Preference Dependency Grammar (PDG): Sentence Analysis Method

Based on Integrated Multilevel Preference and Constraint

EAFHRAFSE © 28 OB/ HIRKIFRZ 5T A L7 ST 572X

Hideki Hirakawa
TN Fht

A dissertation
in

Information Science and Technology

Presented to the Faculties of the University of Tokyo in Partial Fulfilment of the Requirements
for

the Degree of Doctor of Information Science and Technology

October 2007

Professor Hiroshi Nakagawa

Supervisor of Dissertation

Abstract

Natural language processing involves very complicated and hard-to-formalize design issues be-
cause it has to treat a wide range of different kinds of linguistic knowledge, such as morphological,
syntactic, semantic and contextual, with regularity and exceptionality. Various kinds of gram-
mar and knowledge representation frameworks and their processing algorithms are proposed in
each linguistic level. Morphological processing is one of the most developed and established
technologies in the area of natural language analysis (NLA). Semantic processing needs more
future researches. The syntactic layer, which is a bridge to the semantic layer, has been studied
intensively for years and various approaches have been proposed in the fields of computational
linguistics and linguistics.

Phrase structure syntax (Chomsky, 1956) and dependency syntax (Tesniere, 1969) are two
major syntactic theories, and phrase structure and dependency structure are widely used for
the syntactic representation of sentences. These structures are considered to show different
dimensions of the sentence structure and can be used for compensating each other. However,
insufficient efforts have been made for the integrated use of these syntactic structures, especially
in dependency analysis research.

This thesis proposes a novel dependency analysis method called “Preference Dependency
Grammar (PDG),” which adopts multilevel architecture utilizing the morphological structure,
phrase structure, and dependency structure representations. Each of the representations is a
kind of packed shared data structure that encompasses all possible sentence interpretations in its
interpretation space. This PDG architecture is introduced based on the following design prin-
ciples obtained through discussions on the NLA framework, which utilizes multilevel linguistic

representations with respect to preference and constraint knowledge.

(a) Avoiding over pruning as well as suppressing combinatorial explosion as much as possible
(b) Adopting effective pruning by applying possible constraints in the lower level
(c) Enabling optimum search in the uppermost level to utilize various levels of preference

knowledge

PDG is more advantageous than traditional dependency analysis methods in that it can handle
POS ambiguities in conjunction with dependency ambiguities and can incorporate more detailed

i

descriptions for both preference and constraint knowledge for the dependency structure. The
core technologies of PDG for enabling these features are a new data structure “dependency

9

forest” and a new algorithm “graph branch algorithm,” which are the main contributions of this
thesis.

The dependency forest is a new packed shared data structure for representing a set of de-
pendency trees with their preference scores. The dependency forest consists of the dependency
graph, the constraint matrix and the preference matrix. The multilevel preferences and con-
straints are integrated into the preference matrix and the constraint matrix of a dependency
forest. The dependency forest has a complete and sound mapping to the corresponding phrase
structure forest. Because of this feature, the phrase structure grammar (CFG grammar) can
function as a filter for the dependency structures for an input sentence, and the POS ambiguities
retaining all possible POS sequences can be introduced to dependency analysis. This thesis gives
the proof of the completeness and soundness of the dependency forest.

The dependency forest provides a precise definition of a set of dependency trees because the
constraint matrix can express co-occurrence restrictions between two arbitrary dependency rela-
tions. This flexibility enables PDG to handle non-projective dependencies and the single valence
occupation constraint. On the other hand, the preference matrix, which can express prefer-
ences for two arbitrary dependency relations, enables the integrated use of tree-local information
(preference on dependency relation) and string-local information (preference on word sequence).

This thesis proposes a new search method called the “graph branch algorithm” for dependency
forests. This algorithm searches for the best dependency tree with respect to the preference
matrix and the constraint matrix based on the branch and bound principle. The DP-based
algorithm, widely used in the optimum tree search task, cannot be applied to the dependency
forest search due to its high description abilities.

This thesis finally reports the experimental results using a prototype PDG system for ex-
amining the various aspects of the PDG framework including the dependency forest, the graph
branch algorithm and the effect of the multilevel knowledge integration using the prototype PDG

grammar.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Hiroshi Nakagawa for
his constant guidance and support in completing this thesis. I am also sincerely grateful to the
committee members: Professor Jun-ichi Tsujii, Professor Masato Takeichi, Professor Kokichi
Sugihara, Associate Professor Kumiko Tanaka, and Assistant Professor Takashi Ninomiya for
providing valuable feedback and suggestions. I would also like to thank Associate Professor Ko
Sakai from the School of Institute of Mathematics, University of Tsukuba, for his suggestions on
the proof of the completeness and soundness of the dependency forest.

The people in the Toshiba Research and Development Center, Satoshi Kinoshita, Akira Ku-
mano, Kazuhiro Kimura, Kenji Ono, Tatsuya Izuha, Kazuo Sumita, and Ryohei Orihara helped
me with their discussions and cooperation. I would like to thank the people in Toshiba Solution
Company, Etsuo Ito, Yumiko Yoshimura, and Miwako Shimazu for their help in preparing the
grammar, dictionary and data.

I would like to thank Professor Shin-ya Amano of the Shonan Institute of Technology, Professor
Hiroyuki Kaji of the University of Sizuoka, Professor Taizo Miyachi of Tokai University, and
Yumiko Okada for encouraging this thesis research. I also appreciate the comments from the
referees of my related papers submitted to the Transaction of Information Processing Society of
Japan and the Journal of Natural Language Processing.

Finally, and most importantly, thanks to my parents and my family for providing their unwa-

vering support during and before this work.

iii

Contents

Abstract

Acknowledgements

Chapter 1: Introduction

1.1

1.2
1.3
1.4
1.5
1.6

Background to the Research oo 0oL
1.1.1 Phrase Structure and Dependency Structure
1.1.2 Relation between Phrase Structure and Dependency Structure

Phrase Structure Analysis L

Dependency Structure Analysis Lo

Integrated Use of Phrase Structure and Dependency Structure

Contributions of This Thesis

Chapter Summaries L

Chapter 2: Sentence Analysis Model and PDG Design

2.1

2.2

Multilevel Sentence Analysis System oL oL
2.1.1 Basic Sentence Analysis Model
2.1.2 Multilevel Sentence Analysis Model
2.1.3 Conventional Multilevel Syntactic Analysis Systems

Proposal for a Dependency Analysis System Utilizing the Phrase Structure . . .
2.2.1 The Integrated Use of Linguistic Knowledge in a Multilevel Sentence Anal-

ysis System L.
222 PDGDesign
2.2.3 The Data Structure/Processing Model of PDG
2.2.4 Scoring and Optimum Solution Search in PDG
2.2.5 Processing Flow of the Experimental PDG System

Chapter 3: Packed Shared Data Structures

3.1
3.2

Prerequisites for Packed Shared Data Structures
Traditional Methods for the Packed Shared Data Structures
321 The WPP Trellis
3.2.2 The Packed Shared Phrase Structure Forest
3.2.3 The Syntactic Graph L oL

iii

co O N N =

10
13
17
19

21
21
21
25
29
30

30
32
33
35
36

3.3 Packed Shared Data Structures in PDG 42
3.3.1 Phrase Structure Forest oL 42
3.3.2 Dependency Forest 43
3.3.3 Well-formed Dependency Tree. 44
3.3.4 Initial Dependency Forest and Reduced Dependency Forest 44
3.4 Generation of the Phrase Structure Forest and the Initial Dependency Forest . 44
3.4.1 Morphological Analysis 45
342 Grammar Rule L 46
3.4.3 The Structureof Edge oo 46
3.4.4 Parsing Algorithm oo 49
3.4.5 Generation of Phrase Structure Forest and Initial Dependency Forest . . 50
3.5 Generation of the Reduced Dependency Forest 53
3.5.1 Merge Operation of Equivalent Arcs 54
3.5.2 Merge Condition for Equivalent Arcs 54
3.5.3 Increase Condition for IDed Dependency Trees 55
3.5.4 Increase Condition for Generalized Dependency Trees 57
3.5.5 Dependency Forest Reduction Algorithm 57
3.5.6 Execution Example of the Dependency Forest Reduction Algorithm . . . 59
3.6 Proof of the Completeness and Soundness of the Dependency Forest 61
3.6.1 Proof of the Completeness and Soundness of the Initial Dependency Forest 61
3.6.2 Correspondence between Phrase Structure Forest and Dependency Forest 76
3.7 Experiment for Analysis of Example Sentences 76
3.7.1 PDG Grammar Rules for Example Sentences 77
3.7.2 Analysis of Prototypical Ambiguous Sentences 78
3.7.3 1 to N Correspondence from Phrase Structure Tree to Dependency Trees 81
3.74 N to 1 Correspondence from Phrase Structure Trees to One Dependency
Tree . . . o . 82
3.7.5 Generation of Non-projective Dependency Tree 86
3.8 Concluding Remarks for Chapter 3 87
Chapter 4: Optimum Solution Search 89
4.1 Optimum Dependency Tree Search Methods for Dependency Graphs 90
4.1.1 Basic Framework 90
4.1.2 Dependency Graph L o 91
4.1.3 Well-formedness Constraints for Dependency Tree 91
4.1.4 Single Valence Occupation Constraint and Dynamic Programming 93
4.2 Semantic Dependency Graph and Dependency Forest 94
4.2.1 Semantic Dependency Graph and its Drawbacks 95
4.2.2 Dependency Forest 96
4.2.3 Relation between Semantic Dependency Graph and Dependency Forest . 96

vi

4.3 Optimum Tree Search for Dependency Forest Based on Graph Branch Method .
4.3.1 Outline of Branch and Bound Method

4.3.2 Graph Branch Algorithm

4.4 Example of Optimum Tree Search . .
4.4.1 Feasible Solution/Lower Bound Value Function
4.4.2 Example of Graph Branch Algorithm
4.4.3 Prototypical Ambiguous Sentences

4.5 Experiment for Graph Branch Algorithm

4.5.1 Environment and Performance Metric of the Experiment

4.5.2 Experimental Results

4.6 Extension to the Binary Preference Model

4.6.1 Extension of the Dependency Forest
4.6.2 Extension of the Graph Branch Algorithm

4.7 Concluding Remarks for Chapter

Chapter 5: Scoring

4 .

5.1 Preference Knowledge and Score Integration

5.1.1 Principle of Score Integration .

5.1.2 Basis of Score Integration

5.2 Scoring Function and Scaling Coefficient

5.3 Unary Score Formula o oo

5.3.1 Unary Node Score Formula
5.3.2 Unary Arc Score Formula

5.4 Binary Score Formulao

5.4.1 Binary Node Score Formula . .

5.4.2 Binary Arc Score Formula

Chapter 6: Evaluation

6.1 Evaluation Measures for Dependency-graph-based Systems

6.1.1 Traditional Evaluation Measures and Points in the PDG Evaluation

6.1.2 Comprehensive Analysis Ability

6.1.3 Hypothesis Generation and Disambiguation Ability

6.1.4 Environment of Experiment for Evaluation Measures

6.1.5 Evaluation Experiment for Evaluation Measures

6.2 System Evaluation with respect to Preference Knowledge

6.2.1 Evaluation of Comprehensive Sentence Analysis Ability

6.2.2 Evaluation of Disambiguation Ability

6.2.3 Evaluation of Selectivity Performance

6.3 Concluding Remarks for the Experiments

Chapter 7: Future Work

vii

97

97

99
103
103
104
106
109
109
110
112
113
114
116

117
117
117
118
119
120
120
121
125
125
126

131
131
131
132
133
136
138
141
142
143
144
146

149

7.1 Development of Real-world PDG System 149

7.2 Research on Semantic Structure oo 150
7.3 Bidirectional Model of PDG L 152
Chapter 8: Conclusion 153
Appendix A: Problem in the Syntactic Graph 155

viii

Chapter 1

Introduction

The final goal of natural language sentence analysis is to benefit human kind by making com-
puters understand the meanings of sentences. The basis of natural language analysis (NLA),
i.e., linguistics and computational linguistics, consists of layers of theories such as morphology,
syntax, semantics and context. The purpose of sentence analysis is to obtain mapping from an
input sentence to a correct interpretation in an appropriate linguistic layer. This is performed by
identifying the sentence structure by applying various kinds of linguistic and real world knowl-
edge.

NLA systems adopt the linguistic layer structure explicitly or implicitly. There are various
types of applications in each linguistic layer. Information retrieval systems utilize morphological
analysis for comparing inflected words. Machine translation systems analyze source sentences to
obtain their syntactic and/or semantic representations to transform them to the target language
sentences. Dialogue systems require the contextual or intentional structures for the utterance
from a user. Interpretations in some linguistic layer are naturally considered to be intermediate
structures between the corresponding structures in its lower and upper linguistic layers. Mor-
phological structures bridge the input sentence to the syntactic structures, which bridge them to
the semantic structures. The ability of an NLA system is basically determined by the expressive
abilities of the sentence interpretation, knowledge description power and quantity adopted by the
NLA system. Therefore, the most important and fundamental issues of the NLA system design
are what kinds of knowledge in linguistic layers are described and how they should be applied
properly.

Syntactic layer has been studied intensively for years and various approaches have been pro-
posed in computational linguistics as well as in linguistics. Phrase structure syntax (Chomsky,
1956) and dependency syntax (Tesniere, 1969) proposed in the same era are two major syntactic
theories and the phrase structure and the dependency structure are widely used as syntactic
representation for sentences. These structures are considered to show different dimensions of the
sentence structure and can be used for compensating each other. However, insufficient efforts
have been made for research in this area, especially in computational linguistics.

The goal of this thesis is to discuss the NLA frameworks that utilize multilevel linguistic repre-

sentations and to propose a novel dependency analysis method that integrates the morphological

structure, phrase structure, and dependency structure representations. As described below, the
integration of multilevel preference and constraint knowledge is the most basic issues in multi-
level NLA system™ design. The remainder of this chapter describes the traditional approaches

for the two major syntactic frameworks and the contributions of this thesis.

1.1 Background to the Research

Phrase structure (or constituency) syntax (Chomsky, 1956) and dependency syntax (Tesniere,
1969) are two major syntactic frameworks in linguistic and computational linguistics; that is,
these are two major interpretation description schemes (or data structures) for representing
the syntactic structures of sentences. This section describes the phrase structure and depen-
dency structure schemes and the traditional approaches for integrating these two representation

schemes.

1.1.1 Phrase Structure and Dependency Structure

Phrase structure grammars describe the structure of a sentence in terms of constituency rela-
tions on the words of the phrases of the sentence. Each word in the sentence has its POS (part
of speech). Phrases are represented as a sequence of POSs or phrasal labels (non-terminal labels
or symbols) each of which defines a set of possible sequence of phrases. The set of the phrase
structure relations that can be defined on a sentence forms a tree, known as the phrase structure
tree.

Dependency grammars describe the structure of a sentence in terms of binary head-modifier
(also known as dependency) relations on the words of the sentence. A dependency relation is
an asymmetric relation between a word called the governor (head, parent) and a word called
the dependent (modifier, daughter). A word in the sentence can play the role of the governor in
several dependency relations, i.e., it can have several dependents; however, each word can play
the role of the modifier exactly once in a majority of dependency grammar frameworks. One
particular word does not play the role of the modifier in any relation, and this is named the root.
The set of the dependency relations that can be defined on a sentence form a tree, known as the
dependency tree (Lombardo and Lesmo, 1996).

Fig.1.1 shows the phrase structure tree and dependency tree for the sentence “Time flies like
an arrow.” The phrase structure explicitly represents phrases (nonterminal nodes), structural
categories (nonterminal labels), and possibly some functional categories (grammatical functions).
On the other hand, the dependency structure represents head-dependent relations (directed
arcs*?), functional categories (arc labels), and possibly some structural categories (POS) (Nivre

and Sandra, 2006). The phrase structure follows a horizontal organization principle: it combines

*1I NLA system with more than one sentence interpretation data structures.
*2 There are two conventions to represent the direction of dependency relations. The source and the target of
an arrow shows the dependent node and the governor node, respectively, in this thesis.

S Phrase Structure (PS) Dependency Structure (DS)
vp
pp pr

np np sub vpp / det

) a3 NN, O

n Y pre det n [tlme] [fly] [like] [an] [arrowJ

| | | | |

time fly like an arrow

Information explicitly expressed by PS Information explicitly expressed by DS
- Phrases (non-terminal nodes) - Head-dependent relations (directed arcs)
- Structural categories (non-terminal labels) - Functional categories (arc labels)

Fig.1.1 Phrase structure and dependency structure

the constituents into phrases (larger structures) until the entire sentence is formed. On the other
hand, dependency is an asymmetrical relation between a head and a dependent, i.e., it follows
the vertical organization principle (Kruijff, 2001).

Context free grammar (CFG) has been studied in depth and adopted as the computational
basis of the phrase structure scheme. The context free grammar G is formally defined by the

following four components.

G=<V,V,,P,S >
V; : finite set of terminal symbols
V5, : finite set of nonterminal symbols
P : finite set of rewriting rules

S : finite set of start symbols (SCV,,)

On the other hand, there is no established standard for the formal representation of the depen-
dency grammar framework. This thesis categorizes the existing dependency grammar frameworks
into three dependency models, i.e., the Tesniere model, the single dependency model, and the

lexical rule model*3.

(1) Tesniere model

The Tesniere model of dependency grammar is a formal grammar framework (Gaifman, 1965;
Hays, 1964) based on the grammatical theory known as dependency grammar (DG), which was
proposed by the French linguist Tesniere (Tesniere, 1969). Researches on parsing algorithms
(Lai and Huang, 1994; Lombardo and Lesmo, 1996; Courtin and Genthial, 1998; Lombardo and
Lesmo, 1998) and the analysis of the grammatical equivalence between CFG and DG (Gaifman,
1965; Abney, 1994) have been conducted based on this model.

The dependency grammar G of the Tesniere model is defined as follows (Lombardo and Lesmo,
1996):

G=<S5CW,LT>

*3 These are not generally established terms.

Y, Yi o Y,

Fig.1.2 Dependency rule in the Tesniere model

: a finite set of symbols (vocabulary of words in a natural language)
: a set of syntactic categories (preterminals, in constituency terms)
: a non-empty set of root categories (CD.S)
: a set of category assignment rules of the form X : x, where XeC', zeW
: a set of dependency rules of the form X (Y7 Y5 ... Y1 # Vi ... Y},)
where X€eC, Y1€C, ... Y,,€C, and # is a special symbol that does not belong to C'.

N~ wm Qg

A tree resulting from the dependency rules is essentially an ordered tree of depth one, wherein
the nodes are labeled as shown in Fig.1.2. A dependency rule defines the simultaneous existence
of multiple dependency relations in order. This is somewhat similar to a CFG rewriting rule that
defines the simultaneous existence of multiple phrases or words in order.

The dependency tree for a sentence z(= ajaz..a,€W*) should satisfy the following condi-

tions™**:

(a) The nodes are the symbols a;eW (I<i<p).

(b) The tree has to be covered by a proper set of grammar rules.

(c) The tree satisfies the projectivity condition*® with respect to the order in =.
)

(d) The root is a unique symbol as such that A, : as€L and A;€S.

(2) Single dependency model

The single dependency model is basically an analytic grammar model that generates depen-
dency trees for a given sentence. This model covers many dependency parsers such as “kakari-
uke”*$ analyzers (Yoshida, 1972; Shudo et al., 1980; Hitaka and Yoshida, 1980; Ozeki, 1986;
Nakagawa and Ito, 1987; Matsunaga and Kohda, 1988; Hirakawa and Amano, 1989a; Kuro-
hashi and Nagao, 1994; Ozeki, 1994; Hirakawa, 2001; Kudo and Matsumoto, 2005), dependency
parsers (Covington, 1990; Kubon, 2001; Yamada and Matsumoto, 2003; Nivre and Scholz, 2004;
McDonald et al., 2005), and CDG (constraint dependency grammar) parsers (Maruyama, 1990;
Harper et al., 1999; Wang and Harper, 2004).

In this model, dependency grammar is defined by two components, i.e., a set of dependency

*4 Refer to (Lombardo and Lesmo, 1996) for the detailed formal definition

*5 The projectivity condition consists of two conditions, i.e., “no cross dependency exits” and “no dependency
covers the top node” (Mel’cuk, 1988). The second condition is unnecessary when a special root node is
introduced at the top or end of a sentence. Dependency structures which violate the projectivity condition
are called “non-projective” structures.

*6 Kakari-uke is a type of dependency relation. The details are explained in Section 1.3.

.. De p en d en Cy Gr T i e—

Dependency
Generation
Rules

A
A
A
)) 2 a
A A

Sentence Set of dependency relations Set of dependency trees

Well-formedness
Constraints

Fig.1.3 Single dependency model

generation rules G, which generates a set of dependency relations between two nodes (words) and
a set of well-formedness constraints C', which defines well-formed dependency trees. As shown in
Fig.1.3, a set of dependency relation arcs are obtained by applying G to an input sentence (word
sequence Wy, Wa,...W,,). A set of possible dependency trees for the sentence is defined as a set
of dependency trees such that each consists of the subset of the generated dependency relation
arcs and satisfies the well-formedness constraints C'. This framework can distinguish sentences
from non-sentences with respect to the grammar (G and C). It can also generate all possible
grammatical sentences and their grammatical structures by combining a module that generates
all possible word sequences. Therefore, the single dependency model is a type of grammar for
languages.

G can be defined as a function that returns a set of dependency pieces for the given two words.
Here, “dependency piece” is defined as a triple < DN,GN,A >, where DN is a dependent
node, GN is a governor node, and A is an arc between the two nodes. This is represented in
the form “DN 2 GN.” There are several types of functions according to the types of nodes
and arcs. For example, one type of function may produce simple dependency pieces such as
“time — fly” and “time <— fly” from the words “time” and “fly.” Another type of function
may return dependency pieces such as “time/n SiLN fly/v,” “time/n Lomod, fly/n” and “time/v
ob fly/n,” where subj, obj, and nmod represent subject, object, and nominal modification
relations, respectively. Chapter 4 provides a more detailed discussion on the node and arc types
for dependency structures.

The definition of the well-formedness constraints C' prescribes various types of depen-
dency grammars. The most well-known well-formedness constraints are the axioms of the

well-formedness of the dependency structure, as defined by Robinson (1970).

(a) One and only one element is independent.
(b) All others depend directly on some element.

(¢) No element depends directly on more than one other. (unique head)

(d) If element A depends directly on element B and some element C' intervenes between them
(in linear order of string), then C' depends directly on A or on B or some other intervening

element. (projectivity)

Some different versions of dependency structures are obtained by changing the well-formedness
conditions. As described in (Kruijff, 2002), if the “unique head” constraint defined above is
relaxed, the dependency structures form graphs instead of trees. This type of dependency gram-
mar allows dependents to have multiple heads (Johnson et al., 1985; Hudson, 1984; Hudson,
1991). Relaxing the “projectivity constraint” leads to a non-projective dependency grammar
(Covington, 1990; Kubon, 2001; McDonald et al., 2005). These types of general constraints are
insufficient to define a proper set of sentences of some natural language. CDG allows arbitrary

unary and binary constraints for describing detailed well-formedness constraints.

(3) Lexical rule model

The lexical rule model is a dependency grammar framework where the dependency structure is
constructed by combining the partial dependency patterns defined in the lexicons. Nasr (2000)
proposed a dependency parsing algorithm combining the partial dependency trees corresponding
to the words in a sentence using a graph stack mechanism. Mertens (2002) proposed a chart-
parser-based method for constructing the dependency structure for a sentence by combining the
basic partial dependency structures in lexicons. Link grammar constructs dependency struc-
tures based on the partial connection patterns defined in lexicons (Sleator and Temperley, 1991;
Grinberg et al., 1995; Lafferty et al., 1992)*7.

1.1.2 Relation between Phrase Structure and Dependency Structure

It is sometimes pointed out that the merit of the dependency syntax over the phrase struc-
ture is that the dependency structure has the immediate mapping on the predicate-arguments
structures, i.e., the semantic structures needed for the next stage of interpretation (Sgall et al.,
1986; Mel’cuk, 1988; Hudson, 1991) and is not necessary to “read off” head-modifier or head-
complement relations from a tree (Covington, 1990). On the other hand, the phrase structure
syntax can express the construction rules related to the word or phrasal order naturally, which
is not, explicitly represented by the dependency relation.

The phrase and dependency structures are not competing representations; instead, they de-
scribe different aspects of the sentence structures (Kruijff, 2002; Nivre and Sandra, 2006). Kruijff
mentioned that “A phrase-structure tree is closely related to a derivation, whereas a dependency
tree rather describes the product of a process of derivation. Usually, given a phrase-structure

tree, we can get very close to a dependency tree by constructing the transitive collapse of headed

*7 Link grammar is not considered as an instance of dependency grammar by its creators, and it departs
from the traditional view of dependency by using undirected links; however, the representations used in
link grammar parsing are similar to the dependency representations in that they consist of words linked by
binary relations (Nivre, 2005).

structures over non-terminals.” Further, “Constituency and dependency are not adversaries,
they are complementary notions. Using them together we can overcome the problems that each
notion has individually.” From the linguistic viewpoint, Kodama (1987) discussed the linguis-
tic information required for obtaining the sentence interpretation in the context of dependency
grammars and positioned the dependency structure as a bridge for combining or integrating the
syntactic information and the semantic information.

A sentence has a set of possible syntactic interpretations in general, and consequently has
a set of corresponding phrase structure interpretations (trees) and the dependency structure
interpretations (trees). If phrase structure trees and dependency structure trees for a sentence
are different representations for the syntactic interpretations of the sentence, there should be
consistent correspondences between these two different kinds of syntactic trees. Since syntactic
grammars define the syntactic structures of a sentence, there should be some consistent mapping
between phrase structure grammar and the dependency grammar if both of them define the
syntactic structures of sentences.

Gaifman (1965) studied the equivalence between CFG and the Tesniere model DG. As shown
in Section 1.1.1, the grammar rule formalism of the Tesniere model DG is similar to that of
CFG. There are two types of equivalence relations defined between the two grammars. The two
grammars are called “weakly equivalent” if the set of strings defined by them are equivalent.
They are called “strongly equivalent” if the set of sentence structures generated by them are
equivalent. A definition for the equivalence between the sentence structures of the two grammars
is necessary for checking the strong equivalence between the two grammars. Gaifman adopted
the concept of “ramification” to check the equivalence between a phrase structure tree and a
dependency tree. Ramification is a parenthesized structure that represents information that is
similar to the phrase boundary. Procedures are outlined for obtaining the ramification from a
phrase structure tree and a dependency tree and checking their equivalence. Gaifman proved
that CFG and DG were weakly equivalent, i.e., there exists a DG that is weakly equivalent to a
given CFG and vice versa. On the other hand, there exists a CFG that is strongly equivalent to a
given DG; however, the inverse has not been proven to be true. Although a detailed explanation
is not provided here, the condition for CFG to be strongly equivalent to DG is that “a phrase
structure system*® is equivalent to some d-system™? iff its degree is 0 or 1”7 (Gaifman, 1965). A
CFG grammar with a recursive derivation has an infinite degree. This condition is very strong
and Gaifman’s discussion disproved the strong equivalence between CFG and DG.

Abney (1994) pointed out a problem in Gaifman’s framework and studied the equivalence
between CFG and DG using a revised framework. Gaifman’s mapping method for obtaining
the ramification from a dependency tree may produce multiple results due to the lack of in-
formation. To resolve this mapping ambiguity, Abney assumed that the heads of phrases were
predetermined. Abney assumed a headed CFG (HCFG) and then discussed the equivalence be-

*8 This is equivalent to CFG
*9 This implies the Tesniere model DG

tween CFG and DG derived from this HCFG based on Gaifman’s framework. The derived CFG
is known as a “characteristic grammar” and the derived DG is known as a “projection gram-
mar.” The result shows that the characteristic and projection grammars are not equivalent, i.e.,
there exist HCFGs that have equivalent characteristic grammars and different projection gram-
mars, and inversely, there exist HCFGs that have equivalent projection grammars and different
characteristic grammars.

As described in Nivre (2005), these results on the equivalence between CFG and DG have
been mentioned to explain the relative lack of interest in dependency grammars within natural
language processing. If the strong equivalence between CFG and DG is disproved, a complete
formal mapping between the phrase and dependency structures of sentences cannot be con-
structed. Discussions by Gaifman and Abney have at least two important premises. First, the
discussed dependency grammar is limited to the Tesniere model DG. Other dependency grammar
frameworks are not discussed. Second, as already mentioned by Gaifman (1965), the criterion
for the equivalence between the phrase structure tree and dependency tree, i.e., ramification, is
natural for the former but not for the latter. The criteria for the equivalence between these two
structures should be a basic and important issue in discussing the equivalence between CFG and
DG.

The discussion on the equivalence or correspondence between the phrase structure grammar
and dependency grammar does not fall within the scope of this thesis; however, this thesis
presents a method for creating not one-to-one but consistent correspondences between a set of

phrase structure trees and dependency trees for a sentence as described in Chapter 3.

1.2 Phrase Structure Analysis

As described in Section 1.1.1, CFG is established as a basis of phrase structure grammar to ob-
tain the phrase structures for a sentence. Efficient CFG parsing algorithms such as CKY, Early,
Chart, and LR algorithms are widely used. In the 1980s, the framework for attaching arbitrary
processing codes to CFG grammar rules was developed on the basis of the logic programming
language Prolog (Colmerauer et al., 1973; Clocksin and Mellish, 1984), such as DCG (Definite
Clause Grammar) (Pereira and Warren, 1980), and BUP (Bottom Up Parser) (Matsumoto et
al., 1983). This mechanism enables a more detailed grammar description by introducing extra
constraints referring to various kinds of grammatical and/or semantic features, and structure
building function (Dahl and McCord, 1983). The unification operation*!? in Prolog played an
important role in grammar description. In conjunction with the unification framework, linguis-
tic investigations resulted in new grammar frameworks, such as FUG (Functional Unification
Grammar) (Kay, 1984), LFG (Lexical Functional Grammar) (Kaplan, 1989; Riezler et al., 2002),
PATR-II (Shieber et al., 1983), GPSG (Generalized Phrase Structure Grammar) (Gazdar et al.,

*10 Operation to make equivalent two terms with or without variables by assigning appropriate values to the
variables, or operation attempting to make a one-time assignment of contents to the variables for a set of
logical equations.

1985), HPSG (Head-driven Phrase Structure Grammar) (Pollard and Sag, 1994; Tsuruoka et
al., 2004), and CCG (Combinatory Categorical Grammar) (Steedman, 2000; Clark and Curran,
2003)*!L. These are called unification grammars or lexical unification grammars because they
introduce lexical information such as linguistic features and subcategorization information. A set
of equations that represent linguistic structure and/or constraints are generated from a phrase
structure tree for a sentence. The interpretation of a sentence is well-formed (or grammatical)
if and only if these equations have proper variable assignments. Unification grammars provide
much more detailed and lexicalized linguistic constraints compared with the skeleton CFG frame-
work. Unification grammar parsers are called deep parsers because they generate deep and full
sentence structures.

The elaboration of grammar rules provides more opportunities to obtain correct sentence in-
terpretations. However, this is not sufficient because natural language sentences generally have
plausible well-formed interpretations as well as implausible interpretations. Ambiguity resolution
is indispensable for obtaining the most plausible interpretation from grammatical interpretations.
Disambiguation is performed by assigning a preference degree for each of the available interpreta-
tions and choosing the best one among them. The knowledge assigning this preference degree is
called preference knowledge. Intensive studies on the disambiguation method utilizing statistics
from corpora began from the late 1980s to 1990s. The so-called corpus-oriented methods provide
a disambiguation mechanism by means of three components, i.e., a statistical model that defines
the plausibility of a sentence interpretation, a method for learning parameters from corpora and
a method for decoding (or computing) the best interpretation for a sentence from among its pos-
sible interpretations. PCFG (Probabilistic CFG) is proposed for a CFG framework (Jelinek et
al., 1992). PCFG consists of the probabilistic model based on the probabilities of CFG rules that
are obtained by the inside/outside algorithm and the algorithm similar to the Biterbi algorithm
for computing the most plausible phrase structure tree in the parse forest of an input sentence.

One significant improvement on the corpus based method is obtained by introducing the lexical
information to the probabilistic model of the PCFG (Carroll and Charniak, 1992; Eisner, 1996a;
Charniak, 1995; Charniak, 1997; Collins, 1999; Charniak, 2000; Bikel, 2004). Such a method is
known as the lexicalized PCFG. The head of phrase (or phrase head)*!? plays an important role
in lexicalized PCFGs. Charniak (1995) reported the significant improvement of parse accuracy by
introducing head information such as POS of head, parent’s head, grandparent’s head, and rule
selection by head information into the probabilistic model. Collins (1999) introduced history-
based lexicalized CFG (Head-Driven Statistical Model) based on the so-called history-based
parsing method (Black et al., 1992) and proposed a bottom-up chart parser based on some
probabilistic models. Based on this method, Bikel (2004) analyzed that lexical information such

as lexical relations and sub-categorization information were effective for improving the parsing

*I1 CCG is not CFG but has a close relation to CFG.

*12 «“the head of phrase” is defined as “an element with X category in X bar theory” (Chomsky, 1970) or “the
element that determines the syntactic function of the whole phrase” or simply “most important word of
phrase”

10

accuracy.

Research on feature structure grammars (Abney, 1997) promoted the researches on lexical
stochastic unification grammars such as HPSG (Oepen et al., 2002; Toutanova and Manning,
2002), CCG (Clark and Curran, 2003), and LFG (Johnson et al., 1999; Riezler et al., 2002;
Kaplan et al., 2004). Lexical dependency information is also utilized as features of the maximum
entropy model (Bouma et al., 2001).

One approach for utilizing the dependency information in phrase structure analysis is to utilize
the output from some independent dependency analyzer. Sagae et al. (2007) incorporates the
output from a shallow dependency parser as a hard dependency constraint or soft dependency
constraint to improve the accuracy of the target HPSG deep parser. Mapping between the phrase
structure and dependency structure is obtained through an intermediate HPSG structure.

As shown above, the CFG-based approach has achieved higher sentence accuracy by introduc-
ing frameworks for more precise constraint knowledge and sophisticated preference knowledge.
Lexical relations including the dependency relation are widely introduced to lexicalized PCFG
and improved parsing accuracy (Bikel, 2004). Recent studies on phrase structure oriented pars-
ing systems (Bouma et al., 2001; Charniak and Johnson, 2005; Sagae et al., 2007) show the

tendency for utilizing lexical dependency relations for improving the parsing accuracy.

1.3 Dependency Structure Analysis

Although the Tesniere model dependency grammar (Tesniere, 1969; Gaifman, 1965; Hays,
1964) was proposed as a formal grammar framework in the 1960s, researches on dependency
analysis systems for Tesniere model were conducted relatively recently (Lai and Huang, 1994;
Lombardo and Lesmo, 1996; Courtin and Genthial, 1998; Lombardo and Lesmo, 1998). A
considerably greater number of studies have been conducted within the framework of the single
dependency model. In particular, Japanese grammar and the Japanese analysis system based on
kakari-uke grammar has been studied (Hashimoto, 1946; Yoshida, 1972; Shudo et al., 1980; Hitaka
and Yoshida, 1980; Nakagawa and Ito, 1987; Matsunaga and Kohda, 1988), where a sentence
structure is represented by a set of kakari-uke (dependency) relations between two linguistic
units called “bunsetsu,” which is a sequence of morphemes containing at least one contents word.
Kakari-uke grammar has a well-formedness axiom: the “dependent always locates to the left of
its governor (no backward dependency).” Kakari-uke grammar is a kind of dependency grammar
with this axiom peculiar to Japanese language in addition to the axioms by Robinson (1970).
Kakari-uke parsing algorithms including the stack-based algorithm and DP based algorithm are
proposed (Shudo et al., 1980; Hitaka and Yoshida, 1980; Nakagawa and Ito, 1987; Matsunaga and
Kohda, 1988; Ozeki, 1986; Ozeki, 1994; Kurohashi and Nagao, 1994). Katoh and Ehara (1989)
proposed a DP-based dependency parsing algorithm allowing backward dependency, i.e., an
algorithm for general dependency grammar with Robinson’s axiom, by extending the algorithm
proposed by Ozeki (1986).

As described in Section 1.1.1, CDG is a kind of single dependency model grammar. Constraints

11

dependency grammar G, which determines a set of possible assignments of a given sentence, is

formally defined by the following four components (Maruyama, 1990).

G=<X,R,L,C >
3} : finite set of terminal symbols
: finite set of role-ids

: finite set of labels

Q= =

: constraint that an assignment A should satisfy

C is a set of arbitrary unary and binary constraints for describing detailed well-formedness
constraints (Maruyama, 1990; Harper et al., 1999). CDG adopts the eliminative parsing method
where sentence analysis is defined as a constraint satisfaction problem (CSP) for all possible
interpretations of a sentence*'>. CDG generates a dependence graph which encompasses all pos-
sible dependency trees by assuming all dependency relations between every two nodes (or words)
in an input sentence. The constraints in C' are propagated over the network by the constraint
propagation mechanism (Waltz, 1975; Montanari, 1976) to eliminate ill-formed dependency inter-
pretations. The original CDG parser (Maruyama, 1990) is extended to support the simultaneous
analysis of sentences with multiple alternative lexical categories (POS ambiguity) and features
(Harper and Helzerman, 1995).

The treatment of preference knowledge in dependency analysis, as well as in phrase structure
analysis, is studied in both the heuristic approach (Bouma et al., 2001; Hirakawa, 2001) and
corpus-based approach (Carroll and Charniak, 1992; Collins, 1996; Eisner, 1996b; Eisner, 1996¢;
Lee and Choi, 1997). Eisner (1996b) proposed a dependency parsing algorithm which analyses
a whole sentence as a non-constituent span based on the DP algorithm similar to the CKY
parsing algorithm and Eisner (1996c) examined four probabilistic models*!*. Eisner’s third
model (Model C called the “generative model” or “edge factored model”) defines the probability
of a dependency tree based on the probabilities of dependency arcs in the tree corresponds to
the preference priority and is widely used in the single dependency model. Lee and Choi (1997)
presented an unsupervised learning method based on the inside-outside algorithm and a decoding
method similar to Eisner’s parsing algorithm. As is the case in the probabilistic CFG research
field, maximum entropy models for dependency parsing are proposed (Stolcke et al., 1997; Chelba
et al., 1997). Moreover, the probabilistic model is introduced in the CDG framework (Wang and
Harper, 2004).

Recently, intensive researches on dependency analysis have been conducted on the data driven
dependency parsing framework, and the Conference on Computational Natural Language Learn-
ing (CoNLL) 2007 has been devoted to dependency parsing. In this CoNLL-X shared task on
dependency parsing, there are two dominant models for data-driven dependency parsing (Buch-
holz and Marsi, 2006; McDonald and Nivre, 2007). The first is the “all-pairs” approach in which

*13 The parsing method that generates possible interpretations in each linguistic level in a step-by-step manner
is called the generative parsing method.
*14 More detailed explanation are given later in this section

12

every possible arc is considered in the construction of the optimal parse. The MSTParser (Max-
imum Spanning Tree parser) (McDonald et al., 2005), which searches the optimum tree from the
dependency graph that encompasses all possible dependency trees for one WPP*!® sequence for
a sentence, is a typical example of the all-pairs approach. The second is the “stepwise” approach
or “history-based” approach (Black et al., 1992), where the optimal parse is built stepwise de-
pending on the previous decisions in parsing process. The Yamada-Matsumoto parser (Yamada
and Matsumoto, 2003) and the MaltParser (Nivre and Scholz, 2004) are typical examples of the
stepwise approach. These two approaches adopt the discriminative learning method.

All-pairs parsers can learn the features of the global sentence structure and excel in long
sentence analysis. On the other hand, stepwise parsers can learn richer local features compared
with the all-pairs parser and excels in shorter sentence analysis. The result of the CoNLL-
X shared task shows almost the same sentence analysis accuracies for these different types of
dependency parsers (McDonald and Nivre, 2007).

The multi-agent method obtains a better output by utilizing or combining the multiple outputs
from the different types of agents. This idea is applicable to sentence analysis for improving
the parsing accuracy (Inui and Inui, 2000; Zeman and Zabokrtsky, 2005). Sagae and Lavie
(2006) proposed a new parser ensemble method for dependency parsing where outputs from some
dependency parsers are decomposed into their constituents and the best well-formed dependency
tree is searched from the set of decomposed constituents. This method is examined using a single
dependency parser with some different set-ups (Sagae and Tsujii, 2007).

As shown in Section 1.2, information from a dependency relation is widely utilized mainly
as a preference source. In contrast, the phrase structure information is not widely utilized in
dependency parsers. As described in Section 1.1.1, phrase structure and dependency structure
are two major data structures for representing different aspects of the syntactic structure of a
sentence and are expected to be used for compensating each other. However, it is not clear how
and for what purpose the phrase structure should be used in dependency analysis. To clarify
this matter, some problems in current dependency analysis methods are discussed below.

The first problem is related to the size of the possible dependency tree space to search. Two
popular parsers, i.e., the MSTParser and the MaltParser, accept a sequence of words with POS
tags as their input. The disambiguation of POS ambiguity is left for the task for some tagger.
This poses a problem because the disambiguation errors in the tagging process cannot be solved
by improving the ability of a dependency parser (Yamada and Matsumoto, 2003). On the
other hand, a CDG parser generates inherent dependency trees for the first step by performing
possible role value assignments, and then a set of constraints are applied to these role values
to eliminate ungrammatical assignments. This approach causes poor parsing efficiency due to
the size of possible interpretation space. Optimization methods such as the enhanced pruning

method based on modifier and modifiee features and the role assignment restriction based on

*15 WPP is a pair of a word and a part of speech (POS). The word “time” has WPPs such as “time/n” and
“time/v.” A compound word can be one WPP such as “flying saucer/n” which corresponds to two input
words (or positions).

13

grammar and corpus information are introduced for this problem (Harper et al., 1999; Harper et
al., 2000). However, a problem persists for the all-pair parsing approach because the introduction
of POS ambiguity causes a magnification of the search space. In addition to this space problem,
the introduction of POS ambiguity poses another crucial problem to the MSTParser. One of
the parsing algorithms adopted in MSTParser for applying non-projective dependency analysis,
i.e., Chu-Liu Edmonds algorithm, has the assumption that a well-formed dependency tree is a
spanning tree of the dependency graph. This algorithm is not applicable to the dependency
graphs containing multiple nodes for one word. This kind of graph is called “single-node graph”
in this thesis*!®

The second issue is about a description power of the single dependency model. Since the output
of a sentence analysis system is prescribed by its preference knowledge and constraint knowledge,
the potential ability of the sentence analysis system is prescribed by the description abilities for
these two kinds of knowledge. As far as the preference knowledge model for the dependency
structures is concerned, Eisner (1996¢) proposed and examined four probabilistic models, i.e.,
bigram lexical affinities (model A), selectional preferences (model B), recursive generation or
edge factored model (model C) and realistic selectional preferences (model D). The majority of
dependency parsers based on the single dependency model adopt the edge factored model. How-
ever, the selectional preference and the realistic selectional preference models outperformed the
edge factored model and the integrated use of tree-local information (preference on dependency
relation), and string-local information (preference on word sequence) results in better parsing
accuracy (Eisner, 1996¢). This suggests that the dependency analyzer with the edge factored
preference model can achieve more accuracy by introducing a more precise preference model with
word sequence preference. On the other hand, the constraint description ability for the single
dependency model is not sufficient in some cases. For example, the MSTParser can handle non-
projective and projective parsing by switching two parsing algorithms (McDonald et al., 2005),
i.e., the Chu-Liu-Edmonds maximum spanning tree algorithm (Chu and Liu, 1965; Edmonds,
1967) and the Eisner’s algorithm (Eisner, 1996b). This implies that the well-formedness con-
straint for the dependency tree is bound to the algorithms. It is difficult to give the system a
more detailed constraint for prescribing the well-formed non-projective dependency trees. The

enhancement of the descriptive power of the constraint knowledge is one solution to this problem.

1.4 Integrated Use of Phrase Structure and Dependency
Structure
This thesis investigates the idea of the integrated use of the phrase and dependency struc-

tures. This integration requires mapping between these two structures of a sentence. This is

because sentence analyzers cannot combine any linguistic information without correspondence

*16 The dependency graph that has nodes representing multiple roles for each of the input words is called
“multiple-node graph” in this thesis.

14

between the two structures. The following shows some traditional approaches for constructing

this mapping.

(1) Conversion from/to phrase structure to/from dependency structure

Collins (1999) presented a method for converting a phrase structure tree to a dependency
tree. The corresponding dependency tree is uniquely generated from a headed phrase structure
tree, as shown in Fig.1.4. The head of a phrase is determined by using heuristic rules based
on nonterminal symbols, POS information, etc. The dependency relation is unlabeled and com-
prises four elements, i.e., parent node label, head daughter label, non-head daughter label, and
non-head daughter direction. The corresponding dependency tree is automatically obtained by
defining the head of each phrase structure node. The generated dependency tree reflects the
structure of the original phrase structure tree, which indicates the simplicity of the mapping.
The dependency trees obtained from the phrase structure trees are mainly used for evaluating
the accuracies of phrase structure parsers (Clark and Curran, 2004). The evaluation methods
based on the dependency structure are considered to be more stable and reliable as compared
to those directly based on the phrase structure, because the former methods are dependent only
on the word information (system independent) and not on the phrase boundaries and phrase
categories (system dependent), as described in 6.1.1.

Xia and Palmer (2000) presented the following three methods for converting dependency
structures into phrase structures; the X-bar-theory-based method, Collins’ method, and an-
other heuristic method. The conversion is performed in order to build the dependency structure
annotated corpora from the phrase structure annotated corpora.

These structure conversion methods basically provide a mapping between the phrase and de-
pendency structures by adopting some heuristics along with the advantages afforded by converted
structures, such as the evaluation of parsing systems and the construction of different types of
corpora. These conversion methods are not intended for the integrated use of the phrase and
dependency structures in the sentence analysis process.

Rambow and Joshi (1995) studied the relation among three grammar formalisms, namely,
CFG, TSG (tree substitution grammar), and DG*'7, from the viewpoint of the main factors
of grammar formalism, i.e., elementary structures and combining operators. Rambow showed

that the process of lexicalizing CFG naturally led to a TAG (tree adjoining grammar), and the

S (will) Parent node label :S

Head daughter label VP
Non-head daughter label ~ : NP
Non-head daughter direction : left

. B

Pierre Vinken will join the dependency relation <S,VP,NP left>

NP (Vinken) VP (will)

Fig.1.4 Collins’ dependency tree

*IT TAG (tree adjoining grammar) and MTT (meaning-text theory) are mentioned.

15

derivation trees generated in parallel with the phrase structure trees of the TAG analysis were
the dependency trees that closely resemble those of MTT (meaning-text theory) (Mel’cuk, 1988;
Wanner, 1994; Kahane, 2003). A derivation tree is constructed algorithmically by combining
the lexical nodes corresponding to two phrase structure trees, ¢; and t, which are adjoined in
the TAG analysis process. In some situations, derivation trees exhibit inconsistencies in the
directions of dependencies with the MTT dependency trees as described by “... while tree t; is
adjoined into ¢y, but the lexemic element of ¢5 depends on that of ¢;. Thus, while adjunction
corresponds to the establishment of a syntactic dependency relation, the direction of the relation
cannot be determined from the direction of the adjunction alone.” This method has an advantage
in that it can automatically generate a dependency structure, without providing any additional
information about the mapping between the phrase and dependency structures. However, this

feature also leads to the generation of unnatural dependency structures, as described above.

(2) Partial Structure Mapping

The rewriting rule of CFG represents a part of the phrase structure, i.e., the partial tree.
Seo and Simmons (1989) proposed a framework for mapping the phrase structure trees and
dependency trees based on a set of rules. Each rule defines a headed CFG rewriting rule (partial
phrase structure tree) and a mapping to the partial dependency tree. The nodes in a partial
dependency tree are linked to the heads of constituents in the corresponding phrase structure
rule. In this thesis, this mapping method is called the “partial structure mapping” method.
Fig.1.5 shows the overall mapping framework based on the partial structure mapping method

proposed in Seo and Simmons (1989). An extended CFG parser analyzes an input sentence and

/ Grammar Rule

W,

Yiw, on

d Wi
Xyhw, Xitw o Xefw, o X, Mapping Wi ()/’
W,

n

\\ Headed CFG Rule Partial Dependency Tree
Sentence WH) | Parser

Packed Shared Phrase Structure Packed Shared Dependency Structure
(Parse Forest) (Syntactic Graph)

e A) o A0S
L Mappin SO O O
A8 D pe PpIng ¥ 00 o %0
oA A :
k. A AA i 3
w4 A, 0 000 <>
Set of phrase structure trees Set of dep_é-r-ldency trees

Fig.1.5 Framework based on partial structure mapping rules

16

generates two packed shared data structures, i.e., the headed parse forest*!®

encompassing all
possible phrase structure trees and the “syntactic graph” encompassing all possible corresponding
dependency trees. The later part of this thesis uses the term “phrase structure forest” instead
of the parse forest to strike a clear contrast to the dependency forest described in Section 1.4.
In comparison with Abney’s framework described in Section 1.1.2, the partial structure map-
ping rule defines not only the phrase head information but also the structural mapping between
CFG and DG partial trees. The partial structure mapping rule is more flexible because it allows
an arbitrary depth in the dependency structure corresponding to one CFG rule. The purpose of
Seo and Simmons’ research was to provide a compact packed shared data structure corresponding
to the phrase structure forest of a sentence. Seo and Simmons did not discuss the equivalence
between CFG and DG where the formal definition of DG as well as CFG was indispensable*!?.
Seo and Simmons defined the completeness and soundness of the syntactic graph with respect
to the two mapping relations between the phrase structure forest and the syntactic graph as

follows:

(Completeness) All phrase structure trees in the phrase structure forest can be mapped from
the dependency trees in the syntactic graph.
VPST (phrase structure tree) ADT (dependency tree) dependency tree corresponding
to PST is DT

(Soundness) All phrase structure trees mapped from the dependency trees in the syntactic
graph are in the phrase structure forest.
VDT (dependency tree) APST (phrase structure tree) dependency tree corresponding
to PT is DT

Seo and Simmons (1989) proved the completeness but not the soundness of the syntactic graph.
Hirakawa (2006b) showed that the soundness of the syntactic graph was not satisfied, i.e., the
mappings between the phrase structure trees and the dependency trees were incomplete in the
syntactic graph.

There appears to be no method for constructing the complete mapping between the phrase and
dependency structures. PDG realizes the complete mapping between the phrase and dependency
structures based on the partial structure mapping by introducing a new packed shared data
structure called the “dependency forest” instead of the syntactic graph; furthermore, it realizes
the integrated usage of the phrase and dependency structures at the syntax level. The details of

the dependency forest are explained in Chapter 3.

*18 The formal name of the “parse forest” is “packed shared parse forest” (Tomita, 1987).
*19 Dependency grammar formalism based on the partial structure mapping rules is an interesting research
topic that is beyond the scope of this thesis.

