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Abstract

In this thesis, we study electron spin resonance (ESR) induced by an AC electric
field in the Hubbard model. The weakly correlated and strongly correlated regimes
are both considered, but with different approaches which effectively split the thesis
into two parts.

In the non-interacting limit, we first investigate spin-flip transitions in the one-
dimensional (1D) and two-dimensional (2D) tight-binding models. The synergetic
effect of strong spin-orbit coupling (SOC) and Zeeman splitting (ZS) on the spin reso-
nance is studied using the Kubo formula. With both SOC and ZS, the spin resonance
can be induced by an AC electric field: the so-called electric dipole spin resonance
(EDSR). The resulting contribution to the optical conductivity is analyzed analyti-
cally. We show that the electromagnetic absorption spectrum is considerably influ-
enced by the interplay of SOC and ZS, and depends on the relative angle between
the SOC vector and the magnetic field direction. In particular, the EDSR is domi-
nant over the traditional magnetic-dipole-induced ESR. Additionally, the spectrum
depends on the lattice, the band structure, and the Fermi energy. In 2D systems, we
show that spectrum becomes continuous with unexpected singularities.

The effect of the Coulomb repulsion U on the spin resonance is also studied nu-
merically in the 1D model. We find that at half-filling, the resonance is first enhanced
for small U but vanishes when the optical gap becomes larger than the kinetic hop-
ping amplitude t.

In the second part of the thesis, we study the low-energy electric-dipole-induced
magnetic transitions in the Mott insulating phase, below the optical gap. By treat-
ing the inter-site hopping as a perturbation, we show how the electric polarization
operator can have non-trivial matrix elements between different low-energy mag-
netic states through virtual hopping of the electrons. This effective spin-polarization
coupling is in general allowed in trimers for the single-band Hubbard model. In ad-
dition, we exhaustively derive the possible two-spin effective polarization operators
emerging from spin-dependent hopping.

Motivated by terahertz spectroscopy measurements in α-RuCl3, a so-called Ki-
taev material, multi-orbital Hubbard models are then considered. We develop a
theory for magnetoelectric (ME) effects in Mott insulators of d5 transition metal ions
in an octahedral crystal field. For 4d and 5d compounds, the extended orbitals favor
charge fluctuations of the localized electrons to neighboring ions and a significant
ME effect from electronic mechanisms is expected. The electric polarization originat-
ing from two-spin operators on bonds of nearest-neighbor sites is considered. The
allowed coupling is first derived using a symmetry approach. Then, the effective
polarization operator in the ground state manifold is evaluated using perturbation
theory. We show in particular that the involved lattice structure of Kitaev materials
results in a new type of electronic ME coupling.

Finally, we calculate the optical conductivity of ideal Kitaev materials originating
from the derived ME coupling. Using exact analytical results of the Kitaev honey-
comb spin model, we calculate the continuous terahertz spectrum of the quantum
spin liquid originating from Majorana excitations.
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Chapter 1

Introduction

1.1 Motivation and aim of thesis

Resonance phenomena offer a powerful tool to study a wide variety of properties of
condensed matter. For instance, magnetic resonance is fundamental to the study of
the quantum mechanical magnetic properties of a system. Historically, the first re-
ported observation of nuclear magnetic resonance (NMR) in condensed media was
made in 1946 by the groups of Felix Bloch and Edward Mills Purcell [1–3], who
were awarded the 1952 Nobel Prize in Physics. Electron spin resonance (ESR), also
called electron paramagnetic resonance (EPR), is a closely related technique also dis-
covered in the 1940s [4] in which the transitions between electronic spin levels are
detected, rather than nuclear ones. ESR, while providing a much higher sensitivity
than NMR does, is only possible in materials with unpaired electron spins. Such
materials, in very general terms (including both metals and insulators), are the focus
of this thesis.

When placed in a uniform static magnetic field, the energy of a single electron
spin is split into two energy levels separated by a gap ∆Z due to the Zeeman ef-
fect. If the magnetic dipole is perturbed with an oscillatory electromagnetic field of
frequency close to ωres = ∆Z/!, a transition between its two energy eigenstates is pos-
sible. As the photon frequency approaches ωres, the probability that it gets absorbed
increases.

However, an electron is not only a spin, but it is a moving charged particle.
Hence, while the magnetic part of the electromagnetic field affects the electron spin,
the electric part of the field also affects the electron through its motion. The study
of the response of matter to an oscillating electric field, or optical response, is one of
the main purposes of the vast branch of physics called optics. Customarily, the spin
and charge (i.e., motional) degrees of freedom of electrons are treated independently
when considering their response to an electromagnetic wave.

Light interacts with matter through both its magnetic and electric field. The most
direct way it can probe a system of electrons is through one-photon absorption pro-
cesses originating from the linear coupling between the electromagnetic field to the
magnetic dipole and electric dipole operators of the system. The AC magnetic field,
on the one hand, couples to the spin of each electron and the corresponding ab-
sorption spectrum is directly related to the imaginary part of the dynamical spin
susceptibility χ(ω), which is measured with ESR spectroscopy. The typical magnetic
energy range for electronic systems is roughly 0.1 − 10 meV, which corresponds to
resonance frequencies of up to a few THz. The AC electric field, one the other hand,
couples to the motion of the electrons and its absorption spectrum is proportional
to the real part of the optical conductivity σ(ω). Here, the term “optical” covers the
entire frequency range (and is not restricted to visible light) but the frequencies typi-
cally considered are much higher than for the magnetic resonance. The nature of the
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optical absorption heavily depends on the type of material considered. For instance,
a nearly free electron system is well described by the Drude model down to ω = 0,
while an insulator has an optical gap below which the optical conductivity vanishes.
To be more specific, the distinction between metals and insulators is defined by the
behavior of σ(ω) as ω→ 0, as we will discuss later in this introductory chapter.

However, this spin-charge dichotomy of the electrons is challenged in certain
systems where the spin and charge degrees of freedom are coupled. In this thesis,
we investigate how the coupling between the spin and charge degrees of freedom
of the electrons can affect the dynamical response to an AC electromagnetic field.
More specifically, we study the effect of spin transitions on the optical conductivity
in various lattice models of electrons.

The practical use of the spin degree of freedom of the electron in charge-based
electronics is at the heart of the field of spintronics [5–8], also known as spin elec-
tronics. In conventional electronics, the electrons are controlled with electric fields
and their spins are ignored. In 1988, the discovery of the giant magnetoresistance
effect [9, 10] in metals triggered the rapid development of spintronics. The central
goal of spintronics, whether in metals, semiconductors, or even quantum dots, is to
engineer devices where the information is carried by the electron spin rather than by
its charge. In order to do so, the ability to actively manipulate and control the spins
is necessary. An important phenomenon for spintronics is the spin-charge coupling
originating from relativistic spin-orbit coupling (SOC). In particular, it makes elec-
tric dipole spin resonance (EDSR) possible. EDSR is the spin-flip resonance of the
conduction electrons induced by the electric field of an incoming electromagnetic
wave. It was first proposed in 1960 by Emmanuel Rashba [11]. Interest in spin res-
onance induced by AC electric fields comes from the fact that strong local electric
fields are practically easier to obtain than magnetic fields. Hence, with EDSR the
electric component of AC fields can be used to control both charge and spin.

More fundamentally, any coupling between magnetic and electric properties of a
material is referred to as the magnetoelectric (ME) effect [12]. Historically, the effect
was first predicted by Pierre Curie more than 100 years ago [13]. The phenomeno-
logical theory of the ME effect was then developed by Landau [14] and Dzyaloshin-
skii [15]. It was first observed in the antiferromagnet Cr2O3 in 1961 [16,17]. The static
ME effect is characteristic of so-called multiferroics, for which the magnetization (M)
can be induced by an electric field and the electric polarization (P) by a magnetic
field [12, 18–24]. For instance, the linear static ME effect arise from the term αi jMiP j
in the free energy and is only allowed when both time-reversal and inversion sym-
metries are broken. Multiferroics are attracting a lot of attention in particular due
to the potential applications in novel multifunctional devices [25]. Magnetic multi-
ferroics (or type-II multiferroics [23]) such as TbMnO3, for which the ferroelectricity
only emerges in the magnetically ordered phase, are especially interesting due to the
profound physics behind their properties.

However, the ME effect is not limited to multiferroics. It can appear dynamically
in magnetic Mott insulators without long-range ordering. Thus, the dynamical ME
effect is possible even without the static ME effect and the accompanying reduction
of the symmetry. The dynamical ME coupling influences the charge dynamics of the
electrons in the magnetic energy scale, far below the optical gap. Consequently, mag-
netic excitations (not necessarily simple spin flips) can be probed with an AC electric
field and affect the optical conductivity. In particular, a subgap (i.e., below the op-
tical gap) optical conductivity due to ME coupling was observed in some gapless
quantum spin liquids [26–29], and understood in terms of an electronic ME mecha-
nism based on ring exchange interaction on triangular and kagome lattices [26, 27].
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In this thesis, we extensively consider the coupling of the spin and charge de-
grees of freedom of electrons in the Hubbard model, and how it affects the optical
conductivity through electric-dipole-induced magnetic transitions.

1.1.1 What is new?

Motivated by both the EDSR phenomena in the electron gas (EG) and the ME effect
in Mott insulators, we consider the following two limits.

First, there is the nearly free electron picture where each electron carries a spin
1/2 coupled to its movement through relativistic SOC effects. In the lattice model,
this is accounted by a spin dependent hopping. In this case, the magnetic transi-
tions are in a sense simple as there are only two magnetic states, up and down, and
the transition consists of a spin flip. The effect of strong SOC in a lattice model and
its interplay with the Hubbard interaction is interesting, for instance, in the con-
text of iridium-based materials or other 5d and 4d transition metal (TM) compounds
because of the delocalization of the valence electrons and strong SOC. While the
EDSR phenomena is known in the quantum wire picture, it has never been studied
in the discrete Hubbard model before. We derive the properties of EDSR emerging
from the discrete nature of the lattice system and the corresponding band structure.
Moreover, our results describe the effect of umklapp scattering (originating from the
on-site Coulomb repulsion) on the EDSR spectrum for the first time.

Secondly, we consider Mott insulators where the strongly correlated electrons
are localized on the lattice sites. In this case, the magnetic nature of the system is
much more complex and described by an effective Hamiltonian of interacting spins.
We consider the ME effect arising from the fluctuations of the spin-carrying elec-
trons on neighboring sites (or virtual hopping) and the resulting optical response.
The electric-dipole-induced magnetic transitions are not simple spin flips and the
response is described in terms of the dynamics of multi-spin operators. The ME
effect arising from virtual hopping in the single-band Hubbard model is known to
be non-trivial for triangular three-site clusters. However, we focus on much more
involved multi-orbital systems which match up with actual strongly correlated TM
compounds.

We develop a full theory for the two-site ME coupling in the tight-binding for-
malism of the Hubbard model. Motivated by experimental results of a subgap opti-
cal conductivity in the Kitaev materials α-RuCl3 [30–34], we consider the ME effect in
a three-band Hubbard model for the t2g orbitals of d5 TM ions in an octahedral crys-
tal field (CF). The THz spectroscopy measurement from Ref. [31] is shown in Fig. 1.1.
The graph shows the absorption spectrum, as expressed in terms of the optical con-
ductivity, for different temperatures. The authors of Ref. [31] indeed showed that
the main weight of the absorption spectrum originates from electric-dipole-induced
transitions.

Kitaev materials are d5 Mott insulators for which the low-energy physics ap-
proaches the Kitaev honeycomb model [35] and have been of tremendous interest
to both experimentalists and theorists in the recent years. Our final result consists
of the actual calculation of the optical response due to electric-dipole induced mag-
netic transitions in ideal Kitaev materials. We present a novel explanation for the
low-energy optical response, whose origin was still unclear before that.
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FIGURE 1.1: Subgap optical conductivity of α-RuCl3 measured with
THz spectroscopy. Reprinted figure with permission from Ref. [31]

Copyright (2017) by the American Physical Society.

1.1.2 Structure of the thesis

This thesis is effectively separated in two parts corresponding to the two limits in-
troduced above. The structure is the following.

First, in the rest of the present chapter, we introduce the basic concepts used
throughout the thesis. Those include linear response theory, the optical conductivity
and its properties, and the origin of SOC.

Chapter 2 focuses on the EDSR phenomenon. We begin from the original theory
of combined resonances in the two-dimensional EG (2DEG) of Rashba and Sheka
[11, 36, 37], in which the SOC is treated as a perturbation in the 2DEG with a strong
Zeeman coupling. We present the theory of EDSR in one-dimensional (1D) sys-
tems where SOC and the Zeeman coupling are of similar strength. In the 1DEG,
we also discuss the effects of interaction on the resonance as shown in Ref. [38] us-
ing Tomonaga-Luttinger liquid theory. Finally, we present our original results of the
EDSR in the Hubbard model in one dimension and calculate the effect of the Hub-
bard on-site interaction numerically [39]. The chapter ends with the calculation of
the EDSR in 2D tight-binding models.

In Chapters 3, 4, and 5, we discuss electric-dipole-induced magnetic transitions
in the Mott-insulating phase of various Hubbard models. In Chapter 3, we exten-
sively derive the different ME couplings arising in the single-band Hubbard model.
We discuss three-spin coupling on trimers, which was first derived in Ref. [40], and
its effect on the optical conductivity. We then derive all the possible two-spin ME
couplings which can emerge from spin-dependent hopping integrals, e.g. caused by
SOC.

In Chapter 4, we develop a theory for the microscopic mechanisms behind the
low-energy electric polarization operator in d5 Mott insulators originating from the
fluctuations of the electronic charge [41]. The ME effect is first discussed from a
symmetry point of view, and then calculated from the three-band Hubbard model
using perturbation theory in the hopping. Two microscopic mechanisms are intro-
duced and are shown to be particularly relevant for Kitaev materials. Therefore, the
results shed light on the origin of the terahertz (THz) optical conductivity observed
in α-RuCl3.

In Chapter 5, we calculate the optical conductivity in the effective Kitaev spin
model. The Kitaev model is a rare instance of an exactly solvable 2D interacting
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quantum spin model. Its ground state is a quantum spin liquid and its excitations
are described in terms of Majorana quasiparticles. It thus provides an ideal play-
ground to study the properties of a spin liquid thanks to its analyticity [42–48]. In
addition, it can potentially be realized in real materials (Kitaev materials) [49]. For
α-RuCl3, even though its low energy physics significantly deviates from the “pure”
Kitaev model [50–55], it is often speculated that some of its properties, such as the
fractionalized spin excitations, are remnant of the Majorana physics [30–34, 56–61].
Therefore, we calculate the continuous subgap optical conductivity originating from
the fractionalized excitations in terms of Majorana fermions combining analytical
and numerical methods [62].

1.2 Linear response and Kubo formula

1.2.1 General formalism

Throughout this thesis, we are interested in the linear response of various systems to
an electromagnetic field. Let us consider a generic time-independent quantum sys-
tem described by the HamiltonianH0 to which we apply a time-dependent external
force F(t) that couples to the system as

H = H0 +H ′ = H0 + BF(t). (1.1)

The linear response ∆A(t) of a physical quantity A to the external force F(t) is defined
by

⟨A⟩ = ⟨A⟩0 + ∆A(t), (1.2)

where ⟨A⟩ = Tr ρA and ⟨A⟩0 = Tr ρ0A for the density matrices ρ and ρ0 corresponding
to the Hamiltonians H and H0, respectively. The linear response is given by the
Kubo formula [63]

∆A(t) =
∫ ∞

−∞
χAB(t − t′)F(t′)dt′

χAB(t) = −iθ(t) Tr(ρ0[A(t), B]) = −iθ(t)⟨[A(t), B]⟩0, (1.3)

where the operators are written in the interaction picture, θ(t) is the Heaviside step
function, and we have set ! = 1. For a periodic force F(t) = F0e−iωt +H.c. (henceforth
we do not explicitly write the Hermitian conjugate), the response is simply ∆A(t) =
Re(2χAB(ω)F0e−iωt) with the complex admittance defined by

χAB(ω) = lim
δ→0+

∫ ∞

0
ei(ω+iδ)tχAB(t)dt, (1.4)

where δ > 0 is added to ensure convergence at large times.
The dissipation is calculated from the work associated to the change in energy of

the system [64],

dW
dt
≡ d

dt
Tr ρH = Tr ρḢ = Tr

(
ρBḞ

)
= (⟨B⟩0 + ∆B)Ḟ, (1.5)
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where we have used ρ̇ = −i[H , ρ] = 0. Averaging over one full period of F = F0e−iωt,
the contribution from ⟨B⟩0 vanishes and we have

dW
dt
≡ ω

2π

∫ 2π/ω

0
dt

dW
dt
=
ω

2π

∫ 2π/ω

0
dt

∫ ∞

∞
χBB(t − t′)F(t′)Ḟ(t)

= −2ωχ′′BB(ω)F2
0 , (1.6)

where χ = χ′ + iχ′′ so that χ′′ = Im χ is the imaginary part of χ. Here we have used
the fact that χ′(−ω) = χ′(ω) while χ′′(−ω) = −χ′′(ω) because χ(t) is real.

It is often convinient to use a spectral (Lehmann) representation in terms of the
eigenstates |m⟩ ofH0. The function χBB(t) = −iθ(t)⟨[B(t), B(0)]⟩0 is a so-called retarded
Green’s function for the operator B. A straightforward calculation in the canonical
ensemble ρ0 = e−βH0 , where β is the inverse temperature, (see, e.g., [65]) gives

χAB(ω) =
1
Z

∑

m,n
e−βEm

[ ⟨m|A|n⟩ ⟨n|B|m⟩
ω + Em − En + iδ

− ⟨m|B|n⟩ ⟨n|A|m⟩
ω + En − Em + iδ

]
,

=
1
Z

∑

m,n

(
e−βEm − e−βEn

) ⟨m|A|n⟩ ⟨n|B|m⟩
ω + Em − En + iδ

, (1.7)

which has poles just below the real axis at ω = ∆mn − iδ, where ∆mn = En − Em. Here
H0 |m⟩ = Em |m⟩, and Z is the canonical partition function. Using the relation

1
ω − ∆mn + iδ

= P
1

ω − ∆mn
− iπδ(ω − ∆mn), (1.8)

where P is the Cauchy principal value, we obtain

χ′′AB(ω) = −π
Z

(
1 − e−βω

)∑

mn
e−βEm⟨m|A|n⟩⟨n|B|m⟩δ(ω − ∆mn). (1.9)

Finally, in this thesis we only consider the zero temperature limit for which

χ′′AB(ω > 0) = −π
∑

n
⟨0|A|n⟩⟨n|B|0⟩δ(ω − En + E0), (1.10)

where |0⟩ is the ground state ofH0 with energy E0.

1.2.2 Example: spin susceptibility

An AC magnetic field B̃ = B̃0e−iωtêα (with α ∈ {x, y, z}) couples to the system through
the Zeeman effect

H ′ = −gµBB̃ · S, (1.11)

where µB is the Bohr magneton, g is the Landé g-factor, and S is the total spin of the
system. Hence, the absorption rate per unit of volume is given by

IMD(ω) = 2ω(gµB)2χ′′αα(ω)B̃2
0, (1.12)
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where MD stands for “magnetic dipole” and χ(ω) ≡ − 1
VχSS(ω) is the spin suscepti-

bility tensor,

χαβ(ω) =
i
V

∫ ∞

0
eiωt⟨[S α(t), S β(0)]⟩0dt,

=
π

V

∑

n
⟨0|S α|n⟩⟨n|S β|0⟩δ(ω − En + E0) (at T = 0), (1.13)

where V the volume of the system. Here χ is defined with the opposite sign to
Eq. (1.3) so that its imaginary part may be positive. Note that in Eq. (1.12) we have
assumed that χ has no dissipative off-diagonal elements which is true in isotropic
systems.

1.3 Optical conductivity

The optical conductivity σ(ω) =
∫ ∞

0 eiωtσ(t)dt is defined by the relation

1
V
⟨J(t)⟩ =

∫ ∞

−∞
σ(t −′ t)E(t′)dt′ (1.14)

between an external electric field1 E and the electric current ⟨J⟩. Here we con-
sider only electric fields and currents homogeneous in space, i.e., at q = 0 so that
J =

∫
d3rJ(r) (which is a good approximation due to the large wavelength of light

compared to the system). The interaction between the charged particles of the sys-
tem and the electromagnetic wave is given by

H ′ = −J · A(t), (1.15)

where A(t) is the vector potential and we have used the Coulomb gauge ∇ · A = 0,
so that the scalar potential φ = 0. Alternatively, the coupling of the electric field
can also be written H ′ = −E · P, where P = er is the polarization operator, which
we will discuss in Sec. 1.3.1. Henceforth, we consider a time-periodic electric field
Ẽ(t) = Ẽ0e−iωtêα so that

Ã(t) =
−i
ω

Ẽ(t). (1.16)

Hence, we can already infer from the definition of σ(ω) and the calculation that lead
to Eq. (1.6) (with an extra i/ω factor) that the absorption rate from the electric dipole
(ED) processes is given by

IED(ω) = 2σ′αα(ω)Ẽ2
0, (1.17)

where σ′ = Reσ is the real part of the optical conductivity.
There are subtleties in the definition of the optical conductivity. The physical cur-

rent J (the actual current measured by experimentalists) is given in a semi-classical
way by J = e

∑
i vi where vi is the velocity of each electron [65]. When quantizing

the particle velocity, it becomes vi =
1
m [ki − eA(ri)]. Using second quantization, the

physical current operator for free spinless particles (at q = 0) is

J = e
m

∑

k
c†k[k − eA]ck ≡ j − e2N

m
A, (1.18)

1Here, to be precise, E contains both the applied or external field and the internal electric field
created by the induced currents [65].
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where j is the so-called paramagnetic current (henceforth just “current”), and the sec-
ond term in the right hand side originating from A is often called the gauge current
or diamagnetic current. For a general HamiltonianH , the total current is defined as
Jα = − ∂H∂Aα and the paramagnetic current is jα = Jα

∣∣∣A=0. Generally, for a Hamiltonian
whose kinetic part isHkin =

∑
k ϵ(k)c†kck, the current operator is

jα = e
∑

k

∂ϵ(k)
∂kα

c†kck, (1.19)

and the diamagnetic tensor ταβ [66] is

ταβ =
∑

k

∂ϵ(k)
∂kαkβ

c†kck, (1.20)

so that that Jα = jα − e2 ∑
β ταβAβ + O(A2).

