen
e 
riteria \rami�
ation" as des
ribed in Chapter 1. If a properformal dependen
y grammar framework based on the partial stru
ture mapping is established, itmay be possible to dis
uss the des
riptive power and/or the equivalen
e of the phrase stru
turegrammar and the dependen
y grammar based on the new framework. This would make 
learerand deeper understanding for both of the two major synta
ti
 representations and the relationbetween them.
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Chapter 8Con
lusion
This thesis proposed a novel dependen
y analysis framework 
alled the \preferen
e dependen
ygrammar (PDG)," whi
h utilized the two major synta
ti
 representations, i.e., the phrase stru
-ture and the dependen
y stru
ture to obtain the bene�t from both representations. Based on thedis
ussion on the multilevel model with respe
t to the roles of preferen
e and 
onstraint knowl-edge, PDG adopts the three level MPDC ar
hite
ture (multilevel system whi
h adopts pa
kingmethod) with two intermediate levels (morphologi
al stru
ture and phrase stru
ture) and theuppermost level (dependen
y stru
ture). In this ar
hite
ture, the phrase stru
ture level (CFGrules) works as a �lter for the dependen
y stru
ture level. This suppresses the magni�
ation ofthe sear
h spa
e and enables PDG to in
lude full POS ambiguities at dependen
y level.In PDG design ar
hite
ture, the higher des
ription ability of the dependen
y level data stru
-ture is required be
ause the uppermost level is the basis of the knowledge integration in theMPDC model. In order to realize PDG ar
hite
ture, two 
ore te
hnologies, i.e. a new datastru
ture \dependen
y forest" and a new algorithm \graph bran
h algorithm" are proposed inthis thesis. The dependen
y forest ful�ls the multilevel model mapping 
ondition required forthe MPDC model. The 
ompleteness and soundness of the dependen
y forest with respe
t tothe phrase stru
ture forest is assured by this thesis.The dependen
y forest is a data stru
ture with a high des
riptive ability to integrate the pref-eren
e and 
onstraint knowledge by providing two matri
es, i.e., the preferen
e matrix and the
onstraint matrix, whi
h represent the arbitrary ar
 
o-o

urren
e preferen
es and 
onstraints,respe
tively. This thesis proposed a new algorithm 
alled the \graph bran
h algorithm" thatsear
hes the optimum well-formed dependen
y tree in a dependen
y forest based on the bran
hand bound prin
iple. By adopting these data stru
tures and algorithms, PDG enables the propertreatment of the single valen
e o

upation 
onstraint and the non-proje
tive dependen
y stru
-ture, whi
h were not handled properly by the traditional methods. The des
riptive power of thedependen
y forest for ambiguous 
onstru
tions is examined by using the experimental grammarwith the rules that generate typi
al types of synta
ti
 ambiguities as well as an non-proje
tive
onstru
tion.In addition to the ar
 pre
ision ratio (APR) (measure for the 
omprehensive senten
e analysisability), this thesis proposed two new evaluation measures for dependen
y-based NLA systems
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es of their preferen
e and 
onstraint knowledge. The possibly 
orre
tsenten
e ratio (PCSR) measures the hypothesis generation ability, i.e., the performan
e of the
onstraint knowledge in
luding the generation knowledge. The ar
 disambiguation pre
isionratio (ADPR) whi
h measures disambiguation ability, i.e., the performan
e of the preferen
eknowledge. This thesis reported an experimental result for 
he
king these measures using thePDG prototype system. The disambiguation ability is well measured or 
ompared by usingADPR instead of APR.This thesis des
ribed the experimental results using the PDG prototype system with the proto-type basi
 English grammar. Four types of preferen
e knowledge (the WPP unigram frequen
y,the WPP bigram frequen
y, the unary dependen
y frequen
y and the binary dependen
y fre-quen
y) are extra
ted from the dependen
y tree 
orpus obtained by the ora
le system (existingma
hine translation system). The evaluation of 
omprehensive senten
e analysis ability is im-proved by introdu
ing every kind of preferen
e knowledge. Among various kinds of the 
ombi-nations of preferen
e knowledge, the best APR 88.3% is obtained by UA+UN (unary ar
 andunary node s
ores) and UA+BN (unary ar
 and binary node s
ores) in this experiment. This is10.9% improvement 
ompared with the baseline performan
e 77.4% APR.This thesis introdu
ed the foundations of PDG whi
h utilizes the two major synta
ti
 repre-sentations and showed its feasibility. There remain a lot of future works in PDG resear
h towardreal-world NLP appli
ations and semanti
 analysis.
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Appendix AProblem in the Synta
ti
 GraphConsider the parsing of \Tokyo taxi driver 
all 
enter" using the following grammar rules andlexi
ons.[Grammar Rules℄np/NP ! np
/NP : [℄np
/Nb ! np1/NP1,n/Na,n/Nb : [ar
(nj,NP1,Nb),ar
(n
,Na,Nb)℄np
/Na ! np2/NP2,n/Na : [ar
(n
,NP2,Na)℄np
/Na ! np3/NP3,n/Na : [ar
(n
,NP3,Na)℄np1/N
 ! n/Na,n/Nb,n/N
 : [ar
(n
,Na,Nb),ar
(n
,Nb,N
)℄np2/Nd ! n/Na,n/Nb,n/N
,n/Nd : [ar
(nj,Na,N
),ar
(n
,Nb,N
),ar
(n
,N
,Nd)℄np3/Nd ! n/Na,n/Nb,n/N
,n/Nd : [ar
(n
,Na,Nb),ar
(nj,Nb,Nd),ar
(n
,N
,Nd)℄[Lexi
on℄word(n,[Tokyo℄). word(n,[taxi℄). word(n,[driver℄).word(n,[
all℄). word(n,[
enter℄).This example senten
e has three well-formed dependen
y trees shown in Fig.A.1 (a), (b) and(
). The boxes np1, np2 and np3 in the dependen
y trees are given only for showing the 
orre-sponden
es between phrase stru
tures and dependen
y stru
tures.
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Fig.A.1 Problem in the synta
ti
 graph/ex
lusion matrix



156Sin
e n
-1 and n
-2 in (a), n
-2 and n
-3 in (b) and n
-3 and n
-1 in (
) have 
o-o

urren
erelation, respe
tively, the values of the ex
lusion matrix for these three pairs are 0 (\ " inthe �gure). This allows the existen
e of the dependen
y tree (d), whi
h has no 
orrespondingphrase stru
ture tree in the phrase stru
ture forest in the synta
ti
 graph/the ex
lusion matrix.Therefore, the synta
ti
 graph violates the soundness 
ondition.
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