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Abstract

Software-Defined Networking (SDN) is a new networking paradigm that is getting

more and more popular because it is considered as a prominent method to facilitate

networking practices. SDN defines two core features, i) decomposition of control and

data planes and ii) a centralized control plane (i.e., controller) based on a network-

wide view. Those SDN characteristics provide control plane programmability, sup-

port networking applications, and enable research and innovation in networking.

While SDN has a strong proposal in control plane, it may have some shortcomings

in data plane.

In this thesis, we recognize and address two major problems in the current SDN

data plane:

1. Ine�cient packet classification in the switch: SDN data plane uses a limited

set of predefined packet headers (e.g., source and destination IP addresses) to

classify packets for switching and repeats checking all header fields for classi-

fication on every switch in the network. Moreover, ther are potentially many

header fields than can be matched together to classify every packet that can

make complex combinations. So, there are three subproblems in this problem:

i) SDN classification is redundant ii) SDN classification is predefined and iii)

SDN classification is complex.

2. Switch actions are hardwired in the switch hardware: After classifying packets

SDN data plane applies a set of predefined actions on every packet (e.g., forward

and drop). All these actions are hardwired directly on the switch hardware and

network operators can not make any change or adapt new requirements. So

there are two subprobles in this problem: i) SDN switch actions are predefind

and ii) there are limited number of actions.



We posit that solving aforementioned problems in the SDN data plane is a key to

the successful migration of current hardware-centric networking practices to SDN.

The general benefits of such a migration lie in two aspects:

• For academia: We propose technologies that foster Data plane programma-

bility along with an open data plane architecture to unlock innovation in the

networking.

• For industry: We relax the constraints of traditional predefined, hardwired

data planes which lets new and small firms enter the networking software devel-

opment market and conduct the industry to a more competitive and innovative

atmosphere.

Building on top of Deeply Programmable Networking (DPN) concept, which is

already proposed in the community, we developed the following technologies as mit-

igation solutions to SDN problems. To address Problem 1 we propose TagFlow.

TagFlow is a classification and forwarding architecture for SDN. The main con-

tributions of TagFlow are two folds: first, using lightweight classification at the

core it o✏oads the main classification load to the network edge. Second, we show

TagFlow releases the classification load on core devices and using that opportunity

it is possible to leverage from heavier classification mechanisms (e.g., application

layer classification) than common methods (i.e., header classification).

As for Problem 2 we propose User-Defined Actions (UDA), a flexible architecture

to accommodate user generated packet processing mechanisms within the switch

data plane. UDAs let SDN programmers to freely build arbitrary use cases specific

to their own needs without the limitation of traditional predefined actions in SDN.

The main contributions of UDAs are two folds: first, through extensive experiments

we indicate that our UDAs can elevate millisecond-scale running time of current

proposals to nanosecond-scale (including proposals from northbound applications

of SDN community and virtual appliances of Network Function Virtualization or

NFV community). Second, to raise the importance of the ease of programmability

when dealing with network programmability, we show that our proposal decrease



the lines of code compared to implementing the same functionality as a northbound

application and as a standalone middlebox.

The technical benefits of our proposals lie in two aspects:

• Primary benefit: We can adapt new architectures or protocols and basic packet

processing without hardware replacement

• Secondary benefit: Reduced cost for networking devices and reduced latency

in packet transmission over the network.

Aforementioned proposals are examples of application programming interfaces of

the DPN. These interfaces are the mean to expose programmability deeply and

comprehensively in data in addition to control plane (in the form of APIs) to realize

deeply programmable networks.
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Chapter 1

Introduction

1.1 Background

Current Internet infrastructure is a set of networking devices with purpose-built ASICs and

chips that are used to achieve high throughput, so realizing hardware-centric networking. How-

ever, current hardware-centric Internet su↵ers from several shortcomings such as manageability,

flexibly, and extensibility. Networking devices usually support a handful of commands and con-

figurations based on a specific embedded OS or firmware. As a result, network administrators

are limited to a set of pre-defined commands, even though it would be easier to support more

protocols and applications in a simpler and more e�cient way if they can program network

controls in the way that they want. In addition, researchers usually have to make their own

testbeds or take advantage of simulation rather than real world implementation scenarios to

realize their ideas. In other words, innovation and research is costly in the current hardware-

centric networking.

To overcome such limitations, Software-Defined Networking (SDN) concept has been pro-

posed. SDN can be defined as “an emerging network architecture where the network control is

decoupled from the forwarding and is directly programmable” [2]. In SDN, there is a logically

centralized controller that has a network-wide view, and controls multiple packet forwarding

devices (e.g., switches) that can be configured via an interface (e.g., ForCES [3] and OpenFlow

[4]). For example, an OpenFlow switch has one or more forwarding tables that are controlled by

1
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a centralized controller, so realizing the control plane programmability. Forwarding tables are

used to control packets (e.g., forwarding or dropping). Therefore, according to the controller’s

policy that controls the forwarding tables, an OpenFlow switch can act as a router, switch,

NAT, firewall, or similar functions that depends on packet-handling rules. Because of the de-

coupling, SDN is believed to be a new networking technology that simplifies today’s network

operation and management and also enables network innovations and new network designs. Due

to the potential benefits of SDN in the current Internet and future Internet architectures such

as information-centric networking [5], it has gained considerable attention from the community.

An SDN instance consists of three major parts: application, control plane, and data plane

(Fig. 1.1). Application indicates the part that exploits the decoupled control and data plane

to achieve specific goals such as a security mechanism [6] or a network measurement solution

[7]. Application communicates with a controller at the control plane via northbound interface

of the control plane. Control plane is the part that manipulates forwarding devices through a

controller to achieve the specific goal of the target application. The controller uses southbound

interface of the SDN-enabled switch to connect to data plane. Data plane is the part that

supports a shared protocol (e.g., OpenFlow) with the controller and handles the actual packets

based on the configurations that are manipulated by the controller. Therefore, we believe that

deep understanding of each part and balanced research attention on each of the three parts is

2



important to maximize the potential benefits of SDN.

1.2 Problem Statement

The existing studies on SDN points out numerous solutions and optimizations to redesign

di↵erent aspects of the SDN control plane. However, they leave a significant problem which is

taking care of the SDN data plane. We posit that there are two major problems regarding SDN

data plane to be solved in order to achieve an e�cient and flexible SDN:

1.2.1 Packet classification is ine�cient

Current proposals of SDN data plane consistently insist on the necessity of a hardware-centric

data plane meaning that all the functionality should be implemented on the hardware. This

point of view includes classification of packets as well. Almost any data plane device includ-

ing switches and middleboxes have to classify packets before taking any other action or de-

cision. The main consequence of hardware-centric packet classification is inflexibility in term

of customizability and non-extensibility during the time. Hence, upgrading the protocols and

functionality of the data plane which implemented on hardware solutions such as Ternary

Content-Addressable Memory (TCAM) results in replacing the hardware module. While this

guarantees a profit margine for chip producers and hardware makers, it is not a viable solution

from scientific point of view. There are three specific problems in SDN packet classification:

• Predefined Classification: The packet classification mechanism is implemented on hard-

ware and it is costly to adapt new protocols and architectures. So, all the supported

protocols and header fields are predefined. There is a need for a more flexible and evolv-

able classification mechanism.

• Complex Classification: SDN classifies packets based on the packet header fields. The

number of the fields used for classification can potentially be many and cause a complex

and heavy classification.

• Redundant Classification: Finally, exactly the same form of classification happens on every

switch a packet visits throughout its route to get to the destination. This classification is

3



repeated unnecessarily many times in order to let the switch decide where to forward the

packet.

1.2.2 Switch actions are hardwired in the switch hardware

Current SDN data plane supports a set of few actions. Actions are atomic operations that

are applied to every single packet by switch after classification. Therefore, once the packet

enters to the switch, first the switch classified the packet based on the header fields and then

applies a set of actions to the packet. Currently there are only a few actions supported by the

dominant SDN data plane definition such as: Forward, which means forward the packet to some

specific output port, Drop which means to discard the packet and finally Meter, which means

to measure di↵erent aspects of the tra�c and collect statistics. However, such a predefined

and one-size-fits-all way of treating with networking may not be su�cient for fast paced and

changing environments of todays’ networks. Similar to the first problem, any attempt to change

the action set of SDN data plane results in hardware module replacement.

Specifically there are two problems here:

• Predefined actions:all actions to be taken by the switch are predefined and implemented

on hardware. So, deploying any additional and even small mechanisms such as minor

packet modifications may lead to adding a middlebox (of course with some overhead)

to the network. While tolerating the overhead of a new box on the network may be

acceptable for very heavy proceedings such as sophisticated firewalling or heavy deep

packet inspection, it may not be reasonable for minor tasks.

• Shortage of actions: The number of actions available in the current SDN solutions is

limited. There reason is that they are defined on the hardware and thus it is costly to

define many actions. Moreover, it is not easily possible to introduce programmability to

actions and let the user define arbitrary actions.

4



1.3 Thesis Statement

This thesis posits that solving aforementioned problems in the SDN data plane is a key to the

successful migration of current hardware-centric networking architectures to SDN. The benefits

of such a migration lie in two aspects. First, for academia, using our proposals, researchers

can test their proposed methods freely without any concern about dealing with predefined ar-

chitectures and protocols of current hardware-centric networking solutions yet with a reliable

performance. Second, for industry, as we relax the constraints of traditional predefined, hard-

wired data planes which lets new and small firms enter the networking software development

market and conduct the industry to a more competitive and innovative atmosphere.

To be more specific we reveal the potential benefits of extending SDN packet switching

architecture using two examples:

• First, a packet classification mechanism which is simple and low overhead (called TagFlow)

• Second, a packet processing mechanism within the switch which enables adding arbitrary

processing of packets (called User Defined Actions)

Benefits of the above solutions are two folds:

• Primary benefit: We can adapt new architectures or protocols and basic packet processing

without hardware replacement

• Secondary benefit: Reduced cost and latency

1.4 Strategy and Philosophy

We take a data plane oriented strategy towards solving the two problems mentioned earlier even

though it is possible to attack to the problems from control plane centric approach as well. In

particular, among available alternatives in the research community, as our fundamental basis,

we focus on the idea of Deeply Programmable Networks (DPN) [8] to solve problems. We discuss

the definition and details of DPN in Chapter 3 where we try to elevate the SDN definition to

cover a broader range of concepts. Hence, from Chapter 3 and after explaining DPN we may use

the term SDN instead of DPN as it is more familiar to the community. Since the SDN concept
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territories is roughly defined, using DPN and SDN interchangeably could be safe. There is a

philosophy behind our strategy which is out of the scope of this thesis. Therefore, we only

review it briefly here. Our strategy is based on proposing open architecture and democratizing

the ability to program networking devices. Currently there is a monopoly of hardware producers

which are a few vendors that have the power to program networking devices and advertise that

their (almost) one-size products fit all needs for every environment. We believe democratizing

the access to networking controls and providing users with commodity programable networking

devices is a key to unlock innovation on networking. That is, getting advantage of the crowed

wisdom usually ends in a better solution.

1.5 Scope

OpenFlow in early days is initially proposed for campus networks. Since campus networks

have some similarity with datacenter networks, the industry quickly adapted the same idea

to datacenter networks. The main similarities between campus and datacenter networks is

their limitation in size and management. They are both in single administrative domain that

have the authority over all aspects of the network. Since main competitor of this research is

traditional SDN and the dominant implementation of SDN is OpenFlow we define our scope

to datacenters. Even thought, there are some activities about using OpenFlow in optical and

wide area networks they are not the initial purpose of OpenFlow and thus we do not cover

them. For more information on OpenFlow application in wide area and optical networks please

refer to Chapter 2. In short, the scope of all networks mentioned in this research is datacenter

networks unless otherwise is stated.

1.6 Summary

Chapter 1 provides a general introduction of SDN and the problems it is facing.

Chapter 2 introduced Software-Defined Networking and reviews current significant research

e↵orts in this area and classifies the literature in di↵erent classes. It also illustrates the gap in

the current research focus which is the data plane related research on SDN.
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Chapter 3 starts with the gap introduced in the previous chapter and defines the superset

of SDN as Deeply Programmable Network (DPN). Then it covers possible chances to catalyze

the speed of DPN research specifically on the data plane using already existing technologies.

Chapter 4 moves the discussion to the solution domain and proposes TagFlow, and e�cient

tag-based flow classification for DPN.

Chapter 5 proposes User-Defined Actions (UDA), a flexible architecture to accommodate

user generated packet processing mechanisms within the switch data plane.

Chapter 6 concludes the thesis and proposes future work.
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Chapter 2

Software-Defined Networking

(SDN)

2.1 Introduction

The current Internet consists of networking devices with purpose-built ASICs and chips that

are not easily programmable, so realizing hardware-centric networking. The hardware-centric

networking causes a barrier towards its growth because any modification that goes deep into

architecture can not be deployed and tested easily. For example, networking devices usually

support a handful of commands based on a specific embedded OS or firmware. As a result,

network administrators are limited to a set of pre-defined commands, even though it would

be easier to support more protocols and applications in a simpler and more e�cient way if

they can program network controls in the way that they want. In other words, the current

hardware-centric Internet su↵ers from several shortcomings such as manageability, flexibiliy,

and extensibility.

Software-Defined Networking (SDN) is now becoming more and more popular because it is

considered as a prominent method to facilitate networking practices due to its two features, i)

decomposition of control and data planes and ii) a centralized controller based on a network-wide

view. Those SDN characteristics provide control plane programmability, support networking
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applications, and enable research and innovation in networking.

Even though SDN is considered as one promising way to solve limitations of the current

hardware-centric networking, its potential benefits come at several challenging issues (e.g., avail-

ability and resilience of the centralized controller). In this paper, we first introduce a survey

of current research that tries to solve the identified challenges of SDN, particularly on manage-

ment aspects. Even though most current research on SDN focuses on the programmability of

control plane that manipulates the data plane handling packets (i.e., switches), we argue that

research on the data plane programmability is also required.

2.2 Software-Defined Networking

Back in the 1980s, a router was simply a server forwarding packets to/from a few NICs. As the

complexity and capacity of networks improved, general-purpose hardware was not capable of

handling packets fast enough and thus software routers on servers were hardwired into single-

purpose devices that we recognize as network controls today. That is the status of current

hardware-centric networking. The image of a network router for example, in the mind of an

average networking engineer is a hardware appliance with purpose-built ASICs and chips as well

as firmware which is not flexible enough to be customized dynamically. With this paradigm

shift from software to purpose-built hardware, networking devices achieve higher throughput

and yet few shortcomings as well. Because of hardware-centric networks, network management

tasks are not flexible, modifiable, and generic enough. For example, network management

tasks highly depend on measurement of network tra�c. But, unfortunately tra�c measurement

typically depends on a set of customized hardware and pre-defined protocols designed for specific

purposes.