Therefore, the optical conductivity obtained from the linear response reads

σαβ(ω) =
1
ωV

∫ ∞

0
dteiωt⟨[ jα(t), jβ(0)]⟩ + ie2

ωV
⟨ταβ⟩,

=
i
ωV

[
χ jα jβ(ω) + e2⟨ταβ⟩

]
, (1.21)

where χ j j is the current response function defined by Eq. (1.4). For free electrons we
have ταβ/V = n0

m δαβ, where n0 = N/V is the particle density. In lattice systems, the ⟨τ⟩
term can be interpreted as the thermal expectation value of the kinetic energy of the
system.

We are interested in the real part of σ(ω) at T = 0. Replacing ω → ω + iδ and
using Eq. (1.10), we find

σ′(ω) =
−1
ωV

χ′′j j(ω) + Dδ(ω) ≡ σreg(ω) + Dδ(ω). (1.22)

where σreg is the “regular” part of σ′(ω) and

D =
π

V

[
χ′j j(ω→ 0) + e2⟨τ⟩

]
= − lim

ω→0

[
ωσ′′(ω)

]
(1.23)

is the so-called Drude weight. We discuss the physical meaning of D in Sec. 1.3.2.

1.3.1 Optical conductivity from the electric polarization operator

In the Hubbard model, especially in the Mott insulating phase, it will prove useful
to have an expression of the optical conductivity in terms of the electric polarization
operator P. Indeed, while the current operator is typically diagonal in momentum
space, the polarization, related to j by ∂tP = j, commutes with the position operator.
It is thus diagonal in terms of the discrete spatial representation of localized electrons
used in the tight-binding formalism.

Starting from the coupling −Ẽ · P, we obtain from Eq. (1.3)

σαβ(ω) =
−1
V
χ jαPβ =

i
V

∫ ∞

0
eiωt⟨[ jα(t), Pβ(0)]⟩. (1.24)
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In general, the dynamical response function χAB defined in Eq. (1.4) obeys the fol-
lowing identities [67],

χAB(ω) =
1
ω
⟨[A, B]⟩ + i

ω
χ(∂tA)B(ω), (1.25)

=
1
ω
⟨[A, B]⟩ − i

ω
χA(∂t B)(ω). (1.26)

Identifying Eq. (1.24) with Eq. (1.26) by setting A = jα and B = Pβ (hence ∂tB =
jβ), we recover the already derived expression for σ(ω) in Eq. (1.21) provided that
[ jα, Pβ] = −ie2ταβ. This is easily verified by using the fact that the one-body operator
P1 = er = ie∇k so that

[ jα, Pβ] =
∑

kk′
⟨k′|[e(∂kαϵ), ie∂kβ]|k⟩c†k′ck = −ie2

∑

k

∂ϵ(k)
∂kα∂kβ

c†kck = −ie2ταβ. (1.27)

Finally, using Eq. (1.25) with A = Pα and B = Pβ (so that [A, B] = 0), we obtain

σαβ(ω) =
ω

V

∫ ∞

0
eiωt⟨[Pα(t), Pβ(0)]⟩. (1.28)

1.3.2 Optical conductivity in metals and insulators

The Drude weight D, also called charge stiffness, was introduced by W. Kohn in
1984 [68] as a criterion to differentiate between ideal conducting and insulating be-
haviors at T = 0 in the context of the Mott metal-insulator transition. In clean metal-
lic systems, D is finite and σ′(ω) diverges at ω = 0. This is characteristic of integrable
systems with ballistic transport (i.e., a freely accelerating system) which is possible
due to the lack of disorder. Without disorder and at T = 0, D is actually finite for
both metals and superconductors [69], while it vanishes for insulators. In fact, the
theoretical definition of an insulator is

lim
T→0

lim
ω→0

lim
q→0

σ′(ω,q) = 0. (1.29)

In a system of non-interacting electrons, or any system well described with band
structure theory, the σreg(ω) contribution in Eq. (1.22) only corresponds to q = 0 in-
terband transitions. For the multi-band Hamiltonian H = ∑

n
∑

k ϵn(k)c†k,nck,n, where
n is the band index, the retarded response function can be written in terms of the
single-particle states |k, n⟩ = c†k,n |0⟩ (where ck,n |0⟩ = 0 for all k and n) as

σ′(ω > 0) =
π

Vω

∑

k

∑

n!m
| ⟨k, n| j|k,m⟩|2 (⟨nk,m⟩ − ⟨nk,n⟩

)
δ(ω − ϵn(k) + ϵm(k)), (1.30)

where now ⟨·⟩ denotes the grand canonical ensemble average such that ⟨nk,m⟩ =
nF(ϵm(k)) (nF is the Fermi-Dirac distribution). Therefore, a simple single-band model
of non-interacting spinful electrons (n =↑, ↓) has σreg = 0 unless the current has ma-
trix element operators non-diagonal in spin. Such magnetic transitions can be in-
duced by SOC and are thus electric-dipole-induced spin resonances. This kind of
systems is the focus of Chapter 2. Thus, for a single electron band, the only contri-
bution to σ′(ω) is Dδ(ω) which vanishes if the band is full (i.e., the system is a band
insulator).
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1.3.3 In metals

Nevertheless, in a clean metallic system with interactions such as the Hubbard model
away from half-filling, in addition to the δ function at ω = 0, there is a finite fre-
quency part that vanishes as ω→ 0, typically with a power law dependence [70–72].
However, note that in a spatially continuous system without SOC, the current is pro-
portional to the center-of-mass momentum so that it commutes with the electron-
electron interactions, which conserve the total momentum (hence the interactions
do not affect χ j j) [67]. This is sometimes known as the Kohn theorem [73]. In the
presence of a lattice, the momentum is only conserved modulo a vector of the re-
ciprocal lattice. The processes with a jump of the reciprocal vector, called umklapp
scattering, lead to an intrinsic finite resistivity [72]. This types of physics is particu-
larly interesting in the study of the Mott metal-insulator transition in the Hubbard
model.

However, at finite T , or with the inclusion of disorder at T = 0, the weak scat-
tering of the conduction electrons allows intraband processes which can be under-
stood, for instance, by the classical Drude theory or by the classical Bolztmann equa-
tion [74]. In a few words, the intraband processes are modelled by introducing a
relaxation time τ (which depends on the scattering mechanism and is in general
temperature dependent), and

σDrude(ω) =
n0e2τ

m(1 − iωτ)
, (1.31)

so that its real part is a Lorentzian centered at ω = 0 which tends to σ′(ω) = Dδ(ω) for
τ → 0. Thus, in this case, there is no δ function at ω = 0 anymore (no Drude weight
per se) but σ′(ω = 0) ≡ σdc is finite while it vanishes for insulators. In addition, the
free carriers can also be excited collectively (a density wave) which are the results of
additional poles in χ j j induced by interactions through the screening effect. Finally,
other phenomena can affect the optical response of metals at q = 0, such as vibration
modes of the lattice (optical phonons) or interband processes at higher frequencies.

In this thesis, we only consider metallic systems in Chapter 2 and focus on the
magnetic resonance. This means that we do not consider disorder or any contribu-
tions to σ′(ω) other than the spin transitions induced by j in χ j j. Magnetic transitions
correspond to frequencies in the meV energy range, far below the range of frequen-
cies used for usual optical response experiments in metals (typically !ω ≈ 1 eV).

1.3.4 In insulators

In insulators, the principal contribution to the optical conductivity comes from in-
terband processes which are only possible for frequencies above a certain gap. This
gap in the optical conductivity, the optical gap, is the minimum amount of energy
needed for photon to be absorbed. Note that there is a distinction between the optical
gap and the electronic band gap (defined by the energy needed to add one electron)
because the number of electrons is conserved during the optical absorption. The op-
tical gap is typically smaller than the band gap. For instance, bound electron-hole
pairs (or excitons) can be created for an energy less than the band gap. Note that in
insulators too, optical phonons can lead to a finite response, even below the optical
gap.

In the Mott insulating phase of the Hubbard model, the optical gap separates
the so-called upper and lower Hubbard bands and the optical excitations are at the
energy scale ω ∼ U [75–78], where U is the on-site Coulomb repulsion. In the large
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U limit, the optical gap is well approximated by ∆opt ≃ U−4t+8 ln(2)t2/U [79], where
t is the hopping integral, and the optical conductivity at T = 0 is finite at frequencies
between ω ≃ U − 4t and ω ≃ U + 4t [75]. Such excitations are inter-site as an electron
moves from one site to another at the energy cost of U.

In actual Mott insulating materials, such as some TM compounds with d orbitals,
we distinguish two types of optical absorption [80]. First, there are the charge trans-
fer processes, where electrons hop between different ions. The Coulomb repulsion
U has to be paid for a TM-TM hopping, but processes from a ligand orbital to the
upper Hubbard band are also possible. In this case, the so-called charge-transfer gap
∆ has to be overcome.

Secondly, local on-site transitions are characterized by the creation of an electron-
hole pair on the same TM ion such that the repulsion energy is not modified. Now,
such a local transition corresponds to a change in the electronic orbital of the electron
(a d-d transition) and is forbidden for an isolated atom by symmetry. Nevertheless,
the actual wave function of the electrons contains an additional mixture of the “or-
bital tails” coming from the neighboring ligands and TM ions [80]. Therefore, local
electric dipole transitions can be made possible by the residual dispersion of the elec-
trons. In other words, local transitions which should be forbidden for isolated atoms
may be allowed by the inter-ion hopping Hamiltonian. This leads to the notion of an
electric dipole operators with finite matrix elements between sates inside the lower
Hubbard band. The energy needed is thus determined by the splitting induced by
local potentials. Typically, the d orbitals are split by CF and SOC in the ω ≈ 0.1-1
eV energy range. By treating the hopping as a perturbation, the electric polarization
operator can be written in terms of local operators.

Finally, the same principles can be applied for magnetic transitions, i.e., includ-
ing the spin degree of freedom, and is the focus of Chapters 3, 4, and 5. Then, the
effective polarization operator is written of in terms of local spin operators and cor-
respond to the ME effect. There are two potential origins for the coupling between
spin and charge of the electrons: one is explicit, the SOC, and the other is intrin-
sic to any system, the Pauli exclusion principle. These notions will be concretely
addressed in Chapter 3 for the single-band Hubbard model and in Chapter 4 for a
more complex multi-band Hubbard model.

1.4 Spin-orbit coupling

The main theme of this thesis is the interplay between the spin and charge degrees
of freedom of electrons. SOC is thus central to most of the phenomena considered.
In this section, we derive the following three types of SOC Hamiltonians used in this
thesis.

1. The Rashba [81] and Dresselhaus [82] SOC Hamiltonian are proportional to the
momentum of the electrons,

HR(k) = αR(kxσy − kyσx), (1.32)
HD(k) = αD(kxσx − kyσy), (1.33)

where σx,σy, and σz are Pauli matrices representing the electron spin, and αR
and αD are the Rashba and Dresselhaus coupling constants, respectively.
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2. The corresponding Hamiltonian on lattice models becomes a spin-dependent
hopping Hamiltonian,

HSO = iλ
∑

⟨i j⟩

[
c†i (d̂i j · σ)c j − H.c.

]
, (1.34)

where i and j are nearest neighbor sites, σ = (σx,σy,σz), the d̂i j vectors are
lattice-dependent unit vectors, c†i = (c†i↑, c

†
i↓), and ci = (ci↑, ci↓)ᵀ, where c†is and

cis are the electron creation and annihilation operators with spin s at site i.

3. The on-site intrinsic SOC Hamiltonian originating from the relativistic cou-
pling between the orbital angular momentum L and spin angular momentum
S of an electron is

HSO = λS · L. (1.35)

It only appears in the multi-orbital systems considered in Chapters 4 and 5.

Spin-orbit coupling is a relativistic effect which arises from the non-relativistic
limit of the Dirac equation with electromagnetic coupling. The Dirac equation is

Hψ = i
∂

∂t
ψ = cα · (p − eA) + c2βm + eφ, (1.36)

{αi,α j} = 2δi j, {αi, β} = 0, (1.37)

where A and φ are the vector and scalar electromagnetic potentials, and αi (with
i = 1, 2, and 3) and β are 4 × 4 Hermitian matrices. In the non-relativistic limit (H0 =

H − mc2 ≪ mc2), the Hamiltonian becomes

H0ψ =

(
1

2m
(p − eA)2 + eφ − e

2m
σ · B − p4

8m3c2 −
e

8m2c2∇ · E −
e

4m2c2σ · (E × p)
)
ψ.

(1.38)
The first three terms constitute the usual non-relativistic Hamiltonian. The fourth
term is a relativistic correction to the kinetetic energy. The fifth term is the so-called
Darwin term. Finally, the last term,

HSO = −
e

4m2c2σ · (E × p) = − µB

2mc2σ · (E × p) = −1
2
µBσ

E × v
c2 , (1.39)

is identified as the spin-orbit coupling (with the correct Thomas precession factor).
It can be seen as the non-relativistic Zeeman coupling (third term in the right hand
side of Eq. (1.38)) from the magnetic field arising after a Lorentz transformation of
the electric field to the rest frame of the particle.

1.4.1 Rashba and Dresselhaus SOC

In systems lacking inversion symmetry, the Rashba effect [81], caused by structural
inversion asymmetry, and the Dresselhaus effect [82], caused by bulk asymmetry
of the system, are usual instances of SOC. Typically, the Rashba SOC arises in a 2D
system (e.g., at an interface) due to the lack of reflection symmetry across the 2D
plane. For example, by simply applying an external field E = Eẑ in the z direction
we obtain

HR = −
µBE
2mc2 (k × σ)z ≡ αR(kxσy − kyσx). (1.40)
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The Dresselhaus effect is observed in systems which lack inversion symmetry
and was first described in systems with the zinc blende structure [82]. In general,
for the energy dispersion Es(k) with s =↑, ↓, the time reversal symmetry imposes
E↑(k) = E↓(−k) and the inversion symmetry imposes Es(k) = Es(−k), so that there
is a two-fold degeneracy throughout the Brillouin zone when both symmetries are
preserved. Without the inversion symmetry, the degeneracy is lifted and the spin
operators σ can couple to odd powers of the momentum k. For 3D materials with
the Td point group symmetry (e.g., with the zinc blende structure), there are no linear
terms and the Dresselhaus Hamiltonian is obtained from symmetry considerations,

HD = γDκ · σ, (1.41)

where
κx = kx(k2

y − k2
z ), κx = ky(k2

z − k2
x), κz = kz(k2

x − k2
y ), (1.42)

and x, y, and z are the crystallographic axes. In 2D systems (say with a finite width
in the z direction), the symmetry is lowered and both linear and cubic terms are
commonly considered. They are obtained from Eq. (1.42) by replacing kz and k2

z with
their averaged values ⟨kz⟩ = 0 and ⟨k2

z ⟩ ! 0, so that

HD = γD⟨k2
z ⟩(−kxσx + kyσy) + γD(kxk2

yσx − kyk2
xσy). (1.43)

In this thesis, we limit ourselves to the linear Hamiltonian which thus has the form

HD = αD(kxσx − kyσy), (1.44)

where αD = −⟨k2
z ⟩γD.

1.4.2 Lattice SOC

In the tight-binding language, the single-electron states are localized Wannier func-
tions. The effect of SOC is akin to a spin rotation during the hopping processes and
is responsible for the Dzaloshinskii-Moriya (DM) [83,84] interaction in effective spin
systems. This is understood starting from the 2D Hamiltonian quadratic in momen-
tum with Rashba and Dresselhaus SOC, which can be rewritten as

k2

2m
+HR +HD =

1
2m

(kx + mαRσy + mαDσx)2 + (ky − mαRσx − mαDσy)2 + const. (1.45)

In a lattice system, the SOC can hence be seen as a SU(2) gauge field [85], i.e., a spin
dependent phase which is commonly called the Aharonov-Casher phase [86]. The
phase factor that an electron acquires by taking a step of length a between two sites,

say in the x̂ direction, is exp
(
−iθd̂ · σ/2

)
where θ = 2ma

√
α2

R + α
2
D is the spin rotation

angle accompanying each hopping and d̂ = (αD,αR, 0)/
√
α2

R + α
2
D. In general, θ and

the direction of d̂ depends on the orientation of the hopping and on αR and αD.
Therefore, starting from the hopping Hamiltonian

Hhop = −t0
∑

⟨i j⟩

[
c†i c j + H.c.

]
, (1.46)
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the effect of SOC is obtained by replacing t0 → t0 exp
(
−iθd̂ · σ/2

)
. The Hamiltonian

then reads
H = −t

∑

⟨i j⟩

[
c†i c j + H.c.

]
+ iλ

∑

⟨i j⟩

[
c†i (d̂i j · σ)c j − H.c.

]
(1.47)

where the new parameters t and λ satisfy

t = t0 cos(θ/2), λ = t0 sin(θ/2). (1.48)

The second term is identified as the SOC Hamiltonian,

HSO = iλ
∑

⟨i j⟩

[
c†i (d̂i j · σ)c j − H.c.

]
, (1.49)

and d̂i j will henceforth be called the “SOC vector”. In particular, in 1D systems,
d̂i j = d̂ is constant throughout the system.

1.4.3 Local SOC

In the case of a centrally symmetric electric potential V(r),

eE = −dV
dr

r
r
, (1.50)

the SOC Hamiltonian reduces to a familiar expression,

HSO = −
e

4m2σ · (E × p) =
1

2m2
1
r

dV
dr

S · L ≡ λS · L, (1.51)

where S = σ/2 and L = r×p. This is the form that the SOC Hamiltonian adopts when
considering an electron localized on an ion with a given orbital angular momentum.
SOC is particularly strong in heavy TM compounds with 4d and 5d elements (for
instance, λ ≈ 400 meV in iridates), which leads to emergent quantum phases and
other interesting phenomena [87–90].
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Chapter 2

Electric dipole spin resonance

In this chapter, we study in detail the phenomenon known as electric dipole spin
resonance (EDSR). In particular, we consider how it is affected when considering
a lattice model (as opposed to a continuum model) and introducing interaction by
using the Hubbard model.

2.1 Introduction

The EDSR was originally predicted by Rashba in Ref. [11]. It was studied in the
context of semi-conductors and was first observed in InSb [91–93]. The EDSR can
be understood as an extension of the standard ESR for which the AC magnetic field
is replaced by an AC electric field. ESR is a well-known phenomenon extensively
used by experimentalists to study the magnetic moments of electrons in a system.
Under a magnetic field, each non-interacting electron is characterized by one of two
Hamiltonian eigenstates: spin parallel or anti-parallel to the magnetic field, whose
energies are separated by the so-called Zeeman gap. Then, applying an AC magnetic
field polarized perpendicular to the static magnetic field induces transitions between
the two energy levels when the frequency of the field matches the Zeeman gap. For a
pristine non-interacting system of free electrons, there is not much more to say. The
energy dispersion depends on the spin of the electrons only through the magnetic
field, and thus the gap ∆ between the two spin branches is momentum independent.
In this sense, the charge and spin degrees of freedom of the electrons are unrelated,
and the ESR corresponds to the same spin-flip transition regardless of the motion
of the electrons. In this case, the ESR spectrum is a single Dirac-delta peak at the
Zeeman gap.

As carefully shown in Ref. [94], the addition of any SU(2)-invariant term leaves
the ESR signal unaffected. For example, charge-charge interactions (i.e., only de-
pending on the positions of the electrons) do not modify the ESR spectrum. Thus,
for the Hubbard model at half-filling, the signal is independent of U, the on-site
Coulomb repulsion. Even in the U → ∞ limit, the effective spin Heisenberg model
(which is SU(2)-invariant) with the extra magnetic field has the same ESR spectrum
as the free electrons. However, SU(2)-breaking terms do modify the ESR spectrum.
The most obvious example is de facto the external magnetic field. SOC is another
term which is common in materials. It appears in several forms, as explained in
Sec. 1.4.

In this chapter, we study the synergetic effects of SOC and the static magnetic
field. As shown in detail below, SOC affects the general band dispersion so that the
gap ∆ between the two spin branches deviates from the Zeeman gap as a function
of momentum: ∆ = ∆(k). Therefore the resonance frequency ωres corresponds to the
gap near the Fermi surface. As the gap is not uniform, the ESR spreads out (even
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FIGURE 2.1: Sketch of the band dispersion of the 1D electron gas with
SOC and Zeeman coupling. The horizontal black line indicates the

Fermi energy EF .

at zero temperature) to match the energy gaps in a small region around the Fermi
surface. This is illustrated in Fig 2.1 in the case of a parabolic dispersion in 1D, for
which the effect of SOC is to shift the two branches left and right (in momentum
space) while the magnetic field splits them up and down (in energy space). The
black line indicates the fermi energy EF and the shaded regions show all the pos-
sible transitions (only considering the zero-temperature limit). The resonance fre-
quencies then match the inter-band gap in the shaded regions and thus correspond
to two finite-width peaks in the resonance spectrum. The corresponding resonance
amplitude can be calculated with the Kubo formula. For the ESR, it is obtained from
the spin-spin dynamical correlation function, also called the spin susceptibility, as
mentioned in Sec. 1.2. In two dimensions, instead of two peaks the resonance spec-
trum is continuous for frequencies matching ∆(k) for k in a small region around the
Fermi surface, as shown in Sec. 2.5.

