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１．Introduction 

 Rapid retreat of summer sea ice away from the landmasses in the recent years has led to extending the 

navigation period of the Arctic sea routes (ASR). In order to safely navigate in the Arctic Ocean, it is important 

to predict sea ice distribution accurately. Ice-ocean coupled model (Ice-POM) is used to predict sea ice condition 

in the Arctic Ocean. However, the results of the simulations from the model alone are prone to produce several 

errors due to uncertainties in initial conditions, uncertainties in the forcing data and limitations of the temporal 

and spatial resolutions. Satellite observations of sea ice distributions are also available, yet satellite data are also 

subjected to instrument errors, conversion errors and limitations of temporal and special resolutions. Data 

assimilation is an effective tool to best combine satellite data and model predictions. The focus of this study is to 

introduce data assimilation into Ice-POM. The aim is to improve the initial conditions of the high-resolution 

models by including data assimilation to mid resolution model from which initial conditions are extracted for 

high-resolution models. An extensive literature survey was carried out and it was found that the accuracy of sea 

ice prediction is improved when more than one variables are assimilated. Several assimilation techniques were 

tested. Direct insertion method, Newtonian relaxation (nudging) method and ensemble Kalman filtering methods 

were used. Sea ice concentration, sea ice thickness and sea ice velocity were assimilated individually and in 

combination. Sea ice concentration assimilation time interval was varied in daily, weekly, monthly and yearly 

intervals.  

 

2. Model Description 
 

The ice dynamic model in Ice-POM takes into account the ice discrete characteristics along the ice edge area. 

The ice thermodynamic model is a zero-layer model (Semtner A.J., 

1976) with snow-cover effect taken into account (Zhang X., 2001). The 

ocean part of Ice-POM is a primitive equation model based on Princeton 

Ocean Model (POM). The model domain (Fig.1) is a 

z-sigma-coordinate, three-dimensional model with spatial resolution of 

25km in horizontal plane and 33 z-sigma layers in vertical direction. It 

contains the entire Arctic Ocean, the Greenland-Iceland-Norwegian 

(GIN) seas and the North Atlantic Ocean. The bottom topography is 

created from 1 arc minute data of ETOPO1 data set. The atmospheric 

forcing data were obtained from ERA-interim six hourly products. The 

radiation boundary condition is applied at the open lateral boundaries 

and no-slip boundary condition is used along the coastlines. First, the 

model was spun up for 12 years by providing the year 1979 atmospheric 

data cyclically. Entire model domain reached equilibrium after 12-year 

spin up. Then the model was integrated from year 1979 to 2013 with 

ERA-interim realistic atmospheric forcing. After simulating this 33-year 

experiment, the model could well reproduce the ice condition.

3. Assimilation Method  

Sea ice concentration is obtained from the advanced microwave scanning radiometer (AMSR2) onboard the 

GCOM-W satellite. Daily gridded sea ice concentration data set is extracted from Arctic Data archive System 

(ADS) from their website, https://ads.nipr.ac.jp/. Daily sea ice thickness is calculated using (Krishfield et. al, 

2014) algorithm based on AMSR-2 satellite data. Sea ice velocity data set is extracted from KIMURA Sea ice 

velocity data set (Kimura et. al, 2013). Sea ice concentration data are available in a daily interval for the year 

2013. Sea ice thickness and sea ice velocity data sets are only used from January to May of 2013 due to their 

unreliability in summer. Sea ice observation gridded data sets are available in 10km zonal and meridional 

resolution. The observation data sets are interpolated to the model grid using inverse distance interpolation 

considering the nearest four observation points in 7km radius around a model grid cell. In this study the timespan 

of data assimilation experiment is set to year 2013. The intermittent approach (Bloom, S.C., et al. 1996) is used 

 

 

 

 

 

 

 

Fig. 1 : Model domain 
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to assimilate sea ice observations. They are assimilated daily and are integrated for 24 hours.  

 

3.1 Direct insertion and Newtonian relaxation (nudging)  

 
In this study the timespan of data assimilation experiment is set to year 2013. The intermittent approach (Bloom, 

S.C., et al. 1996) is used to assimilate sea ice variables. During assimilation experiments the model estimates are 

nudged to new estimates with the following relationship. 

