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Abstract

The process of cellular uptake of molecules is called endocytosis, which sustains
the intracellular homeostasis. During the endocytosis, the extracellular molecules
are engulfed by the cell in the form of vesicle, and the vesicle starts to navigate the
cytoplasmic area from the plasma membrane to the center of the cell. The move-
ment of endocytic vesicle in a living cell contains significant information that can
be broadly utilized in the biomedical applications, such as drug delivery. Therefore,
many researches have been conducted hitherto as focusing on the mechanism of
vesicle transport in the molecular level in vitro. The precise movement of a vesicle in
the intracellular area, however, has been considered as one of the challenging tasks
in biophysics. The reason why is that the vesicle inevitably interacts with complex
cytoskeletal network in a living cell, which appears as a complicated movement tra-
jectory, and this hinders the accurate detection and analysis of the vesicle movement.
Here, this dissertation aims to provide a complete set of vesicle movement analysis
method for understanding the vesicle movement in a complex cytoskeletal architec-
ture, and to present the actual features of the three-dimensional vesicle movement
detected in a living cell, in terms of the interaction between the vesicle and cytoskele-
tal network. As a prerequisite for the accurate detection of vesicle position data, the
development of axial position stabilization system is also proposed.

In chapter 1, the overall background of the vesicle movement in cytoplasmic
area is introduced, with the importance of the information acquired from the vesicle
movement in a living cell and the history of the related studies. In addition, the
complexity in analysis of the movement trajectory of vesicle is explained.

In chapter 2, the enhancement in three-dimensional imaging optics is presented
for achieving high accuracy in vesicle position detection, by developing and in-
stalling the external axial position stabilization system. Because live-cell microscopy
imaging system typically suffers from thermal and vibrational fluctuations, it is im-
perative to secure absolutely stable imaging condition for acquiring precise three-
dimensional position data of the target. Based on the capacitive sensor, the axial
position stability was achieved as keeping the constant distance between the objec-
tive lens and microscope stage, using the feedback control.

In chapter 3, a novel numerical method for analyzing the detailed movement of
vesicle is introduced, as a cornerstone for understanding the vesicle movement in a
complex cytoskeletal network in living cell. In contrast to the hitherto analysis meth-
ods, the numerical method features intuitiveness and practicality as a combination
of geometrical and statistical approaches. Treating the three-dimensional trajectory
of vesicle as a data point set in a space, the local curvature of the trajectory is detected
by angle correlation function after the noise reduction. Since the interaction between
the vesicle and cytoskeleton appears as the linearity and persistency in the trajectory,
the location of cytoskeletons were estimated by principal component analysis. The
precise angular and translational movement of vesicle on the estimated cytoskeleton
was presented as a vector calculation utilizing the relationship between the consec-
utive data points and projected points.

In chapter 4, the endocytic vesicle movement acquired by live-cell imaging is an-
alyzed by the numerical analysis method, and the newly revealed detailed features
of three-dimensional vesicle movements in a microtubule network are presented.
In the experiment, the vesicle-quantum dot movement in GFP-tubulin expressing
KPL4 human breast cancer cell was tracked. The transfer angle of vesicle between
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two crossed microtubules was measured in three dimensions, which turned out to
be either very acute (10–60◦) or obtuse (100–180◦), but with similar time scale, 0.5 s.
This result reflects the actual angles of microtubule crossings in living cell. Particu-
larly, vesicles on their long-range transports (> 400 nm) showed a unique rotational
movement around the axis of microtubule with high probability of occurrence (> 50
%), which consists of quick dodging and gentle walking, regardless of the direction
of rotation. Additionally, the angular intervals between the adjacent quick dodgings
appeared to be 180◦ in almost all rotational movements. These characteristic angular
motions suggest the reaction of the vesicle when it encountered an obstacle on the
microtubule.

In chapter 5, the conclusion of this dissertation is presented. This study proposed
a pioneering understanding of the detailed feature of vesicle movement which nav-
igates in a complex cytoskeletal architecture. This dissertation covered from estab-
lishing the stable and reliable three dimensional live cell imaging condition to de-
veloping the practical analysis method and revealing the actual vesicle movement
in terms of precise angular and translational motion. Therefore, it is expected that
this work will inspire the related studies for better understanding the vesicle move-
ment in a living cell, as an initiative platform.
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Chapter 1

Introduction

This dissertation focuses on reporting the precise movement of endocytic vesicle in
a complex cytoskeletal network, which is analyzed by a newly developed numerical
method. Particularly, characteristic rotational movements of vesicles around the axis
of estimated cytoskeletons are described in detail. Each chapter in this dissertation
describes following respective contents: In chapter 1, the overall background and
motivation for the vesicle movement analysis are introduced, and the main purpose
of this research is clarified. In chapter 2, the three-dimensional imaging microscopy
assisted by the newly developed axial position stabilization system is described as
a prerequisite condition for vesicle position data acquisition with high spatiotempo-
ral resolution. Chapter 3 presents a novel numerical analysis method for the vesicle
movement in terms of vesicle-cytoskeleton interaction, which enables us to recog-
nize the precise dynamics of vesicle in a complicated interconnected cytoskeletal
network structure. In chapter 4, the applications of numerical analysis method to the
actual vesicle movement data acquired in a living cell are illustrated. Particularly,
characteristic rotational vesicle movements detected in active transport sections are
reported and analyzed in detail. In addition, the discussion about the biological sig-
nificance of the observed vesicle movement is addressed. Finally, the conclusion of
this dissertation is summarized in Chapter 5.

1.1 Background and motivation

1.1.1 Endocytic vesicles in cells

Living cells are required to continuously intake extracellular molecules in order to
maintain their intracellular homeostasis, through the biochemical process called ‘en-
docytosis’ (Conner and Schmid, 2003a; Alberts, 2017). The extracellular molecules
engulfed via endocytosis are delivered into cytoplasmic area, as a form of vesicle.
The vesicles created by the endocytosis can be called endocytic vesicles, and the
transport of them are critical for the life of cells, as they contribute to the delivery of
the nutrients as well as to the intracellular signal cascade (Sorkin and Zastrow, 2002).
Also, the homeostasis of the plasma membrane is sustained by the transport of vesi-
cles in that the lipid bilayers surrounding the vesicle are recycled back (Maxfield and
McGraw, 2004).

