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Abstract  

The Ice-POM model is used to predict sea ice conditions along the Arctic Sea Routes. 
However, the model-only-predictions aren’t reliable due to the uncertainties in initial 
conditions and forcing data. The aim of this study is to overcome these drawbacks by 
introducing a data assimilation system to the Ice-POM model. 

This study focuses on using data assimilation to improve the predictability of Ice-POM 
model. The aim of the study is to improve the model predictions such that it would produce 
better initial conditions for high-resolution models as well as sea route mapping models. 
Another objective is to use satellite observations of different sea ice variables. Sea ice 
concentration, sea ice thickness and sea ice velocity are assimilated in the study. 

The study also focuses on testing several assimilation methods. Three-assimilation 
methods namely i) direct insertion method, ii) an improved nudging method and iii) an 
atmospheric forcing Kalman filter (based on ensemble Kalman filter) method are tested. 
The nudging method that is used, reflects the errors of both observations and the model. 
Atmospheric forcing Kalman filter method uses different atmospheric forcing data from 
different weather agencies in each ensemble member. The assimilated variables are sea 
ice concentration, sea ice thickness and sea ice velocity, which are assimilated individually 
and in combination.  The assimilation time window is also varied using daily, weekly, 
monthly and yearly intervals.   

Assimilating sea ice variables improved ocean and ice conditions as expected. It is evident 
from the changes in sea ice extent, sea ice thickness and ocean salinity. This is confirmed 
by comparing resulting ocean salinity with observations. While daily assimilation yields the 
best results, it is also evident that the weekly and monthly assimilation window can also 
produce sea ice extent predictions with acceptable accuracy compared to the model-only 
predictions in summer.  

Non-assimilated sea ice variables have also been indirectly improved by assimilation. 
Improvements in sea ice variables are emphasized in the Barents Sea and near the pole. 
The assimilation results are used to initialize regional models. Regional model predictions 
show improvement in ice edge predictions in the melting and freezing season confirming 
the effectiveness of assimilation.  
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1. Introduction 

This chapter presents research background and the motivation for this study.  

 

1.1 Motivation 

Arctic sea ice is a key component of the global climate system. It acts as a heat sink that 

keeps the Polar regions from warming by reflecting nearly 80% of sunlight back to the 

space. Having a higher albedo compared to open ocean, sea ice reduces the amount of 

heat absorbed by the ocean. Many ecosystems and indigenous cultures rely on sea ice for 

habitat and for nourishment.  Sea ice also shields low lying coastal areas from erosion by 

ocean waves. It is also considered as a prominent indicator of global warming. 

During the past few decades sea ice cover in the Arctic Ocean has been rapidly decreasing. 

It is evident from the average monthly Arctic sea ice extent produced by the National Snow 

and Ice Data center(NSIDC) from 1979 to 2015 (figure 1-1). The Inuit communities have also 

been observing this. “Solid ice has disappeared and there are no longer huge icebergs 

during autumn and winter. The ice now comes later and goes out earlier and it is getting 

thinner” (Wongittilin 2000).  

There are various theories and hypothesis to explain this accelerated retreat of sea ice in 

the past few decades. Some of the valid theories are increased atmospheric warming 

(Rothrock 2005), ice albedo and ice feedback effect (Ikeda 2003), increased heat 

transportation from the Atlantic Ocean and the Pacific Ocean to the Arctic Ocean (Shimada 

2006) (Steele 2008) intensification of Arctic Dipole effect (Ikeda 2009),  and the enhanced 

upward heat flux from ocean resulting from changing wind fields (Watanabe 2013). 

According to several model predictions using Community Climate System Model 4.0 

(CCSM4), there is significant probability of observing ice-free Arctic Ocean in summer 

within next few decades (Wang 2012) (Overland 2013)(figure 1-2). 

While the changing sea ice cover has several implications on global climate system, it has 

also led to opening the Arctic Sea Routes (ASR) for an extended period. ASRs consist of two 
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main paths namely Northeastern passage that is also known as Northern Sea Route (NSR) 

and the Northwestern passage (figure 1-3).  

Northern Sea Route runs between Kara Strait and Bering Strait along the Russian 

Federation. Northwestern passage is the route that connects Atlantic and Pacific Oceans, 

along the coastline of Alaska via waterways through Canadian archipelago and Baffin Bay. 

These routes can connect East Asia to Northern Europe and Northern America in a much 

shorter distance; the travel distance is shortened by about 40 percent from the commonly 

used southern shipping route. Therefore, navigation along the ASRs is economically 

appealing. However, it is also necessary to ensure the safety of the ships that travel along 

the ASRs. In order to navigate safely, it is important to know the sea ice conditions in the 

Arctic Ocean well in advance. Ice-POM model (De Silva 2013), (Fujisaki 2010) can be used 

to predict sea ice conditions along ASRs with middle and high resolution (25km, 2.5km). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Average monthly Arctic sea ice extent in September (1979-2015) (National Snow and Ice Data Center 2015) 
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However, model only predictions are prone to produce faulty results due to uncertainties 

in initial conditions, uncertainties in forcing data, and the limitations of spatial and 

temporal resolution. Improving initial conditions in an ice-ocean coupled model is 

challenging due to the lack of sea ice observation data, ocean salinity and temperature 

observation data. Ice-POM model extracts its initial conditions for high-resolution models 

using the whole Arctic model with 25km resolution (figure 1-4). The focus of this study is 

to improve the whole Arctic model (25km) predictions using data assimilation. This would 

improve the initial conditions of the high-resolution model.  

 

1.2 Research Background 

Data assimilation is a widely used concept in numerical weather predictions to improve the 

model predictions using observation data. However, there are only a few studies available 

on data assimilation using satellite sea ice observations.  

Lindsay et al. 2006 assimilated sea ice concentration and sea ice velocity covering whole 

Arctic region. However, the grid they have used is a coarse grid of 40km resolution. Lindsay 

et al. (2006) has also used a fixed value for observation errors irrespective of location and 

time, but in reality, the observation errors considerably vary with time and location.  

Caya et al. (2010) have assimilated sea ice concentration and sea ice thickness. They have 

employed a coarse grid and the focus is only on Canadian East coast. Toyoda et al. (2011) 

has assimilated sea ice concentration. They have limited their domain to the East Siberian 

and the Beaufort seas.  In a recent study Lindsay et al. (2012) have assimilated sea ice 

concentration and sea surface temperature. This study is only performed during summer. 

Scott et al. (2012) have assimilated sea ice concentration and sea surface temperature 

using 3D Variational (3DVAR) method. However, Scott’s study is only performed from 

December 2006 to June 2007 avoiding summer. A study by Sakov et al. (2012) uses 

ensemble Kalman filter using TOPAZ4(a coupled ocean-sea ice data assimilation system for 

the Arctic Ocean) model using different sea ice observation products that are used in this 

thesis.  
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Figure 1-3: (a)(left) Northwest passage is shown in solid line. Conventional route is shown by the dotted line. (b)(right) 

Northeastern passage that is also known as northern shipping route is shown in solid line. The dotted lines show the 

conventional routes. (Weathernews 2008) 

Figure 1-2: September Arctic sea ice extent from CMIP5 models for historical and RCP8.5 runs. Each thin colored line 
represents one ensemble member. Thick colored lines are the ensemble mean of all members (yellow), and ensemble 
means from seven selected models (blue), The thick red line is based on observations (HadleyISST_ice) as adjusted 
by Meier before 1979. Units are million square kilometers.  (Wang 2012)  
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Figure 1-4: Initial conditions for 2.5km regional models are extracted from 25km whole arctic model (De Silva 2013) 

Most of the commonly used methods in data assimilation of sea ice variables are nudging 

method, optimal interpolation method and the 3DVAR method with ensemble Kalman 

filter (Caya et al. 2010), (Lindsay et al. 2006), (Lindsay et al. 2012), (Scott et al. 2012). It can 

also be observed that most of the previous studies are only focusing on assimilating only 

one sea ice variable out of which the most common variable is the sea ice concentration.  

An extensive literature survey is carried out. The summary of the literature survey is 

presented in table 1-1-a and 1-1-b. Table 1-1-c is the color code for table 1-1-a and 1-1-b. 

One of the conclusions from the study is that when more than one variable is assimilated, 

sea ice predictability improved significantly. In previous works nudging method and 

optimal interpolation methods aren’t used for multiple variable assimilations. When a 

single variable is assimilated all methods produce similar results. In most of the studies 

observation errors and model errors are time independent. This thesis aims to create a 

more efficient data assimilation system for ice ocean coupled Ice-POM model. 
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1.3 Research objectives 

The main objective of this study is to implement a data assimilation system into ice-ocean 

coupled Ice-POM model. The aim is to implement a data assimilation system into mid 

resolution (25km) model. This would consequently improve initial ice and ocean conditions 

of high-resolution (2.5 km) regional models. This study also focuses on evaluating the 

effectiveness of different assimilation methods in the Ice-POM model. The study also uses 

different observation products to that of previous studies. 

 Introduce data assimilation into Ice-POM  

o Improve the initial conditions and boundary conditions of the high-

resolution models by introducing data assimilation to mid resolution model. 

 Assimilate different variables (single/multiple) and testing their effectiveness 

o Ice concentration, ice velocity, ice thickness 

 Use different data assimilation methods and testing their effectiveness 

Direct insertion, nudging, Atmospheric forcing Kalman filter (AFKF) 

 

1.4 Originality 

This study is a first attempt to implement a data assimilation system to ice-POM model. In 

this study data assimilation is introduced to ice-POM model with the aim of accurately 

predicting the short-term sea ice distribution along the ASRs. Compared with the work 

mentioned above this study uses a model with better resolution (25km and 2.5km). The 

domain covers a large area including the Arctic Ocean, Greenland-Iceland-Norwegian (GIN) 

seas and the Northern Atlantic Ocean. Unlike other studies three sea ice variables, namely 

sea ice concentration, sea ice thickness and sea ice velocity are used in this study. This study 

uses three assimilation methods namely, direct insertion method, nudging method and 

atmospheric forcing Kalman filter method and the effectiveness of the methods are 

discussed comprehensively. 
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Table 1-1: Predictability improvement by assimilating different variables 

Parameters Ice conc. 
Ice 

Velocity 

Ice 

thickness 

Ice 

concentration 

and thickness 

Ice 

concentration 

and velocity 

Ice 

concentration, 

brightness 

temperature 

Ice 

thickness 

,snow 

thickness 

Accuracy 

improvement               

 

Table 1-1-b: Comparing different assimilation methods 

Method 

Nudging 

single 

variable 

Optimal 

interpolation 

single 

variable 

Ensemble Kalman 

filter single  

variable 

Optimal 

interpolation 

multiple 

variables 

Ensemble 

Kalman filter 

multiple 

Accuracy improvement           

Computational complexity           

Computational time           

 

Table 1-1-c: color code for 1-1-a and 1-1-b 

Low 

 

Medium 

 

High 
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The study uses observation products that haven’t been used in other mentioned studies. 

This study considers observation bias as well as model errors. Unlike most of the work 

discussed before, in this study observation bias as well as model errors are time dependent.  

So far there hasn’t been any comprehensive sensitivity study about different assimilation 

methods and the parameters that affects data assimilation in sea ice-ocean coupled 

computations. In this study assimilation time interval is also considered and its impact on 

the quality of resulting predictions are also considered.  The effect on lead-time from 

different assimilation techniques and different variables is also investigated in this study. 

 

1.5 Organization 

This thesis is organized as follows. First chapter introduces the research background. 

Chapter two describes the ice ocean coupled Ice-POM model and presents the results of 

the model run. Assimilation methods and the process are presented in chapter three. 

Chapter four, five, and six present the results and discussions from three assimilation 

methods used. Chapter seven evaluates the impact of assimilation. Chapter eight presents 

the regional modeling and assimilation in the regional model. Conclusions section presents 

the summary of the important findings of this study and the future direction of the work. 
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2.  Ice-POM Model 

This chapter presents model description and assimilation method 

 m 

 

 

 

 

 

 

 

 

 

 

2.1 Model Description 

The ice-ocean coupled model, ice-POM that is used in this study is the model used by 

Fujisaki (2010) and De Silva (2013) for ice-ocean coupled computations. The ocean model 

of the ice-POM is based on Message Passing Interface (MPI) version of the Princeton Ocean 

Model (POM).  The model variables, constants, and parameters of the ice-POM model are 

listed in table 2-1. In this thesis a, i, s, and w denote atmosphere, sea ice, snow and 

seawater respectively.  

 

Figure 2-1: Model domain contains the entire Arctic Ocean (depth in m), Greenland-Iceland-Norwegian (GIN) seas and the 
Northern Atlantic Ocean (De Silva 2013) 

Barents 
Sea Greenland Sea 

Kara 
Sea 

Laptev Sea 

East Siberian 
Sea 

Chukchi 
Sea 

BeaufortS
ea 
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Table 2-1: Constants used in ice-POM model (De Silva 2013) 

Symbol Description Values Units 

 𝐶𝐷𝑎𝑖  Air to ice drag coefficient  1.2 ×  10−3   

 𝐶𝐷𝑤𝑖  Water to ice drag coefficient  5 ×  10−3   

 𝐶ℎ𝑖𝑜  

Turbulence ice ocean heat 

transfer coefficient 
 5 ×  10−3   

 𝐶𝑙𝑎𝑡  

Latent heat bulk transfer 

coefficient 
 1.75 ×  10−3   

 𝑐𝑝𝑎  Specific heat of air 1004.0  J kg-1K-1 

 𝑐𝑝𝑤  Specific heat of seawater 4000.0  J kg-1K-1 

 𝐶𝑠𝑒𝑛  

Sensible heat bulk transfer 

coefficient 
1.75 ×  10−3   

 G Gravitational acceleration  9.81  ms-2 

 ℎ𝑚𝑖𝑛  Minimum ice thickness  0.1  m 

 𝑘𝑖  Thermal conductivity of ice  2.04  W m-1K-1 

 𝑘𝑠  Thermal conductivity of snow  0.31  W m-1K-1 

 𝐿𝑚𝑒𝑙𝑡  Latent heat of fusion  3.3 ×  105  J kg-1 

 𝐿𝑠𝑢𝑏𝑙  Latent heat of sublimation  2.8 ×  106   J kg-1 

𝐿𝑣𝑎𝑝 Latent heat of vaporization   2.5 ×  106  J kg-1 

 𝑛𝑠𝑢𝑏  Number of elastic sub-cycles   50 
 

 P* Ice compressive strength   3 ×  104  Pa 

 R Radius of Earth   6371 ×  103  m 

 S Solar constant   1353  W m-2 
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 SI Sea ice salinity  5.0  g kg-1 

 𝑇𝑖
𝑚𝑒𝑙𝑡 Melting point of sea ice   273.05  K 

 𝑇𝑠
𝑚𝑒𝑙𝑡 Melting point of snow  273.15  K 

 ai Albedo of sea ice  0.7   

 as Albedo of snow  0.9   

 aw Albedo of seawater  0.1   

 휀𝑖 Sea ice emissivity  0.97   

 휀𝑠 Snow emissivity  0.99   

 휀𝑤 Seawater emissivity  0.97   

 𝜅 Von Karman constant  0.4   

 𝜌𝑎  Air density  1.247  kg m-3 

 𝜌𝑖  Sea ice density  910  kg m-3 

 𝜌𝑠 Snow density  330  kg m-3 

 𝜌𝑤 Seawater density  1025.9  kg m-3 

 𝜎𝑏 Stefan-Boltzman constant   5.67 ×  10−8  Wm-2K-4 

 

2.2 Ocean Model 

The Ocean part of the coupled ice-ocean model is a parallel version of Princeton Ocean 

Model written using Message Passing Interface (MPI) language. The Coordinate system is 

a three-dimensional spherical coordinate system. The continuity equation and momentum 

equations are written in the s-coordinate system and spatially discretized using Arakawa C 

grid.  Model domain contains the entire Arctic Ocean, Greenland-Iceland-Norwegian (GIN) 
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seas and the Northern Atlantic Ocean as shown in figure 2-1. The resolution of zonal and 

meridional grid are set to about 25km x 25km. The vertical grid is composed of s-

coordinates system with 33 levels (Mellor 2002). The coordinate system of the model is 

rotated to the equator to avoid the singularity at the Pole. Top three s-levels are 1m in 

depth. Remaining 30 layers are composed of sigma coordinate system (figure 2-2). The 

bottom topography is created from Earth Topography 1 Arc-minute Gridded Elevation 

(ETOPO1) dataset. More details of the model description can be found in Princeton Ocean 

Model manual (Mellor 2002); (Mellor 2003) and in the PhD thesis of De Silva (2013) 

Cartesian coordinate system (x,y,z,t) is transformed to the  s-coordinate system(s(x*, y*, k, 

t*)).  

𝑥 = 𝑥∗          (2-1) 

𝑦 = 𝑦∗          (2-2) 

𝑡 = 𝑡∗           (2-3) 

𝑧 =  𝜂(𝑥∗, 𝑦∗, 𝑡∗) + 𝑠(𝑥∗, 𝑦∗, 𝑘, 𝑡∗)       (2-4) 

A continuous variable k is ranging from 1 ≤ 𝑘 ≤ 𝑘𝑏. Where, 𝑘𝑏 = 33. It is discrete and will 

be the label of the numerical levels where s=0 at k=1. Surface elevation is  𝜂  and 𝐻𝑥,𝑦  is 

the bathymetry. In z-level system 𝑠 =  𝜎(𝑘)(𝐻𝑚𝑎𝑥 +  𝜂(𝑥, 𝑦, 𝑡)) and the sigma system 𝑠 =

 𝜎(𝑘)(𝐻𝑥,𝑦 +  𝜂(𝑥, 𝑦, 𝑡)). In z level system 𝜎(𝑘) = (𝑧 − 𝜂)/(𝐻𝑚𝑎𝑥 + 𝜂). In sigma system 

𝜎(𝑘) = (𝑧 − 𝜂)/(𝐻(𝑥,𝑦) + 𝜂). 

𝑠𝑥 = 
𝜕𝑠

𝜕𝑥∗
 ,  𝑠𝑦 = 

𝜕𝑠

𝜕𝑦∗
                          (2-5 a,b) 

𝜂𝑥 = 
𝜕𝜂

𝜕𝑥∗
 ,  𝜂𝑦 = 

𝜕𝜂

𝜕𝑦∗
            (2-6 a,b) 

𝑠𝑘 = 
𝛿𝑠

𝛿𝑘
                                                       (2-7) 

𝜕𝑘

𝜕𝑥
 = -( 𝜂𝑥 + 𝑠𝑥)/𝑠𝑘,  

𝜕𝑘

𝜕𝑦
 = - ( 𝜂𝑦 + 𝑠𝑦)/𝑠𝑘                       (2-8 a,b) 
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2.2.1 Governing equations of ocean model 

The continuity and momentum equations are written in s-coordinate system and spatially 

discretized using Arakawa C grid.  By dropping all the asterisks from independent and 

dependent variables the equations are presented in the format as described in detail by 

Mellor (2002).  

ℑ(𝜑) =  
𝜕𝑠𝑘𝜑

𝜕𝑡
+

𝜕𝑈𝑠𝑘𝜑

𝜕𝑥
+

𝜕𝑉𝑠𝑘𝜑

𝜕𝑦
+

𝜕𝑊𝜑

𝜕𝑘
       (2-9) 

 

Where, 𝜑 is any given variable. The continuity equation is written as: ℑ(𝜑) =

0, 𝑤ℎ𝑒𝑟𝑒  𝜑 = 1 

Figure 2-2: s-coordinate system 
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ℑ(1) = 0          (2-10) 

 

The conservation of momentum equations are written as follows. 

