
博士論文

Uniform computational complexity of
ordinary differential equations with

applications to dynamical systems and
exact real arithmetic

（常微分方程式の一様計算量およびその力学系と厳密数値計算への応用）

Holger Thies
ティース　ホルガー

Abstract

Dynamical systems are used to model a large number of processes in nature whose
state evolves over time. They are usually described by ordinary differential equations
in the time-continuous or function iterations in the time-discrete case. In both cases
some of the quantities involved are real numbers.

In the theory of computation Turing machines or equivalent models of compu-
tation are used to define the notion of computability. Turing machines compute
functions from finite strings to finite strings, that is, functions F : Σ∗ → Σ∗ for
some fixed finite alphabet Σ. While computations over discrete objects like natural
numbers, rational numbers or graphs can be defined by choosing an appropriate
encoding for these objects as finite strings, the set of reals is uncountable and it
is therefore impossible to find such an encoding. Classical computability and com-
plexity theory can thus only be applied to problems where input and output are
discrete.

Computable Analysis extends computability theory to computations with un-
countable quantities such as real numbers. The theory already dates back to Turing
[Tur36] with later important contributions for example by Grzegorczyk [Grz57]. The
rigorous study of computational complexity in this model was initiated by Ko and
Friedman [KF82]. The underlying idea is that while real numbers can not be en-
coded finitely, they can be approximated arbitrarily well e.g. by rationals. Thus, it
is possible to encode a real number by an approximation function that gives approx-
imations to said number up to any desired precision. The theory can be extended
beyond the reals to other uncountable sets using the framework of representations
(see e.g. [Wei00]).

In this thesis we study several new aspects regarding the computational com-
plexity of problems involving dynamical systems and ordinary differential equations.

The first part of the thesis deals with uniform efficient computability of opera-
tors in analysis, i.e., of functions mapping real functions to real functions. Important
operators like integration or maximization have been shown to be hard from a com-
plexity theoretical perspective (see e.g. [Fri84, Kaw10]). It therefore can not be
expected that efficient algorithms for these operators exist on general functions.
On the other hand, if we restrict our attention to the class of analytic functions,
it is well known that many important operators map polynomial-time computable
functions again to polynomial-time computable functions [KF88, Mül87]. The for-
mulation of these theorems is, however, usually non-uniform: They do not state how
to transform a description of a function to a description of the resulting function
after applying the operator.

A uniform formulation requires the definition of a representation for function
spaces of analytic functions. The complexity of operators can then be studied in

iii

the framework of second-order complexity [KC12]. Recently, some representations
for one-dimensional analytic functions on different domains have been defined and
uniform complexity results have been shown [KMRZ15].

However, considering only one-dimensional functions does not suffice for many
interesting applications including the problem of solving ordinary differential equa-
tions. The first result in this thesis is therefore a generalization of the one-dimensional
representations to multidimensional analytic functions. Using these representations
we show that many important operators on multidimensional analytic functions
are second-order polynomial-time computable. We then apply the results to study
the uniform computational complexity of solving initial value problems of ordinary
differential equations with analytic right-hand side functions. We show that this
problem is polynomial-time computable in terms of the output precision and some
natural parameters of the right-hand side functions and thereby generalize some
recent results on polynomial ordinary differential equations to the analytic case.

A main motivation for our considerations is to better understand computational
properties of systems in nature. We therefore want to study the computational com-
plexity of time-continuous dynamical systems that are used to model, for example,
processes in classical physics. For this application, worst-case complexity turns out
to not be an adequate model: For finite complexity bounds to exist, we have to
make rather unnatural assumptions on the domain of the problem. Indeed, for
many systems the computational complexity depends in some sense on the distance
of trajectories to singularities of the system. Thus, while in the worst-case trajecto-
ries might come arbitrarily close to singularities, for many systems such a situation
is rather unlikely. That is, the computation can be typically done efficiently even
though there might be special cases where the computation time is unbounded.

Such a statement can be made formal using average-case complexity. We show
how to apply average-case complexity to the problem of simulating a dynamical
system. To this end, we characterize the computational complexity in terms of the
distance of trajectories to complex singularities of the system. We then use this to
show that if the probability of trajectories getting very close is small, the system
can be simulated in polynomial time on average.

For an important subset of dynamical systems, the Hamiltonian systems, we can
further improve that statement. Hamiltonian systems are widely used in physics to
describe the motion of mechanical systems. They have the important property that
volume of subsets of phase space remains constant over time. We can use this to
relate the volume of subsets of phase space that are close to singularities to the
volume of the initial values leading to such a state at some point in time. Hereby we
can define some very general conditions under which a Hamiltonian system can be
computed in polynomial time on average. As an application we show that the planar
circular restricted three-body problem is average-case polynomial time computable.

Finally, we also consider the practical relevance of our theory. Our representa-
tions for analytic functions can be used as a basis for an implementation of a solver
for initial value problems in exact real arithmetic. We further explore some heuris-
tics that can be used to make the implementation more efficient in practice and
provide a prototypical implementation built on the iRRAM C++ framework [Mül00].

iv

Acknowledgements

I would like to express my deep gratitude to my supervisor Akitoshi Kawamura for
giving me the opportunity to work on this topic and for his helpful support and
advice during my graduate studies at the University of Tokyo. I would also like to
thank Martin Ziegler who has constantly supported me since I was an undergraduate
student and for hosting my visits to Korea, Florian Steinberg for many fruitful
discussions and Norbert Müller for organizing a workshop in Trier in December
2017 and for being my host at this time. I would further like to thank my thesis
committee consisting of Akitoshi Kawamura, Koji Kobayashi, Shin Matsushima,
Norbert Müller, Toshio Suzuki and Kazunori Yamaguchi for taking the time to
review my thesis and for providing many helpful comments for the final version of
this thesis. I am very grateful to the whole computability and complexity in analysis
community for providing an excellent research environment.

This work was made possible due to the generous support of the EU Horizon
CID project, MEXT, the Japan Society for the Promotion of Science (JSPS), Core-
to-Core Program (A. Advanced Research Networks) and Grant in Aid for JSPS
fellows 18J10407.

v

Contents

1 Introduction 1
1.1 Context . 1

1.2 Motivation and overview . 2

1.3 Notation and basic definitions . 6

2 Background 9
2.1 Computable Analysis . 9

2.1.1 Representations . 9

2.1.2 Type-2 computability . 11

2.1.3 Type-2 machines . 12

2.2 Topological considerations . 12

2.3 Computability of real operators and functionals 14

2.4 Uniform and non-uniform results . 15

2.5 Computational complexity . 15

2.5.1 Computational complexity of real functions 16

2.5.2 Complexity of real operators 17

2.6 Second order complexity . 18

2.6.1 Length of string functions and second-order polynomials . . . 18

2.6.2 Second-order representations 19

2.6.3 Reductions . 20

2.7 Practical considerations . 21

2.8 Other models of real computation . 21

3 Representations for analytic functions 23
3.1 Motivation . 23

3.2 Power series and analytic functions 24

3.2.1 Analytic functions . 24

3.2.2 Operations on power series 25

3.2.3 Non-uniform complexity . 26

3.3 Parameterized type-2 complexity . 27

3.4 Representations for multidimensional analytic functions 30

3.4.1 Topology of the space of analytic functions 30

3.4.2 Uniform computations with power series 31

3.4.3 Polynomial-time computable operators on multidimensional
power series . 33

3.4.4 Scaling . 34

3.4.5 Uniform computations with real analytic functions 35

3.4.6 Analytic continuation . 38

vii

Contents

3.5 Summary . 39

4 Ordinary differential equations 41
4.1 Introduction . 41
4.2 Computing a local solution . 43

4.2.1 Improving the radius . 45
4.3 Computing a global solution . 45
4.4 Unbounded time . 47
4.5 Comparison to numerical methods and interval arithmetic 48
4.6 Polynomial initial value problems . 50

5 Average case complexity for Hamiltonian dynamical systems 53
5.1 Motivation . 53
5.2 Dynamical systems . 55

5.2.1 Basic definitions . 55
5.2.2 The simulation problem for dynamical systems 56
5.2.3 Hamiltonian systems . 60

5.3 Examples of Hamiltonian systems . 61
5.3.1 The N -body problem . 61
5.3.2 The restricted three-body problem 66
5.3.3 Generalized Newtonian mechanics 68

5.4 Average-case complexity . 69
5.4.1 The classical case . 69
5.4.2 Average-case complexity for real functions 70

5.5 Average-case complexity for Hamiltonian dynamical systems 71
5.5.1 Retracting to initial values 72
5.5.2 Average-case complexity . 73

5.6 Average-case complexity for the restricted three-body problem . . . 75
5.7 Summary . 76

6 Analytic functions and ordinary differential equations in exact real arith-
metic 77
6.1 iRRAM . 78

6.1.1 Real number representation 78
6.1.2 Non-continuous and multivalued functions 79

6.2 Data-types for analytic functions . 79
6.3 Heuristic improvements . 80

6.3.1 Affine arithmetic . 82
6.3.2 Combination with symbolic methods 82

6.4 IVP solving . 83
6.5 Experiments . 85
6.6 Summary . 88

7 Conclusion 91

viii

1 Introduction

1.1 Context

A central objective of theoretical computer science is to understand which problems
can be solved by a computer and which can not. The formal study of this question
using a mathematical model of computation is known as computability theory. The
theory originated in the 1930s with influential contributions for example by Kurt
Gödel, Alonso Church and Alan Turing. The equivalence of several intuitive models
of computation has led to the famous Church-Turing thesis, the statement that the
class of intuitively computable problems is precisely the class of problems that can
be solved by Turing machines. The Turing machine is therefore nowadays mostly
accepted as the “correct” model of computation.

Due to the discrete nature of the Turing machine model, computability has
classically been mostly applied to discrete problems such as functions on natural
numbers or on finite strings. In contrast, many problems solved by computers
in the real world involve continuous structures such as real or complex numbers.
Examples include nearly all of scientific computing and engineering. It is therefore
immensely important to have a formal model also for these kind of computations.

However, finding the right definition is not an easy task as the set of real num-
bers is uncountable and therefore there is no finite encoding of the reals making a
direct application of the Turing machine model impossible. In practice, this problem
is often avoided by considering only a finite subset of the reals. The most common
example for this is floating point arithmetic, where real numbers are replaced by ap-
proximations of a fixed length. However, such approximations necessarily introduce
rounding errors making it difficult to define even basic properties like correctness
of an algorithm and certainly do not give a good model of what is computable in
principle.

The formal study of computations with real numbers and other uncountable
objects by an extension of the Turing machine model is known as computable anal-
ysis [Wei00]. Although receiving much less attention than its discrete counterpart,
computations on real numbers have been studied in computability theory since its
beginning and are, for example, already considered in Turing’s famous paper from
1936 [Tur36].

The underlying idea is that, while real numbers can not be encoded finitely, any
such number can be encoded as an infinite string. A real function f : R → R is
therefore defined to be computable if there is a Turing machine that transforms an
infinite string for x ∈ R to an infinite string for f(x) ∈ R. The precise definition of
this form of computation is known as type-2 theory of effectivity (TTE). As other
spaces can also be encoded as infinite strings, the model is quite generic and can
be applied not only to the reals but also, e.g., to define computability for complex

1

1 Introduction

functions or operators on continuous real functions.

After establishing the computability of a problem, the next natural question to
ask is how difficult the computation can be. That is, one wants to establish how
much time or memory it takes to solve the problem. This question is the subject of
study in the field of computational complexity.

When trying to extend the model of real computation to complexity, new dif-
ficulties arise and one needs to be more careful in the definition of the model of
computation and the way on how infinite objects are encoded.

The rigorous study of computational complexity of real functions f : [0, 1]→ R
has been initiated by Ko and Friedman [KF82]. Their model of computation is the
oracle machine: A machine computing a real function f : [0, 1] → R has to return
on each input n ∈ N a rational approximation to f(x) with error bounded by 2−n.
To do so, it has access to arbitrary good approximations of the input x ∈ [0, 1],
i.e., it can ask for rational approximations of x with error bounded by 2−m for
each m ∈ N. Requiring that the approximations have a certain form allows to
define uniform complexity bounds for the function f only depending on the output
precision n ∈ N, i.e., independently from the concrete input x ∈ [0, 1] or the way it
is encoded.

Using this approach, Ko and Friedman relate complexity classes and hardness
results from classical, discrete complexity theory to problems on the real numbers
such as integration or maximization. Unfortunately, their approach does not gen-
eralize to other uncountable spaces. In particular, there seems to be no reasonable
way to define, e.g., the complexity of operators on real functions independently from
the oracle input.

Kawamura and Cook [KC12] therefore define a refined framework for computa-
tional complexity that allows to give complexity bounds in terms of the “size” of the
infinite input. Instead of infinite strings, a certain class of string functions is used
to encode the input. For such string functions a notion of size is known that can be
used to define complexity bounds [KC96]. This approach is also known as second-
order complexity. Kawamura and Cook apply second-order complexity to problems
in analysis and thereby generalize the complexity model for real functions by Ko
and Friedman. Their model can, however, not only be applied to real functions but
also to a much broader range of spaces with continuum cardinality.

Computable analysis aims to be a realistic model of computation. In particular,
it should be possible to implement any function that is computable in the sense of
computable analysis on a computer. Implementations of real number computations
using exact representations of real numbers are also known as exact real arithmetic
[BCRO86]. There already exist several implementations of exact real arithmetic in
different programming languages, for example, iRRAM in C++ [Mül00] or AERN in
Haskell [Kon08].

1.2 Motivation and overview

This thesis deals with questions involving the computational complexity of prob-
lems on time-continuous dynamical systems over the real numbers. Simulating a

2

1.2 Motivation and overview

time-continuous dynamical system corresponds to solving an initial value problem
(IVP) for systems of ordinary differential equations. There are already several re-
sults on the computational complexity of solving IVPs in computable analysis. In
particular, if the right-hand side function f of the equation ẏ = f(y) is polynomial-
time computable and Lipschitz-continuous, the unique solution y can be computed
in PSPACE and can be hard for this class [Ko83, Kaw10]. On the other hand, for
analytic right-hand side function the solution is also a polynomial-time computable
function [Mül87, KF88].

However, this formulation does not really capture the notion of what is usually
understood by simulating a dynamical system, as it is assumed that the solution
exists on the whole time interval and only takes values in a known compact set, and
there are several hidden factors depending on the function and the initial value that
heavily influence the efficiency in practice.

The goal of this thesis is to better understand what determines the computa-
tional complexity of simulating dynamical systems. To this end, we apply some more
advanced ideas from discrete complexity theory such as parameterized or average-
case complexity.

The thesis consists of seven chapters:
Chapter 1 (this chapter) gives an overview of the results and defines the most

important notations and basic concepts used throughout the thesis. Chapter
2 is an introduction to computable analysis and defines the theory necessary to
follow the main part of the thesis. It is explained how infinite objects like real
numbers can be encoded as string functions. The framework of representations that
allows to define computability for functions f : X → Y over general spaces X and
Y of continuum cardinality is introduced. In Section 2.2 it is shown that there
is a close relationship between computability and the topology of the underlying
spaces and some important concepts are defined. Section 2.3 discusses some general
constructions for computing with operators on function spaces. Sections 2.5 and 2.6
deal with computational complexity. It is shown how to define complexity of real
numbers and functions, what problems arise when trying to generalize to operators
and how they can be solved by using second-order complexity. Finally, Section 2.7
explains how real number computations can be done in practice and Section 2.8
compares the model to some other models of real computation.

Chapter 3 deals with uniform computations on analytic functions and power
series. Previous results in real complexity theory have shown that analytic functions
behave somehow better from a complexity theoretical point of view than general
smooth functions. We give an overview of the properties responsible for this and
state some important previous results in Section 3.2. Those results, however, are
usually stated in a non-uniform way and therefore do not correspond well to ac-
tual computations on analytic functions. This requires a uniform formulation for
which it is necessary to define representations for spaces of analytic functions. For
one-dimensional functions such representations were recently given by Kawamura,
Müller, Rösnick and Ziegler [KMRZ15]. In Section 3.4 we generalize their definitions
to the multidimensional case. The natural way to define complexity of operators in
this chapter is second-order complexity. However, the spaces of analytic functions
we consider have certain topological properties that allow to give a simpler charac-

3

1 Introduction

terization of second-order complexity in terms of some parameters of the represen-
tation. We formally define this kind of parameterized complexity in Section 3.3. We
then apply it to show that many important operators on multidimensional analytic
functions are uniformly polynomial-time computable.

Chapter 4 is about the the problem of solving initial value problems for ordi-
nary differential equations with analytic right-hand side. This problem is actually
one of the main motivations for the multidimensional extension in Chapter 3. In
particular, we define operators to solve initial value problems on top of the represen-
tations from Chapter 3 (Sections 4.2 and 4.3). In Section 4.4 we further extend our
result to unbounded time. We also show how our results compare to results from
numerics and interval arithmetic and to some recent work on polynomial initial
value problems (Sections 4.5 and 4.6).

In Chapter 5 we look at the problem of simulating time-continuous dynamical
systems from a different perspective. While in Chapter 4 we assumed a fixed com-
pact domain, in this chapter the domain is allowed to be open and might not be
known in advance. In this case, it is usually not possible to bound the worst-case
complexity, for example because trajectories can get arbitrarily close to complex
singularities of the function making it necessary to approximate the position with
very high accuracy. In Section 5.2 we make this formal by studying the parameter-
ized complexity of the problem in terms of a parameter encoding the distance to
singularities. We show that, under some mild additional assumptions, the system
can be efficiently simulated in case that trajectories do not come too close to sin-
gularities. We then extend this to an average-case analysis. We thereby formalize
the statement that if trajectories usually stay far away from singularities, the sim-
ulation should be efficient in most cases. The model of average-case complexity is
explained in Section 5.4, first for the discrete case and then a recent extension to
real functions due to Schröder, Steinberg and Ziegler [SSZ15] is introduced. Such an
average-case analysis requires to get a bound on the probability of getting close to
singularities. To find such a bound we focus on an important subclass of dynamical
systems, the Hamiltonian systems. Hamiltonian systems have the special property
that volume of subsets is preserved over time. In Section 5.5 we use this fact to define
some very general conditions under which a Hamiltonian system can be simulated
in polynomial-time on average. We then apply our theory to show that a restricted
version of the famous N -body problem can be simulated in polynomial-time on
average (Section 5.6).

Chapter 6 explores the practical relevance of our results from Chapter 3 and
Chapter 4. We show how to implement a data-type for uniform computations with
analytic functions in C++ based on the iRRAM framework. We give a short introduc-
tion to the framework in Section 6.1. In Section 6.2 we then describe our implemen-
tation and in which ways it differs from the theoretical description in Chapter 3. We
further show how some heuristic optimizations can help to improve the running-time
in practical applications (Section 6.3). In Section 6.4 we define a solver for initial
value problems for ordinary differential equations with analytic right-hand side using
our class for analytic functions. We empirically evaluate the running-time in terms
of different parameters and compare our solver to numerical and interval solvers in
Section 5.7.

4

1.2 Motivation and overview

Finally, in Chapter 7 we give a brief conclusion and describe some possible
future work.

Main contributions

Let us here briefly summarize the most important results of this thesis. The main
part of the thesis are the Chapters 3 to 6. Chapters 1,2 and 7 do not contain any
original results.

1. Chapter 3: We extend recent work by Kawamura, Müller, Rösnick and Ziegler
[KMRZ15] on uniform computations with analytic functions to the multidi-
mensional case. We also simplify their definition of parameterized second-order
complexity for our purpose (Definition 3.3.2) and show that it is equivalent to
second-order complexity for the special types of representations that we use.

2. Chapter 4: We define a uniform solver for initial value problems with analytic
right-hand side and show that this problem can be solved in (parameterized)
polynomial time. While the algorithms are mostly based on classical ones, the
uniform approach and its complexity analysis are new. We also show how our
theorem can be considered as a generalization of a recent result by Bournez,
Graça and Pouly on the computational complexity of initial value problems
for polynomial ODEs over unbounded time (Section 4.4 and Section 4.6).

3. Chapter 5: We apply average-case complexity to a continuous problem of
interest in real-world applications for the first time. We define very general
criteria to show that a dynamical system can be simulated in polynomial time
on average (Theorem 5.5.2). For Hamiltonian dynamical systems we further
refine this result and show how to relate the volume of “almost singularities”
in phase space to the (average-case) complexity of the system (Theorem 5.5.3).

4. Chapter 6: We implement a solver for analytic initial value problems in ex-
act real arithmetic. ODE solvers in exact real arithmetic are still extremely
rare and only recently the first solvers for polynomial ODEs have been imple-
mented. Our solver works with any kind of analytic function just by providing
the power series and some additional discrete information. Therefore, it is (to
our best knowledge) the most generic implementation of such a solver in exact
real arithmetic that exists at the moment. The uniform functional approach is
also rather uncommon in numerical mathematics and in many cases simplifies
the design of algorithms.

Publications

Some of the results presented in this thesis have been published during the course
of the author’s PhD program.

The main results from Chapters 3 and 4 have been published in a paper together
with Akitoshi Kawamura and Florian Steinberg [KST18].

Results from Chapter 5 have been summarized in a paper with Akitoshi Kawa-
mura and Martin Ziegler [KTZ18].

5

1 Introduction

There also exists an unpublished manuscript describing the implementation
in Chapter 6, however at the moment it is not planned to turn this into a full
publication.

Partial results have further been presented at several international conferences
and short abstracts in the conference proceedings have been published (e.g. [MRWZ18],
[KST16]).

While all of these publications are joint work with other researchers, no text
written by any other author has been transferred into this thesis.

1.3 Notation and basic definitions

In this section we list the most important basic notations and definitions that are
used throughout the thesis. We denote by N the set of natural numbers (including
0), by Z the set of integers, by Q the set of rationals, by R the set of reals and
by C the set of complex numbers. The dyadic rationals are the subset of rational
numbers that have a finite binary expansion, i.e., numbers of the form a2−b for an
integer a ∈ Z and a natural number b ∈ N. We denote the set of dyadic rationals
by D.

We fix the finite alphabet Σ = {0, 1}. A word over Σ is a finite string consisting
of symbols from Σ. We denote the set of all words by Σ∗. We further denote the
empty word by ε and for n ∈ N we use 0n (resp. 1n) to denote the string 0 . . . 0
(resp. 1 . . . 1) consisting of n zeros (resp. ones) concatenated. For all w ∈ Σ∗, |w|
denotes the length of a word, i.e., the number of characters in the word.

We further denote by Σω the Cantor space of infinite strings (formally functions
p : N→ Σ) and by B the Baire space (Σ∗)Σ∗ of all string functions ϕ : Σ∗ → Σ∗.

Occasionally, we use some other symbols than 0 and 1 to simplify the notation.
It is always possible to encode such strings using only symbols from Σ instead.

We denote a partial function f between spaces X and Y by f :⊆ X → Y and
its domain by dom f . If dom f = X the function is called total and we denote it by
f : X → Y . A multivalued function F :⊆ X ⇒ Y is defined as a function from X
to nonempty subsets of Y .

The reader is assumed to be familiar with basic notions from computability and
complexity theory such as Turing machines, the definitions of computability and
semi-computability and the most important complexity classes. For completeness,
we briefly review the main notions needed in the thesis here. For a more detailed
overview the reader is referred to standard literature like [AB09].

A function f :⊆ Σ∗ → Σ∗ is called computable if there is a (deterministic)
Turing machine that for any w ∈ dom f terminates after finitely many steps with
the string f(w) on its tape and does not terminate for any w /∈ dom f . A computable
function f :⊆ Σ∗ → Σ∗ is called polynomial-time computable if there is a Turing
machine that computes f and a polynomial p : N → N such that for any input
w ∈ dom f the machine terminates after at most p(|w|) steps. We denote the class
of polynomial-time computable functions by P.

A decision problem is a subset A ⊆ Σ∗. A decision problem is called computable
(resp. polynomial-time computable) if its characteristic function 1A : Σ∗ → Σ

6

1.3 Notation and basic definitions

defined by

1A(x) :=

{
1 if x ∈ A,
0 if x /∈ A

is computable (resp. polynomial-time computable).
In classical complexity theory the class P is often defined as a class of decision

problems and the class of functional problems that we used to define P is called FP
instead. However, as we rarely consider decision problems in this thesis we do not
make this distinction.

A pairing function is a total, computable, injective function 〈·, ·〉 : Σ∗ → Σ∗

such that the inverse is computable. We fix some standard pairing function on
finite strings. We assume that both the function and its inverses can be computed
in polynomial-time.

The complexity class NP is the class of decision problems such that for A ∈ NP
there is some B ∈ P and a polynomial q : N → N such that x ∈ A iff there is some
y ∈ Σ∗ with |y| ≤ q(|x|) and 〈x, y〉 ∈ B. Similarly, #P is the class of functions
ψ : Σ∗ → N such that there is some B ∈ P and a polynomial q : N → N such
that for any x ∈ Σ∗, ψ(x) is the number of strings y ∈ Σ∗ with |y| ≤ q(|x|) such
that 〈x, y〉 ∈ P. That is, a function in #P counts the number of witnesses for a
problem in NP. Finally, PSPACE is the class of functions computable in polynomial
space, i.e., a function f : Σ∗ → Σ∗ is in PSPACE if there is a Turing machine that
computes f and a polynomial p : N → N such that on any input w ∈ dom f the
machine terminates after visiting at most p(|w|) many tape cells.

We use multi-index notation to denote d-tuples β = (β1, . . . , βd) ∈ Nd. For
multi-indices α, β ∈ Nd, tuples of complex numbers z ∈ Cd and function f : Cd → C
we further use the following conventions:

1. α+ β = (α1 + β1, . . . , αd + βd),

2. zα = zα1
1 zα2

2 · · · z
αd
d ,

3. α! = α1!α2! · · ·αd!,

4. |α| = α1 + α2 + · · ·+ αd, and

5. Dαf = ∂|α|f

∂x
α1
1 ···∂x

αd
d

.

We further assume the usual lexicographical ordering α ≤ β on tuples of integers.

7

2 Background

In this chapter we introduce the most important concepts from computable analysis
that are required to follow the rest of the thesis.

2.1 Computable Analysis

Computable analysis gives a formal model for reliable computations involving real
numbers and other continuous structures. Its origins reach back to Alan Turing and
computability theory itself [Tur36]. Later it was extended by complexity consider-
ations [KF82, Fri84], also known as real complexity theory. The main idea is that
real numbers are encoded as functions that give approximations up to any finite
precision. Computing a real function f : R → R means to approximate the result
up to any desired output precision (while having access to arbitrary exact approx-
imations to the input x). Complexity in this model is thus characterized by the
resources necessary to achieve a certain output precision. We only present the parts
of the theory that are needed for the main part of the thesis and refer the reader to
the extensive literature (e.g. [Wei00, BHW08, KC12]) for deeper understanding.

2.1.1 Representations

As discrete structures like natural numbers, rational numbers or graphs can be
encoded by finite strings, computability over such structures can be defined as com-
putability on their encodings. The following gives a formal definition of such an
encoding.

Definition 2.1.1. A notation for a set X is a partial surjective function νX :⊆
Σ∗ → X.

Let us now define some important notations that will be used throughout this
thesis.

• The binary notation for the natural numbers N: νN(am . . . a0) :=
∑m

k=0 ak2
k.

• The unary notation for the natural numbers N: νω(1m) := m.

• A standard notation for the integers Z: νZ(sam . . . a0) := (−1)sνN(am . . . a0).

• A standard notation for the rationals Q: νQ(w1#w2) := νZ(w1)
νN(w2) .

• A standard notation for the dyadic rationals D: νD(w1#w2) := νZ(w1) ·
2−νω(w2).

9

2 Background

Objects from uncountable spaces (such as real numbers), on the other hand, cannot
be encoded in such a way. The idea is to instead encode them by functions that
give partial information about said objects. We call such an “infinite encoding” a
representation.

Definition 2.1.2. A representation of a set X is a partial surjective function ξX :
B → X. An element ϕ ∈ B with ξX(ϕ) = x is called a ξX-name for x ∈ X. The
pair (X, ξX) is called a represented space.

Notations can be embedded into the framework of representations.

Definition 2.1.3. For any notation ν the canonical representation ξν is defined by
ξν(ϕ) = ν(ϕ(ε)) for any ϕ ∈ B.

We thus use the symbols N,Z,Q and D both for the sets themselves and for the
corresponding represented spaces.

For a represented space (X, ξX) and a subspace X ′ ⊆ X we denote by ξX|X′

the restriction of ξX to names of elements from X ′, i.e., dom ξX|X′ = ξ−1
X (X ′) and

ξX|X′(ϕ) = ξX(ϕ). Note that we often omit this notation if the subspace is clear
from the context.

For represented spaces (X, ξX) and (Y, ξY) there is a canonical representation
[ξX , ξY] of the product space X × Y .

Definition 2.1.4. Let (X, ξX), (Y, ξY) be represented spaces. The representation
[ξX , ξY] of X × Y is defined by [ξX , ξY](ϕ) = (x, y) if ϕ(w) = 〈ϕx(w), ϕy(w)〉 for
some ϕx ∈ ξ−1

X (x) and ϕy ∈ ξ−1
Y (y).

This definition can be extended to the product [ξX1 , . . . , ξXd] of finitely many
spaces in the obvious way. We further write ξdX for the representation [ξX , . . . , ξX]
of the product space Xd.

For a represented space (X, ξX), there further is a canonical representation ξωX
for the space XN of infinite sequences in X.