A diagram of cell cross section shown in Fig. 1.1 illustrates the geometry of vesi-
cle as an intracellular organelle with respect to the entire feature of a eukaryote cell.
Fig. 1.1 (A) describes the endomembrane system of a cell where vesicle is in the ini-
tial stage of being budded at the plasma membrane (LadyofHats, 2006). The process
of endocytosis, where the vesicle is now a separated sac from the plasma membrane
is shown as a zoomed view in Fig. 1.1(B). Therefore, as shown in Fig. 1.1 (C), the
outer shell of the vesicle is lipid bilayer which comes from the plasma membrane
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FIGURE 1.1: Cell cross section and endocytic vesicle (LadyofHats,
2006). (A) Cross section of a cell. The budding of plasma membrane
is the initial stage of endocytosis which produces vesicle. (B) Zoomed
view of the bud at plasma membrane and vesicle, which explains the
process of endocytosis. (C) Cross section of a vesicle. The shell of
vesicle is the lipid bilayer comes from plasma membrane, enclosing

the extracellular molecules.
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and encloses the molecules inside. Note that the plasma membrane of cells is lipid
bilayer which consists of outer hydrophobic domain and inner hydrophilic domain,
and this prevents the vesicle from being dissolved instantly while protecting the in-
ner materials (Simons and Ikonen, 1997).

1.1.2 Vesicle transport and its complexity

The importance of vesicle transport has been recently emphasized, since many bio-
medical applications for therapeutic purposes such as drug delivery are expected to
take advantages from the core information regarding the intracellular vesicle trans-
port mechanisms (Chou, Ming, and Chan, 2011; Matveev et al., 2001; Hess and Vo-
gel, 2001). Fundamentally, the drugs can be considered as a chemical agents sur-
rounded by protection barrier until they reach the biological target, the idea of load-
ing drugs on nanoparticles is reasonable as well as promising, provided that subtle
and selective control for the nanoparticle delivery is achievable. In fact, cellular level
biochemical techniques are in progress, but still the ability and performance of such
applications are primitive. The reason why the task has been challenging is largely
because our understanding of the particle transport, which is vesicle transport in
case of natural condition, is still not yet elucidated in detail.

For example, although the vesicles are started to be formed by budding of the
plasma membrane and recruited by motor proteins to be transported on the cy-
toskeletons, each step is only conceptually known, or observed in the limited condi-
tion such as via electron microscope. Also, the precise movement of the vesicle on
the cytoskeletons had been thoroughly studied in terms of the physical properties
of single motor protein – such as the amount of force generated or the length of step
size – which mediate the interaction between vesicle and cytoskeleton, but only in
in vitro system and only for a single molecule. However, since the vesicles navigate
their destination in cytoplasmic area by being transported on the cytoskeleton, the
information about the movement of vesicle as a result of the interaction between
vesicle and cytoskeleton in a living cell condition is the core for understanding this
biological process.

One of the main hurdles which prevent us from investigating the precise move-
ment of vesicle on the cytoskeleton in a living cell is that the endocytic vesicle in-
evitably interacts with complex cytoskeletal network structure after it entered the
cytoplasmic area, rather than interacting with only a single cytoskeletal filament
as frequently exploited in hitherto in vitro experiments which indeed had oversim-
plified the reality. In the actual intracellular condition, vesicles experience higher
probability of interacting with multiple motor proteins while repeatedly attaching
and detaching to multiple cytoskeletons, in a complicated interwound architecture
of the cytoskeletal network. Such inherent complexity in the vesicle movement led
to the lack of standard methods or models for analyzing the precise motion of the
vesicle in the intracellular area.

Therefore, it is a critical task to establish a reliable analysis model for under-
standing the detailed feature of vesicle movement observed in a living cell condi-
tion, which is robust against not only to the noise of the practical imaging system
but also to the inherent complexity of the vesicle movement trajectory caused by the
multiple-cytoskeleton involvement.
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FIGURE 1.2: (A) Diagram of intracellular cytoskeletons. In the itracel-
lular area, microtubules are spread out from microtubule-organizing
center (MTOC) which is located perinuclear area. On the other hand,
actin filaments are located cell periphery where cell membrane ex-
periences frequent fluctuation in morphology. The actin-rich area
is often called as a leading edge of a cell, in that cells migrate in
the direction where the density of actin is high. Lamellipodium (pl.
lamellipodia) refers to the ruffling structure of leading edge, and
filopodium (pl. filopodia) indicates the extended lamellipodia by
bundling of actin filaments. (B) Image of actin filament in a living
cell. LifeAct-labeled actin filaments are imaged via common fluores-
cent microscopy. Note that the actin filaments are distributed densely
near the leading edge. White dashed line indicates the entire cell
shape. (scale bar = 10 µm) (C) Image of microtubule in a living cell.
GFP-labeled microtubule network is imaged via common fluorescent
microscopy. Note that the microtubules forms complicatedly inter-
connected architecture all over the intracellular area. (scale bar = 10

µm)
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1.2 Interaction between vesicle and cytoskeleton

The term ‘cytoskeleton’ covers several types of filament-like structure in the cyto-
plasmic area that sustain the shape of a living cell. The most representative types
of cytoskeleton can be considered as microtubule, actin filament, and intermediate
filament (Chang and Goldman, 2004). Microtubule shows a hollow tube-like shape
which consists of α-β tubulin heterodimers as a structural unit (Li et al., 2002), and
actin filament forms a dense network at the leading edge of a cell by spreading ex-
tensive branches (Svitkina and Borisy, 1999). Intermediate filaments are rod-like
bundles of filament, and play the main role in supporting the shape of a cell and
cytoskeletal crosstalk (Chang and Goldman, 2004).