 

Cestimate =  Cmodel + K(Cobs − Cmodel)   (1) 

K is the weighting. C is the prognostic variable; in this study variables are sea ice concentration, sea ice 

thickness or sea ice velocity. The optimal least square value of the weighting is formulated as in equation 2. 

 

K =  
Rmodel

2

Rmodel
2 + Robs

2     (2) 

 

Rmodel
2  and Robs

2  are the error variances of the model estimate and the observation, respectively. Errors are 

assumed to be unbiased and normally distributed. Very little is known about the model errors and observation 

errors. The error variance of the observation varies considerably with time and location. Therefore we have 

selected different values for the ice edge and the other areas. We have also selected different values for the 

summer since the observations are not so reliable in the summer. Observation errors are selected according to the 

instrumentation errors (Japan Aerospace Exploration Agency (JAXA)).  Robs 
2 = 6.25 ×  10−4  is used 

where the ice concentration is 1. Along the ice edge Robs 
2 = 1.5625 ×  10−2  is used. In the summer 

Robs 
2 = 6.25 × 10−2 is used.  The weight K is formulated as, 

 

K =  
|Cobs−Cmodel|2

|Cobs−Cmodel|2+ Robs
2     (3) 

 

For direct assimilation computations K is set to be 1 ignoring the observation error.  The impact of assimilation 

time interval is also studied. Yearly, monthly, weekly and daily assimilation intervals are examined. Some 

corrections are done to adjust the non-assimilated variables to avoid numerical instabilities.  

 

3.2 Ensemble Kalman filter 

 
The ensemble Kalman filter (EnKF) [Evensen, 1994] method estimates model error statistics using an ensemble 

of model states. Error statistics are calculated using different realizations of model states at the current time 

requiring more CPU time. In this study ψi
f is model forecast of the ensemble member i ∈  {1,2 … N}. H is a 

linear operator that transfers the model state to the observation space. The analysis update (ψi
a) is given by 

equation 4, where d is observation. Due to the computational constraints in this study, we have limited our 

ensemble size to seven ensemble members. Since observation perturbation could lead to errors in a small 

ensemble, observations aren’t perturbed in this study. To differentiate ensemble members, the model is forced 

using different atmospheric forecast data from seven atmospheric agencies. Observation error variance used to 

assimilate sea ice observations are selected based on the instrument error variance of AMSR-2. Different values 

are selected for ice edge and other areas as stated above in Newtonian relaxation method. Observation variance 

is also varied according to the season. Higher values are selected during summer due to the unreliability of 

satellite observations in summer. Observation errors and model errors are assumed to be uncorrelated, yielding a 

diagonal matrix, which is trivial to invert in equation 5.  

 

𝜓𝑖
𝑎 =  𝜓𝑖

𝑓
+  𝐾𝑒 (𝑑 − 𝐻𝜓𝑖

𝑓
)             (4) 

Ke is the Kalman gain, which is given in equation 5. 

𝐾𝑒 =  𝑃𝑒
𝑓

𝐻𝑇(𝐻𝑃𝑒
𝑓

𝐻𝑇 + 𝑅)−1                        (5) 

Pe
f is model state error covariance computed from equation 6. ψT̅̅ ̅̅  is the ensemble average of the prognostic 

variable. 

𝑃𝑒
𝑓

= (𝜓𝑖
𝑓

− 𝜓𝑓)̅̅ ̅̅ ̅  (𝜓𝑖
𝑓

− 𝜓𝑇̅̅ ̅̅  )𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                      (6) 
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Analyzed model state (𝑃𝑒
𝑎) is given in equation 7. 

𝑃𝑒
𝑎 = (𝐼 − 𝐾𝑒 𝐻)𝑃𝑒

𝑓                                 (7) 

Corrections were done to non-assimilated variables as explained above in the Newtonian relaxation method to 

avoid numerical instabilities. 