Definition 2.1.5. Let (X, ξX) be a represented space. The representation ξωX for
the space XN of infinite sequences in X is defined as follows: An element ϕ ∈ B is
a ξωX -name for a sequence (xi)i∈N ⊆ X if for all w ∈ Σ∗ and i ∈ N, ϕ(0i1w) = ψ(w)
for some ψ ∈ ξ−1

X (xi).

We use the following standard representation for the real numbers.

Definition 2.1.6. The representation ξR for the reals is defined by ξR(ϕ) = x if
|νD(ϕ(1n))− x| ≤ 2−n for all n ∈ N.

That is, a string function ϕ is a name for a real number x ∈ R if ϕ(1n) is a
(dyadic) rational approximation to x with error at most 2−n.

Making use of the above constructions we also define standard representations
ξRd := (ξR)d for Rd, ξRω := ξωR for real sequences, ξCd := (ξR)2d for Cd and ξdCω :=

(ξRω)2d for complex multi-sequences.

10

2.1 Computable Analysis

2.1.2 Type-2 computability

As names of elements from represented spaces are ordinary string functions, com-
putability of such elements can be defined in the usual way.

Definition 2.1.7. Let (X, ξX) be a represented space. An element x ∈ X is called
(ξX)-computable if it has a computable ξX -name.

In particular, a real number is computable (w.r.t. the standard representation)
if it can be approximated by a Turing machine up to any desired precision.

Most computational problems, however, are not about computing single ele-
ments of a space. Instead, they deal with functions mapping elements of one space
to elements of another space.

The standard way to define computability on Baire space is by oracle machines.
An oracle machine is a Turing Machine with an additional tape, called the oracle
tape. The machine has access to an oracle, a function ϕ : Σ∗ → Σ∗. By entering
a distinguished query state the machine can make a query to the oracle, that is, in
one time step the input string w ∈ Σ∗ on the oracle tape is replaced by the value of
ϕ(w). We denote oracle machines by M?. An oracle machine M? can be identified
with a (partial) function M :⊆ B × Σ∗ → Σ∗ that maps an oracle function ϕ ∈ B
and input string w ∈ Σ∗ to the string Mϕ(w) that is written on the output tape
after the machine terminates.

Thus, computability on Baire space is given by the following definition.

Definition 2.1.8. A partial function F :⊆ B → B is computable if there is an
oracle machine M? such that Mϕ(w) = F (ϕ)(w) for all w ∈ Σ∗ and ϕ ∈ domF .

Computability on represented spaces can be reduced to computability on Baire
space.

Definition 2.1.9. Let (X, δX), (Y, δY) be represented spaces. A function F :⊆
B → B is called a (δX , δY)-realizer for a partial multi-valued function f :⊆ X ⇒ Y
if δY (F (ϕ)) ∈ f(δX(ϕ)) for all ϕ ∈ δ−1

X (dom f) . A function f :⊆ X ⇒ Y is called
(δX , δY)-computable if there is a computable (δX , δY)-realizer for f .

The idea of a realizer is illustrated in Figure 2.1 and computability on Baire-
space in Figure 2.2. For the specific case of a real function f :⊆ R → R that
means that f is computable (w.r.t. the standard representation) if there is an oracle
machine that given any n ∈ N, may ask for arbitrarily good rational approximations
for the input x ∈ dom f and after finitely many steps terminates with a rational
approximation d ∈ D of f(x) with error at most 2−n on its tape.

An important property of computable functions is that they are closed under
composition.

Theorem 2.1.1 ([Wei00, Lemma 2.3.18]). Let F,G :⊆ B → B be computable
functions then the composition F ◦G :⊆ B → B is computable as well.

It follows that for represented spaces X,Y, Z and computable functions f :⊆
X ⇒ Y and g :⊆ Y ⇒ Z the composition g ◦ f :⊆ X ⇒ Z is a computable function
w.r.t. the representations on the spaces.

11

2 Background

B F //

ξX
��

B
ξY
��

X
f
// Y

Figure 2.1: Computing a function f
between represented spaces
(X, ξX) and (Y, ξY). The
function F : B → B is called
a realizer for the function f :
X → Y .

Oracle ϕ

r ϕ(r)

F

q F (ϕ)(q)

Figure 2.2: Computing a function F :
B → B with an oracle Tur-
ing machine.

2.1.3 Type-2 machines

The model of computation used in Weihrauch’s book [Wei00] is slightly different from
the one used in this thesis. While we encode elements of a space by string functions,
Weihrauch encodes such elements by infinite strings, i.e., names are elements of the
Cantor space Σω instead of Baire space.

Computability on Cantor space is defined by so called type-2 machines. A type-
2 machine is a multi-tape Turing machine with at least three tapes, an input tape
which is read-only, an output tape which is write-only and a work tape. The head
on both input and output tape can only be moved forward and never backwards and
a symbol once written to the output tape can not be changed anymore. A partial
function F :⊆ Σω → Σω is called computable if there is a type-2 machine that for
each infinite string σ ∈ dom(F) on its input tape, writes the infinite string F (σ) on
its output tape without ever terminating.

This model is equivalent to the one used in the thesis from the view point of
computability. However, for complexity theory the oracle machine model seems to be
the better choice [Kaw11] which is why it is used as the main model of computation
in this thesis.

2.2 Topological considerations

Of course there are many possible representations for a space X. An important
question is thus what makes a good representation for a given space. As a name for
an element x ∈ X is a function with values giving partial information about x, this
partial information should in some sense correspond to good approximations of x.
The question is therefore strongly connected to the topology of the space.

The natural topology on Baire space is the product topology of the discrete
topology on Σ. In particular, a function F :⊆ B → B is continuous in a point ϕ ∈ B
iff for each w ∈ Σ∗, the value of F (ϕ)(w) only depends on finitely many values
ϕ(q1), . . . , ϕ(qm) for strings q1, . . . , qm ∈ Σ∗.

12

2.2 Topological considerations

In finite time, an oracle machine can only ask for finitely many values of the
oracle ϕ. As a direct consequence we have:

Theorem 2.2.1 ([Wei00, Theorem 2.2.3]). Any computable function F :⊆ B → B
is continuous.

Theorem 2.2.1 is one of the most important properties of computable func-
tions and therefore sometimes called the main theorem of computable analysis. The
relation between computability and continuity motivates the following definition.

Definition 2.2.1. Let (X, ξX) and (Y, ξY) be represented spaces. A partial multi-
valued function f :⊆ X ⇒ Y is called (ξX , ξY)-continuous if there is a continuous
(ξX , ξY)-realizer for f .

Reductions can be used to compare representations of a space X.

Definition 2.2.2 (Equivalence and reduction [Wei00, Definition 2.3.2]). Let ξ, ξ′

be representations for a space X. We define:

1. ξ ≤ ξ′ (ξ is reducible to ξ′) if the identity function id : X → X is (ξ, ξ′)-
computable.

2. ξ ≡ ξ′ (ξ is equivalent to ξ′) if ξ ≤ ξ′ and ξ′ ≤ ξ.

We further write ξ ≤t ξ′ (and equivalently ξ ≡t ξ′) if the identity function is (ξ, ξ′)-
continuous.

If ξX , ξ
′
X and ξY , ξ

′
Y are equivalent representations for spaces X and Y , a func-

tion f :⊆ X ⇒ Y is (ξX , ξY)-computable if and only if it is (ξ′X , ξ
′
Y)-computable.

A representation ξX for a space X induces a canonical topology on X: The
final topology of the representation, i.e., the finest topology such that the map
ξX : B → X becomes continuous. However, usually the spaces we consider are
already topological spaces. Thus, we want to find a representation that fits the
topology of the space. A useful property is the following.

Definition 2.2.3. Let X be a topological space. A representation ξ : B → X
for X is called admissible if it is continuous and every continuous representation
ξ′ : B → X satisfies ξ′ ≤t ξ.

For admissible representations the following holds.

Theorem 2.2.2 ([KW85]). Let (X, ξX) and (Y, ξY) be represented spaces with
admissible representations. Then a function f :⊆ X → Y is (ξX , ξY)-continuous if
and only if it is sequentially continuous.

Note that for all spaces we consider in this thesis sequential continuity is equiv-
alent to ordinary continuity, i.e., a function is (ξX , ξY)-continuous iff it is continuous
in the ordinary sense.

13

2 Background

2.3 Computability of real operators and functionals

In this section we consider mappings where input and output itself can be functions.
Examples are operators like integration or differentiation on real functions.

To define computability of such operators we need to define representations for
the underlying function spaces. For represented spaces (X, ξX) and (Y, ξY) it is pos-
sible to construct a standard representation for the space of (relatively) continuous
functions between X and Y . For simplicity we only consider total functions but the
construction can be extended to partial functions.

Recall that any (ξX , ξY)-continuous function has a continuous realizer F : B →
B. There is a standard representation for the continuous functions on Baire space
such that a function is computable if and only if it has a computable name, see
[Wei00, Chapter 2.3].

Definition 2.3.1 ([Wei00, Definition 3.3.13]). Let (X, ξX), (Y, ξY) be represented
spaces. The representation [ξX → ξY] of the space C(ξX , ξY) of (ξX , ξY)-continuous
functions f : X → Y is defined as follows: A string function ϕ ∈ B is a [ξX → ξY]-
name for a function f : X → Y if ϕ is a name for a (ξX , ξY)-realizer of f .

For topological spaces with admissible representations ξX and ξY , the construc-
tion gives a standard representation for the space C(X,Y) of continuous functions
from X to Y . This standard representation is in a certain sense the weakest repre-
sentation that makes evaluation computable as the following holds.

Theorem 2.3.1 ([Wei00, Lemma 3.3.14]). Let EVAL : C(ξX , ξY)×X → Y, (f, x) 7→
f(x) denote the evaluation operator. For any representation ξ of C(ξX , ξY), EVAL is
([ξ, ξX], ξY)-computable if and only if ξ ≤ [ξX → ξY].

Most of the spaces we consider are metric spaces. Thus, the following Definition
is useful.

Definition 2.3.2 (Effective metric space [Wei00, Definition 8.1.2]). The triple
(X, d, α) is called an effective metric space if (X, d) is a separable metric space
and α : Σ∗ → A is a notation for a dense subset A ⊆ X. An effective metric
space is called computable metric space if the function Σ∗ × Σ∗ → R, (w1, w2) 7→
d(α(w1), α(w2)) is computable.

The standard representation for an effective metric space (X, d, α) is called
Cauchy representation.

Definition 2.3.3. Let (X, d, α) be an effective metric space. The Cauchy represen-
tation ξX is defined as follows: ϕ ∈ B is a name for x ∈ X if d(α(ϕ(0n)), x) ≤ 2−n.

That is, a name for an element x ∈ X in the Cauchy representation encodes a
sequence in the dense subset A that rapidly converges towards x.

For the real numbers with the usual distance and the dyadic rationals as dense
subset, the Cauchy representation coincides with the standard representation of
the reals. Another example of an effective metric space is the space C([0, 1]) of
continuous real functions f : [0, 1]→ R with the supremum metric

d(f, g) = max
x∈[0,1]

|f(x)− f(g)|

14

2.4 Uniform and non-uniform results

and some standard notation α for polynomials with rational coefficients. The
Cauchy representation for this space turns out to be equivalent to the standard
representation [ξR|[0,1] → ξR] [Wei00, Lemma 6.1.10].

2.4 Uniform and non-uniform results

In particular when considering computability of operators it is sometimes useful to
distinguish between two types of computability results, uniform and non-uniform
results. By non-uniform computability we mean that the operator maps computable
functions to computable functions, i.e., the operator can be considered to be point-
wise computable in a certain sense. More formally, for represented spaces X and
Y a non-uniform computability result for function F : X → Y is the statement
that for any computable point x ∈ X, F (x) is a computable point in Y . On the
other hand, a uniform result is the statement that the function F : X → Y is
computable in the sense that there exists a realizer for the function F . A uniform
result thus describes how to transform an encoding of the input to an encoding
of the output and is therefore much more useful for practical applications than a
non-uniform result. However, in many cases uniform algorithms do not exist and
it is necessary to provide some additional, non-computable information to turn a
non-uniform result to a uniform result.

2.5 Computational complexity

Computational complexity classifies computable problems in terms of resources that
a Turing machine needs to solve them. The most important measures of complexity
are time and space. Time is measured by counting the number of steps the machine
makes until it terminates and space by counting the number of tape cells the machine
visits. We restrict ourselves to time complexity in this section.

In classical complexity theory where the input is a finite string, time complexity
is measured as a function in the size of the input string. The definition can also be
applied to elements of a represented space.

Definition 2.5.1. Let (X, ξX) be a represented space. An element x ∈ X is com-
putable in time O(t(n)) for some function t : N → N if there is a constant c ∈ N
and an oracle machine that computes a name of x and always terminates within
ct(n) + c steps on all inputs of length n.

Thus, an element is computable in time t if it has a name computable in that
time bound. Note that the element can still have many other names that need more
time to compute them.

For functions between represented spaces defining complexity turns out to be
more difficult. Additionally to the discrete input on the input tape there is a second
kind of input given by the oracle. As this input is not a finite string, there is no
straight forward way of assigning a size and it is therefore not clear how to define
time-bounds for the computation.

To discuss this issue further, let us now first introduce some notation.

15

2 Background

Definition 2.5.2 (Essentially [Sch04, Section 3.1]). We use the following definitions.

1. For any ϕ ∈ B and w ∈ Σ∗ let TM (ϕ,w) ∈ N ∪ {∞} denote the number of
steps an oracle machine M with oracle ϕ ∈ B and input w ∈ Σ∗ makes before
it terminates (or ∞ if it never terminates).

2. For n ∈ N and a subset of Baire space A ⊆ B let

TM (A,n) := sup{TM (ϕ,w) : ϕ ∈ A and |w| = n}.

The simplest solution is to not consider the oracle at all, i.e., define the com-
plexity independently of the oracle.

Definition 2.5.3. We use the following definitions of running-time bounds.

1. For a function t : N → N and a subset A ⊆ B of Baire space we say M has
running-time bounded by t on A if TM (A,n) ≤ t(n) for all n ∈ N.

2. For a function f : X → Y between represented spaces (X, ξX) and (Y, ξY) we
say that f is computable in time t : N → N on a subset X ′ ⊆ X if there is a
realizer M for f that has its running-time bounded by t on ξ−1

X (X ′).

In general, however, no bound on the running-time exists and therefore the
above does not give a reasonable definition in most cases. For instance, in the
standard representations for the real numbers any number x ∈ R can have arbitrarily
long names, thus there is no finite bound for the running-time on any subset of the
reals.

On the other hand, if A is a (sequentially) compact subset of the domain of M
then continuity of the function ϕ 7→ TM (ϕ,w) implies that a (finite) bound for the
running-time exists. Thus, the following definition gives a sufficient condition for a
representation to have uniform complexity bounds on compact domains.

Definition 2.5.4. A representation ξ is called proper if for any compact K ⊆ X it
holds that ξ−1(K) is compact.

As we have seen, the standard representation for the reals is not proper. Thus,
for complexity it is important to choose the representation more carefully.

2.5.1 Computational complexity of real functions

The rigorous study of computational complexity of real functions f : [0, 1]→ R was
initiated by Ko and Friedman [KF82]. As mentioned in the previous section, the
standard representation we defined for the real numbers is not suitable for complex-
ity as there are in a certain sense too many names. However, the representation can
be easily fixed by putting some additional restrictions on the names. In particular,
the n-th approximation of the real number is required to be of fixed length, i.e., for
a name ϕ ∈ B for some x ∈ R it holds ϕ(0n) ∈ Dn where Dn denotes the subset of
dyadic rationals of the form a2−n for some a ∈ Z. Thus there are only finitely many
possible values for ϕ(0n) and the representation is proper. This allows to define the
class of polynomial-time computable real functions on compact subsets of the reals.

16

2.5 Computational complexity

Definition 2.5.5. A function f : [0, 1] → R is polynomial-time computable if it is
computable on [0, 1] with a polynomial time-bound t : N → N with respect to the
restricted standard representation as defined above.

An equivalent characterization of the class of polynomial-time computable func-
tions can be given in terms of the modulus of continuity.

Definition 2.5.6. A modulus of continuity for a function f : [0, 1]→ R is a function
µ : N→ N such that |x− y| ≤ 2−µ(n) ⇒ |f(x)− f(y)| ≤ 2−n.

Theorem 2.5.1 ([Ko91, Corollary 2.14 and Corollary 2.21]). A real function f :
[0, 1]→ R is computable if and only if there exist computable functions µ : N→ N
and ψ : (D ∩ [0, 1])× N→ D such that

1. µ is a modulus of continuity for f , and

2. for all d ∈ D ∩ [0, 1] and n ∈ N, |ψ(d, n)− f(d)| ≤ 2−n.

Further, f is polynomial-time computable if and only if there exist µ, ψ as above such
that µ is a polynomial and ψ is polynomial-time computable (w.r.t. the standard
notation for dyadic numbers and the unary notation for natural numbers).

We also call the function ψ in the above definition an approximation function
as it approximates f on dyadic rational values with any desired precision.

It is easy to see that polynomial-time computable functions map polynomial-
time computable real numbers to polynomial-time computable real numbers and
that they are closed under composition.

The definition of polynomial-time computability can be extended to functions
f : R→ R on the whole real line:

Definition 2.5.7. A real function f : R→ R is called polynomial-time computable
if there is a polynomial t : N → N such that on each subset of the form [−2K , 2K],
f(x) can be approximated up to error 2−n in time t(n+K).

This notion of polynomial-time computability is essentially due to Hoover [Hoo90].

2.5.2 Complexity of real operators

Let us now consider the computational complexity of real operators F : C([0, 1])→
C([0, 1]) mapping continuous real functions to continuous real functions and real
functionals G : C([0, 1])→ R mapping continuous real functions to real numbers.

Ko and Friedman’s approach to the complexity of such operators is to study
how hard the function F (f) can be if f is a polynomial-time computable function.
This makes it possible to relate discrete complexity classes to problems over real
numbers. We give one such statement as an example and refer the reader to Ko’s
book [Ko91] for many more.

Theorem 2.5.2 ([Fri84, Section 2]). The following statements are equivalent

1. P = NP.

17

2 Background

2. For each polynomial-time computable f : [0, 1] → R, the maximum function
F : [0, 1] → R defined by F (t) := max{f(x) : 0 ≤ x ≤ t} is polynomial-time
computable.

As any reasonable definition of a polynomial-time computable operator should
map polynomial-time computable functions to polynomial-time computable func-
tions, a hardness result of this form is quite strong.

On the other hand this non-uniform approach is not very useful to actually
define a notion of polynomial-time computability for operators. Even if we can
for instance show that the operator F : C([0, 1]) → C([0, 1]) maps polynomial-time
computable functions to polynomial-time computable functions, it is usually not
clear how to get F (f) from f . For this purpose one would like to have a uniform
characterization of the complexity, i.e., in terms of a representation for C([0, 1]).
Unfortunately, there is no reasonable way to do this independently of the oracle.
That is, there is no representation of C([0, 1]) that renders even function evaluation
computable in bounded time. Even looking at a much more restrictive class of
functions does not solve this problem.

Theorem 2.5.3 ([KMRZ15]). Let Lip1([0, 1], [0, 1]) be the space of 1-Lipschitz con-
tinuous functions f : [0, 1]→ [0, 1]. There is no representation that renders evalua-
tion computable in subexponential time.

2.6 Second order complexity

As seen above, defining complexity independently from the oracle only works in a
very restricted setting and in particular does not allow to define uniform complexity
for operators on real functions. Thus, in general it is necessary that the complexity
somehow depends on the oracle.

2.6.1 Length of string functions and second-order polynomials

As the oracle is a string function ϕ : Σ∗ → Σ∗, defining complexity in terms of
the oracle requires a notion of size for such a function. Kapron and Cook [KC96]
introduce the following definition.

Definition 2.6.1. For any ϕ ∈ B the length of ϕ, written |ϕ|, is defined as the
function

|ϕ| (n) = max
|w|≤n

|ϕ(w)| .

That is, the length of a string function ϕ ∈ B is a function |ϕ| : N → N. A
bound on the running-time of an oracle machine is therefore a function T : N×NN →
N. Polynomial-time computability can be defined by using a generalized notion of
polynomials, so-called second-order polynomials.

Definition 2.6.2. The class of second-order polynomials is the class of functions
NN × N→ N defined inductively by

18

2.6 Second order complexity

• the functions (L, n) 7→ c for any constant c ∈ N and the function (L, n) 7→ n
are second-order polynomials,

• for second-order polynomials P and Q, the functions (L, n) 7→ P (L, n) +
Q(L, n) and (L, n) 7→ P (L, n) ·Q(L, n) are second-order polynomials, and

• for a second-order polynomial P , the function (L, n) 7→ L(P (L, n)) is a second-
order polynomial.

We can now define what it means for an oracle machine to run in polynomial
time.

Definition 2.6.3. An oracle machine M? runs in polynomial time if there is a
second-order polynomial P such that for any length-monotone ϕ ∈ B and any w ∈
Σ∗, Mϕ(w) halts after at most P (|ϕ| , |w|) steps.

2.6.2 Second-order representations

A problem with the above definition is that in general an oracle machine can not
compute the length of its oracle in polynomial-time as it would have to check expo-
nentially many strings to do so. Usually, the property that the machine is able to
check if the time-bound has been exceeded is desired. Kawamura and Cook [KC12]
therefore refine the model by only considering a certain subset of string functions,
the length-monotone functions, as possible oracles:

Definition 2.6.4. A function ϕ ∈ B is called length-monotone if |ϕ(a)| ≤ |ϕ(b)| for
all a, b ∈ Σ∗ with |a| ≤ |b|.

The length of a length-monotone ϕ ∈ B is given by |ϕ| (|a|) = |ϕ(a)| for all
a ∈ Σ∗ and is therefore easily seen to be polynomial-time computable.

A representation where all names are length-monotone is called second-order
representation. It is now straight forward to define polynomial-time computability
for functions between represented spaces.

Definition 2.6.5. Let (X, ξX), (Y, ξY) be represented spaces with second-order
representations ξX and ξY . A function F : X → Y is (ξX , ξY)-polynomial-time
computable, if there is a polynomial-time computable (ξX , ξY)-realizer.

While the standard representations we defined previously are technically not
second-order representations, it is not difficult to redefine them as such: We only
have to make sure that the names are length-monotone which can be achieved by
padding the strings with some symbols to make sure that they are long enough. We
omit the technical details of formally constructing second-order versions of the rep-
resentations and by abuse of notation use the same symbols as before for equivalent
second-order versions. For full formal specifications we refer the reader to [KC12]
or [Kaw11].

19

2 Background

2.6.3 Reductions

We can now define a complexity theoretical version of Definition 2.2.2.

Definition 2.6.6 (polytime equivalence and reduction [KC12, Section 3.3]). Let
ξ, ξ′ be second-order representations for a space X. We define:

1. ξ ≤P ξ
′ (ξ is polynomial-time reducible to ξ′) if the identity function id : X →

X is polynomial-time (ξ, ξ′)-computable.

2. ξ ≡P ξ
′ (ξ is polynomial-time equivalent to ξ′) if ξ ≤P ξ

′ and ξ′ ≤P ξ.

Second order complexity generalizes Ko and Friedman’s definition of polynomial-
time computable real functions.

Theorem 2.6.1 ([Kaw11, Theorem 3.22]). A function f : [0, 1]→ R is (ξR|[0,1] , ξR)-
polynomial-time computable if and only if it is polynomial-time computable in the
sense of Definition 2.5.5.

The same is true for polynomial-time computability in the sense of Hoover
[Kaw11, Theorem 3.23].

Let us now consider operators on real functions. We first have to choose a rep-
resentation that is suitable for complexity. In particular, similar to the motivation
for Definition 2.3.1 for computable functions, we want at least function evaluation
to be polynomial-time computable. The following representation is inspired by The-
orem 2.5.1.

Definition 2.6.7. The representation ξfun for C([0, 1]) is defined as follows: An
element ϕ ∈ B is a name for f ∈ C([0, 1]) if

1. For any d ∈ D and q ∈ ν−1
D (d) it is |νD(ϕ(〈0n, q〉))− f(d)| ≤ 2−n for all n ∈ N,

and

2. for all n ∈ N, ϕ(1n) = µ(n) where µ : N→ N is a modulus of continuity for f .

Again, technically this is not a second-order representation but can be easily
modified to make the names length-monotone. As a direct consequence of Theo-
rem 2.5.1 the following holds.

Theorem 2.6.2 ([KC12]). A function f ∈ C([0, 1]) is polynomial-time (ξR|[0,1] , ξR)-
computable if and only if it has a polynomial-time computable ξfun-name.

The representation is computably equivalent to the standard representation
defined in Section 2.3. The following shows that the representation ξfun is in a
certain sense a natural choice for a representation of C([0, 1]) in the context of
complexity theory.

Theorem 2.6.3 ([KC12, Lemma 4.9]). Let EVAL : C([0, 1]) × [0, 1] → R, (f, x) 7→
f(x) denote the evaluation operator. For any second-order representation ξ of
C([0, 1]), EVAL is polynomial-time ([ξ, ξR], ξR)-computable if and only if ξ ≤P ξfun.

Thus, ξfun is the weakest representation that makes evaluation polynomial-time
computable.

20

2.7 Practical considerations

2.7 Practical considerations

In this section we discuss some methods for real number computations in practice.
The most common method to perform real number computations is to replace real
numbers by finite approximations, e.g., floating point numbers x = ±m·2e with some
fixed bit-length for mantissa m and exponent e. Of course, this only allows a finite
number of reals to be represented exactly, while all others have to be rounded to
fit into the description. As such a finite representation makes it possible to realize
operations directly in hardware, computations can be done extremely efficiently.
However, due to the rounding errors floating point arithmetic is not a safe method
of computation.

A simple way of computing safely with real numbers is to additionally keep
track of an error bound. This is known as interval arithmetic. Instead of having a
single approximation for a real number x ∈ R, in interval arithmetic the number is
given by an interval I = [a, b] with x ∈ I. Operators have to guarantee the inclusion
property, i.e., if f : R→ R is a real function an interval implementation F of f has
to guarantee that for all x ∈ I it holds f(x) ∈ F (I). It is easy to define standard
operations like arithmetic on intervals (see e.g. [MKC09]). The main problem of
interval arithmetic is that intervals can become arbitrarily large. Thus, while the
result is technically correct, it does not give any useful information.

Of course, it is also possible to restrict to a countable subset of the reals like the
rational or algebraic numbers. Those subsets can be represented finitely and thus
exactly. However such an approach is usually too restrictive and often not feasible.

A more general way to perform exact real number computations is known as
exact real arithmetic. Exact real arithmetic allows error-free computations in the
sense of arbitrarily exact approximations as defined in the model of computable
analysis. That is, the desired output precision is given as an input to the program
and the program has to guarantee that the precision is reached. It can therefore
also be seen as interval arithmetic with automatic control of the error bounds. The
functions that can be computed using exact real arithmetic are exactly those that
are computable in the sense of computable analysis. As an exact real arithmetic
implementation possibly requires very large approximations of intermediate values
and as there is an additional overhead to keep track of error bounds, it is usually
much slower than for example floating point implementations. However, it has
the advantage that algorithms can be proven to be correct and has nice closure
properties, e.g., under composition.

There are several ways for the concrete realization of exact real arithmetic com-
putations, the most important being signed digit streams [GNSW07], continued
fractions [Vui90] and expression DAGs [Lam07]. Implementations of all those meth-
ods exist.

2.8 Other models of real computation

In contrast to computability theory on discrete structures, there is not one accepted
model of real computation. Of the several non-equivalent models that exist, the

21

2 Background

algebraic approach and its formalization by Blum, Shub and Smale [BSS89, BCSS12]
(called the BSS model) is maybe the most widely used. In the model, the computer
has registers that can hold elements from a commutative ring R exactly and perform
ring operations like addition, subtraction and multiplication on those elements in
one time step. For R = R we therefore get a model of real computation different
from the one used in the thesis. In particular, all operations are performed exactly
and for example testing two real numbers for equality is computable. On the other
hand some functions that are computable in the Turing machine model are not
computable in the BSS model: As input and output in the BSS model are meant to
be exact real numbers, simple functions like the exponential or square root function
are non-computable while it is easy to show that they are computable in TTE.

The BSS model has the advantage that one does not have to deal with approx-
imations, modeling much closer the mathematical intuition when working with real
numbers. In many areas of computational mathematics (for example algorithmic
geometry) an equivalent model is therefore (often implicitly) used as the standard
model. The main disadvantage of the BSS model is, however, that it does not real-
istically model computations on a digital computer as such computations are always
approximative. Therefore practical implementations of algorithms can behave quite
differently than expected.

There are many other models of real computation, some of which are equiva-
lent to either computable analysis or the BSS model and some which again define
different notions of computability, see e.g. [Wei00, §9].

22

3 Representations for analytic functions

3.1 Motivation

Typical problems over real numbers involve computing operators such as maximiza-
tion, integration or derivatives. However, classical results in real complexity theory
imply that computing some of the most common operators can already be com-
putationally hard. For example, parametric maximization relates to the P vs. NP
problem and integration to the stronger FP vs. #P problem in the sense that the
complexity classes are equal if those operators map polynomial time computable
functions to polynomial time computable functions [Fri84]. The statement remains
true even when restricted to smooth functions, implying that finding efficient algo-
rithms even for basic operators is most likely impossible.

A possible solution is to look at more restrictive classes of functions. Indeed,
it is known that the situation improves drastically for analytic functions: Many
important operations are known to preserve polynomial time computability in this
case [PER89]. However, these results are typically stated in a non-uniform way,
that is, they are of the form “If f is a polynomial time computable function then
the function G(f) the operator G returns is also a polynomial time computable
function”. While for hardness results a non-uniform formulation is particularly
strong, for the opposite goal to show that a problem is feasible such a result is not
satisfying as the algorithm for G (and therefore also its time complexity) depends
in some unspecified ways on the function f .