SOC has another important effect on the spin resonance: the transitions can
now be induced by an AC electric field. Indeed, the (Rashba and/or Dresselhaus)
SOC creates an effective magnetic field that is proportional to the electron momen-
tum. The irradiated light can thus excite electrons from the lower branch to the
upper branch through both magnetic and electric periodic fields, corresponding to
magnetic-dipole and electric-dipole transitions, respectively. The later is the so-
called EDSR. The absorption rate originating from the electric-dipole-induced tran-
sitions is measured through the optical conductivity, as explained in Sec. 1.3.

Therefore, in a metal with SOC, both the optical conductivity and the spin sus-
ceptibility are related to the light absorption rate at the resonance frequency ωres. We
know from Eqs. (1.12) and (1.17) that the absorption rate of the irradiated light with
frequency ωres and electric and magnetic field amplitudes Ẽ0 and B̃0, respectively, is

I(ωres) = 2σ′(ωres)Ẽ2
0 + 2ωres(gµB)2χ′′(ωres)B̃2

0, (2.1)

where σ′(ω) is the real part of the optical conductivity, χ′′(ω) is the imaginary part of
the spin susceptibility (along the direction of the AC magnetic field), g is the Landé
factor and µB =

e!
2m0

is the Bohr magneton (e is the charge and m0 is the mass of the
electron in a vaccuum). The relative strength of the magnetic-dipole contribution
and the electric-dipole contribution is such that the EDSR amplitude (the first term
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in Eq. (2.1) is much stronger than the ESR amplitude (the second term in Eq. (2.1) by
several orders of magnitude [73, 95].

This can be understood from a dimensional analysis. The SOC, in general terms,
defines a coupling between the momentum and the spin of each electron. The cou-
pling constant is written α and has units of velocity. Given a typical wavelength of
the system a (e.g., the De Broglie wavelength 2π/kF for free electrons, or the inter-site
spacing for a lattice system), the SOC defines the energy scale λSO,

α ∼ 1
!

aλSO. (2.2)

From a dimensional analysis point of view (i.e., by associating current and spin as
j ∼ 2eαS/!), we can relate σ′ ∼ (4e2α2/ω)χ′′ in Eq. (2.1). In SI units, the electric and
magnetic field amplitudes are related by Ẽ0 = cB̃0 (c is the speed of light) so that

I(ωres) ∼ 2ωresχ
′′(ωres)

[
4e2α2

ω2
res
+

(gµB)2

c2

]
Ẽ2

0. (2.3)

Thus when SOC is of the same order as the Zeeman splitting and !ωres ∼ λSO, the
ratio of the EDSR and magnetic-dipole ESR contributions is of the order (a/"C)2,
where "C = !/m0c is the reduced Compton length of the electron (≈ 3.86 × 10−13 m),
much smaller than other characteristic length scales of the electrons (e.g. a lattice
spacing is typically a ≈ 5 × 10−10 m).

As explained in Sec. 1.3.2, in a non-interacting single-band electron system with-
out SOC, the optical conductivity has only a Drude weight contribution at ω = 0 and
vanishes for ω > 0, σ(ω) = Dδ(ω). In the presence of SOC, the only contribution to
σ(ω > 0) is the EDSR.

The EDSR only describes the spin-flip-like excitations through electric dipoles.
Strictly speaking, once SOC is introduced, the excitations is not exactly a spin flip,
as the direction of the spin depends on momentum. Therefore we more generally
refer to them as magnetic transitions. Importantly, their frequencies are the same as
the magnetic-dipole ESR ones. Only their intensities differ.

Originally, EDSR was studied in 2D semi-conductors. In addition to the Zeeman
effect, the orbital effect of the magnetic field was also studied. Indeed, electric-dipole
transitions are allowed between different Landau levels, at multiples of the cyclotron
frequency, and are affected by SOC. The phenomenon is summarized in the next
section. After that, we do not further consider orbital effects from the magnetic field
in this thesis. In 1D systems, they simply do not occur. In the 2D case considered at
the end of this chapter, there are no orbital effects for an in-plane magnetic field.

In this chapter, we study the EDSR in the single-band Hubbard model. However,
we first revisit the electron gas formulation in two dimensions with Landau levels
in Sec. 2.2, and in a generic 1DEG system in Sec. 2.3. Following the recent work of
Ref. [38], we also discuss the effects of interaction in the 1DEG using the Tomonaga-
Luttinger liquid theory in Sec. 2.3.3. Our results generalize the previously known
results as explained in Sec. 2.3.3.

Then, we present the most important results of this chapter in Secs. 2.4 and
Secs. 2.5.

In Sec. 2.4, we present our original results for the EDSR in the 1D single-band
Hubbard model. First we highlight the effect of the lattice in the non-interacting
case. We show that the EDSR spectrum strongly depends on the position of the
Fermi level in the electronic band. At half-filling, we subsequently discuss the effect
of the Hubbard interaction on the EDSR when an optical gap grows and the system
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become a Mott insulator. We show using exact diagonalization that when the optical
gap is larger than the kinetic hopping, the umklapp scattering suppresses the EDSR.

On a separated note, in the 1D Hubbard model in the strong-coupling limit at
half-filling, i.e., the Mott-insulating phase, we also show in Sec. 2.4.2 how the mag-
netic field and SOC affect the optical conductivity above the optical gap. This is not
related to the ESR and EDSR, but it underscores the synergetic effect of SOC and
Zeeman effect on the optical resonance at a different energy scale.

Finally, in Sec. 2.5, we consider the ESR and EDSR in 2D single-band systems
with strong SOC and magnetic field. We show that the spectrum is continuous due
to the varying effective Zeeman field along the Fermi surface. In addition, there
are unexpected square root Van Hove-like singularities in the spectrum. Moreover,
we show that the optical conductivity is highly anisotropic, and that the number of
singularities and their positions greatly depend on the electronic band structure, the
Fermi level, and the lattice shape.

2.2 Combined resonances in the Zeeman limit

In the original work of E. Rashba [11, 36], SOC is introduced as a perturbation and
the resonance occurs at the Zeeman gap (neglecting changes in the resonance fre-
quency). However, it is pointed out that for 2D systems with an out-of-plane mag-
netic field, cyclotron resonances are also affected by the SOC, and new resonances
combining attributes of spin and cyclotron resonances are possible. In this sec-
tion, we present the phenomenon as extensively reviewed by Rashba and Sheka
in Ref. [37].

Resonance phenomena in a 2DEG can be separated into electric resonances, such
as the electron cyclotron resonance and magnetic resonances, such as the ESR. When
SOC is introduced, the dichotomy breaks, and a more general type of electron res-
onance is defined. The so-called combined resonances are characterized by (1) the
electric mechanism of the resonance, (2) a change in the spin quantum state. The
EDSR corresponds to the special case for which the orbital motion is left unchanged,
and the resonance frequency is the spin frequency. A combined resonance which
modifies the orbital motion, through a combination of spin resonance and cyclotron
resonance, occurs at linear combinations of spin and cyclotron frequencies, or com-
binational frequencies. This latter case is referred to as ‘combinational frequency
resonance’. In other words, both EDSR and combinational frequency resonances are
combined resonances. In EDSR only the spins are affected, whereas for combina-
tional frequency resonances there is a change in the Landau levels.

Electric resonances are inherently orders of magnitude stronger than magnetic
ones. Without SOC, an electron under a magnetic field B performs two motions
associated with its orbital and spin degrees of freedom, corresponding to the spin
and cyclotron resonances, respectively. The spin resonance is determined by the
spin frequency !ωs = gµBB, where B = ∥B∥. The length associated with the transition
is the Compton wavelength "C , which is small due to the relative 1/c factor between
magnetic and electric field amplitudes. The cyclotron rotation is characterized by
the frequency

ωc =
eB
m∗
, (2.4)
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where m∗ is the effective mass. The corresponding characteristic spatial scale of the
orbital motion is the magnetic length

rB =

√
!

eB
. (2.5)

Then, the electric dipole moment associated with a cyclotron transition induced by
an AC electric field is roughly erB, and the ratio between cyclotron resonance and
ESR is approximated by (rB/"C)2 ∼ 1010, for typical values of rB. Compared to mag-
netic resonances, all purely electric resonances are intrinsically large. For example,
the paraelectric resonance is characterized by the atomic length, namely, the Bohr
radius a0 ≈ 5.3 × 10−11m, and the ratio of the intensities is (a0/"C)2 ∼ 104.

Electric resonances being considerably stronger than magnetic ones, it is ex-
pected that even a weak SOC, which couples orbital and spin resonances, will be
important for electric-dipole induced spin resonances.

But just how weak can the SOC be? As we saw in Sec. 1.4, SOC is present in all
systems as a relativistic correction,

HSO = −
µB

2m0c2σ(E × p) = −1
2
µBσ

E × v
c2 , (2.6)

where σ are the spin Pauli matrices, E is any electric field, p the momentum of the
electron and v = p/m0 is the velocity of the electron. For the AC electric field Ẽ of an
electromagnetic wave with frequency ωs, Eq. (2.6) is similar to an additional Zeeman
coupling with the effective B̃eff = (v/c2)Ẽ = (v/c)B̃ AC magnetic field. Through this
direct SOC mechanism, the intensity ratio IEDSR/IESR ∼ (v/c)2 which is vanishing in
the non-relativistic limit of condensed matter systems. This explains why EDSR is
not systematically observed in all materials but requires sufficiently strong source
of SOC. In crystals, the SOC can be substantially stronger due to the existence of a
different field E in Eq. (2.6) (e.g., Rashba or Dresselhaus SOC). In the following, we
calculate the intensity of the combined resonances, including EDSR.

We consider a general Hamiltonian split as

H = H0 +HSO. (2.7)

The resonances are possible thanks to the coupling of the system to the AC electric
fields Ẽ through the magnetic vector potential Ã,

H̃e = −ev · Ã, (2.8)

where v is the velocity operator,

v = i
!

[H , r], (2.9)

and r is the position operator. The interaction between electrons and the AC field
can also be described by the scalar potential −eẼ · r, and the combined resonance
intensity is equivalently expressed by matrix elements of r and v as we have

⟨ f |v|i⟩ = iωi→ f ⟨ f |r|i⟩ , (2.10)

where ωi→ f is the resonance frequency from state |i⟩ to state | f ⟩. To compare the rel-
ative intensity of combined resonances and magnetic-dipole ESR, we also introduce
the coupling to the AC magnetic field H̃m =

1
2 gµBB̃ · σ. Using B̃ = ∇ × Ã = iq × Ã,
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the total coupling to an AC electromagnetic field of wavelength q with Ã = Ãê is
expressed as

H̃ = H̃e + H̃m ≡ −eu · Ã = −
[
ev · ê + i

gµB

2
(σ × q) · ê

]
Ã. (2.11)

The general velocity u contains both the electric-dipole contribution through v and
the paramagnetic contribution of ESR.

In the framework of the effective mass approximation with quadratic dispersion,
originally used to describe combined resonances in semiconductors, the Hamilto-
nianH0 is

H0 =
!2k2

2m∗
+

1
2

gµBB · σ. (2.12)

For now, we use a general SOC Hamiltonian written as

HSO = λ
∑

i

fi(k)σi, (2.13)

where λ is the SO coupling constant, and the fi(k) are polynomials over powers of
k j, the coordinates of k. Here, the notation differs from Sec. 1.3, and k directly refers
to the magnetic field quasimomentum

k = −i∇r −
e
!

A. (2.14)

In the Zeeman limit, in which SOC is treated as a perturbation, only terms lin-
ear in HSO are kept. The matrix elements (2.10) are conveniently calculated using
the eigenstates of H0. This can be done by eliminating HSO from the Hamiltonian
through an adequate unitary transformation defined as

H → eT̂He−T̂ = H0, (2.15)

which is also applied to the other operators. In the first order approximation, T̂ is
linear inHSO and

HSO(k) + [T̂ ,H0] = 0, (2.16)

T̂ = −i
∫ ∞

0
HSO(t)dt, (2.17)

k(t) = eiH0tke−iH0t. (2.18)

Similarly, the velocity operator used to calculate the matrix elements becomes

ṽ = i
!

[H0, r̃], (2.19)

where we defined
r̃ = eT̂ re−T̂ ≈ r + [T̂ , r] ≡ r + rSO. (2.20)

The SOC Hamiltonian (2.13) is written in the reference system A, usually set by
the crystallographic axes, in which B points in an arbitrary direction characterized
by its polar and azimuthal angles, θ and φ, respectively. The vectors in system A are
written in the basisB = {x̂, ŷ, ẑ}. We now introduce the reference system A’ associated
with the magnetic field so that its Z direction points along B. Moreover, the vectors
are written in the circular basis defined by B′ = {Ê−, Ẑ, Ê+} where Ê± = (X̂ ± iŶ)/

√
2
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and Ẑ ∥ B. In system A, the basis B is used and lowercase letters are employed to
denote vectors (e.g. r, v and k). In system A’, vectors written in the B′ basis are
denoted by capital letters. For instance, the velocity is written as

V = (V−,VZ ,V+) = (V1̄,V0,V1), (2.21)

where
V± =

VX ± iVY√
2
. (2.22)

In the circular basis of A’, Greek indices are used α, β ∈ {−1, 0, 1} (1̄ ≡ −1) to label
the coordinates, whereas roman letters i, j ∈ {1, 2, 3} are used in A. We use the same
notation for the Pauli matrices: σi = êi ·σ where êi ∈ B and σα = Êα ·σ where Êα ∈ B′.

Let the 3 × 3 unitary matrix corresponding to the change of basis transformation
A’→ A be M̂ = M̂(θ, φ) such that

k = M̂K (2.23)

r̂ = M̂R̂ (2.24)

σi =
∑

α

M̂†αiσα. (2.25)

In system A, the magnetic quasimomentum follow the commutation relation

[ka, kb] = ϵabci
e
!

Bc, (2.26)

where ϵabc is the three-dimensional Levi-Civita tensor. Translated in system A’, KZ
must be a scalar and

[K−,K+] =
eB
!
=

1
r2

B
(2.27)

Then, we define ladder operator a† and a for the Landau levels,

K ≡ a

rB
=

1
rB

(a, ξ, a†), (2.28)

where ξ = rBKZ is a scalar, and {a, a†} = 1. In the circular basis, we also have

[Kα,Rβ] = −iδα,β. (2.29)

We are now ready to calculate the intensity of the combined resonances. In the
reference system A’, the Hamiltonian is conveniently written as

H0 = !ωc

(
a†a +

1
2

[β(Ẑ · σ) + ξ2 + 1]
)
, (2.30)

with eigenvalues

εN,σ = !ωc

(
N +

1
2

(βσ + ξ2 + 1)
)
, (2.31)

where σ = ±1 for the |↑⟩ and |↓⟩ spinors quantized along B, N = 0, 1, . . . , and

β =
gµBB
!ωc

=
gm∗

2m0
. (2.32)

The spin frequency ωs and the cyclotron frequency ωc are related by ωs = βωc. The
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spinor part of the matrix elements of T̂ are found by explicitly calculating the integral
in Eq. (2.17) using the equality

Kα(t) = eiα!ωctKα. (2.33)

The polynomials fi(k) definingHSO in (2.13) are written as

f j(k) =
∑

{i}
F( j)

i1,...,il
ki1 . . . kil , (2.34)

where l = l( j) depends on j. Noticing that ⟨↓|σ j|↑⟩ =
√

2M†
1̄ j

, the matrix elements of
T̂ becomes

⟨↓|T̂ |↑⟩ = λ
√

2
!ωc

∑

j

M†
1̄ j

∑

{i},{α}

F( j)
i1,...,il

Mi1α1 · · ·Milαl

α1 + · · · + αl − β
Kα1 · · ·Kαl . (2.35)

Finally, the commutation of T̂ with Rτ in Eq. (2.20), which is needed to calculate
RSO,τ, just reduces to a total derivative with respect to Kτ because [Kα1 · · ·Kαl ,Rτ] =
−i ∂

∂Kτ

(
Kα1 . . .Kαl

)
. In order for ⟨N′ ↓|RSO,τ|N ↑⟩ to be finite, the condition α1+ · · ·+αl =

N′ − N − τ must be satisfied. The corresponding resonance frequency is !ωres =

εN′,↓ − εN,↑ so that, from Eq. (2.10),
〈
N′ ↓

∣∣∣Ṽτ
∣∣∣N ↑〉 = iωres

〈
N′ ↓

∣∣∣RSO,τ
∣∣∣N ↑〉

= λ

√
2
!

N′ − N − β
N′ − N − β − τ

∑

j,{i},{α}
M†

1̄ j
F( j)

i1,...,il
Mi1α1 · · ·Milαl

〈
N′

∣∣∣ ∂

∂Kτ

(
Kα1 · · ·Kαl

)∣∣∣N
〉
. (2.36)

Let us now investigate the combined resonance theory with the concrete Rashba
SOC Hamiltonian,

HSO = α(k × σ) · ẑ. (2.37)

In order to compare the electric-dipole-induced and magnetic-dipole-induced tran-
sitions, it is instructive to look at the general velocity operator define in Eq. (2.11),
which now reads

u =!k
m∗
− (

α

!
ẑ + i

gµB

2e
q) × σ (2.38)

=
!k
m∗
− α
!

(
ẑ + iq′

) × σ, where q′ = !gµB

2eα
q = !

2β

2m∗α
q. (2.39)

The first term of the right hand side of Eq. (2.39) describes the pure cyclotron reso-
nance transitions, the second term is the combined resonances (including EDSR),
made possible by SOC, and the third term is the ESR through the conventional
magnetic-dipole-induced resonance. In order to compare the combined resonances
and ESR, we set q ∥ ẑ so that their respective terms in the velocity differ only by a
numerical factor. Their respective intensities are thus related to each other as

IESR/ICOR = (q′)2, (2.40)

where COR stands for “combined resonance”. The maximum wavelength at which
magnetic absorption experiments are carried out reaches about 100 µm (∼ 12.4 meV
∼ 3 THz) which, for typical semiconductors, corresponds to q′ " 10−3 and the com-
bined resonances thus dominate over ESR.
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Without magnetic field, the energy eigenvalues are ε± = !2k2/2m∗±αk⊥, where k⊥
is the momentum projected in the xy plane. The energy minimum defines an energy
∆ ≡ |εmin| = m∗α2/2!2. For B ∥ ẑ, the Hamiltonian can be diagonalized analytically
and the its eigenvalues are

εM,σ = !ωc

[
M + σ

(
1
4

(1 − β)2 +
4∆
!ωc

M
)]
+
!2k2

z

2m∗
, (2.41)

for M > 0, where σ = ±1 is the branch index. For M = 0 there is only one energy
corresponding to σ = +1,

ε0 =
1
2
!ωc(1 − β) +

!2k2
z

2m∗
. (2.42)

In the Zeeman limit, the ∆ term becomes negligible and the σ index is interpreted as
the spin of the electron (S Z = !σ/2). By relabeling the states such that (M,+)→ (N,−)
and (M,−)→ (N + 1,+), we recover the spectrum of Eq. (2.31),

εN,σ = !ωc

(
N +

1
2

)
+ σ

1
2
!ωs +

!2k2
z

2m∗
. (2.43)

Finally, the combined resonance amplitudes can be calculated using Eq. (2.31)
in the Zeeman limit. The Rashba SOC Hamiltonian corresponds to F(1)

2 = −1 and
F(2)

1 = 1. Due to the linear form of the SOC, the combined resonance velocity Vτ is
independent of momentum and thus N ! N′ matrix elements vanish in Eq. (2.31)
because ⟨N′|N⟩ = δN,N′ . In other words, only the EDSR contributes to the combined
resonances, and the combinational frequency resonance contributions vanish. Any
violation of the harmonicity of H0 (e.g., additional terms ∝ k4, or away from the
Zeeman limit) will allow some combinational frequency resonances [37], but we do
not consider them here. The expression for the velocity matrix elements becomes

⟨N ↓|Ṽτ|N ↑⟩ =
√

2λ
!

β

β + τ

(
M†

1̄2
M1τ − M†

1̄1
M2τ

)
. (2.44)

We now allow the magnetic field to point in any direction and study the effect of
the angle θ between B and the ẑ axis. The transformation matrix M̂ from system A’
(in a circular basis) to system A (in a cartesian basis) with φ = 0 and polar angle θ (so
that X̂ = cos θx̂ − sin θẑ, Ŷ = ŷ, and Ẑ = sin θx̂ + cos θẑ) is

M̂(θ, 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

cos θ sin θ 1√
2

cos θ
−i√

2
0 i√

2
− 1√

2
sin θ cos θ − 1√

2
sin θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.45)

so that we find

⟨N ↑|Ṽ−|N ↓⟩ = −i
√

2
λ

!

β

β − 1
cos θ, (2.46)

⟨N ↑|ṼZ |N ↓⟩ = −i
λ

!
sin θ, (2.47)

⟨N ↑|Ṽ+|N ↓⟩ = 0. (2.48)
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In the Cartesian coordinates X,Y and Z attached to the magnetic field B, the matrix
elements read

⟨N ↑|ṼX |N ↓⟩ = −i
λ

!

β

β − 1
cos θ, (2.49)

⟨N ↑|ṼY |N ↓⟩ =
λ

!

β

β − 1
cos θ, (2.50)

⟨N ↑|ṼZ |N ↓⟩ = −i
λ

!
sin θ. (2.51)

Then intensity of the EDSR therefore depends on both the direction of the AC electric
field ê relatively to the B, and the relative angle θ between B and the Rashba direction
ẑ.

Henceforth, we do not consider the orbital effect of the magnetic field anymore.
In a 2D system, this is only justified when the magnetic field B is in the xy plane, in
which case θ = π/2 and only the component of the velocity along the magnetic field
yield a finite matrix element: from Eq. (2.51), |⟨↑ |ṽ| ↓⟩|2 = (B · ṽ/Bṽ)2λ2/!2.