17

1.5 Contributions of This Thesis

This thesis proposes a new dependency analysis method through discussions on the design
principles for multilevel NLA systems focusing on the treatment of preference and constraint
knowledge. The proposed sentence analysis method (or framework) is called the “preference
dependency grammar (PDG).” PDG is an all-pair multilevel dependency analysis method with
the morphological and syntactic levels, and has the following features for the issues described in
1.3.

(a) Phrase structure analysis is utilized in the dependency structure analyzer
(b) POS ambiguities are handled in dependency structure analysis
(c¢) Detailed descriptions for preference and constraint knowledge for the dependency structure

are available

The core technologies of PDG for enabling these features are a new data structure “dependency
forest” and a new algorithm “graph branch algorithm,” which are the main contributions of this

thesis.

(1) Dependency Forest

The dependency forest is a new packed shared data structure for representing a set of de-
pendency trees with their preference scores. The dependency forest consists of the dependency
graph, constraint conditions, and preference information. The details of the dependency for-
est are described in Chapter 3. The following three are the main contributions related to the

dependency forest.

(a) The method for obtaining the dependency forest for a sentence
Based on the partial structure mapping method briefly described in Section 1.4, the sen-
tence analysis algorithm proposed in Chapter 3 generates the dependency forest, which
has the complete and sound mapping to the corresponding phrase structure forest. The
lack of soundness of the traditional approach for the partial structure mapping method,
i.e., the syntactic graph, is also shown in Chapter 3. The complete mapping between the
phrase structure forest and dependency forest provides the basis of the integrated use of
these structures. The phrase structure grammar (CFG grammar) can function as a filter
for the dependency structures for the input sentence, and the POS ambiguities retaining
all possible WPP sequences are introduced into the dependency forests instead of adopting
only one WPP sequence as an input to the dependency analyzer. Thus, the CFG filtering
enabled by the dependency forest suppresses the explosion of dependency trees found in

the all-pairs approach in the single dependency model.

(b) Proof of the completeness and soundness of the dependency forest

Chapter 3 gives the proof of the completeness and the soundness of the dependency forest

18

with respect to the phrase structure forest.

(c) Packed shared data structure with detailed preference and constraint knowl-
edge description
The dependency forest provides higher descriptive ability compared to the existing
dependency-graph-based packed shared data structures employed in major all-pairs

dependency parsers.

[Constraint Matrix|
The dependency forest provides a precise definition of a set of dependency trees en-
compassed in the dependency graph by introducing the constraint matrix, which can
express co-occurrence constraints between two arbitrary dependency relations in a
dependency tree. The dependency forest can handle POS ambiguity, non-projective

dependency trees, and the single valence occupation constraint*2°,

Traditional ap-
proaches utilizing the dependency graph as a packed shared data structure cannot
handle these issues because they have no explicit means for expressing detailed con-
straints. As described in Chapter 4 in detail, the dependency graph searched by the
Chu-Liu-Edmonds maximum spanning tree algorithm is restricted to a single node
dependency graph and cannot encode POS ambiguity. The scored dependency graph
searched by the DP based-algorithms such as Eisner (1996b) and Ozeki (1994) is re-
stricted since they cannot handle non-projective dependency trees and cannot express

the single valence occupation constraint between two dependency relations.

[Preference Matrix|
The edge factored model is widely used in the all-pairs approach for expressing the
preferences of the dependency trees encompassed in a dependency graph. On the
other hand, the preferences of the dependency trees in a dependency forest are de-
fined by the preference matrix of the dependency forest. The preference matrix can
express preferences for arbitrary two dependency relations (called the binary prefer-
ence model of PDG) as well as the edge factored model (called the unary preference
model of PDG)*2!. The unary preference model of PDG can treat the word or WPP
bigram preference as well as the dependency co-occurrence preference. The unary pref-
erence model of PDG enables the integrated use of tree-local information (preference
on dependency relation) and string-local information (preference on word sequence)

described in Section 1.3.

(2) Graph Branch Algorithm
This thesis proposes a new optimum search algorithm called the “graph branch algorithm”
based on the branch and bound principle (Land and Doig, 1960; Ibaraki, 1978). The graph

*20 This is a kind of co-occurrence constraint with respect to the valences of a predicate. The details are
described in Section 4.1.4.
*21 The details of the unary and binary preference models are described in Chapter 4.

19

branch algorithm can search the optimum well-formed dependency tree in a dependency forest.
The DP-based search algorithms such as Eisner (1996b) and Ozeki (1994) as well as the maximum
spanning tree algorithms cannot be applied to the dependency forest search due to its high

description ability.

(3) New Evaluation Measures

In addition to the widely adopted evaluation measure for evaluating the comprehensive analysis
ability, this thesis proposes two new evaluation measures for dependency-based NLA systems in
Chapter 6. The possibly correct sentence ratio measures the hypothesis generation ability and
the arc disambiguation precision ratio measures the disambiguation ability of dependency-based
NLA systems. This thesis reports an experimental result for checking these measures using the

PDG prototype system.

1.6 Chapter Summaries

The main contents of this thesis are divided into three parts. The first part, Chapter 2,
discusses sentence analysis models for integrating multilevel preference and constraint knowledge
and describes the overall framework of PDG. The second part, Chapters 3 to 5, describes the
detailed data structures and algorithms employed in PDG. The last part, Chapter 6, reports
some evaluation measures and the experimental results obtained using the experimental PDG
system. The remaining chapters of this thesis are summarized as follows.

Chapter 2 discusses sentence analysis models for integrating multilevel linguistic knowledge
and shows the PDG design. This chapter explains basic sentence analysis model consisting
of a sentence interpretation space, three kinds of linguistic knowledge (generation, constraint,
and preference knowledge) and an optimum interpretation extraction mean. After discussing
the properties of the basic sentence analysis model, the multilevel sentence analysis model is
introduced and investigated for clarifying the design principles toward the integrated use of
phrase structure and dependency structure in a multilevel sentence analysis system. Based on
this design investigation, this chapter explains the overall architecture of the PDG system as
well as its processing flow.

Chapter 3 describes the details of the packed shared data structures of PDG that were
introduced in Chapter 2, particularly the two data structures at the syntax level, i.e., the phrase
structure forest and the dependency forest. This chapter describes the problems in traditional
packed shared dependency structures and explains the details of a new data structure called
the “dependency forest,” which has a complete and sound mapping to the corresponding phrase
structure forest. This feature is indispensable for the data structure used in the multilevel
sentence analysis model described in Chapter 2. This chapter describes the details of the PDG
grammar formalism, parsing algorithm, and the algorithm for generating the phrase structure
and dependency forests, and provides proof of the completeness and soundness of the dependency

forest. This chapter also provides an experiment for analyzing prototypical ambiguous sentences

20

and discusses the mapping relations between the phrase structure tree(s) and the dependency
tree(s) as well as the treatment of non-projective dependency structures in PDG.

Chapter 4 proposes a new algorithm known as the “graph branch algorithm” that computes
the optimum dependency tree(s) from a dependency forest with preference scores. As is true in
the dependency forest, a dependency graph with preference scores on its arcs is widely used for
packed shared data structures for representing a set of scored dependency trees. This chapter
formalizes the optimum tree search problem on a scored dependency graph as a search problem
with preferences as well as constraints, and shows that traditional methods such as the spanning
tree search method and the dynamic programming method are not applicable to dependency
forests. The graph branch algorithm enables the optimum solution search for a dependency forest.
This algorithm is based on the branch and bound principle and inherently has an exponential
order of computational complexity. An experiment using the prototype PDG system shows no
serious combinatorial explosions for ordinary sentences and exhibits a very good performance for
the pruning strategy described in this chapter. Finally, Chapter 4 describes an extension of a
dependency forest with only scored arcs (called the unary model) to one with arc co-occurrence
scores (called the binary model) and shows the graph branch algorithm for the binary model.

Chapter 5 describes a scoring process that computes the preference scores for the dependency
forest of a sentence based on a various kind of preference knowledge. PDG utilizes corpus
statistics of some partial linguistic structures such as word/POS frequency, word/POS bigram
frequency and word/POS dependency frequency. Such statistical information that is obtained
from each linguistic level is computed and integrated into the preference scores in the preference
matrix of the dependency forest for a sentence. The optimum dependency tree(s) are obtained
from this dependency forest by the graph branch algorithm described in Chapter 4. Chapter 5
explains the principle and basis of score integration and shows the formulas for computing the
preference matrix for a sentence.

Chapter 6 discusses and proposes three evaluation measures for dependency structures and
reports the experimental results obtained using the PDG prototype system. In addition to
the widely adopted evaluation measure for evaluating the comprehensive analysis ability of a
dependency-based NLA system, this chapter proposes two new measures for evaluating the hy-
pothesis generation ability and disambiguation ability of NLA systems. An experiment for check-
ing these measures is conducted. Then, experiments for evaluating some aspects of the PDG
system performance with respect to the preference knowledge are conducted to demonstrate the
effect of the integration of multiple preference knowledge.

Chapter 7 presents some possible directions for future research.

Chapter 8 summarizes and concludes this thesis.

21

Chapter 2

Sentence Analysis Model and the
PDG design

2.1 Multilevel Sentence Analysis System
2.1.1 Basic Sentence Analysis Model

In general, an NLA system computes structures for a sentence by generating a set of its
possible interpretations (application of interpretation generation knowledge), rejecting impos-
sible interpretations (application of constraint knowledge), and obtaining the preference order
of the possible interpretations (application of preference knowledge). Fig.2.1 presents this sen-
tence analysis model*!. A set of interpretations of a sentence exists in the interpretation space
prescribed by the interpretation description scheme. Each interpretation is either correct (©),

plausible (O), or implausible (x) with respect to the real-world situation.

(1) Interpretation Description Scheme and Interpretation Space

A formal description of linguistic interpretation requires a proper representational scheme based
on some appropriate data structure. The interpretation space defines a set of structural data for
expressing the interpretation of sentences. For example, spaces defining phrase structure trees,
dependency structure trees, semantic graphs, or logical formula are widely used as interpretation
spaces. An interpretation description scheme defines the well-formedness of the structural data
as data type. Well-formedness as an interpretation of a sentence is defined by the constraint

knowledge.

(2) Generation Knowledge
The generation knowledge*? generates a set of candidate interpretations in the interpretation
space (i.e., expressed in the interpretation description scheme) from the input data. Examples

of interpretation generation include processing such as assigning POSs to words by consulting

*1 Constraint knowledge can be defined as a type of preference knowledge that does not provide any possi-
bilities. However, the application of constraint knowledge implies pruning in the computation, which is in
clear contrast to the application of the preference knowledge.

*2 “Interpretation generation knowledge” is simply called “generation knowledge” in this thesis.

22

Preference Knowledge Constraint Knowledge
preference order of interpretations rejection of interpretations

accept

The optimum interpretation
Sentence —t— ©

A b TS Optimum Interpretation Extraction
Interpretation

Generation Knowledge O correct

N) QO plausible
generates all possible interpretations x implausible

Interpretation Space
prescribed by interpretation description scheme

Fig.2.1 Natural language analysis system model

dictionary and generating possible phrase structure trees by appling CFG rules. Generation
knowledge is a kind of constraint knowledge in the sense of the term, because it functions to

extract the possible interpretations for a sentence from the whole interpretation space.

(3) Constraint Knowledge

Constraint knowledge defines a set of well-formed interpretations for a sentence and filters
out the impossible interpretations in the candidate interpretations generated by the generation
knowledge. The constraint knowledge in conjunction with the generation knowledge (or sim-
ply the constraint knowledge in the wider sense) defines the sentence coverage, i.e., a set of
acceptable sentences, of the NLA system. Therefore, this knowledge corresponds to a grammar
in linguistics from the Chomskyan viewpoint (Chomsky, 1957). Many computational grammar
frameworks have been proposed and studied, in which a variety of linguistic knowledge has
been incorporated. Grammar frameworks are based on interpretation description schemes that
prescribe interpretation spaces such as phrase structure, dependency structure, semantic graph

structure and logical formula.

(4) Preference knowledge

Preference knowledge provides the ordering of the interpretations in the interpretation space.
Many researches on preference knowledge, such as preference semantics (Wilks, 1975), have been
conducted in linguistics. In general, two approaches are followed for implementing preference
knowledge in NLA systems, i.e., the heuristic approach and the corpus-based approach. In the
heuristic approach, a human grammarian extracts and encodes the preference rules based on
his/her linguistic insight to an NLA system and refines them through system development. The
corpus-based approach attempts to extract the optimum preference knowledge from tagged or
plain corpora by applying a learning technique to obtain statistical rules and/or parameters. The
corpus-based approach is intensively studied in various application areas because the heuristic
approach requires tremendous efforts, and occasionally, grasping the complexity in heuristic rule
debugging is beyond the human ability.

Preference knowledge has been widely adopted for NLA systems through the use of the corpus

23

based method adapted from speech technology. As statistical methods extend their application
scope from the N-gram model (word sequence) to the context free grammar, dependency gram-
mars, etc., more NLA systems can benefit from the statistical power obtained from large-scale

corpora as described in Sections 1.2 and 1.3.

(5) Optimum Interpretation Extraction

The output of the NLA system is the optimum interpretation extracted from among the re-
maining interpretations according to the preference order. The optimum extraction is to search
the interpretation space for the best interpretation that satisfies the well-formed constraints,
i.e., a kind of combinatorial optimization problem. This kind of problem has a lot of variations
from an easy one (requiring polynomial order computational complexity) to hard one (requiring
exponential order computational complexity) depending on the characteristics of the target data
structure, constraints, and preferences.

Various types of linguistic preference and constraint knowledge usable in sentence analysis lie
in each linguistic layer. Fig.2.2 shows some examples of the preference and constraint knowledge
at each linguistic analysis level*®. Constraint knowledge is divided into two categories. The

lower part shows the basic language-independent constraints **

and the upper part shows the
more detailed and language-dependent constraints. A detailed explanation of the preferences

and constraints is provided in the latter part of this thesis.

(6) Linguistic Knowledge and System Examples

Before providing a more detailed explanation of the basic sentence analysis model or system,
two examples are shown. Fig.2.3 corresponds to the sentence analysis model of the probabilistic
CFG (PCFG) (Jelinek et al., 1992). The generation knowledge, preference knowledge, and
interpretation space are the CFG rules, probabilities of the CFG rules, and phrase structures
prescribed by the grammar rules, respectively. PCFG has no constraint knowledge. The optimum

interpretation is computed by using the algorithm similar to the Viterbi algorithm. Fig.2.4 shows

Multi-level knowledge
D d Funecti S tic/Logical
Knowledge Word WPP Sequence Phrase Structure ependency/Functio emantic/Logica
Type nal Structure Strucutre
Strin Part of speech Constituent Syntactic Function Semantic Function
€ (V.NADJ) (NP,VP) (Subject,Object) (Agent Goal)
Preference y § Phase structure Dependency Istructure Semantic delplendency
K | Word probability | N-gram probability probability probabilty probability
nowledge Word distance Case frame/valency
WPP adjacency Constituent sequence Attribute agreement World knowledge
Constraint Projectivty
. rojectivi ' .
Knowledge Infletion Simple WPP role No oveHapplngl Goverage . Simple semantic rolel
Coverage constraint Tree form Single valence occupation

Fig.2.2 Preference knowledge and constraint knowledge for each linguistic layer

*3 Not shown in Fig.2.2, contextual processing such as an anaphora resolution and so forth requires constraint
knowledge (Walker et al., 1994; Mori et al., 2000) and preference knowledge (Seki et al., 2002).
*4 This kind of constraint is sometimes called an axiom as shown in Robinson’s axiom in Section 1.3.

24

Preference Knowledge Constraint Knowledge
Probabilities of the CFG rules No constraints
e>0> X T f
et
NSk oo N The optimum interpretation
Sentence —%—» < © ==%> ©
Lo o x|
N / Optimum Interpretation Extraction
\ o / the Viterbi algorithm
Generation Knowledge x
CFG rules / o

Interpretation Space
Phrase structure (parse tree) defined by the grammar

Fig.2.3 Sentence analysis model of the PCFG

the sentence analysis model of the original CDG (Maruyama, 1990). CDG adopts the eliminative
parsing method in which the parsing proceeds by filtering out the incorrect interpretation from
all possible interpretations of a sentence by applying the unary and binary constraints. The
original CDG has no preference knowledge*3.

Needless to say, in order to formally use preference and constraint knowledge, they must be
described on top of some formal schema or data structure. However, the constraint and preference
knowledge working for the data (or the interpretation) in the interpretation space is independent
of the description schema or data structure for the constraint and preference knowledge. For
example, introducing the semantic knowledge as the means for restricting the interpretations
in the syntactic interpretation space is a very popular technique. CDG shown in Fig.2.4 is a
dependency grammar framework with unary or binary constraints. These constraints are used
for incorporating morphological and semantic information (Maruyama, 1990). DCG (Pereira and
Warren, 1980) and BUP (Matsumoto et al., 1983) have developed a mechanism to extend the

CFG framework to incorporate arbitrary extra-conditions using Prolog codes that, for example,

Constraint Knowledge

Preference Knowledge ! .
Unary and binary constraints

No preference knowledge

Interpretations

Sentence ———> 00

Optimum Interpretation Extraction
No optimum solution search
Generation Knowledge
Possible dependencies
between all words
Interpretation Space
Possible dependency trees

Fig.2.4 Sentence analysis model of the original CDG

*5 CDG extensions such as an introduction of graded constraints (Heineck et al., 1998) and probabilistic model
(Wang and Harper, 2004) are proposed to treat preference knowledge within the CDG framework.

25

can be used for introducing semantic constraints (Muresan and Rambow, 2007). Some of the
recent morphological taggers utilize syntactic data structures such as supertags (phrase structure
data) (Bangalore and Joshi, 1999; Clark and Curran, 2004) and superARG (dependency data)
(Wang and Harper, 2002; Wang and Harper, 2004). As shown in Section 1.2, dependency
structure information and semantic information are utilized in phrase structure analysis.

In general, data structures referred from the different linguistic layer processing are not inter-

pretations of a sentence but partial structures or features in the sentence.

(7) Optimum Solution Search Algorithm

As briefly explained in Section 1.3, there are two approaches for the optimum tree extraction,
i.e., the history-based approach and the all-pairs approach*®. The history-based approach (Black
et al., 1992) assumes that the probability of the parsed structure is determined by the parsing
process, i.e., each tree-building procedure uses a probability model p(AlIB) to weight any action
A based on the available context, or history, B. The all-pairs method obtains the optimum parsed
structure from among a set of possible parsed structures based on the probability (or preference
score) defined on the parts of the parsed structures. This is undertaken in three steps, i.e.,
the generation of possible candidates, generation of preference scores, and search for the parsed
structure with the highest preference score. The process of calculating the preference scores and
setting them to some data structure is called “scoring” in this thesis.

Generally speaking, the history-based method realizes higher speed efficiency because it func-
tions deterministically; occasionally, however, it suffers from the local minimum problem because
the decisions during parsing are made based on local information, which may eventually lead to
failure in capturing the correct global structure. On the other hand, the all-pairs method re-
quires more computational resources but can handle global structure preferences and assures the
optimality of the obtained structure. McDonald and Nivre (2007) reported that the accuracies
of the Malt parser (history-based method) and MSTParser (all-pairs method) were almost iden-
tical irrespective of the methodological difference between them. Researches on the extension,
improvement and integration of these dependency parsers has been conducted (Charniak and
Johnson, 2005; Xiaodong and Chen, 2007; Huang and Chiang, 2007; Hall, 2007). This thesis fo-
cuses on the all-pairs full-decoding dependency analysis method and thereby on optimum search
algorithms for the packed shared dependency structures. The applicability and performance of
an optimum search algorithm is closely related to the characteristics of the target data structure,

constraints and preferences.

2.1.2 Multilevel Sentence Analysis Model

From the viewpoint of the multilevel knowledge integration, sentence analysis frameworks are
classified as either a single-level model or a multilevel model. The single-level model has one

interpretation space and is merely the basic sentence model described in the previous section.

*6 The “all-pairs approach” is not restricted to dependency parsing in this thesis.

26

PK1 CK1 PK2 CcK2 PK3 CK3 Optimum
Interpretation
Extraction

Sentence] hat N AN
o

The Optimum
Interpretation

.............

Level 1 Interpretation: @ Level 2 Interpretation: A Level 3 Interpretation: Q)

Fig.2.5 Multilevel sentence analysis model

The multilevel model has more than one interpretation spaces and possibly multiple description
schemes. Fig.2.5 shows the basic constructions of the multilevel models. The multilevel model
is basically a cascaded connection of some basic sentence models. However, this does not imply
a sequence of cascaded processing modules. It shows the construction of linguistic knowledge
and data structures. Each interpretation space represents the interpretations of a sentence in
some layer of linguistic theory, such as morphology, syntax and semantics. The multilevel model
assumes a layer structure among its levels, i.e., linguistic data structures. The input sentence
side is referred to as the lower level and the output side, the upper level. The data structure of
an intermediate level is considered to be an intermediate data structure bridging the interpreta-
tions from the lower adjacent level to the upper adjacent level. For example, a WPP sequence
for a sentence (morphological analysis result) is the intermediate data structure bridging the
interpretation from a character sequence (input sentence) to a phrase structure tree (syntactic
analysis result).

Each level can have its generation, preference, and constraint knowledge. The generation
knowledge generates possible interpretations from a set of its lower-level interpretations. Every
interpretation of a sentence in some interpretation space should have a mapping called the “in-
terpretation mapping” (represented by the dotted line labeled “mapping”) to its counterpart in
the lower adjacent level of the interpretation space; however, the inverse is not necessarily true.
For example, there can be a morphological interpretation of a sentence having no correspond-
ing syntactic interpretations; however, there cannot be a syntactic interpretation of a sentence
having no corresponding morphological interpretations. One interpretation has 0 to M (M >1)
interpretation mappings toward the upper level and 1 to N(/N>2) interpretation mappings to-
ward the lower level, reflecting the existence of the ambiguities in natural languages. Thus, the

multilevel model should satisfy the following two conditions related to interpretation mapping.

Definition 2.1.1 [Multilevel model mapping condition]

(a) Every interpretation in an intermediate level has at least one mapping to an interpretation
in its lower level

(b) The interpretation in one level has a mapping to at least one mapping to an interpretation

27

in its upper level iff there is no pruning by some constraint

Conditions (a) and (b) are respectively called the soundness condition and completeness condition
for the multilevel model mapping condition. The difference with the mapping condition for the
syntactic graph lies in the completeness condition.

An optimum solution search is performed at the uppermost level to obtain the final output
of the sentence in Fig.2.5. The interpretation mapping can be used for searching the optimum
interpretation based on the upper-level decision and not on the current-level decision by tracing
back the mapping from the optimum interpretation at the upper level to the corresponding
interpretation at the current level. For example, the tagger based on the optimum semantic
analysis result can be constructed naturally.

A sentence analysis system based on the multilevel model is called the “multilevel system”
in this thesis. Multilevel systems can refer to interpretations in the intermediate levels and
have richer linguistic knowledge descriptions compared to single-level systems. However, they
also have considerably more design complexities on account of having two degrees in knowledge
integration design, i.e., knowledge integration in one level and knowledge integration in multilevel
construction.

Defining the data structure is one of the most important issues in NLA system design. There
are two major approaches for data structure implementation, i.e., the enumeration approach (or
k-best approach) and the packing approach. The enumeration method maintains the possible
interpretations as a set of independent data. The packing method utilizes packed-shared data
structures for expressing a set of interpretations efficiently to avoid the combinatorial explosion
problem. In general, the set of interpretations of a sentence is defined by three components,
i.e., a packed shared data structure, an interpretation extraction schema, and a set of well-
formedness constraints on the structures. Occasionally, some of the well-formedness constraints
are embedded in the interpretation extraction scheme.

The enumeration method is superior to the packing method in descriptive power or freedom
because it has no restriction for expressing a set of interpretations. For example, though simple
WPP trellis, which is widely used as a packed data structure for expressing a set of possible WPP
sequences of a sentence, can express word bigram constraint efficiently, it cannot encode a word
trigram or more constraint*”. In contrast, the enumeration method simply lists a set of possible
WPP sequences. From the viewpoint of computational resource, the enumeration method easily
becomes intractable due to the combinatorial explosion of the possible interpretations. In many
implementations, the k-best pruning method is adopted for avoiding this problem. The combi-
natorial explosion is suppressed by the k-best, threshold in intermediate level; however, this may
lead to overpruning. k-best pruning requires the application of preference knowledge for that
level of interpretation space.

The packing method avoids the pruning of interpretations to the maximum extent possible

*7 The word trigram or more constraint can be expressed by a set of independent constraints in conjunction
with the WPP trellis.

28

by suppressing the combinatorial explosion possibly into a polynomial order complexity. Since
the representable sets of interpretations are prescribed by the constrcution of a packed-shared
data structure, the constraint representation schema and the interpretation extraction schema
(enumeration algorithm or optimum solution search algorithm) are key design issues. In contrast
to the k-best method, the packing method does not require intermediate pruning as well as the
intermediate application of preference knowledge.

Thus, the antinomy between resource (computational and space complexity) and accuracy
(pruning and knowledge description ability) lies between the enumeration and packing methods.
Various researches including the integration of these two methods have been conducted, as de-
scribed in the next section. There are no definite and concrete criteria for comparing these two
methods. Determining which of the methods is appropriate for a given problem seems to be a
design issue. This thesis focuses on the multilevel system based on the packing method. Each
analysis level encompasses all possible sentence interpretations in its interpretation space in the
form of each packed shared data structure. This model is referred to as the “multilevel packed
shared data connection (MPDC)” model in this thesis.

Finallly, some relation of the multilevel issues to the linguistic theory is described. The mul-
tilevel model explained in this section can be seen as a model based on MTT (meaning-text
theory) (Mel’cuk, 1988; Wanner, 1994; Kahane, 2003). MTT proposes a multilevel language
model wherein the mappings between meanings and texts are established through multilevel
interpretation data structures. The mappings between interpretations (or data structures) in
adjacent levels of interpretation spaces assures the overall mappings. Basically, MTT is a bidi-
rectional linguistic theory covering sentence analysis and sentence generation. However, MTT
is developed and presented strictly in the synthesis direction and has thus far been discussed
insufficiently with regard to the analysis direction. As Kahane (2003) described, “If we want to
present a real procedure of analysis or synthesis, it is much more complicated because we have
to take into account the question of multiple choices between rules (and, consequently, problems

b2

of memorization, choices, backtracking and parallelism).” The treatment of multiple choices,
i.e., the ambiguities in sentence analysis, is not focused on; consequently, the treatment of the
preference knowledge seems to be beyond the scope of the MTT framework so far. The prob-
lem of multiple choices is not crucial, in some sense, for sentence generation because multiple
choices simply generate different texts representing the same meaning. On the other hand, it
is crucial for sentence analysis because it generates different (i.e., incorrect) meanings from one
text expression. Multiple choices induce the computational problems of memorization, choices,
backtracking, and parallelism along with the combinatorial explosion of sentence interpretations.
The multilevel model is a type of MTT-based framework that is capable of managing the multiple

choices and preference knowledge.

29

2.1.3 Conventional Multilevel Syntactic Analysis Systems

As described in the previous section, the output of an NLA system is an interpretation in a
certain interpretation space (for example, the phrase structure tree and the dependency tree).
One of the interpretation spaces of the multilevel system is selected as its output level, and
the well-formedness conditions and preference measure are defined on the interpretations in
the space. Theoretically, the output level need not be the uppermost level. The output data
structure defines the linguistic layer of the NLA system. For example, even if a tagger utilizes
phrase structure information or semantic information, it is a morphological analyzer. This section
overviews conventional NLA systems or technologies from the viewpoint of the multilevel model
to discuss design principles for multilevel systems.

Many conventional syntactic analysis systems adopt a two-level construction with the data
structures in morphological and syntactic layers, i.e., WPP sequence and syntactic structure.
Some adopt the 1-best method for phrase structure analysis (Collins, 1999; Charniak, 2000;
Bikel, 2004) and dependency structure analysis (Hirakawa, 2001; McDonald et al., 2005; Ya-
mada and Matsumoto, 2003; Nivre and Scholz, 2004). In this construction, the disambiguation
of POS ambiguity is left as the task for the adopted tagger and issues a problem because the
disambiguation errors in the tagging process cannot be solved by improving the ability of a
dependency parser. One applicable solution to this problem is adopting the k-best system con-
struction.

Parsing iteration (or pipeline parsing) proposes a sentence analysis architecture with multiple
analysis modules connected in the pipeline (Charniak, 2000; Hollingshead and Roark, 2007). The
earlier stage analyzer generates k-best solutions efficiently by utilizing simpler preference knowl-
edge and the later stage module selects the best result based on more sophisticated preference
knowledge, which requires more computational resources. Charniak (2000) applies a grammar in
a simplified manner in the first stage and then applies the same grammar fully in the later stage.
Charniak and Johnson (2005) use the generative parsing model for the first stage to obtain the
k-best candidates and then reranks the candidates based on the maximum entropy model to
select the optimum solution.

Researches on multilevel systems with a combination of shallow parsing and deep parsing have
been conducted. The shallow parser identifies the partial or superficial structures of a sentence
based on the local information observed in a sentence. It need not generate the overall structure
of a sentence. In contrast, the deep parser analyzes the deep construction of a sentence, such
as syntactic relations and semantic relations, and generates the overall structure of a sentence.
One typical shallow parser in this construction is the supertagger. A supertag represents some
structural information in a higher level interpretation space such as a partial phrase structure
tree. Supertagging, or the selection of a supertag for every word in a sentence, is almost equivalent

to parsing (almost parsing) because a supertag sequence almost defines the syntactic structure of

30

a sentence (Bangalore and Joshi, 1999)*%. A supertagger is used as a shallow parser for improving
the parsing speed without the deterioration of parsing accuracy of deep parsers * such as the
CCG parser (Clark and Curran, 2004; Djordjevic et al., 2007), HPSG parser (Ninomiya et al.,
2006; Ninomiya et al., 2007), and CDG parser (Wang and Harper, 2002; Wang and Harper, 2004).
This suggests the design principle that it is important to have accurate k-best implementations
in the lower levels of multilevel systems.

Trellis (or lattice) is widely accepted as a packed shared data structure for representing the
morphological interpretations of a sentence in multilevel systems. This data structure represents
the possible adjacency relation between WPPs. Constraints on WPP adjacency is one of the
important kinds of constraint knowledge in Japanese. The use of this morphological constraint
knowledge in the syntactic parsing stage significantly improves the efficiency of the parsing
process (Shirai et al., 2000).

2.2 Proposal for a Dependency Analysis System Utilizing

the Phrase Structure

2.2.1 The Integrated Use of Linguistic Knowledge in a Multilevel Sen-

tence Analysis System

There are two types of knowledge integrations, i.e., the different-type knowledge integration
(how to treat the constraint and preference knowledge) and the multilevel knowledge integra-
tion (how to treat different levels of linguistic knowledge). These integrations pose a problem
in satisfying two conflicting requirements, i.e., the suppression of the combinatorial explosion
and the suppression of the overpruning of the possible interpretations of a sentence. In each
level of a natural language, the number of computationally possible interpretations of a sentence
generally increases exponentially with its length. This causes a serious problem with regard to
the time and space in the computation of the sentence analysis. The pruning of possible inter-
pretations by applying constraint knowledge is an effective method to avoid the combinatorial
explosion. However, the overpruning of the possible interpretations may degrade the system
accuracy. Therefore, NLA systems must have a proper mechanism to integrate the preference
and constraint knowledge.

Multilevel knowledge integration also poses the same problem. Pruning is more effective at
the morphological level than at higher levels such as the syntactic and semantic levels since
an interpretation at the morphological level corresponds to multiple higher level interpretations.
However, pruning of the lower level interpretations based on lower level linguistic knowledge may
fail to provide the correct interpretation due to the lack of upper level linguistic information.

Therefore, it is important for NLA systems to have a proper mechanism to integrate the multilevel

*8 The well-formedness check and generation of the sentence interpretation remain to be undertaken in the
uppermost level.
*9 Parsing accuracy occasionally improves by the combined use of shallow and deep information.

31

linguistic knowledge.

(1) Integration of multilevel constraint knowledge

As described in Section 2.1.2, constraint knowledge can be applied in either the intermediate
level or last level of a multilevel system construction. The application in an intermediate level
corresponds to the pruning of interpretations, which is propagated naturally to the upper levels
due to the multilevel model mapping condition. Prunings in the lower levels are very effective for
efficiency improvement. Therefore, the application of constraint knowledge should be undertaken
in the lower level to the maximum extent possible. On the other hand, the final level defines
the output interpretation. This implies that the constraints in this level are well-formedness

conditions that cannot be fully described in the lower level structure.

(2) Integration of multilevel preference knowledge

The preference knowledge in various linguistic layers is applicable to interpretations in one
level interpretation space. The application of preference knowledge to the intermediate level
simply defines the preferrential order of interpretations in that level and, unlike the constraint
knowledge, has no direct influence on the preference orders of the interpretations in the other

spaces™10,

The application of preference knowledge in the intermediate level is necessary for
the k-best approach to select a set of interpretations. This is a use of preference knowledge for
pruning, i.e., constraint application.

The application of preference knowledge in the uppermost level defines the output of the
NLA system. Ninomiya et al. (2007) compared two different use cases of preference knowledge
in an NLA system, which consists of a supertagger and a HPSG parser. The first case utilizes
the supertagger preference (word trigram and POS 5-gram model) to select k-best morphological
interpretations and the best deep interpretation based on the HPSG stochastic preference model.
In the second case, both the supertagger and HPSG preference models are integrated to select the
best HPSG parse. The latter showed considerably superior accuracy compared to the former.
Wang and Harper (2004) compared two cases for combining the SuperARV tagger and CDG
parser, i.e., combining them by the k-best method (loosely coupled system) and applying two
preferences simultaneously (tightly coupled system) and reported that the tightly coupled system
outperformed the loosely coupled system. Charniak and Johnson (2005) utilize the discriminative
maximum entropy model for the reranking of the pipeline parser (Charniak, 2000) and obtained
the improvement in the parsing accuracy. The fact that this discriminative maximum entropy
model includes various features in multiple linguistic layers suggests that the integrated use of
various levels of preference knowledge is a key to accuracy improvement. These research results
show the importance of preference knowledge integration in the uppermost level of a multilevel

system.

*10 There can be a system construction in which the optimum interpretation is searched in some lower level to
obtain the higher level interpretation by tracing the interpretation mapping. In this case, some application
of preference knowledge is required because the lower interpretation may have multiple counterparts in the
upper level spaces. For example, one syntactic structure can have many possible semantic interpretations
(Harada and Mizuno, 2001).

32

2.2.2 PDG Design

This section describes a new multilevel NLA method, called PDG, utilizing the phrase structure
and dependency structure levels. PDG employs a three level architecture with two intermedi-
ate levels (morphological structure and phrase structure) and the uppermost level (dependency
structure). The dependency structure is selected as the output of PDG because it has an affin-
ity with the semantic structure, which lies within the scope of future research, as described in
Chapter 7. Based on the previous discussions on multilevel systems, the following three issues

are settled for PDG design principles.

(a) Avoiding overpruning as well as suppressing combinatorial explosion as much as possible
(b) Adopting effective pruning by applying possible constraints in the lower level
(c) Enabling the optimum search in the uppermost level to utilize various levels of preference

knowledge

PDG adopts the MPDC model to achieve (a). This requires packed shared data structures for
morphological structure, phrase structure, and dependency structure, which satisfy the multilevel
model mapping condition (Definition 2.1.1). To fulfill this requirement, this thesis proposes a
new method for obtaining a packed shared dependency data structure called the dependency
forest, which satisfies the mapping condition against the phrase structure forest. Based on (b),
the phrase structure level is utilized as a filter for the dependency level. This unique construction
is an answer to the search space problem caused by introducing POS ambiguities to dependency
analysis, as described in Section 1.3. In the three level architecture of PDG, the phrase structure
filter suppresses the explosion of dependency trees and enables all-pairs dependency parsing for all
POS ambiguities*'!. Following principle (c), PDG adopts the preference knowledge description
scheme called the preference matrix in the dependency structure level. The preference matrix is
a more powerful descriptive scheme compared to the edge factored model, which is widely used
for the single dependency model parsers. A new optimum tree search algorithm called the graph
branch algorithm is proposed to realize the optimum tree search in the dependency forest, which
is not achieved by the conventional graph search algorithms, as described in Chapter 4.

Finally, the PDG system is defined as an all-pairs dependency parsing system with the following

features:

(a) Consisting of three level spaces (data structures) for WPP sequence, phrase structure tree,
and dependency tree
(b) Utilizing three packed shared data structures, i.e., WPP trellis, phrase structure forest,

and dependency forest

*11 The descriptive power of the partial mapping model, i.e., mapping between the CFG rule structure and
partial dependency structure, is one important issue for the appropriateness of the use of its CFG filtering.
There can be a more powerful model with mapping between the arbitrary partial phrase structure tree and
partial dependency tree structure. This issue lies beyond the scope of this thesis.

33

(c) Utilizing the graph branch algorithm for searching the optimum interpretation from a

dependency forest

2.2.3 The Data Structure/Processing Model of PDG

Fig.2.6 shows the PDG analysis model. PDG has two basic linguistic layers, i.e., morphology
and syntax. The syntax layer is further divided into two levels. In total, PDG has three levels of
interpretation space, description scheme, and packed shared data structure. Fig.2.7 presents a
brief explanation of the data structures and examples of the preference knowledge, the constraint
knowledge, the packed shared data structure and the sentence interpretation at each level.

Morphological interpretations for a sentence are represented by sequences (or strings) of WPP
nodes, which represent the adjacency relations between words. The WPP trellis is used as a
packed shared data structure for representing a set of sequences of WPP nodes. The nodes in
the PDG data structure can possess arbitrary linguistic attributes such as number, gender, and
tense (not shown in the figure). A sentence interpretaion in the morphological level is a sequence
of the WPP nodes in the line from “start” to “end” in the Figure. These two special nodes are
sometimes not explicitly shown in this thesis.

The syntax level of PDG contains two types of data structures, i.e., phrase structure and
dependency structure. A phrase structure tree represents the sub-categorization (or adjacency)
relations of phrases. A set of phrase structure trees is represented by a phrase structure forest.
Syntactic preference knowledge (e.g., phrase frequency) and constraint knowledge (e.g., number

12

agreements) can be described on top of the phrase structure™®. The dependency structure is

another data structure in the syntax level of PDG. A dependency tree consists of WPP nodes

I— Morphology I Syntax I

Preference Knowledge

L . WPP CK Phrase Structure CK Dependency CK Onii
Dictionary/Morphological Ini’e'r“p‘r‘gt"ation
Analysis Rules Search

Sentence

The Optimum
........................... Dependency Tree

CFG Rules
WPP trellis Phrase Structure Forest Mapping Dependency Forest

Rules
< : WPP sequence A : Phrase Structure Tree O : Dependency Tree

Fig.2.6 PDG implementation model

*12 Constraints such as the number agreements can be described as constraints at another level or can be
described in more than one level in parallel. This is a design issue in actual grammar development. In
general, the number agreement constraint should be applied to the phrase structure level based on the
design principle (b).

34

Packed Sha-| Node Ex. of PK
red Structure| Relation Ex. of CK

WPP WPP | WPP frequenc s flyv WPP sequence
star - end
fly/n

Example One Interpretation

trellis) Adjacenc : e time/n fly/n
adjacency co]nstrain¥ -
}Qﬁ Phrase root
Phrase Phrase /\S i S structure tree Ga”
Phrase | Category | Probability np VP / “n <\
Structure h l’p np vp
Forest
A I - AN N
timelv [iiyn | flylv
WP Dependency tol to
probability Op_~~<_top

Dependency
Forest

I time/v I fly/v I

Syntacti Projectivity -
Deggn%%fcy constraint sub obj fly/n

Fig.2.7 Packed shared data structures in PDG

and arcs labeled with syntactic (or functional) dependency relations such as subject and object.
A set of dependency trees representing the syntactic interpretations of a sentence is represented
by a dependency forest. The dependency forest is a packed shared data structure that utilizes
a dependency graph with a framework for describing the preference and constraint informa-
tion for the arcs in the graph*'®. The dependency probability and the projectivity constraint
representable by the dependency representation are examples of the preference and constraint
knowledge, respectively.

Fig.2.8 shows the relations in the multilevel data structures of PDG for the example sentence

“Time flies.” Each packed shared data structure corresponds to a set of interpretations in each

Morphological Layer Syntactic Layer

root

The Optimum

nten Dependency Tree
“S'I'?meeﬂigg' V o p o y
. P :
* ' 5
B i Sub \[fly/n

Dependency forest

Interpretation
mapping

WPP sequence

time/n flyiv

Fig.2.8 Relation between the data structures of the PDG implementation model

*13 As described in Chapter 4, these are represented by the constraint matrix and the preference matrix not
shown in Fig.2.7.

35

interpretation space for a sentence. The WPP trellis encompasses four WPP sequences, i.e.,
“time/n+fly/v”, “time/n+fly/n”, “time/v+fly/v” and “time/v+fly/n.” The phrase structure
level has two phrase structure trees. One of them corresponds to the declarative interpretation
of the sentence with mapping to “time/n+fly/v” and the other corresponds to the impera-
tive interpretation of the sentence with mapping to “time/v+fly/n.” The remaining two WPP
sequences (the morphological interpretations) have no interpretation mappings to the phrase
structure level in this example. The optimum interpretation of a sentence has a mapping to the

input sentence through a series of interpretation mappings in multiple levels.

2.2.4 Scoring and Optimum Solution Search in PDG

In the MPDC model, the optimum well-formed interpretation can be basically defined in each
interpretation space. However, it is not necessary to obtain or define the optimum well-formed in-
terpretation of every interpretation space. The scoring and optimum solution (or interpretation)
search methods for the WPP trellis and phrase structure forest are not described in this thesis
because PDG is a framework for obtaining the optimum dependency tree for a sentence. The
Viterbi algorithm is widely used for searching the optimum sequence in trellises with preference
scores. A similar algorithm adopted in PCFG is a popular method for obtaining the optimum
phrase structure tree from a phrase structure forest (Jelinek et al., 1992).

Fig.2.9 explains the scoring and optimum solution search for a dependency tree. The WPP
sequence, phrase structure and dependency preference scores imply the preference scores com-
putable based on the WPP trellis, phrase structure forest, and dependency forest, respectively.
Examples of the reference knowledge of each data structure are shown in Fig.2.7. Such kinds

of preference knowledge are integrated into a data structure called preference matrix defined in

Morphological Layer Syntactic Layer Graph Branch

Algorithm

root

S

Sentence |[tmeink—{ iy PN
o e tlmen y/v R Vp‘np

Time flies’ A ¥
flyin time/n fly/n
time/v flyiv
WPP trellis PS forest Dep. forest

uoiteiBelul 81099

Fig.2.9 Scoring and optimum solution search

36

the dependency forest by the score integration module*!'#. The preference matrix can represent
two kind of preference scores, i.e. unary preference score and binary preference score. Unary
score represents the plausibility of one dependency relation and the binary score represents the
plausibility of the co-occurrence between two dependency relations. Preference scores obtained
from each level are converted and integrated into these preference scores. Two versions of the
dependency forest, i.e., the unary and binary models are proposed and implemented in this the-
sis. The details of the score integration is described in 5. The optimum tree is searched from
the unary or binary dependency forest using an algorithm called the “graph branch algorithm,”

which is described in detail in Chapter 4.

2.2.5 Processing Flow of the Experimental PDG System

Fig.2.10 shows the overall processing flow of the PDG experimental system. The morpholog-
ical and syntactic parsing components are connected through data structures encompassing all
ambiguities at each level. The morphological analysis module inputs a sentence and generates
the WPP trellis by consulting the dictionary. This module is constructed by using standard
technologies. The syntactic analysis module based on the chart parsing algorithm applies the
PDG grammar rules to generate the PDG chart. PDG grammar rule consists of a CFG-based
grammar rule (partial phrase structure) and partial dependency structure. The mapping between

the phrase structure and dependency forests is essentially defined in the grammar rules. The

l—-
M]—»‘ Morphological Analy5|s
¢—-

Syntactic Pasing

I—.
[Grammar ——

Forest Generation

L PS/D
{ Forests

Dep. Forest Reduction

—— Dependency
! Forest
Preference|
Knowledge

Scoring | Scorcd
Dependency

Forest

| Optimum Solution Searcl+

Optimum
Dependency
Tree

Fig.2.10 Analysis flow of the PDG experimental system

*14 Not all preference knowledge kinds listed in Fig.2.7 are implemented in the PDG prototype system. Details
are shown in Chapter 5

37

forest generation module extracts the phrase structure forest and the dependency forest called
the “initial dependency forest” defined in Chapter 3 from the chart generated by the syntactic
parser. The dependency forest reduction module generates the dependency forest from the initial
dependency forest. The details of the syntactic analysis and dependency forest generation are
described in Chapter 3.

The preference scores are integrated by the scoring module and are attached to the depen-
dency forest. The dependency forest with the preference score is sometimes called the “scored
dependency forest” explicitly. The morphological level preference knowledge (the WPP unigram
and bigram frequencies) and the dependency level preference knowledge (the unary and binary
arc frequencies) are utilized; however, the phrase structure oriented preference scores are not
utilized in the current implementation of the PDG prototype system.

The optimum solution search module computes the most preferable well-formed interpretation
of the sentence based on the preference scores generated by the scoring module based on the
graph branch algorithm proposed in this thesis. The details of the optimum solution search
algorithm are described in Chapter 4.

Currently, an experimental version of the PDG system has been implemented in Prolog aimed
at the feasibility study of the PDG framework. The preference knowledge of this prototype system
is extracted automatically from an English corpus by using the existing sentence analysis system
(Amano et al., 1989) and the basic PDG grammar with around 1000 CFG rules is developed as
described in Chapter 6. This thesis describes the details of the PDG and experiments using the

experimental PDG system.

39

Chapter 3

Packed Shared Data Structures

3.1 Prerequisites for Packed Shared Data Structures

The following are prerequisites for the data structure at each level of the multilevel packed

shared data structure connection model.

(a) no combinatorial explosion
(b) a set of proportionate interpretations

(c) satisfy the multilevel model mappping condition

(a) is a very important issue with regard to constructing practical NLA systems. In general,
the enumerative treatment of interpretations leads to a lack of time and space or it degrades
the analytical capability due to overpruning. (b) implies that the packed shared data structure
at each level encompasses all possible solutions correctly, i.e., it assures there is no pruning of
existing interpretations and no generation of nonexistent interpretations originating from the
packed shared data structures. Provided this requirement is assured, it is beneficial for an NLA
system to be capable of introducing possible pruning (application of constraint knowledge) in
the early stage of sentence analysis considering the system performance. (c) is a prerequisite for

the multilevel system described in Section 2.1.2.

3.2 Traditional Methods for the Packed Shared Data

Structures
3.2.1 The WPP Trellis

PDG utilizes WPP trellis as the basis for the morphological analysis level. The WPP trellis is
a packed shared data structure encompassing all WPP sequences for a sentence. Fig.3.1 shows an
example of a WPP trellis for the sentence “Time flies like an arrow.” Each node is labeled with
the WPPs of each word in a sentence and has a variety of features such as word input position*!,

lexical information, and morphological features. Arcs between the WPP nodes represent possible

*1 The word position is represented by zero origin basis.

40

0,time/n

start

Fig.3.1 WPP trellis for “Time flies like an arrow”

adjacency relations. A WPP node sequence obtained by tracing from the top to the bottom of
the trellis through the arcs corresponds to one morphological interpretation of the sentence.
For example, the WPP node sequence “time/n fly/v like/pre an/det arrow/n” in Fig.3.1 is one
interpretation of “Time flies like an arrow.” Compound words occupy multiple input positions
according to their word lengths. In general, a WPP sequence has 0 to N corresponding phrase

structure trees and is considered to be an intension of the counterpart phrase structure trees.

3.2.2 The Packed Shared Phrase Structure Forest

The packed shared phrase structure forest, or simply phrase structure forest, is a well-known
packed shared data structure for encompassing all phrase structure trees (Tomita, 1987). Fig.3.2
shows the packed shared phrase structure forest for the example sentence. A sub-tree headed
with a non-terminal symbol that has multiple in-coming arcs is shared by its upper trees. A
box containing the same nonterminal symbols, i.e., “s” or “vp,” shows the packed sub-trees that
have the same phrase boundaries (sentence span).

The WPP trellis and the packed shared phrase structure forest satisfy the interpretation map-

ping condition of the multilevel packed shared data structure connection model because each

root
v
S S S
v
vpVp
N
vp np
pp vp\4
np
np np np

| 0.time/n /p{ Liyn [| 2likelp J/| 3.anidet|
\ /

| 0,time/v | | 1,fly/n | | 2 like/v | | 4,arrow/r\|

Fig.3.2 Phrase structure forest for “Time flies like an arrow”

41

phrase structure tree in the packed shared phrase structure forest corresponds to a WPP se-

quence in the WPP trellis.

3.2.3 The Syntactic Graph

Seo and Simmons (1989) proposed the “syntactic graph”, which encompasses all dependency
trees corresponding to phrase structure trees in the phrase structure forest for a sentence (Rim
et al., 1990). The syntactic graph is a promising candidate for a packed shared data structure
in PDG but it cannot be adopted as it is because it has a problem in satisfying the prerequisite
(c) in Section 3.1 for the multilevel packed shared data structure connection model.

The syntactic graph is a directed graph, which consists of nodes representing WPPs and labeled
arcs representing the syntactic relations between nodes. The syntactic graph defines a set of
dependency trees (interpretations) for a sentence in combination with the “exclusion matrix”,
which represents exclusive co-occurrence relations between arcs. The syntactic graph is a set
of Triples containing arc name and two nodes (containing WPP, surface position etc.). Fig.3.3
shows the syntactic graph and the exclusion matrix for a sentence “Time flies like an arrow.” The
numbers in arcs are arc-IDs. Multiple arcs targeting one node represent modification ambiguities.
S corresponds to the starting symbol.

The exclusion matrix is a matrix whose rows and columns are a set of arcs in the syntactic
graph that prescribes the co-occurrence relation between arcs. When (i,j) position in the exclusion

matrix is set to 1, i-th arc and j-th arcs must not co-occur in any dependency tree (interpretation)

Vpp(loé ppN(3)
(13)
enp- L[L.flyv] = \zg?—ﬁ [2,like.p] | | [3,an,det]« t(llze)t—| [4,arrow,n]|
mod(4) pp(vnp(1)

[0,ime.v] —\235»| [Lfly.n] |<-?g;:v—| [2,Iikn(ei\;])i/ Syntactic Graph

Exclusion Matrix

1]1 *1to 13 are arcs in the dependency

graph

*“1”in a cell means exclusion of arc

occurrence in dependency trees

ex. EM(5,6)="1"

— No dependency tree can contains

both arc5 (vpp fly like) and arc6
(pp fly like)

iy
-

o v|o|a|ls|w|n|=
N N
=
-
-
)
-
JE) DU B Y
-
-

©

—_
o

ala]a] =
iy

JrQy [PR Y

JrQy [PR Y

JE
N [=

alam|=a]=
alam|=a]=
Al |a]=
alam|=a]=

—
w
-
—_
-
-
—_
—_
-
-

Fig.3.3 Syntactic graph and exclusion matrix for the example sentence

42

obtained from the syntactic graph. The syntactic graph and the exclusion matrix are generated
from a kind of packed shared phrase structure forest. PDG adopts the same data structure and
it is called a headed phrase structure forest. The detail of the headed phrase structure forest is
described in Section 3.3. In the rest of this thesis, phrase structure forest means headed phrase
structure forest. The traditional phrase structure forest (packed shared phrase structure forest)
is called the headless phrase structure forest.