Networking paradigms can be divided into three types according to the deployment of con-

trol and data planes (Fig. 2.1). In the traditional hardware-centric networking, switches are

usually closed systems that have their own control and data planes and support manufacturer-

specific control interfaces. Therefore, in the traditional hardware-centric networking, deploying

new protocols and services (and even new versions of existing protocols) is a challenging issue

because all the switches need to be updated or replaced. In contrast, in SDN, switches become
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Figure 2.1: High-level illustration of networking paradigms.

more simpler (in terms of removing the control plane from the device) forwarding devices while

a centralized controller derives the control mechanism of the network. This decomposition of

control and data planes allows easier deployment of new protocols and services because the

decomposition enables us to program switches via the controller. Finally, hybrid approach

supports both distributed and centralized control planes. For example, common commercial

OpenFlow switches are hybrid switches that support OpenFlow in addition to traditional op-

eration procedures and protocols.

SDN is considered as one promising way to overcome such limitations. Recently, SDN is

now becoming more and more popular based on the full support of industry and academia even

though the concept itself is not new. Fig. 2.2 illustrates the high level components of an SDN

network. At the lowest level, we have the data plane that consists of switches. The data plane

is responsible for dealing with actual packets and transmitting them among nodes according to

the forwarding rules that are manipulated by controllers. On top of data plane, there are some

controllers that manage data plane controls based on a network-wide view. Network applica-

tions work on top of controller and use one or more controllers to gather network information

and possibly impact the controllers behavior to achieve specific goals (e.g., network manage-
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Figure 2.2: SDN overview

ment or security). At the highest level, there is an orchestrator that is in charge of keeping the

network-wide state consistent among multiple controllers. The orchestrator realizes the logi-

cally centralized control over the network. Orchestrator may communicate with applications

depending on their functionality.

SDN facilitates networking practices due to its two features, i) decomposition of control and

data planes and defining an open interface between them and ii) a centralized controller based

on a network-wide view. With SDN concept, it is possible to realize the centralized control of

the network based on a network-wide view, which leads to a simpler and more e�cient network

control and management. The definition of an open interface along with the separation of the

control and data planes allows customized control. However, the potential benefits of SDN

come at the cost of several challenges and thus there have been much research on solving those

challenges to fully exploit the potential benefits of SDN.

2.3 Current Research on SDN

2.3.1 Controller and Switch

In SDN, the controller is a key component because physically or logically centralized con-

troller(s) manages the whole network by manipulating switches based on a network-wide view.
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As a result, a way to manage, install, and implement the controller heavily a↵ects the perfor-

mance of network. Because of this reason, much research focuses on improving the controllers

in various aspects. We group existing work into subgroups according to the goal that they want

to achieve as follows. The following survey is summarized in Table 2.1.

2.3.1.1 Availability and Resilience

Unlike the current networks where control plane and data plane are tightly coupled and thus

switches can act independently, in the centralized control of SDN, controllers and switches need

to communicate with each other. Therefore, in SDN, the placement of controllers may a↵ect the

availability of SDN because it influences the communication between controllers and switches.

In [9], the authors try to understand how the number of controllers and their placement

influence the reliability of SDN control networks. By introducing a metric, called expected

percentage of control path loss, they formulate the reliability-aware control placement problem.

In addition, they show that a strategic controller placement improves the reliability of SDN

control networks noticeably without introducing unacceptable switch-to-controller latencies. In

[10], the authors analyze the e↵ect of controller placement on network resilience based on in-

terdependence graph and cascading failure analysis. Based on their analysis, they propose a

partition and selection approach for improving the resilience. In SDN with multiple controllers,

placement of controllers may a↵ect the overloads of controllers and the propagation delays

among controllers [11]. To optimize the management of the network, the authors define prin-

ciples for designing a scalable control layer for SDN. Then, they introduce one approach that

finds the minimum number of controllers and corresponding locations so as to deal with failures

robustly and balance the load among the selected controllers. In [12], the authors introduce

the fault tolerant controller placement problem that determines how many controllers need to

be used and which network nodes need to be managed by each of them. Through simulations

with publicly available network topologies, they show that realizing the fault tolerant SDN is

possible through careful placement of controllers (e.g., they show that each switch needs to

connect to 2 or 3 controllers to achieve more than five nine reliability).

How to implement the controller and switches or how to setup SDN may also a↵ect the

availability and resilience. In [13], the authors aim to study a replication technique that is
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a proven method for achieving the resilience. With two types of replication techniques (i.e.,

passive and active replication), they try to understand the di↵erence between two types, how

each technique can be used to improve the resilience, and which technique is better for specific

cases. In [14], the authors introduce an approach to spawn a new controller instance to recover

the failure. In addition, they dicuss a way to replay inputs observed by the old controller. A

similar approach is used in [15] to support the upgrade of SDN controller to a new version in a

disruption-free manner. Using a history of network events managed by the old controller, the

new controller is bootstrapped.

In [16], the authors investigate the trade-o↵s among consistency, availability and partition

tolerance in the context of SDN. In particular, they prove that it is impossible to enforce

consistency and partition tolerance without sacrificing availability. They also discuss some ways

to avoid these impossibility results. In [17], the authors introduce CPRecovery component that

provides resilience against several types of failures of the centralized controlled network baed

on the primary-backup mechanism. RuleBricks [18] introduces three key primitives (i.e., drop,

insert, and reduce) to embed high availability support in existing OpenFlow policies. The

authors describe how these primitives can express various flow assignment and backup policies.

Even though frequent issue of monitoring messages is needed for fast recovery, frequent

report may pose a significant load on the controller. In [19], the authors discuss a way to

implement a monitoring function on the switches so as to enable switches to send monitoring

messages without posing a noticeable load on the controller. In [20], the authors propose a way

to install static rules on the switches in order to verify topology connectivity and locate link

failures. CORONET [21] is an e�cient fault tolerant system to solve the data plane faults (i.e.,

a switch or link fails) with multi-path support. By computing link-disjoint shortest routing

paths based on the up-to-date information of network topology status, CORONET recovers

from multiple link failures. In [22], the authors aim to realize a fast failover mechanism for

OpenFlow networks. Based on graph search-related approach, they discuss three algorithms to

computer failover tables that achieve tradeo↵s among the number of required failover rules, the

number of tags, and the resulting path lengths.
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2.3.1.2 Scalability

Even though the centralized control of SDN has various advantages, it naturally faces scal-

ability issue (e.g., because of excessive control tra�c overhead). Some work aims to discuss

the necessity of the research on the scalability of SDN. In [23], the authors argue that more

attention should be paid to improve the scalability of SDN by showing the impact of the flow

insertion rate on the controller’s CPU utilization and the packet loss rate. In [24], the authors

discuss several scalability trade-o↵s in SDN design space.

One promising way to solve the scalability issue is to reduce the overhead of the central-

ized controller. In DIFANE [25], a centralized controller partitions the forwarding rules and

distributes the partitioned forwarding rules to switches. With the distributed forwarding rules,

DIFANE allows the switches to handle all tra�c in the data plane by selectively directing pack-

ets through other switches that store the necessary forwarding rules. A similar approach is

found in DevoFlow [26]. In DevoFlow, switches handle short flows and direct only large flows

to a centralized controller. In [27], the authors combine centralized control and distributed

control to provide a more scalable control. Defining new features (e.g., the proactive flows to

be activated under a certain condition), they aim to reduce the overhead of the centralized

controller. SUMA [28] is a switch-side inline middlebox that provides management abstraction

and a filtering layer among SDN controllers and switches. In particular, the filter module of

SUMA facilitates control message/tra�c aggregation to reduce the overhead of the controller.

Using a hierarchical architecture of controllers is another promising way to tackle the scala-

bility issue. In [29], the authors model the behavior of a scalable SDN deployment where local

controllers handle frequent events and a centralized controller handles rare events. Using the

network calculus and queuing theory, they capture various aspects of the scalable SDN deploy-

ment (e.g., the closed form of the event delay and bu↵er length inside the local SDN controller).

In Kandoo [30], controllers form a two layers of controller so as to limit the overhead of frequent

events on the control plane. Controllers at the bottom layer try to handle most events using

the state of a single switch. A logically centralized controller of the top layer is only used to

handle the events that cannot be handled by the controllers at the bottom layer.
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Table 2.1: Current Research on Controller Management

Controller

Detailed Area Summary

Availability
& Resilience

Placement of controllers ([9], [10], [11], [12])
How to implement/setup controllers and switches
([13], [14], [15], [18], [20], [19], [17], [21], [16], [22])

Scalability Reducing the overheads of a centralized controller ([25], [26], [27],
[28])
Using a hierarchical architecture of controllers ([29], [30])

Security Constraining SDN applications ([31], [32], [33])
Handling controllers under attack ([34], [35], [36])

State Management
&
Policy Enforcement

Rewriting forwarding rules ([37], [38], [39], [40])
Using transactional semantics ([41], [42])
Updating in parallel ([43])
Using a database ([44], [45])

Flexibility Allowing additional network information ([46], [47, 48])
Implementing the required functions in a flexible way ([49], [50],
[51], [52])

2.3.1.3 Security

SDN may su↵er from trust issues on SDN applications because it allows third-party develop-

ment. The abuse of such trust may result in various attacks in SDN network. Some research

aims to understand the potential vulnerabilities of SDN. In [53], the authors first discuss threat

vectors that may enable the exploit of SDN vulnerabilities. Then, they introduce the design of

a secure and dependable SDN control platform. In [54], the authors discuss a new attack to fin-

gerprint SDN networks. They also introduce a possibility of resource consumption attacks (e.g.,

DDOS-like attack by issuing many requests to centralized controller supporting reactive-mode).

One natural way to deal with the potential trust issue is to constraint SDN applications.

In [31], the authors first discuss several vulnerabilities of OpenFlow protocol. Then, they pro-

pose PermOF that applies minimum privilege on the applications. The authors introduce a

set of permissions to be enforced at the API entry of the controller. For the security con-

straint enforcement in NOX OpenFlow controller, the authors in [32] propose the role-based

authorization. FRESCO [33] provides a programming framework to execute and link together

security-related applications.

Another security concern may arise when a controller is compromised or under attack. In

[34], the authors introduce a secure SDN structure where each switch is managed by multiple

controllers that are dynamically managed by the cloud. By deploying Byzantine fault tolerance
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replicas in di↵erent instances in the cloud, they aim to guarantee that each switch updates the

flow table correctly even when some compromised controllers issue false instructions. In [35],

the authors propose an on-line disaster management framework for SDNs, called NEOD. NEOD

event detector embeddded in switches monitors the disaster events according to the configured

policies. Then, NEOD manager that resides in the controller performs a network-wide disater

event corrrelation to find the root of potential attacks. Fleet [36] is proposed to solve the

malicious administrator problem where network administrators attempt to attack the network

by misconfiguring controllers. Fleet allows administrators to upload their configurations to

the shared storage and only some selected configurations to be translated into flow rules and

pushed into the switches. In this context, Fleet applies two approaches (i.e., single-configuration

approach and n routing configurations) to address the malicious administrator problem.

2.3.1.4 State Management and Policy Enforcement

For consistent packet handling, a centralized controller needs to enable switches to have the

same forwarding rules. Some research aims to understand the state consistency in various

aspects. In [55], the authors show that the control state inconsistency significantly degrades

the performance of logically centralized control applications. In [56], the authors study the

trade-o↵ between update time and rule-space overhead. In [57], the authors discuss the trade-

o↵ between maintaining consistency during configuration updates and the update performance.

One common approach for the state consistency is to rewrite forwarding rules for switches

while preserving the overall forwarding policy. FlowAdapter [37] converts the forwarding rules

of the controller to switch hardware flow table pipeline so as to allow the same forwarding

policy to be fitted into di↵erent types of hardware. In [38], the authors propose a set of axioms

for policy transformation to allow changes of rules across multiple switches while keeping the

same forwarding policy. In Palette distribution framework [39], a large forwarding table is

divided into small ones to be distributed across the network while preserving the overall policy

semantics. In [40], the authors propose an e�cient rule-placement algorithms to distribute

forwarding policies across the network while managing rule-space constraints.

Another way for managing states over the network is to use transactional semantics. The

reactive establishment of paths can cause inconsistent packet processing. To handle this issue,
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in [41], the authors adopt the transactional semantics at the controller. In a similar spirit, in

[42], the authors propose a policy composition abstraction to support concurrent and consistent

policy updates when SDN policy specification and control is distributed. They aim to support

all-or-nothing semantics using a transactional interface. For example, one policy update is done

successfully so that switches of the entire network support the newly updated policy or not.

Some approaches exploit a database for the consistency. ONOS [44] supports a network

topology database to the controller so as to preserve the consistency across distributed state. In

[45], the authors also use the idea of a network information base to satisfy the state consistency

and durability requirements.

To facilitate installing or modifying a large number of rules in a time e�cient way, ESPRES

[43] divides a large network-state update into sub-updates that are independent of each other

and thus can be installed in parallel. ESPRES calculates an order of install of sup-updates so as

to fully utilize processing capacities of switches without a↵ecting the performance of switches.

In SDN, the dynamic and tra�c-dependent modifications by middleboxes may make it di�cult

to ensure network-wide policy enforcement. To overcome this problem, FlowTag [58] allows

middleboxes to add tags to outgoing packets so that packets carry the necessary causal context

and thus switches and other middleboxes examine the tag to examine the systematic policy

enforcement.

2.3.1.5 Flexibility

Additional information may be able to make the network management easy. To enrich net-

work management services, FleXam [46] allows OpenFlow controller to have the packet-level

information. In [47, 48], the authors aim to incorporate application-awareness into SDN that

is currently agnostic to applications.

The flexibility in implementing the required functions may also be able to make the network

management easy. To realize far more flexible processing of counter-related information, the

software-defined counters that utilize general-purpose CPU rather than ASIC-based inflexible

counters is introduced in [49]. In a similar spirit, CPU in the switches is used to handle not

only control plane but also data plane tra�c to overcome ASIC-based approach’s limitations

[50]. In [51], the authors present research directions that can significantly reduce TCAM and
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Table 2.2: Current Research on Management of SDN-enabled Networks

Networks

Detailed Area Summary (Reference list)

Virtualized Network Managing a large number of SDN instances ([61], [62], [63], [64],
[65])
Managing SDN in the virtualized carrier network ([66], [67])

Large-scale Network Supporting inter-domain interoperability between SDN-based ASes
([68])
A state distribution system ([45])
Applying SDN into access network ([69])

Data Center Network Reducing the complexity of management ([70])
Managing tra�c aggregation ([71])

control plane requirements via classifier sharing and reuse of existing infrastructure elements.

In [59], the authors propose the reconfigurable match tables that allows the forwarding plane

to be changed without modifying hardware. The reconfigurable match tables also allow the

programmer to modify all header fields much more more comprehensively than in OpenFlow.

In [60], the extensible session protocol is proposed to install flow entries proactively based on the

requirements of the application. The authors aim to provide a general and extensible protocol

for managing the interaction between applications and network-based services and between the

devices. To simplify the network management by allowing applications developed for di↵erent

controller platforms, the authors in [52] propose a new kind of hypervisor that allows di↵erent

applications to process the same tra�c. Using a extensible configuration language, they aim to

combine updates to each prioritized list of forwarding rules according to the hypervisor policy.