ℑ(𝑈) − 𝑓𝑉𝑠𝑘 + 𝑔𝑠𝑘
𝜕𝜂

𝜕𝑥
+  𝑔

𝑠𝑘

𝜌𝑜
∫ [𝑠𝑘

𝜕𝜌′

𝜕𝑥
− (𝑠𝑥 + 𝜂𝑥)

𝜕𝜌′

𝜕𝑘′]  𝑑𝑘′ = 
𝜕

𝜕𝑘
[
𝐾𝑀

𝑠𝑘

𝜕𝑈

𝜕𝑘
] +

0

𝑘

(
𝜕𝑠𝑘𝑡𝑥𝑥

𝜕𝑥
+

𝜕𝑠𝑘𝑡𝑥𝑦

𝜕𝑦
 )         (2-11) 

ℑ(𝑉) − 𝑓𝑈𝑠𝑘 + 𝑔𝑠𝑘
𝜕𝜂

𝜕𝑦
+  𝑔

𝑠𝑘

𝜌𝑜
∫ [𝑠𝑘

𝜕𝜌′

𝜕𝑦
− (𝑠𝑦 + 𝜂𝑦)

𝜕𝜌′

𝜕𝑘′]  𝑑𝑘′ = 
𝜕

𝜕𝑘
[
𝐾𝑀

𝑠𝑘

𝜕𝑉

𝜕𝑘
] +

0

𝑘

(
𝜕𝑠𝑘𝑡𝑥𝑦

𝜕𝑥
+

𝜕𝑠𝑘𝑡𝑦𝑦

𝜕𝑦
 )            (2-12) 

 

Velocity components are U, V and W in zonal, meridional and vertical directions 

respectively. The gravity constant is g and f is the Coriolis parameter. The density is 𝜌 and 

𝜌′ =  𝜌 − �̅�.  𝐾𝑀 𝑎𝑛𝑑 𝐾𝐻  are vertical kinematic viscosity and vertical diffusivity. 𝐾𝑀, 𝐾𝐻  

and 𝐾𝑞 are functions of a Richardson number dependent on density stratification (Mellor 

2002). The terms 𝑡𝑥𝑥 , 𝑡𝑥𝑦, 𝑡𝑦𝑦 are defined below. 

𝑡𝑥𝑥 = 𝐴𝑀(2
𝜕𝑈

𝜕𝑥
), 𝑡𝑦𝑦 = 𝐴𝑀(2

𝜕𝑉

𝜕𝑥
), 𝑡𝑥𝑦 = 𝐴𝑀(

𝜕𝑈

𝜕𝑦
+ 

𝜕𝑉

𝜕𝑥
)               (2-13 a, b, c) 

𝑞𝑇𝑥 = 𝐴𝐻(
𝜕𝑇

𝜕𝑥
), 𝑞𝑇𝑦 = 𝐴𝐻(

𝜕𝑇

𝜕𝑦
), 𝑞𝑠𝑥 = 𝐴𝐻(

𝜕𝑆

𝜕𝑥
), 𝑞𝑆𝑦 = 𝐴𝐻(

𝜕𝑆

𝜕𝑦
)          (2-14 a, b, c, d) 

 

AM and AH are horizontal viscosity and diffusivity respectively. They are calculated using 

equation 2-17 and 2-18. They are proportional to the horizontal grid size and velocity 

gradients. The proportional coefficient C is 0.2 (Smagorinsky 1963). 

𝐴𝑀 = 𝐶Δ𝑥Δ𝑦
1

2
 [(

𝜕𝑈

𝜕𝑥
)
2

+ 
1

2
(
𝜕𝑉

𝜕𝑥
+

𝜕𝑈

𝜕𝑦
)
2

+ (
𝜕𝑉

𝜕𝑦
)
2

]
1/2

               (2-15) 

𝐴𝐻 = 0.1𝐴𝑀                    (2-16) 

 

The transportation equations for temperature (T) and salinity (S) are written as follows  

ℑ(𝑇) =  
𝜕

𝜕𝑘
[
𝐾𝐻

𝑠𝑘

𝜕𝑇

𝜕𝑘
] + (

𝜕𝑠𝑘𝑞𝑇𝑥

𝜕𝑥
+

𝜕𝑠𝑘𝑞𝑇𝑦

𝜕𝑦
 ) −

𝜕𝑅𝑓

𝜕𝑘
 −  𝑅𝑡(𝑇 − 𝑇𝑜)             (2-17)         



15 

 

ℑ(𝑆) =  
𝜕

𝜕𝑘
[
𝐾𝐻

𝑠𝑘

𝜕𝑆

𝜕𝑘
] + (

𝜕𝑠𝑘𝑞𝑠𝑥

𝜕𝑥
+

𝜕𝑠𝑘𝑞𝑠𝑦

𝜕𝑦
 )  −  𝑅𝑠(𝑆 − 𝑆𝑜)    (2-18) 

 

where, radiation flux is Rf. 𝑅𝑡 and 𝑅𝑠 are restoring constants that restore temperature 

and salinity in a 30day cycle. Climatological temperature and salinity are 𝑇𝑜 and 𝑆𝑜 

extracted from Polar Science Center Hydrographic Climatology (PHC3.0).  Restoring term 

is only used in the spin up run. For model and assimilation run the term is set to zero.  

In the ocean model, Turbulence kinetic energy (q2) and Turbulence length scale (q2l) are 

calculated using below equations in order to calculate Richardson number and there by 

calculate 𝐾𝑀 and 𝐾𝐻. 

ℑ(𝑞2) =  
𝜕

𝜕𝑘
[
𝐾𝑞

𝑠𝑘

𝜕𝑞2

𝜕𝑘
] +

2𝐾𝑀

𝑠𝑘
[(

𝜕𝑈

𝜕𝑘
)
2

+ (
𝜕𝑉

𝜕𝑘
)
2

] + 
2𝑔

𝜌𝑜
𝐾𝐻

𝜕�̅�

𝜕𝑘
−

2𝑠𝑘𝑞3

𝐵1𝑙 
+ (

𝜕𝑠𝑘𝑞𝑞𝑥

𝜕𝑥
+

𝜕𝑠𝑘𝑞𝑞𝑦

𝜕𝑦
 ) 

           (2-19) 

ℑ(𝑞2𝑙) =  
𝜕

𝜕𝑘
[
𝐾𝑞

𝑠𝑘

𝜕𝑞2𝑙

𝜕𝑘
] + 𝐸1𝑙 (

𝐾𝑀

𝑠𝑘
[(

𝜕𝑈

𝜕𝑘
)
2

+ (
𝜕𝑉

𝜕𝑘
)
2

] + 𝐸2
𝑔

𝜌𝑜
𝐾𝐻

𝜕𝜌2

𝜕𝑘
) −

𝑞3�̅�

𝐵1
 +

(
𝜕𝑠𝑘𝑞𝑙𝑥

𝜕𝑥
+

𝜕𝑠𝑘𝑞𝑙𝑦

𝜕𝑦
 )         (2-20) 

 

where, 

𝑞𝑞𝑥 = 𝐴𝐻(
𝜕𝑞2

𝜕𝑥
), 𝑞𝑞𝑦 = 𝐴𝐻(

𝜕𝑞2

𝜕𝑦
), 𝑞𝑙𝑥 = 𝐴𝐻(

𝜕𝑞2𝑙

𝜕𝑥
), 𝑞𝑙𝑦 = 𝐴𝐻(

𝜕𝑞2𝑙

𝜕𝑦
)  (2-21 a,b,c,d) 

 

𝐵1 is one of the turbulence closure constants which is set to be 16.6 (Mellor 2002). 𝐸1and 

𝐸2 are set to be 0.5 and 0.2 (Mellor 2002). �̅� is a wall proximity function. 
𝜕�̅�

𝜕𝑘
 is the vertical 

density gradient corrected for adiabatic lapse rate. More details of ice-Ocean model are 

explained in De Silva (2013), Mellor (2002) and Mellor (2003). 

 

2.2.1 The Numerical Scheme 

The model has a free surface and a split time step. The external mode portion of the model 

is two-dimensional and uses a short time step based on the CFL condition and the external 
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wave speed. The internal mode is three-dimensional and uses a long timestep based on 

the CFL condition and the internal wave speed. The external mode calculation results in 

updates for surface elevation η  and the vertically averaged velocities in zonal and 

meridional directions, ua, va. The internal mode calculation results in updates for U, V, T, 

S and the turbulence quantities. Fig. 2-3 illustrates the time stepping process for the 

external and internal modes. It is assumed that everything is known at tn-1 and tn (the 

previous leap frog time step having just been completed). Integrals involving the baroclinic 

forcing and the advective terms are supplied to the external mode along with the bottom 

stress, a process which is labeled "Feedback" in figure 2-3; their values are held constant 

during tn < t < tn+1 . The external mode "leap frogs" many times, with the time step, dte, 

until t = tn+1. Internal mode time step is set to be 30 times dte. The vertical time averaged 

velocities (UTF, VTF), and those from the previous time step (UTB, VTB), are time averages 

of the external variables. The internal and external modes have different truncation errors 

so that the vertical integrals of the internal mode velocity may depart slightly from (ua,va) 

during the course of a long integration. Therefore, internal velocities U, V are adjusted to 

be the mean of UTF and VTF. 

 

 

Figure 2-3: Internal external mode interaction (Mellor 2002) 
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The calculation of the three-dimensional (internal) variables is separated into a vertical 

diffusion time step and an advection plus horizontal diffusion time step. The former is 

implicit (to accommodate small vertical spacing near the surface) whereas the latter is 

explicit.  

 

2.3 Ice Model 

Ice-model is based on Fujisaki et al. (2010) and De Silva (2013). Ice is not entirely treated 

as a continuum body. Ice discrete characteristics are considered along the ice edge by 

introducing floe collision rheology (Sagawa 2007) into the conventional elastic-viscous-

plastic rheology (Hunke 2001). Snow effect on ice is parameterized according to Zhang 

(1998). Snow is considered to be an insulated layer on the surface of ice. Sub-grid scale ice 

movements (semi-Lagrangeian movements) are introduced to the sea ice model to 

minimize the sea ice diffusion and improve the accuracy of ice edge locations (Rheem C.K. 

1997).  

 

2.3.1 Governing equations of ice model 

In the sea ice dynamics model, two-dimensional momentum equations are solved in a 

curvilinear coordinate system as follows: 

𝜌𝑖ℎ𝐴
𝜕𝑢𝑖

𝜕𝑡
= 𝐹𝜆 + 𝜏𝑎𝑖𝜆

 +  𝜏𝑤𝑙𝜆
+ 𝜌𝑖ℎ𝐴𝑓𝑣𝑖 − 𝜌𝑖ℎ𝑔

1

𝑅𝑐𝑜𝑠𝜙

𝜕𝐻𝑜

𝜕𝜆
               (2-22) 

𝜌𝑖ℎ𝐴
𝜕𝑣𝑖

𝜕𝑡
= 𝐹𝜙 + 𝜏𝑎𝑖𝜙

 +  𝜏𝑤𝑙𝜙
− 𝜌𝑖ℎ𝐴𝑓𝑢𝑖 − 𝜌𝑖ℎ𝑔

1

𝑅

𝜕𝐻𝑜

𝜕𝜙
                      (2-23) 

 

In these equations 𝜌𝑖, h, A, ui, vi, f, R and Ho are ice density, thickness, concentration, zonal 

and meridional velocities, Coriolis parameter, Earth radius and sea surface height 

respectively. 𝜆 and 𝜙  represent zonal (longitudinal) and meridional (latitude) directions 

respectively.  𝜏𝑎𝑖  and 𝜏𝑤𝑖  are air to ice stresses and ocean to ice stresses. They are 

calculated according to following equations. 
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𝜏𝑎𝑖⃗⃗⃗⃗  ⃗ = 𝜌𝑎𝐶𝐷𝑎𝑖|𝑢𝑎⃗⃗ ⃗⃗ −  𝑢𝑖⃗⃗  ⃗|(𝑢𝑎⃗⃗ ⃗⃗ − 𝑢𝑖⃗⃗  ⃗)                  (2-24) 

𝜏𝑤𝑖⃗⃗ ⃗⃗  ⃗ = 𝜌𝑤𝐶𝐷𝑤𝑖|𝑢𝑤⃗⃗⃗⃗  ⃗ −  𝑢𝑖⃗⃗  ⃗|(𝑢𝑤⃗⃗⃗⃗  ⃗ −  𝑢𝑖⃗⃗  ⃗)        (2-25) 

 

Where 𝜌𝑎 , 𝜌𝑤 ,  𝑢𝑤,  𝑢𝑎   𝐶𝐷𝑎𝑖 , 𝑎𝑛𝑑 𝐶𝐷𝑤𝑖  are air density, sea water density upper surface 

ocean velocity, air velocity, air to ice drag coefficient and ocean to ice drag coefficient 

respectively. Arrow above represents the vector field.  

Internal ice stress gradients 𝐹𝜆 𝑎𝑛𝑑 𝐹𝜙 are calculated as the divergence of stress tensor 𝜎 

(Zhang 1997). R is the radius of the earth.  

𝐹𝜆 = 
1

𝑅 𝑐𝑜𝑠𝜙

𝜕𝜎𝜆𝜆

𝜕𝜆
+ 

1

𝑅

𝜕𝜎𝜆𝜙

𝜕𝜙
−

2𝜎𝜆𝜙𝑡𝑎𝑛𝜙

𝑅
        (2-26) 

𝐹𝜙 = 
1

𝑅 𝑐𝑜𝑠𝜙

𝜕𝜎𝜆𝜙

𝜕𝜆
+ 

1

𝑅

𝜕𝜎𝜙𝜙

𝜕𝜙
+

(𝜎𝜆𝜆−𝜎𝜙𝜙)𝑡𝑎𝑛𝜙

𝑅
      (2-27) 

 

In most of the sea ice numerical models ice dynamic process is based on continuum 

approach, which is simple in application. Some models use discrete element techniques, 

which is computationally expensive. To answer these two problems, in this model the floe 

collision rheology (Sagawa 2007) is introduced into the conventional elastic-viscous-plastic 

rheology. This method can take the discrete characteristics of sea ice edge into account. 

 

2.4 Thermodynamic Model 

Ice is considered to be a horizontally homogeneous slab floating over seawater. 

Thermodynamics model incorporates ice growth. Ice thickness change, lateral growth and 

ice melting are modeled according to 0-layer thermodynamic model (Parkinson et al. 1979) 

that has been proposed by Semtner (1976). In the ice-POM model temperature and 

thermodynamically created thickness of sea ice are controlled by heat conduction through 

ice slab and balance of fluxes at upper and lower surfaces.  
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2.4.1 Surface heat flux calculation 

Surface heat fluxes consist of, clear sky shortwave solar radiation Fswo, incoming longwave 

radiation FLE, sensible heat flux Fsen, latent heat flux Flat, outgoing longwave radiation FLO, 

and heat input from ocean to ice bottom Fwi. The outgoing longwave radiation, sensible 

heat and latent heat fluxes are functions of surface temperature Tsfc and surface (snow, 

sea ice or water) properties. 

2.4.1.1 Shortwave radiation 

Empirical equations of clear sky shortwave radiation formulated by Zilman  (Zillman 1972) 

is used in the model. 

𝐹𝑠𝑤𝑜 =
𝑆 𝑐𝑜𝑠2𝑍

(cos𝑍+2.7)𝑣𝑝×10−5+1.085𝑐𝑜𝑠𝑍+0.1
      (2-28) 

𝑐𝑜𝑠𝑍 = sin ∅ sin 𝛿 + cos ∅ cos 𝛿 cos𝐻𝐴      (2-29) 

𝛿 = 23.44° 
𝜋

180
cos [(172 − 𝐽)

𝜋

180
]       (2-30) 

𝐻𝐴 = (12 − 𝐻)
𝜋

12
         (2-31) 

 

Where, S is solar constant, Z is zenith angle, 𝑣𝑝 is vapor pressure, ∅ is latitude, 𝛿 is sun 

declination angle, J is days in year, HA is sun hour angle, and H is local time.  The values of 

the constants are defined in table 2-1. The clear sky shortwave radiation is modified by 

introducing the effect of cloud cover (Laevastu 1960) as below. 

𝐹𝑠𝑤 = 𝐹𝑠𝑤𝑜(1 − 0.6 𝑐3)         (2-32) 

Where c is total cloud cover, which varies between 0 and 1. 

 

2.4.1.2 Incoming longwave radiation 

Clear sky longwave radiation 𝐹𝐿𝐸𝑜  is modeled according to Efimova theories (Efimova 

1961) 

𝐹𝐿𝐸𝑜 = 𝜎𝑏𝑇𝑎
4(0.746 + 6.6 × 10−5 𝑣𝑝)      (2-33) 
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Where, 𝜎𝑏 is Stefan-Boltzman constant and 𝑇𝑎 is atmospheric temperature. This 

formulation is further modified by introducing cloud effect from the following equation 

(Parkinson 1979).  

𝐹𝐿𝐸 = 𝐹𝐿𝐸𝑜 (1 + 0.275𝑐)        (2-34) 

 

2.4.1.3 Outgoing longwave radiation 

The outgoing longwave radiation depends on the surface temperature 𝑇𝑠𝑓𝑐  and surface 

emissivity (snow, ice or water) 휀𝑠𝑓𝑐. 

𝐹𝐿𝑂 = 휀𝑠𝑓𝑐𝜎𝑇𝑠𝑓𝑐
4           (2-35) 

 

2.4.1.4 Sensible heat flux  

The sensible heat flux is calculated by using the bulk aerodynamic formula (upward flux is 

considered as positive) 

𝐹𝑠𝑒𝑛 = 𝜌𝑎 𝑐𝑝𝑎𝐶𝑠𝑒𝑛|𝑈𝑎|(𝑇𝑠𝑓𝑐 − 𝑇𝑎)       (2-36) 

|𝑈𝑎| =  √𝑢𝑎
2 + 𝑣𝑎

2          (2-37) 

 

Where 𝑈𝑎  is wind speed, 𝜌𝑎  is air density, 𝑇𝑎  is air temperature, 𝑇𝑠𝑓𝑐  is the surface 

temperature, 𝐶𝑠𝑒𝑛 is the turbulence heat transfer coefficient that is set as a constant and 

𝑐𝑝𝑎 is specific heat of air. 

2.4.1.5 Latent heat flux 

The latent heat flux is calculated using aerodynamic bulk formula. 

𝐹𝑙𝑎𝑡 = 𝜌𝑎 𝐿𝑠𝑓𝑐𝐶𝑙𝑎𝑡|𝑈𝑎|(𝑞𝑠𝑓𝑐 − 𝑞𝑎)       (2-38) 
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where 𝐶𝑙𝑎𝑡 is defined as latent heat bulk transfer coefficients, 𝐿𝑠𝑓𝑐 is the surface latent 

heat of vaporization or sublimation, depending on the surface conditions explained in 

Haltiner(1957).  