Moreover, for a 1D system oriented in a direction û1D in the xy plane of the 2D
system, k = kû1D and the Rashba Hamiltonian becomesHSO = αkd̂ ·σ where d̂ ⊥ û1D
in the xy plane. Thus, because ṽ is along û1D, the EDSR intensity is proportional
to sin2 ϕ where ϕ is the angle between B and d̂. This property is recurrent in the
following sections and is proved for a general SOC Hamiltonian (linear in k) away
from the Zeeman limit.

2.3 1D systems

In the following, the systems considered differ from the model used in the previous
section concerning the followings points:

1. The “orbital effects” are not considered. Namely, the momentum operator k
does not include the magnetic potential A. This is possible because of the lower
dimensionality. For a 1D system under a constant B field, it is always possible
to choose a gauge where the component of A along the direction of the system
vanishes. For 2D systems, this is only possible if B lies in the 2D plane.

2. The SOC is not treated as a perturbation and its energy scale is similar to the
Zeeman gap, which is in contrast to the first studies of EDSR [11, 37, 96, 97].

3. Other bands are considered. In particular, we study the effect of the spatially
periodic potential of the crystal lattice, which we implement by studying a
tight-binding model.

4. Electron-electron interaction is considered.

For the 1D system, we proceed in two steps. First, the 1DEG is considered (with
quadratic dispersion) and the effect of interactions is discussed with a Tomonaga-
Luttinger liquid theory. Secondly, the tight-binding model is considered. The EDSR
in the Hubbard model, including the on-site interaction, is studied numerically us-
ing exact diagonalization (ED).

As all the systems considered are translationally invariant (either continuously
or discretely, by multiples of the lattice constant), the general non-interacting single-
band 1D model (with spin) is uniquely defined by the energy dispersion relations of
its upper and lower branches, ϵ+(k) and ϵ−(k), respectively. In the case of a spatially
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discrete model, the dispersion is furthermore periodic in k with period 2π/a, where
a is the inter-site spacing. The general 1D model is thus

H =
∑

k

c†kH(k)ck +Hint, (2.52)

where c†k = (c†k↑, c
†
k↓) and ck = (ck↑, ck↓)ᵀ, c†ks and cks are the electron creation and

annihilation operators with momentum k and spin s,H(k) is a 2×2 Hermitian matrix
with eigenvalues ϵ±(k) andHint is an additional two-electron interaction Hamiltonian
that we leave unspecified for now. For the Hamiltonian (2.52), three different factors
affect the spin resonances at zero temperature:

1. The band Hamiltonian H(k). Note that the dispersions themselves are not
enough as we need the full Hamiltonian to properly calculate other quantities
such as the current operator and the direction of the eigen-spinor at a given
momentum.

2. The electron density or, equivalently, the Fermi energy. It defines the Fermi
surface.

3. The interaction HamiltonianHint.

2.3.1 Generic system

In the non-interacting regime, the EDSR spectrum is fully characterized by the en-
ergy dispersions of its two branches. The generic Hamiltonian is written as

H(k) = ϵ0(k)σ0 + ∆(k)n̂k · σ, (2.53)

where σ0 and σ denote the identity and the Pauli matrices, respectively. Here n̂k
is a momentum-dependent unit vector and ∆(k) is half the gap between the two
branches at a given momentum k. The branch splitting includes the contributions
from both the magnetic field and SOC, and explicit expressions will be considered in
subsequent sections of this chapter. For a given momentum k, the energy dispersions
of the two eigenstates |k±⟩ are

ϵ±(k) = ϵ0(k) ± ∆(k). (2.54)

The spin resonance corresponds to transitions from |k−⟩ to |k+⟩ and thus can be un-
derstood as a momentum-dependent (pseudo-)spin-flip, in the sense that the "flip-
ping" eigen-spinors point in a k-dependent direction, n̂k which is not a fixed quanti-
zation axis for the whole system.

As mentioned in the introduction of this chapter, the resonance is expected at
frequencies matching 2∆(k) for k close to the two Fermi points kL/R

F (L and R stand
for left and right, respectively), and correspond to the shaded regions in Fig. 2.1. This
is clearly understood from the expression of the optical conductivity derived in the
Chapter 1,

σ′(ω) =
π

Lω

∑

k

| ⟨k+| j|k−⟩|2 (⟨nk−⟩ − ⟨nk+⟩) δ(ω − 2∆(k)), (2.55)

where we have set ! = 1. Here, j is the current operator and ⟨·⟩ denotes the grand
canonical ensemble average. Therefore ⟨nk±⟩ = nF(ϵ±(k)), where nF is the Fermi-Dirac
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distribution. With Eq. (2.55), we can calculate the optical conductivity of any non-
interacting single-band model with translational invariance.

Let us derive an expression for the matrix elements ⟨k+| j|k−⟩. The diagonaliztion
ofH(k) is made explicit by the SU(2) rotation Uk defined by

U†k (n̂k · σ)Uk = σz. (2.56)

The eigen-operators c̃k = (c̃k+, c̃k−), which annihilate fermions with energy given in
Eq. (2.54), are

c̃k = U†k ck. (2.57)

The single-particle states are clearly |k±⟩ = c̃†k,± |0⟩, where |0⟩ is the vacuum state (i.e.
with no electrons). Technically, the definition of Uk in Eq. (2.56) is ambiguous, as the
axis of the rotation is left unspecified, but the exact definition will not matter in the
end.

The operator j is analogous to the (group) velocity of the electrons, j = ev, and is
related to the Hamiltonian as j(k) = e ∂

∂kH(k) with

j =
∑

k

c†k j(k)ck, (2.58)

as explained in more details in Chapter 1. Henceforth, we set e = 1. The current
operator reads

j(k) =
∂

∂k
ϵ0(k)σ0 +

∂

∂k
(∆(k)n̂k) · σ

≡ jK(k)σ0 + jSO(k)d̂k · σ. (2.59)

Only the spin-orbit induced current ( jSO) gives rise to the EDSR signal, while
both the “kinetic” current ( jK) and the SO current contribute to the Drude part of the
conductivity. In terms of energy eigenstates, the current operator reads

U†k j(k)Uk = jK(k)σ0 + jSO(k)d̂′k · σ, (2.60)

where d̂′k = U†k d̂kUk. The transformation defined by Uk correspond to an SO(3) rota-
tion in R3 which preserves angles. Therefore, we have the relation

d̂′k · ẑ = d̂k · n̂k ≡ cos φk, (2.61)

where φk can be interpreted as the angle between the eigen-spinors of the Hamilto-
nian and those of the current operator.

Using Eqs. (2.60) and (2.61), off-diagonal matrix elements for the current operator
arise from the x and y components of d̂′k and are given by

| ⟨k+| j|k−⟩|2 = jSO(k)2
[
1 − (d̂′k · ẑ)2

]

= jSO(k)2
[
1 − (d̂k · n̂k)2

]

= jSO(k)2 sin2 φk. (2.62)

The importance of both the Zeeman coupling and SOC in 1D systems can be
understood as follows. For a static magnetic field B, the spin-dependent part of the
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Hamiltonian (2.53) can be generically decomposed as

∆(k)n̂k · σ = (D(k) − b) · σ, (2.63)

where b = (gµB/2)B. Here D(k) represents the k-dependent effective magnetic field
originating from SOC. In 1D systems, the direction of D(k) is often constant and set
by the system direction, as will be explicitly shown shortly in two models. In this
case, D(k) = D(k)d̂ where d̂ is identified as d̂k in Eq. (2.59) and is k-independent.
Furthermore,

[H(k), j(k)] = [
(
D(k)d̂ − b

)
· σ, ∂kD(k)d̂ · σ] = [−b · σ, ∂kD(k)d̂ · σ], (2.64)

so that without either Zeeman coupling or SOC, j is constant in time and

σ′(ω > 0) ! 0 ⇐⇒ ⟨[ j(t), j(0)]⟩ ! 0 ⇐⇒ B ! 0 and λ ! 0. (2.65)

Note that in the occurrence where the direction of D(k) depends on k, EDSR can be
finite even without the static magnetic field, because in general [∂kD(k) ·σ,D(k) ·σ] !
0. This is the case for the 2D systems considered in Sec. 2.5.

2.3.2 1D electron gas

Quantum nanowires are commonly described using an 1DEG model with a quadratic
dispersion, for which the EDSR has been studied in Ref. [98] for instance. The SOC
is caused by inversion asymmetry of the system: Rashba SOC [81] and Dresselhaus
SOC [82] as discussed in Sec. 1.4.

In one dimension, the SOC Hamiltonian can always be written as

HSO(k) = αk(d̂ · σ), (2.66)

where α and the direction d̂ depends on Rashba and Dresselhaus parameters αR and
αD, and on the orientation of the system. For instance, for Rashba SOC only, d̂ is per-
pendicular to the direction of the 1D system. The full non-interacting Hamiltonian
reads

H(k) =
k2

2m∗
+

(
αk − b∥

)
d̂ · σ − b⊥ · σ, (2.67)

where we have decomposed the magnetic field into its components with respect to
the SOC axis d̂, i.e, b = b∥d̂ + b⊥ and ϕ is defined as the angle between d̂ and b:
b∥ = b cosϕ (b = ∥b∥). The energy eigenvalues ϵ±(k) = ϵ0(k) ± ∆(k) are given by

ϵ0(k) =
k2

2m∗
∆(k) =

√(
αk − b∥

)2 + b2
⊥, (2.68)

and the energy eigen-spinor direction n̂k is given by

n̂k =

(
αk − b∥

)
d̂ − b⊥√(

αk − b∥
)2 + b2

⊥

. (2.69)

The Fermi surface is made of two points for each branch, corresponding to right
and left movers. The four Fermi momenta are denoted by kr,σ, where r = R (L)
denotes the right (left) movers andσ labels the spin branches [see Fig. 2.2]. The effect
of b⊥ is to split the two branches while b∥ causes a k ↔ −k reflection asymmetry.
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FIGURE 2.2: Sketch of the parabolic band dispersion of the 1DEG
with SOC and Zeeman coupling with the different Fermi momenta

indicated.

For a typical experimental setup, the Fermi energy EF is considerably larger than
the Zeeman gap and SOC gap at the Fermi surface, so that α ≪ vF and b ≪ EF , where
vF = kF/m∗. Here, kF = πn/2 (n is the electron density) is the Fermi momenta without
magnetic field nor SOC which satisfies kF =

√
2m∗EF . The actual Fermi momenta

differ only slightly from rkF so that kr,σ = rkF + δkr,σ. Keeping only linear terms in
α/vF and b/EF , we have

kr,σ ≈ rkF − σr
m∗∆(rkF)

kF
. (2.70)

As can be seen in Fig. 2.2, the spin resonance spectrum (for both ESR and EDSR) cor-
responds to momenta in the (kL,−, kL,+) and (kR,+, kR,−) intervals (shaded regions) and
is thus generally made two peaks around ω = 2∆(±kF). States in the (kL,+, kR,+) inter-
vals are doubly occupied and do not contribute to the resonance at zero temperature.
If b∥ = 0, ∆(k) = ∆(−k) and the two peaks merge into one.

The width of the peaks scales as the square of SOC and the magnetic field, and
is thus rapidly shrinking for large Fermi velocity. This can be seen more clearly in
the limit of small magnetic field b ≪ αkF . At second order in b/αkF , the inter-branch
gap is given by

2∆(k) ≈ 2
∣∣∣αk − b∥

∣∣∣ +
b2
⊥∣∣∣αk − b∥

∣∣∣
, (2.71)

and the Fermi momenta are approximated by

kr,σ ≈ rkF − σm∗
[
rα − b∥

kF
+

b2
⊥

2kF(rαkF − b∥)

]
. (2.72)

Because ∆(k) is a monotonic function of k near rkF , the width δw of the peaks becomes

δw = 2
∣∣∣∆(k+,r) − ∆(k−,r)

∣∣∣ ≈ 4m∗
α∆(rkF)

kF
+ O

(
b
αkF

)2

= 4m∗α(α − r
b∥
kF

) + O
(

b
αkF

)2

. (2.73)

Therefore, the spin transitions occur at energies centered around 2∆(rkF) in a narrow
region of width δw ≪ ∆(rkF). For a smaller Fermi energy (vF ∼ α), however, the
width becomes substantial.
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The intensity of the EDSR is found using Eq. (2.55). The finite contribution comes
from the SOC driven current in Eq. (2.62) with jSO(k) = α, and

cos φk = d̂ · n̂k =
αk − b∥√(

αk − b∥
)2 + b2

⊥

⇒ sin φk =
±∥b⊥∥√(

αk − b∥
)2 + b2

⊥

= ±∥b⊥∥
∆(k)
. (2.74)

The optical conductivity then reads

σ′(ω) =
4πα2b2

⊥
Lω3

∑

k

(⟨nk−⟩ − ⟨nk+⟩) δ(ω − 2∆(k)), (2.75)

and two peaks have a boxlike shape between ω = 2∆(kr−) and ω = 2∆(kr+) when
T = 0.

Note that because the spinor direction of jSO is constant, the optical conduc-
tivity is directly proportional to the spin susceptibility χ′′(ω) in the d̂ direction (∝∫

dt eiωt⟨[d̂ · σ(t), d̂ · σ(0)]⟩). In an experimental setup where the AC electric field Ẽ is
directed along the wire, and the AC magnetic field B̃ is directed along d̂, the intensi-
ties of EDSR and ESR are directly related and Eq. (2.3) holds exactly (independently
of the direction of b). The maximum ESR intensity corresponds to a setup where B̃
is roughly perpendicular to the effective magnetic field at the Fermi momenta (i.e.,
perpendicular to n̂k at k = ±kF), in which case the ESR does not vanish even when
b⊥ = 0. Therefore, EDSR is dominant over ESR unless b⊥ ≈ 0.

The necessity of both finite α and b⊥ for the EDSR is explicit in Eq. (2.75). The
dependence on the angle ϕ between the SOC direction d̂ and b comes through both
the prefactor b2

⊥ = b2 sin2 ϕ and the resonance frequency ω = 2∆(k), which depends
on ϕ even in the limit vF ≫ α, b/kF . Additionally, a “gap density of state” factor pro-
portional to |∂k∆(k)|−1 arises from the k integral. In the Zeeman limit, ω = 2∆(k) ≈ 2b
uniformly, so that the EDSR intensity depends on ϕ as sin2 ϕ. This property was al-
ready derived from the results of Sec. 2.2 [see Eq. (2.51) and the following discussion]
in the 2DEG with Landau levels by setting the magnetic field in the plane (θ = π/2).

Later in this chapter, we derive an equation similar to Eq. (2.75) for the tight-
binding model, for which we additionally plot the corresponding σ′(ω) for different
parameters. In the next section, we introduce interaction in the model following the
Tomonaga-Luttinger (TL) liquid formalism.

2.3.3 Tomonaga-Luttinger liquid

In this subsection, we consider the EDSR in the context of the TL liquid theory. The
effects of interactions in a quantum wire with SOC under a magnetic field has been
studied with a TL liquid approach in Refs. [99, 100]. The calculations presented in
this chapter are mostly based on Ref. [38] but are more general as Tretiakov et al.
assume the magnetic field to be much smaller than SOC and strictly perpendicular
to it (i.e., b∥ = 0), which we do not. In fact, it was shown that when b∥ = 0, the
system develops a spin-density wave state and is not well described by the TL liquid
theory [99–101]. It is thus important to consider the situation b∥ ! 0 in order to study
EDSR in the TL liquid.
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FIGURE 2.3: Linear band dispersion of the TL liquids with only SOC
(left) and with both SOC and Zeeman coupling (right). The different

Fermi velocities are indicated.

The TL liquid theory focuses on the low-energy properties of 1D electronic sys-
tems, and the energy dispersion is linearized around the Fermi energy. In this chap-
ter, we assume that the basics of the TL liquid theory are known by the reader. The
Hamiltonian in real space reads

H = −ivF

∑

σ

∫

x
dx

(
ψ†R,σ∂xψR,σ − ψ†L,σ∂xψL,σ

)
+HSO +HZ +Hint, (2.76)

where vF is the original Fermi velocity (i.e., without SOC or magnetic field), σ =↑, ↓
labels the spin of the electron, and r = R, L labels the right and left moving electrons.
The SOC Hamiltonian is chosen along the z direction and the magnetic field in the
xz plane,

HSO = α
∑

r

∫

x
dxψ†rσz∂xψr, (2.77)

HZ = −
∑

r

∫

x
dxψ†r (b∥σz + b⊥σx)ψr, (2.78)

where ψ†r = (ψ†r,↑,ψ
†
r,↓). The interaction HamiltonianHint is SU(2)-symmetric and con-

tains terms quadratic in the charge densities ρr =
∑
σ ψ
†
r,σψr,σ. Without neither HSO

nor HZ, the Hamiltonian is SU(2)-symmetric and there are two doubly degenerate
Fermi momenta ±kF . With SOC, but without magnetic field, the Fermi momenta
split into four points: kr,σ = rkF − σm∗ [see Eq. (2.72)]. Moreover, the SOC Hamil-
tonian simply shifts the branches of the original quadratic Hamiltonian left or right
depending on the spin, such that the Fermi velocity is left unaffected by SOC, and
is (−)vF at both kR(L),σ Fermi momenta. The momentum splitting can be removed
by a unitary transformation T = exp(iσmkx̂) which translates k by σm. This trans-
formation cancels the effect of SOC and restores the original SU(2) symmetry of the
system. Only once b⊥ ! 0, the SU(2) cannot be restored and a finite spin resonance is
possible, as discussed previously. Note that in this discussion, the interaction does
not play any role as it is SU(2)-invariant.
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With a finite Zeeman splitting, the Fermi momenta split into four as described in
Eq. (2.70). To each momentum corresponds a different eigen-spinor direction which
defines the + and − bands. For a given r = R or L, we furthermore assume that the
difference in the Fermi momenta is small enough so that both eigen-spinors are in
the same direction n̂rkF defined in Eq. (2.69). The corresponding states are written
ψ†r,+ and ψ†r,−.

Additionally, the Fermi velocities vr,σ split into four: one for each Fermi momenta
(shown in Fig. 2.3),

|vr,σ| = vF − ασ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(1 − rb̃∥)2 + b̃2

⊥ −
1 − rb̃∥√

(1 − rb̃∥)2 + b̃2
⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.79)

where b̃∥ = b∥/(αkF) and b̃⊥ = b⊥/(αkF). We also define δvr =
∣∣∣vr,+

∣∣∣ −
∣∣∣vr,−

∣∣∣. We see here
once again that the right and left moving electrons are only symmetric when b∥ = 0
in which case vR,σ = vL,σ and δvR = δvL. The non-interacting part of the low-energy
Hamiltonian around the Fermi momenta is hence concisely written as

H0 = −i
∑

r,σ
vr,σ

∫

x
dx

(
ψ†r,σ∂xψr,σ

)
. (2.80)

Before performing the bosonization, let us write the optical conductivity in terms
of the fermionic field. Only the SOC current

jSO(x) =
∑

r
αψ†r (x)σzψr(x) (2.81)

is responsible for the spin resonance. The time evolution of jSO is akin to the evo-
lution of σz and is constant unless b⊥ ! 0. Indeed, all the other Hamiltonians con-
serve σz. It is now convenient to work in the spin basis (σ̃x, σ̃y, σ̃z) which satisfies
σ̃z = n̂rkF · σ and σz = n̂rkF · σ̃, obtained after a π rotation along n̂rkF + ẑ. The time
evolution of jSO is obtained from

(n̂rkF · σ̃)(t) =eiΩrσ̃zt/2(n̂rkF · σ̃)e−iΩrσ̃zt/2

=n̂rkF · σ̃ +
2b⊥
Ω

[
(1 − cosΩrt)σ̃x + sinΩrtσ̃y

]

=
2(αrkF − b∥)
Ωr

σ̃z −
2b⊥
Ωr

[σ̃+(t) + σ̃−(t)],

(2.82)

where Ωr = 2∆(rkF) is the energy gap defined in Eq. (2.68) and σ̃±(t) = e±iΩrtσ̃±. We
clearly identify the second term in the last line of Eq. (2.82) as the origin of the spin
resonance. Finally, because we are working with a low-energy effective theory, we
need to take into account the differences of Fermi momenta between the + and −
branches. This is done using the unitary transformation

ψ†r,σ → e−iδkr,σxψ†r,σ = exp
[
iσr

m∗Ωr

2kF
x
]
ψ†r,σ ≡ exp

[
iσpr x

]
ψ†r,σ, (2.83)

where pr = r m∗Ωr
2kF

and we have used Eq. (2.70) for an expression for δkr,σ. The trans-
formation effectively shifts the Fermi momenta kr,σ to rkF . The optical conductivity
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reads

σ′(ω) =
α2

Lω

∑

r

∫ L

0
dx

∫ ∞

0
dteiωt 2b⊥

Ωr
×

(
⟨[ψ†r,+(x, t)ψr,−(x, t),ψ†r,−(0, 0)ψr,+(0, 0)]⟩
︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

I+−,−+

e2ipr x

+ ⟨[ψ†r,−(x, t)ψr,+(x, t),ψ†r,+(0, 0)ψr,−(0, 0)]⟩
︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

I−+,+−

e−2ipr x
)
. (2.84)

Using the standard formalism of the TL liquid theory (see, e.g., Ref. [102]), let us
introduce a transformation to the bosonic operators (θc, φc, θs, φs), where c stands for
‘charge’ and s for ‘spin’, defined by

ψr,σ = Ur,σ
eirkF

√
2πa0

e−i(rφσ−θσ), (2.85)

where φσ = (φc + σφs)/
√

2, θσ = (θc + σθs)/
√

2, a0 is the ultraviolet cutoff length, and
Ur,σ are the Klein factors which ensure the proper anticommutation relations.