In the intracellular area, as shown in Fig. 1.2, microtubules are spread out from a
microtubule-organizing center (MTOC), which usually locates near the nucleus, and
plays a role as a main track in the cytoplasmic area. Actin filaments are observed
near the cell edge, especially the leading edge of a cell, where the membrane shows
a ruffling structure caused by frequent actin polymerization. The microtubule and
actin filament are often referred to as tracks for vesicle trafficking, in that motor pro-
teins such as myosin, kinesin, and dynein recruit the vesicle as a cargo and carry
them on these cytoskeletal filaments, by interacting both cargo and track simultane-
ously (Vale, 2003).

Although the diagram shown in Fig. 1.2 (A) depicted the cytoskeletons in a
sparse manner, actin filaments and microtubule filaments in living cells usually form
a dense network structure. Figure 1.2 (B) is the image of actin filament labeled by
SiRActin. Since the actin filaments actively polymerize near the cell edge, it is recog-
nizable that the leading edge contains a large area of actin network, while the trailing
edge accommodates a long and thick bundle of actin filament. Note that the actin
filament network near the cell edge is so dense that a single filament is not even dis-
tinguishable under common fluorescent microscopy. Also, when microtubules in a
living cell are labeled by GFP and imaged, as shown in Fig. 1.2 (C), the microtubule
shows an interwound structure which is interconnected together covering the entire
cytoplasmic area.

1.2.1 Myosin molecules and actin filaments

Since the actin filaments are distributed near the cell edges, where the vesicle starts
to enter the intracellular area, it is expected that actin filaments are involved in the
initial stage of the vesicle transport. Although the specific mechanism of vesicle
transport in the network structure of actin filaments has not yet been fully explained,
the type of motor proteins which gives the locomotion on the actin filament when
the vesicle is transported at the actin-rich area is known as unconventional myosins,
that are myosin V and myosin VI (Cheney and Mooseker, 1992; Titus, 1997; Woolner
and Bement, 2009).

While conventional myosins are referred to be the type of myosin which forms
a filament, such as myosin II, and mediate the contraction and relaxation of mus-
cle, unconventional myosins including myosin V and myosin VI are known to be
involved in the vesicle transport without forming filament-like structure. In in vitro
experiments, the single molecule of actin-based processive motor myosin V shows
∼ 35 nm in step size upon ATP hydrolysis with characteristic hand-over-hand walk
(Ali et al., 2002; Yildiz et al., 2003). On the other hand, myosin VI has been reported
to have a larger step size than myosin V, but to the backward direction (Wells et al.,
1999; Rock et al., 2001). In in vivo condition, the speed of myosin V is known to be
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200 nm s−1, while myosin VI is - 60 nm s−1 (Ron Milo, 2016). Note that the negative
sign implies the inward direction. Although myosin V works alone or as a group of
few molecules, the model of action of myosin VI is still largely unknown (Ron Milo,
2016). Simple diagram in Fig. 1.3 (A) depicts the movement of a vesicle along an
actin filament mediated by myosin V (upper) and myosin VI (lower).

Moreover, several reported facts hinders the accurate analysis of vesicle trajec-
tory in actin filament network. For example, the actin filament itself shows a coiled
structure (Ecken et al., 2015). Also, the myosin involved in intracellular vesicle trans-
port is known to walk in a spiral manner along the actin filament, in case of in vitro
(Ali et al., 2002). In addition, the fact that there exist mixture of forward and back-
ward movement regardless of the type of myosins according to the affinity between
myosin and actin filament makes the study in depth over the vesicle trajectory in the
cell leading edge more complicated.

1.2.2 Kinesin, dynein and microtubule

In the case of microtubule, kinesin and dynein are the representative motor proteins
related to the vesicle transport (Hirokawa, 1998; Goldstein and Yang, 2000; Vale,
2003; Ross, Ali, and Warshaw, 2008).

Kinesin is one of the most studied motor protein families, the physical proper-
ties and functions of which are vastly researched (Courty et al., 2006; Hirokawa and
Noda, 2008). The most important function of kinesin is that this motor protein car-
ries a cargo in the direction of where the microtubule filament polymerizes, which
is named as a plus end (Howard and Hyman, 2003). The velocity of kinesin for
vesicle tranport was measured as near 600 nm s−1 (Courty et al., 2006). Since the
microtubule spreads out as polymerizing in the radial direction toward the plasma
membrane, kinesin might be considered as the motor protein which only concerns
the exocytosis, which mediates the movement of secretory vesicles. However, be-
cause the vesicle interacts with multiple cytoskeletons while frequently changing
direction, kinesins also can be considered to be involved in endocytic vesicle move-
ment. Figure 1.3 (B) shows the cargo movement on a microtubule when kinesin
molecule is involved.

Dynein also has been substantially studied since several decades (Aniento et al.,
1993; Mallik et al., 2004; He et al., 2005). Since cytoplasmic dyneins are known to
walk along the microtubule toward the minus end, which is the direction to the
center of a cell, dynein can be considered as a direct mediator of endocytic vesicles
that are transported on the microtubules. In terms of physical property, dyneins
showed around 8 nm of stepsize and 800 nm s−1 of velocity in in vitro condition
(Toba et al., 2006). In the case of in vivo the mean velocity was measured as - 1000
nm s−1 (Ron Milo, 2016). Note that the negative sign implies the inward direction.
Figure 1.3 (B) represent the movement of vesicle along a microtubule filament when
dynein carries the cargo.