Seo and Simmons (1989) discussed the completeness and the soundness of the correspondence
between the phrase structure forest and the syntactic graph. The completeness is satisfied if each
phrase structure tree in the phrase structure forest has its counterpart(s) in the syntactic graph.
The soundness is satisfied if each dependency tree in the syntactic graph has its counterpart(s)
in the phrase structure forest. The completeness of the syntactic graph is shown in (Seo and
Simmons, 1989) but the soundness is not assured. All exclusion matrix cells are initially set to
1 (this means no two triples co-occur). Then the cells for all the triple pairs in the dependency
tree generated from phrase structure trees are set to 0. Since the exclusion matrix prescribes the
co-occurrence relations for all dependency trees in the dependency graph*?, the allowance of a
co-occurrence of two triples (set 1 to the cell for two triples) is safe if and only if the restriction
of these two triples is not necessary for all other interpretations (dependency trees). Appendix

A shows an example in which the syntactic graph cannot satisfy the soundness condition.

3.3 Packed Shared Data Structures in PDG

PDG adopts the phrase structure forest and the dependency forest for the packed shared data

structures for phrase structure and dependency structure representations, respectively.

3.3.1 Phrase Structure Forest

The phrase structure forest is a kind of packed shared parse forest and consists of edges
corresponding to rewriting rules in CFG. The sub-trees, which satisfy the following conditions,
are packed and shared.

Sub-trees have

(a) the same nonterminal symbol (category)
(b) the same coverage (phrase boundary)

(c) the same phrase head*? (head constituent)

Conditions (a) and (b) constitute the headless phrase structure forest (Schiehlen, 1996). The
phrase structure trees in the headed phrase structure forest have mapping to the phrase structure
trees in the headless phrase structure forest. An example of the edges and the phrase structure

forest in PDG is shown in Section 3.4 along with the parsing algorithm.

*2 The constraint in the exclusion matrix is global in a sense.
*3 Phrase head is a WPP in PDG.

43

3.3.2 Dependency Forest

The dependency forest (DF) consists of a “dependency graph” (DG) and a “constraint matrix”
(CM, C-Matrix) expressed as DF=<DG,CM>**. Fig.3.4 shows a dependency graph for the
example sentence “Time flies like an arrow.” The dependency graph consists of nodes and
directed arcs. A node represents a WPP*® and an arc shows the dependency relation between

nodes*S.

An arc has its ID. The dependency graph has one special node called a top node,
which is a root of all dependency trees in the dependency graph*”. In practice, the dependency
graph is represented by a set of “dependency pieces”. A dependency piece consists of one arc
and its dependant (or modifier) node and governor (or modificand) node. Since dependency
piece and arc have one to one correspondence, dependency piece is referred to as arc in this
thesis. The number of arcs in the dependency graph is called a “size of the dependency forest”.
Dependency tree is a subset of dependency graph that forms a tree. Dependency trees represent
interpretations of sentences or phrases at dependency relation level.

CM is a matrix whose rows and columns are a set of arcs in DG that prescribes the co-

vpp20 preis
tp31 tp29
) sukp4 - vppL8 - deti4
O,tlme/nJ—-[1,flyiv }—[Z,Ilke/p] [3,an/deﬂ—{4,arrow/r}
n(Q\ /nppl9 Obj16
O,time/v]‘m(1flyin Joosz(2.likelv | Initial Dependency Graph
obj25 2 |24| 4]25|23|19]|18|20|14|16|15|31|29|32
2|— O (0][6) (@)
Meaning of Arc Name 244 —— o o) 8 8 o o)
sub : subject 25 T To ol To e)
obj : object N 2310 — olo 0o
npp : noun-preposition 19 ol = ol o 6)
vpp : verb-preposition TE — ol [oJo
pre : preposition 20 Ie) —_Tol o [e)
nc :noun compound 14]0lo[o]o[o[o[o[o[-[o]o[o]o]o
det : determiner Helo] [| [o] [[o[- I Tol |
tp :top 15| [O[O|O[[O|O[0O|0]| [=[O] [O
31 O Ol 0] |O]—=
Initial Constraint Matrix ~ [29/O O 0[O =
32 Olo] |0] 10|0] [O -

Fig.3.4 Initial dependency forest for the example sentence

*4 The difinition of the dependency forest is extended to include the preference matrix PM in Chapter 4.

*5 Node contains various information in the lexicon and surface position number.

*6 The direction of dependency arc obeys the convention of the Japanese kakari-uke grammar (dependency
grammar). The dependant node of an arc is the node located at the source of the arc. This is contrary to
the convention in the syntactic graph, but not substantially different.

*7 In this thesis, root of the dependency tree is called top node to distinguish it from the root of a phrase
structure tree.

44

occurrence relation between arcs. Only when CM(i,j) is O, are; and arc; are co-occurable in

one dependency tree. The co-occurrence relation is symmetric and CM is a symmetric matrix.

3.3.3 Well-formed Dependency Tree

Definition 3.3.1 [Well-formed dependency tree]
“Well-formed dependency tree” is a dependency tree DT in the dependency forest that satisfies

the following conditions called the “well-formed dependency tree constraint”.

[Well-formed dependency tree constraint]

(a) Every input word has a corresponding node in DT. (coverage constraint)
(b) No two nodes in DT occupy the same input position. (single role constraint)

(c) Each arc pair in DT has a co-occurrence relation in CM. (arc co-occurrence constraint)

(a) and (b) are collectively referred to as the “covering constraint”. A dependency tree satis-
fying the covering constraint is called the “well covered dependency tree”. A dependency tree
satisfying (c) is called the “well co-occurred dependency tree”. A set of well-formed dependency
trees is the set of possible interpretations for an input sentence. The dependency forest in Fig.3.4
has four well-formed dependency trees. In PDG, a set of one WPP node is considered to be a
special case of dependency tree with no arcs, which satisfies the well-formed dependency tree

constraint.

3.3.4 Initial Dependency Forest and Reduced Dependency Forest

There can be more than one different-sized dependency forest encompassing the equivalent set
of dependency trees with respect to the degree of arc sharing. PDG treats the “initial dependency
forest” and the “reduced dependency forest” that is obtained from the initial dependency forest.
The initial dependency forest consists of the “initial dependency graph” and the “initial C-
matrix”. The reduced dependency forest is simply called dependency forest in this thesis. The
dependency graph of the initial dependency forest in Fig.3.4 is different from the syntactic graph

in Fig.3.3 in terms of the number of arcs between “fly/n” and “time/v.”

3.4 Generation of the Phrase Structure Forest and the
Initial Dependency Forest
PDG generates the dependency forest from an input sentence through four processes, i.e., the

morphological analysis, the syntactic analysis, the phrase structure/dependency forest generation

and the dependency forest reduction.

45

WORD Time flies like an arrow

[O,time/n] [1,flylv] [Z,Iike/pre

(LAY

[3,an/deﬂ [4,arrow/r}

(otimen] | [iym] | [2.liken

(N

WPP

Fig.3.5 Dictionary lookup result for the example sentence

3.4.1 Morphological Analysis

As described in Section 2.2.3, morphological interpretations of a sentence are a set of WPP
node sequences covering whole sentence, represented by WPP trellis. The upper adjacent inter-
pretation space is represented by phrase structure forest. It is obvious that the interpretation
mapping can be assured for these two data structures.

Morphological analysis is a well-established technology for major languages. PDG utilizes
existing technologies for each language. This thesis gives simply illustrative explanation of the
morphological analysis from the viewpoint described in Chapter 2.

Possible WPPs for a word are obtained by consulting a PDG dictionary. Fig.3.5 shows possible
WPPs for each word in the example sentence “Time flies like an arrow.” If no constraint exists
for the adjacency relation between words, 32 (2 x 2 x 4 x 1 x 2) WPP sequences are obtained
from the input sentence. Assuming the constraints that the adjacent sequences verb+verb “v
v,” adjective+determiner “adj det,” determiner+verb “det v” are inhibited, a graph shown in
Fig.3.6 is obtained by putting the available arcs between the WPPs. WPP nodes which have no

possible path from the start or to the end position, for example “like/adj” and “arrow/v,” can
[like/pre J—»[an/det J—»\
/ end

like/n

time/n fly/v

timelv H fly/n

start

Fig.3.6 WPP Adjacency relation for the example sentence

46

be removed from the graph because it does not effect the total morphological interpretations of
the sentence. This reduction of WPP nodes produces the WPP trellis shown in Fig.3.1. This

trellis encompasses six WPP sequences, i.e., six morphological interpretations.

3.4.2 Grammar Rule

Grammar rules in PDG are extended CFG rules, which define the possible phrase structures
and mapping from the phrase structures to the corresponding dependency structures. Grammar

rules are written in the following format.

v/Y = x1/X4,....x, /X, ¢ [arc(arcnamer,X;,X;),. . .,arc(arecname,—1,Xi,X1)] (0< 4,5,k,1<n)
ex. vp/V = v/V np/NP,pp/PP : [arc(obj,NP,V),arc(vpp,PP,V)]

A grammar rule consists of two parts separated by “:”, the rewriting rule part and the dependency
structure part. The left side of the rewriting rule “y/Y” and constituent “x;/X;” mean “syntactic
category /variable.” Y is a head constituent called a “phrase head” and is the same as one of the
variables “X;...X,,” in the “rule body”. The dependency structure part is a set of arcs in the
form “arc(arcname,variablel,variable2)”*¥. A variable is bound to a WPP node, which is a phrase
head of a constituent in the rewriting rule. In the example above, dependency structure where
dependants NP and PP are connected to the governor phrase head V' by means of the obj arc
and the vpp arc, respectively. The dependency structure part constitutes a partial dependency

tree, which satisfies the following “partial dependency structure conditions”.

Definition 3.4.1 [Partial dependency structure condition]

(a) Partial dependency structure constitutes a tree structure whose top node is a phrase head
of the head constituent Y. Phrase heads of non-head constituents are the dependants of
the phrase heads of the other constituents.

(b) The phrase heads of the constituents in the rule body have one to one correspondence

with the variables in the partial dependency structure.

Fig.3.7 shows the grammar rules and lexicons for analyzing an example sentence “Time flies
like an arrow.” Rule (RO) whose rule head and rule body are “root” (predefined special symbol)

4

and “s”(starting symbol) as rule body is a special rule for creating a “root edge” of the phrase

structure forest and a “top node” [top]-x of the dependency forest™”.

3.4.3 The Structure of Edge

The syntactic analysis of PDG is implemented by extending the bottom-up chart-parsing

algorithm to generate a dependency structure. Ordinal chart parser utilizes edges composed

*8 The dependency structure is a set of arcs but represented by list format using []. In this thesis, sets are
sometimes represented by [| in program codes.
*9 This rule is introduced for convenience in the treatment of data structures.

47

root/[root]-x — s/S : [arc(top, S, [top]-x)] (RO)
s/ VP — np/ NP, vp/ VP : [arc(sub, NP, VP)] (R1)
s/VP — vp/VP 1 (R2)
np/N — det/DET,n/N : [arc(det, DET, N)] (R3)
np/ N — n/N : (R4)
np/ N2 — n/ N1, n/ N2 : arcgnc, N1, NZ); gRSg
np/ NP — np/ NP, pp/ PP : [arc(npp, PP, NP)] R6
vp/V — v/V] (R7)
vp/V = v/V, pp/ PP : [arc(vpp, PP, V)] (R8)
vp/V = v/ V,np/ NP : [arc(ob], NP, V)] (R9)
vp/V = v/ V, np/ NP, pp/ PP arc(obj, NP V), arc(vpp, PP, V)] (R10)
pp/P — pr el P, np/ NP : [arc(pre, NP, P)] (R11)
wor d(n inme]). word(n

It J[flies]). word(re[i ke]). word(det,[an]).
word(v,[tine]). word(v,[flies]). word(v,[lIke]). word(n,[arrow).

Fig.3.7 Grammar and lexicon for the example sentence

of five elements <FP,TP,C,FCS,RCS> , i.e., the from-position (FP), the to-position (TP), the
category (C), the found constituent sequence (FCS) and the remaining constituent sequence
(RCS). The head of the grammar rule corresponds to the category. The body of the grammar
rule corresponds to both the found constituents and the remaining constituents and is partitioned
by the dot (+) which shows the boundary of FCS and RCS as shown in the following edge written

in diagrammatic form.
<0,1,s - np * vp pp>

This edge is generated from the grammar rule “s — np vp pp” and has elements FP=0,TP=1,
C=s, FCS=[np] and RCS=[vp,pp]. The result of the dictionary look-up for an input word is an
inactive edge whose category is the POS of the word and whose found constituent sequence is a

word list as follows:
<0,1, n — [time] + >

The parsing algorithm of PDG has two extensions, i.e., the treatment for the dependency
structure part in a grammar rule and the construction of the packed shared data structure. The
edge for PDG parsing has two additional elements, i.e., the phrase head (PH) and the dependency

structure (DS) as follows:

Standard edge : <0,1,s — np * vp pp>
PDG edge : <0,1,s/PH = np/nl - vp/PH pp/PP : DS>

As described in 3.4.2, PH and DS represent a phrase head (node) and dependency structure (a
set of arcs), respectively. nl shows a node (WPP), which is a head of np phrase. PDG utilizes
another data structure called the “packed edge”, which is obtained by packing inactive edges
into one. The packed edge has the list of FCS and the list of DS instead of the FCS and the
DS in PDG edge. The PDG edge with FSC and DS is called “single edge” in contrast to packed
edge. The packed edge is equivalent to a set of single edges. The following shows the relation

between single edge and packed edge diagrammatically.

48

Single edge : <0,5,s/n2 — np/nl vp/n2 pp/n3 - : DS1>
<0,5,8/n2 — np/nl vp/n2 -: DS2>
Packed edge : <0,5,s/n2 — [[np/nl vp/n2 pp/n3], [np/nl vp/n2]] +: [DS1,DS2]>

nl to n3 are nodes (WPPs) and n2 is a phrase head. [np/nl vp/n2 pp/n3] and [np/nl vp/n2] are
constituent sequences with their phrase head (nodes). DS1 and DS2 are dependency structures
(partial dependency trees). For convenience, a packed edge is represented in the form “E,” “<E

” W

...>"7 or “edge E” and a single edge is represented in “e,” “<e...>” or “edge e.” “edge” is used
for representing “packed edge” or “single edge” when it is not ambiguous. Inactive edges are
represented by adding “*” at the top of edge symbol. Edge *E and *e are an inactive packed
edge and an inactive single edge, respectively.

The syntactic parsing of PDG described below utilizes packed edges. Fig.3.8 shows the formal
constitution of a packed edge. A packed edge consists of eight elements. FCSL and DSL are
lists (or sequences) with the same length. The pair (FCS;,DS;) obtained by extracting the i-th
elements of FCSL and DSL is called “CSDS pair.” CSDS pair corresponds to the single edge
described above.

The edges E1 to *E3 in Fig.3.8 shows a growth of the edge generated form a grammar rule
for noun phrase. The edge *E3 is the inactive edge showing the interpretation that the input
words “an arrow” constitute a noun phrase and its dependency structure is {arc(det-14,[an]-det-
3,[arrow]-n-4)}. [arrow]-n-4 is a node for word [arrow], pos “n” and word position 4. The edge

*E4 is an edge with more than one interpretation. Each two elements in FCSL and DSL have

Structure of edge: <ID,FP,TP,C,PH,FCSL,RCS,DSL>
@ |ID:Edge ID, @FP(From Position): Start position, @TP(To Position): End position,
@C (Category) :Head category of the grammar rule, &PH(Phrase Head) :Head node of the head
constituent, ®FCSL: Found Constituent Sequence List(List of arc ID sequence), (ZDRCS:Remaining
Constituent Sequence, @DSL (Dependency Structure List): List of partial dependency structures

Partial dependency structure:[ARC1,.., ARCnl (a set of ares(n=0))

Arc structure : arc(REL-AID, DEP-DP,GOV-GP)

(TREL (Relation) :Dependency relation name, @AID:Arc ID, GDEP(Dependant) :Dependant node,
@DP (Dependant Position) : Position of DEP, &GOV (Governor) :Governor node, ®GP (Governor
Position) :Position of GOV

Examples of edges:
Rule: np/N > det/DET, n/N : [arc(det, DET, N)]
Edge E1:<45,3,3,np, $2, [1, [det/$1,n/$2], [[arc(det, $1,$2)11>
Edge E2:¢<70,3.4np.$2[[15311[n/$2], [[arc(det[an]-det-3,$2)]]>
Edge *E3:<160, 3,5, np, [arrow]-n-4, [[153, 15611, [1, [[arc (det-14, [an]-det-3, [arrow]-n—-4)1]>
Rule: vp/V>v/V, np/NP :[arc (obj,NP, V)1
vp/V->v/V, np/NP, pp/PP_: [arc(obj, NP, V), arc (vpp, PP, V)]
Edge %*E4:<170, 0, 5, vp, [time]-v-0, [[103, 1691, [103, 119, 16511, [1,
[[arc(obj-25, [flies]-n-1, [time]-v-0)1,
[arc (obj—4, [flies]n-1, [time]-v-0), arc (vpp-20, [| ike]pre-2, [time]-v-0)11>
Lexicon: word(n, [arrow])
Edge @E5:<156, 4, 5, n, [arrow]-n-4, [[lex([arrow]-n)]1], [, [[[arrow]-n-4]11>

Fig.3.8 Structure of edge

49

correspondence and constitute two CSDS pairs, i.e., ([103,169] {obj-25}))*1? and ([103,119,165]
{obj-4,vpp-20}). The edge QE5 is an example of an edge generated from dictionary look-up
operation, called a “lexical edge”. The data structure of a lexical edge is a set of one node

corresponding to the consulted word. The lexical edge is explicitly represented by adding “@.”

3.4.4 Parsing Algorithm

Fig.3.9 shows the parsing algorithm of PDG. Basically, this algorithm is a standard bottom-up
chart-parsing algorithm using agenda (Winograd, 1983). This algorithm inputs words from left
to right one by one and adds lexical edges generated from the input words to the agenda (Fig.3.9
(a),(b)) , and combines the edges in the agenda to inactive edges in the chart or in the grammar

rules until the agenda becomes empty (Fig.3.9 (e),(f)). Packed edges are generated by checking

Sent: Input Word List, Grammar: A Set of Grammar Rules NewDSL := add_arcid (NewDSL) . /* Put new arc ID (i) */
Chart := {}: Agenda := {}; /* Initialize */ NewEdge :=<new_id (), FPc, TP, Cc, PHc, NewFCSL,
for (Pstn:=0: Pstn < length(Sent) ; Pstn++) { /* (@) */ [X2/X2v, .., Xm/Xmv], NewDSL>:
Agenda := get_lex_edges (Pstn, Sent) ; /* (b) */ if(NewEdge is enactive edge?) { push (NewEdge, Agenda): }
while (Agenda 1= {}){ /* Repeat edge combination %/ else | push(NewEdge,Chart); } 1 } }
A_Edge := pop(Agenda); /* Takg one edge from Agenda */ mergable_edge (A_Edge) {
/* Take out an edge mergable with A_Edge from Chart x/ ;
L . foreach C_Edge in Chart |
C_Edge := mergable_edge (A_Edge) : /% (c) */ N " ”
N _ . if(A_Edge and C_Edge have the same “phrase coverage (FP, TP)”,
if(C_Edge 1= new) { /* Mergable edge exists? */ “category (). “phrase head (PH)”, “RCS”) Je () %/
MrgdEdge = merge_csds (A_Edge, C_Edge) /% (d) */ goryt) . P ' !
{ return(C_Edge): }}
/% |f changed by merge, update C_Edge to MrgdEdge %/ turnew : 1
if(MrgdEdge = C_Edge) | update_chart (MrgdEdge): } } returninew) .
else if(CEdge ==new) { Funcions & notations —-—-—-—-———o
push (A_Edge, Chart) ; /* Register A_Edge to the Chart*/ D=8§ . Unification of D and §
/* Register new edge from grammar to Chart/Agenda */ X U Y : Union of X and Y. length(L): length of list L.
add_new_edge_by_searching_grammar (A_Edge). /* (e) */ new_id(Q : Unique ID generator.
/* Register new edge from active edge to Chart/Agenda */ push(E,X) : Push element E to set X
add_new_edge_by_existing_edge(A_Edge): /* () #/1]] pop(X) : Take one element from set X and returns it.
add_arcid (DSL) : Put new ID to the fixed arc(s) in DSL
ex. When DSL=[[arc (subj, [i]-n-0, [lovel-v-1),
arc(obj, $3, [lovel -v-1)]1

add_new_edge_by_searching_grammar (Edge) {
Edge = <ID, FP, TP, C, PH, FCSL, RCS, DSL>:
foreach Rule in Grammar {

/* Get elements in a grammar rule (Body length m) */ add_arcid (DSL) — [[arc (SU?J‘_Z& [i1-n-0, [lovel-v-1),
Rule = <Y/Yv, [X1/X1v,X2/X2v,..Xn/Xmv], RDS>:) arc (obj, $3, [1ove]-v-1)]])
ifF(X1==¢) | /% same category? */ add_id_to_FCSL (1D, FCSL) : Add arc ID to each element in FCSL.

ex. When [D=29, FCSL=[[23,12], [111],
add_id_to_FCSL(ID, FCSL) — [[12,23,29], [11,29]]
bind_var (Var,Val, DS) : Replace Var in DS with Val
ex. When Var=$§1, Val=a(x),DS=[b(§1),c(§2)1,
bind_var (Var, Val,DS) — [b(a(x)),c($2)]
update_chart (E) : Update E to edge with the same ID in the Chart
get_lex_edges (FP, S): Generate a lexical edges by consulting a
dictionary at position FP in word list S.
ex. When FP=1,8=[I, love, youl, returns
{€10,2,3, v, [lovel-v-2, [[lex([lovel-v)]], [1, [[11>,
<11,2,3,n, [lovel-n-2, [[lex([lovel-n)11, [1, [[11>}

/% Variable Binding: Bind X1v to phrase head PH (g) %/
RDS := bind_var (X1v, PH, RDS) ;
NewYv := bind_var (X1v, PH, Yv) ;
NewEdge:=<new_id (), FP, TP, Y, NewYv, [[ID]],

[X2/X2v, ..., Xm/Xmv], [RDSI>;
if(NewEdge is enactive edge?) { push(NewEdge, Agenda): }
else | push(NewEdge, Chart); } 1} }

add_new_edge_by_existing_edge (Edge) |
Edge = <ID, FP, TP, C, PH, FCSL, RCS, DSL>:
foreach Edge_C in Chart {

Edge_C = <IDc, FPc, TPc, Cc, PHc, FCSLc, RCSc, DSLc>:

RCSc = [X1/X1v, X2/X2v,..,Xm/Xmvl: /x Get elements =/
/* Combination Conditions: (DEdge_C is active edge */
/% @First category X1 in RCSc equals category C */

/* (Edge_C is adjacent to Edge */
if(RCSc 1= [] & X1 == C && FP == TPc) {
/* === Generate NewEdge from Edge_C and Edge === %/

NewFCSL := add_id_to_FCSL (ID, FGSLc) ;
NewDSL := bind_var (X1v,PH,DSLc) : /* Var. Binding (h)*/

merge_csds(E1,E2) : Add CSDS pair in edge E1 to E2.
ex.E1=8,3,5, 5,81, [[171], [wp/$11, [[arc (obj-3, [i]-n-2, §1) 11>,
E2=¢9,3,5, s, $1, [[131], [vp/$1], [[arc (subj-5, [i]-n-2, $1)11>
merge_csds (E1,E2) —<9, 3,5,s, $1, [[13], [171], [vp/$1],
[[arc (subj-5, [i]-n-2, §1)], [arc(obj-3, [i1-n-2,$1)11>
|f CSDS pair in E1 is in E2, then it is not added.
E2=<7,3,5,s, 81, [[1311, [wp/$11. [[arc (obj-5, [i]-n-2, $§1)11>
then, merge_csds (E1, E2) »E2

Fig.3.9 PDG bottom-up chart parsing algorithm

*10 obj-25 is the abbreviation of arc(obj-25,[flies]-n-1,[time]-v-0)

a0

each edge in the agenda is mergable or not ((c),(j)) and then merging it to the existing edge if
possible. The detailed explanation of the algorithm is omitted. The following part explains the
construction of the data structure, which is peculiar to the PDG parsing.

The PDG parser creates dependency structures in parallel with the generation of edges. This is
done by binding variables in the dependency structures in an edge. Variable binding is performed
by bind_var, which binds the phrase head (node) of the inactive edge to the variable in the first
constituent of the remaining constituent sequence of the edge, when a new edge is created from a
grammar rule (Fig.3.9 (g)) or an active edge in the agenda (Fig.3.9 (h)). If this binding generates
an arc whose dependant and governor are bound, add_arcid generates a unique arc-ID and it
is attached to the arc (Fig.3.9 (i)). The arc with a bound dependant and governor is called
“fixed arc”. The edge *E3 in Fig.3.8 is generated by binding the variable $2 in E2 to the node
[arrow]-n-4.

Edges are associated through edge-IDs. The lower edge can be traced from the upper edge.
The edge *E3 (edge#160) in Fig.3.8 is an edge generated from the grammar rule “np — det
n.” The edges in the constituent sequence [153,156] in edge#160 , i.e., edge#153 and edge#156,
have the phrase category “det” and “n,” respectively. The edge#153 and edge#156 are called
reachable from the edge#160. This “reachable” relation is associative. Edges with more than
one CSDS pair like *E4 in Fig.3.8 are generated by merge_csds(Fig.3.9 (d)). Since only inactive
edges are merged, no active edge has more than one CSDS pair in this algorithm. If the whole
sentence is parsed successfully, the chart has one inactive edge with phrase head [top]-x covering

whole sentence. This edge is called “root edge” and described as *E,..o¢.

3.4.5 Generation of Phrase Structure Forest and Initial Dependency

Forest

When parsing is finished, the chart has active and inactive edges. The phrase structure forest
for an inactive edge *E, hpf(*E), is defined as a set of edges reachable from the edge *E. The
phrase structure forest PF is defined as hpf(*E,..;). PF is a subset of the inactive edges in
the chart because there exist inactive edges unreachable from *E,...;. The initial dependency
graph IDG is a set of arcs in the dependency structures of the edges in PF. Fig.3.10 shows the
algorithm to compute PF, IDG and the initial C-Matrix ICM from *E,,.;. Fig.3.11 shows PF
for the example sentence computed by the algorithm using the grammar in Fig.3.7. All RCSL
of the edges in PF are [] and are not shown in Fig.3.11. The number of edges in the phrase
structure forest is called a size of the phrase structure forest. The size of the headed phrase
structure forest is more than or equal to that of the headless phrase structure forest because the
edge merge condition of the headed phrase structure forest (Fig.3.9 (j)) is more strict compared
with that of the headless phrase structure forest.

The algorithm in Fig.3.10 traverses the chart by using three mutually recursive functions,
try_edge, try_ FCSL and try_CS which compute PF, IDG and ICM for their arguments, i.e.,

the packed edge, the constituent sequence list and the constituent, respectively. try_edge calls

/% Phrase Structure Forest PF, Dependency Graph DG,

/* Co-occurrence Matrix CM */
PF :={}: D6 :={}: CM = {}: /* Initialize */
VE := {}: /* Visited Edge: Already tried edges %/
TER := {}: /* Memory for edge 1D and arcs governed by it*/
try_edge (E...o) : /% Compute PF, DG, CM from E,., (a)*/
exit: /* Results are PF, DG, CM */

% Compute PF,DG,CM from E. Returns arcs governed by E
try_edge () {
E = <1D, FP, TP, G, PH, FCSL, RCS, DSL>: /* Get elements */
if(IDeVE) { return(get (1D, TER)): }/* Done before? (b) */
else if(Is E lexical edge?) { /% (c) */
push (E.PF): put (ID. {}. TER) : return({D); }

51

% Compute PF,DG,CM from CS. Returns arcs governed by €S
try_€S(cs) {

A_CS := {}: /% Initialize */
foreach E in CS {

A_Edge = try_Edge(E): /* Compute edge E (J) */
set_CM (A_Edge, A_CS) ; /% OM processing (3) */
ACS := ACS U A_Edge: } /* Compute arcs (CS) (K) */

return(A_CS): | /* Returns arcs governed by CS */

-—- Functions & notations -—

put (I, E, X): Add element E to set X with index 1

get(I,X) : Returns the element with index 1 in X

set_CM(A1,A2) : Set O to CM(A1,A2) and GM(A2, A1) where Al, A2
are arc list/set. ex. When Al={al, a2}, A2={a3, a4}, al~a4 has

1Ds idi~id4, set_CM(A1,A2) sets O to CM(id1,id3),
CM(id1, id4), CM(id2, id3), CM(id2, id4), CM(id3, id1),
CM(id4, id1), CM(id3, id2),CM(id4, id2) (=Add to CM)
arcs(X) : Returns arcs in data structure X.

A_FCSL :=try_FCSL(FCSL, DSL): /* Process CSDS pairs (d) */
push (E, PF) : /% Add E to PF (&) %/
A_Edge = arcs(DSL) UA_FCSL; /% Arcs governed by E (f) %/
put (1D, A_Edge, TER); /* Register computation result (g) %/
return(A_Edge) : }

% Compute PF,DG,CM from FCSL. Returns arcs governed by FCSL

try_FCSL (FCSL, DSL) {

A_FCSL := {}: /* Initialize %/

foreach (CS,DS) in (FCSL.DSL) { /* Get CSDS pair (CS,DS) */
ACS 1= try_CS(CS): /% Process one €S (h) */
set_CM(DS, DS): /% CM processing (1) #/
set_CM(DS, A_CS) : /% CM processing (2) #/
A_FCSL := A_FCSL U AGCS: }/* Computes arcs(FCSL) (i) =/

return(A_FCSL) ; } /* Returns arcs governed by FCSL*/

Fig.3.10 Algorithm for computing phrase strucuture forest and initial dependency forest

try_-FCSL (Fig.3.10 (d)), try-FCSL calls try.CS (Fig.3.10 (h)) and try.C'S calls try_edge
(Fig.3.10 (j)). The arc in the arc sets returned from try_edge(E)try-FCSL(FCSL) and
try-CS(CS) are called the arc governed by E, FCSL and CS, respectively.

The algorithm starts from the Fig.3.10 (a) by calling try_edge(*E,o0t). try-edge judges the
argument is already computed or not at (b). If it has already been computed, try-edge simply
returns the set of arcs recorded in TER. The registration of a set of arcs is performed in (g)
when new result is obtained. At (c¢) and (e), new edges are added to PF. As shown at (f), the
arcs governed by the edge E are the union of the DSL in E and the arcs governed by FCSL.

try_FCSL processes a set, of CSDS pairs and try_C'S processes one CSDS pair in it. As shown
at (i), the set of arcs governed by FCSL is the union of the arcs governed by the CSs in the
FCSL. As shown at (k), the set of arcs governed by CS is the union of the arcs governed by the
packed edges in the CS.

Fig.3.12 shows the execution process for the E#170 in Fig.3.11. (c#) shows a function call
and (r#) shows the return value, i.e., the set of arcs, of the function. (c1) to (c4) correspond to
the function calls (j), (d) and (h) in Fig.3.10, respectively. (c4) returns {} at (r4) because the
E#103 is a lexical edge. The function call (c4) returns result (r4). Then the second CSDS pair
([103,119,165],{obj-4,vpp-20}) is processed by the function call (¢5). The second time execution
for “try_edge(E#103)” occurs at (c¢6). This time, the execution result stored in TER at Fig.3.10
(b) is searched and returned. Finally the set of arcs at (rl) is obtained.

The generation of CM is performed based on the following C-Matrix setting conditions which

92

Time flies
0 1 2

like an arrow
3 4 5

<186, 0, 5, root, [top]-x-top, [[181], [176], [174]],

<181,0,5,s,
<176,0,5, s,
<174,0,5, s,
<170, 0, 5, vp,
<169, 1,5, np,
<168, 1,5, vp,
<166, 2, 5, vp,
<165, 2, 5, pp,
<160, 3, 5, np,
<156, 4,5, n,
<153, 3, 4, det,
<140, 2, 3, v,
<138, 2, 3, pre,
<121,0, 2, np,
<119,1, 2, np,
<117,1,2,v,
<115,1,2,n,
<105, 0, 1, np,
<103,0,1, v,
<101,0,1,n,

[time]l-v-0, [[170]1,
[flies]-v-1, [[105,168]],
[likel-v=2, [[121,166]],

[[arc (top-32, [time]-v-0, [top]-x-top)],
[arc (top-31, [flies]-v-1, [top]-x-top)],
[arc (top-29, [l ike]l-v-2, [top]l-x-top) 11>

[

[[arc(sub-24, [time]-n-0, [flies]-v-1)11>

[[arc(sub-23, [flies]-n-1, [like]-v-2)11>

[time]-v-0, [[103,169], [103, 119, 165]1,

[flies]-n-1, [[119,165]],
[flies]-v-1, [[117,165]],
[likel-v-2, [[140, 16011,
[likel-pre-2, [[138, 160]],
[arrow]-n-4, [[153, 15611,
[arrow]-n-4, [[lex([arrow]l-n)1]1,
[an]-det-3, [[lex([an]-det)]1],
[likel-v-2, [[lex([like]l-v)1],
[likel-pre-2, [[lex ([like]-pre)1],
[flies]-n-1, [[101,115]],
[flies]-n-1, [[115]1,
[flies]-v-1, [[lex([flies]-v)1],
[flies]-n-1, [[lex([flies]-n)]1],
[time]-n-0, [[101]1],
[timel-v-0, [[lex([time]-v)1],
[time]l-n-0, [[lex([time]l-n)]11,

[[arc(obj-25, [flies]-n-1, [time]-v-0)1,
[arc (obj-4, [flies]-n-1, [time]-v-0),

arc (vpp-20, [like]-pre-2, [time]-v-0)

[[arc(npp-19, [1ike]-pre-2, [flies]-n-1

1>

)
[[arc(vpp-18, [|ike]-pre-2, [flies]-v-1)

1

)

D
D
[[arc(obj-16, [arrow]-n-4, [l ike]-v-2)]
[[arc(pre-15, [arrow]-n—-4, [l ike]-pre-2
[[arc(det-14, [an]-det-3, [arrow]-n-4)]1]
[[[arrow]-n-4]11>

[[[an]-det-311>

[L[Iikel-v-211>

[[[Iike]-pre-211>
[[arc(nc-2, [time]-n-0, [flies]-n-1)1]>
[1>
[[[flies]-v-111>
[[

[L

[

]
]
]
>
1>
>

[flies]-n-111>
1D
[[time]l-v-0]11>
[[[time]-n-011>

Fig.3.11 Phrase structure forest for “time flies like an arrow”

work to allow co-occurrence between all arcs in the set of edges constituting a phrase structure

tree in the phrase structure forest.

Definition 3.4.2 [C-Matrix setting conditions]

The “C-Matrix setting condition” is either of the following three conditions

(CM1) The arcs in the same DS co-occur with one another.
(CM2) Given a CSDS pair (CS,DS), the arcs in DS co-occur with the arcs governed by CS.

(CM3) The arcs governed by one CS co-occur with one another.

(CM1) to (CM3) correspond to the CM processing (1) to (3) in Fig.3.10. In processing E#170,
set_C'M ({obj-4,vpp-20},{obj-4,vpp-20}) (set_-C'M is defined in Fig.3.10) is executed at the CM
processing (1) because the arcs in the second CSDS pair ([103,119,165],{obj-4,vpp-20}) satisfy
the co-occurrence setting condition (CM1). At the CM processing (2), A_-C'S has been set to the
set of arcs shown at (r3) in Fig.3.12 and set_C'M ({obj-4,vpp-20},{pre-15,det-14}) is executed
due to (CM2). In processing try-C'S([103,119,165]), the CM processing (3) set CM from among
the arcs governed by E#103,E#119 and E#165 due to (CM3). The outputs PF and IDF are
shown in Fig.3.11 and Fig.3.4, respectively. E#181, E#176 and E#174 have the same category

“s” and the same coverage (from 0 to 5), but they are not shared because their phrase heads are

different.

33

try_edge(E#170) (c1)
try_FCSL([[103,169],[103,119,165]],
[[obj—25],[obj—4,vpp—20]]) (c2)
try_CS([103,169]) (c3)
try_edge(E#103) = {] (c4) = (r4)
= { npp—19,pre—15,det-14 } (r3)
try_CS([103,119,165]) (ch)

try_edge(E#103) = {} (c6)) = (r6)
try_edge(iE#ﬂQ) = {]

try_edge(E#165) = { pre—-15,det-14}
= {pre—15,det-14] (r5)
= { pre—15,det-14,0bj—4.vpp—20,npp—19,0bj-251 (r2)
= { pre—15,det—14,0bj—4,vpp—20,npp—19,0bj—25 } (r1)

Fig.3.12 Example of algorithm execution

3.5 Generation of the Reduced Dependency Forest

The two arcs obj4 and obj25 in IDF in Fig.3.4 have the same structure except for their arc-
IDs. IDF may contain arcs of this kind called “equivalent arcs”. Equivalent arcs are sometimes
generated from one grammar rule and sometimes generated from different grammar rules. For
example, obj4 and obj25 are generated from the constituent sequence “vp np” in (R9) and
(R10) in Fig.3.7. In fact, (R9) and (R10) differ in terms of the existence of the prepositional
phrase, but the interpretation of the “obj” relations in (R9) and (R10) are considered to be the
same. Actually, if (R9) and (R10) are merged into one grammar rule “vp/V — v/V np/NP,
{pp/PP} : [arc(obj,NP,V)arc(vpp,PP,V)]” by introducing the description schema “{}” for
optional elements. This grammar rule does not generate the equivalent arcs for obj relation.

Now, some definitions are given for treating equivalent arcs. The “generalized arc” is an arc
with arc-ID ‘?’. Arcs with number IDs are called IDed arcs. The generalized arc for an IDed arc
is obtained by simply replacing the arc-ID in the IDed arc with ‘?’. A dependency tree consisting
of generalized arcs is called a “generalized dependency tree”. A dependency tree consisting of
IDed arcs is called an “IDed dependency tree”. The generalized arc for an IDed arc X is written
as 7X. The generalized tree for an IDed tree DT is written as ?DT. Two dependency trees that
have the same generalized tree are called equivalent. The reduced dependency forest is obtained
by reducing the initial dependency forest. The reduction of the dependency forest is an operation
in that more than one equivalent arc is merged into one arc without increasing the number of the
generalized dependency trees in the dependency forests. The reduced dependency has smaller

size compared with the original dependency forest before the merge operation.

54

3.5.1 Merge Operation of Equivalent Arcs

The merge operation for the equivalent arcs X,Y (written in equiv(X,Y")) is defined as follows:

Definition 3.5.1 [Arc merge operation]

(1) Compute a new dependency graph DG’ by removing V" from DG. (DG’=DG—{Y})
(2) Generate a new C-Matrix CM’ from CM by applying set_C M (X, I) for arc I(IeDG,[#X,
[£Y ,CM(Y,I)=0)

The merge operation generates a new dependency forest <DG’,CM’>. Fig.3.13 shows an
example of merge operation diagrammatically. In the following sections, changes of various values
are discussed, for example, the numbers of generalized dependency trees in the dependency forest
before and after merge operation. To make this distinction, the expression “wrt <DG,CM>" or
“wrt DF” (wrt: with respect to) is used. For example, the set of arcs that co-occurs with an arc
A is defined as co(A). Then “co(A4) wrt <DG,CM>" and “co(A4) wrt <DG’,CM’>" represent the
set, of arcs before and after merge operation. “co(A) wrt <DG,CM> = co(4) wrt <DG’,CM’>”
means the set of arcs is not changed by the merge operation. In order to make the description
simple, “wrt <DG,CM>" is not shown in default.

3.5.2 Merge Condition for Equivalent Arcs

From the definition, the condition of the dependency forest reduction is to preserve the sound-

ness, i.e., no new generalized dependency tree (interpretation) increase by the merge operation.

[Merge Condition for Equivalent Arcs]
When the dependency forest DF’ is generated from DF by merging arc Y to X in the dependency
graph of DF, the condition for the forest reduction is “a set of generalized dependency trees in

DF = a set of generalized dependency trees in DF’ .”

g ko1 om o n
X O (©) (©)
CM Y ol O
Q set_CM(X,k), set_CM(k,X)
Delete_ arc Y
i k/S1omo o
cv X [Eledol 1o o)

Fig.3.13 Merge operation for the equivalent arc pair (X,Y)

35

This condition is verifiable by searching a new generalized dependency tree in DF’. The con-
dition for the existence of a generalized dependency tree not in DF but in DF’ is called the
“Increase condition for generalized dependency trees” (ICG) in this thesis. The merge condition
is represented as “ICG is not satisfied.”

A dependency forest is a set of IDed arcs and prescribes the set of IDed dependency trees and
the set of generalized dependency trees. The condition for the existence of an IDed dependency
tree not in DF but in DF’ (this kind of tree is called a “new” dependency tree) is called the
“increase condition for IDed dependency trees” (ICI). Obviously, if no IDed dependency tree
increases by the merge operation, no generalized dependency tree increases. Moreover, even if
there exist new IDed dependency trees in DF’, no generalized dependency trees increase if the
generalized dependency trees of the new IDed dependency trees are equivalent to those in DF.
This means ICI is a necessary condition for ICG. In the following, ICI is discussed first, then

ICG is verified to obtain a detailed merge condition for equivalent arcs.

3.5.3 Increase Condition for IDed Dependency Trees

Increase of a new IDed dependency tree is caused by allowing a new co-occurrence relation
between arcs caused by a merge of equivalent arcs. The allowance of the co-occurrence relation in
CM, i.e., the change from CM(U,V)# O to CM(U,V)= O for arcs U, V, is called the “allowance
of the arc pair (U,V)”. The following lemma is established.

Lemma 3.5.1 (The allowance of arc pair and the increase of dependency trees) If
a new well-formed dependency tree increases by the allowance of the arc pair (U,V), the

dependency tree includes U and V.

Proof: This lemma is obvious because well-formed dependency trees in DG’ which do not
include both U and V exist in DG.

Here, uniq and diff are the sets of arcs defined for the equivalent arcs X and Y as follows:
uniq(X,Y)={I | CM(X,I)=0,CM(Y,I)# O,IeDG}
diff(X,Y)={(I,J)|I€uniq(X,Y),J€uniq(Y,X)}

For the arcs X, Y in Fig.3.13, uniq(X,Y)={j,n},uniq(Y,X)={k}and diff(X,Y)={(,k),(n,k)}. The

following lemma is established.

Lemma 3.5.2 (Arcs in a new well-formed dependency tree) In the case that a well-
formed dependency tree is generated by the merge of the equivalent arcs XY, the new tree
includes at least two arcs A,B such that (A,B) € diff(X,Y).

Proof: Let DF and DF’ be the dependency forests before and after the merge of X and Y.
Assuming that a new dependency tree DT, is obtained by the allowance of the arc pair (X,B;)
caused by the merge of X and Y, X and B; are included in DT, according to the lemma 3.5.1.

96

Here, let R=DT,—{X,B;}. CM(X,U)= O wrt DF’,CM(B;,U)=0 wrt DF’ for UER because DT,
is a well-formed dependency tree.

Assuming that there is no arc U such that CM(Y,U)# O wrt DF (i.e., CM(Y,U)= O wrt
DF,UeR), DT,={Y,B;}+R is a well-formed dependency tree in DF. DT, is not a new generalized
dependency tree because DT, and DT, differ only in the equivalent arc X and Y, i.e., DT, and
DT, are equivalent. Therefore, DT, must include at least one U; such that CM(Y,U;)# O wrt
DF is a new generalized dependency tree. This lemma is established because (B;,U;)ediff(X,Y).

O

The following theorem is derived from lemma 3.5.2,

Theorem 3.5.1 (The increase condition for IDed dependency tree)

Let arc pair (A,B)ediff(X,Y) for equivalent arcs X,Y in DG of the dependency forest <DG,CM>.
The increase of IDed dependency trees occurs if and only if <DG’,CM’> obtained by the merge
of Y to X have IDed dependency tree NDT which includes {X,A,B}.

Proof: This theorem is proved by showing a new well-formed IDed dependency tree includes
{X,A,B} and a well-formed IDed dependency tree which includes {X,A,B} is a new well-formed
IDed dependency tree. Assuming that NDT is a new IDed dependency tree existing in
<DG’,CM’>, there exists at least one arc pair (A;B;)ediff(X,Y),A;ENDT,B,eNDT. On the
other hand, XeNDT is true due to lemma 3.5.1. Therefore, a new well-formed IDed dependency
tree includes {X,A,B}. Moreover, no IDed well-formed dependency trees exist in <DG,CM>
because (A,B)ediff(X,Y). Therefore, an IDed well-formed dependency tree which includes
{X,A,B} is a new well-formed IDed dependency tree.

O

Some functions and notations are introduced for the discussion on the increase condition of

dependency trees.

same_position(U,V’) : The positions of dependant nodes of U and V' are the same.

dts(S) wrt <DG,CM> : a set of IDed well-formed dependency trees which consist of arcs
in arc set SCDG and satisfy the arc co-occurrence constraint

co(U) wrt <DG,CM> : a set of arcs which co-occur with arc U including U, i.e., {X |
X=U or CM(X,U)=0, XeDG}

dts_with_arcs(Ay,As,...,A,) wrt <DG,CM> : a set of the well-formed dependency trees
in <DG,CM> which include arcs Ai,As,...,A,, i.e., dts(co(A;)U:--Uco(A,)) wrt
<DG,CM>

ICI with respect to the arc pair (A,B) € diff(X,Y), equiv(X,Y) can be checked by searching
the existence of a well-formed dependency tree including {X,A,B} in <DG’,CM’> according to

57

theorem 3.5.1. To make this search process more efficient, the following three cases with respect

to arc X, A and B are considered.

(RC1) Any of same_position(A,B), same_position(X,A) or same_position(X,B) is true
(RC2) CM(A,B)# O is true
(RC3) Except for (RC1) and (RC2)

In cases (RC1) and (RC2), no well-formed dependency trees which include {X,A,B} exist
in <DG’,CM’> because of the existence of the single role constraint and the co-occurrence
constraint, respectively. In the case of (RC3), the existence of a well-formed dependency tree
which includes {X,A,B}, i.e., dts_with_arcs(X,A,B) wrt <DG’,CM’>={}, should be checked for
ICL

3.5.4 Increase Condition for Generalized Dependency Trees

As described above, ICI is a necessary condition for ICG. Therefore, ICG is defined as follows:

[The increase condition for generalized dependency tree]

Let DF’ be a dependency forest generated from the dependency forest DF by merging arc Y to
X where X and Y are equivalent arcs and let DT,,.,, be the set of IDed dependency trees which
are in DF’ but not in DF. There exists at least one IDed dependency tree DT € DT, such
that the generalized dependency tree ?DT is not included in DF.

The merge condition for equivalent arcs is the negation of ICG for the arcs.

3.5.5 Dependency Forest Reduction Algorithm

Fig.3.14 shows the dependency forest reduction algorithm for <DG,CM> based on the merge
condition for equivalent arcs (i.e., the condition for the forest reduction) described in the previous
section. In this algorithm, CM is represented as a set of co-occurable arc pairs. Arc X and Y
are co-occurable if <X, Y>eCM.

Fig.3.14 (a) picks up a pair of the equivalent arcs X,Y in DG, checks if a new generalized
dependency tree is generated in the dependency forest when arc pair (A,B) is allowed from (b)
to (h) in Fig.3.14. If all arc pairs in di f f(X,Y) do not generate any new generalized dependency
trees, the forest reduction is performed at (i).

The availability of the allowance of (A,B) is determined by checking ICG after checking ICIL.
At Fig.3.14 (b), conditions (RC1) and (RC2) in Section 3.5.3 are checked. If either of the
conditions is satisfied, the processing proceeds to the next arc pair in dif f(X,Y) because the
allowance of (A,B) generates no new IDed dependency trees. If not, the processing proceeds
to the check of ICI. At (c¢), <DG’,CM’> is generated by merging Y to X. Since the existence
check of a new IDed tree is basically performed by tree search for <DG’,CM’>, the reduction of
search space improves the efficiency. Based on theorem 3.5.1, the search space is reduced from
DG’ to DG_X AB(=co(X)Nco(A)Nco(B)) at (d). Then search-dt at (e) searches a new IDed

a8

DG_init: Initial Dependency Graph, CM_init: Initial CM, wn: Number of Input Words
/* Initialization %/
DG:=DG_init; CM:=CM_init; DG :={}; CM :={};

while (Get one unprocessed arc pair X,Y) { /% (a) %/
Result := mergable;
foreach (A,B) in diff(X,Y) { /% Process arc pairs for merging Y with X x/

/% (b) Check the increase condition for |Ded dependency trees: (RC1), (RC2) %/
if (same_position (X, A) | |same_position (A, B) | | same_position(X,B) || —(<A,B>=CM)) { next: }

CM := CMUadd_cm(X, Y, DG, CM) ; DG" :=DG-{Y}; /% (c) Generate DG',CM =/
DG_XAB := (co(X) Nco(A) Nco(B) wrt DG',CM') ; /% (d) Set of arcs co—occurring with X, A, B */
while ((DT:=search_dt (DG_XAB, CM', 0, {})) !=false) { /* (e) Search DTs for DG_XAB (RC3) =/
if (new_generalized_dt (DT, CM, DG) == true) /% (f) Check increase condition fro generalized
dependency trees x/
{ Result:=unmergable; break; } } /% (8) x/
if Result = unmergable) { break; } } /% (h) %/
if (Result==mergable) { CM:=CM’ ; DG:=DG ;] } /% (i) Merge X and Y (forest reduction) x/

% Search dependency trees for DG, CM
search_dt (DG, CM, P, SA) {

ifP = wn) { return({}); } /% (j) Has selected arcs in all position */
foreach Arc in arcs_at (DG, P) { /% (k) Select one arc at position P %/

if (inconsistent (Arc, SA, CM) == true) { next; } /% (I) Check co-occurrence condition */
Result := search_dt (DG, CM, P+1, SAU {Arc}) ; /% (m) Try the next position *x/

if(Result = false) { next; } /% (n) %/

else {return({Arc) UResult) ;] } /% (0) =/
return (false) ; } /x (o) */

% Check a new IDed dependency tree DT if it is new as a generalized tree in CM, DG

new_general ized_dt (DT, CM, DG) {
DG_X := add_equiv_arcs (DT, CM, DG) ; /% (q) Add equivalent arcs of arcs in DT x/
if (search_dt (DG_X, CM, 0, {})==false) {return(true):;} /x (r) Search DT for DG_X, CM =/
else { return(false); } }

% == functions —=

add_cm(X, Y, DG, CM) : Returns {<X, I>|l€uniq(Y,X);} U{KI, X>|1€uniq(Y,X)} wrt DG, CM

inconsistent (A, S,CM) : Given arc A, set of arcs S, constraint matrix CM, returns false if 3IX X8,
— (KA, X>=CM), otherwise returns true.

arcs_at (DG, P) : A set of arcs with position P in DG

add_equiv_arcs (DT, CM, DG) : Add equivalent arcs of each arc in dependency tree DT
ex. When DT=[1,5], the equivalent arcs of 1 and 5 are [2,3] and [] (in CM,DG) respectively
add_equiv_arcs ([1,5],CM,DG) — [1,2,3,5]

Fig.3.14 Algorithm for reduction of dependency forest

dependency tree for DG_XAB. If no dependency tree is obtained, allowance of (A,B) satisfies
the merge condition for equivalent arcs. If a dependency tree DT is obtained, DT is an IDed
dependency tree, which includes {X,A,B}. new_generalized_dt(DT,CM,DG) at (f) checks if the
generalized dependency tree ?DT is new or not new by searching ?DT for <DG,CM>. The
detailed explanation of new_generalized_dt is omitted here, but it realizes the search for the
generalized dependency tree by limiting the arc set DG_X so that it has only the equivalent arcs
of the arcs in DT by add_equiv_arcs at (q). When ?DT is a new generalized dependency tree, the

merge between X and Y is not available. The processing for arcs X and Y is terminated by (g)

99

and (h), and proceeds to the check of the next equivalent arc pair. If ?DT is not new, the merge
of X and Y, i.e., the forest reduction, is performed at (i). Furthermore, when ?DT is proved to be
not new at (f), the search of other dependency trees for DG_XAB is performed at (e). search_dt
searches a dependency tree which satisfies the co-occurrence condition in depth first manner with
respect to input position P. search_dt selects one arc from the arc set arcs_at(DG,P) that is a
set of arcs with position P. search_dt searches all possible dependency trees by selecting another

arc at (k) when there are no solutions for arcs from P+1 to the end position.