A uniform algorithm on the other hand transforms a description of f to a de-
scription ofG(f) and therefore requires a full specification of what information about
f is needed to compute G(f). The notion of computing with such descriptions and
the underlying complexity can be made formal in the framework of representations.

In recent work, Kawamura, Müller, Rösnick and Ziegler [KMRZ15] discuss how
to compute uniformly with one-dimensional (complex) analytic functions and ana-
lyze the complexity of some important operators in terms of natural discrete param-
eters of the function. For many applications, however, being able to manipulate also
multidimensional functions is required. In this chapter we therefore extend some of
their notions to the multidimensional case and show that similar complexity bounds
still hold. We follow their approach quite closely and first analyze computations
with single power series (Section 3.4.2) and then extend to functions analytic on a
simple compact subset of the reals (Section 3.4.5).

The spaces of analytic functions we consider fulfill certain topological properties
that allow a simpler characterization of second-order complexity in terms of discrete
parameters. We formally define this complexity model in Section 3.3 and show
that, for the representations we consider in this chapter, it is equivalent to the more
general definition.

23

3 Representations for analytic functions

The main motivation for the multidimensional extension is the problem of solv-
ing initial value problems (IVPs) for ordinary differential equations of the form
ẏ(t) = f(y(t)), y(0) = y0 for f : Rd → Rd and y0 ∈ Rd for some d ≥ 2. This topic
will however be treated in its own chapter (Chapter 4).

In this chapter we thus lay the foundations for the following chapters by defining
the basic notions of computing uniformly with multidimensional analytic functions
and analyzing the complexity of simple operators like addition, multiplication, com-
puting derivatives or composition.

3.2 Power series and analytic functions

3.2.1 Analytic functions

Let us first summarize some important definitions and basic facts about analytic
functions that can be found in any standard book on complex analysis (e.g. [Lan13]).

Definition 3.2.1. A multi-variable complex power series with center c = (c1, . . . , cd) ∈
Cd is an infinite sum of the form∑

α∈Nd
aα(z − c)d =

∑
α1∈N

· · ·
∑
αd∈N

aα1,...,αd(z1 − c1)α1 · · · (zd − cd)αd (3.1)

with aα ∈ C and z ∈ Cd.

The domain of convergence of a power series is the set

D = {z ∈ Cd : the series 3.1 converges absolutely in a neighborhood of z}.

As we require absolute convergence, for any z ∈ D all points z′ ∈ C with |z′i − c| ≤
|zi − c| for all i = 1, . . . , d are also contained in D. Thus, the domain of convergence
is a union of polydiscs of the form

∏d
i=1Bri(ci) around c. In one dimension the

(maximal) radius r of the disc is called the radius of convergence and given by

r−1 = lim sup
i→∞

|ai|
1
i (3.2)

For d > 1, we also use the expression radius of convergence for a vector r =
(r1, . . . , rd) giving the radii of a polydisc in the domain of convergence.

An analytic function is a function that is locally defined by power series.

Definition 3.2.2. Let U ⊆ Cd be an open subset. A function f : U → C is called
analytic, if for any c ∈ U there is a complex power series (aβ)β∈Nd ⊆ C such that

f(z) =
∑

β∈Nd
aβ(z − c)β (3.3)

for all z in some neighborhood of c. It is called real analytic if U ⊆ Rd and (aβ)β∈Nd ⊆
Rd.

For more complicated domains we can use the following definition.

24

3.2 Power series and analytic functions

Definition 3.2.3. Let U ⊆ Cd be a set and f : U → C a function. A function
f̃ : V ⊆ Cd → C is called analytic continuation of f if U ⊆ V , f̃ is analytic and
f(z) = f̃(z) for all z ∈ U .

A function f : U → C on some not necessarily open domain is called analytic if
it has an analytic continuation on some open V ⊇ U . We denote the set of functions
analytic on U by Cω(U). For any analytic f : U → C and c ∈ U there is an analytic
extension of f̃ of f defined on some polydisc around c. In particular, every real
analytic function can be extended to a complex analytic function.

Any analytic function is infinitely often differentiable and the coefficient aβ of
the power series around a point c ∈ U is uniquely determined by

aβ =
Dβ(f(c))

β!
. (3.4)

A property of analytic functions that we will use several times is known as Cauchy’s
integral formula.

Theorem 3.2.1 (Cauchy’s integral formula on polydiscs). If f : U → C is analytic
and Ω(ζ) ⊆ U is some polydisc around ζ ∈ U with radius R = (r1, . . . , rd), then

f(z) =
1

(2πi)d

∫
∂Ω1

· · ·
∫
∂Ωd

f(ξ1, . . . , ξd)

(ξ1 − z1) . . . (ξd − zd)
dξ1 · · · dξn.

In particular, if |f | ≤M for all z ∈ Ω(ζ), then∣∣∣Dβf(ζ)
∣∣∣ ≤ β!

M

Rβ
(3.5)

for all β ∈ Nd.

An important space for numerical applications is the space of functions that are
analytic on some compact real hypercube K = [a1, b1] × · · · × [ad, bd] ⊆ Rd. For
simplicity let us assume that K is the d-dimensional hypercube K = [0, 1]d (any
analytic function on an arbitrary hypercube can always be brought into this form
by scaling). The following theorem gives a simple characterization of real analytic
functions.

Theorem 3.2.2. A real analytic function f : [0, 1]d → R is uniquely determined by
one of the following:

1. The power series around any point c ∈ [0, 1]d.

2. The sequence of values (f(q))q∈Qd (or on any other dense subset of [0, 1]d).

3.2.2 Operations on power series

For K = R or K = C denote by K[[x1, . . . , xd]] the ring of formal power series
f(x) =

∑
β∈Nd aβx

β with variables x = (x1, . . . , xd) and coefficients in K [Bou13,
§4]. We recall the definitions of some basic operations on formal power series:

25

3 Representations for analytic functions

Definition 3.2.4. Let u =
∑

α∈Nd aαx
α and v =

∑
α∈Nd bαx

α be formal power
series then

1. u± v =
∑

α∈Nd(aα ± bα)xα,

2. u · v =
∑

α∈Nd cαx
α with cα :=

∑
β+γ=α aβbγ ,

3. For β ∈ Nd, Dβu =
∑

α∈Nd
(α+β)!
α! aα+βx

α,

We further define some operations that reduce a power series u ∈ K[x1, . . . , xd+1]
in (d+ 1)-variables to a power series v ∈ K[x1, . . . , xd] in d-variables:

Definition 3.2.5. For u ∈ K[x1, . . . , xd+1], i ∈ N, γ = (γ1, . . . , γd) ∈ Nd and x0 ∈ K
let

1. Π1(u, i) =
∑

β∈Nd ai,β1,...,βdx
β,

2. Π•(u, γ) =
∑

i∈N ai,γ1,...,γdx
i
1, and

3. σ(u, x0) =
∑

β∈Nd(
∑∞

i=0 ai,βx0)xi.

That is, Π1 extracts the series where the first index is fixed to i, Π• fixes all but
the first index and σ substitutes the first variable into the series. Other operations
like division and composition of power series can also be easily defined, but as we
do not need them we omit the details.

3.2.3 Non-uniform complexity

The reason why we are interested in analytic functions stems from real complexity
theory. Classical results have shown that computing even simple operators can be
hard for some instances. Consider for example the following result on integration.

Theorem 3.2.3 ([Ko91, Theorem 5.33]). The following are equivalent

1. For every polynomial-time computable function f : [0, 1] → R, the function
F (t) =

∫ t
0 f(x)dx is polynomial-time computable.

2. FP = #P.

That is, unless FP = #P integration of polynomial-time computable functions
can not be done in polynomial time. A possible solution is to restrict to a smaller
set of functions. Indeed, on the subset of analytic functions the situation improves
drastically as the following holds.

Theorem 3.2.4 ([KF88, Mül87]). An analytic function f : K → R for K ⊆ R
compact and connected is polynomial-time computable if and only if the sequence
of Taylor coefficients around some point x0 ∈ K∩Q is polynomial-time computable.

As integration corresponds to a very simple operation on the power series we
immediately get:

26

3.3 Parameterized type-2 complexity

Corollary 3.2.1. Assume f : [0, 1] → R is polynomial-time computable and ana-
lytic and let F : [0, 1]→ R be the function defined by F (t) =

∫ t
0 f(x)dx. Then F is

polynomial-time computable.

Proof. Let f(x) =
∑∞

k=0 akx
k be the power series for f around 0. By Theorem 3.2.4

(ak)k∈N is a polynomial-time computable sequence. The power series of F is given
by

F (x) =

∞∑
k=1

1

k
ak−1x

k.

The sequence of coefficients for this power series is polynomial-time computable and
therefore F is polynomial-time computable.

Similarly, the result of many other operators can be shown to be a polynomial-
time computable function while in the case of a general polynomial-time real func-
tion hardness results are known that make efficient algorithms for those operators
unlikely to exist.

However, from a practical point of view a result like Corollary 3.2.1 is not very
satisfying as the actual algorithm to compute the integral function F can depend on
f . A more useful formulation would be a description of an efficient algorithm turning
f into F , i.e., a uniform algorithm INT : Cω([0, 1]) → Cω([0, 1]). While a hardness
result like Theorem 3.2.3 implies that (under any reasonable definition of uniform
complexity) such an algorithm should also be hard, simply stating that the oper-
ator maps polynomial-time computable functions to polynomial-time computable
functions does not even imply the existence of a uniform algorithm.

The formulation of uniform algorithms is possible using the framework of rep-
resentations. To define uniform algorithms on analytic functions the first step is
therefore to choose a representation, i.e., an appropriate encoding for the function
objects. This turns out to be non-trivial as the most obvious choices do not work:

Theorem 3.2.5 ([Wei00, Theorem 6.4.3]). For any point x ∈ [0, 1], computing the
derivative f ′(x) is not (ξfun, ξR)-computable.

Thus, the standard function representation restricted to the set of analytic func-
tion is not useful for operating uniformly on analytic functions. In particular, it is
not possible to compute the power series coefficients for a function f from its name.
On the other hand, having access to the power series alone also does not suffice:

Theorem 3.2.6 ([Mül95, Theorem 4.1]). Evaluation of one-dimensional power se-
ries is not ([ξCω , ξR], ξR)-computable.

In the remainder of this chapter we will discuss how to define a natural repre-
sentation for uniform computations with analytic functions that will indeed make
many important operators polynomial-time computable.

3.3 Parameterized type-2 complexity

As the function spaces we consider are not compact, we can not expect to get
complexity bounds that only depend on the input size. As seen in the introduction,

27

3 Representations for analytic functions

second-order complexity can be used to describe the computational complexity of
operators. For our purpose, however, we do not need the full framework of second-
order complexity. All spaces we consider are so called Silva spaces [SeS57], that
is, inductive limits of sequences of Banach spaces. It is known that such spaces
have representations that allow a simple characterization of second order complexity
[KS05].

All representations we give encode a second-order argument together with some
discrete information that fulfills certain properties that allow us to bound the com-
plexity in terms of the input length and the length of the additional information,
independently of the second-order argument. In this section we formally define this
complexity model and show that it is equivalent to second-order complexity for the
represented spaces we are interested in. The definitions we use appear similarly in
[KMRZ15]. However, we slightly adapted and simplified them to fit better for our
purpose.

Let us first define a notion for adding discrete information to a name.

Definition 3.3.1. For any ψ ∈ B and string w ∈ Σ∗ let 〈w,ψ〉 ∈ B denote the
function defined by 〈w,ψ〉(q) = 〈w,ψ(q)〉 for all q ∈ Σ∗.

That is 〈w,ψ〉 appends the string w to each ψ(q). As the same string is appended
to each ψ(q) the operation preserves length-monotonicity. If ϕ = 〈w,ψ〉 for some
w ∈ Σ∗ and ψ ∈ B then for any q ∈ Σ∗ the strings w and ψ(q) can be recovered
from ϕ(q) in time polynomial in |ψ(q)|+ |w|.

Definition 3.3.2. For each x ∈ X let A(x) ⊆ Σ∗ be some non-empty set of finite
strings. For a second-order representation ξ : B → X, a parameterized representation
with parameters from A (written as ξ + A) is defined as follows: ϕ ∈ B is a name
for x ∈ X if ϕ = 〈w,ψ〉 for a ξ-name ψ for x and some w ∈ A(x).

A parameterized representation enriches a name of x ∈ X with some discrete
information from A(x). For a given name 〈w,ψ〉 of a parameterized representation
we call w ∈ Σ∗ the parameter.

Definition 3.3.3. We say a parameterized representation is first-order bounded if
there is a (first-order) polynomial p : N→ N such that for all names 〈w,ψ〉 ∈ B and
strings q ∈ Σ∗ we have |ψ(q)| ≤ p(|q|+ |w|).

For spaces with first-order bounded parameterized representations there is a
simpler characterization of second-order polynomial-time computability:

Theorem 3.3.1. Let (X, ξX +A) be a space with a first-order bounded parameter-
ized representation ξX +A, (Y, ξY) a represented space and F : X → Y a function.
The following are equivalent:

1. F is second-order polynomial-time (ξX +A, ξY)-computable.

2. There is an oracle machine M? computing F such that Mϕ(q) terminates after
at most polynomial in |q|+|w| steps on all strings q ∈ Σ∗ and oracles for names
with parameter w.

28

3.3 Parameterized type-2 complexity

Proof. Assume F is second-order polynomial-time computable. Then there is an
oracle machine M? that terminates on q ∈ Σ∗ and ξX +A-names ϕ ∈ B in time at
most P (|ϕ| , |q|) for some second order polynomial P . Since ϕ = 〈w,ψ〉 for some
ξX -name of an element of X and |ψ| (n) ≤ p(n+ |w|) for some polynomial p : N→ N
it follows that P (|ϕ| , ·) is a first-order polynomial in |w|+ n.

Now let M? be an oracle machine computing F and assume that Mϕ(q) ter-
minates after p(|q| + |w|) steps for a first-order polynomial p : N → N. Define the
second order polynomial P (L, n) := p(n+L(n)). Since |ϕ| (n) ≥ |w| for all n ∈ N it
is P (|ϕ| , |q|) = p(|q| + |ϕ| |q|) ≥ p(|q| + |w|). Thus, the second-order polynomial P
is a time-bound for M?.

For operators between spaces with first order bounded representations, it thus
suffices to bound the running time in a (first-order) polynomial in terms of the input
length and the length of the parameter to show polynomial time computability. For
a first-order bounded parameterized representation extracting the parameter w ∈ Σ∗

from a name 〈w,ψ〉 can always be done in time polynomial in |w| as ψ(0) has length
polynomial in |w|.

Let us consider some simple examples.

Example 3.3.1. Addition + : R×R→ R is second-order polynomial-time (ξR2 , ξR)-
computable but not first-order polynomial-time computable. For x ∈ R let A(x) =
{bin(M) : M ∈ N,M > x} the set of binary encodings of integers larger than
x. ξR + A is a first-order bounded parameterized representation for the reals and
addition is (second-order) polynomial-time ([ξR+A, ξR+A], ξR)-computable.

Proof. Addition is not first-order polynomial-time computable simply because the
output size is unbounded. On the other hand it is easy to see that it is second-order
polynomial-time computable as adding the length of a name is the bit-length of the
approximations that have to be added. Let ϕ be a ξR-name for x ∈ R and M ∈ A(x).
By definition of the ξR-representation it holds |ϕ| (n) ≤ n+ dlog(x)e+ 1 ≤ n+M .
It follows that ξR + A is first-order bounded. Further, approximating the sum up
to precision 2−n can be done in time polynomial in n+M .

In the example above a parameter for x ∈ R can be computed (even in polyno-
mial time) from a name of x. In general, we do not require this to be the case. Let
us therefore consider another slightly more complicated example:

Definition 3.3.4. Let Lip([0, 1]d, [0, 1]) be the set of Lipschitz continuous functions
f : [0, 1]d → [0, 1], that is the set

Lip([0, 1]d, [0, 1]) := {f : [0, 1]d → R : ∃L > 0 ∀x, y ∈ [0, 1]d |f(x)− f(y)| ≤ L‖x−y‖}.

The representation ξ≈ is defined as follows: An element ϕ ∈ B is a ξ≈-name for a
function f ∈ Lip([0, 1]d, [0, 1]) if whenever w = 〈bin(n1), . . . ,bin(nd)〉 ∈ Σ∗ is the bi-

nary encoding of d natural numbers n1, . . . , nd ∈ N, then
∣∣∣ φ(w)

2|w|+1 − f(n1

2|w|+1 , . . . ,
nd

2|w|+1)
∣∣∣ ≤

2−|w|.

29

3 Representations for analytic functions

That is, a ξ≈-name of f encodes the value of the function f on dyadic rational
values q ∈ [0, 1]d ∩D. It is easy to see that function evaluation EVAL : Lip([0, 1]d)×
[0, 1]d → R, (f, x) 7→ f(x) is not ([ξ≈, ξRd], ξR)-computable as it can not be deduced
from the name how accurate the approximation of the input has to be to guarantee
a certain output precision. However, adding a Lipschitz constant to a name makes
evaluation not only computable but also polynomial-time computable.

Example 3.3.2. For f ∈ Lip([0, 1]d, [0, 1]) let L(f) ⊆ Σ∗ the set of (integer) Lip-
schitz constants for f encoded in binary. Function evaluation is polynomial-time
([ξ≈ + L, ξRd], ξR)-computable.

Proof. To approximate f(x1, . . . , xd) up to error 2−n query the oracles for the ap-
proximations qi of xi with |qi − xi| ≤ 2−(n+0.5 log(d)+log(L)). Then the bound

|f(q1, . . . , qd)− f(x1, . . . , xd)| ≤ 2−n

holds.

3.4 Representations for multidimensional analytic functions

In this section we define representations for d-dimensional analytic functions on
some compact domains that are of interest for numerical applications. Note that we
always assume the dimension d to be (a small) constant and it is thus not part of
our complexity analysis. It is easy to see that most algorithms presented below need
time exponential in the dimension. As the algorithms are based on the manipulation
of multidimensional power series, this is inevitable already for combinatorial reasons.

3.4.1 Topology of the space of analytic functions

As mentioned already in the introduction of this chapter, the reason that we do not
need the full framework of second-order complexity is due to the topology of the
spaces we consider. In this section we shortly describe the topology on the space
of analytic functions that makes this possible. A more detailed analysis of spaces
allowing such a description has been done by Schröder [Sch04]. Here, we only focus
on the specific case of analytic functions on the closed unit disc.

Let D = B1(0)
d ⊆ Cd be the closed unit disc around the origin and for k ∈ N

let Dk := B k√2
(0)

d
the polydisc with radii k

√
2 around the origin. The space Cω(Dk)

of analytic functions on Dk is a closed subspace of the space C(Dk) of continuous
functions on Dk and is therefore a separable Banach space with norm ‖f‖k :=
maxz∈Dk |f(z)|.

Theorem 3.4.1. The representation ξk for Cω(Dk) such that ϕ ∈ B is a name for
f ∈ C(Dk) if ϕ is a ξdCω -name for the power series of f around 0 is proper.

Proof. By the Arzelà–Ascoli theorem for a compact subset X ⊆ Dk it holds that
all f ∈ X are bounded by some M ∈ R. Let f ∈ X and (aα)α∈Nd be the power

series expansion of f around the origin. By Theorem 3.2.1 we have |aα| ≤M k
√

2
−|α|

.
Thus, there are only finitely many 2−n approximations d ∈ Dn of aα.

30

3.4 Representations for multidimensional analytic functions

For A ∈ N, let Cω(DA,k) ⊆ Cω(Dk) be the (compact) subset of functions
bounded by A, i.e., f ∈ Cω(DA,k) if maxz∈Dk |f(z)| ≤ A. Now for any f ∈ Cω(D)
there are integers A, k ∈ N such that f ∈ Cω(DA,k). The finest topology on Cω(D)
such that the inclusion mappings Cω(DA,k) ↪→ Cω(D) are all continuous is known as
the inductive limit topology. The parameterized representation for Cω(D) defined by
adding the indices A and k to a name for the power series then gives an admissible
representation with respect to this topology [Sch04, Section 3.4]. Thus we consider
the space of analytic functions on the unit disc as the inductive limit of compact
Banach spaces with admissible, proper representations. A similar construction is
possible for real analytic functions f : [0, 1]d → R on the real unit hypercube.

3.4.2 Uniform computations with power series

For simplicity let us only consider power series centered at 0. A power series∑
α∈Nd aαz

α converges on some polydisc
∏
i=0,...,dBri(0) around 0. Let us first

assume that d = 1 and denote by r > 0 the radius of convergence of the series. For
any z ∈ C with |z| < r the series converges absolutely. Then for any 0 < r′ < r
there is a Br′ ≥ 0 such that

|ai| ≤ Br′r′−1

for all i ∈ N (for example Br′ :=
∑∞

i=0 |ai| r′i can be used). Note that such a Br′

only exists for r′ < r but not necessarily for r′ = r.
For z ∈ C with |z| < r the constant can be used to make a tail estimate of the

error when truncating the power series, i.e.,∣∣∣∑∞

i=M
aiz

i
∣∣∣ ≤ Br′

1− |z|r′

(
|z|
r′

)M
(3.6)

Thus, having access to r′ and Br′ makes evaluation on z ∈ Br′(0) computable. Note
that for |z| → r′ the number of coefficients needed and therefore the running time
of the evaluation algorithm approaches infinity.

Let us now fix the compact domain B1(0)
d

=
∏
i=1,...,dB1(0). We identify a

power series
∑

α∈Nd aαx
α ∈ C[[x1, . . . , xd]] with the multivariate sequence (aα)α∈Nd ∈

Cd,ω. Denote by Cd,ω1 the set of power series around 0 that have domain of conver-
gence with ri > 1 for i = 1, . . . , d.

Definition 3.4.1. For (aα)α∈Nd ∈ Cd,ω1 let AP
(
(aα)α∈Nd

)
:= {1k0bin(A) ∈ Σ∗ :

|aα| ≤ A2−
|α|
k for all α ∈ Nd}.

AP
(
(aα)α∈Nd

)
is a set of strings of the form 1k0bin(A) that encode a natural

number A ≥ 1 in binary and a natural number k ≥ 1 in unary such that

|aα| ≤ A2−
|α|
k (3.7)

for all α ∈ Nd. As we assumed that the radius of the power series is larger than one,
such integers always exist.

Recall the standard representation ξdCω for multivariate complex sequences: A
ξdCω -name for a sequence (aα)α∈Nd ∈ Cd,ω is a function ϕ ∈ B such that ϕ(1n01α1 . . . 01αd)

31

3 Representations for analytic functions

encodes an approximation of aα1,...,αd with error bounded by 2−n. We define the

following parameterized representation for Cd,ω1 .

Definition 3.4.2. The representation ξdP for Cd,ω1 is defined as the parameterized
representation ξdCω +AP .

A ξdP-name thus enriches the standard representation for multidimensional com-
plex sequences by integer constants A encoded in binary and k encoded in unary
that bound the magnitude of the coefficients. Note that the length of the parameter
is given by k + log(A). As the absolute value of each coefficient is bounded by A,
it is easy to see that this parameterized representation is first-order bounded and
thus second-order polynomial time computability corresponds to the existence of a
realizer with time bounded in a first-order polynomial in terms of the input size, k
and logA. We will also sometimes abuse the notation and call the integers A and k
the parameters of a name.

Theorem 3.4.2. The operator SUM1 : C1,ω
1 × B1(0) that maps a one-dimensional

power series (am)m∈N and a complex number z ∈ B1(0) to the sum
∑∞

m=0 amz
m is

polynomial-time ([ξ1
P, ξC], ξC)-computable.

Proof. Recall that we have to show that we can compute a 2−n approximation of
the sum in time polynomial in n + k + logA on input 1n having access to oracles
giving a ξ1

P-name for (aα)α∈Nd and a ξC-name for z.
This in particular allows us to

• ask for approximations of coefficients up to degree and approximation error
polynomial in n+ k + logA,

• get approximation of z up to precision polynomial n+ k + logA, and

• perform operations on the approximations with total time bounded by a poly-
nomial in n+ k + logA.

The bound (3.6) shows that when truncating the power series afterM coefficients the

error is bounded by A 2−
M
k

2
1
k−1
≤ 2Ak2−

M
k . Thus choosing M = k(2+log k+logA+n)

suffices to make the truncation error at most 2−(n+1). For the finite sum
∑M

i=0 aiz
i

it therefore suffices to compute each term aiz
i with precision 2−(n+logM+1) and

then sum up the approximations. As |ai| is bounded by A and |z| bounded by
1 the arithmetic operations on the approximations can be done within the time
constraints.

Sometimes the following fact will be useful.

Lemma 3.4.1. If A, k ∈ N are constants for a πd1-name for the power series of some
f ∈ Cω(B1(0)), then |f(z)| ≤ 2dAkd for all z ∈ B1(0)

Proof. The bound can be derived by summing up
∑

α∈Nd A2−
|α|
k and the fact that

k
√

2− 1 ≥ 1
2k for k ≥ 1.

32

3.4 Representations for multidimensional analytic functions

3.4.3 Polynomial-time computable operators on multidimensional power
series

In this section we show that operators corresponding to those in Definition 3.2.5 are
polynomial-time computable.

Theorem 3.4.3. The following holds:

1. The operator πd1 : Cd+1,ω
1 × N → Cd,ω1 is polynomial-time ([ξd+1

P , ξω], ξdP)-
computable.

2. The operator πd• : Cd+1,ω × Nd → C1,ω is polynomial-time ([ξd+1
P , ξdω], ξ1

P)-
computable.

3. The operator σd : Cd+1,ω × B1(0) → Cd,ω is polynomial-time ([ξd+1
P , ξC], ξdP)-

computable.

4. The operator SUMd : Cd,ω1 × B1(0)
d → C is polynomial-time ([ξdP, ξCd], ξC)-

computable.

Proof.

1. Getting the coefficients of the power series is a simple query to the oracle.
Assume we are given a name for a series (aα)α∈Nd ∈ Nd+1 with constants

A, k ∈ N. Then for (bα)α∈Nd := πd1((aα)α∈Nd) it holds |bβ| ≤ A2−
i+|β|
k ≤ A2−

|β|
k

for all β ∈ Nd. Thus A′ = A and k′ = k can be chosen as constants.

2. Again computing the power series is trivial. Similar to πd1 , A′ = A and k′ = k
can be chosen as constants.

3. For σd note that the coefficient with index (i1, . . . , id) of the power series
of σ(f, z) is given by bi1,...,id =

∑∞
j=0 aj,i1,...,idz

j = SUM(Π•(f, i1, . . . , id), z).
Thus it can be computed by polynomial time operators defined earlier. Choos-
ing k′ = k and A′ = 2Ak fulfills the necessary bounds.

4. The sum can be computed by

SUMd := SUM1(σ1(· · ·σd−1((aα)α∈Nd , z1), . . . zd−1), zd).

Extending the above framework by further operations is easy: We just have to
specify how to compute the power series and the integer constants for the resulting
function. It is therefore straight-forward to generalize the results in [KMRZ15] to
show that e.g. addition, multiplication or computing derivatives is polynomial time
computable and we omit the details.

33

3 Representations for analytic functions

3.4.4 Scaling

Requiring the radii of the domain of convergence to be larger than 1 is not really
a restriction. To see this, assume now (aα)α∈Nd has domain of convergence con-
taining

∏
i=1,...,dBri(0) with arbitrary ri > 0. For k ∈ N, let r′i = ri

k√2
and Ak :=∑

α∈Nd |(aα)α∈Nd | (ri
2k√2

)α. The difference between the polydisc
∏
i=1,...,dBr′i(0) and

the domain of convergence can be made arbitrarily small by increasing k. It follows
that

|aα| ≤ Akr−α2
|α|
2k for all α ∈ Nd.

Thus, the sequence (bα)α∈Nd defined by

bα := aα2−
|α|
k rα (3.8)

has domain of convergence larger than 1 and for any integer A ∈ N with A ≥ Ak it
holds

|bα| ≤ Ak2−
|α|
2k .

That is A and 2k are valid constants for (bα)α∈Nd . Further the operator SCALEd :

Cd,ω × Rd × N × N → Cd,ω1 , ((aα)α∈Nd , r1, . . . , rd, A, k) 7→ (bα)α∈Nd mapping a se-
quence, its radius and integers A, k to the sequence defined according to Equa-
tion (3.8) is ([ξdCω , ξRd , ξN, ξω], ξdP)-computable. However, we can not bound the
complexity in a simple way as the coefficients are allowed to get very large if r
is small. Let us instead consider a parameter l ∈ N s.t. for i = 1, . . . , d, ri >

1
l .

Lemma 3.4.2. Let (aα)α∈Nd ∈ Cd,ω such that the region of convergence contains a
polydisc with radii ri >

1
l for i = 1, . . . , d. Then there exists a B ∈ N such that

|aα| ≤ Bl|α| (3.9)

for all α ∈ Nd.

Proof. Let B :=
∑

α∈Nd |aα| l−|α|. As the point (1
l , . . . ,

1
l) is in the region of conver-

gence of the series, the sum exists and the inequality holds.

We use this to define a standard representation for power series with small
radius.

Definition 3.4.3. For a series (aα)α∈Nd ∈ Cd,ω letA0((aα)α∈Nd) be the set of strings
of the form 1l0bin(B) for l, B ∈ N satisfying (3.9). The ξdP0

representation is defined

as the parameterized representation ξdCω +A0.

Note that for example the evaluation operator does not make sense on this space
as the set of points where evaluation is possible depends on the name.