Unlike the case where myosin V and actin filament are involved in vesicle deliv-
ery, it has been known that the cargos are carried along microtubule linearly without
spiral motion based on simple in vitro assay. However, one of the recent researches
using three dimensional bridge assay showed that dynein also show a helical move-
ment along the axis of microtubule, but without preference in the direction of spiral
motion, in in vitro experiment (Can, Dewitt, and Yildiz, 2014). This discovery en-
larged our understanding about the precise motion of vesicle on the microtubule,
and simultaneously leaves a question whether the shape of vesicle movement on
the microtubule in a living cell would show a similar feature.
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FIGURE 1.3: Cytoskeleton and motor proteins (A) The diagram of
cargo carriers myosin V and VI when walking on actin filaments. (B)
Dynein and kinesin are the mediator of vesicle transport on micro-

tubule to the direction of plus end and minus end, respectively.
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1.3 Vesicle movement in a cytoskeletal network

If we confine our attention to the principle of vesicle movement, it might seem that
almost all of the major information is already obtained, since the origin of the lo-
comotion that vesicle gains while it navigate the intracellular area is unveiled by
discovering the existence of motor proteins. As mentioned in the previous section,
it is known that the motor proteins such as myosin, kinesin, and dynein carry the
cargo along the track such as actin filament and microtubule. Moreover, since a great
number of researches on the precise step size or the amount of force generated by a
single molecule of motor protein have been accumulated via extensive in vitro exper-
iments and data collections, one might consider that we now can completely analyze
the vesicle movement observed in living cell condition by such numbers.

1.3.1 Reasons for complexity

Strikingly, however, the movement of vesicle in a living cell still remains largely elu-
sive. In fact, there are not even many reported vesicle trajectories acquired in three
dimensions with high spatiotemporal resolution, which is essential for the analysis.
The reason why we hardly understand the actual movement of vesicle trajectory
also owes to several particular conditions that make significant difference from the
in vitro condition: First, unlike a precisely controlled single-molecule assay system,
a vesicle is recruited by multiple numbers and multiple types of motor proteins in
cytoplasmic area, due to the high concentration of motor proteins in living cell con-
dition. Second, since the microtubule and actin filament form a dense network struc-
ture that are interconnected in three dimensions, the trajectory data of a vesicle in
such area are hardly distinguishable in terms of the interaction between the vesicle
and the involved cytoskeletons.

The aforementioned circumstance, where multiple numbers and multiple types
of motor proteins are involved in a single vesicle movement in a living cell has actu-
ally been anticipated and concerned by many researchers, together with the progress
in the motor protein studies conducted in in vitro. In fact, the situation in which
multiple numbers and multiple types of proteins interact with a single vesicle on
a cytoskeleton has been called ‘tug-of-war’, imaging several motor proteins with
opposing directionality pull simultaneously the identical vesicles (Okada, Higuchi,
and Hirokawa, 2003; Welte, 2004; Nan et al., 2005). For example, as shown in Fig. 1.4,
kinesins and dyneins can interact a vesicle at the same time, since both of them can
interact with microtubule. In addition, since the actin filament and microtubule can
be closely located in the cytoplasmic area, pulling between myosin molecules and
kinesin or dynein molecule over the same cargo also cannot be completely ruled
out.

In contrast to the problems regarding the involved motor proteins, the latter rea-
son which concerns the complex architecture of cytoskeleton network is rather struc-
tural and intuitive. Regardless of the motor proteins interacting with cytoskeletons,
vesicle is expected to interact with cytoskeletons in an intermittent manner, from
the statistical point of view. Since it can be visually proved if the cytoskeletons and
vesicle are imaged at the same system with high spatiotemporal resolution, many
approaches have been made to elucidate the detailed feature of vesicle movement in
terms of the precise interaction between the vesicle and cytoskeletons.
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FIGURE 1.4: Vesicle movement in a cytoskeletal network (A) Vesicle
moving between actin filament and microtubule. Conceptually, endo-
cytic vesicle travels from the actin-rich area to microtubule dominant
area can experience the tug-of-war between myosin molecules and
microtubule-binding molecules such as kinesin or dynein. Note that
the actin filaments form a branched structure in living cell condition
(Mullins, Heuser, and Pollard, 1998). (B) In a microtubule network
structure, the vesicles also can be pulled by different types of motor

proteins that might work as a group.
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1.3.2 Recent approaches

In order to understand the movement of vesicle navigating in a complex cytoskele-
tal network, various approaches have been made. Among these approaches, one of
the most popular topics is to visualize and analyze the vesicle movement at the in-
tersection of two crossing microtubules, which is a highly probable situation for an
endocytic vesicle traveling in a microtubule network. Since the microtubules orga-
nize a complex three dimensional network structure, vesicles are inevitably required
to interact with multiple microtubule filaments, which is accompanied with the in-
teraction between the vesicle and the microtubule intersections. Figure 1.5 shows
the fluorescent image of actual network structure of microtubule near cell periphery.
Microtubules labeled by GFP in Fig. 1.5 (A) shows a complex and interconnected
feature of microtubule, which are not always radially located from the center of the
cell where MTOC is located. In fact, it is recently known that not only MTOC but
other organelles, such as Golgi apparus, can be the center where the microtubules
anchor to (Martin and Akhmanova, 2018), which aids the network structure of mi-
crotubules in living cell to be more complicated as shown in Fig. 1.5 (B) and (C).

Earlier studies concerning the shape of vesicle motion at the microtubule – mi-
crotubule intersection have categorized the types of movement of the vesicle, such as
pass, pause, switch, dissociate, and reverse, according to the decision of the vesicle
on the intersection (Vershinin et al., 2007; Ross et al., 2008). Although these studies
enlarged our understanding about the movement pattern of vesicle when multiple
microtubules are involved, still the information concerning the actual vesicle traf-
ficking in a microtubule architecture was not enough, because the experiments have
been conducted in in vitro environment, mainly focusing on the numbers or the types
of the motor proteins that take part in carrying the cargo. In contrast to the limited
in vitro condition, vesicles are carried more dynamically in more complicated archi-
tecture of microtubules in a living cell condition.