After adding the interaction, the Hamiltonian reads

H =
∫

dx
2π

[
vcKc(∂xθc)2 +

vc

Kc
(∂xφc)2 + vsKs(∂xθs)2 +

vs

Ks
(∂xφs)2

]

+ δv1
[
∂xφc∂xθs + ∂xφs∂xθc

]
+ δv2

[
∂xφc∂xφs + ∂xθc∂xθs

]
, (2.86)

where we have defined δv1 =
δvL−δvR

2 and δv2 =
δvL+δvR

2 . Here c (s) stands for the charge
(spin) channel, and vc (vs) is the velocity of plasmons (spins). The different TL liquid
parameters vs, vc,Kc and Ks explicitly depend on the interactions [102] which we do
not specify. In the non-interacting limit Hint = 0, they satisfy vc = vs = vR,+ and
Kc = Ks = 1. In Eq. (2.86), the terms irrelevant in the low-energy limit (as calculated
with the renormalization group) when Kc < 1 (repulsive interaction) are neglected.
Moreover, we assume that the deviations from the full SU(2) symmetry are small
which is true for small SOC (α ≪ vF) and magnetic field (∥b∥/kF ≪ vF). In this limit,
the correction to Ks = 1 are of the order of (α/vF)2 and b2/(vFkF)2 [38, 103] and in the
following we set Ks = 1.

To express the optical conductivity in terms of the bosonic operators, we define
the time-ordered correlation function in imaginary time (τ = −it)

IT
+−,−+(x, τ) = ⟨Tτψ†r,+(x, τ)ψr,−(x, τ)ψ†r,−(0, 0)ψr,+(0, 0)⟩, (2.87)

and a similar definition for IT
−+,+−(x, τ), which are related to the retarded correlation

defined in Eq. (2.84) through I+−,−+(x, t) = IT
+−,−+(x, t) − [IT

−+,+−(x, t)]∗ for t > 0, where
we used ⟨ψ†−(0)ψ+(0)ψ†+(t)ψ−(t)⟩ = [⟨ψ†−(t)ψ+(t)ψ†+(0)ψ−(0)⟩]∗.

Defining Y(x, τ) = i
√

2(rφs − θs) (hence eY/(2πa0) = ψ†r,+ψr,− and e−Y/(2πa0) =
ψ†r,−ψr,+), we obtain

IT
+−,−+(x, τ) =

1
(2πa0)2 ⟨Tτe

Y(x,τ)e−Y(0,0)⟩ = 1
(2πa0)2 e−

1
2 ⟨Tτ(Y(x,τ)−Y(0,0))2⟩

≡ 1
(2πa0)2 eg(x,τ). (2.88)
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The second equality is true because Y is linear and the Hamiltonian is quadratic
in the bosonic fields so that we can use the Wick theorem [102]. After a Fourier
transform,

g(x, τ) =
∑

q,ω

[
ei(qx−ωτ) − 1

]
⟨Y(q,ω)Y(−q,−ω)⟩. (2.89)

Similarly, we find IT
+−,−+(x, τ) = IT

−+,+−(x, τ) because Y only appears squared.
Finally, the calculation of the average ⟨Y(q,ω)Y(−q,−ω)⟩ can be done using a path

integral. The correlation functions of the bosonic fields are calculated through the
generating functionalZ[J],

Z[J] =
∫ ∏

i

DΦi exp
[∫

dτ
∫

dx
(
−1

2
ΦᵀMΦ + JᵀΦ

)]

= (det M)−
1
2 exp

[
1
2

JᵀM−1J
]
, (2.90)

where Φᵀ = (φc, φs, θc, θs) is the transpose of Φ, M is a 4 × 4 matrix which describes
Lagrangian of the system, and J = (J1, J2, J3, J4) are extra variables. The second
line of Eq. (2.90) is obtained after a Gaussian path integral. The bosonic correlation
functions are calculated from the action with J = 0,

⟨Φi(x, τ)Φ j(0, 0)⟩ = ∂2 lnZ
∂Ji(x, τ)∂J j(0, 0)

∣∣∣∣∣∣J=0
=

∫
dω
2π

∫
dq
2π

ei(qx−ωτ)M−1
i j (q,ω), (2.91)

and thus
⟨Y(q,ω)Y(−q,−ω)⟩ = −2

[
M−1
φsφs
+ M−1

θsθs
− rM−1

φsθs
− rM−1

θsφs

]
, (2.92)

where r = 1(R) or r = −1(L). The matrix M is obtained from the Euclidean action

S =
∫

dτ
[∫

dx
( i
π
∂xθc∂τφc +

i
π
∂xθs∂τφs

)
−H

]
≡

∫
dτ

∫
dx

1
2
ΦᵀMΦ. (2.93)

In the (φc, φs, θc, θs) basis, we obtain

M(q,ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vc
πKc

q2 δv2
2π q2 i

πqω δv1
2π q2

δv2
2π q2 vs

πKs
q2 δv1

2π q2 i
πqω

i
πqω δv1

2π q2 vcKc
π q2 δv2

2π q2

δv1
2π q2 i

πqω δv2
2π q2 vsKs

π q2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.94)

The inverse of M can then be calculated1 and expanded in powers of δv1 and δv2. Up
to quadratic order and setting Ks = 1,

M−1
φsφs
+ M−1

θsθs
− rM−1

φsθs
− rM−1

θsφs

=
2πi

q(rω + iqvs)
− (δvr)2

[
πq

4Kc

qvc(K2
c + 1) + 2irKcω

(ω2 + q2v2
c) + (rω + iqvs)2

]
. (2.95)

The last step consists of integrating over q and ω to obtain g(x, τ) in Eq. (2.89). The
calculation is very technical. Thus, we mostly skip it, and directly give the final
result. The ω integration can be done using the residue theorem for the poles be-
low the real line (because of the e−iωτ factor with τ > 0) which appear at ω = ±ivsq
and ω = ±ivcq. After performing the q integration and analytical continuation, the

1We used Mathematica.
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main contributions come from the sum of ln
(
x ± vc,st

)
terms with different prefac-

tors which, once exponentiated, result in algebraic terms in (x ± vc,st) with different
exponents.

Using I+−,−+(x, t) = IT
+−,−+(x, t) − [IT

+−,−+(x, t)]∗ the optical conductivity for an in-
finitely long wire reads

σ(ω) = C
∫ ∞

−∞
dx

∫ ∞

0
dt(ei(ωt−2pr x) + ei(ωt+2pr x))[K(t + iδ) − K(t − iδ)], (2.96)

where C is a constant,

K(t) =
1

(x − rvct)λ(x + rvct)µ(x − rvst)ν
, (2.97)

and

λ = (δvr)2 (Kc + 1)2

8Kc

1
(vc − vs)2 ,

µ = (δvr)2 (Kc − 1)2

8Kc

1
(vc + vs)2 ,

ν = 2 − (δvr)2 Kcv2
c + Kcv2

s + (K2
c + 1)vcvs

2Kc(vc − vs)2 . (2.98)

In this form we can see that the poles in K(t) at x = ±vc/st result in peaks inσ′(ω) at
frequencies ωres = 2|pr |vc/s (keeping only the positive frequencies) corresponding to
spin resonance (vs) and an extra plasmon resonance (vc). In the non-interacting limit,
vc = vs and we recover the original resonance frequency ωres = 2|pr |vs = 2∆(rkF). In
this case, the exponents satisfy µ = 0 and λ + ν = 2 so that

K(t) =
1

(x − rvst)2 . (2.99)

The x integral can be performed using the residue theorem. For positive ω, only the
ei(ωt−2pr x) term in σ′(ω) is relevant, and only the poles in the lower (upper) half-plane
contribute for r = R (L). In Eq. (2.96), only the K(t − iδ) term involves the poles in the
appropriate half-plane and the equation becomes

σ(ω > 0) = 4πC|pr |
∫ ∞

0
ei(ω−2|pr |vs) = i

4πC|pr |
ω − 2|pr |vs + iγ

, (2.100)

where a attenuation factor ω → ω + iγ was introduced. The real part is thus a
Lorentzian function and in the γ → 0 limit,

σ′(ω > 0) = 4π2C|pr |δ(ω − 2|pr |vs). (2.101)

As expected, we recover the resonance peak at the original spin resonance frequency.
By comparing the expression with what we obtained in the non-interacting wire [see
Eq. (2.75)] using a (|pr |/kF)×n/2 factor (with n = 2kF/π) for to the density of electrons
in the range of momenta contributing to the spin resonance (in the TL liquid theory,
they all contribute to the same ω = 2∆(rkF))2, we have

C = α2b2
⊥

8π2∆(rkF)3 ≈
b2
⊥

8π2α2kF
, (2.102)

2This is simply equivalent to changing 1
L
∑

k → 1
2π

∫
k dk in Eq. (2.75) with ∆(k) = ∆(rkF) = |pr |vs.
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where the approximation in the second equality is valid in the small field limit ∥b∥ ≪
αkF in which case ∆(rkF) ≈ αkF . With interactions, C should also depend on the cut-
off length a0 as aλ+µ+ν−2

0 from dimensional analysis.
A similar calculation can be performed for the plasmon and spin resonances

in the interacting case, but the complex integrals are more involved. We refer to
Ref. [38] for the calculations. In the limit where the two resonance peaks are suffi-
ciently distinct |(vc − vs)pr | ≪ γ, the spin resonance around ωres,s = 2|pr |vs is

σ′(ω) ≈ C (2|pr |)ν−1

(vc − vs)λ(vc + vs)µΓ(ν)
γ

[
(ω − ωres,s)2 + γ2]1− λ+µ2

, (2.103)

where Γ(ν) is the Gamma function. Hence, a significant deviation from the Lorentzian
can be caused by the interactions. The optical conductivity at the plasmon resonance
around ωres,c = 2|pr |vc is

σ′(ω) ≈ C 2πλ(2|pr |)λ−1

(2vc)µ(vc − vs)ν(2 − µ − ν)
γ

[
(ω − ωres,c)2 + γ2]1− µ+ν2

, (2.104)

with much weaker amplitude than the spin resonance because λ ∝ (δvr)2. It would
thus appear as a small extra peak when ωres,s and ωres,c are well enough separated.

2.4 1D Hubbard model

As promised, we now consider the Hubbard model. As for the 1DEG, we study the
synergetic effects of the magnetic field and the SOC on the dynamical response func-
tions. There are two main distinctions between the Hubbard model and the electron
gas. First, the continuous translation symmetry is broken by the lattice. This causes
the energy dispersion to be cosine-like. Most importantly, the SOC Hamiltonian is
also altered and adopts a periodic shape with the periodicity of the Brillouin zone.
Therefore, the SOC current jSO, responsible for the EDSR, strongly depends on the
position of the Fermi energy in the band. In the limit of a quadratic dispersion, i.e.,
for a Fermi energy at the very bottom or very top of the band, the results (without
interactions) agree with those for the electron gas. Secondly, the interaction in the
Hubbard model cannot be fully understood with a TL liquid approach. In particu-
lar at half-filling, the system becomes a Mott insulator [104] for any finite repulsive
interaction U > 0 (in 1D, there is no phase transition) due to umklapp processes. In
the following, we show that the EDSR signal is strongly affected and vanish in the
strongly correlated regime at half-filling because of the umklapp scattering.

The Hubbard Hamiltonian is

H = −t
∑

i

[
c†i+1ci + H.c.

]
+ U

∑

i

ni,↑ni,↓, (2.105)

where t is the transfer integral which quantifies the hopping amplitude. Moreover,
the SOC and the magnetic field Hamiltonians are

HSO = iλ
∑

i

[
c†i+1(d̂ · σ)ci − H.c.

]
, (2.106)

HZ = −
∑

i

c†i (b · σ)ci. (2.107)
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Here, HSO is the effective SOC Hamiltonian in the lattice caused by the absence
of inversion symmetry centered at the middle of the bonds [see the discussion in
Sec. 1.4], λ is the SOC strength, and d̂ is the “SOC vector” (it points in the direction
of the SOC internal magnetic field) and is assumed uniform throughout the system.
In the following we set the lattice spacing to a = 1.

Let us first concentrate on the non-interacting part of H . In the formalism of
Sec. 2.3.1,

ϵ0(k) = −2t cos(k), (2.108)

∆(k) = ||2λ sin(k)d̂ − b|| =
√

(2λ sin(k) − b∥)2 + b2
⊥, (2.109)

n̂k =
2λ sin(k)d̂ − b
∆(k)

, (2.110)

where, as before, the magnetic field is split into b = b∥d̂ + b⊥ and b∥ = b cosϕ. As
an example, Fig. 2.4 shows the dispersion relation with parameters chosen such that
the effects of SOC and Zeeman splitting on the dispersion are clear (t = 1, λ = 0.3,
b = 0.1, ϕ = π/4),

FIGURE 2.4: Dispersion relation in the 1D tight-binding model. The
gap between the two lines is 2∆(k). The shaded regions correspond
to momenta contributing to the optical conductivity at T = 0 at fre-
quencies ω = 2∆(k). The parameters are t = 1, λ = 0.3, b = 0.1 and

ϕ = π/4.

Due to the discrete nature of the system, the proper definition of the current
operator is not obvious. Here we introduce the standard definition in the tight-
binding model which is consistent with the relation j(k) = ∂kH(k). A physically
satisfactory definition (see, e.g., Ref. [65]) relies on the discrete lattice polarization
operator

P =
∑

i

xini, (2.111)

where xi is the position of site i. The current operator is then defined as the time
derivative of P

j ≡ Ṗ = −i[P,H], (2.112)

which satisfies a discrete continuity equation
∑

i ∂tni + ∂x j = 0 (some care has to be
taken when defining the discrete spatial derivative ∂x). From Eqs. (2.111) and (2.112)
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FIGURE 2.5: Optical conductivity of the tight-binding model (U = 0)
for t = 1, λ = 0.3, and b = 0.1 at half-filling (EF = 0), for different
angles ϕ between b and d̂ at T = 0. The optical conductivity is unitless,

as explained in the main text.

we get
j =

∑

i

[
c†i+1(itσ0 + λd̂ · σ)ci

]
+ H.c., (2.113)

where we have used the identity [nα, c†βcγ] = c†αcγδαβ − c†βcαδαγ. By analogy with
Eq. (2.59),

jK(k) = 2t sin(k), jSO(k) = 2λ cos(k). (2.114)

The SO current thus depends on the crystal quasimomentum due to the periodic
potential.

The EDSR, which is the only source of finite optical conductivity at ω > 0 when
U = 0, originates from jSO and the optical conductivity becomes

σ′(ω) =
16πλ2b2

⊥
Lω3

∑

k

cos(k) (⟨nk−⟩ − ⟨nk+⟩) δ(ω − 2∆(k)). (2.115)

Equation (2.115) is similar to Eq. (2.75) but with an extra cos(k) term. Figure 2.5
shows the optical conductivity at half-filling (EF = 0) calculated with the same pa-
rameters as in Fig. 2.4 (t = 1, λ = 0.3, b = 0.1), for different values of ϕ. There are
two peaks for the left and right moving electrons around ωres = 2∆(±kF), where the
Fermi wave vector is now defined by −2t cos(kF) = EF . When ϕ = π/2, the two peaks
merge together as the −k ↔ k symmetry is recovered. As for the 1DEG, the EDSR
peaks have an intrinsic width which, for small b ∼ λ ≪ t, scales as δw ∼ λ2/t [see
Eq. (2.73)].

A few words about the units of σ′(ω) plotted in Fig. 2.5 are in order. The SI unit
of the optical conductivity is the siemens per meter (S/m). However, in a 1D system
the current density has units of Ampere and hence the 1D optical conductivity has
units of S · m. As we set e = 1, a = 1 and ! = 1, σ′(ω) as defined in Eq. (2.115) is
unitless. In particular, it is invariant under a rescaling of the energy. To recover the
SI units, σ′(ω) has to be multiplied by a e2a/! factor. The usual optical conductivity
(i.e., the physical one measured in three dimensions) is obtained from the 1D optical
conductivity using σ3D = σ1D/a2

⊥, where a⊥ is the lattice spacing perpendicular to
the chain direction of the 1D system.
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FIGURE 2.6: Optical conductivity of the tight-binding model (U =
0) for λ/t = b/t = 10−3 at (a) half-filling and (b) quarter-filling for
different angles ϕ between b and d̂ at T = 0. The optical conductivityis
plotted in units of t since the Dirac delta function has been factored

out, as explained in the main text.

We now consider the more physically realistic limit where t ≫ λ ∼ b and we set
λ/t = b/t = 10−3 in our calculations, which corresponds to a magnetic field of ∼ 1.7 T
when t = 100 meV. In Fig. 2.6, σ′(ω) is plotted at half- and quarter-filling. With this
set of parameters, the peaks are very narrow because all contributing momenta k
roughly correspond to the same frequency ωres = 2∆(±kF) with a reasonable numeri-
cal resolution. Therefore, we factorize δ(ω − ωres) and we only show the multiplying
factor, which is plotted in units of t.

The dependence of σ′(ω) on EF is due to the cos(k) term in Eq. (2.115). In particu-
lar, at EF = 0 (which correspond to one electron per site, or a half-filled system), the
momenta contributing to resonance are close to ±π/2 and the amplitude of the EDSR
is highly suppressed due to the vanishing SO current jSO(k) ∝ cos(k). Otherwise,
the optical conductivity behave similarly than for the continuum model, and is only
non-zero when both λ and b⊥ are finite.

As opposed to the free electron model, in the crystal all physical quantities are
periodic in k. As a consequence, the SO current must vanish at some momenta in
the Brillouin zone. In 1D, those momenta (k = ±π/2) coincide with ±kF at half-filling
but this do not have any profound meaning (i.e., it is just a coincidence). Finally,
jSO(k) ∝ cos(k) is suppressed at half-filling but does not completely vanish, as shown
in Figs. 2.5 and 2.6. It originates from the momenta k close but not equal to kF (be-
tween kr,+ and kr,−) which contribute at zero temperature.

As we show later in this chapter, this is in contrast to the 2D case where an
electric-dipole-induced spin resonance is allowed by SOC even when b = 0 [73,105–
107]. In addition, we will see that in 2D the cos(k) term (which becomes cos(kx) +
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cos(ky) on a square lattice) has deeper implications regarding the resonance spec-
trum.

2.4.1 Effect of interactions

We now proceed to add the interaction term Hint = U
∑

i ni,↑ni,↓ in the 1D Hubbard
Hamiltonian (2.105).

We calculate the effect of interactions on the resonance using exact diagonaliza-
tion in finite systems. There are four different states per site (empty, spin up, spin
down, and doubly occupied). Because of the lack of SU(2) or U(1) spin symmetry, the
calculations quickly become too expensive for large systems. We explicitly consider
the system in two situations: (i) half-filling with 7 electrons in 7 sites, (ii) quarter-
filling with 4 electrons in 8 sites. The sizes of the corresponding Hilbert spaces are
3432 for (i) and 1820 for (ii). The optical conductivity for ω > 0 in the canonical
ensemble is given by

σ′(ω) =
π

L

∑

mn
Em!En

e−βEm − e−βEn

Z
| ⟨ψm| j|ψn⟩|2

ωmn
δ(ω − ωmn), (2.116)

where |ψm⟩ is a many-body eigenstate with energy Em, ωmn = En − Em, Z is the parti-
tion function, and β = 1/kBT is the inverse temperature.

Lieb and Wu [108] first exactly solved the 1D Hubbard model in 1968. They
proved that in the 1D Hubbard model, the ground state exhibits no conductor-
insulator transition at half-filling. Instead, the system is an insulator for any U > 0
with a finite gap ∆opt in the optical absorption. Besides, away from half-filling the
system shows no optical gap for all U, and is hence metallic.

In the Hubbard model, a finite U has two effects on σ′(ω). First, new addi-
tional optical resonances between the ground state and excited states are allowed.
The optical conductivity of the Hubbard model is a long-standing problem and has
been studied to a large extent with both analytic and numerical methods at half-
filling [75–78] and away from half-filling [70–72, 109, 110]. Those effects are “purely
optical” in the sense that neither the SOC nor the Zeeman coupling are needed.
While interesting, those effects are not the focus of this thesis. Nevertheless, in
Sec. 2.4.2 we briefly consider the synergetic effects of SOC and Zeeman splitting on
the high-energy optical transitions in the Mott insulating phase at half-filling. Sec-
ondly, in the Hubbard model with SOC and Zeeman splitting, interactions alter the
EDSR contribution which we studied at U = 0. We concentrate on this effect in the
present section.

The size of ∆opt, the optical gap, has been calculated exactly [79] in the “bare”
Hubbard model (with λ = b = 0) and approaches ∆opt ∝

√
U/t exp(−2πt/U) when

U → 0. Hence, the gap vanishes exponentially when U " 2t. The addition of SOC
in an infinitely large system do not affect this results, as the SU(2) spin symmetry
can be recovered with a gauge transformation. For a finite system with periodic
boundary conditions, however, corrections are expected [111]. With the magnetic
field, the expression for ∆opt is not exact anymore, but is still a good approximation
for small b/t.

For the numerical calculations, the parameters are set to λ/t = b/t = 10−3 and
the spin resonance peaks are very narrow when U = 0 as shown in Fig. 2.6. For the
system sizes we consider, the resonances for left and right moving fermions each
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correspond to a transition from the ground state to only one excited state, with am-
plitude and frequency determined from Eq. (2.116). Therefore, the spin resonance is
characterized by its frequency ωres and its peak amplitude, which both varies con-
tinuously from their U = 0 values.

The results at half-filling are shown in Fig. 2.7 with ϕ = π/2 (i.e., b∥ = 0 and there
is only one peak) together with the exact value of ∆opt calculated from Refs. [79,
108] in the thermodynamic limit. Interestingly, we find that in the region where the
optical gap is exponentially suppressed, the amplitude increases as U gets larger.
However, as soon as the optical gap reaches ∆opt ∼ t, σ′(ωres) gets progressively
smaller and tends to zero as U increases. When the optical gap reaches values similar
to the kinetic hopping t, the electrons become more and more frozen in place and we
naturally expect localized spins to appear and obstruct the current jSO responsible
for the EDSR.