2.3.2 SDN-enabled Networks

Even though SDN facilitates networking practices based on the decomposition of control and

data planes and the centralized control with a network-wide view, SDN features may introduce

new challenging issues to the management. In this subsection, we introduce existing research

that tries to improve the management of various SDN-enabled networks. The following survey

is summarized in Table 2.2.
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2.3.2.1 Virtualized Network

Using the network virtualization technique [72], several SDN instances can be created over

the same physical network. However, the scalability may become an issue in supporting a

large number of SDN instances (e.g., because of significant configuration overheads). In [61],

the authors introduce SDN hypervisor. SDN hypervisor generates the required flow entries to

transparently setup arbitrary virtual SDN and manipulates control messages so as to allow each

virtual SDN operator to configure its own virtual SDN. In addition, SDN hypervisor supports

the automated node and link migration through flow table updates. In a similar spirit, for

scalable SDN slicing, AutoSlice [62] introduces a distributed hypervisor architecture to handle

large number of flow table control messages from many SDN instances. In FlowN [63], a

database technology is used to e�ciently provide each SDN instance with the information of

its own topology and controller instead of running a separate controller for each SDN instance.

In [64], the authors aim to provide an integrated way for managing several SDN instances

using distinct network operation systems. They introduce SDN mashup concept that lets

administrators create SDN management solutions to meet their own requirements so as to

cope the heterogeneity of virtual resources on SDN. With the SDN mashups, administrators

can customize and combine their SDN management tools in a high-level abstraction. In [65],

the authors introduce a novel mixed integer programming formulation for coordinated link and

node mapping for SDN. Allowing administrators to embed virtual network requests according

to predefined policies, the algorithm maximizes the number of virtual network requests that

can be optimally embedded into a given substrate.

In the context of a virtualized carrier network shared by multiple customers, the authors

in [66] analyze the applicability of the current SDN model specified by ONF by discussing

the required procedures for configuring and managing the virtualized network. Then, they

reveal some shortcomings of the current SDN model and discuss possible extensions including

updates to the SDN and NOS model and extensions of the management data model. In the

same context, the authors in [67] propose an autonomic management architecture for SDN-

based multi-services network. The autonomic management architecture is designed to satisfy

di↵erent requirements of network management and to deploy di↵erent type of services quickly
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by utilizing autonomic management and network virtualization technologies.

2.3.2.2 Large-scale Network

In the context of wide area SDN where multiple controller solutions are natural, the authors in

[73] discuss various design alternatives for multi controllers (e.g., horizontal vs. vertical setup for

multi controller architecture). They also present a possible management architecture for a single

administrative wide area SDN. In addition, they elaborate to explain three main functions (i.e.,

distributing topology information, flow setup, and monitoring) in the presented management

architecture. In [68], the authors first argue that the nice features of SDN architecture are

lost in the constraints that BGP imposes on inter-domain routing. Then, to support inter-

domain interoperability for SDN-based ASes with both traditional ASes and other SDN ASes,

they introduce a concept of horizontal slicing witihin an SDN. The horizontal slicing enables

two SDN-based networks to be connected without revealing their exact network information

such as topology while allowing independent routing and policy control approaches are used

for each SDN-based network. In [45], using standard distributed system design practices, the

authors introduce a control platform, called Onix that allows the control plane to be run on

a network-wide view and to use basic state distribution primitives. With this approach, they

aim to satisfy several important requirements for a production-quality control platform such as

scalability, reliability, and control plane performance in the large-scale production networks. In

[69], the authors try to extend the benefits of SDN and NFV into broadband access network by

introducing software-defined access network (SDAN). Using the virtualized broadband access

and the streamline operations, SDAN aims to handle the issues caused in broadband access

network (e.g., the customer broadband behavior that are becoming increasingly sophisticated).

2.3.2.3 Data Center Network

In the SDN-based data center networks, the authors in [70] try to reduce the complexity of

management caused by information overwhelming. For this, they introduce a concept of network

aggregation (i.e., regional networks on lower layers are treated as single switches to upper layers)

and information division mechanism (i.e., management information is divided into three parts

and each part is only visible to network managers, regional controllers, or tenants). For scalable
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Table 2.3: Current Research on SDN Debugging

Debugging

Detailed Area Summary (Reference list)

Debugging Network Checking network-wide problems ([75], [76], [77], [78], [79], [80])
Debugging Controller Finding events that lead to network errors ([81], [82], [83], [84],

[85])
Available Tools Network-level debugging (OFRewind [86, 87])

Debugging OpenFlow controllers (Cbench [88], NICE [89, 90], STS
[91])
Debugging OpenFlow switches (Oflops [92, 93], OFTest [94])

and flexible tra�c management in OpenFlow-enabled data center network, in [71], the authors

argue that the controller needs to exploit the wildcard rules to direct large aggregates of client

tra�c to server replicas in a more scalable way. They discuss several approaches to compute

wildcard rules in order to achieve a target distribution of the tra�c and to adjust to changes in

load-balancing policies. In [74], the authors study the storage aspect of the SDN-enabled data

network and investigate the potential challenges.

2.3.3 Debugging

It is important to understand weak points and potential errors of SDN implementations to

make SDN robust and stable. The following survey is summarized in Table 2.3.

2.3.3.1 Network

VeriFlow [75] is proposed to check network-wide invariants in real time even when the net-

work state evolves. As a layer between the controller and the switches, VeriFlow examines the

network-wide invariant violations whenever a new forwarding rule is inserted. In particular,

VeriFlow aims to achieve extremely low latency for the checks not to a↵ect the network perfor-

mance. ATPG [76] is proposed to test and debug networks including SDNs. Given the router

configurations, ATPG generates a device-independent model that is used to generate a set of

test packets to exercise every link or rule in the network. Using the test packets, ATPG detects

functional (e.g., incorrect forwarding rule) and performance problems (e.g., congested queue).

HSA [77] aims to identify an important failures (e.g., forwarding loops and tra�c isolation)

by checking network specifications and configurations regardless of the protocols running. To
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achieve this, in HSA, the entire packet header is treated as a bit string while ignoring the

associated meaning. In [78], to verify and debug SDN applications with dynamically chang-

ing verification conditions (e.g., dynamic access control), the authors introduce an assertion

language. The assertion language enables programmers to use regular expressions to describe

various properties about the data plane. Whenever the controller adds or removes elements

such as switches, it generates new verification conditions that the data plane must meet. In

[79], the authors propose a framework to modify the controller program transparently using

the graph transformation rather than using the manual code modification. In addition, for

the network debugging, they introduce a storage system to log flow entries and corresponding

parameters. The archived flow records enable a administrator to detect network anomalies and

to perform forensic analysis.

2.3.3.2 Controller

To debug the controller, in [81], the authors propose the cross-layer correspondence checking

(to find what problems exist and where in the control software the problem first developed) and

the simulation-based causal inference (to identify the minimal set of events that triggered the

problem). ndb [82] (similar to gdb used for debugging software programs) pinpoints the sequence

of events that lead to a network error by using familiar debugger actions such as breakpoint

and backtrace. In [83], the authors introduce a simulation-based tool, called fs-sdn, to facilitate

prototyping and evaluating new SDN applications. In particular, fs-sdn aims to support that

job at large scale and tries to enable easy translation to real controller platforms. In [84], the

authors aim to detect and resolve control conflicts by proposing a new programming model

for SDN controllers. In the new model, a uniform presentation of the operational objectives

is used to enable controllers to execute the controller code only when that code is expressed

independently of one another. VeriCon [85] is a system for verifying SDN controller. VeriCon

examines the correctness of the controller on all admissible network topologies or the correctness

of execution of any single network event with given specified network-wide invariant. To achieve

this in a scalable way, VeriCon uses first-order logic to specify network topologies and network-

wide invariants and then implements verification using existing tools.
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Table 2.4: Current Research on SDN Abstractions

Abstractions

Detailed Area Summary (Reference list)

Declarative Language Using declarative language ([95], [96], [97])
Achieving Specific Goals Fault-tolerant network program ([98])

OpenFlow security application development ([33])
Tra�c isolation ([99])
Reducing data-collection overhead for debugging ([100])

Misc. Overcoming the challenge of translating a high-level policy
into sets of rules ([101])
Abstractions of five main versions of OpenFlow ([102])
Protocol-oblivious forwarding ([103])

2.3.3.3 Available Tools

There exist available debugging tools. OFRewind [86, 87] is a tool for network-level trou-

bleshooting and debugging at multiple levels. OFRewind acts as a transparent proxy between

the controller and the switches. With OFRewind, a administrator can record the control and

data tra�c and replay it at an adaptive rate for the purpose of debugging. Some tools focus

on debugging OpenFlow controllers. Cbench [88] emulates a bunch of OpenFlow switches and

generates packet-in events for new flows to test the controllers. NICE [89, 90] aims to test the

controller to identify potential programming errors that make communications less reliable by

using the combination of the model checking and symbolic execution. SDN troubleshooting

system (STS) [91] is proposed to find the problematic codes that lead the controller software

to break in an automatic way. For this, STS simulates the devices of a given network while

allowing a administrator to programmatically generate tricky test cases. Some tools can be

used for debugging OpenFlow switches. Oflops [92, 93] can be used to quantify an OpenFlow

switch performance in various aspects. Oflops supports a modular framework for adding and

running implementation-agnostic tests. OFTest [94] is a Python-based framework to test basic

functionality of OpenFlow switches.

2.3.4 Abstractions

Proper abstraction is useful to make development, management, and debugging easy. The

summary of this section is summarized in Table 2.4.
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2.3.4.1 Declarative Language

The current configuration languages for OpenFlow systems are not so expressive enough to

capture dynamic and stateful policies. To overcome this limitation, some research exploits a

declarative language. Procera [95] supports a declarative policy language. Procera provides the

expression of high-level network policies in various network settings and of temporal queries

over events that occur in the network policies. FML [96] also supports the declarative policy

language for managing the configuration of enterprise networks. FML aims to balance the

desires to express policies naturally and enforce policies e�ciently. Frenetic [97] is a high-

level language that supports to program distributed collections of network switches. Using

a declarative query language, Frenetic allows to classify and aggregate network tra�c and to

describe high-level packet-forwarding policies. In particular, Frenetic aims to facilitate modular

reasoning and code reuse by providing compositional constructs.

2.3.4.2 Achieving Specific Goals

To enable fault-tolerant network programs, FatTire [98] supports a programming construct

based on regular expressions. FatTire enables a programmer to specify the set of paths that

packets may take through the network as well as the degree of fault tolerance required. FRESCO

[33] is an OpenFlow security application development framework. FRESCO aims to facilitate

the modular composition of OpenFlow-enabled detection and mitigation modules. In [99], for

achieving the tra�c isolation, the authors propose an abstraction to support programming

isolated network slices by processing packets of one slice independent from all other slices.

They discuss the slice abstraction for this and develop the algorithms for compiling slices. Some

work tries to achieve specific goals based on the abstraction. For better SDN debugging and

troubleshooting without causing large data-collection overhead, in [100], the authors propose a

query language. Using regular-expression-based path language, SDN applications can specify

queries of the forwarding state. Then, based on the regular expressions, the packet trajectory is

tracked on the data plane by tagging the required information in each packet as it goes through

the network.
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2.3.4.3 Misc.

In [102], the authors first argue that the implementations of OpenFlow is far from simple

(e.g., various active versions and unstable version negotiation) even though the main idea of

OpenFlow is simple. To mitigate this issue, the authors summarize the core abstractions of five

main versions of OpenFlow and make simple API supporting the summarized core abstractions.

Maple [101] supports an abstraction that runs on every packet entering the network to overcome

the challenge of translating a high-level policy into sets of rules on distributed switches. To

provide higher level abstractions for the south-bound interface while allowing switches to handle

all the detailed work, in [103], the author propose the protocol-oblivious forwarding that utilizes

the generic flow instruction set.

2.4 Summary

In this chapter we first define SDN and then extensively review the current literature to show

the focus of the research. As the conclusion of our findings throughout our survey, the is a

sever lack of research on data plane compared to control plane. While control plane is well

investigated by the community, there is a little interest on the data plane. In the next chapter

as the fulfillment of this gap we define the superset of SDN and discuss possible topics of

research in the area.
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Chapter 3

Deeply Programmable Networks

(DPN)

In this chapter, we review data plane-related research in SDN. The main objective of this

chapter is to show two facts: i) data plane programmability has potential benefits, and ii) there

are a series of data plane technologies that can be applied to SDN data plane so as to extend

it in di↵erent ways.

3.1 Necessity of Data Plane Programmability

We believe that SDN requires both control and data plane programmability. As we witness in

many existing work, the control plane programmability realizes flexible control forwarding logic

of network with less complexity. But, we also argue that data plane programmability is required

for a more flexible and comprehensive coverage of applications in SDN. For example, a software-

defined network measurement solution running on commodity hardware and supporting generic

measurement tasks needs to touch the data plane (e.g., OpenSketch [7]). To add more examples,

supporting a new protocol and architectures such as Named Data Networking (NDN) [104],

eXpressive Internet Architecture (XIA) [105] and new layer 2 [8], the network may need a change

in the data plane. In this regard, current hardware-centric data plane su↵ers from inflexibility.
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On the other hand, we believe that data plane programmability may be able to satisfy those

requirements relatively easily and flexibly. In addition, data plane programmability enables

various functions such as network appliances (e.g., for deep packet inspection), in-network

processing (e.g., cache and transcoding). We believe commodity hardware are now capable

to a↵ord such a task e�ciently and flexibly. Given current advances in commodity hardware

industry, we believe that the idea of a programmable data plane is possible to realize. In fact,

advent of general-purpose hardware industry that has achieved significant improvement from

general purpose CPUs to multi-CPU machines and then to multi-core on a chip (e.g., 100 cores

of general purpose CPUs on a single board [106]) can unlock innovation in data plane from

hardware-centric approach barriers.

Even though Open Networking Foundation (ONF) [107] is still in development stages of

concepts such as Protocol independent/oblivious/agnostic Forwarding (PiF, PoF, PaF), they

are the direct product of data plane programmability. In contrast, OpenFlow is now based on

a match/action mechanism in which the packet header is matched against a pre-defined set

of header fields (e.g., source and destination IP addresses) and then based on the matching

result, some actions (e.g., drop or forward) may be executed on the packet. Thus, we may

need a departure from current <pattern-match, action> architecture of SDN to a more flexible

schemes based on data plane programmability in addition to control plane programmability.

There is a limited contribution from SDN community in this area (e.g., FLARE [108]). We

believe that data plane programmability should come to the forefront in addition to control

plane in SDN research.

3.2 OpenFlow Data Plane

There are a few researches that address OpenFlow data plane shortcomings from di↵erent points

of view. In [59] authors design a chip as a TCAM alternative. They propose a new RISC-inspired

architecture for switching chips that allows the SDN data plane programmers to modify all

header fields to be matched much more comprehensively than in OpenFlow. In [109], the authors

apply network processor-based acceleration cards to perform OpenFlow switching. They show

a 20% reduction on packet delay and a comparable packet forwarding throughput compared to
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conventional designs. In [110], the authors propose an architectural design to improve lookup

performance of OpenFlow switching in Linux using a commodity NIC. In [111], the authors

compare OpenFlow switching, layer-2 Ethernet switching and layer-3 IP routing performance

in terms of forwarding throughput and packet latency in underloaded and overloaded conditions

with di↵erent tra�c patterns. Some researchers suggest adding a commodity/programmable

hardware such as FPGA to the data plane to enable SDN programmability extended to data

plane [112]. There are also some radical approaches inspired by active networks to inject small

applications into the packets to be executed by the SDN data plane [113]. In [51], the authors

present research directions that can significantly reduce TCAM and control plane requirements

via classifier sharing and reuse of existing infrastructure elements.