𝑞𝑠𝑓𝑐 and 𝑞𝑎 are specific humidity at surface and atmosphere that are defined as, 

𝑞𝑠𝑓𝑐 = 
0.622 × 𝑣𝑝𝑠

𝑃𝑎−0.378 × 𝑣𝑝𝑠
         (2-39) 

𝑞𝑎 = 
0.622 × 𝑣𝑝

𝑃𝑎−0.378 × 𝑣𝑝
         (2-40) 

 

Saturated vapor pressure 𝑣𝑝𝑠 is calculated from an empirical formula (Murray 1967).  

𝑣𝑝𝑠 = 611 ×  10

𝑎(𝑇𝑠𝑓𝑐−273.16)

(𝑇𝑠𝑓𝑐−𝑏)  mb       (2-41) 

 

Where, (a,b)=(9.5,7.66) with the ice cover and (7.5, 35.86) without the ice cover 

 

2.4.1.6 Heat flux from ocean to ice bottom 

The turbulence heat flux from ocean to ice bottom (𝐹𝑤𝑖) is parameterized as, 

𝐹𝑤𝑖 = 𝜌𝑤 𝑐𝑝𝑤𝐶ℎ𝑖𝑜𝑢
∗(𝑇𝑤 − 𝑇𝑤

𝑓𝑟𝑧
) where, 𝜌𝑤  and 𝑐𝑝𝑤 denote the density and the specific 

heat of seawater respectively. 𝑇𝑤  and 𝑇𝑤
𝑓𝑟𝑧

 are the ocean uppermost layer temperature 

and associated freezing temperature. Ice bottom temperature (𝑇𝑏𝑡𝑚) is set to the ocean 

freezing temperature (𝑇𝑤
𝑓𝑟𝑧

). It’s a function of salinity (𝑆𝑤 ) as shown below. 𝐶ℎ𝑖𝑜  is 

turbulence heat transfer coefficient. The value of 𝐶ℎ𝑖𝑜 is set based on (McPhee 2008). 

𝑇𝑤
𝑓𝑟𝑧

= 273.15 − 0.0575 ×  𝑆𝑤 + 1.710523 × 𝑆𝑤

3

2 − 2.154996 ×  𝑆𝑤
2  

 (2-42) 

 

Where 𝑢∗ denotes the friction velocity, which is given below. 

𝑢∗ = √
𝜏𝑤

𝜌𝑤
         (2-43) 



22 

 

Where, 𝜏𝑤 is the sea surface stress calculated as below 

𝜏𝑤 = (1 − 𝐴) × 𝜌𝑎𝐶𝐷𝑎𝑤|𝑈𝑎
⃗⃗ ⃗⃗  |𝑈𝑎

⃗⃗ ⃗⃗  + 𝐴 × 𝜌𝑤𝐶𝐷𝑖𝑤|𝑈𝑤
⃗⃗ ⃗⃗  ⃗ − 𝑈𝑖

⃗⃗  ⃗|(𝑈𝑤
⃗⃗ ⃗⃗  ⃗ − 𝑈𝑖

⃗⃗  ⃗)   

 (2-44) 

 

where 𝑈𝑤  is the ocean velocity, 𝑈𝑖  is the sea ice velocity, 𝐶𝐷𝑎𝑤  is the drag coefficient 

between air and ice, 𝐶𝐷𝑖𝑤 is the drag coefficient between ice and ocean. 

 

2.4.2 Vertical formation of sea ice 

Atmosphere to sea ice surface heat fluxes are changed according to the sea ice surface 

conditions such as surface albedo and emissivity. Snow covered sea ice surface flux (𝐹𝑎𝑠) 

and snowless sea ice surface flux (𝐹𝑎𝑖) are calculated according to the surface temperature 

and surface properties. Energy fluxes of snow covered sea ice are presented in this section. 

 

2.4.2.1 Snow free sea ice cover 

The variation of ice thickness can be formulated as a system based on one-dimensional 

heat equation as below. 

𝑐𝑖𝜌𝑖
𝜕𝑇

𝜕𝑡
= 

𝜕

𝜕𝑧
(𝑘𝑖

𝜕𝑇

𝜕𝑧
)         (2-45) 

By applying the boundary conditions at upper and lower surface to the equation 2-45, total 

variation of ice thickness at upper and lower surfaces are calculated. 

Upper surface, 

−𝐿𝑚𝑒𝑙𝑡𝜌𝑖
𝜕ℎ

𝜕𝑡
= 𝐹𝑖 − 𝑘𝑖 

𝜕𝑇

𝜕𝑧𝑧=ℎ𝑖

 𝑤ℎ𝑒𝑛 𝑇𝑧=ℎ𝑖
= 𝑇𝑖

𝑚𝑒𝑙𝑡                   (2-46) 

0 =  𝐹𝑖 − 𝑘𝑖 
𝜕𝑇

𝜕𝑧𝑧=ℎ𝑖

𝑤ℎ𝑒𝑛 𝑇𝑧=ℎ𝑖
< 𝑇𝑖

𝑚𝑒𝑙𝑡                 (2-47) 

 

Lower surface, 
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−𝐿𝑚𝑒𝑙𝑡𝜌𝑖
𝜕ℎ

𝜕𝑡
= 𝐹𝑖 − 𝑘𝑖 

𝜕𝑇

𝜕𝑧𝑧=ℎ𝑖

+ 𝐹𝑤𝑖        (2-48) 

 

 Vertical profile of temperature is assumed to be linear. 𝑐𝑖 and 𝑘𝑖  denote the specific heat 

and thermal conductivity respectively. Even though 𝑘𝑖 is a function of salinity and 

temperature the range is relatively small. Therefore, the value obtained under 273.15K and 

34 psu, which is 2.04 W/m/K, is used. When sea ice is not covered by snow, according to 

figure 2-4 surface heat fluxes are calculated. 

𝐹𝑎𝑖 = (1 − 𝛼𝑖)𝐹𝑠𝑤 + 𝐹𝐿𝐸 − 𝐹𝐿𝑂 − 𝐹𝑠𝑒𝑛 − 𝐹𝑙𝑎𝑡     (2-49) 

 

Conductive heat flux 𝐺𝑖 is calculated by 

𝐺𝑖 = 
𝑘𝑖

ℎ𝑖
 (𝑇𝑏𝑡𝑚 − 𝑇𝑠𝑓𝑐 )                             (2-50) 

 

The outgoing longwave radiation, 𝐹𝐿𝑂, sensible heat flux 𝐹𝑠𝑒𝑛 and latent heat flux 𝐹𝑙𝑎𝑡 are 

nonlinear functions of surface temperature. Therefore, a new surface temperature is 

calculated using the iterative method while maintaining the energy balance at the upper 

surface: 

𝑇𝑠𝑓𝑐 = 𝑇𝑝 +  Δ𝑇                 (2-51) 

 

Where, 𝑇𝑝 is the surface temperature at the previous time step and Δ𝑇 is the variation. 

Energy balance at the upper surface is given below. 

𝐹𝑎𝑖 + 𝐺𝑖 =  Δ𝑄                 (2-52) 

 

By applying the net surface heat flux derived from equation 2-49 and assuming zero net 

heat accumulation at the upper surface in equation 2-52 the following equation is 

obtained. 
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(1 − 𝛼𝑖)𝐹𝑠𝑤 + 𝐹𝐿𝐸 − 𝐹𝐿𝑂 − 𝐹𝑠𝑒𝑛 − 𝐹𝑙𝑎𝑡 + 
𝑘𝑖

ℎ𝑖
(𝑇𝑏𝑡𝑚 − 𝑇𝑠𝑓𝑐) = Δ𝑄   (2-53) 

 

Surface variation temperature is updated by, 

Δ𝑇 =  
(1−𝛼𝑖)𝐹𝑠𝑤+ 𝐹𝐿𝐸−𝐹𝐿𝑂−𝐹𝑠𝑒𝑛−𝐹𝑙𝑎𝑡+ 

𝑘𝑖
ℎ𝑖

(𝑇𝑏𝑡𝑚−𝑇𝑝)

4 𝑖𝜎𝑇𝑝
3+ 

𝑘𝑖
ℎ𝑖

+ 𝜌𝑎𝑐𝑝𝑎𝐶𝑠𝑒𝑛|𝑈𝑎|
      (2-54) 

If the updated temperature is greater than ice melting temperature, (𝑇𝑖
𝑚𝑒𝑙𝑡), then surface 

temperature is set to (𝑇𝑖
𝑚𝑒𝑙𝑡). Excess heat is used to melt sea ice at the surface according 

to equation 2-55. 

−Δℎ𝑖
𝑠𝑓𝑐

=  
 Δ𝑡((1−𝛼𝑖)𝐹𝑠𝑤+ 𝐹𝐿𝐸−𝐹𝐿𝑂−𝐹𝑠𝑒𝑛−𝐹𝑙𝑎𝑡+ 

𝑘𝑖
ℎ𝑖

(𝑇𝑏𝑡𝑚−𝑇𝑖
𝑚𝑒𝑙𝑡))

 𝐿𝑚𝑒𝑙𝑡𝜌𝑖
    (2-55) 

 

 

 

 

         Tsfc 

 

 

          Tbtm 

 

 

Figure 2-4 Schematic diagram of the energy fluxes in snow free sea ice (De Silva 2013) 
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Applying the energy balance at the bottom surface according to equation 2-47 can yield 

the bottom thickness as follows. 

−Δℎ𝑖
𝑠𝑓𝑐

=  
 Δ𝑡(𝐹𝑤𝑖− 

𝑘𝑖
ℎ𝑖

(𝑇𝑏𝑡𝑚−𝑇𝑠𝑓𝑐))

 𝐿𝑚𝑒𝑙𝑡𝜌𝑖
        (2-56) 

 

2.4.2.2 Snow covered sea ice 

When sea ice is covered with snow (figure2-5), it is necessary to calculate snow ice 

interface temperature 𝑇𝑠𝑖. Total heat fluxes on the snow surface and the heat flux from 

ocean to ice bottom are 𝐹𝑎𝑠 and 𝐹𝑤𝑖.  

Conductive heat fluxes through snow and sea ice are defined as 

𝐺𝑠 = 
𝑘𝑠

ℎ𝑠
 (𝑇𝑠𝑖 − 𝑇𝑠𝑓𝑐 )          (2-57) 

 

𝐺𝑖 = 
𝑘𝑖

ℎ𝑖
 (𝑇𝑏𝑡𝑚 − 𝑇𝑠𝑖 )         (2-58) 

  

 

 

 

 

 

 

 

 

 

 Figure 2-5: Schematic diagram of the energy fluxes at the snow-covered sea ice (De Silva 2013) 
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where 𝑘𝑠 is thermal conductivity of snow. Interface energy balance is used to compute 

interface temperature. Accumulation of heat at the surface was ignored. 

𝐺𝑠 = 𝐺𝑖           (2-59) 

𝑇𝑠𝑖 = 
𝑘𝑠ℎ𝑖𝑇𝑠𝑓𝑐+ 𝑘𝑖ℎ𝑠𝑇𝑏𝑡𝑚

ℎ𝑖𝑘𝑠+ ℎ𝑠𝑘𝑖
        (2-60) 

 

The surface temperature is calculated using the same method as mentioned in snow free 

part (equation 2-47). Snow surface temperature is updated by the following equation. 

Δ𝑇 =  
(1−𝛼𝑠)𝐹𝑠𝑤+ 𝐹𝐿𝐸−𝐹𝐿𝑂−𝐹𝑠𝑒𝑛−𝐹𝑙𝑎𝑡+ 

𝑘𝑖𝑘𝑠(𝑇𝑏𝑡𝑚−𝑇𝑝)

𝑘𝑠ℎ𝑖+ 𝑘𝑖ℎ𝑠

4 𝑠𝜎𝑇𝑝
3+ 

𝑘𝑖𝑘𝑠
𝑘𝑠ℎ𝑖+ 𝑘𝑖ℎ𝑠

+ 𝜌𝑎𝑐𝑝𝑎𝐶𝑠𝑒𝑛|𝑈𝑎|
     (2-61)  

 

When snow surface temperature is greater than melting point of snow (𝑇𝑠
𝑚𝑒𝑙𝑡) the excess 

heat is used to melt snow. The snow melting depth is calculated according to 

−Δℎ𝑖
𝑠𝑓𝑐

=  
 Δ𝑡((1−𝛼𝑖)𝐹𝑠𝑤+ 𝐹𝐿𝐸−𝐹𝐿𝑂−𝐹𝑠𝑒𝑛−𝐹𝑙𝑎𝑡+ 

𝑘𝑠
ℎ𝑠

(𝑇𝑠𝑖−𝑇𝑠
𝑚𝑒𝑙𝑡))

 𝐿𝑚𝑒𝑙𝑡𝜌𝑠
     (2-62) 

 

The bottom surface melt is calculated according to snow free calculation (equation 2-55) 

 

2.4.2.3 Lateral growth and melt of sea ice 

In ice-POM model when the ocean mixed layer temperature drops below freezing point 

(super cooling) part of the water column (Δ𝑧𝑤) is frozen within one timestep. Total 

frozen volume within one timestep is defined as, 

𝑉𝑖
𝑓𝑟𝑧

= 
𝜌𝑤𝑐𝑝𝑤Δ𝑧𝑤(𝑇𝑤

𝑓𝑟𝑧
−𝑇𝑤)

𝜌𝑖𝐿𝑚𝑒𝑙𝑡
          (2-63) 

 



27 

 

where, 𝑇𝑤
𝑓𝑟𝑧

 is the freezing temperature of water. The net heat flux from atmosphere to 

ocean can be led to melt the existing sea ice and snow. The net heat flux from atmosphere 

to ocean 𝐹𝑎𝑤  is defined as below. 

𝐹𝑎𝑤 = (1 − 𝛼𝑤)𝐹𝑠𝑤 + 𝐹𝐿𝐸 − 𝐹𝐿𝑂 − 𝐹𝑠𝑒𝑛 − 𝐹𝑙𝑎𝑡     (2-64) 

 

Where, 𝛼𝑤 is seawater albedo. In the above equation, total heat available (𝐹𝑎𝑤(1 − 𝐴)) is 

used to melt sea ice laterally and warm the underneath ocean water. The fraction of total 

heat (𝐹𝑎𝑤𝐴(1 − 𝐴)) is used to melt sea ice laterally according to (Parkinson 1979). A is sea 

ice concentration 

In ice-POM model it is assumed that the ocean surface heat flux only changes the lateral 

concentration and does not affect the ice or snow thickness. The lateral melts of sea ice 

and snow concentration due to ocean heat flux is then defined as, 

𝐴𝑚𝑒𝑙𝑡 =
𝐹𝑎𝑤𝐴(1−𝐴)𝑑𝑡

(𝜌𝑖ℎ𝑖𝐿𝑚𝑒𝑙𝑡+𝜌𝑠ℎ𝑠𝐿𝑚𝑒𝑙𝑡)
         (2-65) 

 

Finally, new ice concentration and thickness due to the lateral melting and formation are 

formulated in following equations. 

The new total volume of sea ice and snow defined in equation 2-66 and 2-67 respectively. 

𝑉𝑖 = 𝐴ℎ𝑖 + 𝑉𝑖
𝑓𝑟𝑧

− ℎ𝑖𝐴
𝑚𝑒𝑙𝑡        (2-66) 

𝑉𝑠 = (𝐴𝑖 − 𝐴𝑚𝑒𝑙𝑡) ℎ𝑠         (2-67) 

 

New concentration of ice and snow is defined as, 

𝐴𝑛𝑒𝑤 = 𝐴 − 𝐴𝑚𝑒𝑙𝑡 + 𝑚𝑖𝑛 (
𝑉𝑖

ℎ𝑚𝑖𝑛
, 1 − 𝐴)       (2-68) 

 

Equation 2-67 guarantees that sea ice concentration will not exceed 100%. New sea ice 

thickness and snow thickness are calculated according to following equations.  
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ℎ𝑖
𝑛𝑒𝑤 = 

𝑉𝑖

𝐴𝑛𝑒𝑤                                                                                                                          (2-69) 

ℎ𝑠
𝑛𝑒𝑤 = 

𝑉𝑠

𝐴𝑛𝑒𝑤          (2-70) 

 

2.5 Model Run 

This section presents the model computations prior to introduce data assimilation. It also 

provides details of the data that has been used, the basic set up of the spin up run, model 

run parameters and a validation of the model results. 

2.5.1 Data Used 

The model that is used in the study is an ice-ocean coupled model. It is forced with 

atmospheric conditions. The atmospheric forcing data are obtained from The European 

Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-interim) six hourly 

data sets. The data comes with the resolution of 0.75o x 0.75o. Mean sea level pressure, air 

velocity at 10m height, air temperature, humidity and total cloud cover are used. 

Precipitation is obtained from National Center for Environmental Prediction (NCEP) in 6 

hourly reanalysis data sets. 

The model initializes without any sea ice. Sea ice is created during the spin-up run. Sea 

surface salinity and sea surface temperature for spin-up run are obtained from Polar 

science center Hydrographic Climatology (PHC3.0) (Steele M. 2001) data using 30-day 

scale. It helps to prevent the model drifting from climatology. The salinity under sea ice is 

not restored by PHC3.0 data to avoid dampening the brine rejection by ice formation. WOA 

2013 one-degree monthly average data provided by NOAA are used for inner ocean salinity 

and temperature. This data set is also used to set the boundary conditions. 

 

2.5.2 Spin up 

To create initial ice for the model run first, spin up run is performed. The model is spun up 

using the atmospheric forcing from 1979 cyclically for 12 years. Initial ocean conditions and 

ocean boundary conditions (temperature and salinity) are extracted from Polar science 



29 

 

center Hydrographic Climatology (PHC3.0) (Steele 2001) data. During the spin-up ocean 

temperature and salinity are restored with PHC3.0 climatology data set using 30-day time 

scale. Initial velocity at the boundaries are set to zero. By the end of 12 years the 

computation produces sea ice extent that is comparable to the observation. Comparison 

of the spin up sea ice extent with that of the observation is presented in figure 2-6 

(Mudunkotuwa et al 2015).  

 

2.5.3 Model integration 

After the spin up run, model is integrated from 1979 to 2013 using the spin up results as 

initial conditions for the ocean and ice (figure 2-6). After this 33 years integration, resulting 

sea ice conditions and ocean structure is compared with available observations.  

 

Figure 2-6: Time series of the sea ice extent in million square km from observation (in blue) and spin up run (in red) of 

12 years using 1979 forcing data. 
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Figure 2-7: Time series of the sea ice extent from model integration (1979-2013) in million square km 

 

Figure 2-8: Average sea ice extent in September in million km2 
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Figure 2-7 demonstrates that the model well reproduces long-term trend of the sea ice 

extent including the ice extent minimums in 1996, 2007, and 2012. Figure 2-8 reproduces 

the sea ice extent minimum graph by NSIDC that is presented in chapter 1(figure 1-1). It 

compares model sea ice minimums with the satellite observations. It is clear that the model 

can reproduce the long-term trend. However, the model produces more ice in summer 

than the observation. 

 

2.5.4 Model validation  

For data assimilation experiments, year 2013 is selected. The following section validates 

the model behavior in the year 2013. It can be observed that the overall sea ice extent in 

the year 2013 is overestimated (figure 2-9). Sea ice extent in the Bering Sea (figure 2-10) 

and the Kara Sea are overestimated by the model (figure 2-11). The time series of sea ice 

extent in the Barents Sea is presented in figure 2-10. There are several reasons for 

discrepancies between the model sea ice extent and the observation sea ice extent. One 

of the reasons is the imperfections in ocean boundary conditions. PHC data set provides 

climatology data which is lower in temperature than the warming temperatures in the 

Atlantic Ocean. The imperfections in the ocean heat transportation expression that 

excludes warm water inflow from the Atlantic Ocean also contributes to the discrepancies 

in sea ice extent. Another reason is the simplified thermodynamic model that uses constant 

albedos and model disregarding melt pond phenomena. Coarseness of the model grid and 

disregard for ocean waves can also lead to discrepancies.  