We can, however, scale the series in a similar way as above.

Theorem 3.4.4. The operator LSCALEd : Cd,ω × N → Cd,ω1 , ((aα)α∈Nd ,K) 7→
(bα)α∈Nd mapping a sequence (aα)α∈Nd to a scaled sequence (bα)α∈Nd defined by

bα := aα
(
l
k
√

2
)−|α|

is polynomial-time ([ξdP0
, ξω], ξdP)-computable.

34

3.4 Representations for multidimensional analytic functions

Proof. Let B and l be the constants for the ξdP0
name of (aα)α∈Nd . It is easy to see

that the sequence (bα)α∈Nd has radii larger than 1 and it holds |bα| ≤ B2−
|α|
K . Thus

the constants A = B and k = K can be chosen for the ξdP-name for (bα)α∈Nd . To get
the coefficient bα with precision 2−n, note that (l k

√
2)|α| can be computed in time

polynomial in log l + k + |α|

The scaled series can be used for efficient evaluation on points on the polydisc
with radius l

K√2
. Similarly the inverse operator that maps a scaled series back to the

original series is polynomial-time computable. Thus the polynomial-time operations
defined on the ξdCω representation can also be used on the ξdP-representation.

3.4.5 Uniform computations with real analytic functions

In general we are interested in slightly more complicated domains, such as simple
compact subsets of Rd. We therefore next consider the case of functions analytic on
the domain [0, 1]d ⊆ Rd. We denote the space of these functions by Cω([0, 1]d).

Let f̃ be a complex analytic extension of f . For any z0 ∈ [0, 1]d there is a
polydisc Rz0 :=

∏
i=1,...,dBri(z0) such that f̃ is analytic on Rz0 and given by a

power series around z0. Therefore, locally the representation for power series can
be used. A simple representation for the space Cω([0, 1]d) is thus given by a cover
of the hypercube [0, 1]d with finitely many power series. To make, e.g., evaluation
computable, locating the power series such that a point z ∈ [0, 1]d is in its domain
has to be a computable operation.

We give a simple representation which covers the hypercube [0, 1]d with power
series with a uniform bound on the domain of convergence. As we can not test for
equality, the domains of the sequences have to be overlapping.

Definition 3.4.4. For f ∈ Cω([0, 1]d) let As(f) ⊆ Σ∗ be the set of strings of the
form 1K0bin(A) such that∣∣∣Dβf

(m1

2K
, . . . ,

md

2K

)∣∣∣ ≤ β!AKβ (3.10)

for all β ∈ Nd and m1, . . . ,md ∈ {0, . . . , 2K}.

We define a (first-order bounded) parameterized representation for Cω([0, 1]d)
as follows:

Definition 3.4.5. The representation ξdS is defined as the parameterized represen-
tation ξ2d

Cω + As. A ξdS-name of an f ∈ Cω([0, 1]d) is given by a string 1K0bin(A)
from As(f) together with a 2d-dimensional sequence (am,β)m,β∈Nd such that

am1,...,md,β =
1

β!
Dβf(

m1

2K
, . . . ,

md

2K
) (3.11)

for all β ∈ Nd and m1, . . . ,md ∈ {0, . . . , 2K}.

A ξdS-name thus encodes (2K + 1)d power series of f centered at points (m1
2K , . . . ,

md
2K)

for m1, . . . ,md ∈ {0, . . . , 2K}. By (3.10) the domain of convergence for each series

35

3 Representations for analytic functions

contains the polydisc B0(1
K)d. Thus for any m1, . . . ,md ∈ {0, . . . , 2K}, the operator

mapping a ξdS-name to a ξdP-name of the by 1
K scaled sequence (am1,...,md,β)β∈Nd is

polynomial-time (ξdS , ξ
d
P)-computable. Further for any x ∈ [0, 1]d selecting indices

m1, . . . ,md ∈ {0, . . . , 2K} such that
∣∣xi − mi

2K

∣∣ ≤ 1
2K is computable in time polyno-

mial in K. In particular, for any x ∈ [0, 1]d the operator mapping a ξdS-name and a
real number x ∈ [0, 1]d to a ξdP of the scaled sequence that can be used to efficiently
evaluate the function at x is polynomial-time ([ξdS , ξRd], ξ

d
P)-computable.

Instead of encoding the power series it is often more practical to encode function
evaluation directly. We define a second representation for the space that fulfills this
requirement.

For L ∈ N let RL := {x + iy : y ∈ [− 1
L ,

1
L] and x ∈ [− 1

L , 1 + 1
L]} and RdL :=∏

i=1,...,dRL. For any f ∈ Cω([0, 1]d) there is a complex analytic extension f̃ and an

L ∈ N such that f̃ ∈ RdL. The additional information we encode is the following.

Definition 3.4.6. For f ∈ Cω([0, 1]d) let AF (f) ⊆ Σ∗ be the set of strings of the
form 1L0bin(B) ∈ Σ∗ such that

1. f has a complex analytic extension f̃ ∈ Cω(RdL), and

2.
∣∣∣f̃ ∣∣∣ (z) ≤ B for all z ∈ RdL.

Definition 3.4.7. The representation ξdF is defined as the parameterized represen-
tation ξdF := ξd≈ +AF .

A ξdF -name for f ∈ Cω([0, 1]d) thus encodes the following information:

1. A function φ ∈ B that approximates f(q) with arbitrary precision on dyadic
rationals q ∈ [0, 1]d ∩ D, and

2. An integer B ∈ N encoded in binary and an integer L ∈ N encoded in unary

such that f ∈ Cω(RdL) and B is an upper bound for |f | on RdL.

As the parameters bound the length of the integer part of the approximation func-
tion, the above defines a first-order bounded parameterized representation. We also
call a ξdF -name a function name.

The following Lemma can be derived from Cauchy’s integral formula.

Lemma 3.4.3. If B,L ∈ N are constants as in Definition 3.4.6 for some f ∈
Cω([0, 1]d) then for all β ∈ Nd and x ∈ [0, 1]d it holds

1.
∣∣f (β)(x)

∣∣ ≤ β!BL|β|, and

2. f̃ is Lipschitz continuous on Rd2L with Lipschitz constant C = 2
√
dBL.

Proof. The first part follows directly from Cauchy’s integral formula in Theorem 3.2.1.

For the second part note that for any z0 ∈ Rd2L by definition f̃ is analytic on the

polydisc U(z0) with radius R = (1
2L , . . . ,

1
2L) and

∣∣∣f̃ ∣∣∣ is bounded by B on U(z0). By

Equation (3.5) all partial derivatives ∂f
∂xi

for i = 1, . . . , d are bounded by 2BL. Thus
the Lemma follows by the mean value theorem.

36

3.4 Representations for multidimensional analytic functions

We next show that both representations are polynomial-time equivalent, i.e.,
given a name of one representation it is possible to compute a name of the other in
polynomial time.

Theorem 3.4.5. The identity function id : Cω([0, 1]d)→ Cω([0, 1]d) is both polynomial-
time (ξdS , ξ

d
F)-computable and polynomial-time (ξdF , ξ

d
S)-computable.

Proof. Given a series name and some z ∈ R4k by choosing an appropriate sequence
index (m1, . . . ,md) it holds

|f(z)| =

∣∣∣∣∣∣
∑
β∈Nd

am1,...,md,β

(
z1 −

m1

2k

)β1

· · ·
(
zd −

md

2k

)βd∣∣∣∣∣∣ ≤
∑
β∈Nd

Akβ(2k)−β = 2dA.

Thus a function name with constants B = 2dA and L = 4k can be computed from
a series name.

For the other way round note that the power series around any point in [0, 1]d

can be computed in polynomial time from the information in a function name (see
e.g. [Mül95]). Further by Lemma 3.4.3 we can choose k = L and A = B as
constants.

To show that an operator is polynomial time computable we can therefore use
either of the representations or even a combination of both.

Theorem 3.4.6. The following holds.

1. Evaluation EVAL : Cω([0, 1]d)× [0, 1]d → R, (f, x) 7→ f(x) is polynomial-time
([ξdF , ξRd], ξR)-computable.

2. Addition and Multiplication +,× : Cω([0, 1]d)× Cω([0, 1]d)→ Cω([0, 1]d) are
polynomial-time ([ξdF , ξ

d
F], ξdF)-computable.

3. Partial derivativeD : Cω([0, 1]d)×Nd → Cω([0, 1]d), (f, α) 7→ Dαf is polynomial-
time ([ξdS , ξ

d
ω], ξdF)-computable.

Proof.

1. By Lemma 3.4.3 f is Lipschitz continuous with Lipschitz bound 2
√
dBl. By

Example 3.3.2 the Lipschitz constant can be used to evaluate f .

2. Let f, g ∈ Cω([0, 1]d) and let Bf , lf and Bg, lg be the constants from the name
for f and g, respectively. For h1 = f+g and h2 = f×g, ξd≈-names for h1 and h2

can simply be computed by adding/multiplying the approximations of the ξd≈-
names for f and g. It is easy to see that the constants lh1 = lh2 = min{lf , lg},
Bh1 = Bf +Bg and Bh2 = BfBg can be used for h1 and h2, respectively.

3. Assume we are given a series name. Let (am,β)β∈Nd be the power series with

index m ∈ Nd. Then bm,β := (α+β)!
β! am,α+β gives the Taylor coefficient of Dαf

around zm = m
2k . Since for all a, b ∈ N it is ab ≤ (2b)b(4

3)a it is (α+β)!
β! ≤ (α +

37

3 Representations for analytic functions

β)α ≤ (2α)α
(

4
3

)|α+β|
. Thus |bm,β| ≤ (3 |α| k)|α|

(
4
3k
)|β|

holds. This can be used
to approximate Dαf(q) for all q ∈ [0, 1]d with ‖q − z‖∞ ≤ 1

2k with precision
2−n in time polynomial in n + k + logA yielding the approximation function
for the function name. Similarly, for all z ∈ R4k, |Dαf(z)| ≤ 3d (3 |α|)|α|A.

Thus B′ = 3d (3 |α|)|α|A and l′ = 4k are constants for a function name for the
derivative.

Some other operators are not polynomial-time computable by the strict defi-
nition because, e.g., their time-complexity depends linear on a parameter that is
encoded in binary. Nonetheless, those operators can still be seen to be efficient
in cases where the parameter is small (therefore this is also called fixed-parameter
tractable in [KMRZ15]). Let us introduce the following notation.

Definition 3.4.8. Let (X, ξX), (Y, ξY) be represented spaces and let C :⊆ B → N
be a function that assigns each ξX -name ϕ ∈ B some integer. We say a function
f : X → Y is C-polynomial-time computable if there is a realizer F : B → B, a
second-order polynomial P and an m ∈ N such that F can be computed in time
C(ϕ)m · P (|ϕ| , |q|) on all inputs q ∈ Σ∗ and names ϕ ∈ B.

For first-order bounded parameterized representations C-polynomial-time com-
putable simplifies to being computable on names ϕ in time polynomial in the input
size, the size of the parameter and C(ϕ). We will show some examples.

Theorem 3.4.7. Composition ◦ : Cω([0, 1])×Cω([0, 1]d, [0, 1])→ Cω([0, 1]d), (f, g) 7→
f ◦ g is L-polynomial-time ([ξ1

F , ξ
d
F], ξdF)-computable where L : [ξ1

F , ξ
d
F] → N is the

function giving the maximum of the parameters Lf , Lg for the names for f and g.

Proof. Let f ∈ Cω([0, 1]) and g ∈ Cω([0, 1]) such that g([0, 1]) ⊆ [0, 1]. Then
f ◦ g ∈ Cω([0, 1]). Let Lf , Bf , Lg, Bg be the constants for f respectively g. By
Lipschitz continuity of g on R2Lg it follows that g(z) ∈ RLf for all z ∈ R2

√
dBgLgLf

.

Thus L′ = 2
√
dBgLgLf and B′ = Bf can be chosen as constants for f ◦ g.

Theorem 3.4.8. Let ˜Cω([0, 1]d) ⊆ Cω([0, 1]d) the set of functions f ∈ Cω([0, 1]d)
such that f(x) 6= 0 for all x ∈ [0, 1]. Let M(f) ∈ N such that |f(x)| ≥ 1

M for all

x ∈ [0, 1]. Then division ÷ : Cω([0, 1]d)× ˜Cω([0, 1]d)→ Cω([0, 1]d) is M -polynomial-
time ([ξdF , ξ

d
F], ξdF)-computable.

Proof. Since f is Lipschitz continuous on R2L with Lipschitz constant C = 2
√
dBL

it follows that |f(x)| ≥ 1
2M for all x ∈ RL′ with L′ := 4

√
dBLM . Thus (1

f , L
′, 2M)

is a name for 1
f .

3.4.6 Analytic continuation

By Theorem 3.2.2 an analytic function f : [0, 1]d → R is already uniquely defined by
a single power series around some rational point in its domain. It is easy to see that
this is also true from a computational point of view. More precisely the following
theorem holds.

38

3.5 Summary

Theorem 3.4.9. Suppose f ∈ Cω([0, 1]d). Then the operator mapping a power
series around some rational vector q ∈ [0, 1]d and integers L,B ∈ N as in Defini-
tion 3.4.6 to the function f is ([ξdCω , ξN, ξN], ξdS)-computable.

Proof. The coefficients of the power series around any point x ∈ [0, 1]d is given by
the partial derivatives of this point. Now, by definition of L and B the given power
series is valid on a polydisc with at least radius 1

L around q. In particular, having
access to the bound B it is possible to evaluate partial derivatives of f at any point
x0 ∈ [0, 1] with |x0 − q| < 1

L . This can be used to compute the power series of f
around x0. As B and L are assumed to hold for all of [0, 1], the power series around
x0 has again radius at least 1

L . Iterating this procedure can thus be used to cover
the whole domain with power series.

That is, it is possible to compute all the information given by the power series
covering in a ξdS-name just from a single power series together with the promise that
the function fulfills some bounds on the larger domain. This theorem therefore is
an effective version of analytic continuation.

Note that a single analytic continuation can be done in polynomial-time in terms
of the representations defined above as computing partial derivatives is polynomial-
time computable. However, computing the whole covering requires to iterate the
algorithm polynomially in L many times, thus can lead to complexity exponential
in L. Therefore it is necessary to encode the complete covering in the representation
for efficient computation and not only a single power series.

3.5 Summary

In this chapter we defined different representations for uniform computation with
(multidimensional) analytic functions. Let us give a short (more or less informal)
summary of all the representations and what information they encode.

1. ξdP: A representation for single power series with domain of convergence con-

taining the closed polydisc B1(0)
d

around the origin (resp. a representation
for complex analytic functions with domain being said polydisc). A name en-
codes the d-dimensional power series (aα)α∈Nd , an integer A ∈ N encoded in

binary and an integer k ∈ N encoded in unary such that |aα| ≤ 2−
|α|
k for all

α ∈ Nd.

2. ξdP0
: The same as ξdP but with domain of convergence on an arbitrarily small

polydisc Bl−1(0)
d

for some l ∈ N. A name encodes the series (aα)α∈Nd , the
radius l ∈ N encoded in unary and an integer B ∈ N encoded in binary such
that |aα| ≤ Bl|α| for all α ∈ Nd.

3. ξdS : A representation for functions real analytic on the compact domain [0, 1]d.
A name encodes a covering of power series of the domain. More precisely,
it encodes (2K)d power series with radius of convergence 1

K centered around

39

3 Representations for analytic functions

equally distributed rational points of the domain. A name additionally con-
tains the integer K encoded in unary and an integer B ∈ N encoded in binary
such that each series together with K and B is a ξdP0

-name.

4. ξdF : Another representation for functions f : Rd → R real analytic on [0, 1]d. A
name encodes approximative function evaluation, that is, we can approximate
f(d) on dyadic rational values d ∈ D in the domain with any desired precision.
It further encodes an integer L ∈ N in unary such that there is an analytic
extension f̃ of f that is complex analytic on all z ∈ C with distance to [0, 1]d

at most 1
L . It further encodes an integer B ∈ N in binary that gives the

maximum of the absolute value
∣∣∣f̃(z)

∣∣∣ for all such z ∈ C.

40

4 Ordinary differential equations

4.1 Introduction

In this chapter we consider solving initial value problems (IVPs) for ordinary differ-
ential equations (ODEs) of the form

ẏ(t) = F (y), y(0) = y0 (4.1)

for F : Rd → Rd and y0 ∈ Rd. For simplicity we only consider autonomous ODEs,
that is, the right-hand side function F in Equation (4.1) does not explicitly depend
on the time t. This is not a restriction as any non-autonomous system can be
converted into an autonomous ODE by increasing the dimension by one.

There are ODE systems such that no solution y to (4.1) exists. Further, a
solution y to such a system is not necessarily unique. In that case, even if the
right-hand side function F is polynomial-time computable (on some rectangle), all
solutions can be uncomputable functions [PeR79]. On the other hand if y is the
unique solution it is always computable but the computation might take unbounded
time [Mil70].

A sufficient condition for existence and uniqueness of a solution is given by the
Picard-Lindelöf theorem.

Theorem 4.1.1 (Picard-Lindelöf). Consider the IVP (4.1). Let U = BR(y0) for
some R > 0 and suppose U ⊆ domF , F|U is Lipschitz continuous with Lipschitz
constant L and |F (x)| ≤M for all x ∈ U . Then the initial value problem (4.1) has
a unique solution y : [−a, a]→ U for any a < R

M .

For an IVP with polynomial-time computable and Lipschitz continuous right-
hand side function F , the simple Euler method can be used to show that the solution
y is PSPACE-computable [Ko83]. However, unless P = PSPACE, this solution may
not be polynomial-time computable [Kaw10].

We say that the ODE system is analytic (or that the right-hand side function
is analytic) if the right-hand side function F : Rd → Rd of the system is a vector
of d analytic functions F1, . . . , Fd : Rd → R. For analytic ODE systems there is
a slightly stronger existence and uniqueness theorem known as Cauchy’s existence
theorem that also shows that the solution is again analytic.

Theorem 4.1.2 (Cauchy’s existence theorem [SBM67, §4]). If Fk are analytic func-
tions of d complex variables y1, . . . , yd in a complex neighborhood |yk − ξk| < r and
|Fk| ≤ C in that neighborhood then for the system

ẏk = Fk(y1, . . . , yd); yk(t0) = ξk

41

4 Ordinary differential equations

the unique solution yk is analytic in the complex neighborhood

|t− t0| <
r

(d+ 1)C

for each k = 1, . . . , d.

For analytic and polynomial-time computable right-hand side function, the so-
lution y is also a polynomial time computable analytic function:

Theorem 4.1.3 ([MM93]). If F : Rd → Rd is analytic and polynomial-time com-
putable on a neighborhood of y0 and y is the unique solution of (4.1), then y is
polynomial-time computable in a neighborhood of 0.

As a function f : [0, 1] → R is uniquely determined by its power series around
the origin, assuming the existence of the solution on the whole time interval leads
to the following alternative formulation of Theorem 4.1.3.

Theorem 4.1.4. Assume F : [0, 1]d → Rd is polynomial-time computable and
analytic and y : [0, 1]→ [0, 1]d satisfies (4.1), then y is polynomial-time computable.

As with other operations on analytic function, the main idea for the proof of
this theorem is to show that the power series of the solution can be computed from
the power series of the right-hand side function in polynomial time. Polynomial-
time computability of the solution function then follows from Theorem 3.2.4. Of
course, such a proof is highly non-uniform. Not only is the transformation between
the power series and the function non-computable with respect to the standard
representations but also the number of analytic continuations depends on F and
can be arbitrarily large.

In this chapter we investigate how statements as the above can be transformed
into uniform algorithms for solving initial value problems for analytic ODEs. That
is, we define a uniform ODE solver using the representations defined in Chapter 3.
This uniform formulation then allows to analyze the complexity in terms of the
parameters for the representations.

In Section 4.2 we first show how to compute a local solution on a very small
radius. This can be seen as a uniform version of Theorem 4.1.3. The main idea
in this theorem is to compute the power series around of the solution y(t) around
time t = 0 from the power series of the right-hand side function F around y0. The
local solution then is exactly the restriction of the solution function to the domain
of convergence of this single power series.

We then proceed to show how to extend this to a uniform version of Theo-
rem 4.1.4, i.e., we show how to extend the local solution to a larger domain (Sec-
tion 4.3). The main idea is to iteratively apply the local solution algorithm, similarly
to single-step solvers known from numerical analysis.

We formulate all theorems in Section 4.2 and Section 4.3 in terms of the time
being bounded by 1 and we assume that the solution only takes values in [0, 1].
This restriction is only for simplicity and we show a possible extension taking into
account arbitrarily large times and function values in Section 4.4.

We also compare our approach with results from numerics, interval arithmetic
and previous results from computable analysis (Sections 4.5 and 4.6).

42

4.2 Computing a local solution

4.2 Computing a local solution

In this section we show how to compute a solution corresponding to a single power
series around the initial value y0. To fit in the framework from Chapter 3 we assume

F = (F1, . . . , Fd) with Fi ∈ Cω(B1(0)
d
) and y0 = 0. In this case the solution is of

the form y = (y1, . . . , yd) with yi : R→ R analytic. Note, however, that the solution
is not necessarily defined on all of B0(1).

We first show that it is possible to compute some local solution defined on a
possibly very small radius in polynomial time. That is, given a ξdP-name of a power
series around y0, we can compute a name for the power series of the solution in
polynomial time. As the ξdP-representation according to Definition 3.4.2 requires the
radius of convergence of the power series to be larger than 1, we have to scale the
solution series accordingly. Following the discussion in Section 3.4.4 we can instead
also show how to compute a ξdP0

-name according to Definition 3.4.3. Let us first
show how to get a bound for the radius of convergence of the resulting power series
from the constants encoded in a ξdP-name.

Lemma 4.2.1. Let F = (F1, . . . , Fd) with Fi ∈ Cω(B1(0)
d
). Assume A, k ∈ N are

constants satisfying (3.7) for the power series of each Fi around the origin. Then the
IVP (4.1) has a unique solution y = (y1, . . . , yd) defined on a neighborhood around
the origin and ∣∣∣y(j)

i

∣∣∣ ≤ j!(√d2dAkd
)j

(4.2)

for i = 1, . . . , d and j ∈ N.

Proof. By Lemma 3.4.1 each Fi for i = 1, . . . , d is Lipschitz continuous on B1(0)
d

and is bounded by 2dAkd on this domain. Thus, F is Lipschitz continuous on B1(0)
d

and bounded by M =
√
d2dAkd. From the Picard-Lindelöf theorem it follows that

the solution is valid on a radius of at least r = 1
M and only takes values in B1(0).

By (3.5) the inequality (4.2) holds.

Thus, the power series of the solution around 0 has at least radius (
√
d2dAkd

)−1
.

Next, we show how to compute a ξ1
P0

-name for each of the solution y1, . . . , yd.
Recall that the inverse radius l is encoded in unary in a ξ1

P0
-name while the

bound A in the ξdP-name is encoded in binary. As the radius of the solution depends
linearly on A, the operator can not be polynomial-time computable in the strict
sense as this requires the complexity to be logarithmic in A. In general we can not
hope to improve this as scaling the right-hand side function by some constant c ∈ R
speeds up the solution by this factor and thus the radius is necessarily decreased by
a factor of 1

c . We therefore only show that the solution operator is A-polynomial-
time computable according to Definition 3.4.8 (where formally by A we mean the
function extracting the parameter A from a ξdP-name).

Theorem 4.2.1. The operator PSolved :
(
Cω(B1(0)

d
)
)d → (Cd,ω)d mapping an

analytic function F : Rd → Rd to the (tuple of) solutions of the IVP (4.1) with

initial value y0 = 0 is A-polynomial-time ([
(
ξdP
)d
, ξRd],

(
ξ1
P0

)d
)-computable.

43

4 Ordinary differential equations

Proof. Let us first show how to compute a ξ1
Cω -name for the Taylor coefficients for

yi. We can for example use the power series method [CC94]: We inductively define
the functions fm : Rd → R for m ∈ N by

f0(z) = zi, (4.3)

fm+1(z) =
1

m+ 1

(∑d

j=1

∂fm
∂yj

Fj(z)

)
. (4.4)

We can use fm to express the mth derivative of yi as y
(m)
i (t) = m!fi,m(y(t)) holds.

Thus, for the m-th Taylor coefficient am of yi around 0 it holds

am = fm(0). (4.5)

Each of the functions given by (4.4) is analytic and can be computed using poly-
nomial time computable operators defined in Chapter 3. Therefore the operator
mapping F, y0 and m to am is polynomial time computable.

It is important that we only evaluate at the origin which means we do not have
to sum up the function but only return the first coefficient of the power series. Thus,
the size of the constants is not important.

Next we need to show how to compute the constants that need to be encoded
additionally to the sequence in a ξ1

P0
-name. For simplicity let us assume that all

names for the Fi have the same constants A, k ∈ N (if not we can just replace
them by the maximum). Then according to Lemma 4.2.1 the constants B = 1 and
l =
√
d2dAk can be used for a ξ1

P0
-name of yi.

In the proof we make use of the fact that we have already established the
polynomial-time computability of the operators used to define (4.5). As we only
evaluate the derivatives at the origin, it is also possible to rewrite (4.5) as a finite
recursion on the power series coefficients. In fact, a standard way of proving The-
orem 4.1.4 is to show that this recursion is possible in polynomial time. Instead of
analyzing the rather complicated recursion formula for the power series, our uni-
form approach allows us to make use of the closure properties of polynomial-time
computable functions and therefore simplifies the proof significantly.

The function given by the PSolve operator can be used to evaluate the solution
efficiently on z ∈ C with |z| ≤ 1√

d2d+1Ak
. Of course, we can also define the solution

operator for the case where Fi is already given by a power series with small radius
as we can scale it according to Section 3.4.4.

Corollary 4.2.1. The operator SSolved : (Cd,ω)d → (Cd,ω)d mapping an analytic
function F : Rd → Rd to the (tuple of) solutions of the IVP (4.1) with initial value

y0 = 0 is B-polynomial-time ([
(
ξdP
)d
, ξRd],

(
ξ1
P0

)d
)-computable. If B, l ∈ N are the

constants for the ξdP0
-names of F then B′ = B and l′ =

√
d2d+1Bl can be chosen for

the ξ1
P0

-name of the result.

Proof. Analogously to the proof of Theorem 4.2.1. Alternatively, F can first be
scaled to have radius larger than 1 and Theorem 4.2.1 can be applied directly. In
that case the solution also has to be scaled accordingly.

44

4.3 Computing a global solution

The bound for the new radius depends on the constants of the name and is
usually very small. We therefore also call this the local solution.

4.2.1 Improving the radius

The radius of the local solution can in general not be improved significantly. How-
ever, if the inequality (3.7) for the coefficients is not very strict, methods like the
higher order power series enclosure method [CR96] can be used to increase the ra-
dius. We present a modification of that method in our setting that gives us the
information we need for the representation.

As (4.4) is computed using analytic function operators, we will in particular
automatically also have bounds functions Am, km for fk for all k ∈ N. For any
q ≤ 1, those can in turn be used to get an upper bound Mk(q) for |fk| on Bq(0).

For K ∈ N and r, q ∈ R let

Ỹi(K; r̃, q) =

K−1∑
m=1

|fm(y0)| r̃j + r̃KMK(q). (4.6)

It can be shown that if

Ỹi(K; r̃, q) ≤ q (4.7)

for some K ∈ N, r̃ > 0 and q < r, the solution yi is defined on Br̃(0) and bounded

by q on this ball. Thus, to compute a radius, we fix some K ∈ N, choose q :=
|y0,i|+r

2
and try to find the maximum r̃ such that inequality (4.7) holds.

Note that since MK can grow quickly, increasing K will not necessarily always
give a better radius. Also there are some theoretical restrictions on how much we
can improve the radius as the maximal existence interval is uncomputable [GZB09].

4.3 Computing a global solution

Let us now show how to extend the local solution to a uniform version of Theo-
rem 4.1.4. For this, assume F = (F1, . . . , Fd) with Fi ∈ Cω([0, 1]d) and that the
solution y : [0, 1]→ Rd of (4.1) only takes values y(t) ∈ [0, 1]d for all t ∈ [0, 1]. The
second assumption is necessary as evaluation of F is only defined on [0, 1]d.

We first show how to compute a local solution around any initial value y0 ∈ [0, 1].

Theorem 4.3.1. For each i = 1, . . . , d the operator LSolved,i : (Cω([0, 1]d))d ×
[0, 1]d → ξ1

Cω , (F, y0) 7→ (ai)i∈N that maps F1, . . . , Fd ∈ Cω([0, 1]d) and initial value
y0 ∈ [0, 1]d to a power series for the local solution around 0 is polynomial-time

([
(
ξdS
)d
, ξRd], ξ

1
P0

)-computable.

Proof. By Corollary 4.2.1 we can compute the power series for each Fi around y0 in
polynomial time. The constants from the ξdS-name satisfy the conditions for a ξdP0

-
name for said series and can thus be used unmodified. Then applying Theorem 4.2.1
to those series gives a local solution for y(t)− y0.

45

4 Ordinary differential equations

The idea to extend the local solution is to iteratively use the local solution
operator to compute new initial values and thereby step-wise increase the time. In
numerical analysis this is usually called a single-step method.

Definition 4.3.1 (Single-step method). A single-step method Ψ is an iterative
method to compute approximations yi ≈ y(ti) for some time sequence t0, . . . , tn = t
where yi+1 = Ψ(ti; ti+1; yi). hi := ti+1− ti is called the step size at step i. The local
truncation error is given by

δi+1 = |Ψ(ti; ti+1; y(ti))− y(ti+1)| .