As one of the initial approaches for detecting the movement of vesicle in liv-
ing cell condition, a switching motion of the vesicle between two microtubule tracks
were observed in living neuronal cells (Mudrakola, Zhang, and Cui, 2009). Although
they succeeded in detecting and analyzing the detailed motions of vesicle when it
switched from a microtubule filament to another, the question whether the vesicle
actually traveled on two different microtubules remains, because the vesicle trajec-
tory analysis was presented without the microtubule images. The initial observa-
tion of the pattern of vesicle movement at the microtubule intersections with cor-
relative image of microtubule was conducted recently (Bálint et al., 2013; Verdeny-
Vilanova et al., 2017), using superresolution imaging technique, Stochastic Optical
Reconstruction Microscopy (STORM). They detected and analyzed the movement of
lysosomes on the stabilized microtubules, and categorize the pattern of movements
into several groups: pause, pass, switch, and reverse, at the microtubule intersec-
tion. Also, they suggested that such pattern of lysosome movement at the micro-
tubule intersection can be originated from the separation between the microtubules,
by comparing the rate of occurrence of pause or switch according to different sep-
aration. Since the separation of microtubules are meaningful criteria considering
the average diameter of vesicles (∼ 100 nm), the movement patterns of the cargo
at the microtubule intersection having different separation were modeled in in vitro
condition using beads and de novo microtubules (Bergman et al., 2018).

Although previous researches have enlarged our knowledge about the move-
ment of the vesicle where multiple number of cytoskeletons are involved in cargo
transport, there exist limitations which hinder us from accessing the information
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FIGURE 1.5: Network architecture of microtubule in a living cell. (A)
Microtubule labeled by GFP was imaged via fluorescent microscopy.
The microtubules are organized a complex network covering the en-
tire intracellular area. (scale bar = 10 µm) (B) Zoomed view of a
small patch in the microtubule network image. The microtubule fil-
aments spread from the center of the cells are not parallel but form a
complicated network structure as crossing one another. (C) Diagram
sketched based on the extracted information about the microtubule
geometry from the zoomed view. The pink dots represent the posi-
tion of microtubule intersection. Note that the intersections are de-
termined based on two dimensional information, which includes the
cases of crossed microtubule separated axially. However, such inter-
sections are also counted as the points where vesicle possibly experi-
ence transfer or switching, considering the common size of endocytic

vesicles (∼ 100 nm in diameter).
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about detailed features of vesicle movement in a complex cytoskeletal network.
Most importantly, the resolution of microtubule images are still between the range
of several tens of nanometers and a hundred nanometer, in axial direction, which
plays a critical role in detecting the precise geometry between the carried cargo and
the cytoskeleton. Also, since the vesicles are imaged in time-lapse condition, the
movement of vesicle occurring in a short time span, for example at 100 fps (frame
per second), has not yet been fully explained in terms of the interaction between the
vesicle and cytoskeletal architecture.

1.4 Advances in microscopy imaging techniques

Achieving high spatiotemporal resolution microscopy imaging is the prerequisite in
investigating the precise movement of vesicle, and have been widely studied and
developed. In fact, our understanding about the shape of small particle movement
including the vesicle movement in a cell has been deepened in accordance with the
development of the microscopy imaging technique, in that the image is the major
source of the information. The recent advent of superresolution microscopy, which
refers to the microscopy imaging techniques that overcome the limit of the optical
diffraction which is classically known as Abbe’s formula shown below, has directly
accelerated the related studies which allowed us to discover the unknown phenom-
ena actually have happened in the molecular world.

d =
λ

2nsinα
(1.1)

where d indicates the diffraction limit and nsinα corresponds to the numerical
aperture (NA) of the imaging system. Since the diffraction is the original property
of light, it has been considered that the imaging resolution limit is determined by
the wavelength of the light and the number of numerical aperture equipped in the
imaging system. However, considering the range of wavelength usually exploited
in microscopy, which is the visible light, the structure smaller than several hundreds
of nanometers could have not been clearly observed, before the scheme of superres-
olution microscopy has appeared. Initiated from single molecule imaging (Funatsu
et al., 1995), the superresolution microscopy imaging techniques have extensively
studied (Yildiz et al., 2003; Huang et al., 2008; Dertinger et al., 2009; Chen et al., 2014;
Gustafsson et al., 2016). These studies directly enabled superresolution imaging by
dramatically lifting up the spatial resolution beyond the conventional imaging limi-
tations.

Although the recent advances in superresolution imaging technique has shed
light on the observation of the single molecules, adopting the superresolution scheme
and directly installing the optics to existing system might not always be the practical
solution. This is because the limitation of temporal resolution of respective super-
resolution method might not be suitable to the customized imaging plan, and the
superresolution itself does not guarantee the imaging system stability which greatly
influences to the quality of image that is directly related to the reliability of the ac-
quired information.

Most importantly, the axial position stability in three-dimensional microscopy
imaging system is primarily required (Speidel, Jonáš, and Florin, 2003; Neuman and
Nagy, 2008; Hayazawa, Furusawa, and Kawata, 2012), regardless of which types
of high spatiotemporal resolution scheme is adopted. The reason why the z-axis
stability is crucial is because the imaging system can be influenced by the external
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environment, which cannot be completely removed within optical system. Since
such surrounding conditions affect the axial position stability the most significantly,
considering the direction of gravity, establishing the robust imaging system in terms
of axial stability is imperative.

1.5 Vesicle movement analysis methods

Provided that the perfect data sets of vesicle trajectory are acquired with sufficiently
high spatiotemporal resolution in absolutely stable imaging system, it is not the end
of the story when it comes to whether all the information in such trajectory data is
now understandable and all the questions are solved. In fact, even if the precise
data point sets of vesicle movement are obtained, there is not much information we
can take directly from then, in that the vesicle trajectories are basically acquired as a
lump of position data which is seemingly rambling inside somewhere in a cell (Huet
et al., 2006; Racine et al., 2007). The direction of movement is frequently changing
rather than persisting in one direction, and some area in the trajectory shows quite
random motion with a large variance in position while other area shows intermittent
pauses with a small variances. This is a natural outcome of the vesicle trajectory data
as a result of the interaction between the vesicle and other organelles in cytoplasm,
including a complex cytoskeletal network, not caused by any uncontrolled condi-
tions we need to deal with. In fact, as two distinguishable representative movement
patterns of a vesicle inside a cell, diffusion and active transports have been consid-
ered.