3.5.6 Execution Example of the Dependency Forest Reduction Algo-

rithm

This section explains the execution process of the algorithm in Fig.3.14 for the example sentence
“Tokyo taxi driver call center” in appendix A. The reduced dependency forest for this example
has equivalent arcs. Fig.3.15 (a) shows the initial dependency forest for the example sentence. It
has four sets of equivalent arcs, (1, 2),(5,7),(13,15),(25,26,27) which are surrounded with double
lines.

The forest reduction is performed along with the algorithm in Fig.3.14. The first equivalent arc
pair (1,2) is selected to set X=1,Y=2. dif f(X,Y) is computed as {(5,14),(5,15),(5,27),...} by
combining the elements in uniq(X,Y)={5,24,25} and uniq(Y, X)={14,15,27}. The first arc pair

1165 [7]14]13[15]24]25[26]27]28]

; i ; 1] Jol ol ololol oo

6 14 an4 top 5 — O O O O

Q\ 510 |- olo @)

nc2s 7 — 1o [e)

14) O — @) o] [e]

nc26 '\ P28 3 ol |- Ol |O

15/0 of — 0o|o

nc2 nc7 nes ne27 [24]0] O - [O) @)

Tokyo taxi driver call center | |25)O] [O) @)

261 [|O] [Of [O - O

(@) Initial dependency forest 2710 ol o —lo

1126l5 1 7114]13]15[24]25/26/27]28] sfofololofololololololol-
= o) rolo 0 (b) Arc 2 merged to arc 1
20 - ol _Q Ql0 16 [5]1413]24l2512627]28]
6 —1 Ol [0 O 1= _[o[c]ojolol O[Ol
510 — (0] ()] O 6 —Jol To Ol O
1 ol | 10 O 10 [5 [O[O[-] [O[O]olol O
14 O — O (@] [) 14]O i [0) olo
13 [O] O |- ol o 13[0|o]ofo]= oo
151 O ol - olo l2aJo] |o —lo 0
24O) —|O @) 25|10 O ol — [@)
25|10 (@) ol— 0] 26 |O[O| [O i ()
26 o] o] [o el [©) 2710l | [o]o —[O|
27l 1O ol o = [e) 75 (@) [e] (@) [e] [e] [¢] [e)Ie)Ie) E=

7T [e]le] [e] [e][e] [¢) [e][e] [¢] [e] o]le] &= (c) Final reduced CM

Fig.3.15 Initial dependency forest and its reduction

60

(5,14) is skipped by the condition check for (RC1) at Fig.3.14 (b) because same_position(5,14)
is true. The second arc pair (5,15) is tried. (5,15) does not match the conditions at (b), CM’ and
DG’ are generated at (c). CM’=CM+{<1,14>,<1,15>,<1,27>} as shown in Fig.3.15 (b). Then
DG_X AB is computed at (d). X =1,4 =5 and B =15 result in DG_X AB =co(1)Nco(5)Nco(15)
wrt <DG’,CM’>={1,28}. The allowance of (5,15) generates no new dependency trees because
the search of the dependency tree for DG_X AB by search_dt at (e) fails. The processing proceeds
to the check of the next arc pair (5,27). In a similar way, all arc pairs in dif f(1,2) are assured
to generate no new dependency trees, and then DG’ and CM’ is set to DG and CM at (i),
respectively.

Fig.3.15 (c) shows the reduced dependency forest finally obtained by the algorithm. It has three
equivalent arcs 25, 16 and 27. The processing of the algorithm for this dependency forest is de-
scribed. Let X =25 =26. Then, uniq(X,Y) ={1,24},uniq(Y, X) ={6,13},dif f(X,Y) ={(1,6),
(1,13),(24,6),(24,23) }. The arc pair (1,6) is skipped by the condition check for (RC1). The arc
pair (1,13) is not skipped by the condition check for (RC1) and (RC2). Then, DG_X AB is
computed at Fig.3.14 (d). X = 25,4 =1 and B = 13 result in DG_X AB =co(25)Nco(1)Nco(13)
wrt <DG’,CM’> ={25,1,13,5,28}. A new IDed dependency tree {25,1,13,5,28} is obtained by
search_dt at (e) for DG_X AB*''. Then, new_generalized_dt at (f) is called and add_equiv_arcs
at (q) computes a set of arcs DG_X where the equivalent arcs of the arcs in DT are added. In
the case of Fig.3.15 (c), arc 25 has equivalent arcs 26 and 27. Addition of these arcs results
in DG_X ={25,26,27,1,13,5,28}. search_dt at Fig.3.14 (r) tries to get a dependency tree for
DGE_X but it fails because all equivalent arcs 25, 26 and 27 have inconsistent arcs in DG_X, i.e.,
<25,13>,<26,1> and <27,5> are not in CM. As a result, new_generalized_dt at (f) becomes
true, that is, the increase of the generalized dependency tree occurs. Therefore, the merge of
X =25 and Y'=26 is not performed. The dependency forest in Fig.3.15 (c) includes the depen-
dency trees in Fig.A.1 (a) to (c) and retains the soundness.

The above algorithm does not assure generation of one reduced dependency forest. The output
dependency forest may vary by the application order of the merge operations for the equivalent
arcs. There exist different dependency forests containing the same three generalized dependency
forest for the above example. The algorithm in Fig.3.14 does not assure that it generates the min-
imum dependency forest. In fact, there exists a dependency forest smaller than the Fig.3.15 (c).
Moreover, there is room for improving the computational amount in the above algorithm. The
construction of the smallest reduced dependency forest and the improvement of the performance

of the algorithm are future tasks*'2.

*I1 This tree corresponds to the tree in Fig.26 (d).

*12 PDG allows arbitrary mapping between the constituent sequences and the partial dependency trees defined
in grammar rules. Therefore, any dependency structure can be assigned for any constituent sequence
provided that they satisfy the partial dependency structure condition. This feature suggests that not only
the optimization techniques in the general algorithm but also the techniques based on the structural analysis
of the grammar rules are effective.

61

3.6 Proof of the Completeness and Soundness of the
Dependency Forest

3.6.1 Proof of the Completeness and Soundness of the Initial Depen-

dency Forest

The phrase structure forest PF and the dependency forest DF=<DG,CM> is assumed in the
following proof. Before showing the proof, some relations between the phrase structure forest
and the dependency forest generated from the algorithms explained in Section 3.4.4, and some

lemmas required for the proof are described.

[Packed Edge and Single Edge]
The phrase structure forest is a set of packed edges. As described in section 3.4.3, a packed

edge is equivalent to a set of single edges. In this proof, packed edges are treated as a set of

single edges. The following packed edge is shown in Fig.3.8.

Packed edge : <ID,FP,TP,C,PH,FCSL,RCS,DSL>
where FCSL=[CS;,...,CS,],DSL=[DS;,...,DS,]
is equal to the following set of single edges.
*e, : <ID-1,FP,TP,C,PH,(CS; DS;),RCS>
*e, : <ID-n,FP,TP,C,PH,(CS,, DS,),RCS>

For example, *E4 in Fig.3.8 is a set of arcs *ey,*e,*!?

Single edge *e;: <170-1,0,5,vp, [time]-v-0, [103,169], [], {arc(obj-25,[flies]-n-1,[time]-v-0) } >
Single edge *es: <170-2,0,5,vp, [time]-v-0, [103,119,165],]],
{arc(obj-4,[flies]-n-1,[time]-v-0),arc(vpp-20,[like]-pre-2,[time]-v-0) } >
Every single edge is identified in the phrase structure forest by the packed edge-ID and the
position in the CSDS pair of the packed edge. For example *e; is identified by 170-1. The lexical

edge is treated as a set consisting of a single lexical edge. @QE5 in Fig.3.8 is equal to the set Qes.
Single edge @ez: <156-1,4,5n,[arrow]-n-4,[lex([arrow]-n)],{[[arrow]-n-4]} >

Various elements included in a packed edge and a single edge have correspondences with one

another. The following shows the definitions of terms and relations.

*13 The partial dependency tree is represented in {} because it is a set of arcs.

62

Edge and its elements

cs(X) : The constituent sequence of the single edge X.
ex. cs(*er) =[103,169] where 103 and 169 are packed edge-IDs.

ds(X) : The dependency structure DS of the single edge X or the node of the single lexical
edge X. ex. ds(*e;)={arc(obj-25,[flies]-n-1,[time]-v-0)}, ds(@es)={[arrow]-n-4}

Arcs in the dependency forest and edge : The arcs in a single edge X mean a€ds(X). An
arc in a packed edge Y means a€ds(X),X€Y. An arc in the phrase structure forest
means a€ds(X),X €Y Y €PF.

Relations between arcs and nodes

gov(X) : The governor node of the arc X.
ex. gov(arc(obj-25,[flies]-n-1,[time]-v-0)) = [time]-v-0
dep(X) : The dependant node of the arc X.
ex. dep(arc(obj-25,[flies]-n-1,[time]-v-0) = [flies]-n-1
top-node(X) : The top node of the dependency tree X (The node which is not a dependant

of any arcs in X).
Relations between arcs X, Y in the dependency tree DT

sib(X,Y) : gov(X)=gov(Y). X and Y are called the sibling arcs.

X Dl—T> Y : dep(X)=gov(Y). X is a parent of Y and Y is a child of X. This relation is
called parent relation.

X D+—T> Y : There is a parent relation chain from X to Y. X is an ancestor arc of Y and
Y is a descendant arc of X.

XY : X=Yo XV
DT DT

[Edges and Phrase Structure Trees in the Phrase Structure Forest]
The phrase structure forest PF is a directed acyclic graph consisting of packed edges where
the root is the root edge *E,,.; and the leaves are lexical edges. The “path in PF” is defined as

follows:

Definition 3.6.1 [Path in the phrase structure forest]

A path in the phrase structure forest is a sequence consisting of packed edges and single edges
obtained by tracing a packed edge and a single edge one after another by selecting one single edge
from a packed edge (a set of single edges) and selecting one packed edge from the constituent

sequence (a sequence of packed edges) of a single edge.

Now, let *Eg,*Eq,*Es- -+ in the phrase structure forest as follows:

*Eo ={*e1,%e2}, *E1 ={*e3}, *Eo ={*e4,*e5}, *E3 ={*eq,*er} ...

cs(*er)=[*E;,*Es], cs(*e2)=[*E3], cs(*e3)=[*E4,*E5] ...

63

The following are examples of paths.
[*Eo,*e1,*En,*es], [*Eo,*e1,*Ea], [*e1,*E1,%e3,*Es], [*e1,*Eq,%es]

The following shows the definitions of terms and relations used in the latter part.

Terms and relations related to the phrase structure forest

X ;—F> Y : There is a path [X,..., Y] from a packed or single edge X to a packed or single
edge Y. X is an ancestor of Y.

X ? Y: X =Yor X%Y is true for single or packed edges X and Y. Y is called
“reachable” from X.

X e\ Y X#Y,—'(X#Y),—'(YP*—F)X) are true for single or packed edges X and Y,
and there exists at least one single or packed edge Z in the phrase structure forest PF
such that Z#)X and Z?Y.

Arcs governed by an edge : Arc X is governed by packed edge *E if XEds(*e),*Eﬁ)*e is

true.

From the definition of the phrase structure forest, there exists a path from the root packed edge
*Eroot to every single or packed edge in the phrase structure forest. Using the definition above,

the C-Matrix setting conditions in section 3.4.5 are defined as follows:

Definition 3.6.2 [The C-Matrix setting conditions]

Arcs X, Y are co-occurable if any of the following conditions is satisfied.

(C1) There exists a single edge *e such that X Y €ds(*e),*ec*E,*EcPF
(C2) There exist *e, and *e, such that Xeds(*e$),Y6ds(*ey),*ez;—F>*ey or *ey;—F>*e$.
(C3) There exist *e, and *e, such that X eds(*e,),Y eds(*ey), ez pr\Fey.

A phrase structure tree is defined as follows:
Definition 3.6.3 [Phrase Structure Tree]

A phrase structure tree for a packed edge *E is a set of single arcs obtained by a recursive

procedure get_tree(*E) defined in Fig.3.16

Compute a phrase structure tree PT for a packed edge RPE

get_tree (RPE) {
SE := select(RPE): /* Select one single edge in RPE %/
PT := {SE}; /* Add selected single edge to phrase structure(ps) tree PT x/
if(lexical_edge(SE)) { return(PT); } /= Lexical edge? =/
/% Gompute ps trees for packed edges in ¢s(SE) and add them to PE x/
foreach(PE in ¢s(SE)) { PT := PT U get_tree(PE); }
return(PT) ; }

Fig.3.16 Algorithm for obtaining phrase structure tree

64

select(RPE) in the figure selects one arbitrary arc included in a packed edge RPE. lexi-
cal_edge(SE) is true if SE is a lexical edge. A phrase structure tree covers the words from
the from-position to the to-position of the edge *E.

Definition 3.6.4 [All phrase structure trees]

ps-trees(*E) is a set of all phrase structure trees for *E.

[Relations between Edges and Arcs/Partial Dependency Trees]

Although the parsing algorithm is constructed using packed edges as basic data structures, the
packing of edges is performed only when inactive edges are generated (Fig.3.9 (c),(d)). Therefore,

every active packed edge has one single edge™* and one active packed edge corresponds to one
single active edge and vice versa.

In the following discussion, the word “edge” is used for
representing a packed edge.

Parsing proceeds by generating new edges by combining an inactive edge to an active edge.

Using a diagrammatic expression as described in section 3.4.3, a combination of two arcs generates
anew edge by moving ’ -+’ in the active edge to the right neighbor position and binding the variable
for the constituent at ’

’ to the phrase head (node) of the inactive edge to combine. Fig.3.17 is
a tree called “edge combination tree,” which represents the generation process of inactive edges

from a grammar rule by edge combinations. The inactive edges located at the leaf of the edge

(d)

RN, AR) S, 4
()

xSt A Ay Ay 1)

<E x,/ny >) <#E x,/hyy =~ .. D
<E xy/ny > . >

By 9% = x/ny %/ e XKt
EOAL A, LA Xy

By v/Xp = /0yt x/%5 o x/X:
LA A LA Xyl

By ¥/Xy = Xy/0gy * %o/ Xy o x/K
Ay Agy oy Ay} > {Xgi7my,)}

NG

v

Nyy
>

D B Y% x/my

JAL LA Xy,

a,, A, e Xt gy /() /\
® ‘
‘/ l(*E/x,-/nj_ - .. S

S V5 PHRSELES 35 SRR W) S

v XD e X/np

{ay, gy oy @y} > Xyt gy vy Xyt gy oo, Xpinped

\
\
\\
‘\
| @
Biw ¥/Xp = X¢/Ny oo X3/Nyn 0 X/Xpq o XX 0 — ¢ 5\
{a, cag s A Xy, Xyt Gy X0y} | \
1 ‘\
'
/ | . \ \‘\
<GE x,/ng, = . > \
‘ | < x,/ng, _(h) \
| R - i
<*En1 "'>{X1:7n11: "':&:7nnl ¢ " y/n“h Xl/nlk -

Gy D (X e, Xy g)

Fig.3.17 Edge combination tree

*14 The parsing algorithm utilizes packed edges because another algorithm, which shares active edges, can be
constructed.

65

combination tree are generated from a grammar rule located at the root of the tree*' through

the active edges in between. The grammar rule is as follows:
y/Xh — Xl/Xl' . 'Xh/Xh' - Xn/Xn . {Al, A2, .. .,Anfl}

A; is an arc in the form of arc(a;,Xy,X;) where a; is an arcname, 1<k<n, 1<I<n, k#l. A set
of arcs {41, ..., A,_1} satisfies the partial dependency structure condition in section 3.4.2.

The edges in the edge combination tree are expressed in diagrammatic form using ’ - ’, neglect-
ing the from and to positions. The arrows between edges represent the edge combinations where
the edge at the source of the arrow is combined with the inactive edge attached to the arrow to
generate the resulting edge at the target position of the arrow. For example, Eq; (Fig.3.17 (a))
is combined with <*E x3/ns;1— ... > ((b)) to generate Ez; ((c)). Since ’*’ moves to the right
neighbor position, the depth of the tree, i.e., the number of arcs from Eg to each inactive edge,
is equal to n, i.e., the number of elements in the rule body in the grammar rule.

The phrase head (node) is bound to a variable in the active edge during edge combination.
The variable bindings are shown at the right of the edge by { }. For example, the combination
of Eg and the edge (d) whose phrase head is ny; generates Eqq, and then it is combined with the
edge (b) whose phrase head is na; to produce Es1. As a result, the variable bindings of Es; are
{Xl::nn,Xg::nm}*lﬁ. An arc whose governor and dependant are bound is called “fixed arc”
and has a new unique arc-ID generated by add-arcid at Fig.3.9 (i). Fixed arcs are represented
by a small letter such as a; in Fig.3.17 (e). One variable binding may generate zero or more than
zero fixed arcs. The generated fixed arc has one unique variable binding corresponding to one
edge combination. This edge combination generates one unique edge. This unique edge is called
the edge which generated the fixed arc or simply “source edge” of the fixed arc, and is referred
to as src_Edge(a) where ’a’ is a fixed arc. For example, in the edge combination between (e)
and (f) in Fig.3.17, provided that the binding of the node n;,, (let it [like]-pre-3) to the variable
X, generates the fixed arc a; (let it arc(pre-28,[like]-pre-3,[time]-v-0)) from the unfixed arc A;
(arc(pre,X;,[time]-v-0)), the edge which generated the fixed arc a;, i.e., src_Edge(a;) is E;p, in
Fig.3.17 (g).

Every inactive edge (leaf of the combination tree) (ex. Fig.3.17 (h)) has only fixed arcs because
all variables including phrase head variable in the edge are bound due to the partial dependency
structure condition. Inactive edge represents a result of a sequence of variable bindings caused
by the edge bindings from the root to the leaf of the edge combination tree. The following shows

the definitions of terms and relations related to the edge combination tree.

*15 The grammar rule is written in edge form in the edge combination tree. This edge is not generated in the
real parsing process but is introduced for convenience of explanation.
*16 Scope of a variable is within edge.

66

fixed arc : Arc whose governor and dependant nodes are fixed by the variable bindings
caused by edge combinations.

src_Edge(a) (source edge) : The active or inactive edge which generated a fixed arc a.
Mapping from a fixed arc to its corresponding edge is one to one, whereas the reverse
is 1 to 0 - many.

Xé)Y (origin) : Edge X is located on a route from the root node to the edge Y or X =Y.
X is called an origin of Y.

origin relation : Edges X, Y in an edge combination tree CT are said to be in origin relation
if X—)Y or Y—)X is true.

edge(a, DT) (correspondlng edge) : The corresponding edge for a fixed arc a and a well-
formed dependency tree DT is a single edge e which satisfies the following condition
(defined in lemma 3.6.4).

DT 2ds(e), aeds(e)

According to the structure of the edge combination tree described above, two fixed arcs a; and

a; have the following relations.

Lemma 3.6.1 (Relation between arcs in one partial dependency tree) Let a; and
a; be fixed arcs a;,a;j€ds(e) where e is a single edge. Their source edges src_Edge(a;) and

src_Edge(a;) are in origin relation.

A fixed arc in edge e in the edge combination tree is in the edges that have e as their origins.

For example, fixed arc a; generated at (g) is contained in (h).

Lemma 3.6.2 (Relation between an arc and the edge which generated the arc)
Suppose that fixed arcs a;,a; satisfy src_Edge(ai)CLT>src_Edge(aj), aj€ds(*e) implies a;eds(*e)
for every single arc *e in PF (*ee*E,*E€PF).

Since a unique arc-ID is assigned to each arc, all inactive single edges in the inactive packed
edges in an arc combination tree, i.e., the leaves of the tree ¥*E,1- - -*E,,. . .*Ey, in Fig.3.17, have
different partial dependency trees. Therefore, ds(*e;)7#ds(*e;) for arbitrary arcs *e;,*e; (*e;#*e;)
in PF. A single inactive edge and a partial dependency tree have one-to-one mapping. In the
parsing process, inactive edges which satisfy the conditions shown in Fig.3.9 (j) are merged into
one and this merged edge becomes an element of the phrase structure forest. The one-to-one
mapping relation between a single edge and a partial dependency tree is assured in the phrase
structure forest because this merge operation does not change the dependency structures in the

single edges.

Lemma 3.6.3 (Constraints with respect to the arcs in the edges included in a path)
Suppose arcs a;€ds(e;),a;€ds(e;). If ei:—F>ej, then dep(a;)#dep(a;) is true. Inversely, if

dep(a;)=dep(a;), then ﬁ(ei%ej) is true.

67

Proof: This lemma is established because data structures in the single edges are trees whose

top nodes are phrase heads according to the partial dependency structure condition in 3.4.2.

O

Lemma 3.6.4 (Existence of corresponding edge) Suppose an arc a; in a well-formed de-
pendency tree DT (a;EDT). There exists one and only one packed edge EEPF and single edge
e€E which satisfy the following condition.

DT 2= ds(e),a;eds(e)

Proof: Let number of nodes in DT n (Number of arcs is n — 1). Divide arc set DT into the
following two arc sets IN.ARCS,OUT_ARCS with respect to a;.
IN_ARCS = { a; | src_Edge(ai)é)src_Edge(aj) or src_Edge(aj)ﬁsrc_Edge(ai)}
OUT_ARCS = DT-IN_ARCS

Let SRC_EDGES be a set of source edges corresponding to the arcs in IN_ARCS.
SRC_EDGES = {FE | E=src.Edge(a), acIN_ARCS}

First, the following statement is to be established.

“Arbitrary edges in SRC_EDGES are in origin relation” (A)

Suppose edges U,VESRC_EDGES. U and V are in origin relation by definition and in one of the

following three cases.

(a) One arc is an origin of E; and E; is an origin of the other arc. U# Ei,Eiﬁv
(b) Both arcs are origins of E;. U—s E;,V——E;
or cT

(c) E; is an origin of both arcs. E;——U E;—V
cT CT

In cases (a) and (b), the statement (A) obviously holds according to the structure of the edge
combination tree. The following shows that a contradiction is derived from the assumption that
U and V are not in origin relation in case (c).

Suppose that U and V are not in origin relation. There exist arcs a,, a,€DT such that
U=src_Edge(a,), V=src_Edge(a,) according to the premise. Since all arcs in DT are in the
packed shared forest, there exist inactive edges that have U and V' as their origin, respectively.
Let *E, and *E, be origins of U and V, respectively. Let e, in *E,, and *e, in *E, be edges such
that a,€*e,, a,€*e,. From Lemma 3.6.2, both *e, and *e, contain a;. Arcs a, and a, in the
well-formed dependency tree DT satisfy either of the C-Matrix setting conditions (C1) to (C3).
a, and a, do not satisfy (C1) because the contradiction for the assumption that U and V' are not
in origin relation is deduced from (C1), i.e., the existence of e such that a,,a,€ds(e) according to
lemma 3.6.1. (C2) is that *eu;—F>*ev is true (The reverse case is shown in the same way). Nodes
included in arcs in ds(*e,) are phrase heads of the constituents in cs(*e,) according to the partial
dependency structure condition. This implies that either dep(a;) or gov(a;) of a;€ds(*e,) is a

node which locates outside of the coverage of *e,. On the other hand, both dep(a;) and gov(a;)

68

must be in the coverage of *e, because a;€ds(*e,) is true. From this contradiction, a,, and a, do
not satisfy (C2). (C3), i.e., *e,/ wri\/*e, , is not satisfied by a, and a, because the coverage of
*e, and *e, have to be overlapped due to the premise that a; is in both *e, and *e,. From the
above, the supposition that U and V' are not in origin relation contradicts the C-Matrix setting

conditions between a, and a,. Therefore statement (A) is true.

Now, let Ejus¢ be the last edge connected from E;, i.e., the edge which satisfies the following

conditions.
Ei%Elast
CcT
Eigst is the only edge E; such that ElastC%)Ej (E;eSRC_EDGES)
Fig.3.18 shows the relation between IN_.ARCS and SRC_EDGES diagrammatically. Eg;q¢

corresponds to a grammar rule. The grammar rule is as follows:
y/Xh — Xl/Xl' - Xz/Xz C{Al,. . .,Azfl}

SRC_EDGES constitutes a route on the edge combination tree CT with root Eg;q.¢, containing
Eq,...,Eiast- The source edge E; for a; exists somewhere on this route. There exists at least one
arc ajqs¢ which is generated by Ej,q in IN_ARCS.

Eius¢ is either an active edge or an inactive edge. Fig.3.18 shows a case where E;,; is an active
edge. Ejus¢ is proved to be an inactive edge as follows:

Suppose that Ej.¢ is an active edge. As shown in Fig.3.19, E;. (Fig.3.19 (a)) has at least
one remaining constituent x,4+1 (Fig.3.19 (b). Variable for the constituent is not shown). Let sl
and t1 be a from-position and a to-position of E;,s, respectively.

From the premise aj,;€DT, there exists at least one inactive edge *E, (Fig.3.27 (c)) which
has Ej.q, the source edge of aj,«, as its origin in the phrase structure forest PF. As shown in
the figure, *E, has the from-position equal to the from-position s1 of E;,s and the to-position
greater than the to-position t1 of Ej4s.

Consider the node n; 41 at the position t1+1 (Fig.3.19 (d))*'". DT has one arc

E-src_Edge(a) < y = ox/X . x /X [A ., A D> {) One Route in the Edge Combination Tree

start

IN_ARCS > <E vy = x/n ox/n o x, /Xy o x /X (A Lay, AL D Xy, L, Xy

* X/ KXoy - %, /X 0 [A gy —es 8y ey A D>

5 ¢ {X;:n, ..., X,:n, ..., X;:n,}
o > B, v~ x/n ox/nox/noex /XL ox /X AL C Y P S AT
last ! X2y, o, Xeny, o, Xong, o, X in)
v
<GE y — x/nl . x /X -:[a, .., Ay ers Apy eny By, ey al>
X, ., X:n, ,X:n, ,X:n,. . ,X:n}

Fig.3.18 Edges corresponding to arcs in DT

*17 One ns141 exists due to the well-formedness condition of DT

69

INARCS 8 8; @ | OUL ARCS ©
/L E=src_Edge (a) ﬂf dep (@) =i
0
<E1.st sl tl y—=x; X, -X..ﬂ X2 Epes S2 12 ¥— >
© <_‘_>— origin —Q._>
\ V V
GE, sl t3 N\ —x, X, * > $HE, 2 t4 Y= >
—s=u t=t141
- \
(C)]
Node Positior) 1 sl tl tl+1 n
NodesinDT ' O = -+ O .. O Qe—"(d) o |
Il1 nl 1'1t1+1/() nn

Fig.3.19 Existence of corresponding edge

Anext (dep(anezt) =N¢141 (F1g319 (e)) .

nition of aj4s¢-

anext 18 an element of OUT_ARCS due to the defi-
anet €DT implies that at least one inactive edge *E, whose origin is Ejcq,
the source edge of aeqz, exists in the phrase structure forest PF. Since E,¢p¢ has aner; within
its coverage, E,.,; has the from-position sl less than or equal to t1 (Fig.3.19 (f)) and the
to-position t2 is greater than or equal to t1+1 (Fig.3.19 (g)). Therefore, the from-position of
*E, is less than or equal to t1. From the above, *E, which has its origin E;,s overlaps *E,
which has its origin E,.,; at the t1 position.

Now, no co-occurrence setting conditions for aj,s; and a,e.; hold as follows:

Arcs aj45 and ag,eq¢ do not satisty (C3) because *E, and *E, overlap as explained above. (C1)
is not satisfied from the premise *E,#*E,. Consider (C2) meaning that *Em;—F)*Ey is true (the
reverse case is shown in the same way). Let a,,, be the arc in *E,., whose dependant node is nz 1.
amFanest ®

From the above, aj,s; and a,..; satisfy no co-occurrence setting conditions. This contradicts the

. According to lemma 3.6.3, if *Ex%)*Ey is not true, then (C2) is not satisfied.

premise that DT is a well-formed dependency tree. Therefore, E;, is not an active edge.

Let Ejus¢ be an inactive edge *Ejq5;-

(a) *Ejqs, the source edge of aj,g¢, is an inactive edge (a leaf of the edge combination tree)
then no other packed edges contain a;s;. Moreover, there exist only one *ej,s; such that
alastEdS(*elast);*elast e>kElast-

(b) *Ej,5:€PF is true due to aj,€DT.

(¢) According to the premise a;,:€DT and lemma 3.6.2, DT 2ds(*e;qs:) is true.

Lemma 3.6.2 is true due to (a) to (c).

O

18 1f a0 —anewst, src_Edge(anez¢) and E; are in origin relation. This contradicts the premise ane.t EOUT_ARCS.

70

[Relation between Connected Arcs and their Corresponding Edges]
Arcs ai,aj(aiDl—ij or sib(a;,a;)) are called “connected arcs.” The following two lemmas are

established with respect to connected arcs in a well-formed dependency tree DT.

Lemma 3.6.5 (Connected arcs and their corresponding edges) Suppose *e;=edge(a;,DT),

*e;=edge(a;,DT) for connected arcs a;,a; in DT. At least one of (a), (b), (c) is true.
(a) *ei =*e;
xo. T ook,
(b) Gy G
ko Toka.
(c) Ci o G

Lemma 3.6.5 means that if two arcs in DT are connected, one of their corresponding edges is

reachable from another edge in PF.

Proof: *e; and *e; satisfy at least one of the C-Matrix setting conditions (rl) to (r3) because

*e, and *e; co-occurs in DT.

(rl) *e;=*e;
(r2) *ei;—F>*ej or *ej;—F>*ei

(I‘3) *ei/[PF]\ *e]-

Let n be a node shared by the connected arcs a; and a;. Both *e; and *e; covers n. Therefore,

(r3) is not satisfied by *e; and *e;. *e; and *e; has to satisfy (rl) or (r2).

Lemma 3.6.6 (Ancestor-descendant arcs and their corresponding arcs) Suppose

*e,=edge(a;,DT), *e;j=edge(a;,DT) for ai,aj(ai;—ij).
*ei%*ej
PF

Proof: In the case that dep(a;)=gov(a;), one of (a), (b) or (c) in lemma 3.6.5 is true. From
the node positioning relation prescribed by the partial dependency structure condition in section
3.4.2, (c) is not satisfied by a; and a; because ﬁ(*ej%*ei) is true for *e; and *e;. Therefore,
parent-child arcs satisfy either (a) or (b). Lemma 3.6.6 is established for aiD*—ij due to the

associativity of the relation #).

O

[Top single edge top_edge(DT)]
Definition 3.6.5 [Top single edge]

A “top single edge” for DT top-edge(DT) is the single edge which locates in the topmost
position in PF among the edges which correspond to the arc just under the top node of DT.

That is, top_edge(DT) is edge a; satisfying the following conditions.

71

top-node(DT)=gov(a;)
edge(ai)ﬁedge(aj) for all a; such that top-node(DT)=gov(a;)

If DT is a tree consisting of one node, topnode(DT) is the single lexical edge corresponding
to the node.

Lemma 3.6.7 (Relation between top_edge(DT) and edge(a;,DT)) *et?*ej is true for
*e,=top_edge(DT) and *e;=edge(a;,DT) (a;€DT).

Proof: If a; is an arc just under the top node of DT, i.e., gov(a;)=top_-node(DT), *etﬁ*ej,
is true according to lemma 3.6.5 and the definition of top_edge. If not, a; is a descendant of one

of the arcs just under the top node of DT. *¢, #}*e]’ is true according to lemma 3.6.6.

O

[Division of Well-formed Dependency Tree]

The “division of a well-formed dependency tree DT” means the creation of a set of partial
dependency trees DTy,....DT,, by removing a set of arcs in ds(top_edge(DT)) from DT,
where m is a number of nodes in ds(top-edge(DT)). Nodes isolated from all other nodes by
this operation are dependency trees that consist of one node. For example, suppose that
ds(top_edge(DT))={as,ar,au,a,} in Fig.3.20, DT is divided into partial dependency trees
br,,0p71,,DT,,DT,,DT,, Whose top nodes are ng,n;,n,,n,, n,, respectively. Since nodes ng, n,,
are isolated from other nodes, DT and DT, are dependency trees consisting of single node,
ie.,{ns} and {n,}, respectively. The phrase heads of the packed edges in cs(e) of a single edge
e have one-to-one correspondence with the nodes in the partial dependency tree df(e) due to

the partial dependency structure condition in section 3.4.2. Therefore, there exists one packed

__.__q,';‘_(.top;edge(nfr))w.....,.._...,.,.....,;..._,,,

top_edge(DT)

___________ “ 4
top_node(DT) <*e, &/n, (cs dg) >

root_Edge(DT,)-- -~

Ons Sp(Ont tpt O ny,

Dependency tree DT The phrase structure forest PF

Fig.3.20 Division of well-formed DT

72

<*e, ¢/n (cg dg) >

root_Edge(DT)___

A
<*E,c/n> <*E; sptpc/n...> <*E, /N>

\V<*eo SPy th, €/ (Cs, ds,)>

S

Sp O n; tpl O N,

Dependency tree DT The phrase structure forest PF

Fig.3.21 Well-formed DT; obtained from division of DT

edge *E; (1<i<m) whose phrase head is a top node n; of DT;(1<i<m). *E; is called the “root
packed edge” for DT; and is referred to as root_Edge(DT;).

Definition 3.6.6 [Root packed edge]

Suppose DT; and its top node n; (1<i<m) is obtained by the division of DT. A
root_Edge(DT;) is a packed edge which is an element of cs(top_edge(DT)) and whose
phrase head is top_node(DT;).

For example, in Fig.3.20, *e, is top_edge(DT) and has the constituent sequence *E; *E; *E,,,
*E,,*E,, whose phrase heads are ng,n;,n,,n,,n,, respectively. Then, root_Edge(DT;) is *E;. The

following two lemmas are explained with reference to Fig.3.21.

Lemma 3.6.8 (Relation between root packed edge and top single edge) Suppose par-
tial dependency trees DT; obtained from the division of the well-formed dependency tree
DT. *Ei%)*eo is true for the root packed edge *E;=root_Edge(DT;) and the top single edge
*e, =top_edge(DT);).

Proof: Let *e; be top_edge(DT) and n; be the top node of DT; (Fig.3.21). Consider the case
where DT is a tree consisting of a single node, i.e., DTi ={n;}. *e, is the single lexical edge

corresponding to n;. *Ei%)*eo is true because the phrase head of *E; is n;. Consider another
case where DT is a tree consisting of arcs. *e, P*—F>*e0 is true according to lemma 3.6.6. Therefore,
X?*eo is true for some packed edge X in cs(*e;). X=*E; is true because *E;Ecs(*e;) from

definition and the phrase heads of *E; and *e, are the same.

O

Lemma 3.6.9 (Well-formedness of partial trees obtained by division of DT) Suppose
partial dependency trees DT; and its root packed edge *E; with the from-position sp; and

73

to-position tp; obtained from the division of the well-formed dependency tree DT. DT; is a

well-formed dependency tree, which covers from sp; to tp;.

Proof: DT; is a well-formed dependency tree if it satisfies the co-occurrence constraint and
the well covering constraint. Obviously DT; satisfies the co-occurrence constraint because DT
satisfies the co-occurrence constraint. The following part shows the well covering constraint.

In the case that DT is a tree consisting of a single node, it satisfies the well covering constraint
from the definition. Consider the case where DT is a tree consisting of arcs. Let n; and n; be
the top node of DT and one of any other nodes in DT (n;#n;). There exists arc a; such that
n;= dep(a;) in DT. Moreover, there exists a;€DT; such that gov(ak):ni,akD*—ij for a;eDT;.
Let *e; and *e; be *e;=edge(a;,DT), *er=edge(ar,DT). *ekﬁ*ej is true due to lemma 3.6.6
because aj, is equal to a; or aj is an ancestor of a;. Now, let *e; be the top single node of DT,
*et?*ek is true according to lemma 3.6.7. *ej is reachable from one of the packed edges in
cs(¥ey)- *Eil:—F>*ek is true because the phrase head of *ey is n;.

From the above, *Eié)*ekp—*;)*ej is true and n; is in the coverage of *E;, that is, all nodes
in DT; are in the coverage from sp; to tp;. Furthermore, the nodes in DTy (k#i) are not in the
coverage from sp; to tp;. Since DT satisfies the well covering constraint, all nodes in DT; occupy

whole positions from sp; to tp;.

O

[Proof of the Completeness and Soundness of the Dependency Forest]
A corresponding dependency tree dependency_tree(PT) for a phrase structure tree PT =

{*e1,...,*em } is defined as follows:

Definition 3.6.7 [Dependency tree for a phrase structure tree PT]

dependency_tree(PT) = ds(*e;) W-- -0 ds(*ey,)
The operator ¥ is similar to the union operator U , which is introduced to manage the union of
dependency structures which may be either a set of arcs or a set of a node. W removes nodes
from the union of dependency structures if it has at least one arc. The following are examples

of W where n; and a; represent node and arc, respectively.

{n; }w{as,a:} = {a1,a2}
{a;}w{az,a3} = {a;,a2,a3}

{ni}w{} = {m}

dependency_tree(PT) is a tree because it is constructed by combining each partial dependency

tree ds(*e;).

Theorem 3.6.1 (The Completeness of the dependency forest)
Let PT be a phrase structure tree in the phrase structure forest PF. DT=dependency_tree(PT)

is a well-formed dependency tree in the dependency forest DF.

74

Proof: From the definition of the dependency forest, DT is included in DG. Nodes contained
in DT and PT have one-to-one relation according to the partial dependency structure condition.
Since PT covers whole sentence, DT is a well covered dependency tree. According to the C-
Matrix setting conditions, every two arcs in DT satisfy the co-occurrence constraint. Therefore,

dependency_tree(PT) is a well covering and well co-occurred dependency tree in DF
O

Theorem 3.6.2 (The soundness of the dependency forest)
Let DT be a well-formed dependency tree in the dependency forest DT. There exists a phrase
structure tree PT in the phrase structure forest PF such that DT=dependency_tree(PT).

Proof: The existence of a phrase structure tree PT which satisfies PTeps_trees(*E,..0¢) and
dependency_tree(PT)=DT is shown below.

Let n be a number of input words. The following is an algorithm, called the phrase structure
tree generation algorithm, which generates a phrase structure tree from a packed edge *E, with
from-position sp, and to-position tp, (1<sp,<tp,<n) and a well-formed dependency tree DT,
which covers from sp, to tp,. The proof that the phrase structure tree generation algorithm
generates a phrase structure tree, which satisfies the above conditions, is shown below using

mathematical induction for the number of arcs in the dependency tree.

[Phrase Structure Tree Generation Algorithm]

In the case that DT is a set of arcs:

A-Stepl(Identification of the Top Single Edge) : Let *e; be the top single edge
top-edge(DT).

A-Step2 (Identification of a Path) : Identify a path from *E,. to *e;. Let PATH be a set
of single edges in the path except for *e;.

A-Step3 (Division of DT) : Divide DT by removing edges in ds(top-edge(DT)) to get a set
of partial dependency trees DT;(1<i<m) and root packed edges *E;,=root_Edge(DT;).

A-Step4 (Computation of Partial Phrase Structure Trees) : Apply the phrase structure
tree generation algorithm to each DT; and *E;(1<i<m) and compute each PT;.

A-Step5 (Construction of Phrase Structure Tree) : Returns PT=PATH U {*e,} U PT;
U---UPT,, as a phrase structure tree for DT,*E,..

In the case that DT is a set of a node (DT={n}):

N-Stepl (Identification of Lexical Edge) : Identify the lexical edge @e;., which generated
node n.
N-Step2 (Identification of a Path) : Identify a path from *E, to e, and returns a set of

single edges in the path as a phrase structure tree for DT,*E,..

When DT is s a set of arcs, phrase structure tree PT is constructed through A-Stepl to A-
Step5. Fig.3.22 shows the behavior of the algorithm diagrammatically. A-Stepl computes the

75

ds(t dge(D
st 0p_ev..-9§“("-») (S1)ldentification of the <*E,sptp,c/n[... (csds)...]>

top single edge *e I .
“iop edaedD) 5 + (52) Identify a path from *Er to te
p_edge(DT) i y Compute PATH
<*e,sp tp, ¢/n, (c§ dg)>
(S3)Divide DT. Compute (S5) Generate PT=PATH
PT; from Dt and * {*eJUPT,U...UPT,
root_Edge(DJ)
N <*E,..> <*E;sptpc/n..> <E, ..>
DT SPy st P

Dependency tree DT The phrase structure forest PF

Fig.3.22 Generation of PT from DT and *E,

top single edge *e;(=top-edge(DT)) (Fig.3.22 (S1)). A-Step2 identifies a path from *E, to *e;
and computes PATH, a set of single edges. The existence of this path (*Er;—F>*et) is assured
as follows: In the case that *E,. is *E,..o, it is obvious. In the case that *E, is obtained by the
division of a dependency graph (*E; in A-Step4), it is assured by lemma 3.6.8. The dependency
structure parts of the single edges in PATH are {}. This is obvious because *E, and *e; have

the same coverage since all nodes in DT are in the coverage of *e;.

dependency_tree(PATH) = {} (A)

A-Step3 performs the division of DT and generates DT;,*E;(1<i<m) as shown in Fig.3.22 (S3).
According to lemma 3.6.9, DT; is a well-formed dependency tree covering the coverage of *E;
and the phrase structure tree generation algorithm is applicable recursively at A-Step4. A-
Step5 computes the phrase structure tree PT (Fig.3.22 (S5)). From the definition of the phrase
structure tree, it is obvious that PT is a phrase structure tree if each PT; is phrase structure
tree.

When DT is a set of a node (DT={n}), N-Stepl and N-Step2 computes a phrase structure
tree PT. The existence of a path from *E, to e, is assured for the same reason described in the

explanation of A-Stepl.

The phrase structure tree PT generated by the phrase structure tree generation algorithm
satisfying DT=dependency_tree(PT) is shown as follows:

In the case that DT={n,}, the algorithm generates PT at N-Step2. PT is a phrase structure
tree containing one node n,.. From the definition of dependency_tree, dependency_tree(PT)={n,.}
is true. In the case that DT is a dependency tree which consists of a set of arcs, the phrase
structure tree generation algorithm, the definition of dependency_tree and (A) make the following

equation.

dependency_tree(PT)
= dependency_tree(PATH U {*e;} U PT; U---U PT,,)
= dependency _tree(PATH)wWdependency _tree({*e; }) Wdependency_tree(PT;)W- - -& depen-

76

dency_tree(PT,,)
= dependency_tree({*e;}) W dependency_tree(PT;) W- - -0 dependency_tree(PT,,)

Assume that PT; corresponding to DT;,*E; in A-Step4 satisfies the following.
dependency_tree(PT;)=DT; (1<i<m)
Now, PT generated at A-Step5 generates DT as shown below.

dependency _tree(PT)
=ds; W DTy W---& DT,,
=DT

3.6.2 Correspondence between Phrase Structure Forest and Depen-

dency Forest

Section 3.6.1 showed that the initial dependency forest satisfies the completeness and sound-
ness with respect to the phrase structure forest. Since the reduced dependency forest has the
same set of generalized dependency trees as the initial dependency forest, the soundness and
the completeness between the (reduced) dependency forest and the phrase structure forest are
assured. The correspondences between the phrase structure trees (phrase structure trees) in the
phrase structure forest and the dependency trees in the dependency forest are not necessarily
simple one to one relations. One phrase structure tree may correspond to more than one de-
pendency tree, whereas more than one phrase structure tree may correspond to one dependency
tree. Considering the variety (one meaning can be expressed by more than one expression) and
the ambiguity (one expression expresses more than one meaning) encoded in natural languages,
these multiple-correspondences may be natural. The correspondences between phrase structure
trees and dependency trees are discussed in the next section by referring to the experiments for

sentence analysis using a PDG prototype system.

3.7 Experiment for Analysis of Example Sentences

One of the design targets of PDG is the suppression of the combinatorial explosion caused
by a variety of ambiguities using the packed shared data structures. This section describes
the experiment for analyzing typical ambiguous sentences using PDG grammar rules, which
contain various kinds of ambiguities. This section also discusses the relation between the phrase
structure forest and the dependency forest, and the generation of non-projective dependency
trees based on real analysis examples. The performance of the algorithm is also one of the
important factors from a practical point of view. The algorithms for parsing, generation of
phrase structure forest and initial dependency forest and dependency forest reduction described

in this thesis are implemented for verifying the PDG’s analysis. The practical implementation

7

—=—=—=————= s/SentenQe —=————————=
(R1) s/VP — np/NP, vp/VP . [arc (sub, NP, VP)] % Declarative sentence
(R2) s/VP — vp/VP | % Imperative sentence
— np/Noun Phrase =======—
(R3) np/N — n/N | % Single noun
(R4) np/N2 — n/N1, n/N2 . [arc(nc,N1,N2)] % Compound noun
(R5) np/N — det/DET, n/N : [arc(det, DET,N)] % Determiner
(R6) np/NP — np/NP, pp/PP : [arc(npp, PP,NP)] % Prepositional phrase attachment
(R7) np/N — ving/V, n/N : [arc(adjs, V,N)] % Adjectival usage (subject)
(R8) np/N — ving/V,n/N : [arc(adjo, V,N)] % Adjectival usage (object)
(R9) np/V — ving/V, np/NP : [arc(obj, NP, V)] % gerund phrase
(R10) np/V — ving/V, np/NP, pp/PP : [arc(obj, NP, V), arc(vpp,PP,V)] % gerund phrase with PP
(R11) np/NP — np/NPO, and/AND, np/NP : [arc (and, NPO, NP), arc (cnj, AND, NPO)] % Coordination (and)
(R12) np/NP — np/NPO, or /OR, np/NP : [arc (or, NPO,NP), arc(cnj, OR,NP0)] % Coordination (or)

=—====——=—= yp/Verb phrase =—=====—

R13) vp/N — v/V [% Intransitive verb
(R14) vp/N — v/V, np/NP : [arc(obj, NP, V)] % Transitive verb

(R15) vp/V — be/BE, ving/V, np/NP : [arc(obj, NP, V), arc(prg, BE,V)] % Progressive

(R16) vp/BE — be/BE, np/NP : [arc(dsc, NP, BE)] % Copular

(R17) vp/VP — vp/VP, pp/PP : [arc (vpp, PP, VP)] % PP-attachment

(R18) vp/VP — adv/ADV, vp/VP . [arc(adv, ADV, VP)] % Adverb modification
(R19) vp/V — v/V, np/NP, adv/ADV, relc/RELP % Non-projective pattern

[arc (ob], NP, V), arc(adv, ADV, V), arc (rel, RELP, NP)]
======== pp/Prepositional phrase ====—=—=
(R20) pp/P — pre/P, np/NP : [arc(pre, NP, P)]

Fig.3.23 Grammar for the example sentences

and its evaluation are subjects for future work. The following experiment utilizes a prototype

PDG system implemented in Prolog.

3.7.1 PDG Grammar Rules for Example Sentences

Fig.3.23 shows PDG grammar rules used for analyzing the example sentences containing var-
ious kinds of prototypical ambiguities. The POSs in the grammar rules are determiner(det),
n(noun), be-verb(be), present particle of verb (ving), verb (v), preposition (pre), adverb (adv)
and relational phrase (relp). The grammar rules are not for linguistic analysis but for experiment
with respect to the PDG framework and algorithms. The grammar rules include the following

kinds of ambiguities.

PP-attachment : Two kinds of attachment ambiguities in R6(noun attachment) and
R10,R17(verb attachment)

Coordination scope : R11(and) and R12(or) are coordination noun phrase rules

Be-verb interpretation : Two structural ambiguities caused by be-verb interpretations, i.e.,
R15(present progressive) and R16(copula)

Interpretation of the present progressive form of verb : the following three ambiguities of
the present progressive form of verb are described
(a) adjective usage where modified noun occupies the subject role (R7)
(b) adjective usage where modified noun occupies the object role (R8)
(c¢) gerund usage (R9,R10)

78

R8 and R9 are similar since both rules prescribe the relation between noun and verb as object.
However they have different interpretations in phrase head and generate the different structures
of dependency trees. The grammar contains declarative form (R1) and imperative sentence
form (R2) to produce structural ambiguities in combination with POS ambiguities of words
for sentences like “Time flies like an arrow.” (R19) is a rule for generating a non-projective

dependency structure.

3.7.2 Analysis of Prototypical Ambiguous Sentences

The example for the ambiguous sentence with POS ambiguities has already been shown in the
previous sections in detail. The examples in the following sections show prototypical syntactic
ambiguities, i.e., PP-attachment ambiguity, coordination scope ambiguity and ambiguities in

structural interpretations.