3.3 Potential Data Plane-related Proposals for SDN

There is a group of proposals that are considered out of the main stream focus in the SDN

community or they are not proposed for SDN at all. These technologies that focus on di↵erent

data plane functionalities can be applied to the current SDN and extend the scope and definition

of existing hardware-centric SDN proposal. In this subsection, we try to elevate them and

express their important role in the development of a software-centric SDN data plane.

3.3.1 Packet Classification and Forwarding

Software based packet switching and forwarding is the most basic and fundamental require-

ment for a software-centric data plane. There are many proposals for a software forwarding

plane that mainly focus on the performance aspects of the research using di↵erent underlying

commodity hardware such as CPU (e.g., RouteBricks [114]), GPU (e.g., PacketShader [115]),

NPU (e.g., FLARE [108]) or FPGA (e.g., HyperSplit [116]). RouteBricks is a software router

using a full mesh of interconnected PCs. It uses some form of randomized order to pass the

packet from one router box to another in the mesh. PacketShader use GPU to accelerate the

core packet forwarding function. It considers CPU as a performance bottleneck and thus of-

floads computation and memory-intensive tasks of packet forwarding to GPU. FLARE switch

is a programmable switch using Click environment and multicore CPUs. It has a couple of
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SFP+ ports and provides a Linux and Click environment for network research. FLARE uses

many core NPUs to run the packet forwarding and processing routines in concurrent man-

ner. HyperSplit claims 100 G/s of packet classification which is component of every forwarding

fabric. It designs a pipelined classifier architecture on the FPGA that make an overall classi-

fication tree. L7Classifier [117] is a packet classification method based on the packet payload

(i..e, application layer) compared with traditional methods that use L2-L4 header information.

L7Classifier stores TCP flow information and performs regular expression matching to packet

payload. Such as technology helps developing a classification method for SDN data plane that

can include unforeseen future requirement throughout the flexibility it provides.

3.3.2 Easy Programmability

Every software network control (e.g., a switch or router) can be considered as programmable.

But, the design of the control can vary if the control is made to be easily programmable and

extensible while in other cases some other priorities (e.g., throughput) come to the top of the

list. Click modular router [118] is a well-known highly programmable router including many

elements written in C++. Click owns an active development community and serves as the

base of many research projects. The ideas behind Click that provides many abstractions over

typical networking task such as packet manipulation borrowed in many other projects either

directly (e.g., ClickOS [119]) or indirectly (e.g., in FRESCO [33] that uses the overall principals

of Click modularity). In [119], the authors shift focus towards making the data plane more

programmable by introducing ClickOS, a tiny, Xen-based virtual machine that can run a wide

range of middleboxes. So, such ideas can be used to implement an SDN data plane when there

is a need to design an environment in which we can add and remove features very fast and

dynamic. vNode [120] is a programmable network node that mainly focuses on data plane

programmability and uses network virtualization technology. There is network of vNodes that

form a virtual testbed laid all over JGN-X network in Japan using 40G links. The objective

of vNode is to run multiple programmable infrastructures on a single physical infrastructure.

vNode give a Click-like programming environment to the user in order to enable implementing

new features and requirements easier and faster.
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3.3.3 Resource Allocation

SDN software-centric data plane specially when running the forwarding mechanism together

with some extra services (e.g., transcoding) needs to maintain a predictable performance. There

are some proposals for resource allocation techniques in the literature that can be utilized to

fulfill this need. For example, a prediction method is proposed in [121] that predicts how the

performance may degrade if some resource contention happens among applications. This sort

of technologies are enablers to replace hardware-centric devices with software based services in

the SDN data plane.

3.3.4 Security

While several security threats are introduced to OpenFlow itself in the literature [122], some

data plane and control plane mechanisms can provide security for end-points and users. An

example of the latter case can be FRESCO that proposes a framework to develop security

mechanisms on top of control plane. While FRESCO opens up a lot of opportunities to develop

new security applications, since it is deployed at control plane, inherently it is bounded by

SDN coverage limitation. Consequently, data plane is more interesting plane to host security

applications than control plane even though in some cases it is the only choice that looks

feasible (e.g., flow encryption). There are some security mechanisms in the literature that can

be exploited in SDN data plane. For example, SSLShader [123] is a software SSL accelerator

using GPU massive parallelism capabilities to realize a fast security service for software data

planes that can processes up to 13 G/s of tra�c.

3.3.5 Network Measurement

A first step to manage an SDN instance is to measure and then based on the data gathered in

the measurement we can tune the network in di↵erent ways. The measurement usually happens

in data plane. OpenFlow uses ASIC-based counters to measure a few aspects of the tra�c such

as size of the flow and the number of packets. There are a couple of works that foster ASIC-free

counters and propose commodity CPU based counters as an alternative which are more flexible

(e.g., [49]) or suggest adding a di↵erent commodity hardware to measure the tra�c (e.g., [7]).
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Such technologies can be used in a software-centric SDN data plane for measurement tasks.

3.3.6 Statefull Packet Processing

Current SDN data plane does not allow statefull processing of packets within the switch box.

OpenState [124] argues the inability of OpenFlow to enable a statefull programming environ-

ment within the data plane and proposes a viable abstraction based on extended finite state

machines as a generalized OpenFlow match/action abstraction. In the similar way, propos-

als such as user-defined switch actions [125] based on commodity hardware helps developing

in-network services. As an example, in [126] authors propose a statefull software control that

injects related advertisement based on the session content. Moreover, there are some proposals

that investigate how we can deploy multiple services on a single box in an e�cient manner.

Thus, some frameworks such as NetOpen [127] are proposed to help developing customized

in-network services (also [128] and [129]).

3.3.7 Wireless Networking

Besides wired networking, SDN data plane programmability can help wireless networking data

plane. WiVi [130] is a Wi-Fi network virtualization infrastructure that not only enables multi-

ple coexisting access points to work concurrently, but also enables data plane programmability

for potential application developers. One example application over WiVi is an advertisement

targeting mechanism that inserts custom ads to arbitrary flows [126]. OpenRadio [131] is a

programmable wireless data plane that separates provides modular and declarative program-

ming interfaces across the entire wireless stack. OpenRadio [131] supports a programmable

wireless data plane and decouples processing and decision plane in the AP. The decoupling

hides the underlying complexity of execution from the programmer of the AP. Odin [132] is

another interesting a programmable AP for WLAN to foster making new service applications.

It uses OpenFlow as the control plane to pass incoming packets to appropriate services on the

AP. It is an example that fuse the potential of the traditional SDN in control plane and the

data plane flexibility as an added value.

31



3.3.8 Misc.

There some other projects such as eXtensible Open Router Platform (XORP) [133], XIA [105]

and MobilityFirst Future Internet Architecture Project [134] that provide a comprehensive data

and control plane solutions as a mean to enhance extending and adapting the current solution

to accommodate new, as yet unforeseen, features. Such ideas can help the current SDN data

plane that is changing very quickly in time due to new requirements and developments to be

able to adapt them easier and cheaper.
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Figure 3.1: SDN vs. DPN.

3.4 Extending SDN to Deeply Programmable Networks

Fig. 3.1 shows the programmability characteristics of planes. At the top, we have a layer that

corresponds to SDN applications. They communicate with the control plane via the northbound

interface and thus they are called northbound applications. Next, in the middle, we have the

control plane that manages data plane at the bottom via the southbound interface on the data

plane. Even though we have many OpenFlow-enabled switches as the data plane of SDN,

Fig. 3.1 shows partial coverage of SDN in the data plane programmability. That is because,

ONF-defined SDN has a little attention to data plane programmability yet. Therefore, Fig. 3.1

indicates that SDN does not propose any solution for data plane programmability while it
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does propose a solution for data plane functionality. In conclusion, there is a gap in data

plane programmability which we believe should be fulfilled. So, we may be able to define SDN

as a network architecture that decomposes control and data plane to provide and penetrate

programmability, deeply and comprehensively into the networking stack by extending ONF

definition to data plane. We call the total solution that covers programmability of all three

parts as Deeply Programmable Network (DPN).

3.5 Summary

In this chapter we discuss one possible and promising extension to the current SDN (i.e.,

DPN) by discussing the potential benefits of data plane programmability and reviewing existing

proposals that can be used to realize data plane programmability.
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Chapter 4

Tag-Based Flow Classification in

DPN

4.1 Introduction

In recent years, the Internet has had to cope with changes in our communication patterns and

usage practices. The growing popularity of smartphones, the interest in small wearable gadgets

such as smart-glasses and smart-watches, the existence of billions of sensors, and the move

towards cloud data centers and cloud computing have put unprecedented strains on the network

architecture. In Japan, communication failures resulting from rapid increases in smartphone

tra�c have even led the ministry concerned to issue administrative guidance to major mobile

carriers [135]. Also, a plethora of cybersecurity problems are reported every day, such as

denial of service, spamming, phishing, spoofing, network security breaches, and invasion of

privacy often caused by botnets (a large number of networked computers and smartphones

compromised and controlled by adversaries). Meanwhile, cloud-based distribution of large

content is increasing network tra�c. The potential benefits of the Internet (which has been

described as the infrastructure for anyone to transmit and receive any data freely anywhere to

anyone) may be lost because of changing use and growing misuse. This concern highlights the

fragile nature of a fixed and inflexible infrastructure.
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Software-Defined Networking (SDN) defines publicly available open interfaces between the

control plane and the data plane. It enables software programs to monitor and manage re-

sources, operate and manage networks, control access, and so on. The primary benefit of SDN

is to reduce operational expenses (by automating operations, administration and management)

and capital expenses (by bringing openness to network equipment). Work in the area of SDN is

currently attempting to enable the programmability of network applications and control plane

elements, but there seems to be little interest in the programmability of data plane elements,

thus limiting programmability and the use of computing within the network. Enabling deep

programmability lifts the limitations imposed by current SDN practices, and makes it possible

to realize a deeply programmable network that fully supports the whole range of programmabil-

ity mentioned above. We believe that SDN should be extended to support the programmability

of data plane elements, so that new data plane functionalities can be plugged in and unplugged

flexibly. Extending SDN to enable simple programmability for data plane functionalities and to

support the capability of defining or redefining interfaces for data plane functionalities, along

with publishing those interfaces to control plane elements and network applications, also fur-

ther reduces operational and capital expenses, because we can add or remove or modify data

plane functionality by simple programming. Thus, we can reduce the complexity of mainte-

nance, and decrease the life-cycle costs often observed in hardware-based inflexible data plane

elements. Simple modification to interfaces to access new data plane functionalities enhances

the capabilities and improves the e�ciency of network applications and control plane elements.

While there are many e↵orts towards developing control plane architecture and applications

such as OpenFlow [136], ForCES [3] and rule based forwarding [137], there is a limited attention

to design e↵ective APIs and methods for data plane. OpenFlow is a wide-spread API for SDN.

This API installs a set of <match , action> rules on network switches. Any flow matching

to the rule, receives the corresponding action. The matching process classifies particular flows

for the action. Similar to many other protocols (e.g., SNMP [138]) to classify incoming flows,

OpenFlow parses the packet against predefined protocol headers (e.g., Ethernet, IP and TCP).

Then, it matches extracted fields against a set of rules. If enough fields match to a rule, it applies

the corresponding action (e.g., drop or forward to port X) to the packet. One of the problems

in this process is that the protocol headers should be predefined. Updating such patterns in
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a timely fashion as well as keeping the performance at a reasonable level is not a trivial task.

Because of performance considerations, matching process is implemented on hardware (e.g.,

Ternary Content Addressable Memory).

4.1.1 Flexibility of Flow Classification

An obvious solution is to support more protocols via adding more fields. Probably this is the

solution OpenFlow is following. It is also possible to add some general fields (i.e., smarter

wildcard rules) so that users can freely add arbitrary bits to the packet bit stream. The

process of adding fields may (practically) converge after a decade. Before convergence, hardware

upgrades may cause some overhead costs for users. That is, the same problem current hardware-

centric networks su↵er from. If we neglect all these issues, flexibility of flow classification can

be a major shortcoming. Low level classification based on some static or wildcard matching

rules su↵er from inflexibility. Furthermore, traditional header matching is already overloaded in

di↵erent ways. For example, port 80 is now used for many applications that can have di↵erent

processing/forwarding requirements. We can not classify these applications easily using field-

matching classification of OpenFlow. This is the main drawback of field-matching classification.

Hence, any extra support for emerging protocols is costly.

4.1.2 Performance of Flow Classification

Eventhough OpenFlow is advertising the idea of SDN, the classification part is now implemented

(from several vendors e.g., NEC and HP) on Ternary Content Addressable Memory (TCAM)

which is a hardware. That is because researches suggest o✏oading classification and matching

part of OpenFlow from software to hardware results at least in a 40% throughput gain [139]. It is

the case when using commodity hardware. Obviously, using purpose-built hardware (e.g., ASIC)

we can gain a much faster classification. Increasing requests to support new protocols/fields

pushed 15 fields defined in OpenFlow 1.1 to about 40 fields in version 1.3 [136]. Accordingly, if a

network owner buy a switch supporting OpenFlow 1.3, after next protocol specification upgrade,

the hardware needs to be replaced resulting in a high CAPital EXpenditure (CAPEX). This is

the problem almost any emerging technology faces while growing; to support already existing

36



technologies as well as new ones.

Aforementioned problems are of the type “flexibility versus performance tradeo↵”. In or-

der to have the TCAM performance and at the same time open up TCAM programmability

limitations, community suggests Network Processors [140]. Network processor Units (NPUs)

are a family of ICs using system-on-a-chip technology. They provide more e�cient communica-

tion specific functions than general purpose CPUs. Network processors usually include a set of

APIs to program the chip in high level languages. Therefore, we may gain more flexibility than

TCAM based solutions. However, while using NPUs are an step forward to use commodity

hardware, they are still ine�cient for core switching heavy loads. In conclusion, still we need

to lighten the flow classification overhead in addition to adding faster hardware.

4.2 Related Work

We can divide current state of the art to two main classes of methods based on the way they filter

the target tra�c for packet forwarding. Di↵erent approaches use variant solutions to initiate,

store and maintain flow information. In the following we mention two classes of methods that

follow di↵erent goals but share their core functionality:
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4.2.1 Hashing Approach

Most of todays measurement and forwarding solutions apply a <match,action> rule to every

packet passing through the system. The match section means a pattern or attribute that the

packet includes. After classifying and matching packets with specific filters, an action is applied

to the packet. Example of the action can be count for a measurement solution which means

the counter for that specific matching criterion should be incremented based on the counter

type. A counter could be a packet counter, a flow size counter or a timer etc.. In the hashing

approach, basically the packet is parsed to find some special fields targeted by the match rule.

In many cases such as OpenFlow, NetFlow [142] and sFlow [143], we may have 10 to 15 distinct

fields to be parsed and involved in the classification. These fields can be located anywhere in

the packet. The main bottleneck of many-field parsing is the number of memory accesses which

grows as the load increases. Finally, a sort of hashing function is applied to the parsed fields to

generate a key. The key is used to search a list of records containing flow information. In case

of packet forwarding solutions (e.g., OpenFlow) the table is the forwarding table and usually

implemented using a hashtable data structure with lookup complexity of O(1).