1.5.1 Diffusion of vesicle

One of the basic movement patterns in vesicle trajectory that can appear in a cyto-
plasmic area is a simple diffusion. In fact, since a vesicle is budded from the plasma
membrane as a small sac, the amphiphile property of the surface of vesicle which is
originated form the cell membrane plays various roles in the cytoplasmic area (Dis-
cher and Eisenberg, 2002). However, provided that the vesicles are not yet anchored
to any organelle by motor proteins or other protein, the probability is high that the
vesicles simply diffuse into intracellular area according to the physical properties of
vesicle and cytoplasm (Luby-Phelps, 1999; Brangwynne et al., 2008). Although it
spontaneously occurs, the vesicles can be delivered to some extent in cytoplasm by
diffusive motions, the diffusion is also called as passive transport.

In case of this passive transport, the vesicle position at time t is randomly deter-
mined with respect to the initial position, considering the vesicle acts as a random
walker due to the Brownian motion. For defining the diffusivity, mean squared dis-
placement (MSD), the variance in the position of the vesicle at time t compared to its
previously detected position at t = 0, is often calculated (Metzler and Klafter, 2000;
Howse et al., 2007; Meijering, Dzyubachyk, and Smal, 2012). The equation of MSD
can be expressed as following.

MSD(τ) = ⟨∆r(τ)2⟩ = ⟨[r(t + τ)− r(t)]2⟩ (1.2)

where r indicates the three-dimensional position of the vesicle at time t, and τ
refers to the time difference between the position r(t) and r(t + τ) (Crocker and
Grier, 1996; Frenkel and Smit, 2001; Savin and Doyle, 2007). Using this equation,
the diffusion of vesicle can be easily detected as the MSD curve for diffusive move-
ment is drawn to be approximately linear, in that the probability of being traveled to
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FIGURE 1.6: MSD plot for an example vesicle trajectory. (A) A repre-
sentative trajectory of vesicle movement acquired in the cytoplasmic
area. Three distinguishable domains are manually selected based on
the fact whether the movement appeared to be persistently linear or
not. While section 2 shows apparently linear, the other section 1 and
section 3 are seemingly neither linear nor persistent in the direction of
travel. (B) MSD plot for each section recognized in the vesicle trajec-
tory. The number of order α = 1 and α = 2 are depicted in the orange
dashed lines, as the representative cases of active transport and pas-
sive transport, respectively. The slope of MSD plot is close to α = 2
in case of section 2, while the section 1 and section 3 are close to or

smaller than α = 1.
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certain extent is time-dependent in case of random walk. For such simple diffusion,
the diffusion coefficient is determined by the slope in the MSD plot (Chandrasekhar,
1943; Qian, Sheetz, and Elson, 1991). More specifically, for the diffusive movement
as a result of Brownian motion, the MSD can be interpreted as following, assuming
the medium is isotropic.

MSD(τ) = 2nDτα (1.3)

where D denotes the diffusion coefficient, n refers to the number of dimensions,
and α is determined by the power of MSD plot over τ (Dupont et al., 2013). The
details about the meaning of MSD and the use of α is explained in the later section
comparing with the concept of active transport.

1.5.2 Active transport of vesicle

In contrast to free diffusion, active transport in the intracellular area specifically
refers to the vesicle movement on the cytoskeleton, such as actin filament and mi-
crotubule, mediated by respectively binding motor proteins. Although the free dif-
fusion occurs spontaneously without requiring energy, the active transport requires
energy to be occurred. The kinetic energy for the active transport is supplied by
the motor protein, mainly as a chemical energy from adenosine triphosphate (ATP)
hydrolysis which is involved in the force generation of the motor proteins (Vale,
1987; Howard, 2001). Since the motor proteins such as myosin, kinesin, and dynein
transform the chemical energy into mechanical energy, the cargo can be effectively
delivered along the respective cytoskeletal filament.

Therefore, the shape of vesicle trajectory when it is actively transported by the
motor protein appears highly linear and direct along the cytoskeleton, as revealed
in the ATP-addition experiment in vitro (Vale, 1987). In the case of living cell, the
concentration of ATP is maintained at a physiological level as functioning crucial
roles such as a chemical switch related with cell death (Leist et al., 1997). Using the
ATP existing in the cytoplasmic area, motor proteins bound to the vesicle can deliver
their cargo along cytoskeleton showing a persistently linear and direct movement,
as long as the motor proteins are interacting with both vesicle and cytoskeleton at
the same time.

Besides such strong visual evidence–the linear and direct vesicle movement–
about the active transport, the higher value of MSD of the active transport compared
to the passive transport has played a role as one of the major criteria to determine
whether the obtained vesicle trajectory is active or passive transport. Convention-
ally, the slope acquired from the power-law fits of MSD over the lag time τ is close
to the first order when the vesicle experiences passive transport, while the active
transport produces the slope close to the second order in the same MSD graph. This
number of order is defined as α in Eq. 1.3.

Figure 1.6 (A) shows an example trajectory of a vesicle obtained in cytoplasmic
area. Apparently, the trajectory consists of partial diffusions and partial linear and
persistent movement, even in a single trajectory. The vesicle did not move much in
the direction of travel in section 1 and section 3, while the active transport is recog-
nizable in section 2 as it shows persistently linear movement compared to the initial
and final pauses. When these three visually distinguishable sections are divided and
the MSD for each section is plotted in log–log graph, as shown in Fig. 1.6 (B), the
value α of the section 2 is close to α = 2 while others were close to or smaller than
α = 1. The conventional threshold value of α for the active transport is determined
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when α = 2 ± δα, and α = 1 ± δα refers to the diffusive movement, and α < 1 − δα

indicates that the vesicle experiences sub-diffusive motion or confined in some area
(Dupont et al., 2013), where δα indicates the standard deviation which may vary
upon the measurement systems.

Although the MSD efficiently provides the information about the state of vesi-
cle movement, depending on MSD solely to determine the initial position and final
position for dividing the sections in vesicle trajectory according the value α involves
entire scanning of the position data, which is time-consuming and cost-inefficient.
Also, since the visual information is not exploited in MSD calculation, the valuable
visual information that can be acquired from the geometry of vesicle trajectory is
neglected. Therefore, various modified analysis methods have been suggested to
understand the precise movement of vesicle, in more effective ways.