Sea ice thickness in the model is underestimated near the North Pole compared to 

observation (figure 2-12, 2-13). This could be explained by the overestimated sea ice 

velocity (figure 2-14, 2-15) in the same area that advects sea ice away from the North Pole. 

While total sea ice extent of model shows a yearlong average root mean squared difference 

(rmsd) of 1.28million km2 with AMSR-2 observations, sea ice thickness in the polar area 

shows a large rmsd of 1.61m with Cryosat sea ice thickness observations in winter. Sea ice 

extent and sea ice thickness deviations must be addressed to accurately predict sea ice 

conditions along ASRs. 



32 

 

 

Figure 2-9: Time series of sea ice extent of model and AMSR-2 observation in million square km 

 

 

 

Figure 2-10: Time series of sea ice extent of model and AMSR-2 observation in million square km in Barents Sea 
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Even though Ice-POM model can reproduce sea ice conditions in the melting season using 

high-resolution models, its accuracy in the freezing season is not as high as in the melting 

season (De Silva 2013).  Figure 2-16 presents sea ice extent in year 2005. The disparities 

between the model and the observations are due to exclusion of riverine inputs and the 

uncertainties of forcing data.   

 

 

 

 

 

 

 

 

 

Figure 2-11: Comparison of sea ice concentration in winter. Model (left), observation (middle) and on right is 
the difference between model and observation (model-observation) 

Figure2-12: Comparison of sea ice thickness (in m) in February. Observation from AMSR-2 (Krishfield 2014) 
data set (on left) model (on right) 



34 

 

 

 

Figure 2-13: Time series of sea ice thickness of model and AMSR-2 observations and Cryosat observations in m 
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Figure 2-14: Comparison of sea ice velocity magnitude in m/s in February. Observation from Kimura 
(Kimura N. 2016) data set (on left) model (on right) 
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Figure 2-15: Time series of sea ice velocity magnitude of model and Kimura observation in m/s 

 

 

Figure 2-16: Comparison of sea ice extents between coarse grid computation, fine grid computation and AMSR-E 

observation. (De Silva 2013) 
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Figure 2-17: Comparison of sea surface salinity (psu) in February between model (left), PHC 3.0 data set 
(center) and observation from Aquarious data set (right)  

Figure 2-18: Comparison of sea surface temperature (Co) in September, between model (left) and PHC 3.0 data 
set (right)  
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Reproducibility of ocean conditions is also investigated. Even with a coarse grid of 25km 

the model is able to capture the general distribution of salinity in the Arctic Ocean. 

According to figure 2-17, the model underestimates sea surface salinity in some areas such 

as in the Barents Sea and East Siberian Sea.  

There are disparities between the model predicted sea surface temperature and 

climatology data (figure 2-18).  One of the reasons for this disagreement is the 

incompleteness of the ocean transportation expressions and imperfect ocean boundary 

conditions. Disparities could also arise due to overestimation in sea ice extent, along the 

ice edge sea surface temperature is underestimated (figure 2-18).  However, sea surface 

temperature in the Norwegian Sea and upper Atlantic Ocean is higher than that of the PHC 

data. Not incorporating the effect of rapidly warming upper Atlantic Ocean in the 

climatology data set could also cause these disparities. 
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3. Data Assimilation Method 

This chapter presents the data assimilation methods that are used in this study. Direct 

insertion method, nudging method and atmospheric forcing Kalman filter method are used 

in this study.  

 

 

Figure 3-1: flow chart of data assimilation in a model 

 

3.1 Introduction to data assimilation 

Numerical models and satellite data are used to derive sea ice information. Numerical 

models are bound by the uncertainties of initial conditions, uncertainties of forcing data, 

temporal and spatial resolutions and the indeterministic features of the model. On the 

other hand, satellite observations are also limited by the instrument errors, spatial and 
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temporal resolutions, and uncertainties in converting algorithms. Data assimilation best 

combines model and observations (figure 3-1). 

 Data assimilation considers the uncertainties in models and observation to determine the 

true state of the system. It is widely used in numerical weather predictions. However there 

have only been few cases in assimilation of satellite sea ice observations. In this study three 

methods are used. Namely direct insertion method, nudging method and atmospheric 

forcing Kalman filter method (AFKF). Three variables are assimilated individually and 

simultaneously.  

 

3.2 Data used in assimilation 

Sea ice concentration data is obtained from the advanced microwave scanning radiometer 

2 (AMSR2) onboard the GCOM-W satellite. Daily gridded sea ice concentration data set is 

extracted from Arctic Data Archive System (ADS) from the following website 

https://ads.nipr.ac.jp/. Daily sea ice thickness is calculated using Krishfield (2014) algorithm 

based on AMSR-2 satellite data. The gridded daily sea ice thickness data set is also obtained 

from ADS. Sea ice velocity data set is extracted from KIMURA Sea ice velocity data set 

(Kimura N. 2016). Sea ice concentration data are available in a daily interval for the year 

2013. Sea ice thickness and sea ice velocity daily data sets are only available from January 

to May of 2013. Sea ice observation gridded data sets are available in 10km zonal and 

meridional resolution. 

Very little is known about observation errors. In this study instrument errors and algorithm 

errors are considered. They are incorporated according to the equation below. 

σobservation
2 = 𝜎𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡

2 + 𝜎𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
2       (3-1) 

 

The error variance of the observation varies considerably with time and location. 

Therefore, different values are selected for the ice edge and the other areas.  
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Table 3-1: Observation error variance  

 Sea ice 

concentration 

Sea ice 

thickness 

Sea ice velocity 

summer  𝜎𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 0.1~0.2 Not used in 

summer 

Not used in summer 

winter  𝜎𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 0.01~0.08 15cm Zonal = 1.46 cm/s 

Meridional=1.35 cm/s 

sea ice edge  𝜎𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 0.05~0.15 42cm Zonal = 1.46 cm/s 

Meridional=1.35 cm/s 

summer 𝜎𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 0.1 Not used in 

summer 

Not used in summer 

winter   𝜎𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 0.025 3.75cm Zonal and meridional 

=0.05cm/s 

sea Ice edge 𝜎𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 0.125 12.5cm Zonal and meridional 

=1.875cm/s 

 

Table 3-2: Observation bias  

 Sea ice 

concentration 

along the ice 

edge 

Sea ice 

thickness 

Sea ice velocity 

Bias -0.05 +10cm 0 
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Error variance values are higher in summer since the observations are not reliable in the 

summer. All the used values are listed in table 3-1. Observation instrument errors are 

calculated according to the instrumentation errors provided by JAXA (2014). 

Sea ice concentration is derived using NASA team 2 ice concentration algorithm (NT2). The 

uncertainty values are obtained from Ludovic et al. (2014).  Sea ice concentration 

uncertainties are provided in a range since uncertainties are larger in Fram Strait and 

smaller in the Chukchi Sea (Ludovic et al. 2014). Sea ice thickness is computed using 

Krishfield et al. (2014) algorithm. The error variance and bias are obtained from Ono et al. 

(2016). The error variance and the bias of sea ice velocity are obtained from Kimura et al. 

(2016).  

To compare the experiment results with independent data sets that are not used in the 

experiments, Aquarius L3 Weekly Polar-Gridded Sea Surface Salinity data from National 

Snow and Ice Data Center (NSIDC), Ocean salinity of the Fram Strait and Barents Sea from 

Kawasaki and Hasumi, (2015) data set and monthly averaged sea ice thickness data set 

derived from Cryosat-2 are used. Different atmospheric forcing from several weather 

agencies differentiates ensemble members that are used in the atmospheric forcing 

Kalman filter method assimilation (AFKF). They are obtained from Historical THORPEX 

Interactive Grand Global Ensemble (TIGGE) forecast data archive system (Table 3-3). 

 

3.3 Direct insertion method 

Direct insertion is the most fundamental method that is used in data assimilation. During 

assimilation experiments the model estimates are nudged to new estimates with the 

following relationship (equation 3-2). 

 𝜓𝑎 =  𝜓
𝑓

+  𝐾 ( 𝑑 − 𝜓
𝑓
)                               (3-2) 

 

K is the weighting. 𝜓  is the prognostic variable; in this study variables are sea ice 

concentration, sea ice thickness or sea ice velocity. 𝜓𝑎  is the analysis estimate, 𝜓
𝑓

 is the 

background state and d is observation. In direct insertion experiments K is set to 1.  
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The observation data sets are interpolated to the model grid using inverse distance 

interpolation considering the nearest four observation points. Sea ice concentration sea 

ice thickness and Sea ice velocity are assimilated daily and are integrated for 24 hours.  

In the coupled Ice-POM model direct insertion is introduced as a subroutine that is 

highlighted in the flowchart (figure 3-2). Observation data is introduced after updating 

ocean variables and sea ice variables. Both ocean variables and ice variables are updated 

after assimilation before starting the next time step. 

 

Table 3-3: TIGGE (THORPEX (The Observing System Research and Predictability Experiment) Grand Global Ensemble) 

forecast data set 

Weather Agency Resolution  

CMA (China Meteorological Administration)  12 hourly,  0.75° × 0.75° 𝑙𝑜𝑛, 𝑙𝑎𝑡 

CMC (Canadian Meteorological Centre) 12 hourly, 0.75° × 0.75° 𝑙𝑜𝑛, 𝑙𝑎𝑡 

ECMWF (European Center for Medium Range 

Weather Forecasting) 

6 hourly, 0.75° × 0.75° 𝑙𝑜𝑛, 𝑙𝑎𝑡 

FRA (Meteo France) 12 hourly, 0.75° × 0.75° 𝑙𝑜𝑛, 𝑙𝑎𝑡 

JMA (Japanese Meteorological Agency) 6 hourly, 0.75° × 0.75° 𝑙𝑜𝑛, 𝑙𝑎𝑡 

NCEP (National Centre for Environmental 

Prediction) 

6 hourly, 0.75° × 0.75° 𝑙𝑜𝑛, 𝑙𝑎𝑡 

UK (Met office) 12 hourly, 0.75° × 0.75° 𝑙𝑜𝑛, 𝑙𝑎𝑡 
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Figure 3-2: Ice POM model flow chart with direct insertion assimilation 

 

When the model variables are changed according to the observations, non-assimilated ice 

variables and ocean variables are also affected by these changes. Therefore, some 

corrections are done to rectify discrepancies between assimilated and non-assimilated ice 

and ocean variables. These corrections are discussed in detail in section 3.6. As a result of 

assimilation in some areas sea ice is introduced or removed from the cells. These changes 

demand for modifications in the ocean temperature and salinity. It is also necessary to set 

accurate values for ice variables in those cells.  
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The impact of assimilation time interval is also studied. Yearly, monthly, weekly and daily 

assimilation intervals are examined. These time interval experiments are done only for sea 

ice concentration assimilation, since the other data sets aren’t available throughout the 

year. 

 

3.4 Nudging (Newtonian relaxation) method 

Even though direct insertion method is simple in formulation and application, direct 

insertion makes large fluctuations in the computations, which in some cases lead to 

dominate over model estimate. Nudging method can overcome this issue by introducing 

observations into the model in a controlled manner.  The prognostic equation is written as 

bellow. 

𝜓𝑎 =  𝜓
𝑓

+
K

𝜏
( 𝑑 − 𝜓

𝑓
)                                                    (3-3) 

 

Where, 𝜏 is the time relaxation coefficient that does not have a time dimension. K is the 

nudging weight. A sensitivity analysis was done for both 𝜏 and K, which will be discussed in 

chapter 5. Experiments with smaller 𝜏 make fluctuations in the assimilated variables while 

experiments with larger 𝜏 incorporate observations more smoothly. 

 

3.4.1 Nudging method-1 

A separate set of experiments was performed in order to consider the observation error. 

In those experiments, K was formulated according to Lindsay (2006). The optimal least 

square value of the weighting is formulated as in equation 3-4. 

K = 
Rmodel

2

Rmodel
2 + Robs

2                (3-4) 

 

Rmodel
2  is the error variance of the model estimate and Robs

2  is the error variance of the 

observation. The model error covariance is assumed to be zero. Errors are assumed to be 
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unbiased and normally distributed. The values used for observation errors are explained in 

section 3.2. 

The model error variance is modeled as a function of observed quantity and model 

estimate and is assumed to be proportional to the power of their difference. 

𝑅𝑚𝑜𝑑𝑒𝑙
2 = 〈(𝜓𝑡𝑟𝑢𝑡ℎ − 𝜓𝑚𝑜𝑑𝑒𝑙)

𝛼〉 = 𝑟|𝑑 − 𝐻𝜓𝑖
𝑓
|𝛼                             (3-5) 

 

Where r adjusts the dimension; r=1 is used. The weight K is formulated as, 

K = 
|𝑑 −𝜓

𝑓
|α

|𝑑 −𝜓
𝑓
|α+ Robs

2
                                                                                     (3-6) 

 

Lindsay (2006) has used α =6 in their study. Different values were tried for α and due to 

numerical stability, α  =2 is selected for this study. The observation data sets are 

interpolated to the model grid using inverse interpolation considering the nearest four 

observation points around a model grid cell. The intermittent approach (Bloom 1996) is 

used to assimilate sea ice concentration, sea ice velocity and sea ice thickness. They are 

assimilated daily and are integrated for 24 hours. In the coupled Ice-POM model nudging 

is introduced as a subroutine that is highlighted in the flowchart (figure 3-3). Observation 

data is introduced after updating ocean variables and sea ice variables. Both ocean 

variables and ice variables are updated after assimilation before starting the next time step.  

When the model variables are changed according to the observations, non-assimilated 

variables are also affected by these changes. Therefore, some corrections are done to 

rectify discrepancies between assimilated and non-assimilated variables. These corrections 

are discussed in detail in section 3.6. 

 

3.4.2 Nudging method-2 

Lindsay (2006) method uses |𝑑 − 𝐻𝜓𝑖
𝑓
|α   to be the model error variance. One of the 

issues with this method is that it assumes observations to be unbiased but in reality, 
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observations could be biased. In nudging method-2 correction to bias is introduced. In 

equation 3-5, model error variance is set to be |𝑑 − 𝐻𝜓𝑖
𝑓
|α . Therefore, as an 

improvement to the formulation the model error variance is altered to be 

 𝑅𝑚𝑜𝑑𝑒𝑙
2 = 〈(𝜓𝑡𝑟𝑢𝑡ℎ − 𝜓𝑚𝑜𝑑𝑒𝑙)

2〉 = 𝑟|(𝑑 + 𝑑𝑏𝑖𝑎𝑠) − 𝜓𝑖
𝑓
|𝛼   (3-7) 

 

Where, 𝑑𝑏𝑖𝑎𝑠 is set to be the bias of the observation and r adjusts the dimension; r=1 is 

used.  The values used for observation bias are listed in table3-2. This method yields K as 

K =  
|(𝑑 +𝑑𝑏𝑖𝑎𝑠)−𝜓𝑖

𝑓
|α

|(𝑑 +𝑑𝑏𝑖𝑎𝑠)−𝜓
𝑖
𝑓
|α+ Robs

2
                      (3-8) 

 

 

Figure 3-3: Ice-POM model flow chart with nudging assimilation 
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An experiment is performed assimilating sea ice concentration, sea ice thickness and sea 

ice velocity simultaneously. In the model, nudging method -2 is introduced as a subroutine 

that is highlighted in the flowchart (figure 3-3).  

Corrections for non-assimilated sea ice variables and ocean variables are introduced similar 

to the nudging method-1. 

 

3.5 Atmospheric Forcing Kalman Filter method (AFKF) 

This section presents the atmospheric forcing Kalman filter method 

 

3.5.1 Atmospheric forcing Kalman filter method justification 

In an ice-ocean coupled model, atmospheric forcing directly affects the accuracy of 

predictions. Especially, precipitation data is directly related to the sea ice formulation 

process. However, different atmospheric data sets including reanalysis data sets show large 

differences in the Arctic region.  In a study that evaluates seven atmospheric products over 

the Arctic, Lindsay et al. (2014) shows that there are large variations in atmospheric data 

sets in Arctic. According to the study, different products show large variations in sea level 

pressure over Greenland. Wind speed shows variations in most parts of Arctic Ocean where 

the differences are higher in the winter. Precipitation data also varies over North Atlantic 

and North Pacific Ocean.  In a similar study that compares ERA reanalysis data and NCEP 

reanalysis data sets in Arctic region, Zhang (2016) shows that there is a significant 

difference in surface pressure and surface winds in these two data sets that are most 

commonly used as forcing data in many sea ice prediction models.   

Large variance can be observed in the atmospheric forecast obtained from different 

agencies in which different weather agencies performing more skillfully in different 

geographical areas depending upon their access to field observations in different areas 

(Broman 2016). In a study that investigated the impact of surface observations over the 

Arctic Ocean on reanalysis, has observed that uncertainty regarding atmospheric data sets 

exist due to lack of observational data. (Inoue, 2013 and Inoue,2015). 
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The nudging method formulates the model error covariance as in equation 3-7, where the 

true state is defined as  𝑑 + 𝑑𝑏𝑖𝑎𝑠 . However, this description is imperfect. Model error 

covariance matrix (𝑃𝑒
𝑓
) in Kalman filter is defined in terms of the true state as  

𝑃𝑒
𝑓

= (𝜓𝑓 − 𝜓𝑡)  (𝜓𝑓 − 𝜓𝑡  )𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       (3.9) 

 

where 𝜓𝑓  is model forecast and  𝜓𝑡  is the true state (Evensen, 2009). 

Ensemble numerical predictions are widely used recently due to their better predictability 

skills compared to single computations. These ensemble predictions are performed using 

different atmospheric forcing data sets or by differentiating initial conditions (De Silva, 

2016). Model errors largely depend upon the inaccuracies in forcing data. In a computation 

that uses ensemble of multiple atmospheric data sets, the spread of the ensemble is 

proportional to the uncertainties in model prediction. Hence this spread could be an 

indicator of the model error variance. 

In atmospheric forcing Kalman filter method an ensemble of multiple atmospheric data is 

used. Since there are significant differences in the atmospheric data sets, the true state is 

assumed to be the mean of the ensemble prediction. Therefore, the true state is 

considered to be   ψf̅̅ ̅ , the ensemble mean of the prognostic variable. In each ensemble 

member, the model is forced using different atmospheric forecast data from seven 

atmospheric agencies given in table 3-3 (figure 3-5). Hence, this method is named as 

atmospheric forcing Kalman filter method. 

 

3.5.2 Formulation of Atmospheric forcing Kalman filter 

The equation 3.9 is revised as below to use ensemble mean as the truth. 

𝑃𝑒
𝑓

= (𝜓𝑖
𝑓
− 𝜓𝑓)̅̅ ̅̅ ̅  (𝜓𝑖

𝑓
− 𝜓𝑓̅̅ ̅̅  )𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

      (3.10) 

 

Observation error variance used to assimilate sea ice observations are selected based on 

table3-1. Different values are selected for ice edge and other areas as stated above in 
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Newtonian relaxation method. Observation variance is also varied according to the season. 