FIGURE 2.7: (a) The optical conductivity at ωres, and (b) ωres plotted
as a function of the interaction strength U for ϕ = π/2 (b∥ = 0) at half-
filling (7 electrons in 7 sites) with parameters λ/t = b/t = 10−3. (c)
The exact optical gap in the thermodynamic limit (without magnetic

field) as calculated in Refs. [79, 108].

In the non-interacting models, the EDSR and the magnetic-dipole-induced ESR
are closely related (and even proportional to each other in the 1D continuum model).
At half-filling, their evolutions with respect to the interaction U is completely differ-
ent as the spin susceptibility does not rely on the ability of the electrons to move. In
Fig. 2.8, the dynamical spin susceptibility at ωres is shown as a function of U where
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φ = π/2 and the direction of the corresponding AC magnetic field B̃(t) is chosen per-
pendicular to the static field b and either perpendicular or parallel to the SOC vector
d̂. The corresponding components of the spin susceptibility are labelled χ⊥(ω) and
χ∥(ω), respectively.

The direction of the total effective Zeeman field ∆(k)n̂k (from b and SOC) de-
pends on k but is in the bd̂ plane. In a SU(2)-symmetric spin system with an extra
U(1) symmetric Zeeman coupling, the resonance is unaffected by SU(2)-symmetric
interactions [94]. In our system, SOC is defined through a spin-dependent hopping,
so that the spin resonance is affected by interactions through SOC. However, when
B̃ ⊥ d̂, n̂k is always perpendicular to B̃ and the spin resonance is independent of the
direction n̂k in the plane. In this case, the amplitude of the resonance is independent
of U as can be seen in Fig. 2.8. For B̃ ∥ d̂, the angle between n̂k and B̃ is affected
by SOC and thus the amplitude of χ′′∥ (ωres) depends on U as shown in Fig. 2.8. The
effect of SOC on the spins scales as 1/U. Indeed, for sufficiently large U, the physics
of the system is understood in terms of local spins with effective nearest neighbor
spin interaction. In particular, the SOC contribution to the spin interactions scales
as tλ/U and takes the form of the DM interaction (the large-coupling effective spin
Hamiltonian is considered in Sec. 2.4.2). Therefore, for large U, χ′′∥ (ωres) tends to the
value it would have without SOC: χ′′⊥(ωres). The interplay between SOC, Zeeman
splitting, and interactions nevertheless results in a shift in the frequency ωres of the
spin resonance, as shown in Fig. 2.7(b).

FIGURE 2.8: The magnetic susceptibility at ωres is plotted as a func-
tion of the interaction strength U for ϕ = π/2 (b∥ = 0) at half-filling (7
electrons in 7 sites) with parameters λ/t = b/t = 10−3. The ac magnetic
field is chosen perpendicular to b and either parallel (χ∥) or perpen-

dicular (χ⊥) to d̂.

Finally, the results for the quarter-filling case are shown in Fig. 2.9 for ϕ = π/2
(b∥ = 0, only one peak) and ϕ = 5π/12 (two peaks for left and right moving elec-
trons). At quarter-filling, the system is gapless and the EDSR is observed even in
the strongly correlated regime. As for the TL liquid, the interaction renormalizes
the amplitude of the resonance. For ϕ = π/2, already for small U/t, both the ampli-
tude and frequency ωres are significantly modified. They both eventually converge
to fixed values for sufficiently large U/t. For ϕ = 5π/12, the evolution of two peaks
is shown in Fig. 2.9(c) and (d). In this case too, U modifies the amplitude and shifts
ωres. Interestingly, only one peak survives at large U/t (the one with with the smaller
resonant frequency). It is unclear, however, whether this is a finite-size effect.
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FIGURE 2.9: The optical conductivity at ωres and ωres are plotted as
a function of the interaction strength U at quarter-filling (4 electrons
in 8 sites) for two different values of ϕ with parameters λ/t = b/t =
10−3. (a) and (b): The amplitude and the resonance frequency for
ϕ = π/2 (b∥ = 0) are depicted, respectively. The insets represent the
same plots in an extended region of U. (c) and (d): The amplitudes
and the resonance frequencies for ϕ = 5π/12 (b∥ ! 0) are depicted,

respectively.

2.4.2 Large coupling limit at half-filling

In the U/t → ∞ limit at half-filling, the system is a Mott insulator and the EDSR
signal tends to zero due to freezing of the electrons. We will see in Chapters 3 and
4 that spin resonances at low energies, with amplitude scaling as (t/U)n for some
integer n, are still possible in the Mott insulating phase under some conditions.

However, here we consider the effect of SOC and b on the more conventional
optical excitations at the energy scale ω ∼ U [75–78]. In the large U limit with λ =
b = 0, the optical gap separates the so-called upper and lower Hubbard bands and is
well approximated by ∆opt ≃ U − 4t + 8 ln(2)t2/U [79]. The optical conductivity of the
bare Hubbard model in this limit at T = 0 is finite at frequencies between ω ≃ U − 4t
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and ω ≃ U + 4t [75] corresponding to transitions from the lower band to the upper
band. In the λ, b ≪ t ≪ U limit, this behavior is not expected to change.

The effective spin Hamiltonian is obtained from second-order perturbation the-
ory in the hopping (both t and λ) and reads

Hspin =Hex −
∑

i

b · Si, (2.117)

Hex =
∑

i

J
(
S x

i S x
i+1 + S y

i S y
i+1

)
+ JzS z

i S
z
i+1 + D · (Si × Si+1) , (2.118)

where

J =
4(t2 − λ2)

U
, Jz =

4(t2 + λ2)
U

, D = 8tλ
U

d̂. (2.119)

The spin z direction is defined by S z = d̂ · S.
The optical conductivity is obtained from the current-current correlation function

χ j j(ω) using σ′(ω) = −χ′′j j(ω)/(ωL). The current-current correlation function reads

χ j j(ω) = ⟨ψ0| j
1

E0 −H + ω + iδ
j|ψ0⟩

=
∑

n

| ⟨ψ0| j|ψn⟩|2
E0 − En + ω + iδ

, (2.120)

where |ψ0⟩ is the ground state of the full Hubbard Hamiltonian with energy E0 =

O(t), and |ψn⟩ are the excited states with energy En = U + O(t), to which optical
transitions from the ground state are allowed.

In order to qualitatively describe the effect of SOC and b, we neglect corrections
of the order of t/U. In this case, σ′(ω) becomes a delta peak at ω = U and we study
its amplitude. Additionally, by neglecting the t/U contribution, the ground state is
purely magnetic (there are no doubly occupied sites). Hence, we look for an effective
expression of Eq. (2.120) using the spin Hamiltonian (2.117). The contribution of
order t/U in E0 and En are neglected and σ′(ω) has only one contribution at ω = U.
The ground state of the spin Hamiltonian (2.117) becomes

∣∣∣ψs
0

〉
≡ PS |ψ0⟩, where PS

is the projection operator onto the magnetic Hilbert space.
In the U ≫ t limit, we then have

χ j j(ω) =
〈
ψs

0

∣∣∣ j
1

O(t) − [U + O(t)] + ω + iδ
j
∣∣∣ψs

0

〉
. (2.121)

For U → ∞,
∣∣∣ψs

0

〉
= |ψ0⟩ and Eq. (2.121) holds exactly. Droping the O(t) terms

coming from the dispersion of the bands, we can factorize Eq. (2.121) using

1
U
PS j2PS = −Hex + const.. (2.122)

The resonance at ω = U is therefore given by

σ′(ω) = −π
(

1
L
⟨Hex⟩S −

Jz

4

)
δ(ω − U), (2.123)

where ⟨·⟩S is the statistical average with respect to the spin HamiltonianHspin (2.117).
From Eq. (2.123), we calculated σ′(ω = U) for different λ and b as a function of

the angle ϕ between b and d̂. The calculation was done at zero temperature using ex-
act diagonalization. Because the Hamiltonian has translation symmetry, the Hilbert
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FIGURE 2.10: Optical conductivity of the effective spin model
[Eq. (2.123)] for U/t = 50 (J/t = 0.08) at ω = U. The multiplicative fac-
tor in front of the Dirac delta function is plotted. (a): The amplitude is
shown as a function of the magnetic field b without SOC. (b), (c) and
(d): The amplitude is shown as a function of ϕ, with SOC (λ/t = 10−3),
for b = 0.8J, 1.05J and 1.5J, respectively. The calculations were made

in a system of 12 spins at T = 0.

space can be split into subspaces characterized by different values of the total mo-
mentum, and the Hamiltonian has a block diagonal form. Using this symmetry, the
exact diagonalization could be performed in systems of up to 12 sites.

The results for the 12-site system are shown in Fig. 2.10. The step-like behavior
is caused by finite-size effects. First, we see that σ′(ω = U) vanishes for large b when
λ = 0. Indeed, when b increases the system progressively becomes magnetically
polarized and ⟨Hex⟩S approaches LJz/4 in Eq. (2.123). This can be understood from
the Pauli principle: when all the electrons have their spin along the b, the hopping
of the electrons is impossible. Conversely, with SOC, the hopping is accompanied
by a spin rotation. Therefore, for a large magnetic field b, the Pauli principle does
not completely hinder the hopping and a finite resonance is recovered. The recovery
depends on the angle ϕ and is maximal when d̂ is perpendicular to b. This effect is
shown in Fig. 2.10(b), (c) and (d).

2.4.3 Discussion

In the present section, we considered the EDSR due to synergetic effects of SOC and
magnetic field in the 1D Hubbard model. In particular, we calculated its dependence
on the angle φ between the SOC vector d̂ and the magnetic field b.

The system is split into two phases depending on the filling and the interaction
U. First, in the metallic phase in a broad sense (i.e., zero or exponentially small ∆opt),
the EDSR is always expected and dominates over the magnetic-dipole-induced reso-
nance. The resonance at U = 0 and its dependence on EF , b, and d̂ is well understood
from our results. Interestingly, the interplay between SOC and Zeeman splitting has
been observed experimentally in quasi-1D magnetic systems. In 1D spin systems,
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the low-energy physics can be described in terms of spinons which behave very
similarly to electrons in a metallic regime [112,113]. The ESR spectrum (magnetically
induced in this case) splits into contributions from left and right movers depending
on the angle ϕ consistent with our results.

Secondly, in the insulating phase at half-filling, the EDSR is progressively sup-
pressed as the optical gap exceeds ∆opt # t, which we observed using exact diago-
nalization. The suppression of the EDSR is directly linked to the absence of gapless
spinful particles that couple to the electric field. The magnetic susceptibility is af-
fected but not suppressed by the optical gap, and the magnetic-dipole-induced ESR
does not vanish at large U.

In the strong-coupling limit at half-filling, we also investigated the optical re-
sponse at ωres ∼ U. In this energy range, the transitions are intrinsically optical but
are affected by the spin of the electrons through SOC. They correspond to transi-
tions between the lower and upper Hubbard bands separated by the optical gap.
We calculated the synergetic effects of b and SOC on the current-current response
neglecting O(t/U) corrections.

2.5 2D systems

To conclude this chapter, we investigate the spin resonance in 2D systems with SOC
in a static magnetic field b. Moreover, we only consider the effects of magnetic
field through the Zeeman coupling, which forces us to choose b in the 2D plane.
The general formalism developed in Sec. 2.3.1 is also applicable in two dimensions.
However, in 2D systems, the direction d̂k of the SOC current explicitly depends on
momentum. This has several implications that we consider in the following.

2.5.1 2D electron gas

The impact of a large SOC on the spin resonances are considerably different in 1D
and 2D systems. This is understood most easily in the 2DEG. In the 1DEG, d̂ is
constant and we decomposed b into components parallel and orthogonal to d̂. In the
2DEG with Rashba and Dresselhaus SOC, we have both d̂k and b in the 2D plane,
but their relative angle depends on k. The SOC Hamiltonian is

HSO(k) = D(k) · σ, with D(k) = (αDkx − αRky,αRkx − αDky). (2.124)

For a magnetic field b = (bx, by), the two bands are then characterized by

ϵ0(k) =
k2

2m∗
, (2.125)

∆(k) = ∥D(k) − b∥ =
√

(αDkx − αRky − bx)2 + (αRkx − αDky − by)2. (2.126)

Figure 2.11 show the Fermi surfaces of the two branches for different Fermi energies
EF and parameters. The energy eigen-spinor direction, n̂k is given by

n̂k =
D(k) − b
∆(k)

. (2.127)
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FIGURE 2.11: Fermi surfaces of the 2DEG with energy dispersions
ϵ+(k) (blue line) and ϵ−(k) (red line). The Fermi surface S0 correspond-
ing to ϵ0(k) is also indicated (black dashed line). The different param-
eters are αR = by = 1, αD = bx = 0 and EF = 2, m∗ = 0.25 (left), EF = 3,

m∗ = 0.25 (middle), and EF = 10, m∗ = 0.05 (right).

Moreover, the current defined in Eq. (2.59) is now a vector in the 2D plane,

j(k) =∇kϵ0(k)σ0 + ∇k(∆(k)n̂k) · σ
≡jK(k)σ0 +

∑

i=x,y

[
jiSO(k)d̂i

k · σ
]
êi

︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
jSO(k)

. (2.128)

For the 2DEG,

d̂x
k =

(αD,αR, 0)
√
α2

R + α
2
D

≡ d̂x, d̂y
k =
−(αR,αD, 0)
√
α2

R + α
2
D

≡ d̂y, and (2.129)

jx
SO(k) = jySO(k) =

√
α2

R + α
2
D (2.130)

are all independent of k. We note that at this point, the bold notation for vectors
can represent both a vector in spin space and a vector in “real” space (i.e., a spatial
vector). The context prevents any ambiguity. We also note that when considering
the current j(k) · û in the direction û = (ux, uy), in general d̂u

k ! û · (d̂x
k, d̂

y
k) = uxd̂x

k+uyd̂y
k.

Instead we have
juSO(k)d̂u

k = û · ( jx
SO(k)d̂x

k, jySO(k)d̂y
k). (2.131)

For the 2DEG, we have jx
SO = jySO and thus d̂u

k and û · (d̂x
k, d̂

y
k) are in the same (spin)

direction. They are equal only when αR = 0 or αD = 0 so that d̂x
k · d̂

y
k = 0.

The SOC direction D(k)/∥D(k)∥ does not correspond to the SOC current direction
d̂i

k as

d̂i
k ≡

∂kiD(k)∥∥∥∂kiD(k)
∥∥∥
!

D(k)
∥D(k)∥ . (2.132)

Therefore, EDSR is possible even with b = 0 because D(k) =
√
α2

R + α
2
D(kxd̂x + kyd̂y)

so that generally
[D(k) · σ, d̂i

k · σ] ! 0, (2.133)

and jSO has a non-trivial time evolution [73,105–107]. The optical conductivity along
a given direction û is then calculated as in the 1D case from the current matrix ele-
ments

∣∣∣ ⟨k+| ĵuSO(k)|k−⟩
∣∣∣2 = ( juSO(k))2 sin2 φu

k where cos φu
k = d̂u

k · n̂k and we have used
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the notation ĵuSO(k) = juSO(k)d̂u
k · σ. We find

| ⟨k+| ĵx
SO(k)|k−⟩ |2 = 1

∆(k)2

[
ky(α2

R − α2
D) + αRbx − αDby

]2
,

| ⟨k+| ĵySO(k)|k−⟩ |2 = 1
∆(k)2

[
kx(α2

R − α2
D) + αDbx − αRby

]2
, (2.134)

which reduce to Eq. (2.75) in the 1D limit (e.g., in the x direction so that ky = 0 and
d̂ ∝ (αD,αR)). Note that in general, a finite optical Hall conductivity σ′xy(ω) is also
expected, originating from

⟨k − | ĵx
SO(k)|k+⟩⟨k + | ĵySO(k)|k−⟩ = d̂x

k · d̂
y
k − (d̂x

k · n̂k)(d̂y
k · n̂k)

= − 1
∆(k)2

[
ky(α2

R − α2
D) + αRbx − αDby

][
kx(α2

R − α2
D) + αDbx − αRby

]
, (2.135)

where the first line is true in general (as long as there is no magnetic field in the ẑ
direction) and the second line is specific to the 2DEG. This is a dissipative Hall con-
ductivity which is symmetric, σ′xy(ω) = σ′yx(ω), and is solely a result of the anisotropy
of the system. The 2DEG is anisotropic when b ! 0, but also when both αR ! 0 and
αD ! 0 (even without magnetic field), in which cases the optical Hall conductivity
can be finite.

In addition, there is always a proper set of basis vectors ê1 and ê2 in the xy plane
such that σ′12(ω) = 0 and the optical conductivity tensor is diagonal. In particular,
when either αD = 0 or αR = 0, σ′xy(ω) = 0 for a magnetic field b̂ along x̂ or ŷ. From
now on we consider αD = 0 for simplicity, unless explicitly stated.

In the limit where αR ∼ b/kF ≪ vF , the two Fermi surfaces are very close. In
one dimension, this leads to the shrinking of the width of the peaks so that they are
eventually well described with Dirac delta functions. In two dimensions, the same
approximation can be done, but there remains a 1D momentum integral along the
Fermi surface S0 = {k , ϵ0(k) = EF} (i.e., the Fermi surface of the system without SOC
or magnetic field, see Fig. 2.11). In this approximation, the 2D optical conductivity
in, say, the x direction reads,

σ′x(ω) =
π

Sω

∑

k

∣∣∣ ⟨k+| ĵx
SO|k−⟩

∣∣∣2(⟨nk−⟩ − ⟨nk+⟩)δ(ω − 2∆(k))

≈ π

Sω

∑

k∈S0

f (k)
∣∣∣ ⟨k+| ĵx

SO|k−⟩
∣∣∣2δ(ω − 2∆(k)), (2.136)

where S is the surface of the system and f (k) accounts for all the momenta near
k ∈ S0 between the actual Fermi surfaces of the two branches which are assumed to
contribute to the same frequency ω ≈ 2∆(k). From Eq. (2.136), we see that there is
a continuum of spin excitations with frequencies corresponding roughly to the gap
2∆(k) along the Fermi surface S0, which is simply a circle of radius kF =

√
2m∗EF for

the 2DEG. The extrema of ∆(k) for k ∈ S0 must satisfy ∇∆(k) · ûk = 0 where ûk is the
unit vector along the Fermi surface at k. For the 2DEG,

ûk =
1

√
k2

x + k2
y

(
ky
−kx

)
, (2.137)
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FIGURE 2.12: Optical conductivity in the x and y direction of the
2DEG with parameters m∗ = 0.05, αR = by = 1, bx = 0 and with Fermi
energy EF = 30 (right) and EF = 11 (left), close to the compensation

point EF = 10 depicted in Fig. 2.11.

and thus the extrema satisfy

∇∆(k) ·
(

ky
−kx

)
= 0. (2.138)

The solution of Eq. (2.138) (with αD = 0) is the line bxkx = −byky, or ky = 0 for a
magnetic field along ŷ. In this case, the intersections with S0 are k = (±kF , 0) so that
the continuum ranges between ω = 2∆((kF , 0)) and ω = 2∆((−kF , 0)), connecting the
peaks from the right and left moving electrons in the 1DEG. The optical conductivity
in the x and y direction is shown in Fig. 2.12.

Furthermore, in the 2DEG there are “compensation points” where ∆(k) vanishes
and the resonance frequency ω can get arbitrarily small for the right Fermi energy
[114]. This happens when the Zeeman splitting is compensated by the SOC splitting,
αRkF = b (independently of the direction of b) [see Fig. 2.11(left) and (right)].3

Finally, by performing the integral alongS0 in Eq. (2.136), a “gap density of state”
term arises, which can lead to Van Hove-like singularities. Those singularities also
occur when ∇∆(k) · ûk = 0. Therefore, singularities in the optical conductivity are
expected at frequencies ω = 2∆(k) such that: (i) k belongs to the Fermi surface S0, (ii)
k satsifies Eq. (2.138). Consequently, they show up at the edges of the continuum,
as can be seen in Fig. 2.12 for σ′x(ω). However, the ĵx/y

SO factor in Eq. (2.136) is highly
anisotropic. It vanishes at the singularities for a current direction orthogonal to b.
For instance for bx = 0, the singularities correspond to momenta with ky = 0 and thus
ĵx
SO vanishes in Eq. (2.134), which is why the singularities do not show up in σ′x(ω)

in Fig. 2.12. In the 2D Hubbard model, the more complex band structure creates
additional singularities depending on the position of the Fermi energy in the band,
as we discuss in Sec. 2.5.3.

2.5.2 Effect of interactions

Here, we briefly discuss the effect of interactions on the spin resonances in the 2DEG
for completeness. We do not make any explicit calculations, but only state results

3Note that if the SOC is not rotationally invariant (when both αR ! 0 and αD ! 0), the gap can only
vanish for a specific amplitude and direction of b.
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from the literature, mainly Refs. [95, 115]. In the absence of SOC and Zeeman split-
ting, the excitation spectrum has a well-known collective plasmon mode which, in
two dimensions, has a √q dispersion at small momentum q [116]. In a 2D sys-
tem with SOC, there is an additional continuum of excitations at q = 0 which lies
above the plasmon mode. As we already discussed, this continuum arises in the
non-interacting system and correspond to single-particle excitations. However, the
interactions create new collective modes. First, there is an extra optical plasmon
mode which lies above the continuum, in addition to the usual √q plasmon. Sec-
ondly, new spin collective modes arise [115, 117, 118], which are called “chiral-spin
waves” and are solely due to SOC, and are to some extent similar to Silin-Legget
modes in partially polarized Fermi liquid [115, 119], with the difference that the ex-
ternal magnetic field is replaced with the internal SOC field. Those collective modes
were theoretically investigated by identifying the poles in the susceptibility in the
charge (for plasmons) and spin (for chiral-spin waves) sectors, using for instance the
RPA theory for the electron-electron interaction [115]. Due to SOC, spin collective
modes also appear in the optical conductivity through EDSR.