In our case Ψ is the local solution evaluated at some point in the center of the
region of convergence of the power series. More precisely,

Ψ(ti, ti+1, yi) := LSolved(F, yi)(hi)

and the step size is fixed with hi = h = 1
2d+1Bl

.
Since we assume that y(t) ∈ [0, 1] for t ∈ [0, 1] this can be used to reach any

time in [0, 1]. Thus, we can compute a cover of [0, 1] of power series that can be
used as a ξ1

S-name for the solution on [0, 1].
We have already shown that the local solution operator is polynomial-time

computable. However, this does not suffice to show that the iterative procedure
described above as the initial value given to the algorithm in each step is only an
approximation. While the approximation error can theoretically be made arbitrarily
small, to achieve polynomial-time computability we can not approximate intermedi-
ate results with more than polynomial precision. Assume for instance that the local
solution algorithm would require the initial value with precision 2−2n to achieve
a 2−n approximation of the value of the solution at the point h. Then precision
2−n after M steps of the iterative procedure would need an approximation of the
initial value y0 with precision 2−2Mn and thus the algorithm would clearly not run
in polynomial time.

For polynomial-time computability, we therefore have to show that the error in
each step does only moderately increase the overall error. Thus we have to quantify
the continuous dependence of an IVP on the initial value and show that the local
truncation error is not too big. The following is a standard result that can be found
in some form in many text books on ordinary differential equations. A proof can
for example be found in [Sid13, Lemma 3.4] or [Wal13, §13].

Lemma 4.3.1 (Continuous dependence on initial values). Let D ⊆ Rd and suppose
D ⊆ domF , F|D is Lipschitz continuous with Lipschitz constant L on D. For
y0, z0 ∈ D and some T > 0 let y, z : [0, T] → R satisfy the initial value problem
(4.1) with initial values y(0) = y0 and z(0) = z0, respectively. Then

‖y(t)− z(t)‖∞ ≤ ‖y0 − z0‖∞eLt

for all t ∈ [0, T].

We can use this to show that uniformly computing the solution to an IVP is
B-polynomial-time computable, that is, polynomial-time computable in the usual
parameters but in the value instead of the logarithm of B.

46

4.4 Unbounded time

Lemma 4.3.2. Let F1, . . . , Fd ∈ Cω([0, 1]d) and B, l ∈ N constants valid for ξdF -
names for all of the functions. Let further y := Lsolved(F1, . . . , Fd, y0) and z :=
Lsolved(F1, . . . , Fd, z0) for some y0, z0 ∈ [0, 1]d and suppose ‖y0−z0‖∞ < ε for some
ε > 0. Then for all t ∈ [0, 1

4dBl], ‖y(t)− z(t)‖∞ ≤ 2ε.

Proof. By Lemma 3.4.3 it follows that F has Lipschitz constant L = 2dBl on Rd2L.
Thus by Lemma 4.3.1 the bound

‖yi(t)− zi(t)‖∞ ≤ εeLt ≤ εe0.5 ≤ 2ε

holds for all t ∈ [0, 1
4dBl].

Theorem 4.3.2. Let y ∈ Cω([0, 1]d) be the solution to the IVP (4.1) for F ∈
Cω([0, 1]d) and y0 ∈ [0, 1]d. Given a tuple of ξdF -names of F with parameters B and
l and ξRd-names of y0 ∈ [0, 1]d and t ∈ [0, 1] the solution y(t) can be approximated
up to precision 2−n in time poly(n+B + l) for each n ∈ N.

Proof. Given some y0 ∈ [0, 1]d and a function name with constants B and l for F we
can compute the power series around y0. Combining this with the above solution
operator can be used to approximate a local solution y(t) for t ≤ 1

4dBl up to error
2−m for any m ∈ N in time polynomial in m + l + B. Thus after at most 2d+1kA
steps we reach any time t ∈ [0, 1].

Let us fix some m ∈ N and let z0 be a 2−m approximation of y0 and zi+1 a 2−m

approximation of LSolvei(F, zi) evaluated at t := (1
4dBl). It remains to show that it

suffices to choose m polynomial in n+ l+B as then each of the polynomially many
steps can be done in polynomial time. By Lemma 4.3.2 the error at most doubles in
each step. As we need at most 4dBl steps, the total error is bounded by 24dBl−m.
Thus choosing m > n+ 4dBl suffices to guarantee precision 2−n.

The above can be easily extended to an operator mapping F and y0 to the
function y ∈ Cω([0, 1]):

Corollary 4.3.1. The (partial) operator

Solved :⊆ (Cω([0, 1]d))d × [0, 1]d → (Cω([0, 1]))d, (F, y0) 7→ y

that maps F1, . . . , Fd ∈ Cω([0, 1]d) and initial value y0 ∈ [0, 1]d to the solution

y : [0, 1]→ [0, 1]d if it exists is B-polynomial-time ([
(
ξdF
)d
, ξRd],

(
ξdF
)d

)-computable.

Proof. Let B, l be the constants from the name. By Theorem 4.3.2 we can ap-
proximate the solution at any rational point q ∈ [0, 1]d up to precision 2−n in time
poly(n+B+ l). Further l′ = 2dBl and B′ = 1 are valid constants for a ξ1

F -name for
the solution.

4.4 Unbounded time

In the previous section there are two important restrictions that we had to make.
The first one is that we could only compute the solution up to time T = 1. The
second one that we had to assume that the solution only takes values in [0, 1].

47

4 Ordinary differential equations

In this section we remove these restrictions in the sense that we consider an
arbitrary but fixed time interval [0, T] for some T ∈ N and assume that the solution
can take values in the arbitrary but fixed interval [−Y, Y] for some Y ∈ N. We then
characterize the complexity additionally in the parameters T and Y .

Of course, in this case we also have to assume that Fi ∈ Cω([−Y, Y]d) holds
for the right-hand side function of the IVP. This makes it necessary to generalize
the representations from Chapter 3 to domains larger than the unit disc. We can
easily extend the names in Definition 3.4.5 or 3.4.7 simply by assuming that the
constants are valid on the larger domain. An equivalent way to achieve this is
to cover the domain [−Y, Y]d with unit hypercubes and take the maximum of the
constants. As this requires (2Y)d hypercubes, the complexity of each operation has
to be multiplied with this number, adding an additional polynomial factor in Y to
the complexity bounds from the previous chapter.

As we chose the maximum of the constants, the step size for the solver in the
proof of Theorem 4.3.2 is the same. Thus to reach any point in [0, T] we need T
times as many steps as in the case when T = 1. Let us summarize these arguments
in a formal statement.

Definition 4.4.1. An extended ξdF -name for an analytic function f ∈ Cω([−Y, Y]d)
is given by

1. a ξd≈-name for f on [−Y, Y],

2. an integer l ∈ N encoded in unary such that f has a complex analytic extension
f̃ on the domain {x+ iy : y ∈ [−1

l ,
1
l] and x ∈ [−Y − 1

l , Y + 1
l]}, and

3. an integer B encoded in binary that gives an upper bound for
∣∣∣f̃ ∣∣∣ on said

domain.

Using this extended representation we can formulate a complexity result in all
relevant parameters.

Theorem 4.4.1. Let y ∈ Cω([−Y, Y]) be the solution to the IVP (4.1) for F ∈
Cω([−Y, Y]) and y0 ∈ [−Y, Y]. Given a tuple of extended ξdF -names of F with
(common) parameters B and l and ξRd-names of y0, t ∈ [0, 1] the solution y(T) can
be approximated up to precision 2−n in time poly(n+B+ l+Y +T) for any n ∈ N.

4.5 Comparison to numerical methods and interval
arithmetic

While single-step methods are well known from numerical analysis, our method is
quite different from the usual approach as the step size only depends on the function
or more precisely on the constants in a name for the function and not on the desired
output precision. The numerical error is reduced only by increasing the number of
coefficients of the power series. In numerics, on the other hand the step-size is the
main parameter used to control the quality of the approximations.

48

4.5 Comparison to numerical methods and interval arithmetic

In numerics, a method is said to have order p if the local truncation error is
of order O(hp+1). For numerical methods used for computations in floating point
arithmetic, the order is usually rather small. For example the well-known Euler-
method has order 1 and the classical Runge-Kutta method has order 4.

In interval arithmetic often a method based on the power series expansion simi-
lar to ours but with a fixed order is used. This order is typically chosen up to around
50 [Ned06b]. In contrast, the order in our method has is in some sense variable and
the step size is fixed. Note that in our complexity model the complexity is given
in terms of the approximations error 2−n. Every fixed order method will therefore
need exponentially many steps and is not applicable for our purpose.

The traditional method to solve initial value problems in interval arithmetic
(see e.g. [Ned06a, Section 3.1]) is a single-step method based on Taylor series
quite similar to our method. Recall from the introduction that the goal in interval
arithmetic is to compute a (preferably tight) enclosure of the solution. For an initial
value problem that means to compute an interval Y (t; y0) containing the solution
y(t) with initial value y0 or, more precisely as y0 itself is generally given as an
interval, containing all possible solutions for initial values from y0. Then in each
step of the single step method we have an interval yj that contains the solution at
some point tj and need to find a step-size h and an interval Y (t+h; yj) containing the
solution at time tj+1 = tj + h. This is usually done in two phases called Algorithm
I and Algorithm II.

Algorithm I finds a step-size h and a first enclosure ỹj such that the solution
is guaranteed to exist and to be contained in ỹj for the whole time interval. Thus,
Algorithm I in some sense computes the information that we get from the additional
constants in a name for a function. That is, h is a bound on the radius of existence
and ỹj bounds the absolute value of the function on this domain. Note that this can
only be done since we assume that we work on a set of standard functions for which
we can compute derivatives (usually by automatic differentiation) and get interval
enclosures for them. In our more general setting the information is not computable.

Algorithm II then computes a tighter enclosure for the solution at time tj+1.
It does so by evaluating the power series of the solution using the bounds from ỹj
exactly as we use the constants from a name, that is, by bounding the truncation
error using the inequality (3.6).

Our method has the advantage that it is much more general in the sense that
new functions can be easily added only by providing the power series (together with
the additional information). The interval method on the other hand only works
with a predefined set of standard functions.

To avoid the computation of high-order derivatives during the run-time of a
program, the order used in interval implementations is usually fixed and moderately
low. Therefore our method is expected to be more efficient for very high precision
arithmetic. Note, however, that most interval implementations also do not have the
goal to give results up to very high accuracy.

Another advantage of our method is that (as long as the solution exists) we will
always be able to compute it, while interval implementations might not be able to
proceed if intervals of intermediate results get too large. Finally, our method returns
a “function object” which gives some nice closure properties as it can be processed

49

4 Ordinary differential equations

further like any other analytic function.
Nevertheless, practical problems often only require moderate output precision

and often a small subset of standard functions suffices. In that case classical methods
with fixed order might perform much better than methods from computable analysis
as there are many possible optimizations to speed up the computation for this
purpose. An actual implementation of the ideas might therefore combine our method
with some traditional numerical and interval methods to achieve better performance
on different types of inputs. A comparison of such methods is, however, beyond the
realm of real complexity theory as in the model cases where the output precision is
small are explicitly excluded. We discuss such practical aspects in more detail in
Chapter 6.

4.6 Polynomial initial value problems

An initial value problem is called a polynomial initial value problem (PIVP) if
the right-hand side function F in Equation (4.1) is a vector F = (p1, . . . , pd) with
pi : Rd → R polynomials for i = 1, . . . , d. Such PIVPs have recently been considered
by several authors in computable analysis.

Polynomials are in some sense much easier than general analytic functions as
they are entire functions (i.e., analytic on all of Cd) and their power series only have
a finite number of non-zero coefficients. If the degree of the polynomial is known it
is therefore easy to compute constants that can be used for a name of an analytic
function.

Proposition 4.6.1. A ξdS-name for a multivariate polynomial p : Nd → N with
coefficients (ai1,...,id)0≤i1≤N1,...,0≤id≤Nd and maximal coefficient degrees N1, . . . , Nd ∈
N is given by a ξdCω -name for the coefficients and constants

K = 1 and A =
∑

0≤i1≤N1

· · ·
∑

0≤id≤Nd

|ai1,...,id | .

Bournez, Graça and Pouly [BGP12] characterize the complexity of computing
the solution y(T) of PIVPs in terms of the output precision, the time and the
parameter Y = sup0≤t≤T ‖y(t)‖∞ (or alternatively the curve length) of the solution.
In particular, they show the following theorem.

Theorem 4.6.1 (Bournez, Graça, Pouly). There exists an algorithm that for any
vector of polynomials with polynomial-time computable coefficients and polynomial-
time computable y0 ∈ Rd, t0 ∈ Q, n ∈ N, T ∈ Q and Y ∈ Q with Y ≥
supt0≤t≤t0+T ‖y(t)‖∞ computes the solution y(t0 + T) up to precision 2−n in time
poly(n+ T + Y).

This also directly follows from our result in Theorem 4.4.1 as for polynomial-
time computable coefficients the constants in Proposition 4.6.1 are also polynomial-
time computable. In this sense our theorem can be seen as a generalization of
Theorem 4.6.1 to the more general class of analytic right-hand side functions.

Note that while many analytic ordinary differential equations can equivalently
be rewritten as ODEs with polynomial right-hand side, there are some important

50

4.6 Polynomial initial value problems

exceptions (for example Euler’s Gamma function). Another problem with rewriting
the ODEs as polynomials is that the dimension of the resulting system is higher.
As all operations have complexity exponential in the dimension we therefore assume
that a solver for analytic ODEs is more efficient than a PIVP solver for such cases.

51

5 Average case complexity for
Hamiltonian dynamical systems

5.1 Motivation

Many phenomena in nature can be modeled by time-continuous dynamical systems.
Analyzing such phenomena is usually done by simulating the evolution of a system
with digital computers. It is therefore crucial to better understand the computa-
tional properties of dynamical systems. One of the most basic questions one can
ask about such a system is given the state of the system at some time t0 what will
be the state at some time t > t0. That is, one wants to simulate the evolution for a
finite time-frame.

The extended Church-Turing thesis is the statement that any physical computa-
tion device can be simulated efficiently with a Turing machine. While the extended
Church-Turing thesis might be refuted in the world of quantum computers, at least
for classical physics it seems to be a reasonable hypothesis. One therefore expects
that it is possible to simulate trajectories of dynamical systems for problems in
(classical) physics for a bounded time-frame efficiently as nature already provides
an efficient “computation device” to compute said trajectories.

However, accurate numerical simulation of dynamical systems can be very hard.
For example, Miller pointed out the difficulties when integrating the famous gravi-
tational N -body problem [Mil74]. The N -body problem is the problem of predicting
the motion of N point masses under their mutual gravitational attraction. For a
moderate number N of masses, the main difficulty arises because close encounters
of particles cause instabilities. Indeed, two particles colliding leads to a singularity
in the analytic function describing the dynamics. On the other hand, Saari could
show that at least for N ≤ 4 singularities are rare in the sense that the set of initial
values leading to singularities has Lebesgue measure zero [Saa73, Saa77] (for N > 4
this is an open problem). Thus, a possible resolution to the inconsistency with the
extended Church-Turing thesis might be that hard instances are extremely rare in
nature and therefore it is possible to do the simulation efficiently on typical inputs.
For further discussion on the extended Church-Turing thesis in classical physics, see
e.g. [Yao03].

The natural model to discuss such questions is computable analysis and real
complexity theory. Simulating a time-continuous dynamical system corresponds to
solving an initial value problem (IVP) for systems of ordinary differential equations.
We have already discussed some complexity results for IVPs in the previous chap-
ters. In particular, if the right-hand side function f of the equation ẏ = f(y) is
polynomial-time computable and Lipschitz continuous, the unique solution y can be
computed in PSPACE and can be hard for this class [Ko83, Kaw10]. On the other

53

5 Average case complexity for Hamiltonian dynamical systems

hand, for analytic right-hand side function the solution is also a polynomial-time
computable function [Mül87, KF88]. However, this formulation does not really cap-
ture the notion of what is usually understood by simulating a dynamical system,
as it is assumed that the solution exists on the whole time interval and only takes
values in a known compact set, and there are several hidden factors depending on
the function and the initial value that heavily influence the efficiency in practice.

In Chapter 4 we showed how to solve IVPs in a uniform way and analyzed
the complexity in terms of parameters of the right-hand function. However, for
worst-case complexity bounds to exist, we had to fix a compact domain where the
dynamics take place. In general this domain will depend on the chosen initial
value. A more natural formulation therefore takes into account the complexity of
the function mapping initial values and time to the corresponding solution. This,
however, poses the problem that the worst-case complexity for most interesting
systems is unbounded. Indeed, it is quite obvious that the simulation should take
longer the closer a trajectory approaches a singularity of the system as then higher
precision is required. Nonetheless, the system might behave well for most initial
values in the sense that trajectories stay far away from any singularities. We would
then expect efficient simulation to be possible on typical inputs.

In this chapter we want to formalize this intuition. In classical (discrete) com-
plexity theory the notion of being efficiently computable on typical inputs can be
expressed using average-case complexity theory. Average-case complexity often pro-
vides a more significant measure of the performance of an algorithm than worst-
case complexity when the hard instances are rare. However, finding the right no-
tion of average-case complexity poses some subtle difficulties. A structural theory
of average-case complexity for discrete problems was introduced by Levin [Lev86].
Schröder, Steinberg and Ziegler recently extended Levin’s definition of average-case
complexity to problems on real numbers [SSZ15]. We describe the model of average-
case complexity and its extension to real numbers in Section 5.4.

We then proceed to show that many physical problems are indeed efficiently
solvable on average. We first formally define what we mean by simulating a dynam-
ical system and give a parameterized complexity result depending on the distance
of trajectories to singularities (Section 5.2). In Section 5.5 we apply this result to
show that if the “probability of trajectories to get close to complex singularities of
the system” is small and if the right-hand side function can be evaluated efficiently
on points not close to singularities, the simulation can be done in polynomial time
on average. We then focus on a special case of dynamical systems that play an
important role in classical physics, the Hamiltonian systems, and show that there is
a simple way to bound the above probability in terms of the volume of singularities
in phase-space. Finally in Section 5.6, we apply our theorem to show that a special
case of the three-body problem, the planar circular restricted three-body problem,
can be simulated in polynomial time on average.

A note on uniformity

While in Chapters 3 and 4 we put huge efforts into formulating everything in a
uniform way in terms of the right-hand side function of the dynamical system, in this

54

5.2 Dynamical systems

chapter we mostly assume that the dynamical system is fixed. While this might seem
contradictionary at first, this is actually the natural choice for the considerations
in this chapter as certainly the requirement that any dynamical system can be
simulated efficiently using the same algorithm seems to be much too strong.

On the other hand most of the theorems in this chapter are not that far from
uniform theorems. For the parameterized results on analytic dynamical systems in
Section 5.2.1 we use indeed always the same algorithm for the simulation (namely
the one we have seen in Chapter 4). It would theoretically be possible to turn this
into a uniform result using an appropriate second-order representation. However,
as the main purpose of the parameterization in this chapter is the average-case
analysis later and the average-case behavior of course very much depends on the
specific system, such a more complicated formulation would not be helpful.

5.2 Dynamical systems

In this section we summarize some facts about time-continuous dynamical systems
and formally define the simulation problem.

5.2.1 Basic definitions

Dynamical systems theory is a huge subfield of mathematics. For our purpose, we
only need a very small subset of the theory. We introduce all necessary notions in
this section. A more general overview can for example be found in [BV12].

In a quite general form, a dynamical system on the reals can be defined as
follows:

Definition 5.2.1. A dynamical system is a triple (X,T,Φ) of a non-empty set X
called the phase space, a time set T ⊆ R and a (partial) function Φ :⊆ X × T → X
called evolution operator satisfying

1. Φ(x, 0) = x, and

2. Φ(Φ(x, t1), t2) = Φ(x, t1 + t2)

for x ∈ X and all t1, t2 ∈ T such that (x, t1), (Φ(x, t1), t2) ∈ dom Φ.

A point x ∈ X is also called a state of the system and Φ(x0, t) the state at time
t (w.r.t. the initial value x0). For a fixed initial value x0 the function Φ(x0, ·) is
called trajectory through x0.

We are interested in time-continuous dynamical systems where the time set is
some interval T = (a, b) ⊆ R and X ⊆ Rd for some d > 0. An autonomous ordinary
differential equation naturally gives rise to such a system.

Proposition 5.2.1. Let F : Rd → Rd be a continuous function and let T ⊆ R be
any real interval containing the origin. Define the function Φ : Rd × T → Rd by

Φ(t, x0) = x(t;x0)

55

5 Average case complexity for Hamiltonian dynamical systems

R(A)

A
Sy(1)

α

N(α)

Figure 5.1: We fix a subset A of possible initial values and restrict the system to
the phase space R(A) of all reachable states from A. The set N(α) of α-
singularities is the subset of states such that the distance to a singularity
is less than α. A(α) (green) is the subset of initial values such that N(α)
is not reachable and B(α) (red) its complement relative to A.

where x(t;x0) is the solution to the initial value problem

ẋ = F (x); x(0) = x0.

Then (Rd, T,Φ) is a dynamical system.

Sometimes we only want to consider the system on some restricted subset of
the phase space. For this we use the following definition.

Definition 5.2.2. For a dynamical system (X,T,Φ) a subset A ⊆ X is called
invariant if Φ(A× T) = A. If A is an invariant subset of X, the restriction of Φ to
A written as Φ|A is the dynamical system (A, T,Φ|A×T).

5.2.2 The simulation problem for dynamical systems

In this section we consider computability properties of dynamical systems. We say
a dynamical system is computable if the evolution function is computable. The
most general definition of a computable dynamical system over represented spaces
is therefore the following.

Definition 5.2.3. Let (X, ξX), (T, ξT) be represented spaces. A dynamical system
(X,T,Φ) is called computable if Φ : X × T 7→ X is a ([ξX , ξT], ξX)-computable
function.

56

5.2 Dynamical systems

In this chapter, we always assume X ⊆ Rd and T ⊆ R and we only use the
standard representations defined in Chapter 2. To define complexity independently
of the concrete names for reals, we follow Ko and Friedman’s approach, i.e., we
assume that a 2−n approximation is always given as a dyadic rational with at most
n digits after the radix point. Thus, from now on we do not explicitly mention
the representations anymore and just use the terms computable, polynomial-time
computable etc.

The problem we are interested in is the following: We have some set A ⊆ Rd of
possible initial values and we want to simulate the evolution of the system for some
time interval [0, T] on any initial value from this subset. The following definitions
will be useful.

Definition 5.2.4. For a given dynamical system (X,T,Φ) and a set A ⊆ X define
the set of reachable points R(A) = Φ((A× T) ∩ dom Φ).

The set of reachable points is invariant for the system as for any x ∈ R(A) and
t ∈ T such that (x, t) ∈ dom Φ there is x0 ∈ A and t′ ∈ T such that Φ(x, t) =
Φ(Φ(x0, t

′), t) = Φ(x0, t
′ + t).

Definition 5.2.5. A dynamical system (X,T,Φ) is called computable restricted to
a set of initial values A ⊆ X, if Φ|R(A) is computable.

Consider now a system that is given by an ordinary differential equation and
fix some set A of initial values. A natural question is how the computability and
complexity of Φ|R(A) depends on the right-hand side function of the ODE.

This is partly answered by the results in Chapter 4. It follows that we should
at least assume that the right-hand side function is given by a vector of analytic
functions. Under some mild assumptions on the domain and the computability of
the right-hand side function, we then know that Φ|R(A) is always computable.

On the other hand R(A) is in general not compact even if A is, simply since the
domain of Φ does not have to be compact. Therefore the previous results do not
allow us to bound the complexity in any way. This is true even for a non-uniform
formulation assuming that A, F and T are fixed.

On the other hand, if we assume that at some point x0 ∈ X the right-hand side
function F is analytic and polynomial-time computable on some polydisc Br(x0)
for some r > 0, Theorem 4.3.1 shows that the solution on a small but non-trivial
time-interval is efficiently computable. The size of this time-interval depends on r
and on the growth of F on the polydisc. This motivates us to study the relation of
the domain of the right-hand side function F to the complexity in more detail.

Let us first define what we mean by the term singularity.

Definition 5.2.6. For an analytic function f : Cd → C, a point z ∈ C where f fails
to be analytic (in the sense that there is no analytic continuation of f at this point)
is called singularity of f .

We always assume the domain of an analytic function to be maximal in the
sense that it contains all points that are not singularities. Thus, the complexity of

57

5 Average case complexity for Hamiltonian dynamical systems

computing a trajectory of a dynamical system given by an ODE with analytic right-
hand side function F depends heavily on the distance of the trajectory to (complex)
singularities of F . This motivates the following definitions.

Definition 5.2.7. Let f : D ⊆ Rd → Rd be analytic. For any real number α > 0
we define the set G(α) ⊆ D by x ∈ D(α) if there is a complex analytic extension f̃ :
C ⊇ U → C of f such that Bα(x) ⊆ U . We further define the set N(α) := D \G(α)
and call a point w ∈ N(α) an α-singularity.

Thus, α-singularities characterize the difficult states of the simulation and if
there are no α-singularities the simulation should be efficient in some sense. To
make this formal we additionally need the following definition.

Definition 5.2.8. For a dynamical system (X,T,Φ), a set A ⊆ X of initial condi-
tions and any α > 0, we define the sets A(α) of α-good initial conditions by x ∈ A(α)
if Φ(x, t) ∈ G(α) for all t ∈ T . The set B(α) of α-bad initial conditions is defined
as B(α) := A \A(α).

That is, a point is an α-good initial value if it does not lead to an α-singularity
at any time and it is an α-bad initial value if there is some time t ∈ T such that
the state at time t has distance less than α to a singularity of the right-hand side
function. See also Figure 5.1 for some of these definitions.

To get any reasonable bounds on the complexity we now assume that T is some
compact real interval (for simplicity we can assume T = [0, 1]). Let us first state a
simple fact.

Proposition 5.2.2. If A ⊂ Rd is compact and (X,T,Φ) is a dynamical system
defined by an ODE with compact time set T ⊆ R, then both A(α) and R(A(α)) are
compact.

Proof. A(α) is compact since G(α) is closed. By Lemma 4.3.1, Φ is a continuous
function in both time and initial values. Further A(α) × T ⊆ dom Φ by definition.
It follows that R(A(α)) = Φ(A(α)× T) is also compact.

Thus the following holds.

Theorem 5.2.1. Let (X, [0, 1],Φ) be a dynamical system defined by an analytic
ODE with right-hand side function F :⊆ Rd → Rd and let A ⊆ X be some com-
pact subset of initial values. If F|R(A(α)) is polynomial-time computable then Φ is
polynomial-time computable on initial values from A(α).

Proof. F : R(A(α)) → Rd is an analytic function on a compact domain and the
solution of the ODE is only taking values in R(A(α)). The theorem therefore follows
from Theorem 4.4.1.

Note that the above theorem is non-uniform as the dependency on α and F is
hidden. We can not use the same approach as Chapter 4 as all representations for
analytic functions we defined assumed the domain to be fixed. As this is necessary
to get uniform complexity bounds, there is no straight-forward way to turn this into
a uniform statement in terms of some representation of the function.

58

5.2 Dynamical systems

We can, however, get a uniform result in α, in the sense that we have a sin-
gle algorithm computing the solution on the whole domain and we can bound its
complexity in terms of α on the subset A(α) of initial values. To this end, we
have to make some additional assumptions: It should be possible to approximate
α good enough during the simulation and the right-hand side function F should
be uniformly bounded on α-good points. We make this precise with the following
definitions.

Definition 5.2.9. For an analytic function f :⊆ Rd → Rd a function d :⊆ Rd → R
is called singularity distance function if for all x ∈ dom f it holds x ∈ G(d(x)) but
x /∈ G(2d(x)).

That is, the singularity distance function returns some (reasonably good) bound
on the distance to the nearest singularity.

Recall that for any x ∈ G(α) there is an analytic continuation F̃ of F such that
Bα(x) ⊆ dom F̃ . We will need to bound the magnitude of this analytic continuation
on α-good values.

Definition 5.2.10. A function M : R→ R is called uniform bound function for an

analytic function F :⊆ Rd → R if for all x ∈ G(α) and z ∈ Bα(x) it is
∣∣∣F̃ (z)

∣∣∣ ≤M(α)

for any analytic continuation F̃ of F to Bα(x).

To characterize the complexity in terms of the domain, we use the following
definition.

Definition 5.2.11. For an integer C ∈ N, a computable real function f :⊆ Rd → Re
is called C-polynomial-time computable on some subset D ⊆ dom f if there is an
oracle machine M? that

1. computes f , i.e., whenever ϕ ∈ B is a name for an x ∈ dom f the machine on
input 1n and with oracle ϕ outputs an approximation to f(x) with error at
most 2−n, and

2. on oracles for names of elements x ∈ D said machine machine terminates after
at most polynomially in C + n steps.

We further say the function f is M -polynomial-time computable for a real number
M ∈ R if it is dMe-polynomial-time computable.

We can now formulate a more uniform version of Theorem 5.2.1.

Theorem 5.2.2. Let (X, [0, 1],Φ) be a dynamical system defined by an analytic
ODE with right-hand side function F :⊆ Rd → Rd and A ⊆ X some compact subset
of initial values. Assume that F has a computable singularity distance function d
and a computable uniform bound function M . Then Φ is computable on initial
values in A. Assume further that F is 1

α + M(α)-polynomial-time computable on
R(A(α)) and so are d and M . Then Φ is 1

α +M(α)-polynomial-time computable on
A(α).