1.5.3 Various analysis methods

First of all, many mathematical approaches start with the idea that is related to pre-
cisely determining the partial domain of active transport, because the core informa-
tion about the vesicle delivery is considered as the specific section where the vesicles
are delivered on the cytoskeleton mediated by motor protein. Therefore, as a mod-
ification of MSD dependent method, some studies suggest the geometry-assisted
approach in determining the local domain for efficient MSD calculation and com-
parison.

The angle correlation function which is related to the local curvature of vesicle
trajectory is one of the representative case in such modified suggestions (Arcizet et
al., 2008; Harrison et al., 2013). In this case, since the geometry information in vesi-
cle trajectory is exploited, the methods gain more persuasiveness in that the active
transport sections are determined as relatively alined linear domains. The angle cor-
relation function is often customized according to the system characteristics, such as
following equation (Arcizet et al., 2008).

∆θi(δ(i)) = ⟨(θ(i′ + δi)− θ(i′))2)⟩1/2
−(T/2)<i′<(T/2)′ (1.4)

where i indicates the time index, and T refers to the size of the scanning win-
dow. θ can be exploited in determining the local curvature, for recognizing whether
the movement trajectory is linear or not within the local domain. In this case, the
active transport section in the vesicle trajectory is determined when the calculation
result of both angle correlation function and the α value satisfies the predetermined
conditions, linear and direct movement and α ∼ 2, respectively. Although the angle-
correlation assisted MSD evaluation method have provided new insight into the ef-
ficient and intuitive analysis method for complex vesicle movement, still questions
remained in terms of validity and adaptability to three-dimensional vesicle trajec-
tory including the necessity of MSD.

Another approach to identify the directional persistence in vesicle movement is
based on a statistical model, and one of the most representative cases is the method
using Hidden Markov Model (HMM) (Das, Cairo, and Coombs, 2009; Röding et al.,
2014). Basically, HMM is a statistical prediction about some hidden states with the
sequence of observation and the probability between the hidden states (Schuster-
Böckler and Bateman, 2007). Since the active transport and passive transport of the
vesicle movement can be considered as two hidden states, applying HMM to vesicle
trajectory can be reasonable. Although this kind of statistical model is attractive
and features good accuracy, the intuitiveness of the method is not much appealed
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FIGURE 1.7: Concept for the vesicle movement in a complex cy-
toskeletal network (violet rods). The endocytic vesicle (mint cargo)
inevitably interact with multiple cytoskeletons while navigating the
intracellular area. Provided that the microscopy imaging system is
stable, three-dimensional position of a vesicle detected somewhere in
the cytoplasm, which is depicted as ri at time ti, can be tracked and
analyzed. The numerical analysis method presented in this disserta-
tion opens a door to understanding the precise movement of vesicle
on the cytoskeleton after recognizing the linear section from the vesi-
cle trajectory and estimating the accurate position of the cytoskeleton
in three dimensions. The information about the cytoskeletal network,
such as an angle φ between the cytoskeletons, can be also investi-

gated.

because the visual information from the geometry still was not exploited as in the
case of MSD calculation alone.

Various analysis methods stated above have been suggested hitherto for under-
standing the complex vesicle movement. However, there have not yet been a com-
plete set of analysis method, which practically provides the guideline for distin-
guishing the active transport and passive transport, with robust evidence. Most im-
portantly, the precise vesicle movement in the active transport section has not been
clearly explained in terms of the geometry between the vesicle and cytoskeleton,
which contains a core biological information about the vesicle delivery occurring in
a complicated cytoskeletal architecture in a living cell. Therefore, an intuitive and
reliable analysis method for vesicle movement has been highly required.
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1.6 Purpose and outline

The major purpose of this dissertation is to provide a complete set of numerical
analysis method for understanding the vesicle movement in a complex cytoskeletal
network, and to report the three dimensional movement of the vesicle interacting
with the interwound cytoskeleton filaments, in terms of angular and translational
movement along the axis of the cytoskeleton. The numerical analysis method pre-
sented here treats the continuous vesicle trajectory as a discrete data point set that is
grouped according to the property of interaction between the vesicle and surround-
ing, as shown in Fig. 1.7. As a prerequisite condition for securing the high spatial
resolution in three dimensions, establishing the axial position stabilization system
for the microscopy imaging is also explained as one of the accomplishments.

In this introductory chapter, the importance of understanding the vesicle move-
ment in a living cell was emphasized, and the inherent complexity of vesicle move-
ment trajectory was explained. Also, the two state of vesicle transport – active trans-
port and passive transport – were described to introduce why many studies hitherto
have focused on recognizing the active transport, which is the persistent and linear
movement along the cytoskeleton.

In chapter 2, the details of imaging microscopy system for acquiring three dimen-
sional vesicle position data is described. Besides the evaluation of x, y coordinates
as a center of the point spread function (PSF), the intensity information acquired
via the scheme of dual focus optics (Watanabe et al., 2007) is exploited to obtain the
z-coordinate. Since the axial stability is crucial for the data reliability, as a newly
developed equipment, the axial position stabilization system achieved by feedback
control is presented (Lee, Kim, and Higuchi, 2018a).

In chapter 3, the concept and details of novel numerical analysis method for a
complex vesicle trajectory is explained (Lee, Kim, and Higuchi, 2018b). Gaussian fil-
ter and modified angle correlation function is suggest to calculate and determine the
linear domain from the local curvature of the vesicle trajectory, and the validity is
tested with simulation. Most importantly, the method for the cytoskeleton position
estimation in the recognized linear section is proposed based on Principal Compo-
nent Analysis (PCA). Also, the vector analysis method is described for analyzing the
feature of interaction between the vesicle and cytoskeleton.

In chapter 4, as a result of numerical analysis method application, three dimen-
sional motion of vesicles in a complex microtubule network in living cell condition,
in terms of the angular and translational interaction between the vesicle and micro-
tubule. Since the unique rotational motions around the axis of microtubule were
discovered in the analysis, the characteristics in rotational movement of vesicle is
illustrated. In addition, the causes of the rotational movement are discussed.