Besides, the effect of the additional external magnetic field B on the spin collec-
tive modes was also studied recently [95]. As the magnitude ∥B∥ = B increases, two
of the spin collective modes merge with the continuum of excitations at two critical
fields. Then, at a third critical field Bc, the continuum reaches ω = 0 and becomes
gapless (as in the non-interacting 2DEG, when αRkF = gµBB/2) and hence degen-
erate with the remaining mode. Above Bc, there is only one collective mode with
a renormalized Larmor frequency and the conventional ESR regime is reached for
B→ ∞.

2.5.3 2D tight-binding model

Finally, we consider the non-interacting Hubbard model, or simply tight-binding
model, in two dimensions. As in the 1D case, the electronic band structure is sim-
ilar to the 2DEG only near the top and bottom of the band. Additionally, we now
also have a choice in the lattice structure which influences the EDSR spectrum. We
consider two lattices: a regular square lattice and a regular triangular lattice. In the
following we calculate for each lattice: (i) the Bloch Hamiltonian, (ii) the SO current,
(iii) the positions in k-space of the Van Hove-like singularities and finally we plot
the optical conductivity for different Fermi energies within the band width.

Square lattice

After a Fourier transform, the Bloch Hamiltonian is

H(k) = −2t
(
cos kx + cos ky

)
+ 2λ

(
sin kxd̂x + sin kyd̂y

)
· σ − b · σ, (2.139)

where d̂x/y are defined in Eq. (2.129). We thus have

ϵ0(k) = −2t
(
cos kx + cos ky

)

∆(k) =
∥∥∥∥2λ

(
sin kxd̂x + sin kyd̂y

)
− b

∥∥∥∥

n̂k =
2λ

(
sin kxd̂x + sin kyd̂y

)
− b

∆(k)
. (2.140)
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For the current operators, we find

j(k) =jK(k) +
(

2λ cos kxd̂x · σ︸!!!!!!!!!!!!︷︷!!!!!!!!!!!!︸
ĵx
SO(k)

, 2λ cos kyd̂y · σ︸!!!!!!!!!!!!︷︷!!!!!!!!!!!!︸
ĵySO(k)

)
, (2.141)

so that

∣∣∣ ⟨k+| ĵx
SO(k)|k−⟩

∣∣∣2 =
4λ2

∆(k)2 cos2 kx
[
2λ sin ky(ᾱ2

R − ᾱ2
D) + ᾱRbx − ᾱDby

]2
,

∣∣∣ ⟨k+| ĵySO(k)|k−⟩
∣∣∣2 =

4λ2

∆(k)2 cos2 ky
[
2λ sin kx(ᾱ2

R − ᾱ2
D) + ᾱDbx − ᾱRby

]2
, (2.142)

where ᾱR = αR(α2
R + α

2
D)−1/2 and ᾱD = αD(α2

D + α
2
D)−1/2 so that ᾱ2

R + ᾱ
2
D = 1. For

simplicity, we once again fix αD = 0 so that ᾱR = 1. Also, as for the 2DEG, a finite
optical Hall conductivity is generally expected, but it vanishes when αD = 0 and b is
along x̂ and ŷ. Hence we do not consider it.

The most interesting point about the tight-binding model, is that because of the
non-constant curvature of ϵ0(k), the equation for the Van Hove-like singularities,
∇∆(k) · ûk = 0, becomes

∇∆(k) ·
(

sin ky
− sin kx

)
= 0. (2.143)

As for the 2DEG, the line ky = 0 is a solution when bx = 0, but other solutions exist
and additional sharp peaks are expected in the optical conductivity. For bx = 0, the
solutions of Eq. (2.143) are

sin(ky) = 0 and cos(ky) = cos(kx) − by

2λ tan(kx)
. (2.144)

The optical conductivity is calculated in the physical λ, b ≪ t limit (we set t = 1000,
λ = 1, bx = 0, by = 1). In the right of Fig. 2.13, we show the optical conductivity
in the x and y directions for several values of EF ∈ [−W,W] where W = 4t is half
the band width. In the left of Fig. 2.13, we show a colormap of ∆(k) in momentum
space with the Fermi surface S0 indicated for the corresponding EF . Additionally,
the dashed lines indicate the solutions Eq. (2.144) for the singularities. The points
k = ki at which those lines cross S0 are shown as black dots, and the singularities
are correctly found at ω = 2∆(ki), when not suppressed by the SO current factor.
The corresponding peaks in σ′(ω) and points ki are labelled accordingly. In the 1D
system, the SO current factor systematically suppressed the optical conductivity at
half-filling. We see in Fig. (2.143) for EF = 0 that, while the singularities at ki =

(±π/2,±π/2) [s′ and s′′ in Fig. 2.13] are suppressed by the cosine term in ĵx/y
SO , other

singularities survive.
For EF = −0.99W and −0.93W, the Fermi energy is near the bottom of the bands

and we recover the results of the 2DEG. By symmetry, this is also true at the top of
the bands for EF $ W. In contrast to the 2DEG, there are additional compensations
points for intermediate Fermi energies, e.g., at EF = −0.07W. The singularities s1
and s2 at half-filling (EF = 0) correspond to the same momentum on S0 but still
show two close but distinct peaks in σ′y(ω) due to the finite distance between the
two Fermi surfaces of the actual ϵ+ and ϵ− bands. We thus have demonstrated that
the shape of the band structure heavily influences the EDSR.



2.5. 2D systems 51

FIGURE 2.13: Left: colormap of 2∆(k) in the square lattice as a func-
tion of k, Fermi surface S0 (black line) and solution of Eq. (2.143)
(dashed line) with t = 1000, λ = by = 1, and bx = 0. Right: corre-
sponding optical conductivity in the x and y directions. Top to bot-

tom: EF/W = −0.99,−0.93,−0.25,−0.07, 0.
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Triangular lattice

In the following, we finally consider the same calculations in the triangular lattice to
emphasize that the spectrum depends on the band structure. The Bloch Hamiltonian
in the triangular lattice is concisely written as

H(k) = −2t
3∑

i=1

cos(âi · k) + 2λ
3∑

i=1

[
sin(âi · k)(d̂i · σ)

]
− b · σ (2.145)

where âi are unit vectors separating nearest neighbors on the triangular lattice, the
d̂i unit vectors correspond to the Rashba SOC and are in the 2D plane, and âi · d̂i = 0,

â1 = (1, 0), â2 = (
1
2
,

√
3

2
), â3 = (

1
2
,−
√

3
2

),

d̂1 = (0, 1), d̂2 = (−
√

3
2
,

1
2

), d̂3 = (
√

3
2
,

1
2

). (2.146)

The SO current operator is

jSO(k) = 2λ
3∑

i=1

[
cos(âi · k)(d̂i · σ)

]
âi. (2.147)

The optical conductivity is calculated from the matrix elements of jSO(k) as previ-
ously. The results are plotted in Fig. 2.14 for EF = −5t with b along ŷ (top), for
EF = 1.5t with b along ŷ (center) and along x̂ (bottom). Due to the triangular lattice
structure, the spectra for a magnetic field in the x̂ and ŷ directions are not equivalent.

The singularities are once again found at momenta which solve ∇∆(k) · ûk = 0
where ûk is along the Fermi surface S0 so that the equation becomes

∇∆(k) ·
⎛
⎜⎜⎜⎜⎜⎝
−
√

3 cos(kx/2) sin
(√

3ky/2
)

sin(kx) + sin(kx/2) cos
(√

3ky/2
)
⎞
⎟⎟⎟⎟⎟⎠ = 0. (2.148)

The solutions to Eq. (2.148) (found numerically) are plotted in Fig. 2.14 together with
the Fermi surface S0 and their intersections, which correspond to the Van Hove-like
singularities. The different peaks in σ′(ω) are labelled correspondingly.

Once again, at the bottom of the band (EF = −5t), the optical conductivity is sim-
ilar to that of the 2DEG. For EF in the middle of the band, here EF = 1.5t, we observe
multiple peaks in σ′(ω) whose positions depend on the direction of the magnetic
field relative to the lattice. We thus conclude that the EDSR spectrum in the 2D
tight-binding model is made of a continuum with singularities whose number and
positions highly depend on, of course, SOC and the magnetic field, but also on the
lattice structure and the Fermi energy.
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2 (k)

2 (k)

2 (k)

FIGURE 2.14: Left: colormap of 2∆(k) in the triangular lattice as a
function of k, Fermi surface S0 (black line), solutions of Eq. (2.148)
(dashed line), and edges of the Brillouin zone (brown line). Right:
corresponding optical conductivity in the x and y directions. The pa-
rameters are t = 1000, λ = b = 1 and top: EF = −5t, b = bŷ; middle:

EF = 1.5t, b = bŷ; bottom: EF = 1.5t, b = bx̂.
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2.6 Discussion

In this chapter, various results were presented, all concerning EDSR in 1D and 2D
systems. In this final section, we emphasize what we think are the most important
results.

In Secs. 2.2 and 2.3, we mostly reviewed known results as an introduction to the
chapter. Nevertheless, the formalism that we introduced in Sec. 2.3 is more general
that what is found in the literature. This is, in particular, because neither the mag-
netic field b nor the SOC are assumed to be small, and b can point in any directions.
The most important results are thus found in Secs. 2.4 and 2.5 of the chapter.

In Sec. 2.4, we showed our results for the EDSR in the 1D single-band Hubbard
model. First we highlighted the effects of the lattice in the non-interacting case.
We showed that the EDSR spectrum strongly depends on the shape of the band
structure, and on the position of the Fermi level.

We also discussed the effect of the Hubbard interaction on the EDSR. In particu-
lar, we showed using exact diagonalization that, at half-filling, when the optical gap
is larger than the kinetic hopping, the umklapp scattering suppresses the EDSR.

Finally, in Sec. 2.5, we considered 2D systems with strong SOC and magnetic
field. We showed that the continuous spectrum has unexpected Van Hove-like sin-
gularities, arising from the interplay between SOC and Zeeman splitting. Moreover,
we showed that the optical conductivity is highly anisotropic, and that the num-
ber of singularities and their positions depend on the electronic band structure, the
Fermi level, and the lattice shape.



55

Chapter 3

Virtual hopping effects in the Mott
insulating phase

In this chapter and the following ones, we focus on the Mott insulating phase of the
Hubbard model.

In band theory, the basic distinction between metals and insulators revolves
around the position of the Fermi level and the corresponding filling of the electronic
states. However, in 1937, transition-metal oxides with partially filled d-orbital bands
were discovered, which could not be explained with band theory [120]. It was then
understood that the origin of the insulating phase is the strong Coulomb repulsion.
In an important work, N. F. Mott subsequently provided the theoretical foundation
of how the insulating phase emerges from the electron-electron interaction [121].
The resulting insulating state is now known as the Mott insulator. Understanding
of the effects of interaction in Mott insulators and the metal-insulator transition has
been theoretically achieved through the Hubbard model which is now widely used
to describe Mott insulators. As mentioned in Sec. 2.4.2, in the Mott insulating phase
of the Hubbard model, the original electronic band (in the non-interacting limit) is
split into two bands, the upper and lower Hubbard bands, separated by an energy
gap of the order of the on-site Coulomb repulsion [122].

Therefore, in the strong-coupling limit, the electrons are frozen and localized at
each site of the lattice. While excitations between the lower and upper Hubbard
bands are optically possible (above the optical gap), the low-energy properties are
described in terms of the remaining spin and orbital degrees of freedom. Thereupon,
we will refer to the low-energy band as the “low-energy subspace” of the Hilbert
space. For the single-band Hubbard model, in this subspace all the states have one
electron per site on average. The optical response is hence expected to be featureless
below the optical gap of order ω ∼ U. In Sec. 2.4.2, we indeed showed that the EDSR,
a spin resonance in the lower band, was suppressed in the U → ∞ limit because of
the optical gap.

However, small charge fluctuations cannot be completely neglected due to vir-
tual hopping of the electrons. They are, on the contrary, very important as they are
the origin of the effective spin-spin interactions in magnetic Mott insulators.

Let us consider the single-band Hubbard model for electrons at half-filling (one
electron per site),

H = Hhop +Hint = −t
∑

⟨i, j⟩

∑

σ=↑,↓
c†i,σci,σ + U

∑

i

ni,↑ni,↓. (3.1)

Multi-orbital systems are considered in the following chapters. When t/U = 0 ex-
actly, the low-energy subspace contains 2N states |φm⟩, where N is the number of
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sites, with exactly one electron per site which can be written as

|φm⟩ = |σ1⟩ ⊗ |σ2⟩ ⊗ |σ3⟩ ⊗ · · · ⊗ |σN⟩ , (3.2)

where |σi⟩ = c†i,σi
|0i⟩ represents a single-site state at site i with one electron with spin

σi. Each |σi⟩ state lives in a Hilbert space of dimension two and all operators acting
on this Hilbert space can be written in terms of SU(2) operators: the identity operator
σ0, and the Pauli matrices σx, σy, and σz. All operators acting on the subspace
spanned by {|φm⟩}m=2N

m=1 can naturally be written in terms of the spin 1/2 operators

Si =
1
2

∑

s,s′
c†i,sσs,s′ci,s′ . (3.3)

We call the subspace spanned by the |φm⟩ states the “magnetic subspace”. Now, the
Hamiltonian (3.1) is trivial in this subspace, ⟨φm|H|φn⟩ = 0 for all m and n. The low-
energy subspace (spanned by the exact energy eigenstates) is exactly the magnetic
subspace when t/U = 0, and we infer that the non-trivial physics arises when we
allow t/U % 0, i.e., from virtual hopping of the electron.

As t/U increases, there are 2N eigenstates adiabatically connected to the magnetic
states |φm⟩, which are denoted by |ψm⟩. In the limit of small t/U each magnetic state
|φm⟩ is indeed adiabatically transformed into a new state |ψm⟩ which is mostly made
of the pure magnetic state |φm⟩, but still contains a small part of states with doubly
occupied sites (or “polar states”). In this limit, we thus have a one-to-one correspon-
dence between the original magnetic states at t = 0 and the exact low-energy states
at t > 0, which defines the unitary transformation U,

|φm⟩ → α |φm⟩ + β |πm⟩ ≡ |ψm⟩ = U† |φm⟩ , (3.4)

where α ≫ β are coefficients and |πm⟩ represents the polar states contained in |ψm⟩1.
Practically, U† is usually calculated up to a certain order in t/U which we treat as a
perturbation. For instance, from degenerate perturbation theory at second order in
t/U we have

|ψm⟩ = |φm⟩ +
∑

π

|π⟩ ⟨π|Hhop|φm⟩
−Eπ

+
∑

π,π′
|π⟩ ⟨π|Hhop|π′⟩ ⟨π′|Hhop|φm⟩

Eπ′Eπ

− 1
2
|φm⟩

∑

π

⟨φm|Hhop|π⟩ ⟨π|Hhop|φm⟩
E2
π

+ O(
t3

U3 ), (3.5)

where |π⟩ are polar eigenstates ofHint with energy Eπ = nU (n > 0), and the magnetic
states |φm⟩must be chosen as eigenstates ofH2

hop in the magnetic subspace. Here we
have used the fact that ⟨φm|Hhop|φn⟩ = 0.

Because the magnetic states exist in a much smaller Hilbert space than the exact
eigenstates |ψm⟩, but most of the weight of the exact eigenstates belongs to the mag-
netic subspace, we can generally define effective operators which solely act on the

1Note that to be precise, Eq. (3.4) is only exact at arbitrarily high order in t/U when considering a
proper basis for the magnetic subspace. Otherwise different magnetic states |φn⟩ might appear in |ψm⟩
with n ! m.
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magnetic subspace. The resulting effective low-energy theory of the model is de-
fined through the bijective mapping between the magnetic states and the real eigen-
states. Any operator O has a unique expression in terms of spin operators, namely

O→ Oeff =
∑

m,n
|φm⟩⟨ψm| O |ψn⟩⟨φn|

=P0
(
UOU†

)
P0, (3.6)

where P0 is the projection operator onto the magnetic subspace. In order words, the
effective operator Oeff is defined by identifying the matrix elements

⟨φm|Oeff |φn⟩ ≡ ⟨ψm|O|ψn⟩ . (3.7)

The most natural operator to consider is the Hamiltonian which yields the antiferro-
magnetic Heisenberg spin Hamiltonian at second order inHhop,

Heff = P0
H2

hop

−U
P0 =

4t2

U

∑

⟨i, j⟩

(
Si · S j −

1
4

)
. (3.8)

Treating the hopping Hamiltonian as a perturbation and keeping terms in Oeff up
to order n is equivalent to study the effect of virtual hopping on loops of length up
to n sites. During virtual processes, the electrons move around and can be in high-
energy states until returning to a low-energy state. It is therefore natural to wonder if
such virtual hopping can be the cause of electric-dipole-induced transitions within
the low-energy subspace. Such processes exist if there are finite matrix elements
of the electric dipole moment in the low-energy subspace. In the non-interacting
models considered in Chapter 2, we considered the electric dipole moment through
the current operator. This was a logical choice as both the non-interacting Hamil-
tonian and the current operator are diagonal when written in momentum space in
terms of single-particle wave functions. This is evidently not true anymore in the
strongly correlated regime. On the contrary, when treating the hopping as a pertur-
bation, all the considered states are eigenvectors of Hint and hence eigenvectors of
the number operators ni,σ. As a result, it is more convenient to consider the electric
dipole through the polarization operator

∑
i, niri, where ri is the position of site i and

ni = ni,↑ + ni,↓. The electric polarization and current are related by a time derivative
and the optical conductivity at ω > 0 can be written in terms the auto-correlation
function of either of those operators, as explained in Sec. 1.3.1 of Chapter 1.

That said, a word of caution is in order when dealing with a many-body system.
The operator

∑
i niri only takes into account the charge of the electrons and thus

depends on the origin used for the spatial vectors because
∑

i ni ! 0. Of course, the
real system is charge neutral due to the charge of the nuclei. At half-filling, the total
charge is zero when there is exactly N electrons in a system of N sites, which is always
true because H conserves the total number of electrons. In other words, the actual
total charge is

∑
i δni = 0 where δni = ni − 1. The origin-independent polarization

operator is therefore
P =

∑

i

δniri. (3.9)

If this operator has finite matrix elements in the low-energy subspace ⟨ψm|P|ψn⟩ !
0, it implies that electric-dipole-induced magnetic transitions are possible.

This problem in the single-band Hubbard model was first considered in Refs. [40,
123]. They showed that the operator Peff is indeed non-trivial in systems on a lattice



58 Chapter 3. Virtual hopping effects in the Mott insulating phase

with loops of odd number of sites, such as triangular loops for which the operator
was calculated explicitly. In general, we can write

Peff = P0
(
UOU†

)
P0 =

∑

n>2

(
t
U

)nP(n), (3.10)

where P(n) is an operator acting in the magnetic space, i.e., written in terms of spin
operators. The original Hubbard model (3.1) at half-filling can be equivalently writ-
ten in an electron-hole symmetric way by replacing the interaction Hamiltonian with
U

∑
i ni,↑ni,↓ → (U/2)

∑
i(ni − 1)2, which is possible because

∑
i δni = 0 at half-filling. To

prove that only loops with an odd number of sites, which correspond to terms with n
odd in Eq. (3.10), result in non-trivial contributions to Peff , we consider the following
particle-hole transformation:

c†i,↑ → ci,↓, c†i,↓ → −ci,↑,

ci,↑ → c†i,↓, ci,↓ → −c†i,↑. (3.11)

Under this transformation, the different operators transform in the following way,

P→ −P
S→ S

Hhop → −Hhop

Hint → Hint. (3.12)

In other words, the transformation maps t → −t and U → U while changing the
sign of Peff and does not affect the P(n) operator (because their are related to spin
operators). We can immediately conclude that P(n) = 0 when n is even so that the
first contribution corresponds to n = 3.

3.1 Three-site polarization

Let us consider a system of three sites i = 1, 2, and 3 forming a triangle. The effec-
tive polarization in this system was derived in Ref. [40]. Because the derivation is
instructive, we show here a fast way to find Peff with perturbation theory. First of
all, symmetry considerations are in order. The effective polarization operator must
be written in terms of S1, S2, and S3. Because Peff is even under time reversal while
the spin operators are odd, only the terms S1 · S2, S2 · S3, and S3 · S1 are allowed. The
polarization is a vector and it should act like one when considering the C3 rotations
and mirror symmetries of the triangle, which, in terms of spins, correspond to dif-
ferent permutations of S1, S2, and S3. It is straigthforward to show that, for the x̂ and
ŷ axes fixed as shown in Fig. 3.1, the effective polarization reads

Peff =

(
Px
Py

)
= aC

(
S1 · (S2 + S3) − 2S2 · S3√

3S1 · (S2 − S3)

)
, (3.13)

where a is the distance between sites and C is a constant that we calculate shortly.
Henceforth we set a = 1.

For three spins 1/2, the total spin is either S tot = 1/2 or S tot = 3/2. In the latter
case, the state is C3 symmetric and we must have Peff = 0, which is satisfied by
Eq. (3.13) because we have S1 · S2 = S2 · S3 = S3 · S1. The S tot = 1/2 subspace contains,
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FIGURE 3.1: Triangle-shaped three-site system in a low-energy S tot =
1/2 state with non-zero polarization P due to the finite hopping be-
tween the sites. The spin operators Si (i ∈ {1, 2, 3}) refer to the purely
magnetic state (a ground state when t = 0) adiabatically connected to

the actual energy eigenstate when t ! 0.

for instance, states with a singlet one bond and an unentangled spin 1/2 on the
remaining site. Such states have a net polarization in the direction perpendicular to
the singlet bond, as shown in Fig. 3.1.