PSAMP [144], IPFIX [145], NetFlow, sFlow and SNMP are a group of protocols that can

be used for network management and measurement. They share in a couple of characteristics.

They are dedicated to IP networks and if they are applied to a network measurement scenario,

every node is responsible for both classify and measurement of tra�c. None of these protocol

support triggers to launch an event in case of a flow match except the SNMP which gets

advantage of some triggering feature. The way they meter is sampling in time to reduce the

overhead caused by the continuos sensing.

OpenFlow, DevoFlow [146] and Hedera [147] are a group of SDN APIs primarily designed to

control the forwarding logic of network e�ciently. They place as a logically centralized control

plane in the network and install <match,action> rules on forwarding devices to manage the

network. They are all designed to work on commodity hardware and they have some mea-

surement features such as raw packet counters or approximated counters. DevoFlow supports

limited data plane programmability and all of them support control plane programmability.
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4.2.2 Tagging Approach

This approach received a limited attention from the community in comparison to hashing

method. The major work in this area is the series of work starting from the 1990s by the

Ipsilon Flow Management Protocol (IFMP), which is a protocol for allowing a node to instruct

an adjacent node to attach a layer-2 label to a specified IP flow [148]. The work followed by tag

switching and label switching proposals from Cisco and finally leaded to MPLS [149]. MPLS

assigns a label to every packet and use it to forward packets in contrast to IP switching in which

a sophisticated prefix matching decides the destination port of each packet. While the main

objective of MPLS is to implement the theory of di↵erentiated services as well as better tra�c

engineering (and it provides a level of abstraction over Ethernet layer), it is still dependent on

a fixed layer-2 protocol. MPLS uses the edge network device to assign a label to the packet.

Our work is di↵erent from MPLS design and objective from several perspectives. First,

MPLS provides a cut-through forwarding solution, however we propose a store and forward

switching mechanism. Second, MPLS provides a hardware-based solution as it is not feasible to

implement cut-through forwarding on software. Rather, our proposal is fully based on software.

Third, as the MPLS solution is implemented on the hardware, any updates in the MPLS working

mechanism and also any modification to the supported protocols leads to switch replacement

which can be very costly. In contrast, we propose a software-based solution in order to enable

timely, low cost upgrade and support for new architectures and protocols. MPLS proposes

hardware-based solution to guarantee the switching performance. However, in our experiments

we show it is feasible to use general purpose commodity hardware solution to achieve reasonable

performances. Forth, MPLS embeds its tag right in the middle of the packet which causes low

backward compatibility and can confuse switches which do not support MPLS protocol while

in our proposal we use trailer tags at the end of the packet. That guarantees any switch on the

way, which is not aware of our proposed system packet format, can forward packets without

any problem since the packet headers are all untouched and understandable using traditional

networking protocols. Fifth, because of header tagging in MPLS, in order to deploy MPLS on

a network, every single switch needs to be replaced which can be a considerable cost barrier.

In contrast, in our solution, any traditional switch can stay in the network as long as the
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network operation does not require tag-based forwarding on those specific switches. Sixth, as

our proposal is a software-based solution it enables two capabilities which are both absent in

MPLS networks: a) a packet classification mechanism at the edge of the network that can be

programmed without hardware replacement. In our experiments we show multiple examples of

such classifications (see Section 4.4); and b) our solution provides user-defined packet processing

mechanism within the switch which is explained in Chapter 5.

In addition to old contributions, recently some new requirements motivate researchers to

revisit the same idea. LIPSIN [150] is a forwarding platform using source routing method for

publish/subscribe networks. The whole path a packet should pass through (i.e., virtual link), is

encoded using some hash functions in a fixed-sized label within the packet. Every virtual link

that represents a complete source to destination path, has an identifier. The label carries the

virtual link identifier and every forwarding node check the label against a forwarding table to

find out which physical port is the right output port.

IETF is now following discussions on Network Service Header (NSH) [151] to create network

service paths. That is a fixed size, transport independent per-packet service metadata (i.e. tag)

added to the packet. Current network service deployment models are usually tied to underlying

topology and are not adapted to elastic model of cloud environments powered by network

virtualization. Virtual environments require more agile service insertion as well as flexible

network service deployment models. Tagging and metadata on the packet gives the ability to

the network to assign service policy to granular information such as per flow state.

Beside network oriented tagging where the network edge is responsible for putting the tag

on the packet there are several works having di↵erent approach. User oriented tagging which

implicitly proposes source routing, lets the user put the tag on the packet and in this way

controls the route of packet to the destination.

OpenTag [152] is a network slicing mechanism for network virtualization that supports both

performance and security isolation. In OpenTag, the user injects a slice ID tag per packet that

denotes which slice the packet belongs to. In addition, a redirector is installed on conventional

routers so that they can parse the tag and classify them for later slice-specific packet processing.

OpenTag inherits some characteristics from source routing solution since user has some sort of

control over the network behavior regarding his packet. SourceFlow [153] is another source
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routing mechanism mainly designed to reduce the number of flow entries in TCAM using tags.

The idea is to put forwarding actions (e.g. forward to port X) within the packets instead of

classifying packet and then retrieving the corresponding action in the switch. When a server

sends a packet to the network it calculates the route and then inserts the series of actions to be

executed by switch nodes in the network to transmit the packet to the destination. Once the

packet reaches the network edge device, it encodes the series of actions to allocate less space in

the packet.

However, source routing su↵ers from security problems as it hands most of control decision

making o↵ to the user. This function can be used in attempts to route tra�c around secu-

rity controls in the network and security guidelines suggest to disable such a mechanism [154].

Moreover, source routing needs some modifications on the user side to enable calculation and

injection of the tag which is a disadvantage compared to network oriented tagging where the

system is totally transparent from OSs and applications. Table 4.1 summarize the comparison

of tagging solutions from various aspects. As SourceFlow does not perform any kind of classifi-

cation we put N/A mark in the related cells. By the Flow Classification column we refer to the

way the network devices look into packets to determine which flow the packet belongs to. We

emphasis on the similarity of the classification at edge versus core. Balanced tag classification

mean edge devices and core devices perform exactly the same operation which is classifying

packets based on tags. Similarly, Unbalanced tag classification means di↵erent types of classi-

fication happens at the core and edge due to di↵erent characteristics they have. L7 Processing

basically refers to any type of switching, routing, Deep Packet Inspection and caching and other

application layer proceedings. We discuss about our solution in details in later sections.

4.3 System Architecture

In this section we discuss the TagFlow architecture in details. Figure 4.1 illustrates the top

level TagFlow architecture. In the following first we discuss the system briefly and then we

explain details.

A datacenter network usually includes two network edges: source edge as well as destination

edge. Source edge refers to switches that connect application servers to the internal datacenter
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network. The source edge switch is the first device in the network which receives the packet can

be a Top of Rack (ToR) switch. Destination edge means where the packet leaves the network.

The network edge devices usually have less loads in comparison with core devices. When a

packet arrives at the source edge, the edge switch classifies the packet and puts a tag on it and

forwards it to the next hop. While packet is transmitted to the destination edge the only field

that indicates where to forward the packet is the tag. Therefore, all core switches use a tag based

forwarding table that maps a tag to a destination port. The destination edge switch removes

the tag and sends out the packet. Using this method of classification and forwarding, we have

di↵erent classification loads among edge and core devices (e.g., application layer classification

at the edge and 1-field matching at the core). Obviously, application layer classification can

reduce to many-field matching classification (i.e., similar to OpenFlow). Moreover, to keep

backward compatibility with current networking practices we use trailer tagging that adds the

tag to the very end of the packet. That is, most conventional devices that are not aware of tags

can be placed in the middle of the network without any change. Needless to say, a logically

centralized controller can manage the tags and assign them to slices.

A demonstration of di↵erent loads compared to OpenFlow (denoted as O.F.) is shown in the

left side of the figure. OpenFlow has the same load of classification (i.e. many-field matching)

at core and edge. However, TagFlow o✏oads the majority of classification load to the source

edge. Please note that the bars are not in the exact scale. The point is to indicate the di↵erence

between two approaches.

4.3.1 Source Edge

When an end-user accesses some content on a server, packets flow in the network from the

source edge. The source edge switch classifies packets and puts a Tag on every packet. The

classification could be any application layer classification that distinguishes among applications

with di↵erent characteristics. Each class could own a tag and treated as a separate flow. When

the network administrator wants to apply di↵erent policies to di↵erent flows s/he can assign

di↵erent tags to related flows. Therefore, every Tag type represents a class of packets with

some shared criteria. For example, using a specific tag, HTTP packets including a special
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Figure 4.1: TagFlow System Architecture

domain name in the referrer section of the http header may receive di↵erent services compared

to others(e.g. a special caching service or forwarding service).

4.3.2 From Network Core to Destination Edge

After inserting appropriate tags to related classes of packets, the regular network routing and

switching algorithms transmits the packet to the destination edge. The switch at the destina-

tion edge removes the tag from the packet and lets it leave the network for destination. The

destination edge devices may execute some actions before removing the tag. Our system is able

to assign an action to each forwarding table entry. The forwarding table has two columns: flow

identifier and action. We use tags as the flow identifier. Similar to OpenFlow, we apply the

same <match,action> to the packet. However, there are two di↵erences; First, we match only

the tag at core network so that we get much less overhead on core devices and considerably less

overhead in a network-wide view. Second, actions are user-defined in our system. We explain

actions in more details in the following section.
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4.4 Evaluation

In this section we review our evaluation that shows the validity of our approach. Particularly,

we study TagFlow using two approaches. First, we use single node measurements to show the

di↵erence of tagging and hashing approaches. As the complementary evaluation to single node

experiments we show some end-to-end client server emasurements. In our experiments, we use

a 32-bit tag which covers enough range of possibilities and at the same time does not put a

considerable overhead on the system. However, we loosely define the tag size since it is highly

dependent on the environment characteristics. For example, in environments with less diversity

of flows we may define smaller tags.

4.4.1 TagFlow Control Plane

We implemented a centralized controller that is responsible for manipulating API parameters.

Similar to OpenFlow API our solution can be named an API. However, there are some dif-

ferences between OpenFlow API and our proposal; first, OpenFlow focuses on control plane

while our TagFlow focuses on data plane functionality. Second, the objective of OpenFlow is

packet forwarding while TagFlow objective is application layer processing. Our controller is a

standalone program that connects to the switch using sockets. The user can write program and

call the API. TagFlow controller currently supports only C++ programmability.

4.4.2 TagFlow Backward Compatibility

Most of current solutions either need a special hardware or special protocol to operate. Since

we add a label to the packet and it may cause some compatibility issues, we should provide

some mitigations to overcome the problem. For example, MPLS puts the label in the middle of

the packet and causes incompatibility with traditional switches. To address such a concern, we

put the tag at the end of the packet (i.e., trailer tagging). Since networking devices usually look

at the beginning of the packet, they can adapt to trailer tagging without any change. Therefor,

only tag switching devices that need to look at the tag can parse the trailer. In case of variable

length packets which are common in the current networking practices, when we need to access

the tag located at the end of the packet we do no need to parse whole the packet to access the
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Figure 4.2: High-level illustration of FLARE switch

tag, rather, as we already have the packet length we just subtract the fixed length of the tag

from the packet length and read the tag. In conclusion, while trailer tagging provides backward

compatibility it does have negligible access overhead.

4.4.3 Single Node Experiments

We conducted two series of experiments to demonstrate e↵ectiveness of TagFlow using FLARE

switch as a fully programmable and high performance software switch. We use Xena packet

generator to feed packets to the FLARE. For experiments that are done using a PC we use

Click as the packet generator. The objective of all experiments is to measure the throughput

of a single TagFlow switch against a single OpenFlow switch.

FLARE [108], is a node architecture that enables open deep programmability within a net-

work. FLARE introduces an isolated programming environment called a sliver (i.e. a set of

computation, storage and linked bandwidth resources). Each FLARE node has a control mod-

ule called node manager, which dynamically installs or removes slivers, and a programmable

classification engine called packet slicer, which quickly scans packets and multiplexes or demul-

tiplexes them from or to slivers. Figure 4.2 illustrates FLARE architecture. A central control

node called FLARE central remotely manages multiple FLARE nodes and creates or removes
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Figure 4.3: Tagging overhead (64-byte packets)

or assigns slivers for sliver programmers, on demand, communicating with each node manager

to allow programmers to access their own sliver and inject their programs. FLARE supports

deeply programmable SDN solutions. This feature makes it possible to apply tra�c engineering

to a specific device or application or piece of content. That is, FLARE provides control and

packet processing according to application context. As an example of deep programmability,

FLARE can define switching using layer-2 protocols. For example, FLARE makes it possible to

extend MAC addresses from 48 bits to 128 bits, not only staving o↵ MAC address exhaustion,

but also supporting a large number of tenants in data centre networks while also maintaining

transparency for Internet protocol applications.

As the OpenFlow installs the same forwarding logic engine on all switches, in order to

measure forwarding performance we need to measure forwarding throughput of a single switch.

Whereas, TagFlow uses two di↵erent logics at the edge and core. Thus, we perform two tests

on TagFlow to show the feasibility of the method. First, as the edge measurement, we consider

the same classification among OpenFlow and TagFlow. In the forwarding process at the edge

TagFlow has a tagging overhead after classification to put the tag on the packet. So, we

measured the tagging overhead to see how much extra work TagFlow should do at the edge

compared to OpenFlow. In order to measure the overhead itself we compared vanilla forwarding
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Figure 4.5: TagFlow versus OpenFlow versus vanilla forwarding using 2 CPU cores

with another forwarding logic in which we embedded the tagging mechanism. We use a 4-byte

tag on 64-byte packets. Figure 4.3 indicates the result. We repeated experiment twice, once
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Figure 4.6: TagFlow versus OpenFlow versus vanilla forwarding using 3 CPU cores
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Figure 4.7: TagFlow versus OpenFlow versus vanilla forwarding using 4 CPU cores

using one CPU core and another time using two CPU cores. As the former case, tagging process

shows some di↵erence (i.e., 8% overhead) however in the latter case the performance is almost
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Figure 4.8: TagFlow versus OpenFlow versus vanilla forwarding using 5 CPU cores
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Figure 4.9: TagFlow versus OpenFlow versus vanilla forwarding using 6 CPU cores

the same (i.e., 0.6% overhead) while processing 1.51 Mpps of the size 64-byte. Since using more

number of cores gives us the same level of di↵erence, we excluded the results from the graph to
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Figure 4.10: TagFlow versus OpenFlow versus vanilla forwarding using 64-byte packets
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Figure 4.11: TagFlow versus OpenFlow versus vanilla forwarding using 128-byte packets

keep the simplicity and readability of the figure. In conclusion, tagging has a negligible overhead

on edge devices. The process of removing the tag from packets also has similar overhead. Since
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Figure 4.12: TagFlow versus OpenFlow versus vanilla forwarding using 256-byte packets
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Figure 4.13: TagFlow versus OpenFlow versus vanilla forwarding using 512-byte packets

memory manipulation happens in injection of the tag is not very di↵erent from the memory

manipulation and access of the elimination of the tag from packet.
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Figure 4.14: TagFlow versus OpenFlow versus vanilla forwarding using 1024-byte packets
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Figure 4.15: TagFlow versus OpenFlow versus vanilla forwarding using 1514-byte packets

Next, we conducted a comparison between OpenFlow and TagFlow core switches. In partic-

ular, we compared OpenFlow, TagFlow and simple forwarding using packets of di↵erent sizes.