59

5 Average case complexity for Hamiltonian dynamical systems

Proof. We can proceed exactly as in Theorem 4.3.2 with the only difference that in-
stead of the global bounds on the radius and maximum that the constants provided,
we only have local bounds that are given by the distance and bound functions. Given
some initial value x0 ∈ A, we first evaluate d(x0) to get a bound r on the radius
of convergence and then compute M(r) to get a bound. We can then compute the
local solution around x0 on a time interval of size c r

M(r) where c is some constant
depending only on the dimension. As in Theorem 4.3.2 this process can be iterated
to reach any time t ∈ T as long as we do not reach a singularity. If x ∈ A(α) it is
guaranteed that for any reachable point y ∈ R(A(α)) it holds that d(y) ≥ α

2 . Thus
the maximal number of steps is bounded by a polynomial in d 1

αe+ dM(α)e and the
complexity bound follows.

Note that bounding the complexity of an analytic function f :⊆ Rd → Rd in
M(α) and 1

α additionally to the output precision is quite natural as a larger value
of M(α) implies that the output is larger, and a smaller value of α implies that
singularities are close, requiring to read the input with a higher precision.

Remark. Instead of requiring that there are computable functions d and M in
Theorem 5.2.2, we could also have defined a parameterized representation for points
in phase space and then formulated the complexity as a parameterized result similar
to Chapter 3. However, in this chapter we do not need such general results as we
are only interested in some rather concrete examples of functions corresponding to
problems in physics. In such cases the functions are always computable and we
therefore decided to avoid the additional formal overhead that would be necessary
for such a formulation.

5.2.3 Hamiltonian systems

In this section we introduce an important class of dynamical systems, the Hamil-
tonian systems. Hamiltonian systems play an important role in classical physics,
especially mechanics. Let us first state the definition.

Definition 5.2.12. A d degree-of-freedom Hamiltonian system is a 2d-dimensional
system of ordinary differential equations of the form

q̇i(t) =
∂H(t, p, q)

∂pi
, ṗi(t) = −∂H(t, p, q)

∂qi
(5.1)

for i = 1, . . . , d where H :⊆ R×Rd×Rd → R is a smooth real-valued function called
the Hamiltonian. The vectors q(t), p(t) ∈ Rd are called position and momentum and
t ∈ R is called the time. If H does not depend on the time t the system is called
time-independent or conservative.

In this thesis we only consider time-independent Hamiltonian systems.

Let Φ(x, t) denote the state of the system at time t starting at state x at time
0. An integral is a smooth function I : R2d → R such that I(Φ(x0, t) = I(x0),
i.e., I is constant on solution trajectories of the system. For a time-independent

60

5.3 Examples of Hamiltonian systems

Hamiltonian system the Hamiltonian is an integral and therefore sometimes also
called the energy of the system1.

Integrals play a central role in the theory of solving Hamiltonian systems. A
nice characterization of integrals is given using Poisson brackets.

Definition 5.2.13. Given a Hamiltonian dynamical system (5.1) with phase space
U ⊆ R2d and two smooth functions f : U → R, g : U → R, the Poisson bracket of f
and g is defined as the function

{f, g} :=
d∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

The function I : R2d → R is an integral of the Hamiltonian system with Hamil-
tonian H : R2d → R if and only if {H, I} = 0.

A Hamiltonian system is called completely integrable (or integrable in the sense
of Liouville) if it has d functional independent integrals I1, . . . , Id such that {Ii, Ij} =
0 for i 6= j. By the Liouville-Arnold theorem, for completely integrable systems there
is a set of canonical coordinates known as action-angle coordinates such that the
equation of motion can be solved by quadratures, i.e., by a finite number of algebraic
transformations and integration of known functions [Arn13].

An important fact about time-independent Hamiltonian systems is that they
preserve phase-space volume. This is known as Liouville’s theorem.

Theorem 5.2.3 (Liouville’s theorem [Arn13, §16]). Let λ denote the 2d-dimensional
Lebesgue-measure in R2d and assume Φ is a time-independent Hamiltonian system.
For every measurable subset D ⊂ R2d of the phase space of Φ and all t ∈ R it holds
λ(D) = λ(Φ(D, t))

This property of Hamiltonian systems will be essential for our average-case
complexity analysis later in this chapter.

5.3 Examples of Hamiltonian systems

In this section we study some important examples of Hamiltonian dynamical sys-
tems. Most of them can for example be found in the book [MHO08].

5.3.1 The N-body problem

The classical N -body problem is the problem of describing the motion of N point
masses in euclidean space R3 under their mutual gravitational attraction. It is one
of the most famous problems in mathematics. Let qi ∈ R3 be the position of the
i-th particle and mi ∈ R its mass. By Newton’s law of universal gravitation the
force particle i exerts on another particle j is given by

Fij = G
m1m2

‖q1 − q2‖2
1The physical definition of the total energy of a mechanical system is not always the same as the

Hamiltonian but we do not make this distinction in this thesis and use the terms Hamiltonian
and energy interchangeably.

61

5 Average case complexity for Hamiltonian dynamical systems

where G is the gravitational constant. As by Newton’s second the law the sum of
the forces equals mass times acceleration, the N -body problem can be written as a
3N -dimensional system of second-order ordinary differential equations.

q̈i(t) = G
∑
k 6=i

mk(qk(t)− qi(t))
‖qk(t)− qi(t)‖3

. (5.2)

The additional term qk−qi
‖qk−qi‖ is added to describe the direction of the force.

The system can be equivalently written as a 6N -dimensional system of first-
order ordinary differential equations. To show that the system is Hamiltonian we
introduce the following physical quantities.

Definition 5.3.1. The self-potential energy of the N -body problem is given by

U = −
∑

1≤i≤j≤n

Gmimj

‖qi − qj‖
.

The kinetic energy of the N -body problem is given by

T =

n∑
i=1

‖pi‖2

2mi
,

where pi = miq̇i is the i-th momentum.

Then the system can be written as a 3N degree-of-freedom Hamiltonian sys-
tem with Hamiltonian H = U + T . By energy conversation it follows that the
Hamiltonian is time-independent.

Using normalized units we can assume that the gravitational constant G = 1.
For the remainder of the thesis we therefore use the following formal definition of
the N -body problem.

Definition 5.3.2. The N -body problem is the dynamical system defined by the
autonomous system of ordinary differential equations derived from Hamilton’s equa-
tion (5.1) with Hamiltonian

H(q, p) =

N∑
i=1

‖pi‖2

2mi
−

∑
1≤i≤j≤N

mimj

‖qi − qj‖
. (5.3)

That is, the dynamics of the N -body problem are given by the 6N -dimensional
system of ordinary differential equations

q̇i =
pi
mi
, ṗi =

∑
i 6=j

mimj(qj − qi)
‖qj − qi‖3

. (5.4)

If q, p ∈ R2n we call it the planar N -body problem and if q, p ∈ R3n we call it the
spatial N -body problem or just N -body problem.

We will also use the following definition.

62

5.3 Examples of Hamiltonian systems

Definition 5.3.3. An instance of the N -body problem is given by N real numbers
m1, . . . ,mN ∈ R describing the weights of the particles. For an instance of the N -
body problem we further define M :=

∑
1≤i≤j≤N 2mimj and m0 := mini=1,...,N mi.

Let us now consider the singularities of the system. The following is quite easy
to see and was first pointed out by Painlevé in his lectures in 1895 [Pai97].

Theorem 5.3.1 (Painlevé). The N -body problem has a singularity at time t∗ ∈ R
if and only if there are i, j ∈ {1, . . . , N}, i 6= j with

lim
t→t∗
‖qi(t)− qj(t)‖ = 0.

Painlevé’s theorem is more or less a direct consequence of the existence and
uniqueness theorem for the solution of an initial value problem. We will show a
quantitative version as this turns out to be useful later to bound the computational
complexity.

Lemma 5.3.1. Let q, p ∈ R3N denote a state of an instance of the N -body problem.
Let further h := |H(q, p)| and r := min1≤i≤j≤N{‖qi − qj‖}. Then the right-hand
side function for the ODE defining the N -body problem has an analytic extension to
B r

4
((q, p)) which is bounded by B := Cm · (max(r, 1

r) +
√
h), where Cm is a constant

only depending on the masses.

Proof. Let z, v ∈ C3N such that ‖zi − qi‖ ≤ r
4 and ‖vi − pi‖ ≤ r

4 . By the triangle
inequality it follows ‖zi−zj‖ ≥ r

2 . Inserting this into the equation for the right-hand
side of the ODE (5.4) yields

‖ṗi(t)‖ ≤
4M

r2
.

By the Hamiltonian equation (5.4) it follows that

‖pi‖2

mi
≤ 2h+

M

r
.

Thus ‖pi‖ ≤
√

2hM + M2

r for i = 1, . . . , N . It follows ‖vi‖ ≤
√

2hM + M2

r + r
4 and

therefore

‖q̇i(t)‖ ≤ m−1
0

(√
2hM +

M2

r
+
r

4

)
.

Thus by setting

B =
4M

r2
+m−1

0

(√
2hM +

M2

r
+
r

4

)
the claim follows.

The radius for the solution can now be directly derived from Cauchy’s existence
theorem:

63

5 Average case complexity for Hamiltonian dynamical systems

Theorem 5.3.2. Let q, p ∈ R3N denote a state of an instance of the N -body
problem at time t0. Let further h = |H(q, p)|, r′ := min1≤i≤j≤N{‖qi − qj‖} and
r = min(1, r′). Then the problem has a unique solution valid for all (complex) t ∈ C
with

|t− t0| ≤
r2

(6N + 1)Cm(1 +
√
hr)

where Cm is a constant only depending on the masses.

We distinguish two types of singularities.

Definition 5.3.4. A singularity of the N -body problem at time t∗ is called collision
singularity if for all i = 1, . . . , N , limt→t∗ qi(t) exists. Otherwise its called non-
collision singularity.

For a non-collision singularity to occur there have to be particles that become
infinitely far apart in finite time [VZ08].

Painlavé in the same work as mentioned above shows that for the important
special case ofN = 3 (known as the three-body problem) all singularities are collision
singularities. This is not true in the general case. For example, Xia [Xia92] showed
that non-collision singularities exist for N = 5. Whether non-collision singularities
exists for the case N = 4 is an open problem at the time of this thesis.

The N -body problem has ten classical integrals, three for the total linear mo-
mentum, three for the total angular momentum, three for the center of mass and
one for the total energy. Bruns [Bru87] and Poincaré [Poi90] showed that no other
algebraic integrals exist. For the two-body problem it is possible to apply some
further reduction and solve it by quadratures. For three and more bodies this is not
possible.

For the three-body case the only possible singularities are thus due to two or all
three particles colliding. Sundman [Sun13] found out that triple collisions can only
occur in the rare case where the system’s total angular momentum is zero. As the
angular momentum is an integral of the system, it is easy to exclude this case as it
only has to be checked for the initial state.

Sundman proceeded to show that it is possible to transform the equation of
motion such that it can be continued through binary collisions. By an additional
coordinate transformation he could express the solution for all time t <∞ in terms
of a single convergent power series on the unit disc. Thus, except for the easily
avoidable case of zero angular momentum, the three-body problem can be solved
by summing a single power series. Sundman’s solution was later extended by Wang
to a series solution for the general N -body problem excluding all cases of collisions
[QD90].

Unfortunately, the coordinate transformation is such that most points are mapped
very close to the boundary of the power series. As we have seen in Chapter 3 the com-
plexity of summing a power series growth quickly when the distance to the boundary
gets small. Sundman’s solution therefore turns out to be not very useful for practi-
cal purposes as the series converges extremely slowly. In fact, Beloriszky calculated
that using Sundman’s approach for simple astronomical observations would require
108000000 terms [Bel30].

64

5.3 Examples of Hamiltonian systems

On the other hand, Saari [Saa73, Saa77] could show the following.

Theorem 5.3.3 (Saari). For almost all initial conditions (w.r.t. Lebesgue measure)
in the two-, three-, and four-body problems, a unique solution exists for all time.

Considering computability issues this theorem tells us that we do not have
to care for singularities: for almost all initial conditions, the simple simulation
algorithm based on solving the initial value problem will eventually terminate with
the correct solution for any given time. However, the complexity can be unbounded
as particles might get arbitrarily close even if they do not collide. This motivates the
question of how likely it is for particles to get very close. More precisely, we would
like to have a quantitative variation of Saari’s theorem that bounds the Lebesgue
measure of initial values leading to α-singularities in terms of the parameter α. We
will further investigate this in the next sections.

To conclude this section let us adapt the parameterized complexity result in
Theorem 5.2.2 to the special case of the N -body problem. We assume that we take
initial conditions q0, p0 ∈ [0, 1]N from the unit cube. As both position and moment
for the initial state are bounded and the energy is constant over time, high energy
is only possible if particles are already close at the initial state.

Lemma 5.3.2. Assume (q, p) ∈ A(α) is an initial state of an instance of the N -body
problem then |H(p0, q0)| ≤ N

2m0
+ M

α .

Proof. Since by Definition ‖qi − qj‖ ≥ α and ‖pi‖ ≤ 1 this follows directly from the
Hamiltonian (5.3).

Theorem 5.3.4. Let (R6N , [0, 1],Φ) be an instance of the N -body problem (i.e.,
the masses m1, . . . ,mN are assumed to be fixed constants) over the compact time
interval [0, 1]. Let A = [0, 1]6N and let A(h, α) ⊆ A such that (q, p) ∈ A is in
A(h, α) if and only if for all i, j = 1, . . . , N with i 6= j it holds that ‖qi − qj‖ ≥ α
and |H(q, p)| ≤ h. Then Φ is (α−1 + h)-polynomial-time computable on A(h, α).

Proof. By Lemma 5.3.1 a bound on the distance to singularities of the right-hand
side function of the ODE system is given (up to a constant factor) by the min-
imal distance of two particles which is computable from the state. Further the
upper bound in the Lemma can be used as a computable bound function. Distance
function, bound function and right-hand side function are computable in (α−1 +h)-
polynomial-time on A(α) as they just use basic arithmetic with values bounded
sufficiently by α and h. Thus the theorem follows from Theorem 5.2.2.

Now, by Lemma 5.3.2 the energy on initial values from A(α) is bounded by a
polynomial in α−1. Thus the complexity of the N -body simulation only depends on
α.

Corollary 5.3.1. If A = [0, 1]6N , then the N -body problem is (α−1)-polynomial-
time computable on A(α).

65

5 Average case complexity for Hamiltonian dynamical systems

d1 d2

(q1, q2)

µ 1− µ

Figure 5.2: The planar circular restricted three-body problem in normalized form.
P1 and P2 are fixed at position (−µ, 0) and (1−µ, 0). They have masses
1 − µ and µ and influence the motion of the massless particle P3 at
position (q1, q2).

5.3.2 The restricted three-body problem

An important special case of the three-body problem is the case when the mass of
one particle tends to zero. This can for example be used to model the motion of a
small object (like an asteroid or a satellite) between sun and earth. As the massless
particle does not influence the motion of the other particles, their motion can be
seen as a two-body problem.

Classically, one considers two more simplifications. First, the motion is re-
stricted to the plane and second it is assumed that the two “heavy” particles move
on a circular orbit around their common center of mass with uniform velocity. This
problem is known as the planar circular restricted three-body problem. In spite of
being much simpler than the general problem, the restricted problem shares many
of the properties of the N -body problem that makes it interesting for our analysis.
In particular, the restricted problem is a Hamiltonian dynamical system where the
equation of motion is given by an analytic initial value problem. There is no gen-
eral known closed form solution and the motion can be chaotic [Mil91]. Like the
original problem, the restricted three-body problem has been studied extensively by
mathematicians and engineers.

By choosing appropriate units of measurement and a rotating coordinate system,
the system can be brought in a simpler, normalized form only depending on a single
parameter µ ∈ (0, 0.5]. The masses of the particles P1 and P2 in the new units
are given by µ and 1 − µ, respectively. The position of the heavy particles in the
rotating coordinate system remains fixed at P1 := (−µ, 0) and P2 := (1− µ, 0). We
use q = (q1, q2) to describe the coordinates of P3 relative to that coordinate system
(see Figure 5.2). A full derivation for the transformations as well as formulas to
translate a solution for the normalized system to a solution for the non-modified
system can, e.g., be found in [KLMR00, Section 2.3].

In Hamiltonian form the IVP can be written in terms of position q ∈ R2 and

66

5.3 Examples of Hamiltonian systems

moment p ∈ R2 as

H(p, q) =
1

2
‖p‖2 + q2p1 − q1p2 −

µ

d1
− 1− µ

d2
, (5.5)

where d1 :=
√

(q1 + µ)2 + q2
2 and d2 :=

√
(q1 + µ− 1)2 + q2

2. This defines a dynam-
ical system with phase space Γ ⊆ R4.

In this problem, an α-singularity corresponds to the situation where P3 gets
close to either P1 or P2. Note that the absolute value of the moment tends to
infinity when approaching a singularity. As with the general N -body, for A = [0, 1]4

the energy on initial values from A(α) is bounded.

Lemma 5.3.3. Assume q, p ∈ [0, 1]4 and q, p /∈ N(α) then H(p, q) ≤ 3 + 2
α .

Proof.

H(p, q) ≤ 1

2
‖p‖2 + |q1p2|+ |q2p1|+

1

d1
+

1

d2
≤ 3 +

2

α
.

To characterize the complexity of the problem in terms of the distance to sin-
gularities we again want to apply Theorem 5.2.2. The existence of a computable
singularity distance function is obvious. However, finding the uniform bound func-
tion is actually more complicated than for the general N -body problem. The reason
for this is that in the normalized coordinate system, even if the energy is bounded
and the distance to singularities is large, due to the additional terms in the Hamil-
tonian the magnitude of the moment can still be large depending on the position
(the physical reason for this is that in the rotating coordinate system there is also
the centrifugal force acting on the particle).

Let A = [0, 1]4 and let A(h, α) ⊆ A such that (q, p) ∈ A is in A(h, α) if and only
if ‖q(t) − P1‖ ≥ α, ‖q(t) − P2‖ ≥ α for all t ∈ [0, 1] and |H(q, p)| ≤ h. Let us now
show how to bound the right-hand side function on initial values from A(h, α).

Lemma 5.3.4. Let q, p : [0, 1]→ R be the solution of an instance of the restricted
three-body problem on initial values from A(h, α). Then for all t ∈ [0, 1] it holds

‖q(t)‖ ≤ 2h+ 10 and ‖v(t)‖ ≤
√

(2h+ 11)2 + 1
α .

Proof. Assume d1 ≥ α and d2 ≥ α. Note that the velocity v in the system is given
by

v(t) =

(
p1 + q2

p2 − q1

)
.

The Hamiltonian in terms of the velocity is therefore

H(q, v) =
1

2
‖v‖2 − µ

d1
− 1− µ

d2
− 1

2
‖q‖2.

Thus the bound on the Hamiltonian implies the bound

‖v‖2 ≤ 2h+ |q|2 +
2

α
(5.6)

67

5 Average case complexity for Hamiltonian dynamical systems

on the velocity.

Now suppose ‖q‖ ≥ 2 then both d1 ≥ 1 and d2 ≥ 2 and thus ‖v‖2 ≤ 2h+ |q|2 +2
holds. Let h′ = max(h, 2) then ‖v‖ ≤ h′ + ‖q‖. Now consider for n ≥ 1 the subsets
Un where n − 1 ≤ ‖q‖ ≤ n. For n ≥ 3, (q, v) ∈ Un implies that ‖v‖ ≤ h′ + n.
In particular the minimum time to get from Un to Un+1 is tn := 1

h′+n . As for the
initial values ‖q‖ ≤ 2 the minimum time needed to reach a state where ‖q‖ ≥ N is
bounded by

TN :=
N∑
i=3

1

h′ + n
= HN+h′+3 −Hh′+3

whereHN :=
∑N

k=1
1
k denotes the N -th harmonic number. By the well known bound

[Knu97, Section 1.2.7]

γ + log(N) ≤ HN ≤ γ + log(N + 1)

it holds

TN ≥ log

(
N + h′ + 3

h′ + 4

)
.

As the time is bounded by 1 it follows that ‖q‖ ≤ 2h′ + 6 ≤ 2h+ 10. Inserting this
back into (5.6) yields

‖v‖ ≤
√

2h+ (2h+ 10)2 +
2

α

from which the claim follows.

Thus the conditions for Theorem 5.2.2 hold.

Theorem 5.3.5. Let (R4, [0, 1],Φ) be an instance of the restricted three-body prob-
lem over the compact time interval [0, 1]. Then Φ is (α−1 + h)-polynomial-time
computable on A(h, α).

As with the non-restricted N -body problem the bound on the energy for values
in A(α) can be used to remove the additional dependency on the energy.

Corollary 5.3.2. Let A = [0, 1]4 then the planar circular restricted three-body
problem is (α−1)-polynomial-time computable on A(α).

5.3.3 Generalized Newtonian mechanics

Let us now look at a more general class of Hamiltonian systems that are somehow
similar to the N -body problem. We consider systems from e.g. classical mechanics,
where the Hamiltonian can be written as the sum of kinetic and potential energy.
That is, the Hamiltonian is given by

H(q, p) =

d∑
i=1

|pi|2

2mi
+ V (q) (5.7)

68

5.4 Average-case complexity

for a smooth function V : Rd → R and a set of masses m1, . . . ,md. Assume V :
U → R is analytic on some U ⊆ Rd. Then the equations of motion are given by the
analytic ODE system

q̇i(t) =
pi
mi
, ṗi(t) = −∂V

∂qi

for i = 1, . . . , d. The right-hand side function is analytic on U × Rd.
α-singularities of this system correspond to α-singularities of V . Thus we can

formulate the complexity of the simulation in terms of the function V :

Theorem 5.3.6. Let A = [0, 1]4 and assume that V has a computable singularity
distance function and a uniform bound function M . If V is M(α) + 1

α -polynomial-
time computable on R(A(α)) then the system is M(α) + 1

α -computable on A(α).

5.4 Average-case complexity

In the previous sections we have shown how to (under some mild assumptions on
system) bound the complexity in terms of the distance to singularities during the
simulation. We have also seen that, e.g., for the three-body problem, singularities are
somehow rare. We would now like to combine that in the sense that we want to show
that in the case where singularities (and almost singularities) are rare, simulating
a dynamical system can be done efficiently. Of course, worst-case complexity is by
definition not a good measure for this purpose. A formal model to make such a
statement precise is average-case complexity. In this section we first define average-
case complexity in the classical, discrete setting and then show how the definitions
can be generalized to real-number computations.

5.4.1 The classical case

The worst-case complexity of an algorithm can be dominated by a small number
of hard instances. A problem that can be solved efficiently on most inputs might
thus still be hard from the perspective of computational complexity. Average-case
complexity studies the average running time of an algorithm over all inputs and
often gives a more realistic measure for the efficiency of an algorithm. Similarly to
the class P in worst-case complexity we would like to have a class of average-case
polynomial-time problems that we consider as “efficient on average”.

The fundamental notion of such a class goes back to Levin [Lev86]. In this
section we provide the basic definitions and explain some of the difficulties that
arise when defining such a class. We mostly follow Goldreich’s exposition [Gol97]
(and sometimes the newer version [Gol08, Section 10.2]). We deviate a little from the
standard presentation and only consider search problem instead of decision problems
as this simplifies the generalization to real numbers in the next chapter.

As in the previous chapters we fix the finite alphabet Σ = {0, 1}. We assume
the standard lexicographical ordering on strings in Σ∗.

Definition 5.4.1 (Distributional problem). A probability density function on Σ∗ is
a function P : Σ∗ → [0, 1] such that

∑
x∈Σ∗ P (x) = 1. A distributional problem is a

pair (F, P) of a function F :⊆ Σ∗ → Σ∗ and a probability density function.

69

5 Average case complexity for Hamiltonian dynamical systems

A simple definition of average-case polynomial-time could be the following.

Definition 5.4.2 (Naive average-case polynomial-time). A distributional problem
(f, p) is naively average-case polynomial-time computable if there is a Turing machine
A that computes f such that for all n ∈ N the expected running time of A on strings
of length n is bounded by a polynomial in n, i.e., there is some polynomial p : N→ N
such that

E[tA(Xn)] =
∑
x∈Σn

tA(x)Pn(x) ≤ p(n),

where tA(x) denotes the running time of algorithm A on input x ∈ Σ∗ and Pn(x) =
P (x)∑

y∈Σn P (y) is the conditional probability of x given that the string has length n.

Unfortunately this simple definition lacks some basic robustness properties.
Consider for example the composition f ◦g of an average-case polynomial-time com-
putable function f with a worst-case polynomial-time computable function g. Natu-
rally the composition should be average-case polynomial-time computable. However,
assume the running time for an algorithm A for f is given by

tA(x) =

{
2n, if x = 0n

n, if |x| = n and x 6= 0n

and tB(x) = n2. A is average-case polynomial-time computable with respect to the
uniform distribution on strings and B is worst-case polynomial-time computable.
However, the composition of the algorithms does not yield an algorithm running in
average-case polynomial-time. For similar reasons the definition is sensitive to the
choice of computational model and therefore not suitable as a general definition for
efficiency on average.

Definition 5.4.3 (Average-case polynomial-time). A distributional problem (F, P)
is average-case polynomial-time computable if there is a Turing machine A comput-
ing F and a constant ε > 0, such that∑

x∈Σ∗

P (x) · tA(x)ε

|x|
<∞

where tA(x) denotes the running-time of the machine A on input x.

5.4.2 Average-case complexity for real functions

Schröder, Steinberg and Ziegler [SSZ15] recently extended Levin’s notion to real
number computations. To define such a notion it is important to be very precise
when defining the running time of an oracle machine computing a real function. Let
f :⊆ R→ R be a computable real function and M? be an oracle machine computing
f . In general the running time of M can depend on the oracle and on the input
string (which always has the form 1n for some n). We thus define the following
notions of running time.

70

5.5 Average-case complexity for Hamiltonian dynamical systems

Definition 5.4.4. 1. The running time (i.e. the number of steps) for a machine
M with oracle ϕ and input 1n is denoted by tM (ϕ, n).

2. The running time for a machine M on the real input x ∈ R is defined by
tM (x, n) := supϕ∈ξ−1

R (x) tM (ϕ, n).

The definitions can be naturally extended to multidimensional functions f :
Rd → Re.

Definition 5.4.5. Let (X,Σ, µ) denote a probability space and T : X×N→ [0,∞]
a measurable function. We say that T is polynomial-time on average if there is some
ε > 0 such that the function

n 7→ 1

n

∫
X

(T (x, n))ε dµ (5.8)

is bounded by some constant c > 0.

If an algorithm runs in polynomial-time on average, there is a high probabil-
ity that it runs in polynomial-time for a randomly selected input as by Markov’s
inequality for any k > 0 it is

Pr[T (x, n) ≥ knε] ≤ c

kε
.

5.5 Average-case complexity for Hamiltonian dynamical
systems

While Theorem 5.2.2 gives a very general characterization for the complexity of
simulating initial value problems, it is usually not very useful as the complexity
bound can differ for each initial value y0. In general there is no way around this as
the trajectories for distinct initial values can be quite different. On the other hand,
it might be the case that most trajectories behave nicely in the sense that they stay
far away from singularities of the system. In that case, we would like to say that
the simulation can “usually” be done efficiently. This notion can be made formal
using average-case complexity.

Such an average-case analysis, however, requires that we can get a bound on
the probability for a trajectory to come close to a singularity. Usually, there is no
easy way to assign such a probability. On the other hand, if the system has the
special property that the volume of subsets of phase-space is preserved over time
then a small volume of singularities in phase space indicates that the set of initial
values coming close to singularities is also small. As we have seen in Theorem 5.2.3
the Hamiltonian systems have this property.

In this section we define some criteria under which a given Hamiltonian system
can be simulated in polynomial time on average. The main idea is that if we restrict
the initial values to be contained in a set A and the volume of B(α) is small in
comparison to A and if the growth of f behaves “nicely” on G(α) then the simulation
can be done in polynomial time on average: For Hamiltonian systems we can exploit
the fact that they preserve phase-space volume over time. Thus, there is a relation

71

5 Average case complexity for Hamiltonian dynamical systems

S

y(0)

y(t)

y(t′)

α

N(α)

N(2α)

Figure 5.3: If the distance at time t = 0 is at least 2α and there is an α-singularity
at time t > 0 there has to be some time t′ when y(t′) is 2α close to
the singularity. While the distance is between 2α and α the velocity is
bounded which can be used to bound the minimum time the particle has
to spend in the green region.

between the volume λ(A(α)) of initial values leading to almost singularities and the
volume λ(NA(α)) of almost singularities in phase-space.

Saari uses a similar idea to show that for the three-body problem the set of
initial values leading to collisions has measure 0 (in our notation Saari shows that
λ(A(0)) = 0 for the three-body problem). However, for our application we need a
stronger quantification of how the measure correlates to the distance of the particles.
The main difficulty is that almost singularities can occur at any time t ∈ [0, 1]. Thus,
theoretically we would have to consider infinitely many “copies” of NA(α) for each
possible time. Saari manages to replace this by only countably infinite many copies
which suffices to show that A(0) has measure zero but does not give any bound for
α > 0. We therefore need a slightly more complicated idea to show that finitely many
copies suffice in our case. Note, however, that Saari’s result holds for unbounded
time while our idea is based on the time being bounded. In fact, a generalization of
our result to unbounded time turns out to be false [Zha15].

5.5.1 Retracting to initial values

In this section we show how to use a bound on the phase-space volume of α-
singularities to get a bound on the volume of the subset B(α) of initial values
that lead to α-singularities at some time t ∈ [0, 1].

We first give a lower bound on the time that is needed to go from a sufficiently
good state to a bad state of the system.