Higher values are selected during summer due to the unreliability of satellite observations 

in summer.  

Observation errors and model errors are assumed to be uncorrelated, yielding a diagonal 

matrix, which is trivial to invert in equation 3-11. In this study 𝜓𝑖
𝑓

 is model forecast of the 

ensemble member i ∈  {1,2…N}. H is a linear operator that transfers the model state to 

the observation space. Ke is the Kalman gain, which is given in equation 3-11. The updated 

state estimate (𝜓𝑖
𝑎) is given in equation 3-12, where d is observation.  

𝐾𝑒 =  𝑃𝑒
𝑓
𝐻𝑇(𝐻𝑃𝑒

𝑓
𝐻𝑇 + 𝑅)−1        (3-11) 

𝜓𝑖
𝑎 = 𝜓𝑖

𝑓
+ 𝐾𝑒 (𝑑 − 𝐻𝜓𝑖

𝑓
)         (3-12) 

 

Analyzed model state covariance (𝑃𝑒
𝑎) is given in equation 3-13. 

𝑃𝑒
𝑎 = (𝐼 − 𝐾𝑒 𝐻)𝑃𝑒

𝑓
         (3-13) 

 

The method used is inspired by the Ensemble Kalman filter method (Evensen 2009). 

However, the key difference between the two methods is that the atmospheric forcing 

Kalman filter formulates the ensemble by using different atmospheric data sets, instead of 

observation perturbation that is often used in ensemble Kalman filter method. 

Even though the error variance is assumed to be non-correlated the impact of non-

correlated variables are considered through corrections. It prevents the discrepancies 

between assimilated and non-assimilated variables. This is explained in section 3.6. 
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Figure 3-4 Atmospheric forcing Kalman filter diagram 𝝍 = 𝒑𝒓𝒐𝒈𝒏𝒐𝒔𝒕𝒊𝒄 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆 ,  𝝍𝒊
𝒂 = 𝒂𝒏𝒂𝒍𝒚𝒔𝒊𝒔 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆 , 

 𝝍𝒊
𝒇
= 𝒎𝒐𝒅𝒆𝒍 𝒔𝒕𝒂𝒕𝒆 , 𝝍𝒇̅̅ ̅̅ = 𝒆𝒏𝒔𝒆𝒎𝒃𝒍𝒆 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 , 𝒅𝒊 = 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 , H= observation operator, 𝑷𝒆

𝒂 =

𝑨𝒏𝒂𝒍𝒚𝒔𝒊𝒔 𝒆𝒓𝒓𝒐𝒓 𝒄𝒐𝒗𝒂𝒓, 𝑷𝒆
𝒇
= 𝑴𝒐𝒅𝒆𝒍 𝒆𝒓𝒓𝒐𝒓 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆, i    =  ensemble number  

 

 

Figure 3-5 Atmospheric Forcing Kalman Filter diagram 

 

3.5.3 Atmospheric forcing Kalman filter program architecture 

The AFKF program structure is more complex than that of direct insertion method and the 

nudging method. Seven ensemble members run parallel while sharing the background 

estimate (𝜓𝑖
𝑓

) values (figure 3-6). There is a main file-sharing hub that collects output data 
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from each ensemble member. There is one lead ensemble member that computes the 

error covariance matrix (Pe
f ) by accessing the data in main file sharing hub. This happens 

in three steps. During the first step ensemble1 waits for all the ensemble members to finish 

their computation for one assimilation cycle (figure3-7). At the end of each assimilation 

cycle (one day) all the ensemble members share the output data (𝜓𝑖
𝑓

) into main file sharing 

hub. During the last step, while the other ensemble members wait, the ensemble one 

computes error covariance matrix (Pe
f). (figure 3-8). 

 

3.6 Corrections for non-assimilated variables 

Some corrections are done to adjust the non-assimilated variables to avoid discrepancies 

and numerical instabilities. A similar criterion is used for direct insertion, nudging and 

atmospheric forcing Kalman filter method. 

 

Figure3-6: AFKF program structure: Seven ensemble members run parallel while sharing the analysis estimate 
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Figure 3-7: step1 ensemble1 waits for all the ensemble members to finish their computation for one assimilation cycle 

 

 

Figure 3-8: step 3 while the other ensemble members wait, the ensemble one computes error covariance matrix (Pef)  
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3.6.1 Sea ice concentration assimilation correction 

Two scenarios are considered while assimilating sea ice concentration. When the analysis 

estimate (𝜓𝑖
𝑎) sea ice concentration value is positive while background estimate (𝜓𝑖

𝑓
) sea 

ice concentration value is zero, model creates ice in the cell. Sea ice thickness, sea ice 

velocity and sea surface temperature are set to be the average of the four neighboring cells 

while the maximum thickness of created ice is set to be 0.5m and the minimum is set to 

0.1m to avoid immediate melting (equations 3-14, 3-15, 3-16). Sea surface temperature 

and the ocean temperature of the top three 1m vertical layers are set to be the maximum 

of freezing temperature as in equation 3-17 (figure-3-9). When the analysis estimate (𝜓𝑖
𝑎) 

of sea ice concentration value is zero while background estimate ( 𝜓𝑖
𝑓

) of sea ice 

concentration value is positive model removes ice, the values of other sea ice variables (sea 

ice thickness and sea ice velocity) are set to zero (equation 3-18, 3-19, 3-20) Ocean 

temperature of all the vertical layers is also set to a minimum freezing temperature if the 

temperature is below freezing temperature as in equation 3-21 (figure 3-10). 

𝑖𝑓 (𝑐𝑜𝑛𝑐𝑖,𝑗
𝑎 > 0 𝑎𝑛𝑑  𝑐𝑜𝑛𝑐𝑖,𝑗

𝑓
 = 0 )𝑡ℎ𝑒𝑛 

                  𝑡ℎ𝑖𝑐𝑖,𝑗
𝑎 = (𝑡ℎ𝑖𝑐𝑖+1,𝑗

𝑓
+ 𝑡ℎ𝑖𝑐𝑖−1,𝑗

𝑓
+ 𝑡ℎ𝑖𝑐𝑖,𝑗+1

𝑓
+ 𝑡ℎ𝑖𝑐𝑖,𝑗−1

𝑓
)/4 , 𝑡ℎ𝑖𝑐(max)𝑖,𝑗

𝑎 = 

0.5𝑚, 𝑡ℎ𝑖𝑐(min)𝑖,𝑗
𝑎 = 0.1𝑚          (3-14) 

𝑢𝑣𝑒𝑙𝑖,𝑗
𝑎 = (𝑢𝑣𝑒𝑙𝑖+1,𝑗

𝑓
+ 𝑢𝑣𝑒𝑙𝑖−1,𝑗

𝑓
+ 𝑢𝑣𝑒𝑙𝑖,𝑗+1

𝑓
+ 𝑢𝑣𝑒𝑙𝑖,𝑗−1

𝑓
)/4  (3-15) 

𝑣𝑣𝑒𝑙𝑖,𝑗
𝑎 = (𝑣𝑣𝑒𝑙𝑖+1,𝑗

𝑓
+ 𝑣𝑣𝑒𝑙𝑖−1,𝑗

𝑓
+ 𝑣𝑣𝑒𝑙𝑖,𝑗+1

𝑓
+ 𝑣𝑣𝑒𝑙𝑖,𝑗−1

𝑓
)/4  (3-16) 

 𝑇𝑜𝑐𝑒𝑎𝑛(max)𝑖,𝑗,(1~3)
𝑎 = 𝑇𝑜𝑐𝑒𝑎𝑛𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔     (3-17) 

𝑖𝑓 (𝑐𝑜𝑛𝑐𝑖,𝑗
𝑎 = 0 𝑎𝑛𝑑  𝑐𝑜𝑛𝑐𝑖,𝑗

𝑓
> 0 )𝑡ℎ𝑒𝑛 

𝑡ℎ𝑖𝑐𝑖,𝑗
𝑎 = 0         (3-18) 

𝑢𝑣𝑒𝑙𝑖,𝑗
𝑎 = 0         (3-19) 

𝑣𝑣𝑒𝑙𝑖,𝑗
𝑎  = 0         (3-20) 

 𝑇𝑜𝑐𝑒𝑎𝑛(min)𝑖,𝑗,(1~33)
𝑎 = 𝑇𝑜𝑐𝑒𝑎𝑛𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔     (3-21) 
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Figure 3-9: Corrections when the analysis estimate (𝝍𝒊
𝒂) sea ice concentration value is positive while background 

estimate (𝝍𝒊
𝒇

) sea ice concentration value is zero  

 

Figure 3-10: Corrections when the analysis estimate (𝝍𝒊
𝒂) sea ice concentration value is zero while background estimate 

(𝝍𝒊
𝒇

) sea ice concentration value is positive 
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3.6.2 Sea ice thickness assimilation correction 

Two scenarios are considered while assimilating sea ice thickness. When the analysis 

estimate (𝜓𝑖
𝑎) of sea ice thickness value is positive while background estimate (𝜓𝑖

𝑓
) of sea 

ice thickness value is zero, model creates ice in the cell. Sea ice concentration, sea ice 

velocity and sea surface temperature are set to be the average of the four neighboring cells 

(equation 3-22, 3-23, 3-24). Sea surface temperature and the ocean temperature of the top 

three 1m vertical layers are set to be the maximum of freezing temperature as in equation 

(equation 3-25) (figure-3-11). When the analysis estimate (𝜓𝑖
𝑎) sea ice thickness value is 

zero while background estimate (𝜓𝑖
𝑓

) sea ice thickness value is positive model removes ice, 

the values of other sea ice variables (sea ice concentration and sea ice velocity) are set to 

zero (equation 3-26, 3-27, 3-28). Ocean temperature of all the vertical s-layers is also set 

to a minimum freezing temperature if the temperature is below freezing temperature 

(equation 3-29), (figure 3-12). 

𝑖𝑓 (𝑡ℎ𝑖𝑐𝑖,𝑗
𝑎 > 0 𝑎𝑛𝑑  𝑡ℎ𝑖𝑐𝑖,𝑗

𝑓
 = 0 )𝑡ℎ𝑒𝑛 

𝑐𝑜𝑛𝑐𝑖,𝑗
𝑎 = (𝑐𝑜𝑛𝑐𝑖+1,𝑗

𝑓
+ 𝑐𝑜𝑛𝑐𝑖−1,𝑗

𝑓
+ 𝑐𝑜𝑛𝑐𝑖,𝑗+1

𝑓
+ 𝑐𝑜𝑛𝑐𝑖,𝑗−1

𝑓
)/4   (3-22) 

𝑢𝑣𝑒𝑙𝑖,𝑗
𝑎 = (𝑢𝑣𝑒𝑙𝑖+1,𝑗

𝑓
+ 𝑢𝑣𝑒𝑙𝑖−1,𝑗

𝑓
+ 𝑢𝑣𝑒𝑙𝑖,𝑗+1

𝑓
+ 𝑢𝑣𝑒𝑙𝑖,𝑗−1

𝑓
)/4   (3-23) 

𝑣𝑣𝑒𝑙𝑖,𝑗
𝑎 = (𝑣𝑣𝑒𝑙𝑖+1,𝑗

𝑓
+ 𝑣𝑣𝑒𝑙𝑖−1,𝑗

𝑓
+ 𝑣𝑣𝑒𝑙𝑖,𝑗+1

𝑓
+ 𝑣𝑣𝑒𝑙𝑖,𝑗−1

𝑓
)/4   (3-24) 

 𝑇𝑜𝑐𝑒𝑎𝑛(max)𝑖,𝑗,(1~3)
𝑎 = 𝑇𝑜𝑐𝑒𝑎𝑛𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔      (3-25) 

𝑖𝑓 (𝑡ℎ𝑖𝑐𝑖,𝑗
𝑎 = 0 𝑎𝑛𝑑  𝑡ℎ𝑖𝑐𝑖,𝑗

𝑓
> 0 )𝑡ℎ𝑒𝑛 

𝑐𝑜𝑛𝑐𝑖,𝑗
𝑎 = 0          (3-26) 

𝑢𝑣𝑒𝑙𝑖,𝑗
𝑎 = 0          (3-27) 

𝑣𝑣𝑒𝑙𝑖,𝑗
𝑎  = 0          (3-28) 

 𝑇𝑜𝑐𝑒𝑎𝑛(min)𝑖,𝑗,(1~33)
𝑎 = 𝑇𝑜𝑐𝑒𝑎𝑛𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔      (3-29) 
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Figure 3-11: Corrections when the analysis estimate (𝝍𝒊
𝒂) sea ice thickness value is positive while background estimate 

(𝝍𝒊
𝒇

) sea ice thickness value is zero 

 

Figure 3-12: Corrections when the analysis estimate (𝝍𝒊
𝒂) sea ice thickness value is zero while background estimate 

(𝝍𝒊
𝒇

) sea ice thickness value is positive 
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Figure 3-13: Corrections when the analysis estimate (𝝍𝒊
𝒂) sea ice velocity value is positive while background estimate 

(𝝍𝒊
𝒇

) sea ice velocity value is zero 

 

3.6.3 Sea ice velocity assimilation correction 

When the analysis estimate (𝜓𝑖
𝑎) of sea ice velocity value is positive while background 

estimate (𝜓𝑖
𝑓

)of  sea ice concentration value is zero, model creates ice in the cell. Sea ice 

concentration, sea ice thickness and sea surface temperature are set to be the average of 

the four neighboring cells (equation 3-30, 3-31). Sea surface temperature and the ocean 

temperature of top 3 vertical layers are set to be the maximum of freezing temperature 

(equation 3-32) (figure-3-13). It isn’t possible to do correction when the analysis estimate 

(𝜓𝑖
𝑎) of sea ice velocity value is zero since having zero velocity doesn’t correspond to an 

ice-free situation. Therefore, no corrections are done in this situation.  

if (|𝑢𝑣𝑒𝑙𝑖,𝑗
𝑓

| > 0  𝑜𝑟 |𝑣𝑣𝑒𝑙𝑖,𝑗
𝑓

| > 0 𝑎𝑛𝑑  𝑐𝑜𝑛𝑐𝑖,𝑗
𝑓

 = 0 )𝑡ℎ𝑒𝑛 



58 

 

𝑐𝑜𝑛𝑐𝑖,𝑗
𝑎 = (𝑐𝑜𝑛𝑐𝑖+1,𝑗

𝑓
+ 𝑐𝑜𝑛𝑐𝑖−1,𝑗

𝑓
+ 𝑐𝑜𝑛𝑐𝑖,𝑗+1

𝑓
+ 𝑐𝑜𝑛𝑐𝑖,𝑗−1

𝑓
)/4   (3-30) 

     𝑡ℎ𝑖𝑐𝑖,𝑗
𝑎 = (𝑡ℎ𝑖𝑐𝑖+1,𝑗

𝑓
+ 𝑡ℎ𝑖𝑐𝑖−1,𝑗

𝑓
+ 𝑡ℎ𝑖𝑐𝑖,𝑗+1

𝑓
+ 𝑡ℎ𝑖𝑐𝑖,𝑗−1

𝑓
)/4 , 𝑡ℎ𝑖𝑐(max)𝑖,𝑗

𝑎 = 

0.5𝑚, 𝑡ℎ𝑖𝑐(min)𝑖,𝑗
𝑎 = 0.1𝑚        (3-31) 

 𝑇𝑜𝑐𝑒𝑎𝑛(max)𝑖,𝑗,(1~3)
𝑎 = 𝑇𝑜𝑐𝑒𝑎𝑛𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔      (3-32) 
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4. Direct Insertion Method 

This section presents the results from direct insertion method. Direct insertion method is 

used as a feasibility study to see how Ice-POM model responds to data assimilation. Several 

experiments are executed. Sea ice concentration, sea ice thickness and sea ice velocity are 

assimilated. There are two other experiments that are executed to study the effect of 

assimilation time interval and to examine the effectiveness of assimilating each variable by 

investigating the lead time. 

 

4.1 Sea ice concentration direct assimilation (DI-Conc.) 

In this experiment sea ice concentration gridded data based on AMSR-2 satellite are 

assimilated daily. Satellite observations are introduced each day at midnight. Assimilation 

experiment is executed for the year 2013. An average of ascend and descend data are used. 

Inverse distance interpolation is used to interpolate observation data into the model grid 

using nearest 4 points. Corrections for the non-assimilated variables are done according to 

the detail discussed in section 3.6. 

Sea ice concentration assimilation has improved sea ice extent significantly. For the year 

2013, the model over predicts sea ice extent. Assimilation is able to bring the model 

towards observation. From figure 4-1, it is evident that it takes about 3 months to adjust 

the ocean conditions to reflect the changes of the sea ice concentration.  

 Figure 4-2 gives a closer look of how the assimilation is getting nudged towards the 

observation. Large fluctuations can be observed when observations are introduced directly 

into the model. 

Figure 4-3 shows how the concentration is distributed in February and September. It is 

evident that the model over produces sea ice in the Barents Sea and the Greenland Sea in 

winter compared to the model.  In summer model produces more ice in the Laptev Sea 

compared to AMSR-2 observation. Since direct insertion assimilation directly uses 

observation data, sea ice concentration of the assimilation overlaps with the AMSR-2 

observations. 



60 

 

  

 

 

Figure 4-2: time series of sea ice extent from DI-Conc (magnified view) 
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Figure 4-1: Sea ice extent time series from DI-Conc experiment compared with model and observation 
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Sea ice concentration assimilation has also improved the sea ice thickness. Ice-POM model 

underestimates sea ice thickness near the pole and the Canadian basin as already discussed 

in section 2.5.4. However, with the assimilation sea ice thickness has increased near the 

pole. Figure 4-4 represents the sea ice thickness distribution in the whole area. Compared 

to the model, in assimilation sea ice thickness has increased in the area. 

Mean sea ice thickness of the area designated in figure 4-5 is plotted in figure 4-6. It can be 

observed that the assimilation increases sea ice thickness higher than that of the 

observation. The direct insertion method induces rapid changes in the model leading to an 

over estimation of the sea ice thickness.  

 

 

 
 
   

2013/02    
 
 
 
 
 
                     

                          
 
 
 

2013/09                      
 

 
 
 
 
 

Model   DI-Conc.  AMSR2-Obs. 

Figure 4-3: Spatial coverage of sea ice extent in February (above) and September (below) 
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Figure 4-4: Sea ice thickness from model (left) DI-Conc assimilation (center) sea ice thickness difference(m) (DI-Conc - 

Model) in September 2013(right) 

Sea ice thickness and sea ice velocity are interrelated; where in areas with higher sea ice 

velocity sea ice thickness decreases. The reason for the increased sea ice thickness in this 

experiment is that sea ice velocity in the polar area (figure 4-5) has declined with the 

assimilation. In the model sea ice velocity is higher than that of the assimilation. This is 

evident from the mean sea ice velocity magnitude plotted in figure 4-7 and the sea ice 

velocity distribution plotted in figure 4-8. This higher velocity makes the sea ice advect 

away from the pole reducing sea ice thickness near the pole. 

Effect on ocean variables is also investigated. The model under predicts sea surface salinity 

in the Kara and the Barents Sea (figure 4-9). However, assimilation run shows higher salinity 

in the area compared to the model. The model overestimates sea ice concentration in the 

Barents Sea. Assimilation can increase the salinity in the Barents Sea for two reasons. 

Assimilation removes sea ice from the Barents Sea. As a result, freshwater content in the 

Barents Sea is reduced resulting in an increased sea surface salinity in the Barents Sea. 