While using more than one CPU core of FLARE, vanilla forwarding and TagFlow give very close

results we conducted the experiment using a single core. Figures 4.4 through 4.15 illustrate

how TagFlow di↵ers from OpenFlow and Figures 4.16 and 4.17 indicate TagFlow performance

using di↵erent metrics. Current version of the FLARE switch has four 10G SFP+ ports. We
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Figure 4.16: TagFlow throughput in Gbps using di↵erent number of CPU cores
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Figure 4.17: TagFlow throughput in Mpps using di↵erent packet sizes

connected FLARE to XENA packet generator and configured XENA to send packets to FLARE

and measure the received tra�c. In conclusion, TagFlow is less than 40% faster (in average)

than OpenFlow considering di↵erent packet sizes.
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Figure 4.18: End-to-end experiment architecture

4.4.4 End-to-end Experients

In addition to single node experiments we conducted a series of end-to-end experiments. Fig-

ure 4.18 shows our experiment architecture. There is a client that sends packets to the server

and receives the server response. We put di↵erent number of switches between client and server

to see how it a↵ects the packet roundtrip latency using TagFlow and OpenFlow. Implementa-

tion wise, the whole system is running on a Linux container management system.

Figure 4.19 indicates average packet roundtrip latency when we have 3,5 and 10 nodes in

the route from the client to the server. For example, three nodes means a route in which

there is one switch between client and server. So, the number of nodes includes the client and

server nodes. This figure compares latencies of TagFlow and OpenFlow. The figure reflects the

fact that the benefit of TagFlow increases as the number of hops in the route increases. That

is, TagFlow works better in larger networks. The di↵erence between OpenFlow and TagFlow

shows the processing capacity that TagFlow releases compared to OpenFlow case. The freed

capacity grows as the number of nodes in the network grows. We can use this capacity for

useful applications.

Figure 4.19 shows the latency for a single packet while Figure 4.20 projects the same system

over 1000 packets. So, the latency indicated in Figure 4.20 is cumulative roundtrip latency

comparing TagFlow and OpenFlow cases. This figure projects the 10 hop route scenario. We

can see a steady linear growth in the latency which guarantees more latency as the network
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Figure 4.19: End-to-end TagFlow versus OpenFlow roundtrip latency for a single packet
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Figure 4.20: End-to-end TagFlow versus OpenFlow cumulative roundtrp latency

grows and we have routes with more number of hops. In our experiment, for 1000 packets in a

10 node end-to-end scenario we have a 1036 milliseconds of cumulative delay that can be used

for useful applications.

Now the question is what do we mean by useful applications? What are the examples of
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Figure 4.21: Number of packets processed in 1036 millisec using five di↵erent applications

useful applications? Figure 4.21 shows five examples of such useful applications. This figure

explains what we can do in 1036 milliseconds (we got from the previous experiment) using five

di↵erent applications. Bothunter, Portscan Detector and P2P Plotter are security applications.

The Modified IPSec Anti-replay attack is a simple counter based replay attack detector which

is similar to the one used in IPSec protocol. HTTP Header parser is a full http protocol header

parser that detects di↵erent fields in the http header. The figure shows that based on the type

of application we can process many packets using the freed capacity. So, till now we show

TagFlow frees some capacity compared to OpenFlow and then we show we can use the freed

capacity for some applications. As an example, here we review one of the applications in more

details to reflect the potential value of such applications. We choose Bothunter as the example.

Bothunter is an application that clusters network nodes based on their port scanning be-

havior to detect bots via co-clustering of nodes producing network anomalies. Bot can be

defined as a self-propagating application that infects vulnerable nodes in the network. Botnets

is a group of bots managed in a systematic fashion using a central operation console. They

are one of the important threats against computing assets. Bot propagation starts with port

scanning of potential vulnerable nodes. So, bots are the primary source of most of the port

scanning happens on the Internet. Bouthunter uses the fact that infected machines that are

57



!"#$%&'()*+$+&$"#)

,-".) /&'(((+#))
*+$+&$"#)

0+12#+&$"#)

3!/+&)4(560+7-'8)&9+&:+#)

,-".) ;+'1+#)
!'#%+#)

/+<=)
>9+&:+#)

;??!);+'1+#)!'#%+#)

,-".)
;??!))
;+'1+#)
!'#%+#)

Figure 4.22: Bothunter architecture

trying to infect others usually have a low bit per second and packet per second tra�c patterns.

Bothunter clusters the machines with such criteria and blocks them from spreading over the

network. Figure 4.22 shows the internal Bothunter architecture. The C-Plabe measures the

communications of each node based on the bit per second and packet per second metrics. The

A-Plabe detects if a node scans another node. The redirector component o↵ers the blocking

feature of portscanning detection which means we can block the nodes that scan others. This

specific feature is not useful in Bothunter and it exists in the architecture since Bothunter reuses

this component from another application in Figure 4.21 (i.e. port scan detector). Figure 4.23

and Figure 4.24 demonstrate the architecture of other applications.

There are some alternatives for the same objective as Bothunter. We review two major ones

here. The objective of alternative mechanisms are also blocking bots from spreading all over a

datacenter network. Figure 4.25 describes the first alternative. There is a high-end Intrusion
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Figure 4.23: Architecture of HTTP header parser, modified IPSec Anti-replay checker and
portscan detector
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Figure 4.24: P2P Plotter architecture

Prevention System (IPS) that is connected to every switch in the network. All the tra�c passing

over a switch will be first sent to the IPS for processing and then comes back to the switch to

be forwarded to the destination port. There are two shortcomings in this alternative. First, the
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Figure 4.25: Bothunter alternative scenario 1: Single intrusion prevention system

price of a high-end IPS can go high. Second, sending every packet to an external IPS increases

the packet transmission delay. As the IPS can be considered a single point of failure (SPOF),

it may raise some security considerations. In case of an attack, the IPS may go out of response

and this can cause a failure in the whole network.

A second alternative scenario to Bothunter can be using a low-end IPS on every switch

to prevent the network delay caused by the first alternative scenario. Figure 4.26 show this

scenario. There is an IPS located on every switch on the network edge. In case of servers

in a datacenter the edge switches can be Top of Rack (ToR) switches plus the switches that

connect the datacenter network to external networks. Because of the number of IPSs used in

this scenario, the cost can easily go high while this scenario can potentially cause less delay

than the first alternative.

We explained alternative scenarios for a basic bothunter application. Now, we review our

approach to put bothunter in the network. We explain two possibilities of deploying bothunter

in a network. First, Figure 4.27 shows deploying bothunter in an Intrusion Detection System

style (i.e., IDS style). IDS is a system that detects malicious activities and reports them to
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Figure 4.26: Bothunter alternative scenario 2: multiple intrusion prevention systems

the system administrator or the Security Operations Center (SOC). Boxes with numbers in the

figure explain the following steps:

1. A bot infected by a virus attempts to scan other machines to find a new victim.

2. The scanning process generates a low bit per second and packet per second type of tra�c.

Once the scanner finds an open port it proceeds with exploitation and infection of the

second computer. Now, the second computer starts scanning other computers’ ports.

3. The scanning tra�c of the second infected computer passes through the switch in a green

box (i.e., the switch including the bothunter application installed on the switch itself).

The bothunter instance on the switch detects the tra�c pattern of the infected machine

and fires an alarm.

4. The bothunter sends the alarm to the SOC.

Switches without the green box does not include bothunter and thus they are agnostic about
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Figure 4.27: Bothunter IDS style
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Figure 4.28: Bothunter IPS style

virus generated tra�c.
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Figure 4.28 shows a similar scenario to Bothunter IDS style, but instead of IDS it applies

an IPS mechanism (i.e. IPS style). The di↵erence between IDS style and IPS style is blocking

the malicious tra�c from the infected bot. In the IDS style scenario the bothunter only reports

the detected malicious activity tra�c to the SOC and administrators are responsible to react

manually to the security incident. In contrast, the IPS style case blocks the tra�c after firing

the security incident alarm. The steps are as follows:

1. A bot machine infected by a virus is attempts to scan other machines to find a new victim.

2. The scanning process generates a low bit per second and packet per second type of tra�c.

Once the scanner finds an open port it proceeds with exploitation and infection of the

second computer. Now, the second computer starts scanning other computers’ ports.

3. The scanning tra�c of the second infected computer passes through the switch in a green

box (i.e., the switch including the bothunter application installed on the switch itself).

The bothunter instance on the switch detects the tra�c pattern of the infected machine

and adds it to its own blacklist.

4. Controller receives IPs added to the blacklist.

5. Controller generates new switch configuration that blocks blacklisted IPs.

6. Controller installs the new configuration on the switch. Once it is installed, packets from

infected computer will be blocked by the switch.

To compare the detection latency of IDS and IPS style scenarios we run port scan tra�c

through them and measured the detection latency for IDS style and detection plus reconfig-

uration latency for IPS style. Figure 4.29 shows Bothunter IDS style detection latency and

Figure 4.30 shows the Bothunter IPS style detection and reconfiguration latency. The red line

in Figure 4.30 shows the IDS style detection latency to indicate the di↵erence. The main cause

of the di↵erence is the reconfiguration delay.

We implemented Bothunter as a simple API. Figure 4.31 shows methods and parameters

for IDS style and IPS style solutions. While these APIs can be extended in many ways, here

our objective is to show the potential to develop useful applications.
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Figure 4.29: Bothunter IDS style detection latency
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Figure 4.30: Bothunter IPS style detection and reconfiguration latency

4.4.5 Northbound versus Southbound Applications

In the OpenFlow context (and to some extent in the current SDN context) northbound ap-

plication is implemented on top of controller and calls the controller. In contrast, southbound

means the data plane layer consist of switches and forwarding plane. In our context, we may
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Figure 4.31: Bothunter API methods and parameters

name our API a southbound API or southbound application as it is implemented on the data

plane and provides data plane programmability compared to OpenFlow model that advertise

control plane programmability. Todays, northbound applications are considered as hot topic.

However, giving examples of useful applications in this area is not a trivial task as there are

many limitations in the control plane. The major limitation on the control plane is the lack of

access to the packet payload. That is why it is infeasible to have applications that filter more

than a bitstream match (i.e. the OpenFlow classification model) on the packet. For example,

an Intrusion Detection System needs to look at the whole packet and even bu↵er a couple of

packets to detect an intrusion while sending packets to the controller for intrusion detection is

infeasible because of performance considerations. To support our argument, we implemented

two examples of northbound security applications from a related work [6] in the data plane (i.e.

southbound) to see the di↵erence.

Table 5.4 illustrates the di↵erence between the overhead of running two applications on the

data plane (i.e., D-plane or southbound) versus the control plane (i.e., C-plane or northbound).

Port scanner detector looks for repeated attempts to connect to a closed port on a system from

another system. This kind of detectors help to find worm-infected machines that are scanning
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Table 4.2: Northbound versus Southbound (i.e., TagFlow) Applications

C-plane Overhead (ms)

LoC ( Python + config )[6]

D-plane Overhead (ms)

LoC ( C + config )

Port Scanner Detector 7.196 / 205 + 24 0.000004 / 249 + 15

BotMiner Detector 15.421 / 312 + 40 0.00012 / 548 + 27

the network for new victims. BotMiner detector is another simple application that clusters

network nodes based on the output of port scanner detector to detect bots via co-clustering of

nodes producing network anomalies. The C-plane implementations show the lines of code (LoC)

plus the overhead delay of running elements on FRESCO [6] framework. FRESCO is a Click

like framework to develop elements for security applications at northbound. Similar to Click,

FRESCO applications consist of two parts; an element code in Python and a configuration file.

We implemented the same applications at data plane in C++ and compared the overhead as

well as LoC. We used Click as the data plane implementation framework. Interestingly, the

same application runs hundreds of times faster in data plane compared to control plane. The

main reason is the delay caused by sending information from data plane to control plane in

FRESCO which is the case in almost any northbound application. In short, lack of flexibility

and data transmission overhead are two major limitations of northbound applications.

Such security detectors are in fact some sort of classifiers. In the context of our system

we can put them at the edge as classifiers to separate flows with suspicious activity. Also,

they can be considered as actions to be loaded by the switch and applied on some flows which

(for example) need more security considerations. In the latter case, the user can program the

controller to assign these actions in the action columns of switch forwarding table corresponding

to some specific tags. All in all, tags not only can represent flows, but also can specify more

information about the flow such as security level an so on.

4.5 Discussion

We believe that software-defined networking should be extended to support the programma-

bility of data plane elements which is the main proposal of Deeply Programmable Networking,

so that new data plane functionalities can be plugged in and unplugged flexibly. Deep pro-

66



grammability refers to the whole range of programmability, including network applications,

control plane elements and data plane elements. Software-defined networking and network

functions virtualization are the technologies included in this conceptually wide area of studies

of programmable infrastructure.

The TagFlow idea is based on the Deeply Programmable Networking(DPN) concept as it

touches the data plane. TagFlow modifies the packet classification in the network. Since packet

classification happens on the data plane part of the switch, any modification to that part requires

a programmable data plane. TagFlow is an example case to show the e↵ectivity and value of the

Deeply Programmable Networking idea. DPN suggests the current programmability coverage

by traditional SDN, needs to be extended to fully cover the data plane and TagFlow solves a

network classification problem using exactly the same extension. Expansion of programmability

from coverage of control plane to the data plane lets TagFlow to instruct network switches to

classify and forward packets based on a tag on the packet trailer rather than header. Providing

the same functionality without using DPN is also possible. However, such an approach is

equivalent to proposing a new hardware which is the same approach as traditional SDN proposal

(i.e. OpenFlow). So, it su↵ers from the same limitations OpenFlow has. One of the main

limitations of OpenFlow is flexibility problem. That is, any modification or upgrade to the

protocol results in a new hardware replacement which can increase the cost considerably. In

conclusion, the only feasible, cost e↵ective approach to realize TagFlow is using the DPN

approach.

Extending SDN to enable simple programmability for data plane functionalities and to sup-

port the capability of defining or redefining interfaces for data plane functionalities, along with

publishing those interfaces to control plane elements and network applications, reduces opera-

tional and capital expenses, because we can add or remove or modify data plane functionality

by simple programming. Thus, we can reduce the complexity of maintenance, and decrease

the life-cycle costs often observed in hardware-based inflexible data plane elements. Simple

modification to interfaces to access new data plane functionalities enhances the capabilities and

improves the e�ciency of network applications and control plane elements.