Lemma 5.5.1. Let (R2d, [0, 1],Φ) be a (conservative) Hamiltonian dynamical sys-
tem with Hamiltonian H : R2d → R and let Φ|A be its restriction to some subset of
initial values. Let further F : RA → R be the right-hand side function of the ODE
system (5.1) and assume F is analytic and has uniform bound function M : R→ R.
Then for all y0 ∈ G(2α) and all t < α

(2d+1)M(α) it holds that Φ(y0, t) ∈ G(α).

72

5.5 Average-case complexity for Hamiltonian dynamical systems

Proof. Note that F is analytic on Bα(y0) and bounded by M(α) as the distance to
a singularity on any point inside the ball is at least α. Thus the claim follows from
the Cauchy existence theorem.

A direct consequence of the Lemma is the following corollary.

Corollary 5.5.1. Let the dynamical system Φ be given as in Lemma 5.5.1. Assume
that there are t1, t2 ∈ [0, 1] with t1 < t2 and an initial value y0 ∈ Ah such that
Φ(y0, t1) ∈ G(2α) and Φ(y0, t2) ∈ N(α) then t2 − t1 ≥ α

M(α) .

Thus, the minimum time needed to change from an 2α-good state to an α-good
state is at least α

M(α) .

The next lemma shows that we only need to consider finitely many points in
time to define the complete set of α-bad initial values.

Lemma 5.5.2. Let Φ be defined as in Lemma 5.5.1. For t ∈ [0, 1] let Bt(α) ⊆ B(α)
be the subset of points y0 ∈ A such that Φ(y0, t) ∈ N(α). For any y0 ∈ Bt(α) there
is some k ∈ N such that y0 ∈ Btk(2α) for tk := k α

2M(α) .

Proof. If y0 ∈ N(2α) then y0 ∈ B0(2α) by definition. Otherwise there is some
t∗ > 0 such that y(t∗; y0) ∈ N(α). By continuity of y there has to be some largest
t0 < t∗ such that y(t0; y0) /∈ N(2α) and y(t, y0) ∈ N(2α) for all t0 < t < t∗. By
corollary 5.5.1 it follows t ∗ −t0 > α

Mα . Thus, there has to be some k ∈ N such that
y(tk, y0) ∈ N(2α) and therefore y0 ∈ Btk(2α).

Let us now show how to relate the volume of close singularities in phase space
to the volume of the subset of initial values leading to such states.

Theorem 5.5.1. Let Φ be a Hamiltonian dynamical system as in Lemma 5.5.1.
Then λ(B(α)) ≤

(2M(α)
α + 1

)
λ(N(2α)).

Proof. For any t ∈ [0, 1] let Bt(α) ⊆ A be the subset of initial values that lead to
an α-singularity at time t, i.e., y0 ∈ Bt(α) iff y(t; 0, y0) ∈ N(α). As the system
is volume-preserving it holds λ(Bt(α)) ≤ λ(NA(α)) for all t and α. Obviously
B(α) =

⋃
t∈[0,1]Bt(α).

We now show that we can replace the infinite union by a union of finitely many
slightly bigger sets. Let y(0) ∈ Bt(α) for some t ∈ [0, 1], i.e., y(0) is an initial
value such that y(t) ∈ N(α). By Lemma 5.5.2 there is some k ∈ N such that
y(0) ∈ Btk(2α). This shows that for the finite subset {tk}k ⊂ [0, 1] of multiples of
α

2Mα it holds that B(α) ⊆
⋃
tk
Btk(2α). By λ(Btk(2α)) ≤ λ(NA(2α)) the statement

follows.

5.5.2 Average-case complexity

Let us first state some conditions under which a dynamical system defined by an
analytic ODE system is average-case polynomial-time computable. Note that the
following theorem does not assume the system to be Hamiltonian.

73

5 Average case complexity for Hamiltonian dynamical systems

Theorem 5.5.2. Let F : D ⊆ Rd → Rd analytic and computable with a computable
singularity distance function and computable bound function M : R→ R. Consider
the dynamical system Φ defined by F restricted to a subset of initial values A ⊆ D.
Assume

1. M is bounded by a polynomial in α−1,

2. F is α-polynomial-time computable on G(α), and

3. there is some constant γ > 0 such that λ(B(α))
λ(A) ≤ α

γ

Then Φ|A can be computed in polynomial time on average (w.r.t. to the restriction
of d-dimensional Lebesgue measure to A).

Proof. As by assumption M(α) is a polynomial in 1
α by Theorem 5.2.2 it follows

that Φ is 1
α -polynomial-time computable on A(α). Let µ be the restriction of the

Lebesgue measure to A, i.e., µ(B) = λ(B)
λ(A) for all measurable subsets B ⊆ A. Let

further Ai = A(2−(i+1)) \ A(2−i), that is, Ai contains the initial values where the
minimum distance to a complex singularity for any t ∈ [0, 1] is between 2−i and
2−(i+1). Since Ai ⊆ B(2−i) it holds λ(Ai) ≤ λ(B(2−i)) and by assumption µ(Ai) ≤
2−iγ . On the other hand Ai is contained in A(2−(i+1)) thus by the first part of the
theorem and the assumption on the time bound of f it follows that Y is computable
on initial values in Ai in time u(n + 2i) for a polynomial u. Since A =

⋃∞
i=0Ai it

holds ∫
domF

1

n
T (x, n)εdµ ≤ 1

n

∞∑
i=0

µ(Ai)T (Ai, n)ε ≤ 1

n

∞∑
i=0

2−iγu(n+ 2i)ε

Let m be the highest coefficient in the polynomial u then for ε ≤ γ
2m the sum

converges and thus
∫

domF
1
nT (x, n)εdµ is bounded.

As we have seen in the previous section, Hamiltonian dynamical systems allow
for a simpler way to bound the volume of λ(B(α)). Let us now state our main
theorem:

Theorem 5.5.3. Let ẏ = f(y) be a Hamiltonian dynamical system with f : D ⊆
Rd → Rd a computable analytic function with computable singularity distance func-
tion d : Rd → R and computable bound function M : RtoR and let A ⊆ D be a
subset of initial values with λ(A) > 0. Assume that

• f is 1
α -polynomial-time computable on α-good initial values y0 ∈ GA(α),

• for all α > 0 the measure of α-bad subsets of phase space is bounded by
λ(N(α)) ≤ αδ for some δ > 0,

• The bound M(α) is bounded by a polynomial in 1
α .

Then

1. There is some γ > 0 such that for all α > 0 the volume λ(B(α)) ≤ αγ ,

74

5.6 Average-case complexity for the restricted three-body problem

2. The dynamical system Φ on initial values in A is polynomial-time computable
on average.

Proof. The first item follows by Theorem 5.5.1 as

λ(B(α)) ≤
(2M(α)

α
+ 1
)
λ(N(2α)) ≤ poly(

1

α
)αδ.

The second item then follows by applying Theorem 5.5.2.

5.6 Average-case complexity for the restricted three-body
problem

As an application of theorem 5.5.3 we show that the solution of the restricted three-
body problem can be computed in polynomial-time on average. We consider the
subset of initial values A = [−1, 1]4. We first consider the case where the energy is
bounded, i.e., |H(p, q)| ≤ h for some h > 0.

Let N(h, α) be the α-singularities in phase-space reachable from A(h, α). A
bound for the volume of this set is given by the following lemma.

Lemma 5.6.1. For any α ∈ [0, 0.5], the Lebesgue measure of N(h, α) is bounded
by λ(N(h, α)) ≤ 8π2hα2.

Proof. We show that for the set N1 of points coming close to P1 it holds that
λ(N1(α)) = 4π2hα2. Then the claim follows as N(h, α) = N1 ∪N2. We first change
to a new coordinate system (x, v) where P1 is at the origin (Note that this change
preserves volume). The Hamiltonian of the problem in this coordinates can be
written as

E(x, v) =
1

2
‖v‖2 − 1

2
‖x‖2 + x1µ−

µ

‖x‖
− 1− µ

d2
− 0.5µ2

Let Γ ⊆ R4 the phase-space of the problem. Γ can be parameterized in terms of the
position and the Energy E by

Φ : (E, r, ϕ, ψ) 7→
(
r cos (ϕ), r sin (ϕ), R(E, r, ϕ) cos (ψ), R(E, r, ϕ) sin (ψ)

)
(5.9)

with

R(E, r, ϕ) :=

√
2E + µ2 − 2µr cos(ϕ) +

2µ

r
+

2− 2µ

d2
+ r2 (5.10)

It is N1(h, α) ⊆ Φ(G) with G := [−h, h]× [0, α]× [0, 2π)× [0, 2π). Thus the volume
can be bounded by

λ(N1(h, α)) ≤
∫

Φ(G)
dq1 dq2 dv1 dv2 =

∫
G
|det(D Φ)| dr dh dϕ dψ = 4π2 · α2 · h

Since det(D Φ) = r.

75

5 Average case complexity for Hamiltonian dynamical systems

We already have seen in Theorem 5.3.5 that the dynamical system is computable
in 1

α + h-polynomial-time on initial values in A(h, α). Thus by Theorem 5.5.3 it
immediately follows that the problem is polynomial-time on average when the energy
is fixed:

Theorem 5.6.1. Simulating the restricted three-body problem for time t ≤ 1 for
initial values p0, q0 ∈ [0, 1]4 such that |H(p0, q0)| ≤ 1 is possible in polynomial time
on average.

As by Lemma 5.3.3 the energy on A(α) is already bounded it follows that the
volume of N(α) is also bounded.

Corollary 5.6.1. For any α ∈ [0, 0.5], the Lebesgue measure of N(α) is bounded
by λ(N(α)) ≤ 8π2(3 + 1

α)α2.

Theorem 5.5.3 can thus also be applied to make an average case analysis for all
possible initial values in the unit cube even with unbounded energy.

Theorem 5.6.2. Simulating the restricted three-body problem for time t ≤ 1 for
initial values p0, q0 ∈ [0, 1]4 is possible in polynomial time on average.

5.7 Summary

We applied a recent definition of average-case complexity in analysis to problems
in classical physics. We gave some general conditions which show that a time-
continuous system can be computed efficiently on average. For the important special
case of Hamiltonian systems, we could show that a simpler approach based on the
volume of almost singularities in phase-space usually suffices. We applied our theory
to the planar circular restricted three-body problem and showed that it indeed can
be computed in polynomial time on average. The same can easily be done for some
other simple dynamical systems.

However, our theory does not easily generalize to some other more complicated
systems like the classical N -body problem as bounding the volume of singularities
in phase space is more complicated for these systems. While we think that most
systems in nature can indeed be simulated efficiently and that a similar result holds
for, e.g., the general N -body problem it is unlikely that our approach can be easily
adapted to this case as for N > 4 it is not even known if the set of initial conditions
leading to singularities has measure zero.

Nonetheless, we hope that we can at least extend our theory to the general
three-body problem and some other interesting problems in future work.

76

6 Analytic functions and ordinary
differential equations in exact real
arithmetic

Computable analysis aims to be a realistic model in the sense that the theory can
be a basis for actual exact computations with real numbers (sometimes called exact
real arithmetic [BCRO86, GNSW07]). In this chapter we therefore use some of the
ideas from Chapters 3 and 4 as a basis for data-types for analytic functions and
ODE solving in exact real arithmetic and provide a prototypical implementation.

Our main contribution is an algorithm for solving ODEs described in Section 6.4
and its implementation. The solver is implemented as an operator mapping analytic
functions to analytic functions. This approach is quite different from the usual
approach in numerical analysis where only approximations of values of the solution
function at a discrete set of points are computed. Our uniform implementation has
the advantage that we can directly work with and manipulate function objects. This
is very useful as the resulting function can be easily reused in other algorithms. We
think that the operator approach is very helpful in the design of algorithms and in
fact we could simplify some of our algorithms immensely by consequently using this
approach.

There are already several libraries providing basic operations for exact real num-
ber computations. For such an implementation of exact real arithmetic many design
choices have to be made. Thus, different libraries usually differ from each other in
many details. For our implementation we chose the iRRAM C++ library [Mül00]. The
main reasons for this choice are that the iRRAM library quite closely models the
theoretical framework of type-2 theory of efficiency as presented in Chapter 2 and
that is has been developed and used for a long time and is therefore very sophisti-
cated, providing a large number of operations and has been proven to be stable and
efficient in past applications. We give a brief overview of the framework in Section
6.1.

Our implementation, extends the iRRAM library by a class for analytic func-
tions. Using that type, we implemented several operators like partial derivatives
and composition and wrote a solver for ODEs with analytic right hand side (Section
6.2).

As the basic methods from the previous chapters turn out to be quite slow,
finding good optimizations is crucial. We compare different optimization strategies
in Section 6.3. In particular, our comparison shows that the standard method can be
vastly improved for many right-hand side functions by combining it with symbolic
computation methods. While currently the applied simplifications are quite basic,
we already get huge improvements especially for polynomials or similar simple right-

77

6 Analytic functions and ordinary differential equations in exact real arithmetic

hand side functions.
We decided to use an experimental approach to evaluate the quality of our

algorithms instead of giving a detailed complexity analysis (e.g. in terms of bit-
complexity) as for such an analysis a multitude of factors like the desired output
precision, the size of the integer parts of all numbers involved and the complexity of
approximating intermediate results up to the needed precision have to be considered.
This makes complexity bounds long and hard to analyze if they are supposed to be
realistic.

Our library is (to our best knowledge) the most general library for solving
initial value problems in exact real arithmetic. Further, the uniform approach differs
immensely from previous implementations. Direct comparisons with other tools are
therefore not possible. We still include a small comparison with tools from interval
and numerical analysis for completeness. Note, however, that it can not be our goal
to beat such libraries in terms of efficiency as they work with fixed precision and
thus their purpose is very different.

6.1 iRRAM

This section gives a brief introduction to the iRRAM framework. We only give a
very short overview on the parts necessary for the rest of the chapter. For a more
detailed description see [Mül00].

iRRAM is a C++ framework for exact real arithmetic developed by Norbert Müller.
It extends C++ by a data-type REAL for error free computations with real numbers.
For the user, an object of type REAL behaves like a real number that can be ma-
nipulated without any rounding errors. The framework takes care of all details
necessary for the internal finite representation of real numbers. In most cases this
internal representation is invisible for the user.

6.1.1 Real number representation

A real number in iRRAM is internally represented as an infinite sequence of better
and better approximations. More precisely, a real number x ∈ R is encoded by a
sequence of pairs (di, ei) such that x ∈ [di − ei, di + ei] and ei → 0.

An iRRAM program runs several times. Each run is called an iteration. In each
iteration objects of type REAL are replaced by a single member of the sequence, i.e.,
by a multiple precision number for d and two integers p, z such that e = z · 2p. At
some point in the program a certain precision might be needed to make a decision
(branch) or the program is supposed to output an approximation. If the precision
at this point does not suffice, the whole computation is restarted from the beginning
with higher precision.

A REAL can for example be initialized by assigning a double, a string or an int

object. Note, however, that the double object might already contain rounding errors
at the time of initialization. iRRAM provides standard operators to manipulate real
numbers, e.g., arithmetic operators and basic functions like exponential and trigono-
metric functions. Internally, the computations are done by interval arithmetic with
automatic precision control in form of the iterations.

78

6.2 Data-types for analytic functions

New real numbers can be defined with the help of a special operator, the so
called limit operator. The operator takes an approximation function to some real
number x ∈ R, that is, a function mapping a natural number n ∈ N to a 2−n

approximation of x, and returns an object of type REAL representing x.

6.1.2 Non-continuous and multivalued functions

A function that is computed in iRRAM is computable in the sense of computable
analysis. Thus, the same restrictions hold. In particular, non-continuous functions
like comparisons can not be computed. If the user still attempts to do so, this leads
to an infinite loop of iterations.

It is quite easy to see why this is necessarily the case in an iRRAM program. In
each iteration a real number is replaced by some non-trivial interval. Comparison of
two numbers can therefore only be done if their intervals are non-overlapping. Thus,
as long as the intervals overlap, iRRAM starts a new iteration with higher precision.
However, if the numbers are equal, the intervals will always overlap no matter how
high the precision is. Therefore, the computation will never terminate.

In applications non-continuous functions like rounding to an integer, the ceil
and floor functions or comparisons of real numbers are often necessary. In many
cases, however, they can be replaced by computable multivalued functions. E.g.,
instead of the non-continuous ceil-function it often suffices to have an upper bound
function that returns some (not necessarily optimal) integer upper bound.

For this reason, iRRAM also supports multi-valued functions. A multi-valued
function can have more than one possible result for the same input and iRRAM

chooses one of those results. For the user the choice of output can seem indetermin-
istic, however, it deterministically and continuously depends on how the number is
approximated internally.

As in iRRAM this representation differs in each iterations, the choice could also
be different leading to a complete change of program flow and thereby to unexpected
results. This would make writing correct programs extremely difficult. Therefore,
each time such a choice is made iRRAM saves it in the so-called multi-value cache
from where it is then read again in the next iteration. Of course, saving each choice
requires memory and the user therefore has to be careful not to use multi-valued
functions too often.

6.2 Data-types for analytic functions

In this section we describe our implementation. We implemented an additional
library on top of iRRAM that provides operations for uniform computations with
analytic functions.

Currently, our implementation only covers functions given by single power series,
similarly to the definitions in Section 3.4.2. Extending this to other representations
from Chapter 3 should not be difficult.

While the information encoded in the data-type is essentially the same as de-
scribed in Section 3.4.2, we made a few adjustments to make our implementation
more useable for practical applications. First, we do not fix domain in advance, i.e.,

79

6 Analytic functions and ordinary differential equations in exact real arithmetic

we consider power series of arbitrary radius r > 0 of type REAL around some point
x0 ∈ Rd and let r be part of the description. Further, instead of a single integer
we encode the maximum of the function on each ball of radius r′ < r as a function
M : REAL → REAL. While this does not allow a simple parameterized complexity
characterization it removes the restriction to the unit ball which seems artificial for
practical purposes and also allows to consider total functions. Note that for each
r′ < r it is possible to apply a similar complexity analysis as in the previous sections
to parameters r

r′ and M(r′).

When we designed our library we had two goals in mind: First, on standard
functions like polynomials and trigonometric functions it should perform operations
efficiently. Second, it should be easily extendable to general analytic functions only
by specifying how to compute the information in Definition 3.4.6 (but is allowed
to be slower in that case). While working with power series gives good theoretical
complexity bounds for many operations, in practice there are often much more
efficient algorithms to evaluate special functions.

Our basic approach is to model expressions containing analytic functions as
directed acyclic graphs (DAGs). Expression DAGs consist of objects of the abstract
class Node<d> that provide the following methods

• REAL get coeff(const unsigned long n1,..., const unsigned long nd)

const

• REAL get r() const

• REAL get M(const REAL& r2) const

• REAL evaluate(const REAL& x1, ..., const REAL& xd)

Note that for simplicity we use the data-type REAL as it is provided by iRRAM and
therefore restrict the implementation to real analytic functions.

Defining a new d-dimensional analytic function is easy: inheriting from the
abstract class REAL ANALYTIC<d> and implementing the methods get coeff, get r

and get M. The implementation of the evaluate function is optional but useful to
speed up operations. If implemented, it will be used for function evaluation instead
of the standard algorithm that sums up power series coefficients.

This makes it possible to provide more efficient evaluation methods for standard
functions. See Figure 6.1 for an example on how to add new analytic functions to
the framework.

Operations on analytic function like evaluation, addition, subtraction, multipli-
cation, division, partial derivatives and transposition were implemented.

6.3 Heuristic improvements

We also implemented some heuristic methods that we think can improve the perfor-
mance in practice. As such heuristics provide information that is redundant from the
view point of polynomial-time complexity and do not always lead to better results,
it is hard to quantify their usefulness in a theoretical setting. We therefore think

80

6.3 Heuristic improvements

struct SINE : REAL ANALYTIC<1>{
REAL eva luate (const REAL& x) const o v e r r i d e
{

return s i n (x) ;
}
REAL g e t r () const o v e r r i d e
{

return INF ;
}
REAL get M (const REAL& r) const o v e r r i d e
{

return exp (r) ;
}
REAL g e t c o e f f (const unsigned long n) const o v e r r i d e
{

if (n % 2 == 0) return 0 ;
if (n % 4 == 1) return i n v f a c t o r i a l (n) ;
return − i n v f a c t o r i a l (n) ;

}
} ;

Figure 6.1: Example on how to define the sine function as new analytic function.
As iRRAM already provides an efficient implementation of sine, it is used
for evaluation.

∂
∂x

◦

sin prune

×

f

simplify−−−−−→

×

◦

cos

∂
∂x

prune

×

f

Figure 6.2: Expression DAG for ∂
∂x sin(f(x)2) and use of the simplify operator. The

simplify operator performs symbolic simplifications on the DAG. Nodes
labeled with prune are not simplified further.

81

6 Analytic functions and ordinary differential equations in exact real arithmetic

that instead of a formal analysis, an experimental approach choosing an appropri-
ate set of benchmark functions seems more feasible and we do such an evaluation in
Section 6.5.

6.3.1 Affine arithmetic

iRRAM internally uses interval arithmetic to get error bounds for operations on real
numbers. A well-known problem of interval arithmetic is the so called dependency
problem. The problem occurs since by representing numbers by intervals, informa-
tion about the correlation between variables is lost. Assume for example that a real
number x ∈ R is given by an interval I = [0, 1]. Using just basic interval arithmetic
the expression x − x will return an interval J = [−1, 1] and thus massively overes-
timate the bounds for the actual value. Another somehow related problem is the
wrapping effect. This problem occurs since in interval arithmetic multidimensional
subsets of Rd can only be enclosed by boxes [a1, b1]×· · ·× [ad, bd] while for most sets
such an enclosure is not suitable. In iRRAM such overestimations force the program
to run with much higher precision than actually required and thus lead to very bad
performance. For our application those problems are particularly relevant, as we
work in a multidimensional setting and as due to the power series approach there
are naturally many dependencies between variables.

There are several improvements of classical interval arithmetic that deal with
such problems. Recently, so called Taylor models have increasingly been of interest
for applications in exact real arithmetic and have been used in iRRAM implementa-
tions [BKM15a]. For our library, we implemented a slightly simpler method known
as affine arithmetic [DFS04]. In affine arithmetic instead of an interval a real number
x ∈ R is represented by a symbolic expression of the form

x0 + x1λ1 + · · ·+ xnλn,

where λ1, . . . , λn can take values in [−1, 1] and x1, . . . , xn ∈ R are error symbols.
Thus, affine arithmetic keeps some simple linear dependencies between variables.

Our implementation contains a class AAREAL that provides a very basic version
of affine arithmetic. The error symbols in this implementation are of type REAL and
thus are intervals themselves. An AAREAL object can be constructed from and casted
to a standard REAL. An important question is, how many different error symbols a
variable should be allowed to have as choosing a too large number will slow down
the program but a too small number will not improve the error bounds sufficiently.
For our application and the limited number of tests we made the optimal number
seemed to be around 5. Thus, if at some point in the program a variable would get
a sixth error symbol, a new error symbol is introduced in the program and all errors
are summed up into the new symbol.

6.3.2 Combination with symbolic methods

Having efficient algorithms for the evaluation of standard functions often yields much
better results than using a power series algorithm. However, some of the operations
(in particular computing derivatives) are only defined on the series representation.

82

6.4 IVP solving

To avoid the use of power series in this case, we combined the exact real algorithms
with some simple symbolic manipulation algorithms. More precisely, we defined the
following functions on expression DAGs.

• simplify: Makes symbolic manipulations on the DAG. Derivatives are com-
puted using the chain and product rules and several simplification rules are
applied.

• prune: Everything below this node should be seen as an elementary analytic
function, i.e., the standard algorithm is used for evaluation and simplify does
not descend further into the child of the node.

See Figure 6.2 for an example on how those operators work. Computing higher
derivatives symbolically can quickly increase the size of the DAG, thus it should be
used with care. Occasional use of the prune operation can be useful to prevent the
growth of the DAGs when many operations are used.

6.4 IVP solving

We follow the approach presented in Chapter 4 to compute a local solution y(t)
on all points with |t| ≤ r on some small radius r. As our implementation allows
the radius to be arbitrary, we do not have to worry about scaling. As the other
operations, IVP solving is implemented as a node in the expression DAG. Thus, the
solution is again an analytic function object and can be further manipulated using
the implemented operators on analytic functions.

The most typical application in numerical analysis is to follow a trajectory for
a longer time frame, i.e., choose some grid 0 = t0 < · · · < tm and compute the set
of values y(tj) for j = 1, . . . ,m. As in Theorem 4.3.2 we can use the algorithm to
compute a local solution and then iteratively apply it to increase the radius. That
is, as long as the solution takes values inside the of the area where the right-hand
side functions of the ODE system are defined, we can iteratively use the method
in the previous section to build a single-step method, i.e., for each time step we
compute the local solution function yj , evaluate it at tj+1 and use y(tj+1) = yj(tj)
as the initial condition for the next step.

Let rj be the radius of the local solution at step j and let hj := tj+1 − tj be
the chosen step size at time j. In Chapter 4 we let this radius be a constant that
only depends on the parameters of the function (or equivalently the radius rj of the
solution). Asymptotically (from the view point of polynomial-time computability)
this choice is optimal. However, in practice other choices might be more reasonable.
When evaluating the function yj we call the number of coefficients of the power series
that are summed up to get the desired output precision the order. We compare three
different methods to choose the step size:

1. Constant Step, Variable Order (CS-VO): We choose some λ ∈ (0, 1) and
set hj = λrj . This means the step size only depends on the function and not
on the output precision. This is the method used in the theoretical part of
the thesis (with λ = 0.5). To increase the precision, the order is increased.

83

6 Analytic functions and ordinary differential equations in exact real arithmetic

Theorem 4.3.2 shows that it suffices to choose the order polynomially large in
the desired output precision.

2. Variable Step, Constant Order (VS-CO): We fix some p ∈ N and only
sum up the first p terms of the power series to approximate the solution. We
choose the step size hj such that the error becomes small enough. The number
of steps grows exponentially in the desired output precision.

3. Variable Step, Variable Order (VS-VO): The same as the first method
but λ also depends on the desired output precision. Hence, both the number
of steps and the order increase with growing precision.

All the above methods automatically contain some form of adaptive step size mech-
anism depending on the radius rj . Some variants of the VS-CO method are usually
used to solve initial value problems both in numerical analysis as well as in interval
arithmetic. However, as mentioned before, for fixed order p the local truncation
error of this method is of order O(hp+1

j). As the precision requirement is of the form

2−n the number of steps will be exponential in the output precision, so we do not
expect this method to work well for our purpose.

Additionally, we present two different algorithms to compute the local solution
of the IVP:
Algorithm A computes fm as in (4.4) using operators on analytic functions and
then evaluates fm(y0) to compute the coefficients.
Algorithm B first computes the power series around y0 such that the initial value
with respect to the center of the power series becomes the origin. Then fm(0) is
computed to get the coefficient of the power series. Hence, we only need the first
coefficient of the solution series.

Algorithm A has the advantage that the fm can be precomputed in the beginning
and then only have to be evaluated at different points to compute the power series
in each step. On the other hand, the computation of the power series is easier in
Algorithm B and as y0 = 0 the step size is usually larger. For IVP solving operators
solveA and solveB corresponding to Algorithm A and B in this Section have been
implemented. Computations of the fm functions are first done symbolically. As
symbolic computations of derivatives can quickly increase the size of the DAG, this
is only done until the DAG reaches a certain size (which is defined as the number of
nodes in the DAG excluding children of prune nodes) and then the prune operator
is applied.

The maximum DAG size was chosen heuristically to be 105 for Algorithm A and
10 for Algorithm B. The reason for the big difference is that for Algorithm A fast
evaluation of the functions is important, while Algorithm B only needs to compute
the first coefficient of the power series. Also in Algorithm B the fm have to be com-
puted in each step and symbolic computations on large DAGs are computationally
expensive. The radius is obtained by using the higher order power series method
and iteratively increase the order and stop as soon as a higher order gives a worse
bound or some predefined maximum order is obtained.

All three step size methods presented in this section were implemented. For
the VS-CO method an order of 6 was chosen and all derivatives are computed

84

6.5 Experiments

symbolically. For the CS-VO method λ = 0.2 was chosen and for the VS-VO
method the number of steps was chosen to increase linearly with the precision.

6.5 Experiments

For evaluating our library we focused on the problem of solving ordinary differential
equations, since the algorithm uses most of the other functions of the library and
since we think that it is the problem with most practical applications. All code
was compiled using the Apple LLVM compiler version 8.0.0 (with flag -std=c++14)
and the latest (as of January 2017) version of iRRAM taken from the public GitHub
repository1. The experiments were performed on a Mac Book Pro with 2GHz Intel
Core i7 processor and 4GB DDR3 RAM running Mac OS Sierra (10.12.2).

iRRAM’s iterative approach poses some problems for the empirical evaluation as
we do not want the results to depend too much on implementation details of the
specific framework. We therefore use the following approach: Instead of specifying
the resulting precision we let iRRAM start with different precisions and in the end
denote the output precision and CPU time.

We used several test ODE systems to evaluate our algorithms some taken from
the classical DETEST [Hal73] dataset. We used Algorithm A for polynomials and
Algorithm B for all other functions. The reason is that polynomials are easy to differ-
entiate symbolically and the DAG size stays moderate. Thus, Algorithm A performs
much better than Algorithm B in this case. For arbitrary functions, however, the
DAG becomes too large and Algorithm A does not work well. One limitation of
our algorithms is that they do not work well if the absolute value of the solution
functions becomes very large. The reason for that is that the radius we can com-
pute for the solution function strongly depends on the maximum absolute value of
the function. However, this can be easily circumvented by scaling the functions to
guarantee that the values stay small.