(1) PP-attachment Ambiguity

Fig.3.24 shows the dependency forest for the sentence “I saw a girl with a telescope in the
forest,” which has PP-attachment ambiguities. Each arc in the dependency graph has an arc
name attached by arc-ID and preference score*'®. The table in Fig.3.24 shows POS and posi-
tion information of each node. This sentence has no POS ambiguities but has PP-attachment
ambiguities for preposition “with” (two ambiguities: nppl3,uppl4) and “in” (three ambiguities:
npp23,npp25,0pp26). CM in Fig.3.24 inhibits some of the combinations of these ambiguous arcs.
nppl3 and vppld (or npp23, npp25 and vpp26) have no co-occurrence relation because they have
the same position (the single role constraint). The co-occurrence between vppl4d and npp25 is
also inhibited. If this co-occurrence constraint does not exist, the dependency forest has six

interpretations caused by two PP-attachment ambiguities (2 * 3 = 6). CM(14,25)# O, which

b3t8235,0 ob‘s\;?)pmls?} pret10 s prez1,10
Su s s n s ’
N \VAE £

LS
{1,sav} {S,girl} {4,With} {G,telescop {S,Ihé[g,foresﬂ
_A A

A
det,0 det10,0 der0,0
Nppes,5
01 . [i]_n_o 30[{4|5|13]14[10|11]25[23|26|20|21[35
1'saw - [saw]-v-1 30| —1O[0|O[0|0[0|0|0|0|O[0]|O
! ; 410/—10|0[0|O[0|0[0|0|O[0|O
2a [a]-det-2 5 [o[o[-[olo[ololololo[ofo[o
3,girl : [girl]-n-3 13[O[O[O[—] [O]O[O]O[O[O[0]O
4,with : [with]-pre-4 1400101 _{—10l0L_{0]01010I0
5a '[[a]-d]e?-S 10{O|0|0O|0|O[—]0[0|0|0|0|0[O
! - 11{O|0|0|0[|0[0]—[0|0|0|0|0[O
6 telescope: [telescope]-n-6 25[0[0[0[0] [0[0[= o[o[o
7,in : [in]-pre-7 23|0[0|O[O|O[O[O] [—| [O]|O]|O
Bthe :[the}-det:3 20]010]0I0] 10l OIOIOlo]0]0
9,forest _: [forest]-n-9 Slolololololololololoe [0
top : [top]-x-top ss|ofolololo[ololololofolol=
Fig.3.24 DF for the example sentence including PP-attachments

*19 Preference scores show the degree of preference of arcs (Hirakawa, 2006a). The preference score is not used
in this chapter.

79

corresponds to the projectivity constraint, excludes a non-projective dependency tree from a
set of well-formed dependency trees in the dependency forest. This dependency forest has five
well-formed dependency trees, which are possible interpretations for the example sentence.

The sizes of the phrase structure forest, the initial dependency forest and the reduced depen-
dency forest for this example are 25, 18 and 13, respectively. The phrase structure forest contains

20 corresponding to the five interpretations of the sentence. The initial

five phrase structure trees*
dependency forest and the reduced dependency forest have five IDed dependency trees, which
correspond to the five generalized dependency trees. 0bj5,nppl3, vppl4d and prell have 2, 1, 1
and 1 equivalent arcs in the initial dependency forest. For example, 0bj5 and its equivalent arcs
are generated from the edges, shown below in diagrammatic form, originated in the grammar

rule (R14).

<1, 4, vp/([saw]-v-1) — v(ID:109) np(ID:126) -, {arc(obj-5,[girl]-n-3,[saw]-v-1)}>
<1, 7, vp/([saw]-v-1) = v(ID:109) np(ID:163) -, {arc(obj-15,[girl]-n-3,[saw]-v-1)}>
<1,10, vp/([saw]-v-1) — v(ID:109) np(ID:203) -, {arc(obj-28,[girl]-n-3,[saw]-v-1)}>

The first edge has the coverage from 1 to 4 (“saw a girl”), phrase head [saw]-v-1, constituent
sequence v(ID:109)*2! np(ID:126) and the obj arc with arc-ID 5. The above equivalent arcs
are generated from the combination with edges np(ID:126), np(ID:163) and np(ID:203) that
correspond to noun phrases with different coverage. The reduced dependency forest has no

equivalent arcs because all equivalent arcs in the initial dependency forest are merged.

(2) Coordination Scope Ambiguity
Fig.3.25 shows the dependency forest for the sentence “Earth and Moon or Jupiter and

Ganymede,” which has coordination scope ambiguities. “Earth” and “Moon” have two and

ancs,5 o0

and2.1 . andis,12 T
/andq,zo\ cnj6,0 / \ toFZG,O
0,Eart l,and |2,Moon||3,or| | 4,Jupiter (5,an
orey B |

e N o
cnj2,0 cnhj14,0

25[12] 4] 222 9| 6 [18]14]26 0224

B 8 L 8 8 8 8 8 0,Earth : [Earth]-n-0
4 _Tololololololo 1,and : [and]-and-1
2]0|0|0|—=|0|0[0[0|0|0 2,Moon : [Moon]-n-2
22|0| [O|O]|—=| |O|O|0|O 3,or : [or]-or-3
g 8 8 8 8 55 o 8 8 8 4 Jupiter : [Jupiter]-n-4

— 5,and : [and]-and-5
1810101010101010] 01O 6,Ganymede : [Ganymede]-n-6
14[0[o]0[o]0[0]0[o[=[0 ; _t N
26{0[0[0[0l0[0[0l0l0[— op : [top]-x-top

Fig.3.25 DF for the example sentence including conjunctions

*20 Tn judging the equivalence of the phrase structure trees, phase heads (head nodes) are taken into consider-
ation.
*21 The packed edge whose category is v and edge-ID is 109.

80

three outgoing arcs, respectively, corresponding to coordination scope ambiguities. CM(22,12)#
O, which corresponds to the projectivity constraint, excludes a non-projective dependency tree
from a set of well-formed dependency trees in the dependency forest. This dependency forest has
five well-formed dependency trees, which are possible interpretations for the example sentence.

The sizes of the phrase structure forest, the initial dependency forest and the reduced de-
pendency forest for this example are 18, 17 and 10, respectively. The phrase structure forest
contains five phrase structure trees corresponding to the five interpretations of the sentence. The
initial dependency forest and the reduced dependency forest have five [Ded dependency trees,
which correspond to the five generalized dependency trees. or22,0r9,cnj6, andl8 and cnjl4
have 1, 1, 1, 2, and 2 equivalent arcs in the initial dependency forest, respectively. The reduced
dependency forest has no equivalent arcs because all equivalent arcs in the initial dependency
forest are merged. The coordination scope ambiguity is similar to the PP-attachment ambiguity
in the previous section but is different from the PP-attachment ambiguity because it has the

modification scope problem described below.

(3) Ambiguity in Structural Interpretation

Fig.3.26 shows the dependency forest for the sentence “My hobby is watching birds with
a telescope,” which has ambiguities such as the interpretation of be-verb (present progressive
form or copula), the interpretation of “watching birds” (adjs3,adjo4, obj5), and PP-attachment
(npp21,vpp22,npp24,vpp25). This sentence has ten interpretations.

The sizes of the phrase structure forest, the initial dependency forest and the reduced de-
pendency forest for this example are 23, 24 and 16, respectively. The phrase structure forest
contains eight phrase structure trees corresponding to ten interpretations of the sentence. The
initial dependency forest and the reduced dependency forest have ten IDed dependency trees,

which correspond to the ten generalized dependency trees. dsc9,dsc8,0b75, npp21 and vpp22 have

m VpE22,7
topss,o nppe4,3
sutss,10 OPHLC prg2,10\\ @m\ “%1'\5 pre200
4,birds] [S,With {G,telescop]e

1]35/33[2[4 85212426222041(@
1[—[o[o[o[ololololoo[o[o[o[o[o]o
) 35[0 — olo[o[o[o[olololo]oo
0,my : [my]-det-0 33/o[[—[O olo olol [o
1,hobby :[hobby]-n-1 igoo_ 008 o0800
2is :[islbe2 30[0 —["lo[[o[o[]olo
3,watching: [watching]-ving-3 Fite)le} —[lololololololo
i - Ibirdsl-n- s[0[O olo[[=[[o] [ol [olo
gbﬁf ﬁmmﬂn% 5[0[0[0[0) ol [-[o[o[ololo[o[o
Wi : [with]-pre- 2i[0[0lololololo[o[o]— ololo
6,telescope: [telescope]-n-6 ugg 00808 - 88
. o 26 —
top : [top]-x-top 22[0[0[0[0] [[o[[0 —[ololo
20[0[0[o[o[o[o[o[o[o[o[o[o]o]-[o]o
41[0[0 olololololololololo]=
se[o] [0l0 olo olo[[=

Fig.3.26 DF for the example sentence including structural ambiguities

81

2,2, 5,2, and 2 equivalent arcs in the initial dependency forest, respectively. In contrast to the
example in Section 3.7.2, the equivalent arcs are generated from more than one grammar rule.
For example, the equivalent arcs of 0bj5 are generated from the edges, shown below, originated
in the grammar rule (R9), (R10) and (R15)

(R9) = <3, 5, np/([watching]-ving-3) — ving(ID:121) np(ID:130) -,
{arc(obj-5,[birds]-n-4,[watching]-ving-3)} >

(R10) = <3, 7, np/([watching]-ving-3) — ving(ID:121) np(ID:130) pp(ID:176) -,
{arc(obj-6,[birds]-n-4,[watching]-ving-3),arc(vpp-22,[with]-pre-5,[watching]-ving-3) } >

(R15) = <2,5, vp/([watching]-ving-3) — be(ID:117) ving(ID:121) np(ID:130) - ,
{arc(prg-2,[is]-be-2,[watching]-ving-3),arc(obj-7,[birds]-n-4,[watching]-ving-3) } >

The reduced dependency forest has no equivalent arcs. In this example, the number of the
phrase structure trees in the phrase structure forest is smaller than number of the generalized
dependency trees in the dependency forest. One phrase structure tree corresponds to more
than one dependency tree. The following section discusses the correspondence between phrase

structure trees and dependency trees.

3.7.3 1 to N Correspondence from Phrase Structure Tree to Depen-
dency Trees

The correspondence between a phrase structure tree and a dependency tree is assured in PDG,
but sometimes one phrase structure tree has more than one corresponding dependency tree and
more than one phrase structure tree has one corresponding dependency tree.

When one phrase structure has more than one interpretation, one phrase structure tree may

4

correspond to more than one dependency tree. For example, when “watching birds” is assigned
one phrasal structure where the verb in present particle form modifies the noun, two dependency
structures “watching 23 hirds” and “watching P birds” are assigned to the phrasal structure.
This happens when there exists more than one grammar rule, which has the same rewriting rule
but has different dependency structure parts. This is the case for (R7) and (R8) in Fig.3.23.
(R7) and (R8) are arbitrary rules introduced for verifying the dependency forest. Two kinds of
ambiguities in 1 to N mapping from phrase structure tree to dependency trees are considered, i.e.,
the ambiguities in syntactic relation and semantic relation. The former means the ambiguities
in functional assignments (subject, object, etc.) for phrase structures. The functional structures
and phrase structures have close relation and the difference in functional structures can be
reflected by the difference of phrase structure*??. Therefore, it seems not to be usual for more than

one functional structure to be assigned to one rewriting rule. In contrast, the assignment of more

than one semantic structure seems to be quite a general phenomenon. However, introduction of

*22 For example, the category in the rewriting rule is segmented into more detailed categories reflecting the
difference of functional assignments. This segmentation works to remove ambiguous mapping from one
phrase structure to more than one functional structure.

82

/ # Dependency Structure [1]

Phrase Structure Tree [1] [is/be, 2]
s[0, 7. is/be] :207 + <-(dsc-31)- [birds/n, 4]
+=—np[0, 2, hobby/n] :108 | + <-(adjs-3)- [watching/ving, 3]
| +-det [0, 1, my/det] :101 | + <-(npp-23) - [with/pre, 5]
| +-n[1, 2, hobby/n] : 104 | + <-(pre-20)- [telescope/n, 6]
+-vp[2, 7, is/be] 1182 + <~ (sub-35)- [hobby/n, 1]
+-be[2, 3, is/bel:117 + <-(det-1)- [my/det, 0]
+-np[3, 7, birds/n]:179 |:> <
+—np[3, 5,birds/n]:132 # Dependency Structure [2]
| +—-ving[3, 4, watching/ving] : 121 [is/be, 2]
| +-n[4, 5, birds/n] :128 + {-(dsc-31)- [birds/n, 4]
+—pp[5, 7, with/pre] :176 | + <-(adjo-4)- [watching/ving, 3]
+—pre[5, 6, with/pre] : 165 | + <~ (npp-23) - [with/pre, 5]
+-np[6, 7, telescope/n] :170 | + <~ (pre-20)- [telescope/n, 6]
+-n[6, 7, tel escope/n] : 168 + <-(sub-35)- [hobby/n, 1]

+ <~ (det-1)- [my/det, 0]

Fig.3.27 Mapping from one phrase structure tree to two dependency tree

1 to N mapping (from phrase structure to dependency structures) into grammar rules may cause
problems in terms of system performance and grammar rule maintenance. In general, sentence
analysis approaches, which treat syntactic analysis and semantic analysis independently, are
widely proposed and utilized. The framework itself, for mapping one phrase structure tree to
more than one dependency tree, is independent of the linguistic discussion here. Rules with
mappings to semantic structures can be utilized properly with respect to the requirements from
the design and development of the grammar.

The example in Section 3.7.2 (Fig.3.26) contains a phrase structure tree which corresponds to
two dependency structures generated from (R7) and (R8). Fig.3.27 shows this phrase structure

tree and dependency trees.

3.7.4 N to 1 Correspondence from Phrase Structure Trees to One De-
pendency Tree

Spurious ambiguity (Noro et al., 2002) is one of the examples of N to 1 mapping from phrase
structures to dependency structure. The real ambiguity is an ambiguity where the difference in
syntactic structures represents the difference in semantic interpretations. The spurious ambigu-
ity is an ambiguity where the difference in syntactic structures does not represent the difference
in semantic interpretations, or an ambiguity caused by linguistically illegal syntactic structure
generated by incomplete grammar rules. The spurious ambiguity is an important issue in gram-
mar development from corpora (Noro et al., 2005). Although it is not CFG, CCG (Combinatory
Categorial Grammar) has a lot of spurious ambiguities due to the flexibility of rule application.
The method for obtaining one normal form tree is proposed (Eisner, 1996a). This method assures
that one phrase structure tree among the phrase structure trees in one semantic class is obtained
based on the definition that phrase structure trees which have the same set of leaf CCG category
have the same meaning. In PDG, phrase structure trees corresponding to the same generalized

dependency tree (interpretation of a sentence) can be classified into one semantic class.

83

top26,C

top Vpp18,1
th_ﬂm "//mggeul\ _praisio

T
[O,She][l,curiousl)a [2,sav} [4,caﬂ 5,in 6,tha 7 fores
_A N _A
adw,8 deb,0 det14,0
0,She : [she]-n-0 23|19 (6[7([17]18]|14[15]26
1,curiously : [curiously]-adv-1 [23[—|O|O[0|0|0|0|0|O
2,saw : [saw]-v-2 : 8 5 o 8 8 8 8 8 8
3a + [a]-det-3 7]0[o[o]-|ololo[o]o
4,cat [cat]-n-4 17lolololol=1 [ololo
5,in : [in]-pre-5 18[0lo[olo]_[—[o]o[o
6,the [the]-det-6 1a]o[ololo]o]o[-[0]o
7. forest :[forest]-n-7 15l0]o]ololololo[=[o
top : [top]-x-top 26/0|0[0[0[0[0|0]0]—

Fig.3.28 DF containing the mapping from N phrase structure trees to 1 dependency tree

(spurious ambiguity)

Fig.3.28 shows the dependency forest for “She curiously saw a cat in the forest” using the
example grammar which has a spurious ambiguity. There is only one co-occurrence constraint
between nppl7 and vppl8 that corresponds to the single role constraint. The dependency forest
has two dependency trees, which has different governors for the part “in the forest.” The phrase
structure forest has three phrase structure trees. The initial dependency forest has three IDed
dependency trees and two generalized dependency trees and the reduced dependency forest has
two IDed dependency trees and two generalized dependency trees. The spurious ambiguities
are generated from the difference of rule application order of (R17) and (R18) for attaching
a modification phrase to a verb phrase. Fig.3.29 shows the phrase structure trees and the
dependency tree.

Obviously, the method of identifying the semantic class based on dependency tree does not
capture all semantic aspects in natural languages. For example, the subtle semantic difference
(Eisner, 1996a)*** and the ambiguities in number/quantifier scope*?* have to be considered in
discussing the equivalent semantic class. The treatment of difference in semantic interpretation
requires further study. Mel’cuk (1988) describes some linguistic structures where ordinary depen-
dency structure fails to express the interpretations of a sentence. These structures are classified
into two categories, the structures, which cannot be treated by phrase structure properly, and
the others. The former includes the model theoretic interpretation of a sentence. The latter is
observed when a dependency structure has a head word which has dependants located at the
right-hand side and the left-hand side of the headword. In this case, the dependency structure

has ambiguities in modification scope, i.e., the right-hand modifier modifies only the headword

*23 For example, “softly knock twice” has two equivalent semantic interpretations softly(twice(knock)) and
twice(softly(knock)), whereas “intentionally knock twice” has two different semantic interpretations inten-
tionally(twice(knock)) and twice(intentionally(knock)).

*24 The model theoretic ambiguities as observed in “Three men bought ten cups” cannot be distinguished by
standard phrase structure and dependency structure representations.

84

Phrase Structure Tree [1]
s[0, 8, saw/v]:192
+——npl0, 1, she/n] :103
| +—nl0, 1, she/n] :101
+—vp[1, 8, saw/v] : 176
+—vp[1, 5, saw/v] : 146
| +—adv[1, 2, cur ious|y/adv] : 109
| +—vp[2, 5, saw/v] : 142
| +—v[2, 3, saw/v] :112
| +—np[3, 5, cat/n] :133
| +—det[3, 4, a/det] : 126
| +—n[4,5, cat/n] :129
+—pp[5, 8, in/pre] :172
+——prelb, 6, in/pre] : 153
+—-np[6, 8, forest/n] :163
+—det[6, 7, the/det] : 156
+—n[7, 8, forest/n] : 159
Phrase Structure Tree [2]
s[0, 8, saw/v]:192
+——np[0, 1, she/n] : 103
| +-n[0, 1, she/n] : 101
+—vp[1, 8, saw/v] : 176

=)

#ti Dependency Tree
[saw/v, 2]

+ <~ (adv-9)- [curiously/adv, 1]

+ <~ (obj-7)- [cat/n, 4]

| + <~(det-6)- [a/det, 3]

+ <~ (sub-23)- [she/n, 0l

+ <~ (vpp-18)- [in/pre, 5]

+ <~(pre-15)- [forest/n, 7]
+ <-(det-14)- [the/det, 61

+-adv[1,2, curiously/adv]:109
+—vp[2, 8, saw/v] :175
+—vp[2, 5, saw/v] : 142
| +—v[2, 3, saw/v]:112
| +—np[3, 5, cat/n] :133
| +—det[3, 4, a/det] : 126
| +—n[4,5, cat/n] :129
+—pp[5, 8, in/prel :172
+—pre[b, 6, in/prel : 153
+—npl6, 8, forest/n] :163
+—det[6, 7, the/det]: 156/

+-n[7,8, forest/n] :159

Fig.3.29 The example of mapping from N phrase structure trees to 1 dependency tree
(spurious ambiguity)

or the phrase including the left-hand modifier. This problem is called the “modification scope
problem” in this thesis.

Fig.3.30 shows the dependency forest for “Earth and Jupiter in the Solar System.” This sen-
tence has two interpretations, i.e., the prepositional phrase modifies only the headword “Jupiter”
or the phrase “Earth and Jupiter.” The phrase structure forest has two phrase structure trees

corresponding to these two interpretations. On the other hand, the initial dependency forest has

top

top12,0 npp8,0 pre7,0

and4,2Q
(228N

(0.2art) (vand) [20pres

0,Earth : [Earth]-n-0 42187112
1,and : [and]-and-1 4|—|olololo
4, Jupiter : [Jupiter]-n-4 210/—|0|0|0
5,in : [in]-pre-5 8 |0[0[—-|0|0
6,Solar System : [solar_system]-n-67 |O[O|O[—|O
top : [top]-x-top 12|0]0|O[0|—

Fig.3.30 DF containing the mapping from N phrase structure trees to 1 dependency tree
(real ambiguity)

85

two IDed dependency trees and one generalized dependency tree and the reduced dependency
forest has one IDed dependency tree corresponding to one generalized dependency tree. The two
phrase structure trees and one dependency tree are shown in Fig.3.31.

Mel’cuk (1988) proposes introducing a concept called “grouping” into the dependency structure
framework to solve the modification scope problem. Grouping is theoretically equivalent to phrase
in the sense that it specifies the word coverage information. However, grouping information is not
attached to every part of the structure but to some specific structures including the “conjoined
structure” and “operator word” such as “not” and “only.” The grammar framework for a machine
translation system (Amano et al., 1989) incorporates a mechanism similar to the grouping*?®.
In this grammar development for the real-world application, the scope nodes are used only
for conjoined structures*?. This experience suggests the limitation of the application scope of
grouping proposed by Mel’cuk is reasonable. Moreover, the treatment of the modification scope
ambiguity differs from language to language. According to Mel’cuk (1988), some modification
scope ambiguities are distinguishable by lexical or syntactic marking in Russian. Japanese does
not have the modification scope problem inherently because Japanese has the basic grammatical

constraint that modifiers should be located at the left-hand side of their modificand. In the PDG

Parse Tree [1] \
np[0, 5, jupitor/n] :142

+—np[0, 3, jupitor/n]:122

| +-np[0, 1, earth/n] :103

| | +——nl[0, 1, earth/n] : 101

| +—and[1, 2, and/and] : 110

| +-np[2, 3, jupitor/n]:115

| +——nl[2, 3, jupitor/n]:113
+—pp[3, 5, in/pre] 1140

+-pre[3, 4, in/pre]:128 #i#H Dependency Structure
+-np[4, 5, solar_system/n] :133 [jupitor/n, 2]
+—n[4,5, solar_system/n] :131 ::> + <-(and-4) -[earth/n, 0]
Parse Tree [2] + <-(cnj-2)-[and/and, 1]
np[0, 5, jupitor/n] :142 + <~ (npp-8)-Lin/pre, 3]
+—np[0, 1, earth/n] : 103 + <~ (pre-T)-[solar_system/n, 4]

| +—-n[0, 1, earth/n] : 101
+—and[1, 2, and/and]: 110
+—np[2, 5, jupitor/n] :141
+—np[2,3, jupitor/n]:115
[+—n[2, 3, jupitor/n]:113
+—pp[3.5, in/pre] :140
+—pre[3, 4, in/pre] 1128
+—np[4, b, solar_system/n]: 133
+——-n[4,5, solar_system/n] :131

Fig.3.31 The example of mapping from N phrase structure trees to 1 dependency tree (real
ambiguity)

*25 A special node called “scoping node” is introduced to specify the scope of a dependency modification as
required.

*26 This is the case for an English-to-Japanese system. The requirement level may differ according to the
language pairs. For example, translation between languages in the same family may not require a grouping
mechanism because the modification scope ambiguities are avoided by bypassing, i.e., an ambiguous source
language structure is mapped to the corresponding target language structure without disambiguation.

86

framework, equivalent arcs represent the difference of modification scope as shown in the previous
section. Therefore, the modification scope problem may be avoided by introducing grouping into

the treatment of equivalent arcs. This is a future task.

3.7.5 Generation of Non-projective Dependency Tree

The projectivity constraint*27

is a basic constraint adopted by many dependency analysis sys-
tems and these parsers are called projective parsers. Projective parsers fail to analyze sentences
with non-projective structures. Almost all sentences in many languages are projective, but some
types of non-projective sentences exist (Mel’cuk, 1988). For example, “John saw a dog yesterday
which was a Yorkshire Terrier.” in English, “FAIAZ RHEUZEHWICHERITE £ L7z, 7 (I went to
Tokyo to buy a book yesterday) in Japanese have projective dependency structures. McDonald
et al. (2005) reported the non-projective parser outperformed the projective parser in overall
accuracy for the analysis of Czech, which has a high degree of word order freedom compared
with English.

As described in Section 3.4.2; the mapping between the constituent sequence (the body of
grammar rule) and the partial dependency tree (the dependency structure of the grammar rule) is
defined in the grammar rule in PDG. This framework in combination with the description ability
of the C-Matrix enables a controlled non-projectivity instead of all-or-nothing non-projectivity.
The controlled non-projectivity means that the non-projective structures are defined by some
rules, which prescribe the well-formedness conditions. (R19) in Fig.3.23 is a grammar rule for a
phrase pattern where an adverb is inserted before a relative clause, and produces a well-formed
non-projective dependency structure. Fig.3.32 shows the dependency tree for “She saw the cat

99 %28

curiously which was Persian. obtained by the example PDG grammar. The dependency

adv1(15 rel 11,1
top

o) 2020

(0.5nd (15w (2,tne](3,cat] (4.curiously) 5 which was Persidn

A A
sub1220 det,0
12|46 |10|11|14
0,She : [she]-n-0
1,saw : [saw]-v-1 12| —101010[0|0
2,the : [the]-det-2 410|—-10|0[0|O
3,cat : [cat]-n-3 6[{0[0|—-10|0|O
4, curiously: [curiously]-adv-4 10|0[0|0|—|0[0O
5,which was Persian 1110/0[|0|0[—|O
: [which_was_percian]-relc-§14|O|O|O|O|O| —
top : [top]-x-top

Fig.3.32 Example of non-projective dependency tree generation

*27 The projectivity condition consists of two conditions, i.e., “no cross dependency exits” and “no dependency
covers the top node.” The second condition is unnecessary when a special top node is introduced at the
top or end of a sentence.

*28 This is an artificial example only for showing the rule applicability.

87

forest has one non-projective dependency tree.

3.8 Concluding Remarks for Chapter 3

This chapter described the multilevel packed shared data connection model that is the basic
analysis model adopted by PDG and explained two packed shared data structures of PDG, i.e.,
the phrase structure forest and the dependency forest. The completeness and the soundness of
the correspondence between the phrase structure forest and the dependency forest are assured.
This means the sentence interpretations represented in packed shared phrase structure and the
sentence interpretations represented in packed shared dependency structure have mappings. This
thesis also described the experimental results for analyzing some typical ambiguous sentences
using an example PDG grammar.

The current implementation of the PDG system focuses on the feasibility study of the PDG
framework. The practical PDG system and its performance evaluation are future tasks. Exten-
sion of the PDG grammar formalism (such as the introduction of optional element specification
and feature conditions) and improvement in performance by efficient codes and optimizing meth-

ods based on grammar analysis, should be studied in order to realize a practical system.

89

Chapter 4

Optimum Solution Search

PDG is a kind of framework for dependency analysis because the final output of PDG is one or
more dependency trees. This chapter describes the optimum solution search algorithm for PDG
and shows some experiments for estimating the behavior and computational complexity of the
algorithm.

As described in (McDonald et al., 2005), various dependency analysis methods are proposed.
Some methods utilize lexicalized phrase-structure parsers with the ability to output dependency
information (Collins, 1999; Charniak, 2000) and some methods obtain dependency trees directly
(Ozeki, 1994; Katoh and Ehara, 1989; Eisner, 1996b; Yamada and Matsumoto, 2003; Nivre and
Scholz, 2004). In this thesis, parsers in the former category are called phrase-structure based
dependency parsers and those in the latter category are called direct dependency parsers. PDG is
in the former category because it utilizes a lexicalized phrase-structure parser to generate packed
shared data structure (dependency forest) based on structure mapping information in grammar
rules.

(Collins, 1999; Charniak, 2000) are basically lexicalized phrase structure parsers and work
as dependency parsers by attaching a function for conversion from a phrase-structure to a de-
pendency structure. The dependency tree for a sentence is generated from the headed phrase
structure tree obtained by the phrase structure parser. For example, each nonterminal symbol
and its child constituents in the phrase structure tree correspond to the dependency structure
that has one governor node (the phrase head of the nonterminal symbol) and its dependant
nodes (the phrase heads of the child constituents) in (Collins, 1999). On the other hand, PDG
generates a dependency structure based on structure mapping information in grammar rules This
mechanism enables generation of flexible dependency structures with dependency relation labels.
For example, PDG can provide phrase structure rules which generate non-projective dependency
structures which are not produced by (Collins, 1999; Charniak, 2000) and the majority of direct
dependency parsers as described in Section 4.1.3. The phrase-structure based dependency parsers
have a possibility to utilize the descriptive power of the phrase structure rules to prescribe the
dependency structures.

Training corpora and statistical information are used for computing the most appropriate

dependency tree in many parsers. As shown in Chapter 1, one class of parsers adopts a history-

90

based approach (Black et al., 1992) in which each tree-building procedure uses a probability
model p(AlIB) to weight any action A based on the available context, or history, B. (Yamada and
Matsumoto, 2003; Nivre and Scholz, 2004) can be regarded as history-based direct dependency
parsers which choose the optimum decision during the parsing process based on information
obtained from the training data. Another class of parsers generates various dependency graphs
encompassing all possible dependency trees for a sentence*! and searches for the optimum tree
based on preference scores*? attached to the dependency graph (Ozeki, 1994; Katoh and Ehara,
1989; Hirakawa, 2001; McDonald et al., 2005). This method is called the all-pairs based approach
and a dependency graph with preference scores is called scored dependency graph in this thesis.
In general, the history-based method seems to be more efficient than the all-pairs based method
because it makes decisions before completing the full parse. However, the history-based method
may fail to obtain the optimum solution because it does not utilize the full parse information.
PDG is classified as a all-pairs based method since it searches for the optimum tree in a de-
pendency forest with a scored dependency graph. A dependency forest with preference scores is
sometimes explicitely called scored dependency forest.

Rest of this thesis focuses on all-pairs based methods and discusses some approaches to the
optimum tree search for dependency graphs and proposes an optimum tree search algorithm
for the dependency forest named the “graph branch algorithm.” PDG (and the graph branch
algorithm) is an successor to the sentence analysis method based on semantic dependency graph
(Hirakawa and Amano, 1989b; Hirakawa, 2001).

4.1 Optimum Dependency Tree Search Methods for
Dependency Graphs

4.1.1 Basic Framework

Scored dependency graphs are widely used as packed shared data structures representing a set
of dependency trees. Fig.4.1 shows the basic framework of the optimum dependency tree search
in a dependency graph. In general, nodes in a dependency graph correspond to words in the
sentence and the arcs show some kind of labeled or non-labeled dependency relations between
nodes. Each arc has a preference score representing plausibility of the relation. The well-formed
dependency tree constraint is a set of well-formed constraints which should be satisfied by all
dependency trees representing sentence interpretations. A pair of a dependency graph and a
well-formed dependency tree constraint defines a set of well-formed dependency trees. The score

3

of a dependency tree is the sum total of arc scores™. The optimum tree is a dependency tree

*1 In fact, a set of possible dependency trees is represented by a dependency graph and a set of constraints as
shown in Section 4.1.

*2 Preference score represents the plausibility of the arc.

*3 Dependency arc numbers in each well-formed dependency tree for a sentence are not necessarily be the
same because some of them have compound word WPPs. The adjustment of the scores for compound WPP
nodes are introduced in the scoring process described in Chapter 5

91

Well-formed dependency Optimum Tree O
tree constraint Search Algorithm
VA \
S s/ \S
Set of Scored Well-formed Scored Dependency Graph Well-formed Dependency Tree
Dependency Trees _|__ (Each arc has its scdre with the highest score
(scores;+s,+s;+5+s;)

Fig.4.1 Framework of optimum tree search in a scored dependency graph

with the highest score in the set of dependency trees defined by the dependency graph and the

well-formed dependency tree constraint.

4.1.2 Dependency Graph

Dependency graphs are classified into some classes based on the types of nodes and arcs.
This thesis assumes three types of nodes, i.e., word-type, WPP-type and concept-type™. The
types of dependency graphs are called a word dependency graph, a WPP dependency graph and a
concept dependency graph, respectively, in this thesis. Dependency graphs are also classified into
non-labeled and labeled graphs. There are some types of arc labels such as syntactic label (ex.
“subject,” “object”) and semantic label (ex. “agent,” “target”). Various types of dependency
graphs are used in existing systems according to these classifications, such as non-label word
dependency graph (Lee and Choi, 1997; Eisner, 1996b; McDonald et al., 2005), syntactic-label
word dependency graph (Maruyama, 1990), semantic-label word dependency graph (Hirakawa,
2001), non-label WPP dependency graph (Ozeki, 1994; Katoh and Ehara, 1989), syntactic-label
WPP dependency graph (Wang and Harper, 2004), semantic-label concept dependency graph
(Harada and Mizuno, 2001) *®.

4.1.3 Well-formedness Constraints for Dependency Tree

There can be a variety of well-formedness constraints for dependency trees from very basic and
language-independent constraints to specific language-dependent constraints. This thesis focuses
on the following four basic and language-independent constraints which may be embedded in data

structure and/or the optimum tree search algorithm.

(C1) Coverage constraint: Every input word has a corresponding node in the tree
(C2) Single role constraint: No two nodes in a dependency tree occupy the same input position

(C3) Projectivity constraint: No arc crosses another arc

*4 “concept” corresopnds to lexical concept defined in a system dictionary.

*5 This data structure encompasses semantic dependency trees for one word-dependency tree.

92

(C4) Single valence occupation constraint: No two arcs in a tree occupy the same valence of

a predicate

(C1) and (C2) are basic constraints adopted by almost all dependency parsers. (C1) and (C2)
are collectively referred to as “covering constraint.” (C3) is also adopted by the majority of
dependency parsers which are called projective dependency parsers. A projective dependency
parser fails to analyze non-projective sentences. Most sentences of a language are projective, but
several types of non-projective sentences exist (Mel’cuk, 1988). The non-projective parsing model
obtained improvement in overall accuracy compared with the projective model in an experiment
on Czech, which has more flexible word order than English (McDonald et al., 2005). In this case,
all possible non-projective dependency trees are candidates for the sentence structure because
no projectivity constraint is applied in contrast to projective parsing model. This type of non-
projectivity is called an uncontrolled non-projectivity in this thesis. As described below, PDG
does not adopt (C3) directly. Therefore PDG can generate non-projective dependency trees for
input sentences. (C4) is a basic constraint for valency but is not adopted by the majority of
dependency parsers.

(C2)-(C4) can be described as a set of co-occurrence constraints between two arcs in a depen-
dency graph. As described below, PDG adopts co-occurrence constraints between two arbitrary
arcs in a dependency graph using constraint matrix (CM). Constraints represented by CM are

called arc co-occurrence constraints.

(C5) Arc co-occurrence constraint: Each arc pair in a tree has a co-occurrence relation in CM

More precise constraints compared with (C2) - (C4) are representable by means of CM. For
example, it can allow non-projectivity for only some special arcs. In PDG, the mapping between
a sequence of constituents (the body of a CFG rule) and a set of arcs (a partial dependency
tree) is defined in an extended CFG rule. As described below, this grammar framework allows
generating non-projective structures defined by grammar rules. This type of non-projectivity
is called a controlled non-projectivity in this thesis. The controlled non-projectivity can reduce
the generation of illegal non-projective dependency trees compared with the uncontrolled non-
projectivity. Treatment of non-projectivity as described in (Kahane et al., 1998; Nivre and
Nilsson, 2005) is an important topic out of the scope of this thesis.

The optimum tree search in a scored dependency graph is a task of searching for a dependency
tree with the highest score satisfying the well-formed dependency tree constraint. The algo-
rithm for this task is closely related to the types of dependency graphs and/or well-formedness
constraints. Graph search algorithms, such as the Chu-Liu-Edmonds maximum spanning tree
algorithm (Chu and Liu, 1965; Edmonds, 1967), algorithms based on the dynamic program-
ming(DP) principle (Ozeki, 1994; Eisner, 1996b) and the algorithm based on the branch and
bound (B&B) method (Hirakawa, 2001), are used for optimum tree search in scored dependency
graphs. The Chu-Liu-Edmonds algorithm is very fast (O(n?) for sentence length n), but it works

correctly only on word dependency graphs. Maximum spanning tree algorithms cannot satisfy

93

the single role constraint for WPP and concept dependency graphs. DP-based algorithms can
satisfy (C1) - (C3) and run efficiently, but seems not to satisfy (C4). Hirakawa (2001) proposed
a B&B-based algorithm working on word dependency graphs satisfying (C1) - (C4). This the-
sis extends this algorithm to work on WPP and concept dependency graphs. The next section

explains the problems of the DP-based method in treating (C4).

4.1.4 Single Valence Occupation Constraint and Dynamic Program-

ming

Ozeki proposed an algorithm for obtaining the optimum kakari-uke tree and its score from a
set of all possible scored kakari-uke relations (Ozeki, 1986; Ozeki, 1994). This algorithm can
be extended to treat general dependency relations (Katoh and Ehara, 1989). This algorithm
is generalized into the minimum cost partitioning method (MCPM), which is a partitioning
computation based on the recurrence equation given below (Ozeki and Zhang, 1999). MCPM is
also a generalization of the probabilistic CKY algorithm and the Viterbi algorithm*6.

Considering the phrase (w;, wj;a;, -, a;; A) partitioned into (w;, -, wk;ai, -, ar; B) and
(Wi, 7, Wj; g1, 7 a5 C) where wy, a,, and A-C' mean word, analog information (such
as prosodic information), and features like phrase name, respectively. MCPM computes the

optimum solution based on the following recurrence equation for total cost F.
F(i,j,A) = min[F(i,k,B) + F(k +1,5,C) + cost(w;, -, w;,a;, ", a;,k, A, B,C)]

F(i,j,A) is the total cost of phrase A covering from the i-th to the j-th word in a given sentence.
cost(w;, ..wj,a;, ...,aj, k, A, B,C) is a cost function where k is a partitioning position. The
minimum cost partition of the whole sentence is calculated very efficiently by the DP principle
for this equation. The optimum partitioning obtained by this method constitutes a tree covering
the whole sentence satisfying the single role and projectivity constraints. However, it is not
assured that the single valence occupation constraint adopted in PDG for basic semantic level
constraint is satisfied by MCPM.

Fig.4.2 shows a dependency graph for the Japanese phrase “Isha-mo wakaranai byouki-no
kanjya” encompassing dependency trees corresponding to “a patient suffering from a disease
that the doctor doesn’t know,” “a sick patient who does not know the doctor,” and so on. The
dependency graph has two kinds of ambiguities, i.e., semantic role ambiguity and attachment
ambiguity. For example, wakaranai(not_know) has four outgoing arcs with different semantic
roles (agent and target) and different attachments (byouki(sickness) and kanjya(patient)) in
Fig.4.2. The single valence occupation constraint prevents wakaranai(not_know) from being
connected with the same two semantic role arcs. OS] - OSy represent the optimum solutions
for the phrases specified by their brackets computed based on MCPM. For example, OS5 gives

an optimum tree with a score of 22 (consisting of agentl and targetd) for the phrase “Isha-

*6 Specifically, MTCM corresponds to probabilistic CKY and the Viterbi algorithm because it computes both
the optimum tree score and its structure.

94

target6,5
agent5,15

target2,10 target4,7

in-state7,1
Isha-mo Wakarana| Byouki-no Kanja
(doctor) (not_know (sickness) (patient)
| | |

OS,[15]: (agent1,15) OS,[10]: (in-state7,10)
| |

0S;[22]: (agentl,15) + (target4,7)
| |
0S,[25]: (agent5,15) + (in-state7,10)

|]| |
NOS,[10]: (target2,10) OS,[25]: (agent5,15) + (in-state7,10)
|]| |

OS|[15]: (agent1,15) NOS,[20]: (target4,10) + (in-state7,10)

Well-formed optimum solutions for covering wholerase

Fig.4.2 Optimum solution search satisfying the single valence occupation constraint

mo wakaranai byouki-no.” The optimum solution for the whole phrase is either OS] + 0S4 or
0S5 + 0S5 due to MCPM. The former has the highest score 40(= 15 + 25) but does not satisfy
the single valence occupation constraint because it has agentl and agent5 simultaneously. The
optimum solutions satisfying this constraint are NOS; + OSy and OS; + NOS> shown at the
bottom of Fig.4.2. NOS; and NOS, are not optimum solutions for their word coverages. In
this case, MCPM generates a non-optimum tree in OS5 + OSs if it adopts the strategy of
neglecting inconsistent trees. Otherwise, MCPM generates a high score but an ill-formed tree
in OS; + OS4. This shows that it is not assured that MCPM will obtain the optimum solution
satisfying the single valence occupation constraint. On the contrary, it is assured that the graph
branch algorithm will compute the optimum solution(s) satisfying any co-occurrence constraints
in the constraint matrix including the single valence occupation constraint. It is an open problem
whether an algorithm based on the DP framework exists which can handle the single valence

occupation constraint and arbitrary arc co-occurrence constraints.

4.2 Semantic Dependency Graph and Dependency Forest

The semantic dependency graph, as shown in Section 4.2.1, is a semantic-label word depen-
dency graph designed for Japanese sentence analysis (Hirakawa and Amano, 1989a). The op-
timum solution for a sentence is obtained by searching for the optimum tree in a semantic
dependency graph with preference scores (Hirakawa, 2001).

The sentence analysis method based on the semantic dependency graph, the predecessor of
PDG, is effective because it employs linguistic constraints as well as linguistic preferences. How-
ever, this method is lacking in terms of generality in that it cannot handle backward dependency
and multiple WPP because it depends on some linguistic features peculiar to Japanese. PDG

employs the dependency forest instead of the semantic dependency graph. Since the dependency

95

forest has none of the language-dependent premises that the semantic dependency graph has, it
is applicable to English and other languages. PDG has one more advantage in that it can gener-
ate non-projective dependency trees because the mapping from phrase structure to dependency
structure is defined in grammar rules.

The optimum tree search algorithm for the semantic dependency graph is not applicable to
the dependency forest. This thesis gives a brief explanation of the dependency forest and shows

the graph branch algorithm for obtaining the optimum solution (tree) in the dependency forest.

4.2.1 Semantic Dependency Graph and its Drawbacks

Fig.4.3 shows a semantic dependency graph for “Watashi-mo Kare-ga Tukue-wo Katta Mise-ni
Utta” (Hirakawa, 2001). The nodes in the graph correspond to the content words in the sentence
and the arcs show possible semantic dependency relations between the nodes. Each arc has an
arc ID and a preference score. Interpretations of a sentence are well-formed spanning trees that
satisfy the projectivity constraint and the single valence occupation constraint. The bold arcs in
the graph in Fig.4.3 show the optimum interpretation with a maximum score of 130.

The semantic dependency graph is designed based on the Japanese kakari-uke relation and

assumes the following features of Japanese.

(a) A dependant always locates to the left of its governor (no backward dependency)

(b) POS ambiguities are quite minor compared with English*7

The semantic dependency graph and its optimum solution search algorithm adopt these as their

premises. Therefore, this method is inherently inapplicable to languages like English that require

Utta(sold)

Arcname : ga
Arc ID : ¢
Score : 35

Arc name

ga :agent

wo : target

ni :direction
de : location

Watashi-mo Tsukue-wo Kare-ga
[)) (desk) (he)

Optimum Semantic Dependency Trée; d, e, f, 1]

Fig.4.3 Example of semantic dependency graph and its optimum solution

*7 Word boundary ambiguity corresponding to the compound word boundary ambiguity in English exists in
Japanese. Treatment of this ambiguity is a practical problem for the semantic dependency graph even when
applied to Japanese sentence analysis.

96

rels
P 10

- sute4 vppl8 det14
[O,tlme/n " 1,flylv 9 2 like/p {3,an/det)T>[4,arrow/r}
ne2_y7 A}npmg 0t 29 obj16

- 7 10 - 6
0,time/v obja 1,fly/n m{z,llke/v}‘/ Dependency Graph

2 (24| 4 (23]19|18/20|14|16|15[31|29|32
2(— O [e]le] (@)
Meaning of Arc Name 244 — o O [e) 8 8 O [e)
sub : subject 23[0 _ olo [e)
obj : object 19 ol [= ol |0 [e)
npp : noun-preposition 18] O — ol [olo
vpp : verb-preposition 20 [e) —lol o [e)
pre : preposition 14[0lo[o[o[o]o[o]-[olo[o[o]o
nc :noun compound 16|O [e) o[= [e)
det : determiner 15| [olol |olololol [=lo] o
tp :top 31 |O O| [O] |[O]=
29|0 0] (0][e] -
Constraint Matrix (32 Ol [0 [O|0] [O -

Fig.4.4 Scored DF for “Time flies like an arrow”

backward dependency and multiple POS analysis.

4.2.2 Dependency Forest

As described in Chapter 3, the dependency forest is a packed shared data structure encompass-
ing all possible dependency trees for a sentence. A dependency forest consists of a dependency
graph (DG) and a constraint matrix (CM). A dependency forest with a scored dependency graph
is called a scored dependency forest. Fig.4.4 shows a scored dependency forest for the example
sentence “Time flies like an arrow.”

The dependency forest has correspondence with the phrase structure forest. This means that
the dependency forest provides a means to treat all possible interpretations of a sentence in
dependency structure representation. One sentence interpretation is represented by one well-
formed dependency tree which satisfies the well-formed dependency tree constraint, i.e., the
covering constraint and the arc co-occurrence constraint described in Section 4.1.3. The algorithm
for the dependency forest has to treat the covering constraint.

Fig.4.5 shows four well-formed dependency trees for the dependency forest in Fig.4.4. Top
nodes are omitted in the figure for simplicity. Tree (a) is the optimum dependency tree with the

highest score of 51.

4.2.3 Relation between Semantic Dependency Graph and Dependency

Forest

The dependency forest and the semantic dependency graph utilize the WPP dependency graph
and the word graph, respectively. The word dependency graph can be seen as a special case of
the WPP dependency graph. Therefore, the semantic dependency graph is a subset of the depen-

dency graph of the dependency forest. On the other hand, well-formedness constraints introduced

97

suh1 vpp.9 suh1Q obj,6
(Cotime/n] (2,like/p) ((1fiyln] (4,arrow/n)
pre1d nc17 det17
(4,arrowin) (otime/n] ([3,an/det]
det17 (b) “Time flies” go for an arrowscore:50)
(3.an/det)
(a) Time is like an arroéscore:51) [m
obj,7
Lflyin)
obj,7 vpp8 npp7
(afyn)] (2likelp) 2like/p)
prel pre10
4 arrow/n) (4,arrowin)
det17 det17
(3.an/det] (3.an/det]

(c) Clock flies as an arrow (score:42 (d) Clock flies similar to an arrc(score41)

Fig.4.5 Well-formed dependency trees for the example sentence

to a semantic dependency graph, i.e., the projectivity and single valence occupation constraints,
are a type of arc co-occurrence constraints representable by means of CM. Therefore, the depen-
dency forest is a generalized and more powerful data structure covering the representative power

of the semantic dependency graph.

4.3 Optimum Tree Search for Dependency Forest Based
on Graph Branch Method

The graph branch method works on the branch and bound principle and searches for the
optimum well-formed tree from a dependency graph by applying partial sub-problem expansions
called graph branching. The algorithm in (Hirakawa, 2001) applies the graph branch method to
the semantic dependency graph. Unfortunately, this algorithm is not directly applicable to the
dependency forest search problem. The following shows a new algorithm for applying the graph

branch method to the dependency forest.

4.3.1 Outline of Branch and Bound Method

The branch and bound method is a principle for solving computationally hard problems such
as NP-complete problems. The basic strategy is that the original problem is decomposed into
easier partial-problems (branching) and the original problem is solved by solving them. Pruning
called a bound operation is applied if it turns out that the optimum solution to a partial-problem
is inferior to the solution obtained from some other partial-problem (dominance test), or if it

turns out that a partial-problem gives no optimum solutions to the original problem (maximum

98

value test). The dominance test is not used in the graph branch method. Usually, the branch
and bound algorithm is constructed to minimize the value of the solution. The graph branch
algorithm in this thesis is constructed to maximize the score of the solution because the best
solution is the maximum tree in the dependency forest.

The following features for the maximum bound value test with respect to the problem P and

its partial-problem P. must be satisfied in the branch and bound method.

(MC1) g(P.)>f(P) where g(P.) is the maximum value of P,, and f(P) is the maximum value
of P.

(MC2) If g(P.) = I(P) where 1 gives a value of a feasible solution to P, then the feasible
solution is a solution to P.

(MC3) If P. has no feasible solutions then P has no solutions.

(MC4) If a feasible solution with an incumbent value z is obtained for some partial-problem,
and if g(P.)<z, then partial-problems branched from problem P have no better solutions

than z.

These conditions are called model conditions in this thesis. In the case of MC2-MC4., partial-
problem P, can be terminated. Fig.4.6 shows a general branch and bound algorithm for obtaining

one optimum solution (Ibaraki, 1978).

' Set of active partial problems (not yet terminated nor expanded)

:Set of generated partial problems

: Set of optimum solutions

 Incumbent value

1 1(P) gives value of feasible solution of a partial problem P

. g(P) gives upper-bound value of a partial problem P

. s(A) selects one partial-problem in A

' Set of partial problems with no feasible solution or g(P)=fP)

. f(P) is the optimum solution of P

D : If Pi D Pj, Pi dominates Pj

S1(initial value setup): Ai={Po}, N:= {Pq}, z=-00, O:={}

S2(search) : If A={} goto S9 else Pi:=s(A). Goto S3.

S3(incumbent value update) : If 1(Pi)>z then z:=1(Pi), O:={x} (x is a feasible solution of Pi satisfying
f(x)Z21(x)). Goto S4.

S4(G test) : If PiEG goto S8 else goto S6.

S5(upper bound test) : If g(Pi) <z goto S8 else goto S6.

S6(dominance test) : If there exists Pk (#Pi) €N satisfying Pk D Pi goto S8 else goto S7.

S7(branching operation) : Generate child partial problem Pii, Pis,..Pix of Pi. Set A:=AU{Pi;,Pis,..Pix}—
{Pi}, N:=N U{Pi;,Piz,..,Pii}. Goto S2.

S8(termination of Pi) : Set A'=A—{Pi}. Goto S2.

S9(stop) : Computation stop. If z=-c0 then Po has no feasible solutions else z is the optimum value f(Po)

and x in O is the optimum solution to Po.

monou —N Q7

Fig.4.6 Skeleton of branch and bound algorithm

99

4.3.2 Graph Branch Algorithm

Fig.4.6 shows a skeleton of the algorithm. In order to make it running code, each operation in
the algorithm must be realized for the target problem. The graph branch algorithm applies the
branch and bound method to the optimum tree search problem with the binary arc co-occurrence
constraint by introducing the graph branch operation for the partial-problem expansion oper-
ation. Fig.4.7 shows the graph branch algorithm which has been extended from the original
skeleton to search for all optimum trees for a dependency graph. The following sections explain
how the components of the branch and bound method in Fig.4.6 are implemented in the graph

branch algorithm.