Finally, in chapter 5, the overall summary is presented. The diagram for the
outline of this dissertation is illustrated in Fig. 1.8.
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FIGURE 1.8: The outline and flow of this dissertation illustrated in a
diagram.
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Chapter 5

Conclusion

This dissertation presented the three-dimensional vesicle movement in a complex
cytoskeleton network in a living cell, based on a novel numerical analysis method.
Since the movement of endocytic vesicle in the intracellular area contains key infor-
mation for various biomedical applications which exploit the mechanism of vesicle
delivery, understanding the precise movement of vesicle in a living cell condition
has been considered as one of the momentous topics in biophysics. Although re-
cent advances in microscopy imaging techniques enabled us to detect more accu-
rate position of the vesicle with high spatiotemporal resolution, extracting biological
meaning from the observation was not simple, because there exists few applicable
analysis method for the vesicle trajectory. With above background, this study re-
ported the endeavors to understand the detailed feature of vesicle movement in a
three-dimensional network of cytoskeletons.

In chapter 1, the background of this study was explained with the introduction of
basic molecular mechanisms involved in the vesicle transport. The history of related
studies which have mainly focused on the motor proteins were introduced, and the
complexity of vesicle movement in living cell condition, where the vesicle inevitably
interacts with multiple cytoskeletons during its navigation, was emphasized in com-
parison with the purified experimental condition. Since our understanding about
the vesicle movement is closely related with the accuracy in the vesicle position ac-
quisition via microscopy imaging, the contribution of enhanced imaging techniques
including superresolution microscopy to the study of vesicle movement was de-
scribed. In addition, the importance of axial position stability was underlined as
a remaining work for accurate reconstruction of vesicle trajectory in three dimen-
sions. Additionally, the existing analysis methods developed for understand the
vesicle movement were introduced with respective strong and weak point, in order
to urge the importance of developing appropriate analysis method. The purpose
and the outline of the dissertation was proposed at the end of the chapter.

Chapter 2 was dedicated to explain the improvement of three-dimensional mi-
croscopy which was exploited in the microscopy imaging experiment to obtain reli-
able three-dimensional position data acquisition. In particular, the development of
axial position stabilization system was explained with the proof of its performance.
Basically, the imaging system for live-cell experiments were established following
the concept of dual focus optics (Watanabe et al., 2007), which utilizes the intensity
information of quantum dot-labeled endocytic vesicle. In order to track the vesi-
cle with high accuracy in dual view, affine transformation-based image mapping
scheme was applied with self windowing auto-tracking method. Most importantly,
the development and application of the axial position stabilization system to the
imaging system was described, which compensate external fluctuation by axial po-
sition feedback control (Lee, Kim, and Higuchi, 2018a).
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In chapter 3, a novel numerical analysis method which was devised to detect and
analyze the detailed movement of vesicle from its complex trajectory data was pre-
sented (Lee, Kim, and Higuchi, 2018b), as a core of this dissertation. Since the vesicle
trajectory appears complicated as a result of irregular interactions between the vesi-
cle and the interwound cytoskeleton network, appropriate analysis method has been
highly required. The proposed analysis method, which was developed for meeting
the need, was introduced as a series processes from linear section finding algorithm
to the estimation on the cytoskeleton location. Because the active transport section
where the vesicle is transported by motor proteins on the cytoskeleton appears lin-
ear in intracellular area due to the nature of linearity of cytoskeletons, the proposed
analysis method started with finding the linear sections in the vesicle trajectory, after
removing noise with Gaussian filter. The liner sections were screened by the curva-
ture of trajectory using the threshold angle to define the local linearity. Principal
component analysis was applied to detect the direction of travel for the local linear
domain, and the location of cytoskeleton for the linear section was estimated using
the eigenvector which shows the largest eigenvalue. Additionally, based on simple
vector calculation, the detection method for angular and translational movement of
vesicle on the estimated cytoskeleton was also described.

Chapter 4 reported the actual three-dimensional movements of vesicles in a com-
plex microtubule network (Lee and Higuchi, 2018: to be submitted), which were im-
aged with axial position stabilization system explained in chapter 2 and analyzed by
the numerical analysis method introduced in chapter 3. The vesicle trajectories pro-
vided the information about the angles between the microtubules in their network
structure, and the time taken for the vesicles at their transfer between the adjacent
microtubules. The transfer of vesicle could be divided into abrupt direction change
and smooth transfer, because the transfer angles were turned out to be either very
acute (10–60◦) or obtuse (100-180◦). However, the distributions of time taken for
the transfer showed similar time scale, which was approximately 0.5 s. Particularly,
the vesicle showed rotational movement on the estimated location of microtubules,
in both left-handed and right-handed direction. Since the rotational movement of
vesicle showed with high probability (> 53 %) for the long-range transport and there
existed incomplete rotations such as turning-back motions, it is highly probable that
the rotational motion of vesicle were induced by obstacles they encountered on their
path.

Consequently, this dissertation provides the initiative analysis method and its
result of the three-dimensional movement of vesicle during its navigation in a com-
plex cytoskeletal network. For establishing a reliable imaging condition, which is
the prerequisite of the accurate observation, axial position feedback control system
was developed (Lee, Kim, and Higuchi, 2018a). As a vesicle movement analysis
method, a novel numerical algorithm was devised based on principal component
analysis and vector calculation, which plays a significant role in detection of pre-
cise vesicle movement in terms of the interaction between the cytoskeletons (Lee,
Kim, and Higuchi, 2018b). The actual vesicle movement trajectory was analyzed
by the numerical method, and it was possible to detect the pattern of vesicle move-
ment in a complex cytoskeletal network in terms of the transfer angle and time scale.
In particular, unique rotational motion of vesicle around the microtubule axis was
discovered, which suggest the reaction of vesicle when it encountered an obstacle
during the transport (Lee and Higuchi, 2018: to be submitted). As an initial result
of vesicle movement analysis including the detection of detailed motions, this study
is expected to open a door for understanding the precise movements of vesicle in a
living cell.
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