Regarding the scalability of our proposal there three types of scalability to note in our scope:

Scalability in terms of number of tags active in the network. The only e↵ect of total
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number of active tags in the network switch is on the forwarding table size. As the number of

tags in the network grows, the forwarding table can grow correspondingly. The data structure

for storing forwarding table in most modern networking switches is Hash Table (also known as

hash map). Hash table is an associative array abstract data type to store key value pairs. The

time complexity of all insert, delete and search operations on a hash table of size n in big O

notation are O(1). So, the search mechanism is independent of the number of rows and also

number of tags in the forwarding table. So, TagFlow is scalable in terms of forwarding table

size.

Scalability in terms of forwarding performance. We performed multiple experiments

using di↵erent number of CPU cores as the processing power to measure the behavior of TagFlow

on di↵erent packet sizes. Particularly, Figure 4.17 illustrates TagFlow throughput using di↵erent

packet sizes. The x-axis shows the number of CPU cores used to forward packets. We used

from one to ten CPU cores on six di↵erent packet sizes to see what is the e↵ect of increasing

the processing power on TagFlow throughput? The result suggests, as we increase processing

power, the throughput increases almost linearly. Hence, TagFlow forwarding performance is

scalable using more processing power.

Scalability in terms of network size. As the number of nodes in the network grows

the packet can potentially spend more time traveling in the network and pass through larger

number of hops or switches. The question is how does that a↵ect the TagFlow operation?

There are two aspects to this question: switch level and network level. First, e↵ect on a

single switch (i.e., switch level e↵ect). TagFlow is a classification mechanism implemented and

deployed on every switch and aims at simplifying the classification mechanism. In traditional

SDN, packet classification on every switch is independent from another. So, higher or lower

classification load on a switch does not a↵ect any other switch. Even failure of one switch does

not lead to failure of another. The same holds for TagFlow. TagFlow simplifies the classification

on every single switch independent from others. So, increasing and/or decreasing the size of

network has no e↵ect on the performance of a single switches. Second, global e↵ect on the

whole network (i.e., network level e↵ect). TagFlow has two main objectives: i) to free the core

from classification load and ii) to use the freed capacity for useful applications. The switch

level e↵ect in the previous paragraph refers to the former TagFlow objective and network level
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e↵ect refers to the latter TagFlow objective. When TagFlow simplifies the classification load

using tag-based approach, on every single switch there is a small amount of time saved in

classification. Figure 4.19 shows that small amount of time on di↵erent network sizes. As the

figure depicts, as the more number of nodes exist on the network, the larger amount of time

will be saved via the TagFlow simplified classification. That is, the time saved via simplified

classification is linearly increased as the number of nodes in the network increase. Figure 4.19

shows the time saved through simplified classification for only one packet. Next, in Figure 4.20

we project the same figure as 4.19 on 1000 packets to see how scalable is the time saving caused

by simplified TagFlow classification. Figure 4.20 shows as the number of packets increase in the

network, the cumulative latency decreased almost linearly. In conclusion, the aforementioned

two figures illustrate two conclusions: First, the TagFlow latency reduction, linearly scales with

the number of nodes on the network and second, the TagFlow latency reduction is linearly

scaled with number of packets transmitting through the network.

4.6 Summary

In this chapter, we propose TagFlow, a simple tag based classification method as the replacement

for many-field matching techniques such as OpenFlow which is reasonably fast and enables

classification programmability. Our evaluation results show this method saves considerable

processing power that can be used for application layer classification. Even if OpenFlow moves

to ASIC our TagFlow still could be faster using ASIC.

69



Chapter 5

User-Defined Switch Actions in

DPN Data Plane

5.1 Introduction

OpenFlow is a wide-spread SDN API. This API installs a set of <match, action> rules on

network switches. Any flow matching to the rule, receives the corresponding action. OpenFlow

proposes a programmable control plane but a configurable-only data plane. That is, the user

can write a program on top of the controller to perform a task such as load balancing. By the

configurable data plane we refer to the TCAMs that are only able to match flows against a

predefined set of fields and the OpenFlow enabled switch (i.e., OpenFlow data plane) can be

configured to execute some of the predefined actions on packets. So, OpenFlow has two major

shortcomings:

• Predefined flow field-matching : OpenFlow defines a set of fixed predefined protocols and

fields and instructs the data plane to match all the packets against them.

• Predefined actions: OpenFlow defines a small set of actions including forward, drop and

meter to be executed on packets. The set is not extensible or programmable.

In this chapter we relax the latter limitation of OpenFlow and propose User-Defined Actions
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(UDA) to increase the flexibility of current SDN definition. Our contribution in this chapter

are two folds. First, we show usecases of UDAs and propose a programmable architecture

that extends the traditional SDN definition to support UDA. Second, via our evaluations we

show the feasibility of UDAs in terms of throughput and their e↵ectiveness in terms of ease of

programmability.

5.2 Related Work

To our best knowledge, there is a limited attention to user-defined actions in the literature.

However, there are some works that use labeling and tagging approaches as well as proposing

software solutions for SDN data plane. The only work (we are aware of) which focuses on user-

defined actions is [59] in which authors propose a design of a chip as a replacement for TCAM.

They propose the Reconfigurable Match Tables (RMT) model, a new RISC-inspired pipelined

architecture for switching chips, and identify the essential minimal set of action primitives

to specify how headers are processed in hardware. RMT allows the forwarding plane to be

changed in the field without modifying hardware. As in OpenFlow, the programmer can specify

multiple match tables of arbitrary width and depth, subject only to an overall resource limit,

with each table configurable for matching on arbitrary fields. RMT allows the programmer to

modify all header fields much more comprehensively than in OpenFlow. The paper describes

the design of a 64x10 Gbps ports switch chip implementing the RMT model and claims that

flexible OpenFlow hardware switch implementations are feasible at almost no additional cost

or power [59]. However, even though the design looks promising, it is never implemented in

the real world to prove the claims. Such works shows the community is skeptical about the

capability of software controls. In this chapter, we argue that software controls are capable and

sound for such purposes.

Another work that overlaps in problem domain with ours is [58]. Authors introduce a tagging

architecture in which middleboxes export tags to provide the necessary casual context (e.g.,

source hosts or internal cache/miss state). SDN controllers can configure the tag generation

and consumption operations using their API. These operations help bindings between packets

and their origins as well as ensuring that packets follow policy mandated paths. Middleboxes
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may use tags to execute an action dynamically on the packet. This research is di↵erent from

ours in two folds. First, it more focuses on how actions are executed rather than ours in which

we consider how they are defined. Second, it discusses actions as middleboxes in contrast to our

target in which we study the feasibility of deploying actions within the same box as the switch

similar to basic OpenFlow actions implemented using TCAM. For completeness of this section

we can mention other related SDN technologies that can be combined with UDA. For example

TagFlow which is a flow based switching system. Similar to OpenFlow case we discussed in our

experiments, UDAs can be combined with TagFlow as well.

5.3 User-Defined Action Usecases

The main reason behind the need for user-defined actions is to o↵er a more flexible SDN

data plane compared to current limited and hardware-centric SDN data plane. The main

challenge in front of this is the tradeo↵ between flexibility and performance. In this chapter, we

discuss this tradeo↵ and evaluate the feasibility of providing such a flexibility using real world

experiments. In addition, there are other reasons that make user-defined actions interesting for

the community.

In the OpenFlow context (and to some extent in the current SDN context) a northbound

application is implemented on top of controller and calls the controller to perform a task. In

contrast, southbound means the layer consist of switches and forwarding plane. We believe data

plane programmability is as important as that of control plane programmability. However, there

are less work from the community in this area compared to OpenFlow model that advertises

control plane programmability. Todays, northbound applications are considered as hot topic

(e.g.,[33]). However, giving examples of useful applications in this area is not a trivial task as

there are several limitations in the control plane.

The major limitation in the control plane is the lack of access to the packet payload. That

is why it is infeasible to have applications that filter more than a bitstream match (i.e. the

OpenFlow classification model) on the packet. For example, an Intrusion Detection System

needs to look at the whole packet and even bu↵er a couple of packets to detect an intrusion

while sending packets to the controller for intrusion detection is infeasible because of perfor-

72



Table 5.1: Comparison of overhead in northbound (i.e., FRESCO) applications versus southbound user-
defined actions versus virtual appliance middleboxes

SDN overhead (msec) NFV overhead (msec)

Control Plane [33] Data Plane (UDA) Virtual Appliance

PortScanner Detector 7.196 0.000001 0.001280609

BotMiner Detector 15.421 0.000004 0.001630215

P2P Plotter 11.775 0.000004 0.001312178

mance considerations. With current proposals from Network Function Virtualization (NFV)

community, all data plane related tasks should be executed in dedicated boxes that are possibly

getting advantage of virtualization technology. While this promising approach is beneficial in

many ways, it can be a limiting factor as well. Although for heavy tasks (such as running

a heavy IDS) we may need an external box, in case of light small tasks that come handy in

networking, making a separate box is not a reasonable approach. Current SDN proposal only

o↵ers northbound interface to realize such applications.

To support our argument, we implemented some examples of northbound security applica-

tions from a related work [33] in three deferent architectures to see the di↵erence. In particular,

once as UDAs in the data plane (i.e. southbound) and once in the form of virtual appliances

as Network Function Virtualization (NFV) components and compare it with the northbound

application architecture proposed in [33].

Specifically, we implemented three actions; Port scanner detector and BotMiner Detector

and P2P Plotter based on the descriptions in [33]. Port scanner detector looks for repeated

attempts to connect to a closed port on a system (i.e., the victim) from another system (i.e.,

the attacker). This kind of detectors help to find worm-infected machines that are scanning

the network for new victims. BotMiner detector is another simple action that clusters network

nodes based on the output of port scanner detector to detect bots via co-clustering of nodes

producing network anomalies. Finally, P2P Plotter is a malware detection service that looks

for two characteristics to detect peer-to-peer malware. First, P2P malware usually produce

less amount of tra�c compared to benign P2P client software. Second, P2P malware nodes

have less churning rate. That is, P2P malware nodes commonly establish longer connections

compared to benign clients. P2P Plotter co-clusters the nodes that exhibit both features.

Table 5.1 illustrates the di↵erence between the overhead of running three applications as
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Figure 5.1: Northbound application overhead evaluation architecture

UDAs on the data plane (i.e., southbound) versus the control plane (i.e., northbound) and as

a virtual appliance (i.e., NFV). To understand the di↵erence between these three architectures

we explain each of them briefly.

5.3.1 Northbound (or Control Plane) Applications

The control plane implementations show the overhead delay of running elements on FRESCO

framework. FRESCO is a Click [155] like framework to develop elements for security appli-

cations at northbound. Figure 5.1 indicates the architecture of northbound application. In a

traditional OpenFlow inspired SDN architecture, the data plane consists of an open flow en-

abled switch that depending on the specific OpenFlow version support the related features. On

the control plane side, there is a programmable OpenFlow controller with a set of applications

running on top of the controller. Di↵erent controllers may support di↵erent languages and fea-

tures for the guest (i.e., northbound) applications. A key point to understand the underlying
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Figure 5.2: NFV application overhead evaluation architecture

reason behind the considerable di↵erence in overheads in Table 5.1 is to note where the sensing

and detection happens physically. The small black triangle shows that the detection mechanism

happens on the controller based on the sensing information captured by data plane (denoted by

a small black circle). Therefore, the sensing data goes via the wire from switch to the controller

that produced some overhead.

5.3.2 NFV Appliances

Figure 5.2 indicates the architecture of NFV application we use for evaluation. The application

is located within a guest virtual machine. The switch running the application is also running in

another virtual machine and the connection among them is via the virtual network in the host

operating system. Table 5.1 shows NFV applications are almost 100 times faster than control

plane applications. In fact, it depends on the architecture. Since we put both the switch and

the virtual appliance within a single virtual network, NFV shows a considerable performance

increase. However, in a typical NFV scenario, switch is located on a separate machine from

virtual appliances. In the latter case, the di↵erence between NFV and northbound application

is less as we move from virtual network to a physical network that connects machines hosting

switch and appliance VMs.
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Figure 5.3: UDA overhead evaluation architecture

5.3.3 User-Defined Switch Actions

Figure 5.3 illustrates the architecture we use for UDA evaluation. The figure shows a data plane

environment that settles switch and actions as di↵erent components. We use Click Modular

Router to implement this architecture. Hence, the switch as well as UDAs are all Click elements.

As it is shown in Figure 5.3, we do not connect actions and switches in the serial manner (as the

regular use case in Click configuration files). Rather, we implemented actions as a passive-like

(or plugin-like) element and include it in the switch code in a way that the switch can load the

external user-defined action element to execute it. The overhead of UDA deployed on the data

plane is in nanosecond scale while the others are in microsecond scale. That is because, first,

sensing and detection happens physically at the same machine and no information is transferred

over physical or virtual network and second, the switch and UDAs are all on a single shared

platform in contrast to NFV case in which the packet should go through the whole protocol

stack of virtual appliances. In conclusion, data transmission and VM overhead are two major

limitations of alternative methods that make UDA an interesting candidate for applications.
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Figure 5.4: UDA/API control and data plane architecture

5.4 System Architecture

In this section we introduce the architecture that enables UDAs to be defined and programmed.

Figure 5.4 depicts the overall architecture of our proposal. Following current popular SDN

architecture, our system consists of two physically separated planes: control plane (at the top

of the figure) and data plane (at the bottom of the figure). Before digging into our design

objectives we define three main roles involved in the system. We consider an environment to

publish a typical (commercial) service for end-users such as online video streaming service.

• Network/Infrastructure provider : Is the entity that provides the hardware and cabling

infrastructure plus the programmable SDN environment. Infrastructure provider gives

the user, a programmable environment including control and data plane programmability

features to develop, test and run arbitrary networking software. We do not define the exact

form of such an environment since depending on the application di↵erent technologies can
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be used for this objective. An example technology to provide a programmable environment

is network virtualization where each user has one slice and a set of resources fully isolated

from other slices. There are a couple of ways to implement this kind of environment in

the literature (e.g., OpenTag [152]) that are out of the scope of this thesis. Our focus

in this chapter is how the infrastructure provider designs the a programmability feature

of data and control planes particularly for UDAs. So, we leave other concerns such as

isolation and management issues for future work.

• User (or service provider): Is the entity that is going to program the data and control

planes to publish a service for end-user. Needless to say, infrastructure provider and user

can be the same entity.

• End-user (or service user): Is an individual who consumes the service provided by the

service provider (or user).

After defining the terminology we use to explain our architecture, we move on to defining our

design objectives as follows:

• To keep the current architectural benefits of SDN caused by separation of data and control

plane and related abstractions.

• To extend SDN data plane to support programmability. That is, using our architecture,

the user is able to define arbitrary API or UDA and use it.

• To extend SDN control plane to support defining new APIs such as UDAs.

The data plane of our architecture consists of switches that can locate data plane API codes.

Switches may have di↵erent types of APIs and each API may have its own set of parameters.

