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Dynamical systems are used to model a large number of processes in nature whose state
evolves over time. They are usually described by ordinary differential equations in the time-
continuous or function iterations in the time-discrete case. In both cases some of the quantities
involved are real numbers.

In the theory of computation Turing machines or equivalent models of computation are
used to define the notion of computability. Turing machines compute functions from finite
strings to finite strings, that is, functions F : Σ∗ → Σ∗ for some fixed finite alphabet Σ. While
computations over discrete objects like natural numbers, rational numbers or graphs can be
defined by choosing an appropriate encoding for these objects as finite strings, the set of reals is
uncountable and it is therefore impossible to find such an encoding. Classical computability and
complexity theory can thus only be applied to problems where input and output are discrete.

Computable Analysis extends computability theory to computations with uncountable
quantities such as real numbers. The theory already dates back to Turing [10] with later
important contributions for example by Grzegorczyk [2]. The rigorous study of computational
complexity in this model was initiated by Ko and Friedman [6]. The underlying idea is that
while real numbers can not be encoded finitely, they can be approximated arbitrarily well e.g.
by rationals. Thus, it is possible to encode a real number by an approximation function that
gives approximations to said number up to any desired precision. The theory can be extended
beyond the reals to other uncountable sets using the framework of representations (see e.g. [11]).

In this thesis we study several new aspects regarding the computational complexity of
problems involving dynamical systems and ordinary differential equations.

The first part of the thesis deals with uniform efficient computability of operators in anal-
ysis, i.e., of functions mapping real functions to real functions. Important operators like inte-
gration or maximization have been shown to be hard from a complexity theoretical perspective
(see e.g. [1, 3]). It therefore can not be expected that efficient algorithms for these opera-
tors exist on general functions. On the other hand, if we restrict our attention to the class
of analytic functions, it is well known that many important operators map polynomial-time
computable functions again to polynomial-time computable functions [7, 8]. The formulation
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of these theorems is, however, usually non-uniform: They do not state how to transform a
description of a function to a description of the resulting function after applying the operator.

A uniform formulation requires the definition of a representation for function spaces of
analytic functions. The complexity of operators can then be studied in the framework of second-
order complexity [4]. Recently, some representations for one-dimensional analytic functions on
different domains have been defined and uniform complexity results have been shown [5].

However, considering only one-dimensional functions does not suffice for many interesting
applications including the problem of solving ordinary differential equations. The first result in
this thesis is therefore a generalization of the one-dimensional representations to multidimen-
sional analytic functions. Using these representations we show that many important operators
on multidimensional analytic functions are second-order polynomial-time computable. We then
apply the results to study the uniform computational complexity of solving initial value prob-
lems of ordinary differential equations with analytic right-hand side functions. We show that
this problem is polynomial-time computable in terms of the output precision and some natu-
ral parameters of the right-hand side functions and thereby generalize some recent results on
polynomial ordinary differential equations to the analytic case.

A main motivation for our considerations is to better understand computational prop-
erties of systems in nature. We therefore want to study the computational complexity of
time-continuous dynamical systems that are used to model, for example, processes in classical
physics. For this application, worst-case complexity turns out to not be an adequate model:
For finite complexity bounds to exist, we have to make rather unnatural assumptions on the
domain of the problem. Indeed, for many systems the computational complexity depends in
some sense on the distance of trajectories to singularities of the system. Thus, while in the
worst-case trajectories might come arbitrarily close to singularities, for many systems such a
situation is rather unlikely. That is, the computation can be typically done efficiently even
though there might be special cases where the computation time is unbounded.

Such a statement can be made formal using average-case complexity. We show how to apply
average-case complexity to the problem of simulating a dynamical system. To this end, we
characterize the computational complexity in terms of the distance of trajectories to complex
singularities of the system. We then use this to show that if the probability of trajectories
getting very close is small, the system can be simulated in polynomial time on average.

For an important subset of dynamical systems, the Hamiltonian systems, we can further
improve that statement. Hamiltonian systems are widely used in physics to describe the mo-
tion of mechanical systems. They have the important property that volume of subsets of phase
space remains constant over time. We can use this to relate the volume of subsets of phase
space that are close to singularities to the volume of the initial values leading to such a state
at some point in time. Hereby we can define some very general conditions under which a
Hamiltonian system can be computed in polynomial time on average. As an application we
show that the planar circular restricted three-body problem is average-case polynomial time
computable.
Finally, we also consider the practical relevance of our theory. Our representations for analytic
functions can be used as a basis for an implementation of a solver for initial value problems
in exact real arithmetic. We further explore some heuristics that can be used to make the
implementation more efficient in practice and provide a prototypical implementation built on
the iRRAM C++ framework [9].
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