 

4.Results and Discussions 

 
It could be observed that sea ice thickness has increased near the pole and decreased near the ice edge in 

Newtonian relaxation experiments as well as in EnKF experiments (Fig. 2) compared to the model prediction. In 

the year 2013 the model had over predicted sea ice extent. Therefore decreased sea ice thickness along the ice 

edge is an improvement in sea ice predictions. One of the issues mentioned by (De Silva et. al, 2013) in the 

model prediction is that sea ice is thinning near the North Pole. One of the reasons for this is an over prediction 

in sea ice velocity that leads to advection of sea ice away from the North Pole. Improved sea ice thickness in 

assimilation experiments is a result of improved velocity predictions as well as corrections we did to sea ice 

thickness during assimilating experiments. 

 

 

 

 

Fig 2. Sea ice velocity in September 2013 in ms-1 (a) left sea ice velocity from EnKF experiment, (b) center sea ice 

velocity from nudging experiment (c) right sea ice velocity from the model.  

ms-

1 

Fig 1. a (left) Difference between sea ice thickness of ensemble average and model in meter in September. (EnKF sea ice 

thickness - model sea ice thickness) b (right) Difference between sea ice thickness of nudging method and model in September. 

(Nudging sea ice thickness – model sea ice thickness) 
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It is evident in the figure.3 that sea ice velocity in assimilation experiments are lower than that of the velocity in 

the model prediction. This is specifically evident near the pole where increased sea ice thickness can be observed 

in assimilation experiments. EnKF method experiment outperforms the nudging method with regards to velocity. 

Resulting in better sea ice thickness distribution. 

To validate assimilation effectiveness, resulting sea surface salinity (SSS) was compared with an independent 

data set (NSIDC) that was not used in our assimilation experiments. It was noted that the model under predicts 

salinity in the Barents Sea compared to the NSIDC data set (Figure 4b and 4c). EnKF assimilation experiment 

produce better salinity results in the Barents Sea compared to the model (Figure 4a). The reason behind 

increased salinity is the reduced sea ice extent in assimilation experiments. In both assimilation methods 

presence of sea ice in the Barents Sea is not as significant as in the model prediction. When sea ice cover is 

absent, salinity is affected by the inflow from the Atlantic Ocean. Another reason for this increased salinity could 

be the model response to create ice when the ice cover is removed by the assimilation. 

 

The impact of assimilation time interval on the results has also been investigated. Sea ice concentration is 

assimilated in daily, weekly, monthly and yearly intervals. Ice extent from daily assimilation is comparable to the 

observed sea ice extent. It is also evident that the predicted sea ice extent from weekly and monthly assimilations 

could produce comparable sea ice extent to that of the observation after about 5 months in to the assimilation 

experiment. This is advantageous in predicting sea ice extent for the Arctic sea routes since the routes are 

operating only during the summer. It is also advantageous because weekly and monthly observation data are 

available more widely than that of daily observations. We can also see that yearly-assimilated experiment’s ice 

extent has moved back to the model ice extent after three weeks. This is occurring because it takes several weeks 

to adjust the ocean conditions according to the changes in observed concentration. 

Compared to sea ice thickness and sea ice velocity assimilations, sea ice concentration assimilations produce 

results that are more comparable with the observations.  

 

5. Conclusions 
 

Assimilating sea ice variables improved the ocean and ice conditions as expected. It is evident from the changes 

in sea ice extent, sea ice velocity, sea ice thickness and ocean salinity. Non-assimilated sea ice variables have 

also been indirectly improved by assimilation. Both direct insertion method and nudging method that considered 

error covariance have produced similar results due to the significant difference between the model and the 

satellite observations. EnKF method produced better sea ice and ocean conditions. The ice and ocean conditions 

in the Barents Sea are significantly improved after assimilation. The salinity is affected by the assimilation. 

There are two reasons behind this increased salinity. One is the Atlantic water flow and the other is the model 

responding to the removal of ice by the assimilation with creating more ice. The impact of assimilation time 

interval is also studied. Daily assimilation produces results that are closer to observations through out the year, 

while weekly and monthly-assimilation experiments produce results with adequate accuracy during the summer. 

This is favorable in real-time computations where observation data is not immediately available 
 

 
 

Fig 3. a (left) Difference between SSS (in psu) of ensemble average and model in winter  (EnKF   SSS  - model SSS), b 

(center) SSS (in psu) of the model, c(right) SSS (in psu) of NSIDC satellite observation 

psu 