(1) Partial-problem
Partial-problem P; in the graph branch method is a problem searching for all the well-formed
optimum trees in a dependency forest DF; consisting of the dependency graph DG; and con-

straint matrix C'M;. Partial-problem P; consists of the following elements.

(a) Dependency graph DG;

Po : Initial problem, P;i :Partial problem, AP : Active partial problem list,
O : Set of incumbent solutions, z :Incumbent value

start: /* S1(initial value setup) */
AP =1{Po}; z=-1; O:=4 UB=get_ub(Po); /* Upper bound of Po*/
search_top: /* S2(search) */
if(AP == {) {goto exit; } else{ Pi := select_problem(AP); }
(FS,LB) ‘= get_fs(Ps); /* Compute the feasible solution and the lower bound for P; */
if(FS == no_solution) { goto terminate_problem; }
/* S3(incumbent value update): */
if(LB>2z){z:=LB; O:=4{S}} /* IfLBisbetter than z update O andz */
/* S5(upper bound test): */
if(UB < z) { goto terminate_problem; }
IAPL ‘= get_iapl(P}); /* Compute inconsistent arc pair list IAPL. */
if(LB < UB) { BACL :=1APL; goto branch; } /* If LB < UB, execute graph branch */
/* Lower bound equals to upper bound => optimum solution */
elsif(LB == UB) {
O =1{FS} U O; /* Add this FS as incumbent solution */
/* S8(search for more optimum solutions) */
ifQAPL != §) { BACL := IAPL; goto branch; } /* (a) existence of IAPL */
BACL := arcs_with_alternatives(FS); /* (b) existence of a rival arc */
if(BACL != 4) { goto branch; } else { goto terminate_problem; } }

branch: /* S6(branching operation) */
ChildProblemList ‘= graph_branch(P;, BACL); /* Generate child problems */
AP :=AP U ChildProblemList - {Pi}; goto search_top;

terminate_problem: /* S7(termination of Py */
AP = AP - {Pi}; goto search_top;

exit: /* S9(stop) */
if(z == -1) { Problem Py has no solution } else { O is a set of the optimum solutions }

Fig.4.7 Graph Branch Algorithm

100

(b) Constraint matrix C'M;

(c) Feasible solution value LB; (corresponding to [(P) in Fig.4.6)

(d)
)

(e) Inconsistent arc pair list TAPL;.

Upper bound value UB; (corresponding to g(P) in Fig.4.6)

The constraint matrix is common to all partial-problems, so one C'M is shared by all partial-
problems. DG, is represented by “rem[..]” which shows a set of arcs to be removed from the
whole dependency graph DG, i.e., DG, is obtained by removing rem|..] from DG;. For example,
“rem[b,d])” represents a partial dependency graph [a,c, €] in the case DG = [a,b,¢,d,e]. This
reduces the memory space and the computation for a feasible solution as described below. TAPL;
is a list of inconsistent arc pairs. An inconsistent arc pair is an arc pair which does not satisfy

some co-occurrence constraint.

(2) Algorithm for Obtaining Feasible Solution and Lower Bound Value
In the graph branch method, a well-formed dependency tree in the dependency graph DG of the
partial-problem P is assigned as the feasible solution F'S (corresponding to = in Fig.4.6) of P *8.

The score of the feasible solution F'S is assigned as the lower bound value LB (corresponding to

G ¢ Dependency graph of a partial problem,

n ! Number of words in an input sentence

FS ! Area for saving arc 1Ds of a feasible solution

BP ! Area for saving the nearest backtrack points

Siagign) © Set of ares having the dependant nodes with the same position
N(S) : Number of elements in arc set S

a(i,j) ¢ jth arc in arc set S;

score(F'S) : Sum total of scores of arcs in F'S

stepl(grouping and sorting arcs): Classify the arcs in graph G by their starting nodes, and
generate the sets of arcs S1,Sz,...,Sn. Sort elements in each S;jwith respect to their
weights in descending order. Then, sort S1,Sz,...,Sn with the maximum score of the arcs
in the set in descending order. This is renamed S1,Sg,...,Sn_

step2(initialize): FS:=[],BP:=[] i:=1,j:=1k:=1,1:=0

step3(termination check1): If i>n then terminate by returning the feasible solution FS and
score(FS). If i=n then goto step4.

step4(termination check2): If N(S;) =] then goto step5 else set FS:=no_solution and
terminate. (No feasible solution)

step5(constraint check): If j>N(S) (no arcs in S; satisfies the co-occurrence constraint),
goto step6. Perform the co-occurrence constraint check between j-th element a(,j) of Si
and each element ei,es,....ei1 in FS in reverse order. If a(i,j) does not satisfy the
co-occurrence constraint with element ex (1=k=i-1), set I'=max(1 k), j'=j+1, goto step5.
If all co-occurrence constraint checks are satisfied then goto step7.

stepB(backtracking): Remove eyei+1,...,ei-1 from S. Set j'= BP[1]+1, i:=l. Goto step4.

step7(next node): Add a(i,j) to the last of F'S. Set BP[il:5j, i:=i+1, j'=1. Goto step3.

Fig.4.8 Algorithm for obtaining F'S and LB

*8 A feasible solution may not be optimum but is a possible interpretation of a sentence. Therefore, it can be
used as an approximate output when the search process is aborted.

101

I(P) in Fig.4.6). The function for computing these values get_f's is called a feasible solution/lower
bound value function. Fig.4.8 shows the algorithm of get_fs. Basically, get_fs searches for one
feasible solution in higher-score-first and depth-first manner. When an arc which violate co-
occurrence constraint against one of the selected arcs is found, get_fs backtracks at stepb to the
nearest choice point which resolves the contradiction. This assures that the obtained solution
satisfies the co-occurrence constraint. Furthermore, if get_fs finds no solution, then the problem
P has no solution. Since get_fs selects one arc for each position in a sentence, the obtained arcs
satisfies the well-covered constraint.

Arc groups Sy to S, are sorted according to their scores in stepl. This operation is introduced
to obtain a better (higher score) feasible solution, since the better feasible solution lead to a

higher incumbent value which bounds more partial-problems.

(3) Algorithm for Obtaining Upper Bound Value

Given a set of arcs A which is a subset of a dependency graph DG, if the set of dependent
nodes of arcs in A satisfies the covering constraint described above, the arc set A is called
the well-covered arc set. The “maximum well-covered arc set” is defined as a well-covered arc
set with the highest score. In general, the maximum well-covered arc set does not satisfy the
single role constraint and does not form a tree. In the graph branch method, the score of the
maximum well-covered arc set of a dependency graph G is assigned as the upper bound value
UB (corresponding to g(P) in Fig.4.6) of the partial-problem P. Upper bound function get_ub
calculates U B by scanning the arc lists sorted by the surface position of the dependent nodes of
the arcs.

The above settings satisfy the model conditions. In these settings, P and get_ub corresponds
to P, and g(P.), respectively. (MC1) is satisfied because get_ub(P)>f(P) is true for f(P) (the
score of the optimum tree). (MC2) and (MC4) are satisfied because get_ub is the score of
the maximum well-covered arc set. (MC3) is satisfied since get_ub(P) always has its solution.

Therefore, partial-problem P is prunable if the incumbent value z satisfies z>g(P)*?.

(4) Branch Operation
Fig.4.9 shows a branch operation in the graph branch method called a graph branch operation.

Child partial-problems of P are constructed as follows:

(a) Search for an inconsistent arc pair (arc;,arc;) in the maximum well-covered arc set for
the dependency graph of P.

(b) Create child partial-problems P;, P; which have new dependency graphs DG; = DG —
{arc;} and DG; = DG — {arc;}, respectively.

Since a solution to P cannot have both arc; and arc; simultaneously due to the co-occurrence
constraint, the optimum solution of P is obtained from either/both P; or/and P;. The child

partial-problem is easier than the parent partial-problem because the size of the dependency

*91In the case of obtaining all optimum solutions ,the terminate condition should be changed to z > g(P).

102

ar DG: Dependency graph
G of parent problem
Remove arc arG Remove arc

L
N7

% b

arg
DGi: Dependency graph DGJ Dependency gl‘aph
for child problem P for child problem P

Fig.4.9 Graph Branching

graph of the child partial-problem is less than that of its parent.

In Fig.4.7, get_iapl computes the list of inconsistent arc pairs I AP L(Inconsistent Arc Pair List)
for the maximum well-covered arc set of P;. Then the graph branch function graph_branch selects
one inconsistent arc pair (arc;, arc;) from IAPL for branch operation. The selection criteria for
(arc;,arc;y) affects the efficiency of the algorithm. graph_branch selects the inconsistent arc pair
containing the highest score arc in BAC L(Branch Arc Candidates List). graph_branch calculates
the upper bound value for a child partial-problem by get_ub and sets it to the child partial-
problem. Simultaneously, graph_branch executes bound operation by immediately pruning the

child partial-problem whose upper bound value is less than the incumbent value z.

(5) Selection of Partial-problem from Active Partial-problems

select_problem in Fig.4.8 corresponds to the search s(A) in Fig.4.6. The best bound search is
employed for select_problem, i.e., it selects the partial-problem which has the maximum bound
value among the active partial-problems. It is known that the number of partial-problems de-
composed during computation is minimized by this strategy in the case that no dominance tests
are applied (Ibaraki, 1978).

(6) Computing All Optimum Solutions

In order to obtain all optimum solutions, partial-problems whose upper bound values are equal
to the score of the optimum solution(s) are expanded at S8(SearchM oreOptimumSolutions).
In the case that at least one inconsistent arc pair remains in a partial-problem (i.e., TAPL#{}),
graph branch is performed based on the inconsistent arc pair. Otherwise, the obtained optimum
solution F'S' is checked if one of the arcs in F'S has an equal rival arc by arcs_with_alternatives
function in Figure 4.6. The equal rival arc of arc A is an arc whose position and score are equal
to those of arc A. If an equal rival arc of an arc in F'S exists, a new partial-problem is generated

by removing the arc in F'S. S8 assures that no partial-problem has an upper bound value greater

103

than or equal to the score of the optimum solutions when the computation stopped.

(7) Correctness of the Graph Branch Algorithm

All Dependency trees are generated by the feasible solution and lower bound value function
get_fs. get_fs does not violate the covering constraint(the single role constraint and the coverage
constraint) because it selects one arc for one input position at the step7 in Fig.4.8. It also
assures the co-occurrence constraint by checking the CM value for every two arcs in a tree at
stepb. Therefore, output dependency trees of the graph branch algorithm satisfy the well-formed

dependency tree constraint.

4.4 Example of Optimum Tree Search

This section presents an example showing the behavior of the graph branch algorithm using

the dependency forest in Fig.4.4.

4.4.1 Feasible Solution/Lower Bound Value Function

The following section shows the behavior of feasible solution/lower bound value function get_fs
for the example sentence.

stepl(grouping and sorting of arcs) in Fig.4.8 is performed once at the beginning for the
initial dependency forest. The result of stepl is shown in Fig.4.10. Pos and MaxScore mean
the position of the arc in the sentence and the maximum arc score at that position respectively.
Arcs with no rival arc have MazScore co and are located at the top of the arc group list.

Arc groups with start positions 3,0,4,1 and 2 are assigned to S1,5S2,53,54 and Ss, respectively.

S, : Pos =3, MaxScore = ©o :
a(1,1) arc(det-14:17, [an]-det-3, [arrow]-n—-4)

S, : Pos =0, MaxScore =17 :
a(2,1) arc(nc-2:17, [time]-n-0, [flies]-n-1)
a(2,2) arc(sub-24:15, [time]l-n-0, [flies]-v-1)
a(2,3) arc(tp-32:0, [time]l-v-0, [top]l-x—top)

S; : Pos = 4, MaxScore = 10 :
a(3,1) arc(pre-15:10, [arrow]l-n-4, [l ike]-pre-2)
a(3,2) arc(obj-16:6, [arrow]l-n-4, [like]l-v-2)

S, : Pos =1, MaxScore =10 :
a(4,1) arc(sub-23:10, [flies]-n-1, [like]l-v-2)
a(4,2) arc(obj-4:7, [flies]-n-1)/1:5, [time]-v-0)
a(4,3) arc(tp-31:0, [flies]-v-1, [top]-x-top)

S; : Pos =2, MaxScore =9 :
a(b, 1) arc(vpp-18:9, [likel-pre-2, [flies]-v-1)
a(5,2) arc(vpp-20:8, [likel-pre-2, [time]-v-0)
a(b,3) arc(npp-19:7, [likel-pre-2, [flies]-n-1)
a(5,4) arc(tp-29:0, [|ikel-v-2, [top]l-x—top)

Fig.4.10 Grouped and Sorted Arcs

104

step2(initialize) initializes variables. After step3 and step4 are executed, step5 checks that
a(i,j) = a(1,1) = 14(= det14) can be registered to F'S. In this case, no violation of the co-
occurrence constraint occurs, and then step7 registers a(1,1) to F'S *19 then backtrack point
BPI1] at the position i(= 1) is set to j(= 1).

FS=1[a(1,D))(=[14]), BP=1[1,—,—,—,=],i=2,j=1,k=1,1=0
Next, step3-5 try the first arc a(2,1)(= nc2) in Sy. Since CM (a(1,1),a(2,1)) = CM(14,2) = O

in Fig.4.4, a(2,1) and a(1, 1) satisfy the co-occurrence constraint and then a(2,1) is registered
to F'S.

FS=1a(1,1),a(2,D](=[14,2]), BP=[1,1,—,—,—],i=3,j=1,k=1,1=0
a(3,1)(= prelb) is skipped because CM (a(3,1),a(2,1)) = CM(15,2)7#0O. Then a(3,2) is tried.

FS =la(1,1),a(2,1),a(3,2)](= [14,2, 16])
BP=[1,1,2,—,—],i=4,j=1k=1,1=1

In a similar manner, a(4, 1)(= sub23) and a(5,4)(= rt29) are added to F'S, then the termination

condition at step3 is satisfied.

FS =T[a(1,1),a(2,1),a(3,2),a(4,1),a(5,4)](= [14, 2, 16, 23, 29]),
BP=[1,1,2,1,4],i=6,j=1,k=4,1=4,

The F'S here is a feasible solution and the sum total of arc scores, i.e., 174+ 1746+ 10+ 0 = 50
is the score of the feasible solution.

No backtracking occurred in this example. Backtracking occurs when all arcs in S; are found
to be inconsistent with either of the arcs in F'S at that point. In this case, step6(backtracking)
backtracks to the [position. [is assured to be the rightmost position, where some element, in S; is

inconsistent with the selected arc in F'S. This mechanism is introduced to optimize backtracking.

4.4.2 Example of Graph Branch Algorithm

The search process of the branch and bound method can be shown as a search diagram
constructing a partial-problem tree representing the parent-child relation between the partial-
problems. Fig.4.11 is a search diagram for the example dependency forest showing the search
process of the graph branch method.

In this figure, box P; is a partial-problem with its dependency graph rem, upper bound value
U B, feasible solution and lower bound value LB and inconsistent arc pair list TAPL. Suffix i of
P; indicates the generation order of partial-problems. Updating of global variable z (incumbent
value) and O (set of incumbent solutions) is shown under the box. The value of the left-hand
side of the arrow is updated to that of right-hand side of the arrow during the partial-problem
processing. Details of the behavior of the algorithm in Fig.4.7 are described below.

In S1(initialize), z, O and AP are set to —1, {} and { Py}, respectively. The dependency graph

*10 In fact, the arc ID 14 is registered to F'S. The a(i, j) form is used here for clarity.

105

I30

rem H D

UB :63[142152318]

LB 50, FS:[14,2,16,23,29]
BACL : [(2,15),(15,23),(23,18),(2,18)]

Z:-1— 50
0:{1—1[[142,16,23.29] }

P, yd P, >\

rem :[2] rem :[15]

UB :61,[1424,1523,18] UB :59,[14216,23,18]

LB :51,FS[14,24,1531,18] LB :— FS: not exist

BACL : [(15,23),(24,23),(23,18)] BACL : [(23,18),(16,18),(2,18)]
Z:50 — 51 Z: 51 (no change)
0:[142,16,23,29]} — [[14.24,1531.18} Q.[[14.2,16,23.29] } (no change)
Ps L Pa

rem :[232] rem :[4232]

UB :58,[1424,154,18] > UB :51,[1424,1531,18]

LB :42 FS[14,32154,20] LB :— FS:not exist

BACL : [(24,4),(4,18)] BACL : []

Z: 51(no change) Z: 51(no change)
01[14,24,15,31,18]} (no change) 014[14,24,15,31,18]} (no change)

Fig.4.11 Search diagram for the example sentence

of Py is that of the example dependency forest. This is represented by rem = [|. get_ub sets the
upper bound value (=63) of P, to UB. In practice, this is calculated by obtaining the maximum
well-covered arc set of Py. In S2(search), select_problem selects Py and get_fs(Pp) is executed.
The feasible solution F'S and its score LB are calculated based on the algorithm in Fig.4.8 to
set F'S = [14,2,16,23,29], LB = 50 (P, in the search diagram). S3(incumbent value update)
updates z and O to new values. Then, get_iapl(FPy) computes the inconsistent arc pair list
[(2,15), (15,23), (23,18), (2, 18)] from the maximum well-covered arc set [14,2,15,23,18] and set
it to TAPL. S5(mazimum value test) compares the upper bound value UB and the feasible
solution value LB. In this case, LB < UB holds, so BAC'L is assigned the value of TAPL. The
next step S6(branch operation) executes the graph_branch function. graph_branch selects the
arc pair with the highest arc score and performs the graph branch operation with the selected

arc pair. The following is a BACL shown with the arc names and arc scores.

[(nc2[17], prel5[10]), (prel5[10], sub23[10]), (sub23[10],vppl8[9]), (nc2[17], vppl8[9])]

Scores are shown in [|. The arc pair containing the highest arc score is (2,15) and (2,18)
containing nc2[17]. Here, (2,15) is selected and partial-problems P (rem[2]) and P (rem[15])
are generated. P, is removed from AP and the new two partial-problems are added to AP
resulting in AP = {P;, P»}. Then, based on the best bound search strategy, S2(search) is tried
again. select_problem selects P, because the upper bound value of P; (=61) is greater than
that of P> (=59). Since the upper bound of P; (=61) is greater than the feasible solution score
(=51), get_iapl is executed and sets BACL to the value shown in P; in Fig.4.11. The graph
branch function graph_branch gets two candidates for child partial-problems corresponding to
rem[24,2] and rem[23,2] because the inconsistent arc pair (24,23) is selected as the source of

the graph branch operation (arc 24 has the highest score of 15). The former candidate for

106

rem[24,2] is pruned immediately, because its upper bound value (=46) is smaller than the
incumbent value (=51) (termination by the upper bound test). Therefore, graph_branch returns
{P3(rem|[23,2])}. The upper bound value UB of Ps is 58 which is less than that of its parent
problem P;. The processing for P; is completed and P; is removed from AP. select_problem
selects P, by comparing the upper bound values of P, and P; in AP. Partial-problem P
is terminated because it has no feasible solution (F'S = no_solution). Then, the next partial-
problem Pj; is processed. P3 has a feasible solution with a score of 41. Updating of the incumbent
value does not occur because the obtained score is lower than the existing incumbent value. The
next partial-problem P, has no feasible solution, so all processing is terminated at S8(stop). At
this time, the values of O and z are the optimum solution(={[14,24,15,31,18]}) and its score
(=51) respectively. This solution corresponds to the dependency tree (a) in Fig.4.5.

4.4.3 Prototypical Ambiguous Sentences

In addition to the previous example for homophone ambiguities, this section shows two exam-

ples of prototypical ambiguous sentences.

(1) PP-attachment Ambiguity

Fig.4.12 shows a dependency forest for “I saw a girl with a telescope in the forest.” There
are no homophones in the forest but two prepositional phrases with attachment ambiguities.
The preposition “with” has two possible dependencies (nppl4,uppl6) and “in” has three
(vpp27,mpp26,npp29). The combination number of these arcs is 2 x 3 = 6, but there exists five
well-formed dependency trees due to the existence of the co-occurrence constraint between arcs
16 and 29 (CM(16,29)#0) corresponding to the projectivity constraint. The scores of these
arcs are assumed to be calculated based on the preposition, the governor and dependant nodes of
the preposition. vppl6 has a higher score compared with nppl4 because “telescope” is a tool for

seeing something. On the other hand, vpp27,npp26 and npp29 have the same scores. The search

Vpp26,5
bstopes,oﬂvppu,ls pm\ pre2t.10
S R0 s T N PR TN
m lsaw (2,a 3,gir|]{4,with}E{&telescop 8,th 9,foresﬂ
det,0 \ \5&5‘ 0 de0,0

npres,

(!

o

0.l . [i]_n_o 30|14 |5 [13[14{10]11]|25|23(26(20|21|35
1 saw 'T%M+1 30[—|ololo[o[oo|olololo]o]o
' : 4[0[—[o[o]o]o[o[o[o[o]o]o]o
2a : [a]-det-2 5|0fo[—[olololo[o]o[ofo[o]o
3,qgirl : [girl]-n-3 [Elle][elle] =l Ml [e][e][e][e][e][e][e][e]
4,with : [with]-pre-4 14101010 —Ol0L_ 010101010
5.a %@é& 10[o[o[o]o]o]-[o]o[o[o[o]o]o
' : Kl[e)[e)[e][e] o] o] ER[e][e][e][e] o] [0)
6,telescope: [telescope]-n-6 25|0]0/0]0] |O|O|— olo[0
7,in : [in]-pre-7 23[0|0[O[O|O[O[O] [=[[O]O[O
e ledes 0088888 005088
9,forest ;mmwm@ 2folololololololelololo-10
top : [top]-x-top aslo[olofolofolololololool—

Fig.4.12 DF for the example sentence including PP attachments

107

Po

rem :[]
UB :70,[2423,12,11,6,4,42,33,16,27]
LB :70, FS: [24,23,12,11,6,4,42,33,16,27]
BACL : [(27)]
Z:-1—=170
0:{) — {[24,23,12,11,6,4,42,33,16,27] }
Pl
rem :[27]
UB :70,[24,23,12,11,6,4,42,33,16,29]
LB :70, FS: [24,23,12,11,6,4,42,33,16,26]
BACL : [(16,29)]z
Z: 70 (no change)

O: { [24,23,12,11,6,4,42,33,16,27]] —
{ [24,23,12,11,6,4,42,33,16,27] [24,23,12,11,6,4,42,33,16,26] }

PZ

rem :[2927]

UB :70,[24,23,12,11,6,4,42,33,16,26]

LB : 65 FS:[24,23,12,11,6,4,42,33,14,26]
BACL:[]

Z: 70 (no change)
0:{ [24,23,12,11,6,4,42,33,16,27], [24,23,12,11,6,4,42,33,16,26])

Fig.4.13 Search diagram for the example sentence including PP attachments

diagram for this example is shown in Fig.4.13. Py generates the optimum solution (UB = LB)
with a score of 70. S8(search more optimum solution) in Fig.4.7 is executed. Py has no graph
branch candidates in the inconsistent arc pair list (IAPL == {}). arcs-with_alternatives(FS)
selects arc vpp27 as a candidate of graph branching because it has rival arcs with the same score
(npp26,npp29). Then P; is generated to obtain the second optimum solution including npp26.
Next P> with rem[26,27] is generated and a feasible solution to P, is calculated. This solution
is not added to the incumbent solution list because it has a lower score (65) than the obtained

optimum solutions. This example has two optimum solutions.

(2) Coordination Scope Ambiguity
Fig.4.14 shows a dependency forest for “Earth and Moon or Jupitor and Gamymede.” Cor-
responding to the combination of the scopes of the three coordinations, “Earth” and “Moon”

have three and two outgoing arcs, respectively. Since there exists a co-occurrence constraint

ancs5,5

top

andi2,1

e

(0Eart} 1.and [z,M
'Fnjf,O & CcNji4,0

25[12] 4] 222 9| 6 [18]14]26 0224

fg —= 8 O 8 8 8 8 8 0,Earth : [Earth]-n-0
4 _Tololololololo 1,and : [and]-and-1
2]0|0|0|—=|0|0[0[0|0|0 2,Moon : [Moon]-n-2
22|0| [O|O]|—=| [O|O|0|O 3,or : [or]-or-3
g 8 8 8 8 55 o 8 8 8 4 Jupiter : [Jupiter]-n-4

— 5,and : [and]-and-5
1810101010101010] 01O 6,Ganymede : [Ganymede]-n-6
14[0[o]0[o]0[0]0[o[=[0 ; _t N
26{0[0[0[0l0[0[0l0l0[— op : [top]-x-top

Fig.4.14 DF for the example sentence including coordinates

108

(projectivity constraint) between andl2 and or22, the dependency forest has five well-formed
dependency trees. Arc scored are assigned assuming preference knowledge like “Planet names
tend to co-occur” and “The name of a planet and its secondary planet tend to co-occur.”

The search diagram for this example is shown in Fig.4.15. The feasible solution to the initial
problem P, happens to be the optimum solution. No branch operation is performed because
ITAPL of P, is [] and all arcs in the optimum solution have no rival arcs.

Po

rem : []

UB :36,[26,14,18,6,2,4,22]

LB :36,FS:[26,14,18,6,2,4,22]
BACL: [1

Z:-1— 36
0:{} — ([26,14,18,6,2.4,22]1 }

Fig.4.15 Search diagram for the example sentence including coordinates

(3) Structural Ambiguity

Fig.4.16 shows a dependency forest for ”My hobby is watching birds with a telescope.” This
example has no homophone ambiguities but has ambiguities in the structural interpretation
of the word “be” (copula vs. progressive form) and “watching birds” (sub5,0bj6,adj4) as well
as PP-attachment ambiguities(vpp24,npp27,npp23). This dependency forest encompasses eight
well-formed dependency trees. Fig.4.17 is a search diagram for this example. P, generates a
feasible solution [22,1,6, 33,44, 38, 24] corresponding to “My hobby = watching birds using a
telescope.” Since the score of this feasible solution (40) is lower than the upper bound value
(54), Py is branched to P; and P>. P, generates a feasible solution [22,1,6, 33,44, 38,23] but
the incumbent value and the optimum solution list are not updated because the feasible solution
score(38) is lower than the current incumbent value(40). The succeeding computation process

generates no better solutions and terminates by guaranteeing that the solution with a score of

m VpE22,7
topss,o nppe4,3
sutss,10 OPHLC prg2,10\\ @m\ “%1'\5 pre200
4,birds] [S,With {G,telescop]e

1)35(33| 2|4 85212426222041(@
1|=[olo[o[o[o[o[o[o[o]o[o[o[o[o[o
) 35[0 — olololo[o[o[o[o[o]o[o
0,my : [my]-det-0 330 |0 olol [ool o
1,hobby : [hobby]-n-1 igoo_ 008 00800
2,is) J@b&? . 310l6 1ol 1ol 1ol lolo
3,watching: [watching]-ving-3 Fite)le} —[lololololololo
i - Thirdsl-n- Ae)le) olo[[=[[o[[o] [o[o
gbﬁf ﬁmmﬂn% 5]0[0[0[0) o[[—[olo[o[o[o[o[o
Wi : [with]-pre- 21[0[o[o[o[olo[o[oo]— ololo
6,telescope: [telescope]-n-6 ugg 00808 — 88
. o 26 —
top : [top]-x-top 22[0[o0[0] [[o] [0 —[ololo
20[0[0[0[o[o]o[o[o[o[o[o[o[o][=[0[0
41[0[O0 olo[olo[o[o[o[o[o[o[=
ss[o] [O[0 olo olo

Fig.4.16 DF for the example sentence including structural ambiguities

109

Po

rem :[]

UB :54,[22,1,64,23824]

LB :40,FS: [22,1,6,:33,44,38,24]
BACL : [(6,4),(4,2),(2,38),(4,24)]

Z-1- 40
0:{}— {[22,1,6,3344,38,24])
Py e N\ P,
rem :[4] rem :[6]
UB :50,[22,16.33,2.38,24] UB :49,[22,1,36.4,2,38,24]
LB :38 FS: [22,1,6,33,44,38,23] LB :37,FS:[22,1,36,4,44,38,23]
BAGL : [(33.2),(2,38)] BAGL : [(4,2)(36,2)(2,38),(4,24),(36,24)]
Z: 40 (no change) Z: 40 (no change)
0:{[22,1,6,33,44,38,24]] (no change) 0:{[22,1,6,33,44,38,24]] (no change)
P5 / P4\ Ps L
rem :[2.4] rem :[334] rem :[4,6]
UB :40,[221,633.44,38,24] UB :42[221,641.23824] UB :45,[22,1,36.33,2,38,24]
LB :36,FS:[221633443827]| |LB :33 FS:[221,64123524]| |LB :28 FS:[221,53344.3823]
BACL: [] BAGL : [(2,38),(41,38)] BAGL : [(36,33)(33,2),(36,2),(2,38),(36,24)]
Z: 40 (no change) Z: 40 (no change) Z: 40 (no change)
0: { [22,1,6,33,44,38,24]] (no change) O: { [22,1,6,33,44,38,24]] (no change) O: {[22,1,6,33,44,38,24] }
PB
rem :[36.4,6]

UB :40,[22,153323824]
LB : 26, FS: [22,15,334438,27]
BACL : [(33,2),(5,2),(2,38),(5,24)]

Z: 40 (no change)
0:{[22,1,6,33,44,38,24]] (no change)

Fig.4.17 Search diagram for the example sentence including structural ambiguities

40 is the optimum solution.

4.5 Experiment for Graph Branch Algorithm

This section describes some experimental results showing the computational complexity of the

graph branch algorithm.

4.5.1 Environment and Performance Metric of the Experiment

An English text corpus, PDG grammar and preference knowledge are prepared. Preference
knowledge source in this experiment is the WPP frequencies (node frequencies) and the depen-
dency relation frequencies (arc frequencies) in the corpus. Preference score is calculated from
these statistical data and attached to the arcs in the dependency graphs.

Experiment data of 125,320 sentences extracted from English technical documents is divided
into open data (8605 sentences) and closed data (116,715 sentences). The closed data is used
for producing WPP and dependency frequencies. An existing sentence analysis system (called
the oracle system) is used as a generator of these frequencies. The oracle system is a real-world
rule-based system with a long development history (Amano et al., 1989; Hirakawa et al., 2000).

PDG grammar called a basic grammar is prepared. The basic grammar consists of basic
grammar rules which cover sentence variations such as noun/verb/adjective/adverbial/ preposi-
tional phrases, simple/complex/compound sentences, relative/subordinate clauses and Onions’

1

5 sentence patterns*''. The basic grammar does not accept insertion, omission, inversion and

idiomatic structures (ex. not only .. but also ..). More detailed information on the environment

11 S4V,S4+V+C,S+V+0,84+V+0+0 and S+V+0+C patterns

110

of this experiment is described in Section 6.1.4.
The expanded problem number, a principal computational complexity factor of the B&B
method, is adopted for performance metric. The following three metrics are used in this ex-

periment.

(a) Expanded Problem Number in Total (EPN-T): The number of the expanded problems
which are generated in the entire search process.

(b) Expanded Problem Number for the First Optimum Solution (EPN-F): EPN-F is the num-
ber of the expanded problems when the first optimum solution is obtained.

(c) Expanded Problem Number for the Last Optimum Solution (EPN-L): EPN-L is the num-
ber of the expanded problems when the last optimum solution is obtained. At this point,

all optimum solutions are obtained.

Optimum solution number (OSN) for a problem, i.e., the number of optimum dependency trees in
a given dependency forest, gives the lower bound value for all these metrics because one problem
generates at most one solution. The minimum value of OSN is 1 because every dependency
forest has at least one dependency tree. As the search process proceeds, the algorithm finds
the first optimum solution, then the last optimum solution, and finally terminates the process
by confirming no better solution is left. Therefore, the three metrics have the relation EPN-F
< EPN-L < EPN-T. Average values for these are described as Ave:EPN-F, Ave:EPN-L and

Ave:EPN-T. Average values for the optimum solution number is described as Ave:OSN.

4.5.2 Experimental Results

An evaluation experiment for the open data is performed using a prototype PDG system
implemented in Prolog. The test sentences containing more than 22 words are neglected due to
the limitation of Prolog system resources in the parsing process. 4334 sentences out of 6882 test
sentences are parsable. Without applying special treatment such as construction of the whole
phrase structure tree from partial phrase structure trees, unparsable sentences (2584 sentences)
are simply neglected in this experiment.

All optimum trees are computed by the graph branch algorithm described in Section 4.3.2.
Fig.4.18 shows averages of EPN-T, EPN-L, EPN-F and OSN with respect to sentence length.
Overall averages of EPN-T, EPN-L, EPN-F and OSN for the test sentences are 3.0, 1.67, 1.43
and 1.15. The result shows that the average number of problems required is relatively small.
The CFG filtering by the phrase structure level reduces the search space for the dependency level
and the feasible solution search function based on the greedy algorithm in Fig.4.8 seems to give a
good feasible solution for a given problem and suppresses the number of expanded problems. The
gap between Ave:EPN-T and Ave:EPN-L (3.0-1.67=1.33) is much greater than the gap between
Ave:EPN-L and Ave:OSN(1.67-1.15=0.52). This means that the major part of the computation
is performed only for checking if the obtained feasible solutions are optimum or not.

Hirakawa (2001) reported the experiment for the B&B-based optimum search algorithm im-

111

Problem #/
Solution #
6

——EPN-T (Ave:3.00)

5 —— —>—EPN-L (Ave:1.67) /\
—4—EPN-F (Ave:1.43) / \/\
4 |— —=—OSN (Ave:1.15) f\ >

2 | /-/\A/\/ pox TN
R ==

N——"

S R S S S S Words
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig.4.18 Total problem number, problem number for the first optimum solution and opti-

mum solution number

plemented in C language using the semantic dependency graphs obtained from 100 sentences
randomly selected from Japanese technical documents. Compared with the experiment re-
ported in this thesis, the previous experiment was performed in different conditions and settings
with regard to, for example, the target language(English vs. Japanese), the target dependency
graph(syntactic-label WPP dependency graph vs. semantic-label word dependency graph), the
scoring method(statistics-based vs. rule-based) and the search target(all optimum solution search
vs. one optimum solution search). However, the two experiments have the same basic structure,
i.e., the optimum tree search for scored dependency graphs with arc constraints based on the
B&B principle. The B&B-based algorithms of the two experiments have very similar compo-
nents of the branch and bound method and the main factor of the computational complexity
is the number of the expanded problems. The previous experiment shows that overall averages
of EPN-T, EPN-F are 2.91, 1.33*!2. These result values are very similar to those in the new
experiment. The tendency for the optimum solution to be obtained in the early stage of the
search process was observed in the previous experiment just as it is in this experiment. Hirakawa
(2001) introduced two improvements of the algorithm, i.e., the introduction of an improved upper
bound function g’(P) and the optimized feasible solution search. As a result, the Ave:EPN-T
is reduced from 2.91 to 1.82 and the Ave:EPN-F is increased from 1.33 to 1.35. The average
CPU time is reduced from 305.8ms to 162.1ms (on engineering work station AS-4260). In the
new experiment, the g’(P) is introduced to the graph branch algorithm and has obtained the
reduction of the Ave:EPN-T from 3.00 to 2.68 and the reduction of the Ave:EPN-F from 1.43 to
1.36. g’(P) is also effective to some extent in this experiment.

The tendency for the optimum solution to be obtained in the early stage of the search process
suggests that limiting the number of problems to expand is an effective pruning strategy. Fig.
4.19 shows the ratios of the sentences obtaining the whole problem expansion, the first optimum
solution and the last optimum solution to whole sentences with respect to the expanded problem

numbers. This kind of ratio is called an achievement ratio (AR) in this thesis. From Fig. 4.19,

*12. OSN and EPN-L was not measured because the algorithm searches for only one optimum solution.

112

100%

95%

—a— AR for EPS-A [standard]

90% :
J// —=— AR for EPS-F [standard]
85% / .-' % — e ARfor EPS-T [standard] |

-.-@ -- AR for EPS-T [improved] |

80% - EPN
1 3 5 7 9 11 13 15 17 19

Fig.4.19 Achievement ratios for full expansion, first optimum solution expansion and last

optimum solution expansion cases with respect to max problem expansion number

the ARs for EPN-T, EPN-L, EPN-F (plotted in solid lines) are 97.1%,99.6%,99.8%, respectively
at the expanded solution number 10. The dotted line shows the AR for EPN-T of the improved
algorithm using g’(P). The use of g’(P) increases the AR for EPN-T from 97.1% to 99.1% at
the expanded solution number 10. However, the effect of g’(P) is quite small for EPN-F and
EPN-L. ARs for EPN-F and EPN-L in using g’(P) is almost the same as those shown in Fig.
4.19. This result shows that the pruning strategy based on the expanded problem number is
effective and g’(P) works for the reduction of the problems generated in the posterior part of the
search processes.

Behavior of the search process should be affected by the scoring strategy (resources of preference
knowledge and their application methods) and the structure of dependency graphs defined by
grammar rules. The search process should be analyzed in greater detail along with scoring
strategies and dependency graph structures. The performance of the algorithm described in
(Hirakawa, 2001) is sufficient for real-world applications. The practical code implementation
of the graph branch algorithm and its performance evaluation with an extended grammar are

subjects for future work.

4.6 Extension to the Binary Preference Model

All optimum solution search methods for scored dependency graphs including PDG described
in 4.1 treat preference scores attached to the arcs in a dependency graph. The arc scores are
independent of each other or constant for all possible dependency trees. This type of dependency
graph framework is called a “unary preference model” (or unary model) in this thesis. This
section describes the extension of PDG to the “binary preference model” (or binary model)

which can treat the preference knowledge represented by two arcs, called binary arc preference.

113

4.6.1 Extension of the Dependency Forest

This section gives the extension of the dependency forest and the definition of the optimum

dependency tree in the binary preference model.

(1) Preference matrix
Binary arc preferences are represented by a new data structure called “preference matrix”
(PM). Fig.4.20 shows an example of the dependency forest of the binary preference model.
Preference score between arc; and arc; is represented by the score (number) in the cell PM(4,5).

PM(i,i) and PM(i,7) (i#7) represent the “unary arc score” and the “binary arc score,”

respec-
tively. The unary preference score of arc; is the arc score of the unary model. The preference
score can be a negative value that represents the negative preference, Score 0, represented by
empty cell, represents the neutral preference.

Fig.4.20 shows an example of the dependency forest <DG,CM,PM> of the binary model.
The constraint matrix of the binary preference model is the same as that of the unary preference
model, but is called “constraint matrix” (CM) in the binary model in order to make clear contrast
with the preference matrix. The numbers in the diagonal cells in PM are unary arc scores and the
other numbers are binary arc scores. This dependency forest has two well-formed dependency

trees, i.e., {1,3,5,7} and {2,4,6,8}.

(2) The optimum dependency tree of the binary model
The score of a dependency tree in the unary model is defined as the sum total of the scores
of the arcs in the tree. The score of the dependency tree DT in the binary model is defined as

follows:

score(DT) = Z PM(a;, a;) (4.1)
a;,a; EDT,ZS]

This score is expressed by the sum total of the arc scores in DT as follows:

N | N2 | N3 | N4 N[N2 | N3] N4
1]2[3]4|5]6|7]8 1]2|3[4|5[6]|7]8
top v =[o s} WERIE 10 5
a2 a7 2| |- |O o 2| [15] |5 5 [20
a3 a6 nz| = ° N

CalN ¥ ad W ¥ a8)\ 4 - [®) 4] 5] |15
(N1) (N2] (N3] (N4 |w %5 wp ale
Ay a2 o| |- MERIE -5] [10
a| o] o] [o] |= 85|20 10

DG CM PM

Fig.4.20 Example of the dependency forest of binary model

114

score(DT) = Z arc_score(a;, DT) (4.2)
a; DT
1
arc_score(a;, DT) = PM(a;, a;) + 3 Z PM(a;, a;) (4.3)

a; €EDT,a;#a;
The score definition of the binary model is a generalization of that of the unary model.

The score of the dependency tree {1,3,5,7} in Fig.4.20 is computed as follows:

score({al,a3,ab,a7}) = Z PM(a;,a;)
aj,a;€{al,a3,a5,a7},i<j
=PM(1,1) + PM(3,3) + PM(5,5) + PM(7,7) +
PM(1, 3) + PM(1, 5) + PM(1,7) + PM(3,5) + PM(3,7) + PM(5,7)
=104+0+104+204+04+0+5+0+0—-5=40

The score of each arc is as follows:

1
arc_score(al, {al,a3,a5,a7}) = PM(1,1) + §(PM(1, 3) +PM(1,5) + PM(1,7)) =15
1
arc_score(a3, {al, a3, ab,a7}) = PM(3,3) + §(PM(1, 3) + PM(3,5) + PM(3,7)) =0
1
arc_score(ab, {al,a3,a5,a7}) = PM(5,5) + §(PM(1, 5) + PM(3,5) + PM(5,7)) = 17.5

1
arc_score(aT7, {al,a3,a5,a7}) = PM(7,7) + §(PM(1, 7) +PM(3,7) + PM(5,7)) = 7.5

The sum total of the arc scores, i.e., the score of the tree, is 40.

4.6.2 Extension of the Graph Branch Algorithm

The basic skeleton of the graph branch algorithm for the binary model is the same as that of
the unary model described in Section 4.3.1. This section describes the binary model version of

each component of the graph branch algorithm described in Section 4.3.2.

(1) Partial-problem
PM is added to the partial-problem of the unary model for the binary model. PM is shared

with all partial problems because it is common to all partial-problems.

(2) Algorithm for Obtaining Feasible Solution and Lower Bound Value

The algorithm for obtaining a feasible solution and lower bound value for the binary model is
basically equal to that of the unary model. The difference is the calculation of the arc score. The
unary model simply calculates the sum total of unary arc scores of the feasible solution. The

binary model calculates the arc score according to formula (4.3) described above.

115

In order to obtain a better (higher score) feasible solution, the sorting of arc groups as shown
in stepl of Fig.4.8 is conducted by using the upper bound scores of the arcs obtained by the
formula (4.5) described below.

(3) Algorithm for Obtaining Upper Bound Value

Given the dependency forest <DG,CM,PM> for an input sentence with word length n, a
partial problem P has its dependency graph DG’ which is a subset of DG. The upper bound
value G of P is defined with respect to the dependency forest <DG’,CM,PM> as follows.

G Z AEarcgi}i DG’) Ubs_arc(A) (44)
n—1
ubs_arc(A4) = Zub_arc_score(A,j) (4.5)
j=0
M(4, 4) (position(A4) = j)
ub_arc_score(4, j) = w N . (4.6)
XEarcs_at(j7]£I(l}a’J§fCM(A7X):O 2 (pOSlthH(A)#J)

Formula (4.4) means that the upper bound value G is calculated by summing the maximum
score of ubs_arc at each position of the input sentence. ubs_arc(A) is the upper bound of arc A
which is the sum of the unary arc score of A, i.e., PM(A,A) and the maximum binary arc scores
between A and the arcs of each position as defined in formula (4.6). The set of arcs selected in
formula (4.4) for each input position is called the “maximum well-covered binary arc set” and
does not necessarily constitute a tree and is not necessarily consistent with the arcs selected in
formula (4.6).

The following shows the example of the upper bound computation of the dependency forest in
Fig.4.20. The input position of N1, N2, N3 and N4 are 0, 1, 2 and 3, respectively. At first, an

example of the computation of ub_arc_score for arc al and a2 is shown as follows:

ub_arc_score(al,0) = PM(1,1) =10

ub_arc_score(al, 1) = 0.5 x max(PM(

)

1,3),PM(1,4)) = 0.5 x max(0,0) =0
ub_arc_score(al, 2) = 0.5 x max(PM(1,5),PM(1,6)) = 0.5 x max(0,0)
ub_arc_score(al,4) = 0.5 x max(PM(1,7),PM(1,8)) = 0.5 x max(10,5) =5

(al,0) =

(al,1) = PM
(al,2) = PM
(al,4) =

(a2,0) = PM(2,2) = 15

(a2,1) =

(a2,2) =

(a2,4) =

3
)

ub_arc_score
ub_arc_score(a2,1) = 0.5 x max(PM(2, 3),PM(2,4)) = 0.5 x max(0,5) = 2.5
ub_arc_score(a2,2) = 0.5 x max(PM(2,5),PM(2,6)) = 0.5 x max(0,0) =0

ub_arc_score(a2,4) = 0.5 x max(PM(2,7),PM(2,8)) = 0.5 x max(5,20) = 10

The ubs_arc is the sum total of ub_arc_score values, i.e., ubs_arc(al) = 15 and ubs_arc(a2) =
27.5. Arc a2 is selected as a member of the maximum well-covered binary arc set for DG and

PM, because the arc which has the maximum ubs_arc scores at each position is selected as the

116

upper bound arc at the position as described above. Similarly, the upper bound arcs are selected
and the maximum well-covered binary arc set is computed as {a2, a4, a5, a8} that has the upper
bound score 85 (27.5+17.5+20+20).

(4) Branch Operation

The branch operation is basically equivalent to that of the unary model as described in 4.3.2.
An inconsistent arc pair (arc;,arc;), i.e., CM(i,j)# O, is searched from the maximum well-
covered binary arc set for graph branch operation. If no inconsistent arc pair is found, the
maximum well-covered binary arc set is one of the optimum solutions for the partial problem.
In the case of the algorithm for searching for all optimum solutions, branch operation continues

until all partial problems have proved to have no optimum solutions as described in (6) below.

(5) Selection of Partial-problem from Active Partial-problems

This process is the same as that of the unary model, i.e., the best bound search is employed.

(6) Computing All Optimum Solutions

When a new optimum solution for a partial-problem is obtained, the optimum solution is
recorded in the incumbent solution list and further branch operation is performed until the upper
bounds of the partial-problems become less than the incumbent value. Arcs to be removed from
the dependency graph of the current partial-problem, i.e., the candidates for branch operation,
are computed by picking up the rival arcs of the arcs in the obtained optimum solution. The
rival arc of arc A of the binary model is an arc whose position is equal to that of arc A and the
upper bound score is equal to or more than that of arc A. When all partial problems are proved

to have upper bound scores less than the incumbent value, the search process terminates.

4.7 Concluding Remarks for Chapter 4

This section has described the graph branch algorithm for obtaining the optimum solution for
a dependency forest used in the preference dependency grammar. In addition to the basic model,
i.e., the unary model, the graph branch algorithm for the binary model is introduced for treating
the arc co-occurrence preference.

The well-formedness dependency tree constraints are represented by the constraint matrix of
the dependency forest, which has flexible and precise description ability so that controlled non-
projectivity is available in PDG framework. The graph branch algorithm assures the search
for the optimum trees with arbitrary arc co-occurrence constraints, including the single valence
occupation constraint which has not been treated in DP-based algorithms so far. The dependency
forest has wider applicability compared with the semantic dependency graph because it can
handle whole morphological ambiguity caused by homonyms and word boundary divisions. The
experimental result shows the averages of EPN-T, EPN-L and EPN-F for English test sentences
are 3.0, 1.67 and 1.43, respectively. This suggests the graph branch algorithm for PDG would
show a performance comparable to the algorithm for the semantic dependency graph applied in

real-world applications.

117

Chapter 5

Scoring

Various kinds of preference knowledge exists at various analysis levels as shown in Fig.2.2. The
scoring process gives preference scores to the packed shared data structures prescribed by the
generation and constraint knowledge in PDG. The scoring process determines the output, i.e., the
accuracy of the NLA system under the given generation and constraint knowledge. The resources
of preference knowledge, the integration method and the target application domain (sentences)
should be mutually related with respect to the performance of the scoring process of PDG-based
systems. Investigating the way to construct the best scoring method will require a great deal
of research. The purpose of this chapter is to show the basis of the scoring framework with
respect to the dependency forest and the optimum solution described in the previous chapters,
and to show the first step of the scoring method of PDG which integrates some kind of multilevel

preference knowledge enabling the experiment of the PDG framework.

5.1 Preference Knowledge and Score Integration

5.1.1 Principle of Score Integration
In designing the scoring method of PDG, the following issues are taken into consideration.

(a) Corpus oriented data are used as the resources of the preference knowledge.
(b) Different kinds of preference knowledge obtained from different corpora can be the re-
sources of the preference knowledge. (knowledge resource robustness)

(c) Utilize learning methods to optimize the scoring parameters.

(a) seems to be the only and the best way to get a large amount and coverage of preference
knowledge, because the hand coding of preference scores is intractable. The combination of
human insight (inductive ability) and the computational power of computers will be a good
approach for large-scale knowledge development. This requires the combination of the rule-based
(human-based) and the statistics-based (computer-based) methods (Su et al., 1996; Riezler et
al., 2002). (b) is a requirement for the large-scale knowledge development. It seems to be very

difficult to prepare the entire spectrum of preference knowledge data for one very large corpus,

118

if it requires human processing. Robustness for the preference knowledge resources is one of the
desirable features for NLA systems. (c) is necessary for obtaining the optimum NLA system.
Recently, a great deal of research on learning methods for natural language sentence analysis has
been done for both generative (Eisner, 1996b; Collins, 1999; Charniak, 2000) and discriminative
models (Riezler et al., 2002; Miyao and Tsujii, 2002; Clark and Curran, 2003; Clark and Curran,
2004; Taskar et al., 2004; McDonald et al., 2005). These research results should be considered
and incorporated in the scoring process of PDG. As described above, the target of this research
is to show the first framework for integrating multilevel preference knowledge. Introduction of

the learning techniques is an important subject for future work.

5.1.2 Basis of Score Integration

In order to integrate the preference knowledge, it should be converted into some numeric
values, i.e., preference scores. The descriptive power of the preference knowledge is prescribed
by the descriptive ability of the interpretation description scheme and the optimum solution
search method. For example, WPP bigram preference score can be represented as arc scores
in the WPP trellis and the optimum WPP sequence is computed by the Viterbi algorithm*!.
WPP dependency preference score can be represented as arc scores in the dependency graph
and the optimum dependency tree is computed by some algorithms as described in the previous
chapter. PDG adopts the dependency forest as the basis of the preference score integration. All
preference scores obtained from preference knowledge at each analysis level are integrated into
the preference scores in the dependency forest by use of the interpretation mappings among the
WPP trellis, the phrase structure forest and and the dependency forest. The descriptive power
of the preference knowledge is prescribed by the descriptive ability of the dependency forest and
the graph branch algorithm in PDG.

The dependency graph of the dependency forest can register the “unary node scores” and the
“unary arc scores”. The unary node scores can be represented by the unary arc scores because
each arc has one dependency node and the top node has a constant score. As described in the
previous chapter, the preference matrix PM registers the “binary arc scores” as well as the unary
arc scores for a dependency graph. PM can represent the “binary node scores” because they can
be represented by the corresponding binary arc scores. These four scores, i.e., the unary node
score, the unary arc score, the binary node score and the binary arc score, constitute the basis
for the scoring for all kinds of preference knowledge and are integrated into the scores of PM.
Of course, PM has limitation in its representation ability, for example, it cannot express higher
order preference knowledges based on more than three elements, such as sequences with more
than three nodes and co-occurrences of three or more arcs (dependencies). PM can represent
the preference of the phrase structure rules with less than four constituents because they have

less than three arcs. Phrase structure preference for CFG in the Chomsky normal form can be

*1 WPP trigram preference score cannot be treated in this method.