Control plane can modify API parameters on the data plane (i.e., switches). The control

plane is made up of three layers; The Virtualization Layer is responsible for common tasks

including basic functions (e.g., connectivity) and gathering the information from the switches

about available APIs and making an abstraction of network topology. The API Helpers layer

are procedures that implement methods each API needs on the control plane. For example, if an

API should read some information from the data plane and then execute some calculations on
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Table 5.2: Comparison of ease of programmability in Northbound applications versus southbound
UDAs versus middleboxes

Lines of Code (LoC)

SDN
Middlebox [1] (C)

Control Plane

(i.e. NOX in Python) [1]

Data Plane UDA

(C + config)

TRW-CB [156] 741 196 (181+15) 1060

Rate Limit [157] 814 225 (205 + 20) 991

the data gathered from the network on the controller, then corresponding API helper component

is responsible for such a task. Put it other way, each API function spans over both data and

control plane. Hence, a part of the API code is physically on the data plane (indicated as API

codes in the figure) and another part is located on the control plane (indicated as API helpers

in the figure). Based on the user code, API helpers along with the virtualization layer compute

and install appropriate parameters on the data plane. Finally, the User Code layer includes the

user code on the controller.

The most important di↵erence between our architecture and traditional SDN controllers is

that we locate the API codes on the data plane. To clarify the issue, we use OpenFlow as an

example of traditional SDN API which spans over both data plane (i.e., OpenFlow enabled

switches) and control plane (i.e., OpenFlow controller). At the data plane side, OpenFlow uses

hardware-centric data plane components such as TCAM that implements the data plane side

of the API logic on the switch including the OpenFlow actions. In contrast, our architecture

fosters a software-defined data plane that can include multiple user-defined APIs. We realize

and evaluate UDAs as an example API in this architecture. So we look at UDAs as special

APIs that can be loaded in a plugin-like fashion to the switch to be executed accordingly. The

switch triggers execution of UDAs in a similar way to the traditional SDN. That is, once a flow

is matched against a row in the switch forwarding table, a set of actions defined by the user for

that specific flow are executed on every packets of that flow.

5.4.1 Ease of Programmability

In this chapter, we propose a solution for programmability of the data plane. Accordingly, an

important factor to show the e↵ectiveness of the programmability is ease of programmability
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Table 5.3: Comparison of ease of programmability in northbound versus southbound (i.e., UDAs)
Lines of Code (LoC)

Northbound implementation

via FRESCO (Python + config) [33]

Southbound implementation via

UDA (C + config)

Port Scanner Detector 229 (205+24) 264 (249 + 15)

BotMiner Detector 352 (312 + 40) 575 (548 + 27)

P2P Plotter 259 (227 + 32) 302 (281 + 21)

which refers to how easy it is to develop an arbitrary program using the proposed solution or

method. To support our proposal, we implemented two anomaly detection algorithms from a

related work (i.e., [?]) to compare ease of programmability in di↵erent architectures. Specifi-

cally, we implemented Rate Limit [157] and Threshold Random Walk with Credit Based Rate

Limiting (TRW-CB) [156] algorithms. The TRW-CB is a method to detect infected hosts by

worms that are already started scanning other nodes. It assumes the number of successful con-

nection attempts from non-infected nodes is higher than infected nodes. The TRW-CB applies

a likelihood ratio test to classify nodes using a queue of TCP SYNs for every node that is not

received the SYNACK response yet. In case of time out or TCP RST message for any queued

SYN, the likelihood ratio of that specific host will be incremented by the algorithm. Similarly,

Rate Limit algorithm assumes infected nodes try to connect to a large number of nodes in a

short span of time. It keeps track of recent attempts for connection from all the hosts in the

network and matches new attempts against the recent attempts list. Connection from nodes

that perform many attempts are delayed in a queue of a limited size. Once the queue reaches

a threshold size, the source host will be considered as an infected node.

Table 5.2 compares the size of source code (i.e., LoC) to implement aforementioned detection

methods in di↵erent architectures. The control plane implementations refer to Python language

code written on top of the NOX controller. The middlebox implementations are in C language.

By the term middlebox we refer to implementing the detection method on a standalone machine

that sends/receives packets to/from its physical NICs.

In contrast to typical Click element usecases (as we mentioned in Section 5.3.3) we imple-

mented UDAs as a passive-like Click elements and include them in the switch code in a way that

the switch can load the external UDA element to execute it. The reason behind such an imple-

mentation is ease of programmability. Since the UDA is implemented in a separate element, the

80



code is cleaner and more extendable. Furthermore, including the action element in the switch

code takes a few lines of code so that the extra work caused by providing programmability is

reasonable. This not only keeps the action code clean, but keeps the switch code simple and

clean even after adding UDAs. Since we use Click to implement our UDAs, we calculate the

LoC using the summation of Click configuration file and the LoC of the element source code.

Note that we do not consider the LoC of the Click Router itself similar to NOX case that we

only include the LoC of the program written on top of NOX. Moreover, Our controller is a

standalone program that connects to the switch using sockets. It can retrieve the list of online

switches and the catalog of available APIs from every switch. Using these information user can

write programs. Currently, our controller supports only C++ programmability. We build a

Python wrapper over some functions of the controller so that the user can write Python script

to program the controller and manipulate parameters on data plane. Table 5.3 indicates the

comparison of ease of programming using a northbound programming framework and UDA

implemented at southbound. FRESCO as a northbound application development framework is

made for easier application development at controller. However, comparing UDA and FRESCO

using the three sample applications, we can see almost similar lines of code in both solutions.

The minor di↵erence we see can be the result of di↵erence programming languages. In fact,

Python scripting language (used in FRESCO) can reduce the code size compared to C++ pro-

gramming language. We believe the majority of the di↵erence we see in Table 5.3 is caused by

the di↵erence between Python and C++. Hence, we consider similar lines of code using two

di↵erent approaches eventhough FRESCO is an additional framework on top of the controller.

If we count the LoC of the FRESCO framework itself (excluding the controller LoC), the result

will be di↵erent and UDA lines of code will be less than FRESCO applications. In conclusion,

using UDAs implemented on data plane we can reduce the LoC by 72.9% and 79.3% com-

pared to implementing the same functionality on control plane and as a standalone middlebox,

respectively.
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Figure 5.5: OpenFlow extended to support UDAs

5.5 Throughput Evaluations

In Section 5.3 we reviewed some PC-based experiments to show per packet overhead using

di↵erent architectures. In this section, we consider testing UDAs under higher loads to see how

it performs. Particularly, we extend the OpenFlow to support such a feature and measure the

overhead of UDAs. We use the same UDAs as in experiments in Section 5.3 (i.e., Botminer

Detector, Portscan Detector and P2P Plotter). The experiment setup we use in all evaluations

is as follows. We use Xena packet generator to generate 10 Gbps tra�c and send it to FLARE

switch that hosts our UDAs. FLARE switch is a programmable switch using Click environment.

For more details on FLARE please refer to [108].

5.5.1 OpenFlow Plus UDAs

For OpenFlow experiments we use our software OpenFlow implementation on FLARE. Since

FLARE uses the Click Modular router environment we implement all actions as Click ele-
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Table 5.4: Overhead of heavy User-Defined Actions using extended OpenFlow
# Processor cores 6 7 8 9 10 11

OpenFlow + UDAs (Gbps)
BotMiner Detector 2.3 2.9 3.1 3.5 3.9 4.3

P2P Plotter 2.4 2.8 3.2 3.6 4.0 4.4

ments. In case of OpenFlow, we use the original open source and publicly available OpenFlow

implementation as a static library linked against the OpenFlow Click element and use library

functions in the element and extend it to support UDAs. Figure 5.5 illustrates the throughput

of running UDAs on OpenFlow using di↵erent packet sizes. We compared PSD with OFF. We

use one to five processor cores to show the throughput is linearly increasing while we increase

the number of cores.

5.5.2 More Complex UDAs

Compared with portscan detector UDA, the botminer detector and P2P Plotter UDAs are more

complex since they look for specific aspects of the tra�c and co-cluster the results to make the

decision. For both of them we use multiple Click elements for implementation. Therefore, they

have lower throughput because of the overhead of using multiple elements. In case of portscan

detector we applied some optimizations to get the results presented in Figure 5.5. Particularly,

before optimization, we used the CheckIPHeader Click element to set the IP address annotation

on the pact header to prevent segmentation fault on our portscan element that was checking

IP header on every packet. So, we embedded the annotation functionality within the portscan

element. As the result, removing the overhead of using additional element, we reduced the

overhead of portscan detector element from 0.000004 milliseconds to 0.000001 millisecond. In

the same way, we can reduce the overhead of botminer detector and P2P Plotter UDAs since

they are using the Counter and DelayUnqueue elements. Rather, we use them for another

experiment. That is, how the throughput increases with the increase of the number of processor

cores on heavier UDAs. Table 5.4 indicates that the throughput follows a liner increase even

up to 11 cores. As FLARE provides more than 30 cores, we can keep experiencing the same

linear increase of performance which we exclude from the figure for brevity. Also, we excluded

the results from one to five cores for briefness. We conclude that even for heavier tasks we can

consider UDAs using more number of processor cores.
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Figure 5.6: Per attack detection time of Portscan Detector UDA on the attack trace from [1]

5.5.3 Portscan Detector UDA Experiment on Attack Trace

Most of the experiments we discuss, focus on performance of UDAs. For completeness we

conducted a test on an attack trace from [?] to show if the UDA we made really detects attacks

or not. Obviously, as we are not proposing a detection algorithm, our measurement is not based

on popular intrusion detection metrics such as false negative and false positive. Instead, we

select a portion of the detection attack along with the detection time. Figure 5.6 shows the

detection time of a random set of more than 300 detections the UDA fired on the attack trace.

The trace consists of about 2 million packets attacking from three computers to three targets.

The red line shows the trend of detection time which illustrate reasonable fluctuation we usually

see in a software and we do not see an unusual increase or decrease in detection times.

5.6 Summary

In this chapter, we propose UDAs as an extension to current proposal from SDN community.

We propose an architecture and an extended version of OpenFlow to support such a func-

tionality in Click environment. We illustrated evaluations in terms of throughput and ease of
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programability. We believe the community should pay more attention to the programmability

of the data plane in order to have a better SDN.
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Chapter 6

Conclusion and Future Directions

6.1 Summary

Software-Defined Networking (SDN) is a new networking paradigm in which we make abstrac-

tions over the network in a single point and use it to manage the network. Moreover, in contrast

to current networking devices (e.g. network switches) SDN provides a programmable environ-

ment to make more flexibility in the way we manage our networks. SDN unlocks innovation on

networking via providing programming interfaces for engineers compared to current command

based devices (e.g. network switches). In this thesis, we recognize two major problems in the

current SDN data plane: a) SDN data plane uses a limited set of predefined packet headers

(e.g., source and destination IP address) to classify packets for switching and repeats checking

all header fields for classification on every switch in the network and b) SDN data plane applies

a set of predefined actions on every packet (e.g., forward and drop). To address these problems

we surveyed current e↵orts in SDN and showed there is a lack of research on the SDN data

plane. We also posit that there is a need for a more flexible, programmable data plane to be

able to solve many networking problems. Hence, as our strategy we take the data plane-based

approach to propose solutions.

Based on our proposal, to address the first problem we propose TagFlow. The main con-

tribution of TagFlow are two folds: a) o✏oading the packet classification to the network edge

devices and b) getting advantage of the freed capacity at the core, we provide the chance to

get advantage of sophisticated application layer classification in the network. Our experiments
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show TagFlow can be about 40% faster in forwarding and classification compared to the state of

the art technologies. To address the second problem, we propose User Defined Action (UDA).

UDAs let SDN programmers to freely build arbitrary use cases specific to their own needs with-

out the limitation of traditional predefined actions in SDN. We demonstrate UDAs can elevate

millisecond-scale action running time of current proposals to nanosecond-scale. Also, regarding

ease of programmability, we show that our proposal decrease the lines of code of by more than

70% compared to the current alternatives.

All the solutions we reviewed in this thesis as di↵erent mitigation mechanism for current

SDN problem using DPN approach can be considered as APIs of the DPN. Such programmable

mechanisms play as interfaces to the dat plane of DPN and let programmers adjust their

behavior arbitrarily.

6.2 Future Directions on DPN

Here we mention our potential future work and also possible future directions for the community

towards successful DPN research.

6.2.1 Combining SDN and NFV

Recently, the community started looking at the synergy between SDN and Network Function

Virtualization (NFV). NFV aims at virtualization of data plane functionalities on top of a

virtualized environment. Drawing a line between SDN and NFV (i.e., considering the SDN as

the part that transfers packets among nodes and the NFV as the part that process packets)

may su↵er from a few shortcomings. First, SDN defines southbound interface as the interface

between controller and switches. At the switch side, usually an inflexible hardware-based (e.g.,

TCAM-based) device plays the role of data plane. If network operator can programmatically

define and publish arbitrary interfaces for the controller, we may open up the opportunity for

a series of enhancements in the data plane. Secondly, at the NFV side, we can see middleboxes

and virtual appliances usually stick to a non-evolvable and non-extensible set of protocols. If

we extend NFV architecture in the way that it can work consistently with SDN controllers

and both sides can share open interfaces, we can have flexible and evolvable data plane while
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we leverage the management power of SDN [158]. There are a few researches focusing on the

combination of SDN and NFV such as [159].

6.2.2 Data Plane Abstractions

SDN defines almost comprehensive abstractions over the network control plane that let the

architecture enable programmability. In contrast, there is a little e↵ort towards proposing

an abstraction over data plane. Among available alternatives, Finite State Machine (FSM)

and Extended FSM gathers some more attentions as a promising way of model the complex

functionality of data plane [160, 161]. We may also need to open up some interfaces that

expose resources of switch such as storage (e.g., for in-network caching), processors (e.g., for

transcoding and encryption), and packet queues (e.g., dynamic adjustment of queue sizes for

specific applications) to enable programmers to develop their solution faster and more portable

across hardware platforms.

6.2.3 Data Plane Verification

Besides methods of verification for forwarding state [77], the data plane software also needs

verification to make sure that it satisfies the requirements. Software engineering practices has

established methods for verification such as symbolic execution, input/output testing and pas-

sive testing. Recently, researches try to apply these methods to verify data plane functionality.

For example, in [162], authors optimize a symbolic execution engine to go through alternative

execution paths of the data plane in order to find bugs. Moreover, FlowTest [80] focuses on a

trace or a interleaved sequence of packets that logically triggers a chain of specific state tran-

sitions in the data plane using state machines where each state represents a state of the data

plane.

6.2.4 Netwrok Programming languages

As we showed in this thesis, the main focus of the SDN research was on programmability of the

control plane and producing software that runs on top of control plane. After a couple of years

passing from the initial SDN idea the community feels there is a need for a way to program the
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data plane in a high-level manner, independent from underlying protocols. Following the basic

Deeply Programmable Network idea, the research community started discussion around domain-

specific programming languages that are independent from protocols. That is, the software

producer just defines the desired behavior s/he wants from the switch in a domain-specific

programming language and the rest is the compiler responsibility to translate the high level

behavior definition to a switch-understandable code that realizes the desired behavior. Projects

such as P4 [163] are following such an objective. P4 or Programming Protocol-independent

Packet Processors is an e↵ort to introduce a programming language which is designed for

dataplane programmability and at the same time is not specific to any protocol and does not

need to support a protocol to be usable. On the other hand, projects such as OpenFlow tend

to expose programming interfaces that are limited to protocols that they support. That trend

of abstraction we see in the community together with appearance of commodity high speed

packet processing hardware can release the current networking industry from the monopoly that

formed since a few decades ago by companies producing special purpose proprietary networking

hardware and software and open up the innovation space to the whole community.
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