Evaporation in open ocean can also lead to increased salinity in the area. 
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Figure 4-5: Polar area used for comparison 

 

Figure 4-6: Comparison of sea ice thickness in polar area shown in figure 4-5 between AMSR2 observation (daily), 

Model run, DI-Conc assimilation and Cryosat monthly average data. 
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Figure 4-7: Comparison of sea ice velocity m/s in polar area shown in figure 4-5 between Kimura observation set, model 

run and DI-Conc 

ms-1 
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Figure 4-8: Model sea ice velocity (left) and Assimilation sea ice velocity (right) in September 
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4.2 Sea ice thickness direct insertion assimilation (DI-thic.) 

In this experiment sea ice thickness gridded data (Krishfield 2014) based on AMSR-2 

satellite are assimilated daily. Satellite observations are introduced each day at midnight. 

Assimilation experiment is executed for the winter of year 2013, since the thickness data 

set is not reliable in summer. Inverse distance interpolation is used to interpolate 

observation data into the model grid using nearest 4 points. Corrections for the non-

assimilated variables are done according to the detail discussed in section 3.6. 

Sea ice thickness assimilation has improved sea ice thickness significantly. The model under 

predicts sea ice thickness near the pole as discussed in section 2.5.4. It is also confirmed in 

figure 4-10(left). With direct insertion sea ice thickness is greatly improved (figure 4-10-

right).  

Sea ice thickness assimilation has also indirectly improved sea extent (figure 4-11). The 

reason for this is the corrections that are done for sea ice extent as explained in section 

3.6.  

Figure 4-9: from left sea surface salinity in psu of model, assimilation(DI-Conc), Observation-Aquarius data set 
(area  in black is where there is no data),  salinity difference (assimilation-model) respectively in September 
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Figure 4-11: Sea ice extent time series from DI-Thic. compared with model and observation 
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4.3 Sea ice velocity direct insertion assimilation (DI-Vel.) 

In this experiment sea ice velocity gridded data (Kimura N. 2016) based on AMSR-2 satellite 

are assimilated daily. Satellite observations are introduced each day at midnight. 

Assimilation experiment is executed for the winter of year 2013, since the data set is not 

reliable during summer. Inverse distance interpolation is used to interpolate observation 

data into the model grid using nearest 4 points. Corrections for the non-assimilated 

variables are done according to the detail discussed in section 3.6. 

Sea ice velocity experiment does not yield much improvement to sea ice extent (figure 4-

12). This is mainly because it isn’t possible to do substantial corrections to other variables 

when sea ice velocity is assimilated as already mentioned in section 3.6. This is mainly 

because zero velocity does not correspond to zero sea ice concentration or sea ice 

thickness. 
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Figure 4-12: Sea ice extent time series from DI-Vel. compared with model and observation 
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4.4 Assimilation time interval  

Observation data sets are available in different time intervals. Some data sets such as 

AMSR2 sea ice concentration data set are available in a daily interval. Some data sets such 

as NSIDC Aquarius sea surface salinity data set are available in a weekly interval. There are 

other data sets such as PHC 3.0 data set and Cryosat sea ice thickness data set that are 

available as a monthly average. Therefore, an experiment was carried out to investigate 

the effect of assimilation time interval. Assimilation time interval is varied in the study. Sea 

ice concentration data are assimilated in daily, weekly, monthly and yearly intervals.  

Figure 4-13 represents the ice extent from daily assimilation. As can be expected the ice 

extent is comparable to the observed sea ice extent. It is also evident that the predicted 

sea ice extent from weekly (Figure 4-14) and monthly assimilations (Figure 4-15) can 

produce comparable sea ice extent to that of the observation in the winter. This is 

advantageous in predicting sea ice extent for the Arctic Sea Routes since the routes are 

operating only during the summer. Weekly and monthly observation data are available 

more widely than that of daily observations.  

 

Figure 4-13: Sea ice extent time series from sea ice concentration assimilation – daily 
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Figure 4-14: Sea ice extent time series from sea ice concentration assimilation – weekly 

 

 

Figure 4-15: Sea ice extent time series from sea ice concentration assimilation – monthly 
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Figure 4-16: Sea ice extent time series from sea ice concentration assimilation – yearly 

It can also be seen that yearly-assimilated experiment’s ice extent (Figure 4-16) has moved 

back to the model ice extent after three weeks. This is occurring because it takes about 

three months to adjust the ocean conditions according to the changes in observed 

concentration. 

 

4.5 Assimilation forecast (lead time) 

Four experiments are carried out to investigate the effectiveness of assimilation. Lead-time 

is observed using different sea ice variables. Assimilation is seized after four months to 

investigate the effectiveness of each variable as to improve initial conditions. Sea ice 

concentration, sea ice thickness and sea ice velocity are assimilated for four months. Time 

duration used is four months since sea ice velocity and sea ice thickness data sets are 

reliable only during winter. Figure 4-17 confirms the effectiveness of sea ice concentration 

assimilation. Even after assimilation experiment is seized sea ice concentration assimilation 

continues to produce sea ice extent that is more in line with the observations compared to 

the model. This is mainly because sea ice concentration is directly related to sea ice extent. 

Therefore, Figure 4-17 clearly indicates that sea ice concentration assimilation can produce 
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better sea ice extent compared to sea ice velocity assimilation and sea ice thickness 

assimilation. 

Another experiment is performed to investigate how lead time changes with time. In the 

first experiment DI-Conc assimilation is relaxed after four months of assimilation. In the 

second experiment DI-Conc. assimilation is relaxed after six months. Running through the 

melting season improves the accuracy of sea ice extent considerably according to figure 4-

18. The bias of the model is a maximum in the melting season. 

 

 

Figure 4-17: Time evolution of total sea ice extent from AMSR2 satellite observation, model prediction, DI-conc-

4months, DI-thic-4months and DI-vel-4months experiments 
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Therefore, running the assimilation through the melting season shows more improvement. 

This shows that the assimilation can improve forecasting skill of the model. It also shows 

that longer the assimilation run, more accurate is the forecast. 

According to the direct insertion experiments it is confirmed that the model predictions 

are significantly improved with assimilation. 

 

 

Figure 4-18: Time evolution of total sea ice extent from AMSR2 satellite observation, model prediction, DI-conc-

4months and DI-Conc-6months  
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5. Nudging Method 

This section presents the results from nudging method. Nudging method is a widely used 

assimilation method due to its simplicity and effectiveness. Observation errors are 

introduced through nudging experiments. Several experiments are executed. Sea ice 

concentration, sea ice thickness and sea ice velocity are assimilated. They are assimilated 

individually as well as simultaneously. 

  

5.1 Nudging weight 

In the preliminary study direct insertion method is used with the nudging weight(K) equals 

to one in equation 5.1. 𝜏  is the time constant. By varying K between 0 and 1, it is possible 

to change the influence on results from model and the observations, however once the 

observations are introduced due to initial variability, the assimilation behaves differently 

from the model even when the nudging weight is as low as 0.1.  

𝜓𝑎 =  𝜓
𝑓

+
K

𝜏
( 𝑑 − 𝜓

𝑓
)       (5-1) 

 

In this experiment nudging weight is changed from 0.1 to 1 in 0.1 intervals. In these 

experiments observations are introduced in one timestep (𝜏 = 1). All the other conditions 

are identical for all the experiments. Two sets of experiments are executed. One set of 

experiments is completed from assimilating sea ice concentration. The other set of 

experiments is completed from assimilating sea ice thickness. 

 

5.1.1 Sea ice concentration assimilation using different nudging weights 

From figure 5-1, it is evident that in the sea ice concentration assimilation, all the 

experiments produce results that are closer to observations. Nudging weight doesn’t show 

a notable effect on sea ice extent. When nudging weight is closer to 1, sea ice extent is 

getting closer to observation after four months. On the other hand, when nudging weight 

is closer to 0, sea ice extent approaches observation after six months.     
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Figure 5-1: Sea ice extent time series from sea ice concentration assimilation using different nudging weights. 

It can be observed that it takes a longer time for the experiments with lower weight to 

reach observations. After this initial period, all the experiments produce similar results. 

Even though the assimilated variable is not considerably sensitive to the nudging weight, 

non-assimilated variables are sensitive to nudging weight. 

This can be observed by figure 5-2. We can see that from the same set of experiments in 

which sea ice concentration is assimilated, sea ice thickness shows considerable sensitivity 

to the nudging weight. When the weight is closer to one sea ice thickness near the pole is 

increased as was discussed in section 4.1.  

 

5.1.2 Sea ice thickness assimilation using different nudging weights 

The same effect can be observed in the sea ice thickness assimilation experiments with 

varying nudging weight. Figure 5-3 presents sea ice extent results from different sea ice 

thickness assimilation experiments.  

Similar to sea ice concentration assimilation, in the beginning of the assimilation run the 

difference between observation and assimilation is high. This is because of the over 

prediction of sea ice in the model due to poor representation of incoming warm water 
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inflow from the Atlantic Ocean. However, after four months sea ice extent is getting closer 

to observation after observed sea ice thickness is assimilated in to the model. Similar trend 

can be observed in sea ice extent assimilation as well.  This time is taken to modify the 

ocean conditions according to sea ice observations.  As can be expected when the nudging 

weight is closer to one sea ice extent gets closer to the observations. We can see a clear 

difference between different nudging weights.  

 

5.2 Nudging time constant 

When observations are directly introduced into the model large fluctuations can be 

observed in the results. To minimize the shock and to improve the numerical stability, 

nudging time constant 𝜏 is introduced. When 𝜏 is small, observations are introduced into 

the model in a few time steps resulting large fluctuations in the model.  

 

Figure 5-2: Sea ice thickness (assimilation -model) form sea ice concentration assimilation using different weights in 

December in meter 
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When 𝜏 is large, observations are introduced in a long period. If 𝜏 is too large model doesn’t 

notice the nudging term. 

In this experiment, different values were tried for 𝜏. Observations are introduced in one 

timestep, in 30 timesteps (2 hours), in 75 timesteps (5 hours), and in 180 timesteps (12 

hours). These experiments are identified with a tag of “NU-TC”. In all these experiments 

nudging weight K is set to be 1. From figure 5-4 it can be observed that with larger 𝜏 , model 

reaches observations more slowly. Figure 5-5 shows the overall effect of 𝜏 . Initial 

fluctuations in sea ice extent have reduced because 𝜏  is introduced .  𝜏 = 180  time 

constant is more effective in this case. 
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Figure 5-3:  Sea ice extent time series from sea ice thickness assimilation using different nudging weights. 
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Figure 5-4: Sea ice extent during the first 1800 timesteps from different experiments using different 𝝉.  

 

 

Figure 5-5: Time series of sea ice extent during year 2013 from different experiments using different 𝝉 

 

The rest of the experiments were executed using time constant equal to 180 (12 hours,) 

since it incorporates observations into the model more smoothly as discussed above.  

According to figure 5-6, the assimilation experiment is able to reproduce sea ice-extent for 

the whole year, which is in line with the observation. Since observation errors are not 

considered the assimilation overlaps with the observation. Figure 5-7 presents local sea ice 

thickness in polar area. 
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Figure 5-6: Sea ice extent from NU-TC-Conc-Vel-Thic, Model and AMSR2 observation 

 

 

 

Figure 5-7: Comparison of mean sea ice thickness in polar area shown in figure 4-5 between AMSR2 observation (daily), 

Model run, NU-TC-Conc-thic-vel assimilation and Cryosat monthly averaged data. 
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Figure 5-8: Monthly mean sea ice velocity in (m/s) from model, Kimura-observation and NU-TC-Conc-Vel-Thic 

assimilation 

The reason for this increased sea ice thickness is the reduced velocity in the polar area 

shown in figure 5-8.  Reduced velocity prevents sea ice from advecting. This can be 

observed in figure 5-8 where velocity is compared with model and the Kimura (2016) 

velocity set. Since any observation errors are not considered in this experiment the effect 

of observations overrides in the model. This has led to overestimating sea ice thickness and 

under estimation of sea ice velocity. 
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This section presents nudging experiments that are performed according to Lindsay (2006) 

method discussed in section 3.4.1 with time constant 𝜏=1. These experiments are identified 

with a tag of “NU1”. 
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In this experiment sea ice concentration, gridded data based on AMSR-2 satellite are 
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Inverse distance interpolation is used to interpolate observation data into the model grid 

using nearest 4 points around a cell. Corrections for the non-assimilated variables are done 

according to the detail discussed in section 3.6. 

Sea ice concentration assimilation has improved sea ice extent significantly (figure 5-9). For 

the year 2013, the model over predicts sea ice extent. Assimilation is able to nudge the 

model towards observation.  

Sea ice concentration assimilation has also improved the sea ice thickness. Ice-POM model 

under predicts sea ice thickness near the pole (Figure 5-10). Nudging computation is able 

to improve the accuracy of sea ice thickness as shown in figure 5-11. The reason for this 

improved sea ice thickness is that sea ice velocity is improved with the assimilation. In the 

model sea ice velocity is higher than that of the assimilation (figure 5-12). This higher 

velocity makes sea ice advect away from the pole reducing sea ice thickness near the pole. 

 

 

Figure 5-9: Time evolution of total sea ice extent from AMSR2 satellite observation, model prediction, DI-Conc and 

NU1-Conc 
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Figure 5-10:  Sea ice thickness in meter in February, model (on left) observation (on right)  

m 

 

 

 

 

 

 

 

Figure 5-11: Difference between sea ice thickness of NU1-conc and model in meter. February on left. (NU1-conc sea ice 
thickness  - model sea ice thickness). Difference between sea ice thickness of NU1-conc and model in meter. September on 
right. (NU1-conc sea ice thickness  - model sea ice thickness) 
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Figure 5-12: Model sea ice velocity (right) and assimilation sea ice velocity(m/s) (left) in September 

 

 

psu 

Figure 5-13: Sea surface salinity difference in psu (SSS NU-Conc - SSS model) 
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Impact on ocean variables is also investigated. The model under predicts sea surface 

salinity in the Kara and Barents Sea as discussed in section 2.5.4. With the improved sea ice 

extent sea surface salinity in these areas is improved (figure 5-13). Assimilation can 

increase the salinity in the Barents Sea for two reasons. Assimilation run removes sea ice 

from the Barents Sea. As a result, freshwater content in the Barents Sea is reduced resulting 

in an increased sea surface salinity in the Barents Sea. Evaporation in open ocean can also 

lead to increased salinity in the area. 

 

5.3.2 Sea ice thickness nudging assimilation (NU1-Thic.) 

In this experiment sea ice thickness gridded data (Krishfield 2014) based on AMSR-2 

satellite are assimilated daily. Satellite observations are introduced each day at midnight. 

Assimilation experiment is executed for the year 2013 winter since the thickness data set 

is not reliable in summer. Inverse distance interpolation is used to interpolate observation 

data into the model grid using nearest 4 points around a cell. Corrections for the non-

assimilated variables are done according to the detail discussed in section 3.6. 

Sea ice thickness assimilation has improved sea ice thickness as can be seen in figure 5-14. 

The model under predicts sea ice thickness near the pole as discussed in section 2.2.2.  

Sea ice thickness assimilation has also improved sea ice extent (figure 5-15). The reason for 

this is the corrections that are done for sea ice extent as explained in section 3.6.  Since the 

improvement to sea ice extent is not as significant as in the sea ice concentration 

assimilation, sea surface salinity is not greatly affected by the sea ice thickness nudging 

assimilation (figure 5-16). 
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Figure 5-14: left, difference between model sea ice thickness and that of the AMSR-2 observations in meter in April 

(model sea ice thickness – observed sea ice thickness) right, difference between DI-thic sea ice thickness and that of 

the AMSR-2 observations in meter. (NU1-Thic. sea ice thickness – observed sea ice thickness) 

 

Figure 5-15: Sea ice extent time series from NU1-Thic., model and observation 
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Figure 5-16: Sea surface salinity difference in psu February (SSS NU1-Thic - SSS model) 

 

5.3.3 Sea ice concentration and thickness nudging assimilation (NU1-Conc.-

Thic.) 

In this experiment sea ice concentration and sea ice thickness are assimilated 

simultaneously. Sea ice concentration and thickness gridded data  (Krishfield 2014) based 

on AMSR-2 satellite are assimilated daily. Satellite observations are introduced each day at 

midnight. Assimilation experiment is executed for the year 2013 winter since the thickness 

data set is not reliable in summer.  

Sea ice extent is improved with the NU1-Conc.-Thic. Assimilation as can be seen in figure 

5-17. Since sea ice thickness is assimilated, sea ice thickness is also improved by this 

assimilation (figure 5-18). Compared to the model, assimilation thickness is much closer to 

the observations. Since sea ice extent is significantly improved by the assimilation, 

consequently sea surface salinity is also improved as a result of assimilation (figure 5-19). 

Psu 
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Figure 5-17. Sea ice extent time series from NU1-Conc.-Thic. assimilation, AMSR-2 observation and model. 

 

 

 

 

 

 

 

 

m 

Figure 5-18: left, difference between model sea ice thickness and that of the AMSR-2 observations in meter in February 

(model sea ice thickness – observed sea ice thickness) right, difference between NU1-Conc.-Thic. sea ice thickness and 

that of the AMSR-2 observations in meter. (NU1-Conc.-Thic. sea ice thickness – observed sea ice thickness) 
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psu Figure 5-19: Sea surface salinity difference in psu (SSS NU1-Conc.-Thic - SSS model)  

 

 

Figure 5-20: Sea ice extent time series from NU1-Conc.-Vel. Assimilation, Observation and Model. 
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5.3.4 Sea ice concentration and velocity nudging assimilation (NU1-Conc.-Vel.) 

In this experiment sea ice concentration and sea ice velocity are assimilated 

simultaneously. Sea ice concentration and velocity gridded data (Kimura N. 2016) based on 

AMSR-2 satellite are assimilated daily. Satellite observations are introduced each day at 

midnight. Assimilation experiment is executed for the year 2013 winter since the velocity 

data set is not reliable in summer. Sea ice extent is improved with the assimilation since 

sea ice concentration is assimilated (figure 5-20). 

Sea ice concentration assimilation has also improved sea ice thickness. Ice-POM model 

under predicts sea ice thickness near the pole as already discussed in section 2.2.2. NU1-

Conc.-Vel. computation is able to improve the accuracy of sea ice thickness as shown in 

figure 5-21. The reason for this improved sea ice thickness is that sea ice velocity is 

improved with the assimilation. 

Effect on ocean variables is also investigated. The model under predicts sea surface salinity 

in the Kara and the Barents Seas (figure 5-22). However, with the improved sea ice extent 

sea surface salinity in these areas is improved (figure 5-22) as discussed in section 5.3.3. 

 

5.3.5 Nudging method-1 comparison 

In this section all the experiments from nudging method-1 experiments are compared.  

Figure 5-23 compares sea ice extent from different experiments. It is evident that the 

experiments that assimilated sea ice concentration have improved sea ice extent better 

than the other experiments. All three experiments NU1-Conc, NU1-Conc.-Thic., NU1-Conc.-

Vel shows similar results.  
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Figure 5-21: Difference between sea ice thickness of NU1-Conc.-Vel. and model in meter in winter. (NU1-Conc.-Vel. sea 

ice thickness  - model sea ice thickness) 

 

 

 

Figure 5-22: from left Sea surface salinity in psu of model, assimilation(NU1-Conc-Vel), Observation-Aquarius data 

set(area  in black is where there is no data),  salinity difference (assimilation-model) respectively in February 

 

Thickness assimilation produces better results compared to velocity assimilation. This can 

be explained from the corrections that are done to non-assimilated variables. As discussed 
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in section 3.6 with sea ice velocity assimilation it’s not possible to do corrections when sea 

ice velocity is zero. 