Figure 6.3 shows a comparison of the different step size strategies on some simple
test functions. The initial value problems used to generate this test data are:

• A 1-dimensional polynomial system:

ẏ(t) = −0.5y(t)3; y(0) = 1.

• The trigonometric system defined by the cosine function:

ẏ(t) = cos(y(t)); y(0) = 0.

• A 1-dimensional rational system:

ẏ(t) =
1

y(t) + 10
; y(0) = 0.

• A 2-dimensional polynomial system:

ẏ1(t) = 2(y1(t)− y1(t)y2(t)); ẏ2(t) = y1(t)y2(t)− y2(t); y(0) = (1, 3).

1https://www.github.com/norbert-mueller/iRRAM

85

https://www.github.com/norbert-mueller/iRRAM

6 Analytic functions and ordinary differential equations in exact real arithmetic

200 400 600 800 1000 1200 1400
output precision (2−n)

0

200

400

600

800

ti
m

e
 (

s)

dim = 1

100 200 300 400 500
output precision (2−n)

0

1000

2000

3000

4000

5000

ti
m

e
 (

s)

dim = 2

CS-VO polynomial
VS-CO polynomial
VS-CO analytic

VS-VO polynomial
CS-VO analytic
VS-VO analytic

VS-CO trigonometric
CS-VO trigonometric
VS-VO trigonometric

VS-CO rational
CS-VO rational
VS-VO rational

Figure 6.3: The running time of the algorithms for different IVPs when following
the trajectory until t = 1.0 depending on the desired output precision
at the end.

• A 2-dimensional “trigonometric” system:

ẏ1(t) = y1(t)cos(y2(t)); ẏ2(t) = 1; y(0) = (1, 0).

• A 2-dimensional rational system:

ẏ′1(t) =
y1(t)− y2(t) + 4

y1(t) + y2(t) + 4
; ẏ2(t) = 1; y(0) = (0, 0).

• Additionally, the polynomial systems were used a second time but redefined
as generic analytic functions only by providing the power series, i.e., the algo-
rithm did not know that the input is a polynomial and symbolic manipulations
could not be made. This is denoted as “analytic” in Figure 6.3.

As expected, only using a constant number of coefficients of the power series does not
work well for our purpose. While it can be used for low precision, asymptotically
the number of steps needed and hence also the running time grow exponentially.
The precision where the method becomes unfeasible can be improved slightly by
choosing the constant order higher than we did (which is why this method works
well in interval arithmetic) but eventually the same problem occurs. The two other
methods perform quite similar, with the VS-VO method being slightly superior on
all test functions.

Figure 6.3 also clearly shows the benefit of the symbolic simplifications. The
biggest impact can be seen for polynomials. It is easy to symbolically differentiate
polynomials, thus even high order derivatives can be computed quickly. Further,
the result of (4.4) always stays a polynomial, which makes it possible to simplify
the DAG to a single node. Due to this, Algorithm A can be used which drastically
improves the running time as the derivatives only have to be computed once in the
beginning as opposed to in every step for Algorithm B. However, the improvement
does not only apply to polynomials: The chosen rational functions are also quite easy

86

6.5 Experiments

2

1

0

1

2
y(t)

0.020
0.015
0.010
0.005

0.000
0.005
0.010
0.015
0.020

ẏ(t)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
t

10-5

10-4

10-3

10-2

10-1

st
e
p

 s
iz

e

CS-VO VS-VO Algorithm B (CS-VO) VNODE-LP odeintVNODE-LP odeint

Figure 6.4: The step size chosen at each time step when integrating the van der pol
system ÿ = 10((1− y2)ẏ− y) with y(0) = 1.2 and ẏ(0) = 0.6. The upper
part shows the values of y and ẏ over t. To adapt the problem to our
algorithms we multiplied ẏ by a factor of 10−3 to avoid big numbers. The
lower part shows the step size chosen at each time step in logarithmic
scale. We compared our algorithms to the interval arithmetic solver
VNODE-LP and the numerical odeint method in python. Note that
odeint takes a sequence of time points for which to solve the ODE as
input instead of a single end point for which we chose 100 equidistant
points in the interval [0, 3.7].

to differentiate, while for the trigonometric functions the DAG grows more quickly.
We expect that improving the currently quite straightforward term simplification
algorithm and the DAG evaluation procedure will lead to a large class of standard
functions that can be solved very efficiently even for high precision.

For higher dimensions the trends seen in Figure 6.3 also hold. However, as the
complexity of evaluating analytic functions grows exponentially in the dimension,
the running time is much slower. Note that we only presented the results for a
very small number of concrete test functions and that the running time also heavily
depends on properties of the concrete function, especially the radius r and the
growth of the bound function M as the step size depends on them. Although the
general properties seen in Figure 6.3 (such as faster computation on polynomials)
hold in general the results can become much worse on more complicated systems.

Keeping the number of power series coefficients used low is essential to perform
operations efficiently especially for higher dimension. For this reason the difference
between the step size methods is much larger for two dimensions.

As to our knowledge no other ODE solver in such a general setting with high out-
put precision exists, it is hard to find competitors to compare our algorithms with.
Clearly, specialized interval solvers like VNODE-LP [Ned06b] are several magnitudes
faster for small output precision as they can use hardware floating point numbers
and optimizations that work well for fixed precision. However, in the current work
we are more concerned about the behaviour for medium and large output precision
as this guarantees robustness of our algorithms when used as part of larger programs.
It would therefore not be fair to compare the running times to those solvers. Nev-
ertheless, in Figure 6.4 we compare our step-size methods to the methods used by

87

6 Analytic functions and ordinary differential equations in exact real arithmetic

VNODE-LP and the odeint function contained in python’s scipy package [JOP+].
VNODE-LP uses interval arithmetic and thus gives guaranteed error bounds for
the result while the odeint method only gives a numerical approximation without
any guarantee for its quality. The step size for our algorithms depends heavily (for
the CS-VO method even exclusively) on the radius we get from equation (4.7). For
functions that attain large values the upper bound function M becomes large, mak-
ing the radius small. Algorithm B is less affected by that problem as the function
is always shifted so that y(0) = 0. Indeed, using Algorithm B gives the largest step
size, but it is also by far the slowest of our algorithms as the complexity of a single
step is much higher.

All our methods give a step size that is at least by a factor 100 smaller than the
one chosen by VNODE-LP and a factor 10 smaller than the one by odeint. How-
ever, as our approach has to work for arbitrary analytic functions and for arbitrary
precision, we simply can not make use of all the techniques that are employed to
attain these step sizes.

6.6 Summary

We applied some ideas from computable analysis and refined them to implement a
data-type for multi-dimensional analytic functions in exact real arithmetic. Using
this, we extended the iRRAM framework by an ODE solver for analytic right hand
side functions that can be used to approximate results up to any desired precision.

As expected, standard numerical methods do not scale well to higher precision.
On the other hand, performing operations on infinite power series makes sure that
the running time grows moderately with the desired output precision but in generally
is still very slow, especially for higher dimension.

Our experiments show that combining this method with symbolical manipula-
tions can drastically improve the running time in practice. In our current imple-
mentation this advantage is mostly used for polynomial right hand side functions.
In future work the naive symbolical simplification algorithm should be replaced by
more sophisticated approaches. This could lead to an efficient high precision solver
on a large class of right-hand side functions.

ODE solvers for high precision are quite rare and only few implementations
exist. To our knowledge the work presented here is currently the most general ODE
solver that allows arbitrarily precise approximations. The most similar work is a
solver for ODEs with polynomial right hand side that has recently been presented by
Brauße, Korovina and Müller [BKM15b]. As some of our results show, polynomials
allow many simplification that make much more efficient algorithms than on general
analytic functions possible. Although nearly all systems occurring in practice can
be transformed to polynomial systems, we still think our implementation is useful as
it is simpler to use and has the advantage that we can directly compute the solution
function making for example composition of our operator with another operator
very easy to implement.

Note that our current implementation is only a prototype with the main purpose
to show that the implementation of the theoretical results in the previous chapters

88

6.6 Summary

is indeed feasible and that the complexity bounds somehow correspond to the actual
implementation. Although we use some basic optimizations, the algorithms used for
the implementation are still extremely simple. Thus, it should not be difficult to
achieve better results by replacing them by more sophisticated methods.

For example, an important detail we omitted in our analysis is how to actu-
ally perform the operations on the power series coefficients as for polynomial time
computability the most simple and well known classical algorithms already suffice.
There are of course much more efficient algorithms on power series (see e.g. [BK78],
[vdH02], [vdH07]) and for a practical implementation this can make a crucial differ-
ence.

Finally, we would like to explore other representations for analytic functions
that can model more complicated domains or allow more efficient algorithms.

89

7 Conclusion

In this thesis we have given several results concerning the computational complex-
ity of ordinary differential equations and time-continuous dynamical systems. We
restricted our attention to systems given by analytic ordinary differential equations
and simulations over a bounded time interval.

As we have already summarized the most important results of the thesis in the
introduction, we conclude by some possible starting points for future work:

1. The representations defined in Chapter 3 are only for analytic functions on
very simple domains, namely polydiscs and the unit hypercube. While other
compact domains can be covered by polydiscs, it would be nice to also repre-
sent functions on more complicated domains. In particular, we do not have a
representation for entire functions, i.e., functions analytic on all points in Cd.
For such a representation it would however not suffice to only add discrete
information to the name. Thus, a simple parameterized complexity descrip-
tion as an Chapter 3 is not possible and we would need the full framework of
second-order complexity.

2. We only analyze the complexity of the algorithms presented in Chapters 3
and 4 in terms of polynomial time bounds. To compare concrete algorithms a
more detailed analysis for example in terms of O-notation is necessary. Such
an analysis is not possible in the framework of second-order complexity. An
alternative would be to consider the algebraic complexity, i.e., to count the
number of basic operations like addition and multiplications on real numbers.
One can also consider the bit-complexity, i.e., considering the complexity of
the algorithms on rational inputs in terms of the input length. Note that
such complexity bounds would depend on a multitude of different parameters
and thus become either very long and complicated if they are supposed to be
relatively tight.

3. The average-case analysis in Chapter 5 should be applied to other interesting
dynamical systems. Examples where it should be rather easy to apply the
theorem are other restrictions of the three-body problem like the spatial re-
stricted three body problem or the elliptic problem and similar problems like
the N -vortex problem. For more complicated systems like the general N -body
problem, however, it might be difficult to find good bounds on the phase-space
volume and thus some new insights might be necessary.

4. Average-case analysis seems to be a more natural choice to characterize what
can be computed efficiently in nature than worst-case complexity. Thus, we

91

7 Conclusion

think that its application should be extended not only to the problem of simu-
lating dynamical systems but also to other problems from analysis describing
phenomena in physics and nature.

5. The current implementation in Chapter 6 is only an early prototype. While
the asymptotic growth seems to match the theoretical analysis, the running-
time is much too slow to be useful in practice. There are several ways to
improve the implementation, for example using more sophisticated algorithms
for operations on power series, combining different methods depending on the
output precision and many more. As the theoretical analysis does not suffice
to compare such methods, it is also necessary to devise a set of benchmark
functions to thoroughly test the behaviour on different inputs.

6. As already mentioned above, in this thesis we focused on the short-term simu-
lation of dynamical systems as nice computability and complexity results hold
for such systems. On the other hand the mathematical theory of dynamical
systems mainly deals with long-term behaviour of systems, e.g., questions of
reachability, limit cycles, etc. Unfortunately, such long term behaviour of-
ten is non-computable. For example, the statistical long-term behaviour of a
system can be described by invariant measures [Nad13]. Computing invari-
ant measures of time-discrete dynamical systems in the sense of computable
analysis has been considered by several authors. It has been shown that all
invariant measures of a computable system can be non-computable [GHR09].
On the other hand, introducing a small amount of noise to the system renders
the measures computable and under some mild assumptions on the transition
function even efficiently computable [BGR12, BRS15]. Thus, long-term prop-
erties of dynamical systems with noise become more feasible. An interesting
task would be to extend those results to the time-continuous case. In the time-
continuous case a noisy dynamical system can be modelled by the solution of a
stochastic differential equation. Future work should investigate which results
for time-discrete systems with noise generalize to this model.

92

Bibliography

[AB09] Sanjeev Arora and Boaz Barak, Computational complexity: a modern
approach, Cambridge University Press, 2009.

[Arn13] Vladimir Igorevich Arnol’d, Mathematical methods of classical mechan-
ics, vol. 60, Springer Science & Business Media, 2013.

[BCRO86] Hans-J Boehm, Robert Cartwright, Mark Riggle, and Michael J
O’Donnell, Exact real arithmetic: A case study in higher order program-
ming, Proceedings of the 1986 ACM conference on LISP and functional
programming, ACM, 1986, pp. 162–173.

[BCSS12] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale, Complex-
ity and real computation, Springer Science & Business Media, 2012.

[Bel30] D. Beloriszky, Application pratique des méthodes de M. Sundman à un
cas particulier du problème des trois corps, Bulletin Astronomique 6
(1930), no. 2, 417–434.

[BGP12] Olivier Bournez, Daniel S. Graça, and Amaury Pouly, On the complexity
of solving initial value problems, ISSAC 2012-Proceedings of the 37th In-
ternational Symposium on Symbolic and Algebraic Computation, ACM,
New York, 2012, pp. 115–121. MR 3206294

[BGR12] Mark Braverman, Alexander Grigo, and Cristobal Rojas, Noise vs Com-
putational Intractability in Dynamics, Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference (New York, NY,
USA), ITCS ’12, ACM, 2012, pp. 128–141.

[BHW08] Vasco Brattka, Peter Hertling, and Klaus Weihrauch, A Tutorial on
Computable Analysis, New Computational Paradigms: Changing Con-
ceptions of What is Computable (S. Barry Cooper, Benedikt Löwe, and
Andrea Sorbi, eds.), Springer, 2008, pp. 425–491.

[BK78] Richard P Brent and Hsiang T Kung, Fast algorithms for manipulating
formal power series, Journal of the ACM (JACM) 25 (1978), no. 4,
581–595.

[BKM15a] Franz Brauße, Margarita Korovina, and Norbert Müller, Using Taylor
Models in Exact Real Arithmetic, International Conference on Mathe-
matical Aspects of Computer and Information Sciences, Springer, 2015,
pp. 474–488.

93

Bibliography

[BKM15b] Franz Brauße, Margarita Korovina, and Norbert Th Müller, Towards
using exact real arithmetic for initial value problems, International An-
drei Ershov Memorial Conference on Perspectives of System Informatics,
Springer, 2015, pp. 61–74.

[Bou13] Nicolas Bourbaki, Algebra II: Chapters 4-7, Springer Science & Business
Media, 2013.

[BRS15] Mark Braverman, Cristobal Rojas, and Jon Schneider, Tight space-noise
tradeoffs in computing the ergodic measure, arXiv:1508.05372 [cs, math]
(2015), arXiv: 1508.05372.

[Bru87] Heinrich Bruns, Über die integrale des vielkörper-problems, Acta Math-
ematica 11 (1887), no. 1-4, 25–96.

[BSS89] Lenore Blum, Mike Shub, and Steve Smale, On a theory of computation
and complexity over the real numbers: NP-completeness, recursive func-
tions and universal machines, Bulletin of the American Mathematical
Society 21 (1989), no. 1, 1–46.

[BV12] Luis Barreira and Claudia Valls, Dynamical systems: An introduction,
Springer Science & Business Media, 2012.

[CC94] YF Chang and George Corliss, ATOMFT: solving ODEs and DAEs
using Taylor series, Computers & Mathematics with Applications 28
(1994), no. 10-12, 209–233.

[CR96] George F Corliss and Robert Rihm, Validating an a priori enclosure
using high-order Taylor series, MATHEMATICAL RESEARCH 90
(1996), 228–238.

[DFS04] Luiz Henrique De Figueiredo and Jorge Stolfi, Affine arithmetic: con-
cepts and applications, Numerical Algorithms 37 (2004), no. 1-4, 147–
158.

[Fri84] Harvey Friedman, The computational complexity of maximization and
integration, Advances in Mathematics 53 (1984), no. 1, 80–98. MR
748898 (86c:03037)

[GHR09] Stefano Galatolo, Mathieu Hoyrup, and Cristóbal Rojas, Dynamics and
abstract computability: computing invariant measures, arXiv preprint
arXiv:0903.2385 (2009).

[GNSW07] Herman Geuvers, Milad Niqui, Bas Spitters, and Freek Wiedijk, Con-
structive analysis, types and exact real numbers, Mathematical Struc-
tures in Computer Science 17 (2007), no. 1, 3–36.

[Gol97] Oded Goldreich, Notes on Levin’s Theory of Average-Case Complexity,
Studies in Complexity and Cryptography, 1997.

94

Bibliography

[Gol08] Oded Goldreich, Computational complexity: a conceptual perspective,
ACM Sigact News 39 (2008), no. 3, 35–39.

[Grz57] A. Grzegorczyk, On the definitions of computable real continuous func-
tions, Fund. Math. 44 (1957), 61–71. MR 0089809 (19,723c)

[GZB09] Daniel S Graça, Ning Zhong, and Jorge Buescu, Computability, noncom-
putability and undecidability of maximal intervals of IVPs, Transactions
of the American Mathematical Society 361 (2009), no. 6, 2913–2927.

[Hal73] G. Hall, DETEST: A Program for Comparing Numerical Methods for
Ordinary Differential Equations, 1973.

[Hoo90] H James Hoover, Feasible real functions and arithmetic circuits, SIAM
Journal on Computing 19 (1990), no. 1, 182–204.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al., SciPy: Open source
scientific tools for Python, 2001–.

[Kaw10] Akitoshi Kawamura, Lipschitz Continuous Ordinary Differential Equa-
tions are Polynomial-Space Complete, Computational Complexity 19
(2010), no. 2, 305–332.

[Kaw11] , Computational Complexity in Analysis and Geometry, Ph.D.
thesis, University of Toronto, 2011.

[KC96] Bruce M. Kapron and Steven A. Cook, A new characterization of type-2
feasibility, SIAM Journal on Computing 25 (1996), no. 1, 117–132.

[KC12] Akitoshi Kawamura and Stephen Cook, Complexity theory for operators
in analysis, ACM Transactions in Computation Theory 4 (2012), no. 2,
Article 5.

[KF82] Ker-I Ko and Harvey Friedman, Computational complexity of real func-
tions, Theoretical Computer Science 20 (1982), no. 3, 323–352. MR
666209 (83j:03103)

[KF88] , Computing power series in polynomial time, Advances in Ap-
plied Mathematics 9 (1988), no. 1, 40–50.

[KLMR00] Wang Sang Koon, Martin W Lo, Jerrold E Marsden, and Shane D Ross,
Dynamical systems, the three-body problem and space mission design,
Equadiff 99: (In 2 Volumes), World Scientific, 2000, pp. 1167–1181.

[KMRZ15] Akitoshi Kawamura, Norbert Müller, Carsten Rösnick, and Mar-
tin Ziegler, Computational benefit of smoothness: Parameterized bit-
complexity of numerical operators on analytic functions and Gevrey’s
hierarchy, Journal of Complexity 31 (2015), no. 5, 689–714.

[Knu97] D.E. Knuth, The Art of Computer Programming: Fundamental algo-
rithms, Addison-Wesley series in computer science and information pro-
cessing, no. Bd. 1, Addison-Wesley, 1997.

95

Bibliography

[Ko83] Ker-I Ko, On the computational complexity of ordinary differential equa-
tions, Information and control 58 (1983), no. 1-3, 157–194.

[Ko91] , Complexity theory of real functions, Progress in Theoretical
Computer Science, Birkhäuser Boston Inc., Boston, MA, 1991. MR
1137517 (93i:03057)

[Kon08] Michal Konecnỳ, AERN-Real: Arbitrary-precision interval arithmetic
for approximating exact real numbers, 2008.

[KS05] Daren Kunkle and Matthias Schröder, Some examples of non-metrizable
spaces allowing a simple type-2 complexity theory, Electronic Notes in
Theoretical Computer Science 120 (2005), 111–123.

[KST16] Akitoshi Kawamura, Florian Steinberg, and Holger Thies, Data-types
for Multidimensional Functions in Reliable Numerics - Implementations
Inspired by Real Complexity Theory, in Proc. of Workshop on Algo-
rithms and Computation WAAC’16, 2016.

[KST18] , Parameterized Complexity for Uniform Operators on Multidi-
mensional Analytic Functions and ODE Solving, Proceedings of the 25th
International Workshop on Logic, Language, Information, and Compu-
tation, Springer, 2018, pp. 223–236.

[KTZ18] Akitoshi Kawamura, Holger Thies, and Martin Ziegler, Average-case
polynomial-time computability of Hamiltonian dynamics, LIPIcs-Leibniz
International Proceedings in Informatics, vol. 117, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[KW85] Christoph Kreitz and Klaus Weihrauch, Theory of representations, The-
oretical computer science 38 (1985), 35–53.

[Lam07] Branimir Lambov, RealLib: An efficient implementation of exact real
arithmetic, Mathematical Structures in Computer Science 17 (2007),
no. 1, 81–98.

[Lan13] Serge Lang, Complex analysis, vol. 103, Springer Science & Business
Media, 2013.

[Lev86] Leonid A Levin, Average case complete problems, SIAM Journal on
Computing 15 (1986), no. 1, 285–286.

[MHO08] Kenneth Meyer, Glen Hall, and Dan Offin, Introduction to Hamiltonian
dynamical systems and the N-body problem, vol. 90, Springer Science &
Business Media, 2008.

[Mil70] Webb Miller, Recursive function theory and numerical analysis, Journal
of Computer and System Sciences 4 (1970), no. 5, 465–472.

96

Bibliography

[Mil74] R. H. Miller, Numerical difficulties with the gravitational n-body prob-
lem, Proceedings of the Conference on the Numerical Solution of Ordi-
nary Differential Equations (Berlin, Heidelberg) (Dale G. Bettis, ed.),
Springer Berlin Heidelberg, 1974, pp. 260–275.

[Mil91] Andrea Milani, Chaos in the three body problem, Predictability, stability,
and chaos in N-body dynamical systems, Springer, 1991, pp. 11–33.

[MKC09] R.E. Moore, R.B. Kearfott, and M.J. Cloud, Introduction to Interval
Analysis, SIAM e-books, Society for Industrial and Applied Mathemat-
ics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 2009.

[MM93] B Moiske and N Müller, Solving initial value problems in polynomial
time, Proc. 22 JAIIO-PANEL, vol. 93, 1993, pp. 283–293.

[MRWZ18] Norbert T. Müller, Siegfried M. Rump, Klaus Weihrauch, and Martin
Ziegler, Reliable Computation and Complexity on the Reals (Dagstuhl
Seminar 17481), Dagstuhl Reports 7 (2018), no. 11, 142–167.

[Mül87] Norbert Th. Müller, Uniform Computational Complexity of Taylor Se-
ries, Proc. 14th International Colloquium on Automata, Languages, and
Programming, LNCS, vol. 267, Springer, 1987, pp. 435–444.

[Mül95] Norbert Th. Müller, Constructive Aspects of Analytic Functions, Proc.
Workshop on Computability and Complexity in Analysis, Informatik-
Berichte, vol. 190, FernUniversität Hagen, 1995, pp. 105–114.

[Mül00] Norbert Th. Müller, The iRRAM: Exact Arithmetic in C++, CCA,
2000, pp. 222–252.

[Nad13] Mahendra Ganpatrao Nadkarni, Basic ergodic theory, Springer, 2013.

[Ned06a] Nedialko S Nedialkov, Interval tools for ODEs and DAEs, Scien-
tific Computing, Computer Arithmetic and Validated Numerics, 2006.
SCAN 2006. 12th GAMM-IMACS International Symposium on, IEEE,
2006, pp. 4–4.

[Ned06b] , VNODE-LP-a validated solver for initial value problems in or-
dinary differential equations, 2006.

[Pai97] Paul Painlevé, Leçons, sur la théorie analytique des équations
différentielles: professées à Stockholm (septembre, octobre, novembre
1895) sur l’invitation de SM le roi de Suède et de Norwège, A. Her-
mann, 1897.

[PeR79] Marian Boylan Pour-el and Ian Richards, A computable ordinary dif-
ferential equation which possesses no computable solution, Annals of
Mathematical Logic 17 (1979), no. 1-2, 61–90.

97

Bibliography

[PER89] Marian B. Pour-El and J. Ian Richards, Computability in analysis and
physics, Perspectives in Mathematical Logic, Springer-Verlag, Berlin,
1989. MR 1005942 (90k:03062)

[Poi90] Henri Poincaré, Sur le probleme des trois corps et les équations de la
dynamique, Acta mathematica 13 (1890), no. 1, A3–A270.

[QD90] Wang Qiu-Dong, The global solution of the n-body problem, Celestial
Mechanics and Dynamical Astronomy 50 (1990), no. 1, 73–88.

[Saa73] Donald G. Saari, Improbability of Collisions in Newtonian Gravitational
Systems. II, Transactions of the American Mathematical Society 181
(1973), 351–368.

[Saa77] , A global existence theorem for the four-body problem of New-
tonian mechanics, Journal of Differential Equations 26 (1977), no. 1,
80–111.

[SBM67] Carl Ludwig Siegel, K Balagangadharan, and MK Venkatesha Murthy,
Lectures on the Singularities of the Three-body Problem, Tata Institute
of Fundamental Research Bombay, 1967.

[Sch04] Matthias Schröder, Spaces allowing type-2 complexity theory revisited,
Mathematical Logic Quarterly 50 (2004), 443–459.

[SeS57] José Sebastião e Silva, Su certe classi di spazi localmente convessi im-
portanti per le applicazioni, Matematika 1 (1957), no. 1, 60–77.

[Sid13] Thomas C Sideris, Ordinary differential equations and dynamical sys-
tems, Springer, 2013.

[SSZ15] Matthias Schröder, Florian Steinberg, and Martin Ziegler, Average-Case
Bit-Complexity Theory of Real Functions, Mathematical Aspects of
Computer and Information Sciences, Springer, Cham, November 2015,
pp. 505–519 (en).

[Sun13] Karl F. Sundman, Mémoire sur le problème des trois corps, Acta Math-
ematica 36 (1913), no. 0, 105–179.

[Tur36] A. M. Turing, On computable numbers, with an application to the
Entscheidungsproblem., Proceedings of the London Mathematical So-
ciety. Second Series 42 (1936), 230–265.

[vdH02] Joris van der Hoeven, Relax, but don’t be too lazy, Journal of Symbolic
Computation 34 (2002), no. 6, 479–542.

[vdH07] , On effective analytic continuation, Mathematics in Computer
Science 1 (2007), 111–175.

[Vui90] Jean E Vuillemin, Exact real computer arithmetic with continued frac-
tions, IEEE Transactions on computers 39 (1990), no. 8, 1087–1105.

98

Bibliography

[VZ08] H Von Zeipel, Sur les singularités du probleme des n corps, Almqvist &
Wiksells, 1908.

[Wal13] Wolfgang Walter, Gewöhnliche Differentialgleichungen: eine
Einführung, Springer-Verlag, 2013.

[Wei00] Klaus Weihrauch, Computable Analysis, Springer, Berlin/Heidelberg,
2000.

[Xia92] Zhihong Xia, The existence of noncollision singularities in Newtonian
systems, Annals of mathematics 135 (1992), no. 3, 411–468.

[Yao03] Andrew Chi-Chih Yao, Classical physics and the Church–Turing Thesis,
Journal of the ACM (JACM) 50 (2003), no. 1, 100–105.

[Zha15] Lei Zhao, Quasi-Periodic Almost-Collision Orbits in the Spatial Three-
Body Problem, Communications on Pure and Applied Mathematics 68
(2015), no. 12, 2144–2176.

99

	Introduction
	Context
	Motivation and overview
	Notation and basic definitions

	Background
	Computable Analysis
	Representations
	Type-2 computability
	Type-2 machines

	Topological considerations
	Computability of real operators and functionals
	Uniform and non-uniform results
	Computational complexity
	Computational complexity of real functions
	Complexity of real operators

	Second order complexity
	Length of string functions and second-order polynomials
	Second-order representations
	Reductions

	Practical considerations
	Other models of real computation

	Representations for analytic functions
	Motivation
	Power series and analytic functions
	Analytic functions
	Operations on power series
	Non-uniform complexity

	Parameterized type-2 complexity
	Representations for multidimensional analytic functions
	Topology of the space of analytic functions
	Uniform computations with power series
	Polynomial-time computable operators on multidimensional power series
	Scaling
	Uniform computations with real analytic functions
	Analytic continuation

	Summary

	Ordinary differential equations
	Introduction
	Computing a local solution
	Improving the radius

	Computing a global solution
	Unbounded time
	Comparison to numerical methods and interval arithmetic
	Polynomial initial value problems

	Average case complexity for Hamiltonian dynamical systems
	Motivation
	Dynamical systems
	Basic definitions
	The simulation problem for dynamical systems
	Hamiltonian systems

	Examples of Hamiltonian systems
	The N-body problem
	The restricted three-body problem
	Generalized Newtonian mechanics

	Average-case complexity
	The classical case
	Average-case complexity for real functions

	Average-case complexity for Hamiltonian dynamical systems
	Retracting to initial values
	Average-case complexity

	Average-case complexity for the restricted three-body problem
	Summary

	Analytic functions and ordinary differential equations in exact real arithmetic
	iRRAM
	Real number representation
	Non-continuous and multivalued functions

	Data-types for analytic functions
	Heuristic improvements
	Affine arithmetic
	Combination with symbolic methods

	IVP solving
	Experiments
	Summary

	Conclusion