119

handled by unary model because each PDG rule has only one dependency arc. As described
in Chapter 1, majority of current dependency analysis systems adopts the edge factored model
which corresponds to the unary model of PDG. Higher order preference scores should be available
by introducing higher order preference matrix in exchange for higher computational expenses.
This is beyond the scope of this thesis.

The value of the PM is defined by two major functions, i.e., unary_score and binary_score

functions, as follows:

PM(ai,a;) = { E—luila;r)}-]lg)sifl(;rrey(_?c)ore(ai,aj) 87&_])])

T (0<7<1) is a parameter called the “unary/binary score distribution ratio” or simply “UB
ratio” that is used for adjusting the balance between the unary score and the binary score. The
unary and binary scores are described in the succeeding sections.

The preference knowledge about the relation concerning more than three nodes or three arcs,
for example N-gram sequence where N > 3 and phrase structure rule with more than or equal

to four constituents, are outside the scope of the current PDG scoring processing.

5.2 Scoring Function and Scaling Coefficient

The majority of the preference knowledge obtained from corpora is represented as the frequen-
cies of the linguistic elements or relations, such as word, WPP, WPP sequence, phrase structures
and dependencies, in combination with various kinds of attributes of the elements. The frequency
data should be converted into preference scores, which are the basis of the integration opera-
tion. These conversions are performed by heuristic functions called “scoring functions.” Scoring
functions apply frequency normalization because PDG assumes that various kinds of corpora are
used as the resources of the preference knowledge as described above. “logave” is the basic form
of the scoring functions for an element E.

log((X + 1) + AddX)
log(AveX + 1)

basic_score(E) = logave(X, AddX, AveX) = BaseScore-

where X is the frequency of the element E, AddX is an extra frequency for E called “frequency

> and AveX is the average frequency of the

compensation term” or “frequency compensation,’
data type to which E belongs. BaseScore is a standard score assigned to the average frequencies
and is set to 1000 currently. For example, if the word ’theorem’ has 99 frequency and the
average word frequency is 9 in a corpus, the basic score of 'theorem’ is 2000 with no frequency
compensation as follows:

log(99 + 1)

basic_score(theorem) = logave(99,0,9) = 1000 - log(0 + 1)

= 2000

The frequency in logave is biased by 1 so that zero frequency element generates the zero
score. In the case that X is equal to AveX, the basic score is BaseScore(=1000) with no

frequency compensation. This is introduced to normalize the frequency. “log” function is applied

120

for leveling the frequencies. There is no theoretical reason for this leveling function but the
scoring method without this leveling function leads to a poor result according to the result of
the preliminary experiments®. The frequency compensation is used for, for example, adjusting
the frequency of compounds. The details are described below.

PDG introduces another type of functions called “scaling functions,” which generate the “scal-
ing coefficients” for an element E. When scaling function ’f’ is defined for E, the total score of

an element E is the product of the scoring function and the scaling function of E as follows:
score(E) = f(E)-basic_score(E)

Scaling functions are also heuristic functions for representing the distribution or importance of
E in the scoring process. Examples are shown below.

There is no theoretical or experimental grounding for the correctness or the optimality of
the above scoring function and the scaling function that are determined by some preliminary

experiments.

5.3 Unary Score Formula

The “unary score” (UnaryScore) is a combination of the unary node score (UnaryNodeScore)

and the unary arc score (UnaryArcScore) as follows:

a-UnaryNodeScore + (1 — «)-UnaryArcScore
2

UnaryScore =

where « is the unary node/arc score distribution ratio (UNA ratio) satisfying 0<a<1 .

5.3.1 Unary Node Score Formula

The current implementation of the unary node score formula contains only one preference score
calculated from the WPP frequencies in a corpus. The basic formula is very simple but it has to
be extended with a compensation term in order to treat compound words.

The unary node score for WPP node N is calculated by the following formula.

unary-node_score(N) = logave(freq(N), un_comp(N), AveWPPF)
log(freq(N) + 1 4+ un_comp(N))

=B .
aseSceore log(AveWDPPF + 1)

where AveWPPF is the average WPP frequency in the corpus*®. The un_comp(N) (unary node

compensation) is the frequency compensation term for compound words defined as follows:

*2 Introduction of statistical distribution model to the basic scoring function may lead to better results.
*3 This is the average occurrence number for the WPPs found in the corpus

121

un_comp(N) = { element_freq(N) + AveWPPF-CW C.2"rdlen(N)—1 (N ig compound word)
0 (Otherwise)

where element_freq(NV) is the sum total of the frequencies of the words in N. CWC (compound
word coefficient) is a parameter for adjusting the preference of compound words against non-
compound words. wrdlen(N) is a word number of N.

In general, compound words have very small frequency compared with their constituent words
but should have higher preferences. The first term, i.e., element_freq(/N), assures that the com-
pound word has higher frequency and the second term gives extra frequency for the compound

that has more than two constituents. The current setting of CWC is 3.

5.3.2 Unary Arc Score Formula

The basic resources of the unary arc scores are the dependency frequencies, i.e., the frequencies
of the dependency pieces, in a corpus in the current implementation. The unary arc score of arc

A is calculated by the following formula.
unary_arc_score(A) = basic_arc_score(A) x distance_ratio(A) x POS_ratio(A)

basic_arc_score gives the basic unary arc score for A. distance_ratio and POS_ratio are scal-
ing coefficients for the distance between the dependant node and the governor node and the

compensation based on the type of the arc, respectively.

(1) basic_arc_score(A)
basic_arc_score calculates the basic arc score for arc A based on the dependency piece frequen-
cies in a corpus. This frequency is called the asis arc frequency**. In addition to this standard

arc frequency, three additional frequencies are used for the resources of the preference score.

(a) Asis arc frequency(ASIS_AF) : Frequency of the dependency piece

(b) Generalized arc frequency (GEND_AF) : Frequency of the generalized dependency piece
)
)

(c
(d) Generalized PP frequency(GEND_PF) : Frequency of the generalized PP-attachment fre-

Asis PP frequency(ASIS_PF) : Frequency of the PP-attachment frequency

quency

(a) is a basic arc frequency, i.e., the frequency of a dependency piece. A dependency piece
consists of three elements, i.e., the dependant node, the governor node and the arc, and is a
more complicated data structure than a simple node. This causes the data sparseness problem.
In order to manage this problem, a backoff method based on (b) is introduced. The abstract
dependency piece is obtained by generalizing the POSs of the dependant node and the governor
node in the dependency piece.® The generalization of the POS is done by simply taking the

*4 Expression “arc frequency” is used instead of “dependency piece frequency”
*5 Various kinds of semantic abstraction and word sense disambiguation methods (Hearst and Schutze, 1993;
Resnik, 1993; Resnik, 1995a; Resnik, 1995b; Hirakawa et al., 1996; McCarthy, 1997; Seki et al., 1997;

122

first character of the POS as follows:

Dependency piece : [time/nx] SiLN [fly /vt]
Generalized dependency piece: [time/n] SiLN [fly /v]

(c) and (d) are introduced for incorporating PP-attachment preference which cannot be rep-
resented correctly by (a) and (b). The following shows an example of PP-attachment for “see

girl with telescope.”

(el) [see/vt] ¢22 [with/pre] ¢— [telescope/n]

(2) [girl/n] <22 [with/pre] <= [telescope/n]

The arc frequencies of the arcs in (el) and (e2) cannot capture the competition between the
PP-attachments “see with telescope” and “girl with telescope” because “[see/vt] ¢—= [with/pre]”
and “[girl/n] <22 [with/pre]” are independent of “[with/pre] ¢<— [telescope/n].” This problem
is solved by reducing the preposition node into an arc label as follows:

(e3) [see/vt] Jop-with [telescope/n]

(e4) [girl/n] Lppwith [telescope/n]

This method is not adopted in the current implementation of the PDG system because the
output of the data structure is the same as that of the existing NLA system for evaluation as
described in the section below. Instead, (c¢) and (d) are introduced to solve this problem.

The asis PP frequency(ASIS_PF) in (c) corresponds to the frequency of the relation such as
(e3) or (e4). Generalized PP frequency (GEND_PF) is the frequency of the generalized relation
introduced to manage the data sparseness problem. The generalized relation has the generalized
POSs and arc name as shown in the following example, the generalized relation corresponding
to (e3).

(e5) [see/v] &t [telescope/n]
The basic arc score is defined as follows:
basic_arc_score(A) = p-asis_arc_score(A) + (1 — p)-generalized_arc_score(A)

asis_arc_score and generalized_arc_score represent the arc scores computed from the asis arc fre-
quencies and the generalized arc frequencies, respectively. p is called the asis/generalized arc dis-
tribution ratio which is defined later in this section. First, asis_arc_score and generalized_arc_score

are described.

[asis_arc_score(A)]

asis_arc_score(A) = logave(asis_max_freq(A4), 0, AveASIS_AF)
log(asis_max_freq(A) + 1)

= BaseScore = TAveASIS AF +1)

Kimura and Hirakawa, 2000) are also candidates for the backoff method in future study.

123

max{freq(Rel, I, J)[ICDN, JCGN} + PPC-asis_pf(A)

(DN and/or GN of A are/is compound word(s))
asis_af(A) + PPC-asis_pf(A)

(Otherwise)

asis_max_freq(A4) =

where Rel,DN and GN is the relation, dependency node and the governor node of arc A.
freq(Rel,DN,GN) is the frequency of the dependency piece. asis_af and asis_pf are the frequencies
of (a) and (c) above, respectively. PPC(Prepositional Phrase Coefficient) is the coefficient for
adjusting the effect of the PP-attachment frequency described above, which is currently set to

5. AveASIS_AF is the average of the asis arc frequency in the corpus.

[generalized_arc_score(A)]

The generalized maximum frequency of arc A is defined as follows:

generalized_arc_score(A) = logave(gend_max_freq(A), 0, AveGEND_AF)
log(gend_-max_freq(A4) + 1)

=B .
aseScore =) TAveGEND AF + 1)

max{freq(GEND_Rel, I, J) ICGEND_DN, JCGEND_GN} + PPC-gend_pf(A4)
gend_max_freq(A4) = (GEND_DN and/or GEND_GN of A are/is compound word(s))
gend_af(A) + PPC-gend_pf(A) (Otherwise)
where GEND_Rel, GEND_DN and GEND_GN is the generalized relation, dependency node and
the governor node of arc A. freq(GEND_Rel, GEND_DN,GEND_GN) is the frequency of the
generalized dependency piece. gend_af and gend_pf are the frequencies of (b) and (d) above,

respectively. AveGEND_AF is the average of the generalized arc frequency in the corpus.

[Asis/generalized arc distribution ratio u]
In the current implementation, the asis/generalized arc distribution ratio is defined such that
the influence of the asis frequency and the influence of the generalized frequency become the

same in total as follows:

_ ASIS_KIND_NUM
H = ASIS.KIND_.NUM + GEND_KIND_NUM

where ASIS_.KIND_NUM and GEND_KIND_NUM are the cardinal numbers of the set of asis

arcs and the set of generalized arcs in the corpus, respectively.

(2) Scaling coefficient: distance_ratio(A)

The distance ratio compensates the arc score based on the distance between the dependant
node and the governor node of an arc. Collins (1996) reported that 95.6% and 99.0% of the
words have dependant words within word distance 5 and 10, respectively. Distance parameters
are utilized by many NLA systems (Eisner, 1996b; Collins, 1999; McDonald et al., 2005).

Let the same(X,Y) mean that arc X and Y have the same relation, the same dependant node

and the same governor node and let distance(A) mean the distance between the dependant node

124

and the governor node of arc A. The following is the distance ratio formula in the current

implementation of the PDG system.
distance_ratio(A) = 1 4+ K-log(distance_degree(A))

where K is a parameter for adjusting the degree of the distance ratio. The current setting of K
is K= %.*6 Basically, distance_degree is a ratio of the arc frequency with the distance D
against the average distance of the arc A.

distance_degree(A) = logave(df(A), dfc(A), average_df(A))

where df(A) is the frequency of the arc X such that same(X,A), distance(X)=distance(A).

dfc is the distance frequency compensation defined as follows:

[1 (df(4)=0)
dfe(4) = { 0 (Otherwise)
average_df(A) is the average frequency of the arc with respect to the node distance defined as
follows:
1

DS| Z freq(4, D)

DeDS
where DS = {D;|D; = distance(A;),same(A4;, A), A;€CorpusArcs}. freq(A,D) is the frequency
of the arc X such that same(X,A),distance(X)=D.

average_df(A) =

(3) Scaling coefficient: POS_ratio(A)
The arc type ratio POS_ratio(A4) compensates the arc score based on the type of the arc. The
arc type is mainly characterized by the POS of the dependant node of the arc.

0.01 (the POS of the dependant of A = det)
POS_ratio(A) =< 0.2 (the dependant of A = [be] — v and the relation of A = subj)
1 (Otherwise)

The first compensation is introduced to reduce the influence of the score of the determiner
because determiners have high frequencies or scores but are relatively unimportant for determin-
ing the overall structures. The second compensation is introduced to adjust the score balance of
the two usages of be-verb,i.e., copula and present progressive interpretation as contained in the

following sentence.
My hobby is watching birds.

These two compensations are encoded by hand through a simple observation of the analysis
results. The current implementation of POS_ratio(A) seems to be poor. Various compensations
based on the arc types should be introduced widely and their parameters should be optimized

by an appropriate learning method in future.

*6 If the distance_degree(A) is 10, the distance_ratio is 1.5. This means the arc score is multiplied by 1.5.

125

5.4 Binary Score Formula

The binary score (BinaryScore) is a combination of the binary node score (BinaryNodeScore)

and the binary arc score (BinaryArcScore) as follows:

B-BinaryNodeScore + (1 — 3)-BinaryArcScore
2

where £ is the binary node/arc score distribution ratio (BNA ratio) 0<8<1.

BinaryScore =

5.4.1 Binary Node Score Formula

The current implementation of the binary node score formula contains a preference score based
on the WPP bigram frequencies in a corpus. Generalized WPP bigram frequencies are introduced
as in the case of unary node score formula. The binary node score for an WPP node N1 and

N2 is calculated by the following formula:
binary node_score(N1, N2) = basic_binary node_score(N1, N2)

No scaling function is applied in the current implementation. basic_binary_node_score calcu-
lates the basic binary node score for node N based on the following bigram frequencies in a

corpus.

(a) GWPP_BGM frequency(WPP_BF) : Frequency of the generalized WPP bigram
ex. [time/nx] [fly/vt] (WPP bigram) — [time/n] [fly/v] (GWPP bigram)

(b) POS_BGM frequency(POS_BF) : Frequency of the POS bigram
ex. [time/nx] [fly/vt] (WPP bigram) — [nx] [vt] (POS bigram)

The basic binary node score is defined as follows:

basic_binary_node_score(N1, N2)
= x-GWPP_BGM_score(N1,N2) + (1 — x)-POS_.BGM_score(N1, N2)

GWPP_BGM _score and POS_BGM _score represent the node scores computed from the GWPP
bigram frequencies and the POS bigram frequencies, respectively. x is called the bigram score
distribution ratio (BGM ratio) which is defined later in this section. First, GWPP_BGM_score
and POS_BGM _score are described.

[GWPP_BGM _score(N1,N2)]
The GWPP_BGM._score(N1,N2) is defined as follows:

GWPP_BGM_score(N1, N2)

= logave(GWPPBGM _freq(N1, N2), GWPPBGM _comp(N1, N2), AveGWPP_BF)

log(GWPPBGM._freq(N1, N2) + 1+ GWPPBGM_comp(N1, N2))
log(AveGWPP_BF + 1)

= BaseScore-

126

AveGWPP_BF is the average of the generalized WPP bigram frequency in the corpus. GW-
PPBGM_freq (generalized WPP bigram compensation) is the frequency compensation term for

compound words defined as follows:
GWPPBGM_comp(N1,N2) = CBC-AveGWPP_BF(wrdnum(N1) + wrdnum(N2) — 2)

where CBC(Compound Bigram Coefficient) is the coefficient for adjusting the degree of the

compound word frequency compensation, which is currently set to 3.

[POS_-BGM _score(N1,N2)]
The POS_.BGM_score(N1,N2) is defined as follows:

POS_BGM._score(N1, N2)

= logave(POSPBGM.freq(N1, N2), POSBGM_comp(N1, N2), AvePOS_BF)

log(POSBGM_freq(N1,N2) + 1+ POSPBGM_comp(N1,N2))
log(AvePOS_BF + 1)

= BaseScore-

AvePOS_BF is the average of the POS bigram frequency in the corpus. POSBGM_freq (POS
bigram compensation) is the frequency compensation term for compound words defined as fol-

lows:
POSBGM_comp(N1,N2) = CBC-AvePOS_BF:(wrdnum(N1) + wrdnum(N2) — 2)

where CBC is the coefficient for adjusting the degree of the compound word frequency compen-

sation, which is currently set to 3.

[Bigram score distribution ratio x]
In the current implementation, the bigram distribution ratio is defined such that the influence
of the generalized WPP bigram frequency and the influence of the POS bigram frequency become

the same in total as follows:

_ GWPP_BGM_KIND_NUM
- GWPP_BGM_KIND_NUM + POS_BGM_KIND_NUM

where GWPP_BGM_KIND_NUM and POS_.BGM_KIND_NUM are the cardinal numbers of the
set of generalized WPP bigrams and the set of POS bigrams in the corpus, respectively.

X

5.4.2 Binary Arc Score Formula

The binary arc score provides the detailed preference knowledge with wider context, which
may compete with the unary arc preference. For example, “eat gasoline” has low preference
because of the semantic preference that “gasoline” cannot be eaten. However, this is not true
in the sentence “This car eats gasoline.” The preference score for “eat gasoline” should be
changed with respect to the subject of “eat.” This kind of preference knowledge is represented

by the binary arc co-occurrence preference score. In addition to the generalized dependency

127

piece introduced in Section 5.3.2, word dependency piece is introduced to get more abstract
arc frequency in consideration of lower frequencies of binary arcs compared to those of unary
arcs. The word dependency piece is obtained by omitting the POS and dependency relation in

a dependency piece as follows:

Dependency piece : [time/nx] ubi, [fly /vt]
Word dependency piece : [time] — [fly]

There can be various definitions for binary arc co-occurence. For example, the “the two arcs
co-occuring within a sentence” is one of the possible definitions. Since the purpose of the arc co-
occurence score is to measure the plausibility of a sentence interpretation, it should reflect some
grammatical or semantic relation as much as possible. From this consideration, two connected
arcs are counted as co-occured arcs in current implementation. There are two types of connection
relations, i.e., parent relation and sibling relation. Arcs in parent relation have a common shared
node which is a dependant node of one arc and is a governor node of another arc. Arcs in
sibling relation have a common shared governor node. Sentence “This car eats gasoline” shows

an example of sibling arcs connected via the node corresponding to “eat” as follows;
Sibling arcs : [car/n] Subj, [eat/vti], [gasoline/n] obi, [eat/vti] *7

The generalized dependency arcs (pieces) and the word dependency arcs (pieces) for these co-

occured arecs are as follows;

Generalized sibling arcs : [car/n] ubi, [eat/v], [gasoline/n] obi, [eat/ V]

Word dependency sibling arcs : [car] — [eat], [gasoline] — [eat]

The binary arc score for two arcs A1 and A2 is calculated by the following formula:
binary_arc_score(A1l, A2) = basic_binary_arc_score(Al, A2)

No scaling function is applied in the current implementation. basic_binary_arc_score calculates
the basic binary arc score for arc A1 and A2 based on the following arc co-occurence frequencies

in a corpus.

(a) CGA frequency(CGAF) : Frequency of the connected generalized arcs
CGAF(A1,A2) is sum-total of the P.CGAF(A1,A2) and S_.CGAF(A1,A2).*8
P_CGAF : Frequency of the connected generalized arcs in parent relation
S_CGAF : Frequency of the connected generalized arcs in sibling relation
(b) CWA frequency(CWAF) : Frequency of the connected word arcs
CWAF(A1,A2) is sum-total of the P.CWAF(A1,A2) and S.CWAF(A1,A2).
P_CWAF : Frequency of the connected word arcs in parent relation

S_CGAF : Frequency of the connected word arcs in sibling relation

*T POS “vti” specifies the verb which can either be intransitive or transitive.
*8 P_.CGAF(A1,A2) and S.CGAF(A1,A2) are 0 if the two arcs are not in parent relation and in sibling relation,
respectively.

128

If Al and A2 are in neither parent relation nor sibling relation, CGAF(A1,A2) and
CWAF(A1,A2) have 0 value according to the definition.

The basic binary arc score is defined as follows:

basic_binary_arc_score(Al, A2) = ¢-CGA_score(Al, A2) + (1 — ¢))-CWA _score(Al, A2)

CGA _score and CWA _score represent the binary arc scores computed from the CGA frequencies
and the CWA frequencies, respectively.) is called the connected arc score distribution ratio (CAS

ratio) which is defined later in this section. First, CGA _score and CWA _score are described.

[CGA _score(A1,A2)]
The CGA_score(A1,A2) is defined as follows:
CGA _score(Al, A2) = logave(CGAF (A1, A2), CGA_comp(Al, A2), Ave_.CGAF)

log(CGAF (A1, A2) + 1+ CGA_comp(Al, A2))
log(Ave_.CGAF + 1)

= BaseScore-

Ave_CGAF is the average of the connected generalized arc frequency in the corpus. CGA_comp
(connected generalized arc compensation) is the frequency compensation term for compound

words defined as follows:
CGA_comp(Al, A2) = CCAC-Ave_ CGAF-(wrdnum(A1l) + wrdnum(A2) — 4)

where wrdnum(A) is the total number of words of the dependant node and the govoner node in
arc A. CCAC(Compound Connected Arc Coefficient) is the coefficient for adjusting the degree

of the connected frequency compensation, which is currently set to 3.

[CWA _score(A1,A2)]
The CWA _score(A1,A2) is defined as follows:

CWA _score(Al, A2) = logave(CWAF (A1, A2), CWA _comp(Al, A2), Ave_.CWAF)
log(CWAF (A1, A2) + 1 + CWA _comp(A1, A2))

aseScore log(Ave_CWAF + 1)

Ave_CWAF is the average of the connected word arc frequency in the corpus. CWA _comp
(connected word arc compensation) is the frequency compensation term for compound words

defined as follows:
CWA _comp(A1l, A2) = CCAC-Ave_.CWAF:(wrdnum(A1l) + wrdnum(A2) — 4)

where wrdnum(A) is the total number of words of the dependant node and the govoner node in
arc A. CCAC(Compound Connected Arc Coefficient) is the coefficient for adjusting the degree

of the connected frequency compensation, which is currently set to 3.

[Connected arc score distribution ratio]
In the current implementation, the connected arc score distribution ratio is defined such that

the influence of the connected generalized arc frequency and the influence of the connected word

129

arc frequency become the same in total as follows:

CGA_KIND_NUM
CGA_KIND_NUM + CWA_KIND_NUM

where CGA_KIND_NUM and CWA_KIND_NUM are the cardinal numbers of the set of connected

generalized arcs and the set of connected word arcs in the corpus, respectively.

1/}:

131

Chapter 6

Evaluation

PDG is a new framework using multiple kinds of packed shared data structures to utilize
multilevel preference and constraint knowledge. Traditional evaluation methods are not enough
for evaluating some system abilities which are targeted by PDG. This chapter first discuss how
to evaluate the performance of PDG-based systems, then shows the experiment for investigating
the possibilities of the PDG framework.

6.1 Evaluation Measures for Dependency-graph-based

Systems

6.1.1 Traditional Evaluation Measures and Points in the PDG Evalu-

ation

Various methods are proposed for evaluating natural language analysis systems (Carroll et
al., 1998). The method proposed by GEIG computes recall and precision ratio based on phrase
boundaries obtained from phrase structure trees (Grishman et al., 1992). This method has
a merit in that it can be applicable to various parsing systems, but has a problem in that
sometimes it produces evaluation results format variance to human intuition. Sampson proposed
an evaluation method reflecting the grammar category information in phrase structure trees and
claims that the evaluation results of this method are closer to human ones compared with the
boundary-based method (Sampson, 2000). However, Sampson’s method has lower applicability
since it requires compatibility in grammar categories of the parsing systems in order to compare.
In general, every parsing system has its own phrase structure tree and grammar category system
depending on its analysis grammar. From this point of view, a new evaluation schema called
relational schema is adopted in several evaluation methods (Lin, 1998; Srinivas, 2000; Briscoe et
al., 2002).

The relational schema measures the accuracy of syntactic or logical dependency relations be-
tween words obtained from phrase structure trees. The extraction of word relation from phrase
structure tree is not straightforward and no standard method based on relational schema has

been established so far.

132

As shown above, PDG has both phrase structure trees and dependency trees in the sentence
analysis process. Therefore, both phrase-structure-tree-based and dependency-structure-based
approaches are applicable to PDG-based systems in principle. Considering the trend toward
relational schema in sentence evaluation frameworks and the fact that PDG’s final output is
dependency structures, a dependency-structure-based approach is adopted for evaluating PDG-
based systems.

Ratio of correct dependencies in output dependency structures / trees is used for evaluating
dependency analysis systems (Ozeki, 1998; Kudo and Matsumoto, 2005; Harper et al., 1999).
This thesis adopts this kind of measures named “arc precision ratio” (APR) and “word depen-
dency precision ratio” (WDPR) as comprehensive evaluation measures for total analysis ability of
PDG-based systems. In addition to the comprehensive evaluation measures, this thesis proposes
two different kinds of measures, i.e., “possibly correct sentence ratio” (PCSR) for evaluating the
system ability to generate the correct hypothesis for the input sentence, and “arc disambiguation
precision ratio” (ADPR) for evaluating the system’s disambiguation ability.

This thesis focuses on the dependency structure as evaluation target because of the size of
preparable data amount of the correct analysis results and preference knowledge as described
above. However, evaluation methods are applicable to all dependency structures of the single
dependency model. In addition to the comprehensive evaluation measure, this thesis proposes
two more measures for evaluating hypothesis generation ability and disambiguation ability since
the enhancement of these abilities in natural language analysis systems is a principal target of
PDG.

6.1.2 Comprehensive Analysis Ability

This section describes the arc precision ratio (APR) and the arc disambiguation precision ratio

(ADPR) which are adopted as comprehensive evaluation measures for PDG.

[Arc Precision Ratio]

APR shows the accuracy of output dependency trees as defined below.

Number of correct arcs in ODT

APR =
i Number of all arcs in ODT

ODT is a set of arcs in the optimum dependency trees for the test sentences. The comprehensive
analysis ability of a system is measured by APR ranging from 0 to 1.

Fig.6.1 shows the correct dependency tree C'DT and the optimum dependency trees
ODT,,0DT, for the example sentence “Time flies like an arrow”*!. The APR for this example
is 0.6 since there are six correct arcs, i.e., oal - oab and 0a9, exist in ten arcs contained in O DT}
and ODT>.

*1 Scores are not shown in Fig.6.1. The output trees in Fig.6.1 are not the solutions for the DF shown in
Fig.3.4

133

[Word Dependency Precision Ratio]

It is difficult to apply APR to various sentence analysis systems since it requires system-
dependent information such as WPP and dependency relation. To avoid this problem, this thesis
adopts another measure called “word dependency precision ratio” (WDPR) as a comprehensive
evaluation measure for dependency trees with wide applicability. WDPR is the same as APR
except that each output arc is judged correct if it has the same dependent and governor words as
its corresponding correct arc. WDPR is obtained from the computation algorithm for obtaining
APR by simply neglecting the difference of POS and dependency relation name in matching
between a correct arc and an output arc. WDPR for the previous example is 8/10 = 0.8 since

two more output arcs, oab and o0al0, are judged correct in addition to the correct arcs for APR.

6.1.3 Hypothesis Generation and Disambiguation Ability

[Possibly Correct Sentence Ratio]

PDG has the following three functionalities from the viewpoint of the treatment of hypothe-

ses*2.

(a) Generation of hypotheses for an input sentence (hypothesis generation)
(b) Rejection of hypotheses by constraint knowledge (hypothesis rejection)
(c) Extraction of optimum solutions based on the scoring by preference knowledge (hypothesis

selection)

Correct Dependency Tree:

CDT = { arc(sub, [time]l-n-0, [flies]-v-1)}, /% cal */
arc (top, [Tlies]-v-1), [1) /% ca2 */,
arc (vpp, [likel-pre-2, [flies]-v-1)), /* ca3 x/
arc (pre, [arrow]-n-4, [likel-pre-2), /% cad */
arc (det, [an]-det-3, [arrow]-n-4) } /% cab %/

Output Dependency Trees:

0DT, ={ arc(sub, [time]-n-0, [flies]-v-1)}, /% oal */
arc (top, [flies]-v-1), [1), /% 0a2 */
arc (vpp, [likel-pre-2, [flies]-v-1)), /% o0a3 %/
arc (pre, [arrow]-n-4, [likel-pre-2), /* oad %/
arc (det, [an]-det-3, [arrow]-n-4) } /% o0a5 %/

0DT,= { arc(nc, [time]l-n-0, [flies]-n-1), /% oab */
arc (sub, [flies]-n-1, [like]-v-2), /% oal */
arc (top, [likel-v-2), [D), /% 0a8 */

arc (det, [an]-det-3, [arrow]-n-4), /% 0a% x/
arc (obj, [arrow]l-n-4, [like]l-v-2) } /% o0al0 %/

Fig.6.1 CDT and ODTs for the example sentence

*2 hypotheses here means possible interpretations inherently contained in a sentence

134

The hypothesis generation is successful if a sentence analysis system can generate a correct inter-
pretation or correct hypothesis as a candidate internally. The hypothesis rejection is successful
if a system rejects incorrect hypotheses generated by the hypothesis generation process. The hy-
pothesis selection is successful if a system selects the correct hypothesis from possible hypotheses
irrejectable by the constraint knowledge. In PDG, dependency forest is the result of process
(a) and (b) in total. Therefore, comprehensive hypothesis generation ability can be measured
by checking the existence of the correct dependency tree in the obtained dependency forest. A
sentence whose dependency forest contains the correct answer is called a possibly correct sen-
tence, and the number ratio of the possibly correct sentences to those of the whole sentences is
called the “possibly correct sentence ratio” (PCSR). PCSR shows the comprehensive hypothesis
generation ability of a PDG-based system. On the other hand, the hypothesis selection ability
is basically measured by checking the correct arcs in the dependency forest. The next section

describes a measure for the hypothesis selection ability.

[Arc Disambiguation Precision Ratio]
ADPR measures the disambiguation ability of a PDG-based system. ADPR should reflect

the complexity of the disambiguation task. Choosing a correct answer from two candidates is

position(a) : Start Position of Arc a

arc_num(a,S) : Number of arc s in arc collection S

arc_num_at_position(p,S) : Number of arcs in S, that has the
arc start position p

/% step0: Initialize %/
MaxArcScore :=0: /% Max arc score (i of all arc candidates) %/
ArcScore = 0: /% Arc Score (# of arcs) */

/% stepl: Get one arc in CDT and calculate score for it %/
foreach onearc in GDT |

{

/% step2: Correct arc not in DG -> neglect it %/

if(onearc &€ DG) { next; }

/% step3: sp (surface position of onearc) */
/% Num_in_DG(possible arc candidate # at sp) */
sp := position(onearc):

ArcNum_in_DG := arc_num_at_position(sp, DG);

/% step4: Only one candidate -> neglect */
if(ArcNum_in_DG == 1) { next; }

/% step5: Compute total possible arc number %/
MaxArcScore := MaxArcScore + ArcNum_in_DG;

/* step6: Compute total obtained score (arc #) */
CorrectArcRatio :=

arc_num (onearc, 0DTArcs) /arc_num_at_position (sp, ODTArcs)
OneArcScore := ArcNum_in_DG * CorrecArcRatio;
ArcScore := ArcScore + OneArcScore;

]

/% step7: Compute Arc Disambiguation Precision Ratio %/
ArcSelectionAbi lityRatio := ArcScore/MaxArcScore;

Fig.6.2 Algorithm for computing ADPR

135

easier than from ten candidates. This feature is incorporated into ADPR by assigning a score
proportional to the number of candidate arcs in the disambiguation task. If the generated
dependency forest has no correct arcs, no preference knowledge exists on the basis of which a
correct answer can be selected. Conversely, if the dependency forest has no incorrect arcs, a
correct answer can be selected on the basis of any preference knowledge. These cases are out of
the scope of evaluation of the disambiguation ability and should be omitted in evaluation.

Based on the above considerations, arc disambiguation precision ratio (sometimes called dis-
ambiguation precision) is defined as shown in Fig.6.2.

This algorithm inputs a correct dependency tree C'DT', an output dependency tree ODT} to
ODT,, (n is the number of the optimum trees), and a dependency graph DG. Here, the collection
of the arcs in ODT; - ODT,, is described as ODT Arcs. Stepl extracts one correct arc onearc
from C'DT. If onearc is not contained in DG, it is not a target of evaluation (step2). onearc is
also neglected when it has no ambiguities (step4). If there is an ambiguity for onearc, step5 adds
the number of arcs which have a start position sp and exist in DG to MaxSrcScore as a score for
current onearc. In step6, arc correction ratio Correct ArcRatio for current onearc is computed
and the score for onearc is computed as the product of MaxzSrcScore and Correct ArcRatio.
This score is added to total arc score ArcScore. Arc disambiguation precision ratio is calculated
in step7 as the ratio of total arc score ArcScore to the maximum arc score MazArcScore. Arc
disambiguation precision ratio varies from 0 to 1.

Fig.6.1 shows a correct dependency tree and an output dependency tree and Fig.6.3 shows DG
for the example sentence.

In stepl of Fig.6.2, the first arc cal in Fig.6.1 is set to onearc. Step2 sets a start position
of node “[time]-n-0,” i.e., 0, to sp. Step3 does not neglect onearc since it is in DG. In stepd,
onearc is judged as a target of evaluation since arc_num-at_position(0, DG) = 3. Stepd sets
Mazx ArcScore to 3. Stepb obtains Correct ArcRatio = 1/2 = 0.5, OneArcScore = 3%0.5 = 1.5;
then OneArcScore is computed as 1.5. The computation continues in a similar way. Correct arc

cab is neglected since DG has only one arc pall on start position 3. The computation results

Dependency Graph:

DG = { arc(nc, [time]-n-0, [flies]-n-1), /* pal *x/
arc (sub, [time]-n-0, [flies]-v-1). /* pa2 #/
arc (top, [timel-v-0, [1), /* pa3 */
arc(obj, [flies]-n-1, [time]-v-0), /* pa4 %/
arc(sub, [flies]-n-1, [Iikel-v-2), /% pa5 %/
arc (top, [flies]-v-1, [1). /* pab */
arc (top, [likel-v-2. [1). /* pal */
arc (npp, [likel-pre-2, [flies]-n-1), /* pa8 */
arc (vpp, [likel-pre-2, [flies]-v-1), /* pa9 */
arc (vpp, [likel-pre-2, [time]l-v-0), /* pal0Q */
arc(det. [an]-det-3. [arrow]-n-4). /* pall %/
arc(obj, [arrow]-n-4, [Iikel-v-2), /* pal2 %/
arc(pre, [arrow]-n-4, [like]-pre-2) } /* pal3d */

Fig.6.3 Dependency Graph for the example

136

are as follows;

Arc sp Arcnum CrctArcRto ArcSer

cal 0 3 0.5 1.5
ca2 1 3 0.5 1.5
cald 2 4 0.5 2.0
cad 4 2 0.5 1.0
total 12 6.0

Arcnum, CretArcRto, ArcScr correspond to Arcnum_in_DG, Correct ArcRatio, OneArcScore,
respectively.

The final value of MaxArcScore is 12 (sum total of Arcnum_in_DG) and that of ArcScore is 6
(sum total of OneAreScore). Therefore, ArcSelection Ability Ratio=6/12 =0.5. In this example,
every arc.accuracy is 0.5. If CorrectArcRatio of ca3 is 1 then ArcSelectionAbilityRatio is
8/12= 0.67, whereas if CorrectArcRatio of cad is 1 then ArcSelectionAbilityRatio is 7/12 =
0.58. This shows that ADPR reflects the difficulty of the arc disambiguation task.

6.1.4 Environment of Experiment for Evaluation Measures

This section and the next section describe some experimental results showing the behaviors
of the proposed evaluation measures with respect to some parameters such as sentence length,
preference knowledge, grammar coverage and so on.

An English text corpus, correct dependency trees, PDG grammar and dictionary and preference
knowledge are prepared for evaluating the proposed evaluation methods. Preference knowledge
here is a WPP frequency in the corpus. Preference score PS(N) for node N (WPP) is defined

as follows.
PS(N) = log(X)/log(MF) (0<PS(X)<1)

where X is the frequency of N in the corpus, MF is the maximum frequency of WPPs in the cor-
pus. The optimum tree has the highest total preference scores among the well-formed dependency
trees for a given sentence.

The text corpus consists of technical documents containing around 620,000 sentences (4,630,000
words*3) in total. In order to prepare a large amount of correct dependency trees and WPP
frequency data, an existing sentence analysis system (called the oracle system) is used as the
generator of those data. The oracle system (Amano et al., 1989) is a real world rule based system
with a long development history, which is currently used for translating technical documents,
web pages, mail texts and so on.

Data filtering is applied to the original text corpus since it contains many tables, indices
characteristic of technical manuals and many ungrammatical sentences originated from typing

and sentence extraction errors. The correct dependency trees are not obtainable for the sentences

*3 counted by unix “wc” command

137

Occurences
350

200 //\ 2

250 |
200
150 \/// \

50

o |
2 4 6 8 10 12 14 16 18 20 22 Words

Fig.6.4 Distribution of sentence length for sentences in the open data

which are not parsable by the oracle system. The following sentences are removed from the

original corpus.

(a) Unparsable sentences (around 71,000 sentences)

(b) Parsable sentences whose last character is not a period (around 204,000 sentences)

(c¢) Parsable and period-ending sentences whose first character is not a capital letter (around
220,000 sentences)

The remaining corpus has 125,320 sentences (1,844,758 words). The oracle system generates
the correct dependency trees and WPPs for these sentences. This corpus is divided into open
data (8,605 sentences, 126,684 words) and close data (116,715 sentences, 1718074 words). The
open data is used for evaluation test set and the close data is used for preference knowledge
resource, i.e., the source of WPP frequencies. The number of extracted WPPs is 1,869,000
(44,470 kinds of WPP)*4. Fig.6.4. shows the distribution of word length of sentences in the open
data. In order to see a brief accuracy of the oracle system, 136 sentences are selected randomly
but with similar distribution shown in Fig.6.4 from a set of sentences which are parsable using

the basic grammar described below*>.

The APR for this sentence set with respect to human
analysis results is 97.2%. Therefore, the output of the oracle system is a good approximation of
human correct data.

Two PDG grammars called a basic grammar (Grammar-B) and a mini grammar (Grammar-M)
are prepared. The basic grammar consists of basic grammar rules which covers sentence varia-
tions such as noun/verb/adjective/adverbial /prepositional phrases, simple/complex/compound
sentences, relative/subordinate clauses and Onions’ 5 sentence patterns. The basic grammar
does not accept insertion, omission, inversion and idiomatic structures (ex. not only .. but also

..). The basic grammar is superior to the mini grammar in the generation and constraint abil-

*4 The number of WPPs here is not the same as that of words, since WPP is counted based on the result of
morphological analyzer

*5 Since unparsable sentences have no output, they are neglected in the succeeding evaluation experiments.
Some extra method is required for obtaining partial phrase structure trees for unparsable sentences.

138

ities. The basic grammar has higher generation ability compared with the mini grammar since
it accepts syntactic patterns with richer phrase variations (numeric/symbol expressions in noun
phrase, double quote expression, optional expressions etc.), coordinations (noun phrase, adjective
phrase, adverb phrase etc.), greater number of optional elements (prepositional phrases, adverbs

etc.) and so forth. The basic grammar has richer and more precise constraints, such as additional

number agreement*® as found in “these desks,” sequence of tenses, sub-categorization frames of
verbs, structural constraint based on morphological features and so on. The basic grammar
consists of 907 CFG rules whereas the mini grammar consists of 377 CFG rules. These gram-
mars produce the same type of dependency structures as the oracle system. The morphological

analyzer is shared with the PDG system and the oracle system.

6.1.5 Evaluation Experiment for Evaluation Measures

An evaluation experiment for the open data and basic grammar is performed using a prototype
PDG system implemented in Prolog. The test sentences containing more than 22 words are
neglected due to the limitation of Prolog system resources. 4334 sentences out of 6882 test
sentences are parsable by Grammar-B. The parse success ratio is 63%. Without applying special
treatment such as construction of the whole phrase structure tree from partial phrase structure

trees, unparsable sentences (2584 sentences) are simply neglected in this experiment.

[Comparison between APR and WDPR)]

Fig.6.5 shows the comparison of APR and WDPR with/without the preference knowledge
(PK). Results obtained without the preference knowledge are called baseline performance in this
experiment. In total, APR with PK (AK) is 85.1%, APR without PK (baseline) (AB) is 77.8%,
WDPR with PK (WK) is 87.9% and WDPR without PK (DB) is 81.8%. Arc precision and word

dependency precision are equivalent measures and have the same fluctuation for sentence length.

Precision
100%

90%

80%

70%

60% (4 —&— Word Dependency Precision — UN

—a— Word Dependency Precision — base
—— Arc Precision — UN
—>%— Arc Precision — base

50%

a0% L 0w
2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 Words

Fig.6.5 Comparison of WDPR and APR

*6 Basic number agreement constraint is introduced into both basic grammar and mini grammar.

139

Only a few syntactic variations exists for very short sentences. This seems to cause low APR for
sentence length 2 and 3. AK and AB have an average gap of 7.3%, whereas WK and WB have
one of 6.1%. WDPR has a greater gap than APR. AK and WK have an average gap of 2.3%,
whereas AB and WB have one of 4.0%. Fewer gaps is observed when the preference knowledge
is utilized.

In this experiment, English documents are used. English is a structural language where word
order has important roll in deciding functional relations between words. Therefore, word depen-
dency may have high correlation with functional relations between words. On the other hand, for
example in Japanese, word order is less important to decide functional relation between words.
The behavior of APR and WDPR may be different in Japanese.

[Comparison of APR and ADPR with respect to preference knowledge]

Fig.6.6 shows the comparison of APR and ADPR with/without the preference knowledge (PK).
In total, APR with PK (AK) is 85.1%, APR without PK (baseline) (AB) is 77.8%, ADPR with
PK (DK) is 65.8% and ADPR without PK (DB) is 42.0%. Although the preference knowledge
is simple, both measures show significant improvement by applying PK. For example, sentence
”The integer constant for the sentence buffer.” has two readings corresponding to “The integer
constant/n for ... (correct) and “The integer constant/adj for ...” (incorrect). In this case,
the correct interpretation is selected as the optimum solution since WPP constant/n has larger
frequency than that of constant/adj.

The fluctuations of AK and DK show overall mutual relation. But a few exceptions are seen;
e.g. in word length 14 and 15 where AK decreases in spite of increase of DK. This is reasonable
since ADPR measures a disambiguation ability while APR measures a comprehensive sentence
analysis ability including the disambiguation ability as described above.

DB is almost constant with respect to sentence length. This means the difficulty of the disam-
biguation task (number of ambiguous arcs) does not show remarkable increase with respect to
sentence length. In contrast, DK decreases as sentence length increases. This means the current

strategy for applying preference knowledge provides less performance for longer sentences.

Precision
100%

90% ’/M
80% / A
WA
70% [Ve SR e
; a8 o,
60% - B e mam
.
50% n

a0 PSR Ve o S AV A IV ' '3
=

30%

—&— Arc Precision—wpp (AK)
20% —#— Arc Precision—base(AB) []
- - # - - Arc Disambiguation—wpp (DK)

- - % - - Arc Disambiguation—-base (DB)

10%

0%

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 Vores

Fig.6.6 Comparison of APR and ADPR with respect to preference knowledge

140

[Comparison of APR and ADPR with respect to PCSR]

There are 3224 possibly correct sentences out, of 4334 parsable sentences. The PCSR is 74.4%.
To clarify the influence of PCSR, data for only the possibly correct sentences, i.e., PCSR is
100%, is estimated. Fig.6.7 shows the comparison of APR and ADPR obtained from the data
with 100%-PCSR (C: Correct answer contained) and 74%-PCSR (A: All sentences). In total,
APR for 100%-PCSR (AC) is 90.4%, APR for 74%-PCSR (AA) is 85.1%, ADPR for 100%-PCSR,
(DC) is 85.1% and ADPR for 74%-PCSR (DA) is 42.0%. Very large improvement of APR and
ADPR is achieved by increasing the APR of the target sentence collection.

Comparing DC and DA, ADPR seems to be independent of PCSR and decreases as target
sentence length increases. In contrast, APR seems to be dependent on PCSR, since AC (100%-
PCSR) is almost constant for sentences with more than 6 words while AA (74%-PCSR) seems to
decrease as sentence length increases. This suggests that PCSR has a relation with the decrease
of APR against sentence length and the improvement in comprehensive hypothesis generation

ability is effective for keeping high APR for longer sentences.

Precision

100%

- VA St \esasey
80%/

[P
0% ¥ W k““
/ L SVE S S
H L3 & :>-<: oS X,
Ko m-a,
608 |/ x 5w
| S
50% % —=e— Arc Precision-100%PCSR(AC)
—&— Arc Precision-74%PCSR(AA)
40% - - 4 - - Disambiguation Precision—100%PCSR(DC)
- - % - - Disambiguation Precision-74%PCSR(DA)
30%

2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 Words

Fig.6.7 Comparison of APR and ADPR with respect to PCSR

[Comparison of APR and ADPR (Coverage of Grammar)]

The experiment using the basic grammar (Grammar-B) and the mini grammar (Grammar-M)
shows that Grammar-B has 4334 parsable sentences (parse success ratio 63.0%) containing 3224
possibly correct sentences (PCSR 74.4%), and Grammar-M has 3139 parsable sentences (parse
success ratio 45.6%) containing 2135 possibly correct sentences (PCSR 68.0%). Fig.6.8 shows
the comparison of APR and ADPR obtained from Grammar-B and Grammar-M. In total, APR
for Grammar-B (AB) is 85.1%, APR for Grammar-M (AM) is 83.4%, ADPR for Grammar-B
(AB) is 65.8% and ADPR. for Grammar-M is 68.9%.

DB and DM have almost the same values with some fluctuations for sentences with length
6 to 16. In contrast, AB always has slightly higher values compared with those of AM in the
same sentence length range. This suggests the reasonable assumption that ADPR is basically

independent of grammar, whereas ACR is dependent on grammar. If ADPR is independent of

141

grammar, the decrease of ADPR against sentence length should mainly be caused by the current

strategy for applying preference knowledge.

Precision
100%

90%

80%

70%

60% -

50% —M®— __e— Arc Precision-Grammar B (AB) I
—a— Arc Precision-Grammar M(AM)
40% - - 4 - - Disambiguation Precision-Grammar B(DB)

- - % - - Disambiguation Precision-Grammar M(DM)

30%

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 Words

Fig.6.8 Comparison of APR and ADPR with respect to difference of grammar

6.2 System Evaluation with respect to Preference

Knowledge

The evaluation of the prototype PDG system described above is done with respect to the
combination of various kinds of preference knowledge described in Chapter 5. The current
implementation incorporates four types of preference scores, i.e., the unary node score based on
WPP frequency, the unary arc score based on arc (i.e., dependency piece) frequency, the binary
node score based on WPP bigram frequency and the binary arc score based on arc co-occurrence
frequency. These preference sources are expressed by UN (unary node), UA (unary arc), BN
(binary node) and BA(binary arc), respectively. The combination of preference knowledge is
represented by '+’ operator. For example, PDG system using the UN and UA is written as
"UN+UA’. Empty preference knowledge, i.e., the baseline system performance, is represented
by ¢ symbol. The combination of the measurement, and preference knowledge is represented by
“/.” For example, the measurement “APR (arc precision ratio)” for the knowledge combination
“UN+UA” is written as “APR/UN+UA.” The test sentences and the corpus are the same as
those described in Section 6.1.4.

The baseline evaluation is done with no preference knowledge. This means all well-formed
dependency trees are the optimum solutions for the input sentence. In the following experiments,
the number of solutions in baseline execution is limited up to 100. This is because the number
of the optimum solutions grows exponentially as the sentence length increases and a whole set
of dependency trees cannot be obtained due to computational resource limitation.

There are a lot of combinations of preference knowledge. The following section basically reports
the baseline (¢) performance, single knowledge (UN, UA, BN and BA) performances and the
three combined knowledge (UN+UA, UN+BN and UA+BN) performances which have shown

142
good performance in the experiment.

6.2.1 Evaluation of Comprehensive Sentence Analysis Ability

Fig.6.9 shows the comparison of APR for whole sentences with respect to the combination of
preference knowledge sources. In total, as shown in the figure, the average of APR/¢, APR/UN,
APR/UA, APR/BN, APR/BA, APR/UN+UA, APR/UN+BN and APR/UA+BN are 77.4%,
84.6%, 87.4%, 83.6%, 80.4%, 88.3%, 84.3% and 88.3%, respectively. The PCSR for the test
sentences is 74% as described above. APR for the whole sentences shows APR-74PCSR, i.e.,
APR for 74% PCSR sentences.

APR
100%

95%

—=—UN (Ave 84.6%)

—4— UA (Ave 87.4%)
90%
—o—BN (Ave 83.6%)
85% —a— BA (Ave: 80.4%)

—e— UN+UA (Ave 88.3%)

80% —+— UN+BN (Ave 84.3%)

—=— UA+BN (Ave 88.3%)
75%

—¢— ¢ (Ave 77.4%)

70%
3 5 7 9 11 13 15 17 19 21 Words

Fig.6.9 Comparison of APR w.r.t. preference knowledge (whole sentences)

UA provides the best performance 87.4% in case of single knowledge use. BA provides the worst
performance 80.4% but it still outperforms 3.0% compaired with baseline ¢. The preformances
of binary relation BN and BA are relatively low. This may be caused by the data sparseness
problem, i.e., the inadequecy of the training corpus data. Experiment with much larger training
corpus is one of the future works. The combination of the UN and UA gives better performance

compared with those obtained by independent knowledge sources.

APR
100%
95% —&— UN(Ave 90.1%)
—4&— UA (Ave 93.2%)
90% —o— BN (Ave 88.9%)
ﬂ
85% BA (Ave 85.3)
—9— UN+UA (Ave 94.1%)
80% —+— UN+BN (Ave 89.7%)
—8— UA+BN (Ave 93.9%)
75% —X%— (Ave 82.4%)
70%

3 5 7 9 11 13 15 17 19 21 Words

Fig.6.10 Comparison of APR w.r.t. preference knowledge (100% PCSR)

143

Fig.6.10 shows the results for only the possibly correct sentences, i.e., PCSR is 100%.
In total, as shown in the figure, the average of APR-100PCSR/#, APR-100PCSR/UN,
APR-100PCSR/UA, APR-100PCSR/BN, APR-100PCSR/BA, APR-100PCSR/UN+UA, APR-
100PCSR/UN+BN and APR-100PCSR/UA+BN are 82.4%, 90.1%, 93.2%, 88.9%, 85.3%,
94.1%, 89.7% and 93.9%, respectively. The differences between APR-74PCSRs and APR-
100PCSR are within the range from 4.9% to 5.9%. APR-100PCSR is more constant with respect
to sentence length compared with APR-74PCSR.