 

5.4 Nudging method-2 experiments 

This section presents nudging experiments that are performed according to the method 

described in section 3.4.2. This method provides a modification to Lindsay (2006) method 

by introducing observation bias. Experiments are carried out using a time constant 𝜏 =

180 . Figure 5-24 presents the sea ice extent from the experiment. Since this method 

corrects the observation bias, unlike direct insertion method sea ice extent from this 

experiment is close but not the same as assimilated AMSR-2 observation. 

 

 

Figure 5-23: Sea ice extent time series from different nudging method-1 experiments 
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Sea ice thickness of Canadian basin and the polar area designated in figure 4-5 is presented 

in figure 5-25.  Figure 5-26 shows the mean squared difference between NU2 sea ice 

thickness and the Cryosat sea ice thickness observation in the same area.  

Sea ice thickness in the polar area has increased as a result of assimilation (figure 5-25). 

Reduced sea ice velocity (figure 5-27) in the same area directly relates to this sea ice 

thickness rise in the area.  

However, this experiment shows that sea ice thickness has increased to a value greater 

than that of the Cryosat data. According to Chevallier (2016), over prediction of sea ice 

thickness is a common weakness in currently available data assimilation schemes due to 

lack of a proper mechanism to introduce or remove sea ice as a result of modifications that 

are done by the assimilation. 

 

 

Figure 5-24: Sea ice extent from nudging method 2 experiments, model and AMSR2 observation 
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Figure 5-25: Mean sea ice thickness in polar area (Figure5-4) from nudging 2 experiments, AMSR2 observation, 

Cryosat monthly averaged observation and the model 

 

 

Figure 5-26: Root mean squared difference of sea ice thickness between Cryosat sea ice thickness data and the 

experiments in polar area (Figure 5-4) from nudging 2 experiment and the model free run 
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Figure 5-27: Mean sea ice velocity magnitude in the Polar area (figure 5-4) from nudging 2 experiment, model and the 

observation. 

 

 

Figure 5-28: Comparison of root mean squared difference of mean sea ice thickness in the polar area between cryostat 

dataset and other datasets; model free run, nudging1, nudging 2 and nudging with time constant methods 
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Figure 5-29: Comparison of root mean squared difference of mean sea ice extent in the Laptev Sea between AMSR2 

dataset and other datasets; model free run, nudging1, nudging 2 and nudging with time constant methods  

 

5.5 Nudging methods comparisons 

This section presents a comparison between the results from different nudging methods. 

Comparisons are carried out locally since most of the differences are observed more clearly 

locally. Three experiments are considered for comparison. NU- uses a time constant of 𝜏 =

180 (12 hours). It doesn’t consider observation error; therefore, the nudging weight is 1. 

NU1 method considers observation error variance however the time constant used is 1. 

NU2 method considers both observation error variance as well as the observation bias. It 

incorporates observations in to the model in  𝜏 = 180 (12 hours). 

It can be seen in figure5-28, that NU method and the NU2 shows similarities in predicting 

sea ice thickness in the polar region. Over predicting sea ice thickness in the polar regions 

as time progresses is a common fault in many existing sea ice models that use data 

assimilation. This could be observed in NU1 method(figure5-28) where the assimilation 
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error is very close to model error. It can also be observed that NU- method and NU2 

methods follows a similar trend in the sea ice thickness prediction error in the polar region. 

However, as time progresses NU method deviates from the independent observation data 

set more than NU2 estimate.  The similarity at the beginning in the above two methods is 

possibly due to the incorporation of time constant in the assimilation. This shows that the 

time constant has a stronger impact on model estimate than the observation error or bias. 

Similar trend can be seen in figure 5-29 where NU method and NU2 methods produces 

similar sea ice extent in Laptev sea while NU1 prediction is close to the model prediction. 

This highlights the importance of time constant in nudging assimilations. 
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6.  Atmospheric Forcing Kalman Filter method 

This section presents the results from atmospheric forcing Kalman filter method (AFKF). 

Observation errors are also considered in AFKF method. Several experiments are executed 

assimilating sea ice concentration, sea ice thickness and sea ice velocity individually and 

simultaneously. 

 

6.1 Ensemble forcing 

As discussed in section 3.5, AFKF method formulates the model error variance using the 

uncertainties of atmospheric data. In these AFKF experiments only seven ensemble 

members are used. Seven data sets from seven different weather agencies are used to 

differentiate ensemble members. 

The accuracy of atmospheric forcing is a key driver of the accuracy of sea ice predictions in 

an ice-ocean coupled model. However different atmospheric data sets including reanalysis 

data sets show large difference in the Arctic region.  Different data sets produced by 

different weather agencies have higher predictability skills in geographical areas where 

those agencies have access to more observational data.  Therefore, the spread of the 

ensemble prediction is an indicator of the uncertainties in the model. 

These atmospheric forecast data obtained from TIGGE data set vary significantly. This can 

be observed in atmospheric pressure, atmospheric velocity, atmospheric temperature, 

relative humidity and total cloud cover over the whole Arctic domain (figure 2-1) excluding 

landmasses. (from figure 6-1 to figure 6-6). Large variance can be observed in humidity, 

total cloud cover and temperature. This variance helps the ensemble to spread properly. 
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Figure 6-1: Atmospheric pressure in Pascal in September from TIGGE data set 

 

Figure 6-2: Atmospheric zonal velocity in m/s in September from TIGGE data set 
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Figure 6-3: Atmospheric meridional velocity in m/s in September from TIGGE data set 

 

 

Figure 6-4: Atmospheric temperature in Kelvin in September from TIGGE data set 
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Figure 6-5: Relative humidity in September from TIGGE data set 

 

 

Figure 6-6: Total cloud cover in September from TIGGE data set 
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6.2 Sea ice concentration AFKF assimilation 

In this experiment sea ice concentration gridded data based on AMSR-2 satellite are 

assimilated daily. Satellite observations are introduced each day at midnight. Assimilation 

experiment is executed for the year 2013. Corrections for the non-assimilated variables are 

done according to the detail discussed in section 3.6. Sea ice concentration assimilation is 

able to reproduce sea ice extent that is close to observation. Figure 6-7 presents the 

ensemble spread. Ensemble spread is large in the beginning and converges with time. 

Figure 6-7 shows that the observation is within the ensemble spread. It confirms the 

accuracy of the ensemble computation. 

Sea ice concentration AFKF assimilation not only has improved sea ice extent but also it has 

improved sea ice thickness. 

 

 

Figure 6-7: Ensemble spread – sea ice extent from different ensemble members. 
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Figure 6-8 compares sea ice thickness results from nudging and AFKF method. It shows that 

ensemble computation outperforms the nudging computations with regards to sea ice 

thickness predictability. 

This improved sea ice thickness can be attributed to sea ice velocity in assimilation. 

Compared to the model and nudging-1 assimilation, AFKF predicted velocity is lower near 

the pole (figure 6-9). Ocean variables are also affected by the assimilation. AFKF method 

has improved sea surface salinity in the Barents Sea as shown in (figure 6-10). 

 

6.3 Sea ice concentration and thickness AFKF assimilation 

In this experiment sea ice concentration and sea ice thickness are assimilated 

simultaneously. Sea ice concentration and thickness gridded data (Krishfield 2014) based 

on AMSR-2 satellite are assimilated daily.  

 

 

Figure 6-8: Sea ice thickness difference in meters (assimilation –model) on left. Observation sea ice thickness in meter 

on right (top). Model sea ice thickness in meter on left (bottom) 
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Satellite observations are introduced each day at midnight. Assimilation experiment is 

executed for the year 2013 winter since the thickness data set is not reliable in summer. 

This experiment has improved sea ice extent and sea ice thickness significantly. This is 

presented in figure 6-11 and figure 6-12. Compared to sea ice extent from nudging-1 

method, sea ice extent from AFKF method shows less variance since it’s influenced by 

seven ensemble members (figure 6-11). Nudging-2 method also shows less variance since 

time constant is introduced in the experiment, however sea ice extent from nudging2 

method is further away from the observation.  

Sea ice thickness from assimilation is comparable with that of the observations (figure 6-

12). Sea surface salinity is improved in the Barents Sea after assimilation (figure 6-13).  

 

 

Figure 6-9: Sea ice velocity in m/s from nudging assimilation (left) from AFKF assimilation (center) from model (right) 

 



103 

 

 

 

Figure 6-10:  from left Sea surface salinity in psu of model, assimilation(AFKF-Conc), Observation-Aquarius data 

set(area  in black is where there is no data),  salinity difference (assimilation-model) respectively in September 

 

 

Figure 6-11: Sea ice extent time series from AFKF-Conc-Thic,NU1-Conc-Thic, NU2-TC-Conc-Thic-vel model and 

observations 

This is a result of sea ice being removed from the model as a correction for sea ice extent 

as discussed before. 
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m  

Figure 6-12: Sea ice thickness difference in meter in winter, (model - observation) on left, (AFKF-Conc.-Thic. - 

observation) on right 

 

 

 

Figure 6-13: from left Sea surface salinity in psu of model, assimilation (AFKF-Conc-thic), Observation-Aquarius data 

set (area  in black is where there is no data),  salinity difference (assimilation-model) respectively in February 

 

6.4 Sea ice concentration and velocity AFKF assimilation 

In this experiment sea ice concentration and sea ice velocity are assimilated 

simultaneously. Sea ice concentration and velocity gridded data (Kimura N. 2016) based on 
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AMSR-2 satellite are assimilated daily. Satellite observations are introduced each day at 

midnight. Assimilation experiment is executed for the year 2013 winter since the velocity 

data set is not reliable in summer.  

This experiment well reproduces sea ice extent and sea ice thickness. This is presented in 

figure 6-14 and figure 6-15. Similar to 6.3 section, sea ice extent from AFKF method shows 

less variance due to the influence of seven ensemble members (figure 6-14). Sea ice 

thickness from assimilation is comparable with that of the observations (figure 6-15). Sea 

surface salinity is also improved locally by the assimilation (figure 6-16). This is a result of 

improved sea ice extent.  

 

6.5 Sea ice concentration, sea ice thickness and sea ice velocity AFKF 

assimilation 

In this experiment sea ice concentration, sea ice thickness and sea ice velocity are 

assimilated simultaneously in a daily interval. Satellite observations are introduced each 

day at midnight. Sea ice thickness and sea ice velocity are assimilated only during winter 

since they are not reliable in the winter. Sea ice concentration is assimilated throughout 

the year.  

 

Figure 6-14: Sea ice extent from AFKF-Conc-Vel experiment, NU-Conc-Vel experiment, model and observations 
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Figure 6-15: Sea ice thickness difference in meter (assimilation –model) on left. Observation sea ice thickness on top 

right. Model sea ice thickness on bottom right. 

 

 

Figure 6-16: from left Sea surface salinity in psu of model, assimilation(AFKF-Conc-vel), Observation-Aquarius data 

set(area  in black is where there is no data),  salinity difference (assimilation-model) respectively in September 
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Figure 6-17 and figure 6-18 show how the ensemble spreads. The difference between the 

maximum and minimum sea ice extent is plotted in figure 6-18. It shows that the ice extent 

difference ranges between 0.1 million km2 and 1 million km2. It’s an indication that the 

ensemble spreads properly. According to figure 6-17 the experiment can reproduce the sea 

ice extent for the entire year. 

Figure 6-19 presents the magnitude of the Kalman gain matrix when sea ice concentration 

is assimilated. It is presented as the Frobenius norm.  Frobenius norm is calculated to be 

the trace of the squared of the diagonal components of the Kalman gain matrix. It is an 

indication of the model error. Model error grows gradually in winter and the freezing 

season. Model error is a maximum in summer where the uncertainty of the forcing data is 

high. 

 

Figure 6-17: Time series of sea ice extent from different ensemble members, model run and AMSR2 observation data 
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Figure 6-18: Time series of difference between the maximum and minimum sea ice extent 

 

 

Figure 6-19:Time series of Frobenius norm of the Kalman gain matrix for AFKF-Conc-Vel-thic experiment sea ice 

concentration 
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The comparison of 6-18 and 6-19 indicates that when the spread of the sea-ice extent 

estimate is large, there is more weight on the observation. Figure 6-20 and Figure 6-21 

present the time series of difference between the maximum and minimum of the 

temperature and pressure in the atmospheric data sets. In figure 6-20 the temperature 

difference trend roughly resembles the trend in Frobenius norm in figure 6-19 in some 

months. The similarity prevails because the atmospheric temperature directly affects the 

sea ice creation and melting processes. It is also visible in figure 6-21 that the temperature 

difference between maximum and minimum has even reached 3.5 degrees.  Due to this 

amount of large difference in temperature the sea ice extent produced in different 

ensemble members can vary significantly leading to assign more weight on sea ice 

observations. 

Figure 6-22 presents the structure of the Kalman gain matrix. The Kalman gain is an 

indication of how model error and the observation error are reflected in the assimilation. 

In winter, assimilation has the strongest impact on sea ice edge. Due to similarity between 

observation and model in ice pack, in winter, assimilation has very little impact on sea ice 

concentration in the ice pack.  

 

 

Figure 6-20: Time series of difference between the maximum and minimum temperature of the atmospheric forcing 

data sets 
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Figure 6-21: Time series of difference between the maximum and minimum pressure of the atmospheric forcing data 

sets 
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Figure 6-22: Diagonal components of Kalman gain matrix of AFKF-Conc-Vel-thic experiment sea ice 
concentration. 02/2013 on left(a) 09/2013 on right(b) 
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In summer uncertainty of forcing data is high, especially along the sea ice edge increasing 

the model error along the sea ice edge. This is reflected in the Kalman gain in figure 6-22(b) 

where observations are weighted along the sea ice edge. Due to similarities in model and 

observations in the ice pack, assimilation has little impact on sea ice concentration of the 

ice pack. This also confirms that the sea ice thickness differences observed as a result of 

assimilation in the ice pack (figure 6-8) are related to sea ice velocity changes rather than 

the corrections to the sea ice thickness. 

Figure 6-23 presents the diagonal components of the sea ice thickness Kalman gain matrix. 

Assimilation has a high impact in Polar area where model has under estimated sea ice 

thickness. In February assimilation has affected the sea ice edge and the Polar area. The 

model error has increased with time, that after two months both marginal areas and Polar 

area show higher Kalman gain. 

Figure 6-24 compares resulting sea ice thickness from the experiment. Model under 

estimates sea ice thickness in the polar area (figure 5-4) compared to the Cryosat data set. 

This is improved with the assimilation run. Figure 6-25 presents the root mean squared 

difference(RMSD) between the assimilation and the cryostat data from October 2013 to 

December 2013 in the same area. While nudging methods show a growth in RMSD, 

atmospheric forcing Kalman filter method shows a decline. It can be seen that the sea ice 

thickness hasn’t grown abnormally in atmospheric forcing Kalman filter method. 

The reason for this sea ice thickness rise is the improved sea ice velocity in the Polar area 

as presented in figure 6-26. Sea ice velocity has decreased in the area increasing sea ice 

thickness. 

Ocean salinity is also affected by assimilation. As discussed in previous experiments with 

the sea ice extent decrease in the Barents Sea, sea surface salinity and ocean salinity are 

increased. This will be discussed further in Chapter 7. 
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Figure 6-23: Diagonal components of Kalman gain matrix of AFKF-Conc-Vel-thic experiment sea ice thickness in 02/2013 

on left(a) 04/2013 on right(b) 

 

 

Figure 6-24: Mean sea ice thickness in the polar area (figure 5-4) from model, AMSR2 observation, cryosat observation 

and AFKF-Conc-Thic-Vel experiment. 
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Figure 6-25: Root mean squared difference of sea ice thickness in the polar area 

 

 

Figure 6-26: monthly mean sea ice velocity magnitude from model, Kimura observation data set and AFKF-Conc-Thic-

Vel experiment in m/s in polar area (figure 5-4 
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7. Validation of assimilation 

This chapter evaluates the effectiveness of different assimilation techniques and presents 

their local effect.  

7.1 Local impact of assimilation 

Sea ice thickness in the polar area is examined. Selected area is presented in figure 7-1. 

This area is an important area for Arctic Sea Route with a higher political interest in 

navigating along the North Pole where no country holds the geographical ownership. 

Furthermore, part of ASR falls along the Canadian Archipelago.  

One of the issues with the whole Arctic model predictions is that sea ice thickness is under 

predicted in the polar area. Figure 7-2 compares sea ice thickness in the area using different 

methods while figure 7-3 presents the root mean squared difference between sea ice 

thickness from different methods and independent Cryosat sea ice thickness data set.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7-1: Polar area used for comparison 
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There are disparities between AMSR2 sea ice thickness data set and cryostat data set. 

However, cryostat data is considered to be more accurate with an overall standard 

deviation close to 14cm where AMSR-2 sea ice thickness data set has an overall standard 

deviation of 15-42cm. Hence Cryosat data is used in calculating root mean squared error.  

According to figure 7-3 all the assimilation experiments have improved sea ice thickness 

estimation in polar area compared to the model with time. Nudging method with time 

constant and nudging-2 methods shows the common flaw of many existing data 

assimilation approaches by over estimating sea ice thickness in the area. 

 

Figure 7-2: Comparison of mean sea ice thickness in the polar area(figure 7-1) from different assimilation methods; 

direct insertion, nudging1, nudging 2, nudging with time constant, atmospheric forcing Kalman filter method, model, 

Cryosat observations and AMSR 2 observations 
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In nudging method with time constant (NU-TC-Conc-Thic-Vel), the observation error is not 

considered. Therefore, the nudging weight is 1. In nudging-2 method, the nudging weight 

is formulated according to equation 3-8. The term |𝐶𝑜𝑏𝑠 + 𝐶𝑏𝑖𝑎𝑠 − 𝐶𝑚𝑜𝑑𝑒𝑙| in equation 3-8 

accounts for the observation bias. However, bias is insignificant compared to the difference 

between observation and the model estimate. Therefore, in equation 3-8 the term 

|𝐶𝑜𝑏𝑠 + 𝐶𝑏𝑖𝑎𝑠 − 𝐶𝑚𝑜𝑑𝑒𝑙| is the dominating term that drives nudging weight closer to 1. 

When the nudging weight is close to one, rapid alterations occur in the model. Thereby 

affecting the accuracy of the estimate.  

 

 

 

Figure 7-3: Comparison of root mean squared difference of mean sea ice thickness in the polar area(figure 7-1) between 

cryostat dataset and other datasets; model free run, direct insertion, nudging1, nudging 2, nudging with time constant 

and Atmospheric forcing Kalman filter method from October to December 
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According to table 7-1 and Figure 7-3 atmospheric forcing Kalman filter experiment makes 

a more accurate estimate with the lowest RMSD sea ice thickness in the polar area. 

The area marked with a red square in figure 7-4 includes Laptev Sea. This area is also 

important as a part of ASRs. Figure 7-5 compares sea ice extent in this area while figure 7-

6 presents the RMSD between sea ice extent from each method and AMSR2 observations. 

It can be observed that the sea ice extent from all methods have improved compared to 

that of the model other than the direct insertion method and nudging 1 method. All the 

other methods well reproduce sea ice extent in the area. However, it should be noted that 

the AMSR2 observations also contains errors. This is reflected in atmospheric forcing 

Kalman filter method and Nudging-2 methods where the mean RMSD is not too low or too 

high as the other methods (table 7-1). 

Direct insertion method and nudging method-1 do not use a time constant. Therefore, 

observations are introduced in a single time step.  This leads to creating a shock in the 

system. All the other nudging methods use a time constant; hence they smoothly 

incorporate observation in to the model. This graph shows the importance of the time 

constant in nudging method. 

Same can be observed with sea ice extent in the Barents Sea (figure 7-7). As presented in 

figure 7-8 all methods produce similar sea ice extent that is closer to observation. Sea ice 

edge lies in the Barents Sea. 

Figure 7-4: Laptev Sea area that is used for comparison is highlighted with a red square 
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Table 7-1: Comparison of different assimilation methods 

Method comparison 

 

Model 

free run DI NU-1 NU-TC  

NU-TC- 

2 AFKF 

Sea ice thickness(m) 

in polar area (RMSD 

with Cryosat data)  

 

 

1.61 1.3 1.51 0.71 0.57 0.38 

Sea ice extent (km2) 

in Laptev Sea (RMSD 

with AMSR2 data) 

 

 

166,414 138,501 186,046 19,350 23,881 24,349 

Sea ice extent (km2) 

in Barents Sea 

(RMSD with AMSR2 

data) 

 

 

164,030 
31,191 33,070 22,212 27,430 34,632 

Sea ice extent 

(million km2) in 

Whole Arctic region 

(RMSD with AMSR2 

data) 

 

 

 

1.28 0.13 0.15 0.16 0.31 0.33 

Sea ice 

concentration 

estimation error 

standard deviation 

 

 

N/A 
N/A N/A N/A N/A 

Winter:0.056 

Summer:0.078 

Sea ice thickness 

estimation error 

standard deviation 

 

 

N/A N/A N/A N/A N/A Winter:11cm 
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Computational 

hours required for 1-

year computation 

 

 

518 547 576 633 662 6048 

Cores used for 

computation 

 

 

12 12 12 12 12 84 

  

In this area observation error is higher than in other areas. Therefore, sea ice extent in the 

area is not the same as in AMSR2 observations.  

 

Figure 7-5: Comparison of sea ice extent in Laptev Sea area (figure 7-4) from different assimilation methods 

According to mean RMSD values presented in table 7-1 and figure 7-9, Atmospheric forcing 

Kalman filter method, NU-1 and NU-TC-2 methods consider the bias of observation 

therefore having a slightly higher RMSD compared to other methods such as DI and NU-TC. 
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Changes in salinity are observed as a result of assimilation experiments. This is specifically 

highlighted in the areas where there is a significant sea ice extent difference between the 

model and the assimilation (figure 7-10 and 7-11).  

 

 

Figure 7-6: Comparison of root mean squared difference of mean sea ice extent in the Laptev Sea area (figure 7-4) 

between AMSR2 dataset and other datasets; model free run, direct insertion, nudging1, nudging 2, nudging with time 

constant and Atmospheric forcing Kalman filter method  
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Figure 7-8: Sea ice extent in Barents Sea (figure7-5) from different assimilation methods, model and AMSR2 

observations  

Figure 7-7: Area that includes Barents Sea that is used for comparison is highlighted with a red square 
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There are two possible reasons for the rise in sea surface salinity. When the sea ice is 

removed as a correction done by assimilation, freshwater is being removed as a result. This 

is the reason where the salinity difference is highlighted in areas like Barents Sea where 

there are disparities between model sea ice extent and AMSR2 sea ice extent.  

For the same reason the SSS bias becomes a maximum in summer. In the model with no 

assimilation sea ice melts in summer and therefore sea surface salinity is low in summer 

but in the assimilation, there is no ice to melt hence the bias is larger in summer. Another 

reason for the rise in SSS is evaporation. When there is open ocean, surface albedo is about 

0.06 where in sea ice the value can vary between 0.5-07. Therefore, more heat is absorbed 

by the ocean and freshwater is evaporated increasing the salinity in those areas.  Effect of 

salinity extends beyond the surface vertically due to the corrections that are done to inner 

ocean as presented in figure 7-12 and 7-13. 

 

 

Figure 7-9 Comparison of root mean squared difference of mean sea ice extent in the Barents Sea area (figure 7-7) 

between AMSR2 dataset and other datasets; model free run, direct insertion, nudging1, nudging 2, nudging with time 

constant and Atmospheric forcing Kalman filter method  
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Figure 7-10: Sea surface salinity bias(AFKF assimilation SSS-model SSS) in different months 

 

 

Figure 7-11: Comparison of sea ice extent in February from Model, AMSR2 and AFKF assimilation 

 

7.2 Overall impact of assimilation 

As presented in chapter 4, 5 and 6, sea ice extent in the entire whole Arctic model is 

improved by the assimilation. Figure 7-14 compares the sea ice extent from all the methods 

while figure 7-15 presents the RMSD of sea ice extent between different methods and 

AMSR2 observations. Overall all the methods show similar skills of reproducing sea ice 

extent in the whole Arctic region. However according to figure 7-15 and table 7-1, methods 

that introduce bias in observation such as AFKF, NU-2 and NU-1 show slightly higher mean 

RMSD.  
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Figure 7-12: Vertical profile of ocean salinity in March AFKF-Conc-vel-thic (top-left) model(top-right) PHC3.0 (bottom-

left) Kawasaki and Hasumi salinity (bottom-right) 

 

Figure 7-13: Vertical profile of ocean salinity in September AFKF-Conc-vel-thic(top-left) model(top-right) PHC3.0 

(bottom-left) Kawasaki and Hasumi salinity (bottom-right) 
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Another set of experiments are performed to see the predictability of model once the 

assimilation is relaxed. In these experiments sea ice concentration is assimilated for 6 

months. Sea ice thickness and sea ice velocity are assimilated for four months and the 

assimilation is relaxed after six months. 

Figure 7-16 presents the sea ice extent from the experiments that are relaxed six months 

after assimilation. All methods are able to reproduce observed sea ice extent more 

accurately than the model. Until one month after relaxation, all experiments well 

reproduce observations.   

Figure 7-17 presents sea ice thickness in December after one year assimilation run. They 

are compared with cryosat sea ice thickness data and the model. 

 

 

Figure 7-14: Sea ice extent from different assimilation methods, model and observation 
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Figure 7-15: Comparison of root mean squared difference of mean sea ice extent in the whole Arctic region between 

AMSR2 dataset and other datasets; model free run, direct insertion, nudging1, nudging 2, nudging with time constant 

and Atmospheric forcing Kalman filter method 

 

Figure 7-16: Time evolution of total sea ice extent from AMSR2 satellite observation, model prediction, assimilation 

experiments using different methods that relaxed the assimilation after 6 months. Purple vertical line indicates the 

time that relaxed the assimilation 
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Figure 7-17: Sea ice thickness distribution in December from different assimilation methods, model and Cryostat 

observation (data not available is in black) 

It can be clearly seen that sea ice thickness distribution is improved with assimilation 

compared to the model. Sea ice thickness from AFKF method is comparable with the 

cryosat sea ice thickness. NU-TC and NU-TC-2 methods also produce sea ice thickness that 

is comparable to the cryosat sea ice thickness. However according to figure 7-2 the sea ice 

thickess near the pole is overestimated from those two methods. 
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Sea surface temperature is also affected by the assimilation. As already explained in section 

2.5.4, model under estimates sea surface temperature in marginal areas due to 

overprediction of sea ice extent. This has been improved as a result of improved sea ice 

extent according to figure 7-18. When there is open ocean, surface albedo is about 0.06 

where in sea ice the value can vary between 0.5-07. Therefore, more heat is absorbed by 

the ocean with the absence of sea ice and the sea surface temperature rises as a result 

In chapter 4, an experiment is performed to investigate how the assimilation time interval 

affects the lead time of the assimilation. In the first experiment assimilation is relaxed after 

four months of assimilation. In the second experiment assimilation is relaxed after six 

months. Running through the melting season improves the accuracy of sea ice extent 

considerably according to figure 4-18. Even after the assimilation is seized, the model 

produces results that are closer to observation.  

  

 

 

Figure 7-18: Sea surface temperature distribution in September from left model, PHC3.0,AFKF-Conc-Vel-Thic, and 

temperature difference(Assimilation-model) respectively  
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This could be explained by the figure 7-18. It can be observed that the sea surface 

temperature is increased in the marginal areas due to removal of sea ice in the marginal 

areas by the assimilation. This elevated temperature is a result of low surface albedo in the 

ocean where sea ice is removed. This increased sea surface temperature helps the model 

to retain the ice-free conditions even after the assimilation is seized. After 6 months 

assimilation, this elevated sea surface temperature continues to rise with the increased 

atmospheric temperature in the summer 

 

7.3 Comparison of assimilation methods 

Performance comparison of different assimilation methods are presented in this section. 

Several factors are taken in to account. Local representation of sea ice thickness, sea ice 

extent, estimation accuracy and computational economy are some factors considered. 

They are presented in table 7-1. 

As already discussed in previous two sections, local sea ice thickness in the polar reigion is 

accurately presented by the atmospheric forcing Kalman filter method. It also fairly 

estimates overall sea ice extent as well as local sea ice extent considering the observation 

error. Another advantage of using the atmospheric forcing Kalman filter is computing the 

error covariance of estimate error (thereby providing information such as standard 

deviation), which cannot be done with the other methods. It should also be noted that 

atmospheric forcing Kalman filter method requires additional computational power which 

is about 10 times higher than the other methods. 

Nudging method-2 is also effective in making sea ice extent and sea ice thickness 

estimations both locally and in the whole Arctic region. The method overestimates sea ice 

thickness in some areas, which is considered to be a common flaw in data assimilation of 

sea ice variables. This method can be considered as a computationally economical method 

to estimate sea ice conditions with a fair accuracy. 

Nudging method 1 and direct insertion method is effective in predicting overall sea ice 

extent however it is not very effective in predicting local sea ice thickness and sea ice 

extent. 
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8. Regional model 

The whole Arctic model with 25km resolution cannot be used to investigate the fine details 

of sea ice dynamics such as ice edge positions and extents accurately for applications such 

as navigation in ASRs. Therefore, regional models are required for those applications. 

Figure 8-1(b) consists of the area with 50E:165E longitude and 68N:85.5N latitudes. The 

region consists of Laptev Sea, part of Kara and East Siberian Seas. 

The basic mechanisms of the model used in these high-resolution computations are same 

as those used in whole Arctic computation. The resolution of zonal and meridional 

directions are set to be about 2.5km×2.5km in horizontal plane and 33 sigma layers in the 

vertical direction. Initial ice, ocean conditions and boundary conditions are given by the 

output of the whole Arctic AFKF-Conc.-vel.-thick assimilation.  

 

Figure 8-1: (a) Whole Arctic coarse model on left (b) regional model on right 
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The atmospheric forcing is taken from ERA interim data and NCEP data same as whole 

Arctic model. In the marginal regions of model domain, radiation boundary condition is 

applied and in coastal regions no-slip boundary condition is adopted. 

For the regional model incremental analysis update method discussed in section 3-4 and 

Lindsay (2006) nudging method are used. Only AMSR2 sea ice concentration data is used 

in assimilation since other data sets aren’t reliable in summer. Regional model run starts at 

the end of August (28th August 2013) and runs until the end of freezing season (November 

2013).  

Figure 8-3 compares sea ice extent from the regional model run, regional NU-TC-Conc 

assimilation run, Regional nudging-1 assimilation run, 25km AFKF-Conc.-Vel.Thic 

assimilation run, 25km model run and AMSR2 observations. One of the issues mentioned 

in De Silva (2013) PhD thesis is that the regional model isn’t creating adequate ice in the 

freezing season (figure 8-2) as mentioned in section 2.5.4.  

 

Figure 8-2: Comparison of sea ice extent from regional model run, 25km model and AMSR-2 observation. (De Silva 

2013) 
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Figure 8-3: Comparison of sea ice extent from regional model run(initialized by AFKF-Conc-Vel-Thic), regional NU-TC-

Conc assimilation, regional NU1-Conc assimilation, 25km AFKF-Conc-Vel-Thic, 25km model and AMSR-2 observation. 

 

According to figure 8-3 and 8-4 it’s clear that the regional model initialized by whole Arctic 

AFKF-Conc.-Vel-Thic assimilation can reproduce sea ice extent that is in line with 

observations. It can also be observed that 25km assimilated coarse model can also 

reproduce sea ice extent with enough accuracy. Regional IAU assimilation sea ice extent 

well reproduces AMSR2 sea ice extent.  

However, it must be noted that AMSR2 sea ice concentration data set contains higher error 

in summer. The error is greater in the area used in regional model, which focuses on ice 

edge area. Therefore, regional model that uses nudging method-1 incorporating 

observation error under predicts sea ice extent compared to the other regional model 

computations.  

According to figure 2-11 taken from De Silva (2013), the maximum bias between regional 

model and AMSR-2 observation is about 0.4 million km2 however, the bias from the 

regional model (figure 8-3 green line) is about 0.13 million km2 in the freezing season. The 
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value is lower for regional model assimilation experiments. Ice edge produced by regional 

model is presented in figure 8-3.  

Sea ice edge is well represented in both regional model initialized by the AFKF assimilation 

and the regional model assimilation.  

 

  

Figure 8-4: Comparison of sea ice concentration from regional model run(initialized by AFKF-Conc-Vel-Thic), regional 
NU-TC-Conc assimilation, regional NU-Conc assimilation, 25km AFKF-Conc-Vel-Thic, 25km model and AMSR-2 
observation 
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9. Conclusions and Future work 

This study is a first attempt to implement a data assimilation system to ice-POM model. In 

this study data assimilation is introduced to ice-POM model with the aim of accurately 

predicting short-term sea ice distribution along the NSRs. 

Sea ice concentration, sea ice thickness and sea ice velocity are assimilated in the study. 

Assimilating sea ice variables improved ocean and ice conditions as expected. It is evident 

from the changes in sea ice extent, sea ice thickness, ocean temperature and ocean salinity. 

Non-assimilated sea ice variables have also been indirectly improved by assimilation. 

Improvements in sea ice variables are emphasized in the Barents Sea and near the pole.  

Sea ice thickness is improved near the pole as a result of decreased sea ice velocity near 

the pole. Sea ice extent is improved in the whole domain with assimilation. Atmospheric 

forcing Kalman filter and introducing a time constant have led to less assimilation shock 

compared to direct insertion method. 

It can be observed that sea surface salinity is altered in the places where sea ice 

concentration is improved. This is a result of correcting sea ice extent in over predicted 

areas where freshwater is being removed from the model and increased evaporation in 

open ocean areas. Sea surface temperature has also improved as a result of improved sea 

ice extent. 

Compared to single variable assimilation, multiple variable assimilation produces more 

accurate results. Sea ice concentration assimilation improves the accuracy more effectively 

than sea ice thickness or sea ice velocity.  

In addition to improving the accuracy of prediction, another aim of this study was to 

investigate the effect of different parameters that govern the effectiveness of data 

assimilation.  

In the investigation of the impact of time interval, it was evident that daily assimilation 

produces results that are closer to observations throughout the year, while weekly and 

monthly-assimilation experiments produce results with adequate accuracy during the 

summer. This is favorable in real-time computations where observation data is not 

immediately available. 
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When observations are directly introduced into the model large fluctuations can be 

observed in the results. To minimize the shock and to improve the numerical stability, 

nudging time constant 𝜏 is introduced. Time constant in nudging experiments is proven to 

be effective in improving the quality of prediction. Initial fluctuations in sea ice extent have 

reduced when 𝜏 is introduced .  

The impact of nudging weight was also investigated. Assimilated variables were close to 

the observations regardless of the size of nudging weight. However, the assimilated 

variables reached observations two months faster when the nudging weight was closer to 

1 compared to the experiments that used nudging weight close to 0.  It can be observed 

that it takes a longer time for the experiments with lower weight to reach observations. 

After this initial period, all the experiments produce similar results. Even though the 

assimilated variable is not considerably sensitive to the nudging weight, non-assimilated 

variables are sensitive to nudging weight, where the experiments that used larger nudging 

weight (close to 1) had improved the accuracy of non-assimilated variables more than that 

of nudging weight close to 0. 

AFKF method produces better sea ice thickness compared to nudging methods and direct 

insertion method in the polar area. With AFKF method it is also possible to determine the 

error covariance of estimate error (thereby providing information such as standard 

deviation), which cannot be done with the other methods. However, the computational 

power required for the assimilation is about 10 times higher than the nudging and direct 

assimilation methods. Nudging method-2 is ahead of other nudging methods and direct 

insertion method in terms of the accuracy of local sea ice extent and sea ice thickness 

predictions using lower computational hours. 

The whole Arctic assimilation run is used to initialize regional model with 2.5km resolution. 

Regional model initialized by the whole Arctic AFKF-Conc.-Vel-Thic assimilation can 

reproduce sea ice extent that is in line with observations. Specifically, accuracy has been 

improved in the freezing season. Regional model assimilation has further improved the 

prediction of the ice extent.  

Overall in one-year span data assimilation improves the predictability of Ice-POM model. It 

also enhances the accuracy of regional model predictions.  
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One of the limitation of this study is providing accurate boundary conditions for ocean 

variables. Even though, ocean salinity and temperature observations are available ocean 

velocity observations are infrequent. Further study can be performed on how to set more 

accurate ocean velocity. This could be extended to include assimilating ocean variables.  

In this study, investigation was limited to one-year assimilation run.   Further study should 

be done to further investigate long-term effect of data assimilation on the accuracy of 

predictions.  

The model used for computations consists of one sea ice thickness category. This could be 

improved by introducing more sea ice thickness categories in to the ice model. Since 

assimilation imposes corrections to sea ice thickness, sea ice concentration and sea ice 

velocity, introducing more sea ice thickness categories will increase the effectiveness of 

assimilation model.  

(Bennett 1992) (Bloom 1996) (Caya A. 2010) (De Silva 2013) (Efimova 1961) (G. Evensen 

2009) (G. J. Evensen 1994) (Fujisaki 2007) (Haltiner 1957) (Hunke E.C. 2001) (M. Ikeda 

2009) (M. J. Ikeda 2003) (Japan Aerospace Exploration Agency (JAXA) n.d.) (Jun Ono 

2016) (Kawasaki 2015) (Kimura N. 2016) (Krishfield 2014) (Laevastu 1960) (Lindsay R. 

W. 2006) (Lindsay R. 2012) (Lorenc 1991) (Ludovic Brucker 2014) (McPhee 2008) (Mellor 

G 2002) (Mellor 2003) (Mudunkotuwa D.Y. 2015) (Murray 1967) (NCAR Advanced Study 

Program n.d.) (National Snow and Ice Data Center 2015) (Overland 2013) (Parkinson 1979) 

(Rheem C.K. 1997) (Rothrock 2005) (Rothrock 2005) (Sagawa 2007) (Sakov 2012) (Scott 

K. A. 2012) (Shimada 2006) (Smagorinsky 1963) (Steele M. 2001) (Steele 2008) (Talagrand 

1987) (Toyoda 2011) (Wang 2012) (Watanabe 2013) (Weathernews 2008) (Wongittilin 

2000) (Zhang J. 1998) (Zhang 1997) (Zillman 1972) 
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