6.2.2 Evaluation of Disambiguation Ability

Fig.6.11 shows the comparison of ADPR, for whole sentences with respect to the combination of
preference knowledge sources. In total, as shown in the figure, the average of ADPR-74PCSR/ ¢,
ADPR-74PCSR/UN, ADPR-74PCSR/UA, ADPR-74PCSR/BN, ADPR-74PCSR/BA, ADPR-
74PCSR/UN+UA, ADPR-74PCSR/UN+BN and ADPR-74PCSR/UA+BN are 42.7%, 65.0%,
74.6%, 62.1%, 51.6%, 77.6%, 64.6%, 77.6%, respectively. The combination of the preference
score UN and UA gives 12.6% and 3.0% improvements for ADPR-74PCSR/UN and ADPR-
T4PCSR/UA, respectively.

ADPR
100%
90%
80% —&— UN (Ave 65.0%)
70% —&— UA (Ave 74.6%)
60% —o— BN (Ave 62.1%)
—A— BA (Ave 51.6%)
50% —&— UN+UA (Ave 77.6%)
40% —+— UN+BN (Ave 64.6%)

—B— UA+BN (Ave 77.6%)
—%— ¢ (Ave 42.7%)

30%
20%
10%

0%

3 5 7 9 11 13 15 17 19 21 Words

Fig.6.11 Comparison of ADPR w.r.t. preference knowledge (whole sentences)

Fig.6.12 shows the result for ADPR-100PCSR. In total, as shown in the figure, the average
of ADPR-100PCSR/¢, ADPR-100PCSR/UN, ADPR-100PCSR/UA, ADPR-100PCSR/BN,
ADPR-100PCSR/BA, ADPR-100PCSR/UN+UA, ADPR-100PCSR/UN+BN and ADPR-
100PCSR/UA+BN are 42.0%, 66.1%, 76.3%, 62.3%, 50.7%, 79.1%, 65.2%, 78.5%, respectively.
In contrast to the APR, PCSR has no strong effect on ADPR as described in Section 6.1.5. The
differences between ADPR-74PCSRs and ADPR-100PCSRs are within the range from -1.5% to
0.9%. This difference is much smaller compared with the differences between APR-74PCSRs
and APR-100PCSRs. This result suggests that ADPR is almost independent of PCSR.

144

ADPR
100%
90%
80% —=— UN (Ave 66.1%)
70% —&— UA (Ave 76.3%)
60% —6— BN (Ave 62.3%)
50% —&—BA (Ave 50.7%)
0% —&— UN+UA (Ave 79.1%)
—+— UN+BN (Ave 65.2%)
30% —=— UA+BN (Ave 78.5%)
20% | —X— ¢ (Ave 42.0%)
10%
0%

3 5 7 9 11 13 15 17 19 21 Words

Fig.6.12 Comparison of ADPR w.r.t. preference knowledge (100% PCSR)

6.2.3 Evaluation of Selectivity Performance

[Average Optimum Solution Number]

Fig.6.13 shows the comparison of the average optimum solution number (AOSN) for whole
sentences with respect to the combination of preference knowledge sources, i.e., UN, UA, BN,
BA and UN+UA *7. In total, as shown in the figure, the average of AOSN/UN, AOSN/UA,
AOSN/BN, AOSN/BA and AOSN/UN+UA are 5.1, 1.3, 5.3, 5.1 and 1.1, respectively. UN, BN
and BA has clear growth of the AOSN with respect to sentence length whereas UA and UN+UA
have very small growth in AOSN. The combination of preference knowledge works to decrease
AOSN.

The performances of BN and BA may be improved by increasing the training corpus size to

avoid the data sparseness problem. This is one of the future works.

AOSN
25

20

—=— UN (Ave 5.1)
—a— UA (Ave 1.3)
—o—BN (Ave 5.3)
—A—BA (Ave 5.1)
—x— UN+UA (Ave 1.1)

15

10

3 5 7 9 11 13 15 17 19 21 Words

Fig.6.13 Comparison of average optimum solution number w.r.t. preference knowledge

*7 The baseline data is not shown in the figure because the number of solutions is limited up to 100 in baseline
execution.

145

[Average Expanded Problem Number in Total]

Fig.6.14 shows the comparison of the average expanded problem number (AEPN) for whole
sentences with respect to the combination of preference knowledge sources, i.e., UN, UA, BN, BA
and UN+UA. In total, as shown in the figure, the average of AEPN/UN, AEPN/UA, AEPN/BN,
AEPN/BA and AEPN/UN+UA are 18.1, 3.7, 15.8, 15.2 and 3.3, respectively. This result shows
the same tendency with the AOSN. In the AEPN evaluation, BN outperformed UN in contrast
to the AOSN evaluation. AEPN/¢ is not measured because the number of solutions is limited

up to 100 in baseline execution.

AEPN
100 n
80 1 —=—UN (Ave 18.1)
——UA (Ave 3.7)
60 3

——BN (Ave 15.8)
40 ——BA (Ave 15.2)
—— UN+UA (Ave 3.3)

20

0 T S [I B |
3 5 7 9 11 13 15 17 19 21 Words

Fig.6.14 Comparison of average expanded problem number w.r.t. preference knowledge

[Average Expanded Problem Number for the First Optimum Solution)]

Fig.6.15 shows the comparison of the average expanded problem number for the first optimum
solution (AEPNF10S) with respect to the combination of preference knowledge sources, i.e.,
UN, UA, BN, BA and UN+UA. In total, as shown in the figure, the average of AEPNF10S/UN,
AEPNF10S/UA, AEPNF10S/BN, AEPNF10S/BA and AEPNF10S/UN+UA are 2.3, 1.5, 1.6,
1.1 and 1.6, respectively. AEPNF10S/¢ (baseline) is always 1.0 because all solutions are opti-
mum solutions.

AEPNF10S/BA has the least value 1.1 which is close to the baseline value 1.0. This reflects
the fact that BA has the biggest number of average optimum solutions as shown above. BA
needs big amount of training corpus to obtain enough selectivity performance by avoiding the
data sparseness problem. AEPNF10S/UN has the biggest value 2.3. This means that a set of the
most frequent WPPs for the words in a sentence is not necessarily correspond to the well-formed
dependency tree. The combination of UN and UA (UN+UA) requires a bit more computation

for obtaining the first optimum solution compared with UA due to the influence of UN.

146

AEPNF10S
45
4 g
35 / /\
3 —=— UN (Ave 2.3)
25 —— UA (Ave 1.5)
9 —e— BN (Ave 1.6)
15 —— BA (Ave 1.1)
1 —— UN+UA (Ave 1.6)
05
0 .

3 5 7 9 11 13 15 17 19 21 Words

Fig.6.15 Comparison of average expanded problem number for the first optimum solution
w.r.t. preference knowledge

6.3 Concluding Remarks for the Experiments

This section discussed the sentence analysis ability based on the PDG framework and proposed
three kinds of evaluation measures for dependency structures. The arc precision ratio (APR)
and the word dependency precision ratio (WDPR) measure comprehensive analysis ability. The
possibly correct sentence ratio (PCSR) and the arc disambiguation precision ratio (ADPR) mea-
sures a part of analysis abilities, i.e., comprehensive hypothesis generation ability and hypothesis
selection ability, respectively.

The experiment using English technical documents suggests that ADPR is independent of
PCSR and the grammar coverage. This means ADPR has good characteristics for measuring
the ability of preference knowledge and application strategies. The current simple preference
knowledge and strategy shows the decrease of ADPR against sentence length.

From the experiment reported in this thesis, extending the coverage of the basic grammar is a
basic task for improving the sentence analysis ability and improvement of PCSR and preference
knowledge application strategy are effective for improving the system performance for longer
sentences.

The evaluation measures described in this section are applicable not only to PDG-based sys-
tems but also to other dependency structure based sentence analysis systems. In addition, by
ignoring arc labels and POS categories as described in 6.1.2, PCSR and ADPR can be revised
to the sentence measures suitable for comparing different sentence analyzers with different node
category and arc label systems.

Section 6.2.1 has shown that the evaluation of comprehensive sentence analysis ability is im-
proved by introducing every kind of preference knowledge. Among various kinds of the com-
binations of preference knowledge, the best APR 88.3% is obtained by UN+UA and UA+BN
in this experiment. This is 10.9% improvement compared with the baseline performance 77.4%

APR. As shown in section 6.1, the disambiguation ability is well measured or compared by using

147

ADPR instead of APR. The ADPR of both UN+UA and UA+BN is 77.6% which shows great
improvement compared with baseline performance ADPR/¢ 42.7%.

In comparison between UN+UA and UA+BN, ADPR-100PCSR/UN+UA (79.1%) is a little bit
better than ADPR-100PCSR/UA+BN (78.5%). Furthermore, UN+UA is superior to UA+BN
because the unary model, i.e., UN4+UA, requires less computational resource than the binary
model, i.e., UA+BN, in general. The combination of UN and UA provides the best performance
in this experiment. However, an experiment using big amount of training corpus should be done
for the binary knowledge to obtain enough performance by avoiding the data sparseness problem
in future.

Section 6.2.3 has shown that the AOSN, AEPN and AEPNF10S of UN+UA is 1.1, 3.3, 1.6,

respectively. These are very small and show the very good selectivity performance of UN+UA.

149

Chapter 7

Future Work

7.1 Development of Real-world PDG System

The current PDG system is a Prolog-based prototype system aimed at the feasibility study of
the PDG framework. The research and development of a PDG system applicable to real-world
applications is one of the important future works.

Improvements in the accuracy and efficiency of the PDG system are expected by the enhance-
ments of the grammar description framework, such as the introduction of more detailed condi-
tions based on feature descriptions and non-obligatory constituent description into a grammar
rule. The introduction of non-obligatory constituent descriptions reduces not only the number of
edges generated during a parse process but also the number of equivalent arcs in the generated
initial dependency forest. The generated equivalent arcs can also be reduced if sharable arcs
are identified before parsing by applying the pre-analysis of the grammar. This is an interesting
research topic not only for building an efficient system but also for understanding the relation
(or exploring the equivalence) between constituency and dependency. In conjunction with these
methodological improvements, system implementation using programming languages like C and
C++ should be conducted for the real-world PDG system along with the development of the
PDG grammar.

The current prototype PDG system adopts a heuristic approach instead of a learning approach
for tuning the scoring parameters. Learning technologies have been one of the most advanced
areas in natural language processing for a number of years and several excellent learning methods
based on annotated corpora have been proposed. In addition to the generative learning model,
the discriminative learning model, which can treat the structural parameters based on the entire
sentence structure, is studied in detail (McDonald et al., 2005). The introduction of such learning
mechanisms in the scoring process is one of the important and promising future works to obtain

the best accuracy using the PDG framework.

150

7.2 Research on Semantic Structure

Semantic processing is a very important but difficult NLP research topic which requires con-
siderable research. There is no common consensus on the representation scheme for semantic
sentence structures. MTT adopts the semantic graph structure representing predicate argument
relations as its basic semantic representation. This kind of deep predicate argument relation will
be necessary for properly representing the meanings of various sentences.

One simple but basic extension of PDG framework toward the semantic layer analysis is to
introduce the semantic dependency tree as a kind of semantic layer sentence interpretation. The
semantic dependency tree consists of concept nodes and arcs labeled with semantic dependency
relations. The semantic dependency tree is a simple but natural expansion of the syntactic
dependency tree which is in the current uppermost level of the PDG architecture. Each WPP
node has some corresponding semantic nodes (concepts) and each syntactic arc has corresponding
semantic arcs (semantic roles). The possible construction of the semantic dependency tree should
be guided by some lexicalized predicate-argument information or the case frame structure as
introduced by the semantic dependency graph (Hirakawa, 2002).

Fig.7.1 shows PDG model extended to the semantic dependency level. A semantic dependency
forest is used to represent a set of semantic dependency trees that represent the semantic in-
terpretations of a sentence. The packed shared data structure for a set of semantic dependency
trees is a semantic dependency forest. The semantic dependency forest is expected to be ob-
tained from a (syntactic) dependency forest by two kinds of semantic expansions, i.e., semantic
node expansion and semantic arc expansion. Fig.7.2 shows a conceptual example of semantic

expansion for the Japanese sentence “Kanojo no Me wa Ookii (#%c> HiZ k&))" (Her eyes are

Morphological Layer Syntactic Layer Semantic Layer)
The optimum
Sentence ¢ root . IOP/M@ sem. dep. tree
Time flies V flylv nﬂ v‘/\ﬁ b | t|me/v/t1| gt ﬂy,v,fy1| O
K A" : :
| fly/n time/n fly/n _ [time/n/abgkgrX Y fly/n/fd] g
N\ timeiv| |flyiv Itime/n/pu agttgt fIy/n/bgl /
/\‘. WPP trellis PS forest Sem. Dep. Forest /
II All WPP II ﬁ
Interpretation *\ _--->*-- -sequences .-+ AlPStrees .z Alldep.trees 7, All sem.dep. trees
mapping Y X x AP,
VX PN

v

Fig.7.1 Extension of PDG to Semantic Dependency Graph

151

Semantic node expansion
WPCT /~ Semantic dependency ™

" Dependency forest | | WPP

forest
eye/N/EYE
eye/N/CTR
(eyenvee ot /) tth\agt
agt

Semantic arc expansion eye’N’EYE eye’ N’CTR

Functional Semantic
dep. relation dep. relation

has
no/1 <: mak/e;

Interpretation linkage

All dependency trees Al semantlc dependency trees

Fig.7.2 Semantic expansion process

big). By applying semantic node expansion, the WPP nodes in a (syntactic) dependency forest
are expanded to concept nodes. The WPP node labeled “eye/N” in the figure corresponds to the
word “Me (H)” (eye) in Japanese, which has two meanings corresponding to “eye” and “center.”
This WPP node is expanded to two concept nodes with labels “eye/N/EYE” and “eye/N/CTR.”
The lexical concepts can be provided by concept dictionaries such as the EDR dictionary (EDR,
1996), Nihongo-Goi-Taikei (Ikehara, 1999), and WordNet (Fellbaum, 1998).

The semantic arc expansion operation generates more than one semantic arc from each (syn-
tactic) dependency arc in the (syntactic) dependency forest. One (syntactic) dependency arc

»

labeled by the Japanese particle “no (?)” can represent various semantic relations such as “pos-

W W

session,” “creator,” “agent,” and “target” between two nouns including verbal nouns. In Fig.7.2,
the syntactic arc labeled with “no” is expanded to two semantic dependency arcs labeled with
the semantic dependency relation “has” (possessive) and “make” (creator). The expansion from
a syntactic dependency relation to semantic dependency relations is performed by consulting a
mapping table which defines the mapping between them. Provided that the semantic expan-
sion generates M concept nodes and N semantic dependency arcs from one WPP node and one
syntactic dependency arc, respectively, the expanded semantic forest has around M times nodes
and M? x N times arcs as compared to the syntactic dependency forest. Thus, the combinato-
rial explosion in the size of the semantic dependency forest through the semantic expansion is
suppressed because the semantic dependency forest is also a packed shared data structure.

It is obvious that the interpretation mapping exists between the (syntactic) dependency forest
and the semantic dependency forest. Therefore, this framework satisfies the requirements of the
MPDC model, because the semantic expansion maintains the mapping between nodes and arcs
in the dependency forest and those in the semantic dependency forest. The scoring and the

optimum search methods are applicable to both the syntactic and semantic dependency forests.

152

Needless to say, the approach described in this section is a very rough approximation and
simply shows the research direction toward semantic processing. This requires intensive research

from both linguistic and computational perspectives.

7.3 Bidirectional Model of PDG

In this thesis, PDG focuses on the sentence analysis direction. However, its basic framework,
i.e., the MPDC model, is inherently bidirectional as well as it is true in MTT. For example, the
partial structure mapping rule in Section 3.4.2 simply describes a mapping between a partial
phrase structure and a partial dependency structure and therefore it can be used bidirectionally.
The generation of a phrase structure from a dependency structure is an interesting future research
topic.

Researches on the equivalence between the phrase structure grammar and the dependency
grammar have not succeeded in showing the strong equivalence between CFG and Tesniere
model DG under the equivalence criteria “ramification” as described in Chapter 1. If a proper
formal dependency grammar framework based on the partial structure mapping is established, it
may be possible to discuss the descriptive power and/or the equivalence of the phrase structure
grammar and the dependency grammar based on the new framework. This would make clearer
and deeper understanding for both of the two major syntactic representations and the relation

between them.

153

Chapter 8

Conclusion

This thesis proposed a novel dependency analysis framework called the “preference dependency
grammar (PDG),” which utilized the two major syntactic representations, i.e., the phrase struc-
ture and the dependency structure to obtain the benefit from both representations. Based on the
discussion on the multilevel model with respect to the roles of preference and constraint knowl-
edge, PDG adopts the three level MPDC architecture (multilevel system which adopts packing
method) with two intermediate levels (morphological structure and phrase structure) and the
uppermost level (dependency structure). In this architecture, the phrase structure level (CFG
rules) works as a filter for the dependency structure level. This suppresses the magnification of
the search space and enables PDG to include full POS ambiguities at dependency level.

In PDG design architecture, the higher description ability of the dependency level data struc-
ture is required because the uppermost level is the basis of the knowledge integration in the
MPDC model. In order to realize PDG architecture, two core technologies, i.e. a new data
structure “dependency forest” and a new algorithm “graph branch algorithm” are proposed in
this thesis. The dependency forest fulfils the multilevel model mapping condition required for
the MPDC model. The completeness and soundness of the dependency forest with respect to
the phrase structure forest is assured by this thesis.

The dependency forest is a data structure with a high descriptive ability to integrate the pref-
erence and constraint knowledge by providing two matrices, i.e., the preference matrix and the
constraint matrix, which represent the arbitrary arc co-occurrence preferences and constraints,
respectively. This thesis proposed a new algorithm called the “graph branch algorithm” that
searches the optimum well-formed dependency tree in a dependency forest based on the branch
and bound principle. By adopting these data structures and algorithms, PDG enables the proper
treatment of the single valence occupation constraint and the non-projective dependency struc-
ture, which were not handled properly by the traditional methods. The descriptive power of the
dependency forest for ambiguous constructions is examined by using the experimental grammar
with the rules that generate typical types of syntactic ambiguities as well as an non-projective
construction.

In addition to the arc precision ratio (APR) (measure for the comprehensive sentence analysis

ability), this thesis proposed two new evaluation measures for dependency-based NLA systems

154

to measure the performances of their preference and constraint knowledge. The possibly correct
sentence ratio (PCSR) measures the hypothesis generation ability, i.e., the performance of the
constraint knowledge including the generation knowledge. The arc disambiguation precision
ratio (ADPR) which measures disambiguation ability, i.e., the performance of the preference
knowledge. This thesis reported an experimental result for checking these measures using the
PDG prototype system. The disambiguation ability is well measured or compared by using
ADPR instead of APR.

This thesis described the experimental results using the PDG prototype system with the proto-
type basic English grammar. Four types of preference knowledge (the WPP unigram frequency,
the WPP bigram frequency, the unary dependency frequency and the binary dependency fre-
quency) are extracted from the dependency tree corpus obtained by the oracle system (existing
machine translation system). The evaluation of comprehensive sentence analysis ability is im-
proved by introducing every kind of preference knowledge. Among various kinds of the combi-
nations of preference knowledge, the best APR 88.3% is obtained by UA+UN (unary arc and
unary node scores) and UA+BN (unary arc and binary node scores) in this experiment. This is
10.9% improvement compared with the baseline performance 77.4% APR.

This thesis introduced the foundations of PDG which utilizes the two major syntactic repre-
sentations and showed its feasibility. There remain a lot of future works in PDG research toward

real-world NLP applications and semantic analysis.

Appendix A

155

Problem in the Syntactic Graph

Consider the parsing of “Tokyo taxi driver call center” using the following grammar rules and

lexicons.

[Grammar
np/NP
npc/Nb
npc/Na
npc/Na
np1/Nc
np2/Nd
np3/Nd

[Lexiconl]

word(n,
word(n,

Rules]

— npc/NP

— npl/NP1,n/Na,n/Nb
— np2/NP2,n/Na

— np3/NP3,n/Na

— n/Na,n/Nb,n/Nc

— n/Na,n/Nb,n/Nc,n/Nd
— n/Na,n/Nb,n/Nc,n/Nd

(]

[arc(nj,NP1,Nb) ,arc(nc,Na,Nb)]
[arc(nc,NP2,Na)]

[arc(nc,NP3,Na)]

[arc(nc,Na,Nb) ,arc(nc,Nb,Nc)]
[arc(nj,Na,Nc),arc(nc,Nb,Nc) ,arc(nc,Nc,Nd)]
[arc(nc,Na,Nb) ,arc(nj,Nb,Nd),arc(nc,Nc,Nd)]

[Tokyol). word(n,[taxil). word(n, [driver]).
[call]l). word(n, [center]).

This example sentence has three well-formed dependency trees shown in Fig.A.1 (a), (b) and

(c). The boxes npl, np2 and np3 in the dependency trees are given only for showing the corre-

spondences between phrase structures and dependency structures.

n pl (a) nj -7

nc-l nc-2 / nc-6 FII-S e
S8 B S SEK

Tokyo taxi driver call

©)

? np2 . (b) s

ni-4 t
nc-3 nc-6 rt-g

center okyo taxi driver call center

np3 (c) .
‘ - ‘ S
nj-5 i i i i~
nc-1 : nc-3\ nc-6 -8 n-4 ns ni-7 t
o ; -8
Tokyo taxi “driver " call center |
O O
S Tokyo taxi driver call centef
(d) t EM 1]4]2]5[3][7]6] 8
;Eak nc-2 nc-3 ?QQNF8 1 1
S8 8 8 O EIT
2 1
. 5 1[1 1
Syntactic Graph for (a),(b) and 3 1
(c) generates (d) which has no 7 1 11
corresponding phrase structure tree 6
in the phrase structure forest 8

— Syntactic Graph/Exclusion Matrix’

Fig.A.1 Problem in the syntactic graph/exclusion matrix

156

Since nc-1 and nc-2 in (a), nc-2 and ne-3 in (b) and nc-3 and ne-1 in (c¢) have co-occurrence
relation, respectively, the values of the exclusion matrix for these three pairs are 0 (“ ” in
the figure). This allows the existence of the dependency tree (d), which has no corresponding
phrase structure tree in the phrase structure forest in the syntactic graph/the exclusion matrix.

Therefore, the syntactic graph violates the soundness condition.

157

Bibliography

S. Abney. 1994. Dependency Grammars and Context-Free Grammars. Manuscript, University
of Tubingen, March.

S. P. Abney. 1997. Stochastic Attribute-Value Grammars. American Journal of Computational
Linguistics, 23(4).

S. Amano, H. Hirakawa, H. Nogami, and A. Kumano. 1989. The Toshiba Machine Translation
System. Future Computing Systems, 2(3):121-124.

S. Bangalore and A. K. Joshi. 1999. Supertagging: An Approach to Almost Parsing. Computa-
tional Linguistics, 25(2).

D. M. Bikel. 2004. Intricacies of Collins’ Parsing Model. Computational Linguistics, 30(4):479—
511.

E. Black, F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, and S. Roukos. 1992. Towards
History-based Grammars: Using Richer Models for Probabilistic Parsing. In Proceedings of
the 5th DARPA Speech and Natural Language Workshop, pages 134-139.

G. Bouma, G. Noord, and R. Malouf, 2001. Computational Linguistics in the Netherlands2000,
chapter Alpino: Wide Coverage Computational Analysis of Dutch, pages 45-59. McGraw-Hill,
Amsterdam, Rodopi.

E. Briscoe, J. Carroll, J. Graham, and A. Copestake. 2002. Relational Evaluation Schemes.
In Proceedings of the Beyond PARSEVAL Workshop at the 3rd International Conference on
Language Resources and Evaluation, pages 4-8.

S. Buchholz and E. Marsi. 2006. CoNLL-X Shared Task on Multilingual Dependency Parsing.
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2006.

G. Carroll and E. Charniak. 1992. Two Experiments on Learning Probabilistic Dependency
Grammars form Corpora. Technical report, Department of Computer Science, Brown Univer-
sity.

J. Carroll, T. Briscoe, and A. Sanfilippo. 1998. Parser Evaluation: a Survey and a New Proposal.
In Proceedings of the 1st International Conference on Language Resources and Evaluation,
pages 447-454.

E. Charniak and M. Johnson. 2005. Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), pages 173-180.

E. Charniak. 1995. Parsing with Context Free Grammars and Word Statistics. Technical report,
Department of Computer Science, Brown University, Providence, September.

E. Charniak. 1997. Statistical Parsing with a Context-Free Grammar and Word Statistics. In
AAAT/TAAI pages 598-603.

E. Charniak. 2000. A maximum-Entropy-Inspired Parser. In Proceedings of the 1st Conference of
the North American Chapter of the Association for Computational Linguistics, pages 132-139.

C. Chelba, D. Engle, F. Jelinek, V. Jimenez, S. Khudanpur, L. Mangu, H. Printz, E. Ristad,

158

R. Rosenfeld, A. Stolcke, and D. Wu. 1997. Structure and Performance of a Dependency
Language Model. Proceedings of the Fifth FEuropean Conference on Speech Communication
and Technology, Grenoble, France, 5.

N. Chomsky. 1956. Three Models for the Description of Language. IEEE Transactions on
Information Theory, 2(3):113-124.

N. Chomsky. 1957. Syntactic Structure. Mouton: De Gruyter.

N. Chomsky, 1970. Readings in Transformational Grammar, chapter Remarks on Nominaliza-
tion. Ginn and Co, Boston.

Y. J. Chu and T. H. Liu. 1965. On the Shortest Arborescence of a Directed Graph. Science
Sinica, 14:1396-1400.

S. Clark and J. R. Curran. 2003. Log-Linear Models for Wide-Coverage CCG Parsing. In
Proceedings of the SIGDAT Conference on Empirical Methods in Natural Language Processing
(EMNLP ’03), pages 97-104.

S. Clark and J. R. Curran. 2004. Parsing the WSJ using CCG and Log-linear Models. In
Proceedings of the 42nd Meeting of the ACL (ACL-04).

W. F. Clocksin and C. S. Mellish, editors. 1984. Programming in Prolog (Second Edition).
Springer Verlag, Heidelberg.

M. J. Collins. 1996. A New Statistical Parser Based on Bigram Lexical Dependencies. In
Proceedings of the 84th Annual Meeting of the ACL (ACL-96), pages 184-191.

M. Collins. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia.

A. Colmerauer, H. Kanoui, P. Roussel, and R. Passero. 1973. Un Systeme de Communication
Homme-Hachine en Francais. Technical report, Groupe de Recherche en Intelligence Artifi-
cielle, Universite d’Aix-Marseille.

J. Courtin and D. Genthial. 1998. Parsing with Dependency Relations and Robust Parsing. Pro-
cessing of Dependency-based Grammars. Proceedings of the Workshop, COLING-ACL, 98:95—
101.

M.A. Covington. 1990. Parsing Discontinuous Constituents in Dependency Grammar. Compu-
tational Linguistics, 16(4):234-236.

V. Dahl and M. C. McCord. 1983. Treating Coordination in Logic Grammars. American Journal
of Computational Linguistics, 9(2):69-91.

B. Djordjevic, J. R. Curran, and S. Clark. 2007. Improving the Efficiency of a Wide-Coverage
CCG Parser . In Proceedings of the 10th International Conference on Parsing Technology
(IWPT-07), pages 39-47.

J. Edmonds. 1967. Optimum Branchings. Journal of Research of the National Bureau of
Standards, T1B:233-240.

EDR. 1996. EDR Electronic Dictionary Version 1.5 Technical Guide. Technical report, EDR.

J. Eisner. 1996a. Efficient Normal Form Parsing for Combinatory Categorial Grammar. In
Proceedings of the 34th Annual Meeting of the ACL, pages 79-86.

J. Eisner. 1996b. Three New Probabilistic Models for Dependency Parsing: An Exploration. In

159

Proceedings of COLING’96, pages 340-345.

J. M. Eisner. 1996¢. An Empirical Comparison of Probability Models for Dependency Grammar.
Technical report, Institute for Research in Cognitive Science, University of Pennsylvania.

C. Fellbaum, editor. 1998. WORDNET - An Electronic Lexical Database. The MIT Press,
Cambridge, MA.

H. Gaifman. 1965. Dependency Systems and Phrase-structure Systems. Information and Con-
trol, 8:304-337.

G. Gazdar, E. Klein, G. Pullum, and I. A. Sag, editors. 1985. Generalized Phrase Structure
Grammar. Harvard University Press, Cambridge, MA.

D. Grinberg, J. Lafferty, and D. Sleator. 1995. A Robust Parsing Algorithm For Link Grammars.
Proceedings of the Fourth International Workshop on Parsing Technologies, pages 111-126.
R. Grishman, C. Macleod, and J. Sterling. 1992. Evaluating Parsing Strategies using Standard-

ized Parse Files. In Proceedings of the 3rd conference on Applied Natural Language Processing.

K. Hall. 2007. K-best Spanning Tree Parsing. In Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages 392-399, Prague, Czech Republic.

M. Harada and T. Mizuno. 2001. Japanese Semantic Analysis System SAGE using EDR (in
Japanese). Transactions of the Japanese Society of Artificial Intelligence, 16(1):85-93.

M. P. Harper and R. A. Helzerman. 1995. Extensions to Constraint Dependency Parsing for
Spoken Language Processing. Computer Speech and Language, 9:187-234.

M. P. Harper, S. A. Hockema, and C. M. White. 1999. Enhanced Constraint Dependency Gram-
mar Parsers. In Proceedings of the IASTED International Conference on Artificial Intelligence
and Soft Computing.

M. P. Harper, C. M. White, W. Wang, M. T. Johnson, and R. A. Helzerman. 2000. Effective-
ness of Corpus-Induced Dependency Grammars for Post-Processing Speech. In Proceedings of
NAACL’2000.

S. Hashimoto, editor. 1946. Kokugo-gaku Gairon (in Japanese). Iwanami, Tokyo.

D. G. Hays. 1964. Dependency Theory: A Formalism and Some Observations. Language,
46:511-525.

M. Hearst and H. Schutze. 1993. Customizing a Lexicon to Better Suit a Computational Task.
In Proceedings of the ACL SIGLEX Workshop.

J. Heineck, J. Kunze, W. Menzel, and I. Schroder. 1998. Eliminative Parsing with Graded
Constraints. In Proceedings of the Joint Conference COLING-ACL, pages 526—530.

H. Hirakawa and S. Amano. 1989a. Japanese Sentence Analysis Using Syntactic/Semantic
Preference (in Japanese). In Proceedings of the 8rd National Conference of JSAI pages 363—
366.

H. Hirakawa and S. Amano. 1989b. Method for Searching Optimum Tree in Japanese Sentence
Analysis (in Japanese). In Natural Language Processing NL-74-2,IPSJ, pages 9-16.

H. Hirakawa, Z. Xu, and K. Haase. 1996. Inherited Feature-based Similarity Measure Based
on Large Semantic Hierarchy and Large Text Corpus. In Proceedings of COLING’96, pages
508-513.

160

H. Hirakawa, K. Ono, and Y. Yoshimura. 2000. Automatic Refinement of a POS Tagger Using
a Reliable Parser and Plain Text Corpora. In Proceedings of the COLING’00, pages 313-319.

H. Hirakawa. 2001. Semantic Dependency Analysis Method for Japanese Based on Optimum
Tree Search Algorithm. In Proceedings of the PACLING2001, pages 117-126.

H. Hirakawa. 2002. Semantic Dependency Analysis Method for Japanese Based on Optimum
Tree Search Algorithm (in Japanese). IPSJ Journal, 43(3):696-707.

H. Hirakawa. 2006a. Graph Branch Algorithm: An Optimum Tree Search Method for Scored
Dependency Graph with Arc Co-occurrence Constraints. Journal of Natural Language Pro-
cessing, 13(4):3-32.

H. Hirakawa. 2006b. Preference Dependency Grammar and its Packed Shared Data Structure
"Dependency Forest’ (In Japanese). Journal of Natural Language Processing, 13(3):37-90.

T. Hitaka and S. Yoshida. 1980. A Syntax Parser based on the Case Dependency Grammar and
its Efficiency. In Proceedings of the 8th conference on Computational linguistics.

K. Hollingshead and B. Roark. 2007. Pipeline Iteration. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, pages 952-959.

L. Huang and D. Chiang. 2007. Forest Rescoring: Faster Decoding with Integrated Language
Models. In Proceedings of the 45th Annual Meeting of the Association of Computational Lin-
guistics, pages 144-151, Prague, Czech Republic.

R.A. Hudson. 1984. Word Grammar. Basil Blackwell, Oxford, United Kingdom.

R.A. Hudson. 1991. English Word Grammar. Basil Blackwell, Cambridge, Mass., USA.

T. Ibaraki. 1978. Branch-and-Bounding Procedure and State-space Representation of Combina-
torial Optimization Problems. Information and Control, 36,1-27.

S. Ikehara, editor. 1999. Nihongo-Goi- Taikei CD-ROM Version (in Japanese). ITwanami Shoten,
Tokyo.

T. Inui and K. Inui. 2000. Committee-based Decision Making in Probabilistic Partial Parsing.
In Proceedings of COLING 2000, pages 348-354. Morgan Kaufmann.

F. Jelinek, J. Lafferty, and R. Mercer, 1992. Speech Recognition and Understanding: Recent
Advances, Trends, and Applications, Series F: Computer and Systems Sciences, Volume 75,
chapter Basic Methods of Probabilistic Context-free Grammars, pages 1689-1690. Springer
Verlag, New York.

R. Johnson, M. King, and L. Tombe. 1985. EUROTRA: A Multilingual System under Develop-
ment. Computational Linguistics, 11(2-3):155-169.

M. Johnson, S. Geman, S. Canon, Z. Chi, and S. Riezler. 1999. Estimators for Stochastic
”Unification-based” Grammars. In Proceedings of the 37th Annual Meeting of the Association
for Computational Linguistics (ACL99), pages 535-541.

S. Kahane, A. Nasr, and O. Rambow. 1998. Pseudo-Projectivity: A Polynomially Parsable Non-
Projective Dependency Grammar. In Proceedings of the 36th annual meeting on Association
for Computational Linguistics, pages 646—652.

S. Kahane, 2003. Handbooks of Linguistics and Communication Sciences 25 : 1-2, chapter The
Meaning-Text Theory, Dependency and Valency, pages 546-569. De Gruyter, Berlin/New

161

York.

R. M. Kaplan, S. Riezler, T. H. King, J. T. Maxwell III, A. Vasserman, and R. Crouch. 2004.
Speed and Accuracy in Shallow and Deep Stochastic Parsing. In Proceedings of the Human
Language Technology Conference and the North American Chapter of the Association for Com-
putational Linguistics (HLT-NAACL 2004).

R. Kaplan. 1989. The Formal Architecture of Lexical-Functional Grammar. Journal of Infor-
mation Science and Engineering, 5:305-322.

N. Katoh and T. Ehara. 1989. A Fast Algorithm for Dependency Structure Analysis (in
Japanese). In Proceedings of 89th Annual Convention of the Information Processing Society.
M. Kay. 1984. Functional Unification Grammar: a Formalism for Machine Translation. In
Proceedings of the 22nd annual meeting on Association for Computational Linguistics, pages

75-78, Morristown, NJ, USA. Association for Computational Linguistics.

K. Kimura and H. Hirakawa. 2000. Abstraction of the EDR Concept Classification and its
Effectiveness in Word Sense Disambiguation. In Proceedings of LREC2000.

T. Kodama. 1987. {REFXEDHFE (Study in Dependency Grammar) (in Japanese). Kenkyu-sha
Shuppan, Tokyo.

G.J. Kruijff. 2001. A Categorial-Modal Logical Architecture of Informativity: Dependency Gram-
mar Logic & Information Structure. Ph.D. thesis, Faculty of Mathematics and Physics, Charles
University, Prague.

G.J. Kruijff. 2002. Formal & Computational Aspects of Dependency Grammar - Heads, depen-
dents, and dependency structures -. presentation.

V. Kubon. 2001. Problems of Robust Parsing of Czech. Ph.D. thesis, Faculty of Mathematics
and Physics, Charles University, Prague.

T. Kudo and Y. Matsumoto. 2005. Japanese Dependency Parsing Using Relative Preference of
Dependency (in Japanese). IPSJ Journal, 46(4):1082-1092.

S. Kurohashi and M. Nagao. 1994. A Syntactic Analysis Method of Long Japanese Sentences
based on the Detection of Conjunctive Structures. Computational Linguistics, 20(4):507-534.

J. Lafferty, D. Sleator, and D. Temperley. 1992. Grammatical Trigrams: a Probabilistic Model
of Link Grammar. In Probabilistic Approaches to Natural Language.

B.Y.T. Lai and C. Huang. 1994. Dependency Grammar and the Parsing of Chinese Sentences.
Arxiv preprint emp-lg/9412001.

A. H. Land and A. G. Doig. 1960. An Automatic Method of Solving Discrete Programming
Problems. Economerrica, 28(3):497-520.

S. Lee and K. S. Choi. 1997. Reestimation and Best-First Parsing Algorithm for Probabilistic
Dependency Grammars. In Proceedings of the Fifth Workshop on Very Large Corpora, pages
41-55.

D. Lin. 1998. A Dependency-Based Method for Evaluating Broad-Coverage Parsers. Natural
Language Engineering Archive, 4(2):97-114.

V. Lombardo and L. Lesmo. 1996. An Earley-type recognizer for dependency grammar. Pro-
ceedings of the 16th conference on Computational linguistics- Volume 2, pages 723-728.

162

V. Lombardo and L. Lesmo. 1998. Formal aspects and parsing issues of dependency theory.
Proceedings of the 36th conference on Association for Computational Linguistics-Volume 2,
pages 787-793.

H. Maruyama. 1990. Constraint Dependency Grammar and Its Weak Generative Capacity.
Computer Software.

Y. Matsumoto, H. Tanaka, H. Hirakawa, H. Miyoshi, and H. Yasukawa. 1983. BUP: A Bottom-
Up Parser Embedded in Prolog. New Generation Computing, 1(2):145-158.

S. Matsunaga and M. Kohda. 1988. Linguistic Processing using a Dependency Structure Gram-
mar: for Speech Recognition and Understanding. In Proceedings of the 12th conference on
Computational linguistics, pages 402—407, Budapest, Hungry.

D. McCarthy. 1997. Word Sense Disambiguation for Acquisition of Selectional Preferences. In
Proceedings of the ACL/EACL 97 Workshop Automatic Information Extraction and Building
of Lexical Semantic Resources for NLP Applications, pages 52—61.

R. McDonald and J. Nivre. 2007. Characterizing the Errors of Data-Driven Dependency Parsing
Models. Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 122—
131.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. 2005. Non-projective Dependency Parsing
using Spanning Tree Algorithms. In Proceedings of the Human Language Technology / Empir-
ical Methods in Natural Language Processing conference (HLT-EMNLP), pages 523-530.

I.A. Mel’cuk. 1988. Dependency Syntazx: Theory and Practice. State University of New York
Press, Albany, New York.

P. Mertens. 2002. Parsing Dependency Grammar using ALE. Proceedings COLING 2002,
2:653-659.

Y. Miyao and J. Tsujii. 2002. Maximum Entropy Estimation for Feature Forests. In Proceedings
of Human Language Technology Conference (HLT 2002).

U. Montanari. 1976. Networks of Constraints: Fundamental Properties and Applications to
Picture Processing. Information Science, 7.

T. Mori, M. Matsuo, and H. Nakagawa. 2000. Zero pronoun resolution by Linguistic Con-
straints and Defaults — The case of Japanese Instruction Manuals —. SPECIAL ISSUE ON
ANAPHORA RESOLUTION IN MACHINE TRANSLATION, (Ruslan Mitkov editor), Ma-
chine Translation, 14:231-245.

S. Muresan and O. Rambow. 2007. Grammar Approximation by Representative Sublanguage:
A New Model for Language Learning. In Proceedings of the J5th Annual Meeting of the
Association of Computational Linguistics, pages 832-839, Prague, Czech Republic.

S. Nakagawa and T. Ito. 1987. Recognition of Spoken Japanese Sentences Using Mono-Syllable
Units and Backward Kakari-uke Parsing Algorithm (in Japanese). Transactions of IEICE,
J70-D(12):2469-2478.

A. Nasr, 2000. Selected Aspects of Dependency Theory, chapter Selected Aspects of Dependency
Theory. Benjamins Academic Publishers, Amsterdam.

T. Ninomiya, T. Matsuzaki, Y. Tsuruoka, Y. Miyao, and J. Tsujii. 2006. Extremely Lexicalized

163

Models for Accurate and Fast HPSG Parsing. In Proceeding of EMNLP 2006, pages 155—163.

T. Ninomiya, T. Matsuzaki, Y. Miyao, and J. Tsujii. 2007. A Log-linear Model with an N-gram
Reference Distribution for Accurate HPSG Parsing. In Proceedings of IWPT-2007.

J. Nivre and J. Nilsson. 2005. Pseudo-Projective Dependency Parsing. In Proceedings of the
48rd Meeting of the ACL (ACL-05), pages 99-106.

J. Nivre and K. Sandra. 2006. Dependency Parsing. In COLING-ACL 2006 Tutorial Notes.

J. Nivre and M. Scholz. 2004. Deterministic Dependency Parsing of English Text. In Proceedings
of COLING’04, pages 64-70.

J. Nivre. 2005. Dependency Grammar and Dependency Parsing. Technical report, MSI report
05133, Vaxjo University: School of Mathematics and Systems Engineering.

T. Noro, A. Okazaki, T. Tokunaga, and H. Tanaka. 2002. KIHE H AKFESCIEMEICET 5 —
&%%. In Proceeding of The Eighth Annual Meeting of The Association for Natural Language
Processing, pages 387-390.

T. Noro, T. Hashimoto, T. Tokunaga, and H. Tanaka. 2005. Building a Large-Scale Japanese
Grammar. Journal of Natural Language Processing, 12(1):3-32.

S. Oepen, K. Toutanova, S. Shieber, C. Manning, D. Flickinger, and T. Brants. 2002. The
LinGO, Redwoods Treebank. Motivation and Preliminary Applications. In Proceedings of the
19th International Conference on Computational Linguistics (COLING 2002).

K. Ozeki and Y. Zhang. 1999. f/h= A My EIRIRE L L CO4R 0 30 @M (Kakari-uke analysis
as minimum cost partitioning problem) (in Japanese). In Proceeding of the Workshop of The
Fifth Annual Meeting of The Association for Natural Language Processing, pages 9-14.

K. Ozeki. 1986. A Multi-stage Decision Algorithm for Optimum Bunsetsu Sequence Selection
(in Japanese). In Speech-86-32,IEICE, pages 41-48.

K. Ozeki. 1994. Dependency Structure Analysis as Combinatorial Optimization. Information
Sciences, 78(1-2):77-99.

K. Ozeki. 1998. A Tabular Method of Finding the Optimal Word String together with its
Dependency Structure. In Tabulation in Parsing and Deduction (TAPD’98).

F. Pereira and D. Warren. 1980. Definite Clause Grammars for Language Analysis - A Survey of
the Formalism and a Comparison with Augmented Transition Networks. Artificial Intelligence,
13(3):231-278.

C. Pollard and I. A. Sag. 1994. Head-Driven Phrase Structure Grammar. University of Chicago
Press, Chicago.

O. Rambow and A. Joshi. 1995. A Formal Look at Dependency Grammars and Phrase-
Structure Grammars, with Special Consideration of Word-Order Phenomena. Current Issues
in Meaning-Text Theory. Pinter, London, pages 167—-190.

P. Resnik. 1993. Selection and Information: A Class-Based Approach to Lexical Relationships.
Ph.D. thesis, University of Pennsylvania, Philadelphia.

P. Resnik. 1995a. Disambiguating Noun Groupings with Respect to WordNet Senses. In Pro-
ceedings of the ACL-95.

P. Resnik. 1995b. Using Information Content to Evaluate Semantic Similarity in a Taxonomy.

164

In Proceedings of the IJCAI-95.

S. Riezler, T. H. King, R. M. Kaplan, R. Crouch, J. T. Maxwell III, and M. Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-Functional Grammar and Discriminative Es-
timation Techniques. In Proceedings of the 40th Annual Meeting of the ACL (ACL-02), pages
271-278.

H. C. Rim, J. Seo, and R. F. Simmons. 1990. Transforming Syntactic Graphs into Semantic
Graphs. Technical report, Artificial Intelligence Lab, Texas at Austin.

J.J. Robinson. 1970. Dependency Structures and Transformational Rules. Language, 46(2):259—
285.

K. Sagae and A. Lavie. 2006. A Best-First Probabilistic Shift-Reduce Parser. In Proceedings of
the COLING/ACL 2006 Main Conference Poster Sessions, pages 691-698.

K. Sagae and J. Tsujii. 2007. Dependency Parsing and Domain Adaptation with LR Models
and Parser Ensembles. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL
2007, pages 1044-1050, Prague, Czech Republic.

K. Sagae, Y. Miyao, and J. Tsujii. 2007. HPSG Parsing with Shallow Dependency Constraints.
In Proceedings of the 44th Meeting of the Association for Computational Linguistics, pages
624-631, Prague, Czech Republic.

G. Sampson. 2000. A Proposal for Improving the Measurement of Parse Accuracy. International
Journal of Corpus Linguistics, 5(1):53-68.

M. Schiehlen. 1996. Semantic Construction from Parse Forests. In Computational Linguistics
(COLING’96), pages 907-912.

K. Seki, A. Fujii, and T. Ishikawa. 1997. Estimation of a Probability Distribution over a
Hierarchical Classification. In Proceedings of the Tenth White House Papers COGS - CSRP.
K. Seki, A. Fujii, and T. Ishikawa. 2002. A Probabilistic Method for Analyzing Japanese
Anaphora Integrating Zero Pronoun Detection and Resolution. In Proceedings of COLING 02,

pages 188-195.

J. Seo and R. F. Simmons. 1989. A Syntactic Graphs: A Representation for the Union of All
Ambiguous Parse Trees. Computational Linguistics, 15(1):19-32.

P. Sgall, E. Hajicovd, J. Panevova, and J. Mey. 1986. The Meaning of the Sentence in its
Semantic and Pragmatic Aspects. Reidel.

S. M. Shieber, H. Uszkoreit, F. C. N. Pereira, J. Robinson, and M. Tyson. 1983. The Formalism
and Implementation of PATR-II. Technical report, SRI International, Menlo Park, California.

K. Shirai, M. Ueki, T. Hashimoto, T. Tokunaga, and H. Tanaka. 2000. MSLR Parser - Tools for
Natural Language Analysis. Natural Language Processing, 7(5):93-112.

K. Shudo, T. Narahara, and S. Yoshida. 1980. Morphological Aspects of Japanese Language
Processing. In Proceedings of COLING’80, pages 1-8.

D. Sleator and D. Temperley. 1991. Parsing English with a Link Grammar. Technical report,
Department of Computer Science, Carnegie Mellon University.

B. Srinivas. 2000. A Lightweight Dependency Analyzer for Partial Parsing. Natural Language
Engineering, 6(2):113-138.

165

M. Steedman. 2000. The Syntactic Process. The MIT Press, Cambridge, MA.

A. Stolcke, C. Chelba, G. Engle, V. Jimenez, L. Mangu, H. Printz, E. Ristad, R. Rosenfeld,
and D. Wu. 1997. Dependency Language Modeling. Large vocabulary continuous speech
recognition summer research workshop technical reports, John Hopkins University.

K.Y.Su, T. H. Chiang, and J. S. Chang. 1996. An Overview of Corpus-Based Statistics-Oriented
(CBSO) Techniques for Natural Language Processing. International Journal of Computational
Linguistics & Chinese Language Processing (CLCLP), 1(1):101-157.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. 2004. Max-Margin Parsing. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

L. Tesniere. 1969. Eléments de syntaze structurale. Klincksieck.

M. Tomita. 1987. An Efficient Augmented-Context-Free Parsing Algorithm. Computational
Linguistics, 13(1-2):31-46.

K. Toutanova and C. D. Manning. 2002. Feature Selection for a Rich HPSG Grammar Using De-
cision Trees. In Proceedings of the 19th International Conference on Computational Linguistics
(COLING 2002).

Y. Tsuruoka, Y. Miyao, and J. Tsujii. 2004. Towards Efficient Probabilistic HPSG Parsing:
Integrating Semantic and Syntactic Preference to Guide the Parsing. In IJCNLP-04 Workshop:
Beyond Shallow Analyses- Formalisms and Statistical Modeling for Deep Analyses.

M. Walker, M. Iida, and S. Cote. 1994. Japanese Discourse and the Process of Centering.
Computational Linguistics, 20(2):193-232.

D. L. Waltz, 1975. The Psychology of Computer Vision, chapter Understanding Line Drawings
of Scenes with Shadows. McGraw-Hill.

W. Wang and M. P. Harper. 2002. The SuperARV Language Model: Investigating the Effec-
tiveness of Tightly Integrating Multiple Knowledge Sources. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing.

W. Wang and M. P. Harper. 2004. A Statistical Constraint Dependency Grammar (CDG)
Parser. In Workshop on Incremental Parsing: Bringing Engineering and Cognition Together
(ACL), pages 42-49.

L. Wanner. 1994. Current issues in Meaning-Text Theory. Pinter Publishers, London.

Y. A. Wilks. 1975. An Intelligent Analyzer and Under-stander of English. Communications of
the A.C. M., 18:264-274.

T. Winograd. 1983. Language as a Cognitive Process: Volume 1 Syntazr. Addison-Wesley
Publishing.

F. Xia and M. Palmer. 2000. Converting Dependency Structures to Phrase Structures. Proceed-
ings of the First International Conference on Human Language Technology Research, pages
1-5.

S. Xiaodong and Y. Chen. 2007. Nbest Dependency Parsing with Linguistically Rich Models.
In Proceedings of the Tenth International Conference on Parsing Techmologies, pages 80-82,
Prague, Czech Republic.

H. Yamada and Y. Matsumoto. 2003. Statistical Dependency Analysis with Support Vector

166

Machine. In Proceedings of IWPT’03, pages 195-206.

S. Yoshida. 1972. Syntax Analysis of Japanese Sentence based on Kakariuke Relation between
Two Bunsetsu (in Japanese). Transactions of IECE Japan, J55-D(4).

D. Zeman and Z. Zabokrtsky. 2005. Improving Parsing Accuracy by Combining Diverse Depen-
dency Parsers. In Proceedings of the International Workshop on Parsing Technologies, pages
171-178, Vancouver, British Columbia.