Let us now calculate the constant C. In the triangle, P = δn1r1+δn2r2+δn3r3, where
ri’s are the positions of the three sites, such that Peff = δn1,effr1 + δn1,effr2 + δn1,effr3
where, from the symmetry considerations,

δn1,eff =
2C√

3
(S1 · (S2 + S3) − 2S2 · S3), (3.14)

and the expressions for δn2,eff and δn3,eff are obtained using cyclic permutations. The
magnetic state depicted in Fig. 3.1 has a spin singlet on the 2-3 bond and is thus sym-
metric under the permutation of sites 2 and 3, so that it overall satisfies the Fermionic
statistics2. The corresponding state with σ =↑ at site 1 is given by

|φ⟩ = 1√
2

(
c†1,↑c

†
2,↑c
†
3,↓ − c†1,↑c

†
2,↓c
†
3,↑

)
|0⟩ , (3.15)

which is an exact eigenstate when t = 0. For finite t, we need to calculate the exact
eigenstate |ψ⟩ keeping terms up to third order in t/U in Eq. (3.5), which is quite
cumbersome. However, the symmetries of the Hamiltonian can be used to simplify
the calculation. Only exited states with two ↑ spins and one ↓ spin, which are also
symmetric under the permutation of sites 2 and 3, are contained in |ψ⟩:

|ψ⟩ = α0 |φ⟩ +
3∑

i=1

αi |πi⟩ , (3.16)

2For some reason, in Ref. [40] they state that this state is antisymmetric under exchange. The final
result is, however, the same.
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where
∑3

i=0 α
2
i = 1 and3

|π1⟩ =
1√
2

(
c†1,↑c

†
2,↑c
†
2,↓ + c†1,↑c

†
3,↑c
†
3,↓

)
|0⟩ ,

|π2⟩ =
1√
2

(
c†1,↑c

†
1,↓c
†
2,↑ + c†1,↑c

†
1,↓c
†
3,↑

)
|0⟩ ,

|π3⟩ =
1√
2

(
c†2,↑c

†
3,↑c
†
3,↓ + c†2,↑c

†
2,↓c
†
3,↑

)
|0⟩ , (3.17)

so that ⟨ψ|δn1|ψ⟩ = α2
2 − α2

3. The coefficients α0−3 are expanded as

α0 = 1 +
∞∑

n=1

an(
t
U

)n, α1 =

∞∑

n=1

bn(
t
U

)n,

α2 =

∞∑

n=1

cn(
t
U

)n, α3 =

∞∑

n=1

dn(
t
U

)n (3.18)

and the coefficients can be determined up to arbitrarily high order in (t/U) by calcu-
lating the eigenstates of the Hamiltonian in the subspace spanned by {|φ⟩ , |π1⟩ , |π2⟩ , |π3⟩}:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2t t t
−2t U t −t

t t U − t 0
t −t 0 U + t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.19)

By solving Hv = ϵv where v = (α0,α1,α2,α3) together with ∥v∥ = 1 up to second
order in t/U, we find

α0 = 1 − 3
t2

U2 + O
(

t3

U3

)
, α1 = 2

t
U
+ O

(
t3

U3

)
,

α2 = −
t
U
− 3

t2

U2 + O
(

t3

U3

)
, α3 = −

t
U
+ 3

t2

U2 + O
(

t3

U3

)
,

ϵ = −6
t2

U2 + O
(

t3

U3

)
. (3.20)

Finally, using Eq. (3.14) and the fact that (S1 · (S2 + S3) − 2S2 · S3) |φ⟩ = 3/2 |φ⟩, we
have √

3C = ⟨φ|δn1,eff |φ⟩ = ⟨ψ|δn1|ψ⟩ = α2
2 − α2

3 = 12
t3

U3 + O
(

t5

U5

)
, (3.21)

and the constant in Eq. (3.13) is C = 4
√

3t3/U3 + O
(
t5/U5

)
.

How does this relation between spins and electric polarization affect the spin
resonance? In the different systems investigated in Chapter 2, the single-particle SO
current operator, which is responsible for the spin resonance, is directly proportional
to the spin operator of each electron. As a result, the frequencies of the resonance
is the same for both the electric-dipole-induced spin resonance and the standard
magnetic-dipole-induced ESR.

This is the most important difference between the results of Chapter 2, intrinsi-
cally originating from the physics of non-interactions electrons, and the phenomenon

3In the Appendix of Ref. [40], they use the antisymmetric states with a − sign but eventually obtain
the same expressions.
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considered in the present chapter. The many-body effects dictate the effective mag-
netic theory, within which the electric dipole moment can also have finite matrix
elements, as shown by Eq. (3.13). In the low-energy subspace, the electric polariza-
tion, originally a single-particle operator, becomes a multi-spin operator. Therefore,
it enables new magnetic transitions (i.e., transitions within the low-energy subspace)
through the fluctuating electric dipole moment of the electrons. In other words, the
spin resonance induced by electric dipoles and magnetic dipoles can have different
frequencies.

This is most simply seen in the three-site system discussed above. For the anti-
ferromagnetic Heisenberg model, the four degenerate ground states have S tot = 1/2.
The quartet is described with an S z = ±1/2 quantum number and an additional
pseudospin variable. The states are labelled |S z, τz⟩ where τz is commonly chosen to
be the spin chirality operator

τz =
2√
3

(S1 × S2) · S3, (3.22)

which has eigenvalues ±1/2 in the S tot = 1/2 manifold. Moreover, it closes an SU(2)
algebra with

τx =
1
3

[2S2 · S3 − S1 · (S2 + S3)] ∝ Px

τy =
1
3

[√
3S1 · (S2 − S3)

]
∝ Py. (3.23)

Therefore, magnetic dipole transitions are possible between |↓, τz⟩ and |↑, τz⟩ and elec-
tric dipole transitions are possible between |S z,−⟩ and |S z,+⟩, where we have labelled
S z =↑, ↓ and τz = ±. In some real systems, such as the molecular magnet V15 [124], the
degeneracy of the quartet is lifted by, for instance, the symmetry-allowed DM inter-
action between the spins:

∑
i, j Dz(Si × S j)z. In this case, the S tot = 1/2 manifold is split

into two doublets, {|↑,+⟩ , |↓,−⟩} and {|↑,−⟩ , |↓,+⟩}, with an energy gap ∆ =
√

3Dz [40].
As a consequence, transitions caused by both and AC electric field and an AC mag-
netic field have the same absorption frequency ω = ∆. However, with the addi-
tion of a static magnetic field B = Bzẑ perpendicular to the triangle, all four states
have different energies and the magnetic-dipole-induced (MD-induced) and electric-
dipole-induced (ED-induced) spin resonance correspond to different frequencies, as
pictured in Fig. 3.2

We should nonetheless add that this simple analysis of the phenomenon lacks
the following consideration. The polarization operator is an effective operator and
any changes in the Hamiltonian will also modify Peff , such as the DM interaction and
the magnetic field mentioned above. For instance, it was shown in Refs. [125, 126]
that with the addition of the spin-dependent hopping due to SOC, (which leads to
the DM term in the spin Hamiltonian), the effective polarization on the triangle itself
has extra terms including spin-antisymmetric Si × S j terms. The above analysis of
the electric-dipole-induced resonance frequency is thus only sound when the extra
terms causing the splitting are small.

An important remark is that the effective polarization was derived from an inversion-
symmetric Hamiltonian, which might be counter intuitive. Indeed, the polarization,
as a vector, should vanish in a system with inversion symmetry. There are two sce-
narios to consider in order to understand the role of Peff . First, in a system with
unbroken inversion symmetry, all states are either even or odd with respect to the
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ED-induced
MD-induced

FIGURE 3.2: Energy levels of the four states in the S tot = 1/2 ground
state manifold of a three-spin triangle system with finite DM interac-
tion as a function of an applied static magnetic field in the z direction.
The allowed ED-induced and MD-induced resonances are indicated

with black arrows. Figure adapted from Ref. [40].

symmetry. In such a system, the expectation value of P, and all the diagonal ele-
ments ⟨ψi|P|ψi⟩, where |ψi⟩ is an energy eigenstate, vanish. However, the polarization
as a quantum operator has off-diagonal matrix elements between states of different
parity. Its importance hence lies in the dynamical properties of the system, and it
affects the response functions. Secondly, in some systems the inversion symmetry is
spontaneously broken, for instance by a specific magnetic order, and the expectation
value of P can be finite even in the ground state.

The latter case is a well-known phenomenon in multiferroics, materials exhibit-
ing both ferromagnetism and ferroelectricity. The magnetoelectric (ME) coupling,
i.e., coupling between the spins and the electric polarization, described by Eq. (3.13)
has been studied intensively in systems with triangular spin trimers. The emergence
of a finite electric polarization was predicted in different systems such as trimerized
Mott insulators [127] and spin ice [128], and the electric-dipole-induced spin dynam-
ics was studied in molecular magnets [129, 130]. Through the low-energy magnetic
excitations of the system, the optical conductivity has a contribution below its optical
gap in the Mott insulating phase. This so-called subgap conductivity was further-
more investigated in different systems including the Mott insulator on the kagome
lattice in a valence bond solid phase [125, 131], and different quantum spin liquids
on the triangular [26] and kagome lattices [27] (which both contain triangular loops).
The case of quantum spin liquids, characterized by a lack of magnetic ordering, is
particularity interesting because the lack of order is accompanied by a continuum
of spin excitations [132], which can then be reached from the ground state through
an AC electric field. Quantum spin liquids are generally expected in systems with
triangular loops due to the intrinsic geometrical frustration accompanying the lat-
tices [133]. The subgap optical conductivity is thus continuous in such quantum
spin liquids. It was observed experimentally in κ-(BEDT-TTF)2Cu2(CN)3 [28, 134]
and Herbertsmithite [29] which confirmed the theoretical predictions.
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3.2 Two-site polarization

Up to now, the effective polarization in the insulating phase of the Hubbard model
was restricted to three-site (or more) subsystems, because of the presence of a particle-
hole symmetry. It is natural to wonder whether the Hubbard model can be tweaked
in order to accommodate a finite effective polarization at second order in t/U, i.e., on
each bond of the lattice, instead of trimers. One way to achieve this is to consider a
multi-orbital Hubbard model, for which the Mott insulating phase is achieved with-
out necessarily having a particle-hole symmetry. This is the focus of the next two
chapters.

In this section, we derive a formalism for the two-site polarization of a more gen-
eral Hubbard model with one spinful particle per site but with any number of bands.
This situation can be, for instance, a single-band Hubbard model (i.e., hydrogen s1

atoms), but also p1 and (more physically relevant) d1 systems, which corresponds
to certain transition metal oxides. It could also be a d9 system where holes are the
particles, or a d5 system with large cubic crystal field (CF) splitting the t2g and eg
orbitals so that a single-hole Hubbard model is used. This last situation is exactly
what we consider in Chapter 4. For now, we keep the N-band model general, so that
there are 2N single-particle states on each site. The two-site model, for sites i and j
is written as

H =
2N∑

γ,γ′=1

[
c†i,γT γγ′

i j c j,γ′ + H.c.
]
+Hion +Hint, (3.24)

where γ = 1, . . . , 2N labels the single-particle states. In addition to the interaction
Hamiltonian Hint, a single-particle on-site Hamiltonian Hion which splits the 2N
states is allowed (e.g., CF or SOC). We choose our single-particle state c†γ |0⟩ such that
they diagonalizeHion. Furthermore, we assume that γ = 1, 2 is the Kramers doublet
forming the ground state (split from the other states) which we label σ =↑, ↓, re-
spectively, with on-site energy E(1)

0 . The hopping matrix T γγ′

i j generally describes the
hopping amplitudes between the γ, γ′ = 1, . . . , 2N eigenstates on neighboring sites.

First, we construct the M = 2N(2N − 1)/2 two-particle states on a given site i,

|J, µ, i⟩ =
2N∑

γ1γ2

mµγ1γ2c†i,γ1
c†i,γ2
|0i⟩ , (3.25)

where µ = 1, . . . ,M labels the states and mµγ1γ2 simply maps all the (γ1, γ2) pairs to the
label µ. For a given µ, mµγ1γ2 is non-zero for only one given pair (γ1, γ2), for which it is
equal to one. For instance, we can choose, m1

12 = 1, m2
13 = 1, etc.. The diagonalization

of the full on-site Hamiltonian with two particles and their interaction gives the
eigenstates

|D, ξ, i⟩ =
M∑

µ=1

aξµ |J, µ, i⟩ , (3.26)

and their respective energies E(2)
ξ .

Applying a second-order perturbation expansion in the hopping parameters, the
two-site effective Hamiltonian is

Heff =
∑

ξ

1
−ϵξ

P0H i j
hop |D, ξ, j⟩ ⟨D, ξ, j| H ji

hopP0 + (i↔ j), (3.27)



64 Chapter 3. Virtual hopping effects in the Mott insulating phase

where P0 is the projection operator onto states with a single-particle ground state on
each site (γ = 1, 2). The energies of the intermediate states relative to the ground
state are given by ϵξ = E(2)

ξ + E(0) − 2E(1)
0 , where E(0) is the on-site energy of the state

with no particles.
Similarly, the second-order perturbation expansion for the polarization opera-

tor (3.9), calculated from the polar states in Eq. (3.5) at first order inHhop, is

Peff = aêi j

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
∑

ξ

1
ϵ2
ξ

P0H i j
hop |D, ξ, j⟩ ⟨D, ξ, j| H ji

hopP0 − (i↔ j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦, (3.28)

where êi j is the unit vector pointing from site i to site j and a is the distance between
the sites. We have used the fact that the polar states with two particles on site j have
P = aêi j and the ones with two particles on site i have P = −aêi j. Henceforth we set
a = 1. One can then calculate (see, e.g., Ref. [135])

P0H i j
hop |D, ξ, j⟩ =

∑

σ,σ′=±
Aξσ,σ′c

†
i,σc†j,σ′ |0⟩ , (3.29)

with

Aξi j,σσ′ =

2N∑

γ=1

M∑

µ=1

Tσγ
i j aξµ(m

µ
γσ′ − mµσ′γ). (3.30)

Finally, the effective polarization operator is along the êi j direction and its amplitude
reads

Peff =
∑

σσ′

∑

σ1σ′1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M∑

ξ=1

1
ϵ2
ξ

(
Aξi j,σσ′(A

ξ
i j,σ1σ′1

)∗ − Aξji,σ′σ(Aξji,σ′1σ1
)∗
)⎤⎥⎥⎥⎥⎥⎥⎥⎦Bi,σσ1 Bj,σ′σ′1 , (3.31)

where Bi,σσ′ = c†i,σci,σ′ , such that

Bi,↑↑ = S z
i + I/2,

Bi,↓↓ = −S z
i + I/2,

Bi,↑↓ = S +i ,
Bi,↓↑ = S −i , (3.32)

where I is the identity operator. Similarly, the Hamiltonian is

Heff = −
∑

σσ′

∑

σ1σ′1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M∑

ξ=1

1
ϵξ

(
Aξi j,σσ′(A

ξ
i j,σ1σ′1

)∗ + Aξji,σ′σ(Aξji,σ′1σ1
)∗
)⎤⎥⎥⎥⎥⎥⎥⎥⎦Bi,σσ1 Bj,σ′σ′1 . (3.33)

In Ref. [135] it is noted that (Aξji,σ′σ) = (Aξi j,σσ′)
∗. However, we argue that this is

not true and that in general Aξji and Aξi j are not simply related4. Equation (3.31) is
especially useful for a numerical evaluation of the perturbation theory, for instance
when the numerical exact diagonalization is too heavy.

4Even for the single-band model with diagonal hopping T = tσ0, it is straightforward (there is only
one polar state per site) to show that (Aξ

ji,σ′σ) ! (Aξ
i j,σσ′ )

∗ but Aji,σ′σ = −Ai j,σσ′ instead.
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To conclude this chapter, we investigate the two-site effective polarization in the
single-band Hubbard model,

H =
∑

α,β=±

[
c†iαTαβc jβ + H.c.

]
+

U
2

[
(ni − 1)2 + (n j − 1)2

]
, (3.34)

with the most general 2 × 2 hopping matrix defined by eight independent real pa-
rameters

T = tσ0 + d · σ ≡ (t1 + it2)σ0 + (d1 + id2) · σ, (3.35)

where t1, t2, di
1, d

i
2 for i ∈ {x, y, z} are all real. Physically, t1 is the usual hopping, the

complex t2 hopping comes, e.g., from the Peierls substitution [136] induced by a
magnetic flux through the Aharonov-Bohm effect [137], and the di

2’s correspond to
the Aharonov-Casher phase [86] originating from SOC, as shown in Chapter 2. The
di

1 terms are less usual. This spin-anisotropic real hopping has been proposed as a
way to realize the Kitaev honeycomb spin model [35], with bond-dependent Ising
interaction, on optical lattices [138]. The model with only t1 and d1 is often called
the Kitaev-Hubbard model [139,140]. The t1 and d2 hoppings preserve time reversal
symmetry while the t2 and d1 terms are odd under time reversal.

As discussed previously, the particle-hole transformation (3.11) hinders any fi-
nite effective polarization at second order in Hhop when only t1 ! 0. The gener-
alized hopping can be separated in H−hop, containing the t1σ0 + id2 · σ terms, and
H+hop, containing the it2σ0 + d1 · σ terms, which are odd and even with respect to
the particle-hole transformation, respectively. Thus, in the expression of Peff at sec-
ond order in Hhop, the contribution from (H±hop)2 vanishes and only H±hopH∓hop terms
remain. As they are also odd under time reversal, the effective polarization only
contains single-spin operator. Using Eq. (3.31), we find

Peff =
4

U2

[
(t1d1 + t2d2) ·

(
Si − S j

)
+ (d1 × d2) ·

(
Si + S j

)]
. (3.36)

Finally, a finite polarization is also observed when there is a difference between
the chemical potential at the two sites. This is maybe more intuitive because the
inversion symmetry is explicitly broken, and the electrons are more likely to be on
one site than the other, unless they form a spin triplet because of the Pauli exclusion
principle (in the case of spin-independent hopping). The Hamiltonian

H = −t
∑

iα

[
c†i+1,αciα + H.c.

]
+

∑

i

(−1)i∆

2
ni +

U
2

∑

i

(ni − 1)2, (3.37)

was studied in Ref. [141]. It corresponds to a chain made of donor and acceptor
molecules stacked alternatingly, and ∆ is the difference between the energy levels
of the donor and acceptor molecules. For U > ∆, the ground state of this model is
the ionic Mott insulator with one electron on each site. For U < ∆, the ground state
is neutral with all the odd sites fully occupied while the even ones are empty. In
the ionic Mott insulator, the effective polarization can be calculated at second order
in the hopping, but Eq. (3.31) has to be modified to account for the different on-
site potential. As there is only one band, the calculation is straightforward and the
polarization is found to be

Peff =
8t2U∆

(U2 − ∆2)2

∑

i

(−1)i
(
1
4
− Si · Si+1

)
, (3.38)
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which is consistent with the expression in Ref. [141] up to a constant (which we
should not neglect for the polarization). As anticipated, a finite polarization is ob-
served on a pair of sites only for the singlet state. In real materials, a spin-Peierls
transition occurs below a critical temperature TSP due to the coupling between the
molecular displacement and the spins. Below TSP, the system is made of singlet
dimers which lead to a uniform ferroelectric moment as derived in Eq. (3.38). The
optical response due to Eq. (3.38) in the ionic Hubbard model was calculated in
Ref. [141].

We have now exhausted all the possibilities to design a single-band Hubbard
model that leads to a finite polarization operator at second order in the hopping.
The single-band model, however, lacks a crucial ingredient that is essential in vari-
ous materials: the orbital degree of freedom. When the Hubbard model is used to
study d-orbital transition metal compounds, the orbital degree of freedom cannot be
neglected, and a multi-band Hubbard model should be adopted. This is the focus of
the next chapter.
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Chapter 4

Magnetoelectric coupling in the
multi-band Hubbard model

The ME effect generally refers to the cross-coupling of the magnetic and electric
properties of a material. Multiferroics exhibit the static ME effect, i.e., the cross-
control of electric polarization and magnetisation by a magnetic and electric field,
respectively [12, 18–24]. Multiferroics are attracting a lot of attention in particular
due to the potential applications in novel multifunctional devices [25]. As men-
tioned in the Introduction, magnetic multiferroics (or type-II multiferroics [23]) such
as TbMnO3, for which the ferroelectricity only emerges in the magnetically ordered
phase, are especially interesting due to the profound physics behind their properties.

There exist three types of mechanisms for the local ME coupling between the
spins Si and S j at neighboring sites i and j and the local two-site electric polariza-
tion Pi j: (i) the exchange-striction mechanism originating from the symmetric spin
exchange interaction Si · S j [142], (ii) the spin dependent p-d hybridization mecha-
nism causing single spin anisotropy [143–145], and (iii) the spin current mechanism
(or inverse Dzyaloshinskii-Moriya interaction) originating from SOC, which causes
a spin antisymmetric Pi j that is expressed as a function of Si × S j [146–148].

Based on symmetry considerations, the mechanism (iii) is the most general as the
electric polarization depending on Si×S j can appear regardless of the local symmetry
of the i- j bond [149] (the “highest symmetry” case correspond to Pi j ∝ êi j × (Si × S j),
where êi j is the unit vector parallel to the bond). In particular, it is allowed in a
system with inversion symmetry while the lack of inversion symmetry centered at
the middle of the bonds and spin sites is necessary for the mechanisms (i) and (ii),
respectively.

The ME effect can also be dynamical. For multiferroics, a striking feature of the
ME effect is the collective motion of the spins that can be driven by an AC electric
field: the so-called electromagnons [150–156]. They are the Goldstone modes asso-
ciated with the ferroelectricity and the hybridization of spin waves with the electric
polarization.

However, the ME effect is not limited to multiferroics. It can appear in magnetic
Mott insulators even without long-range ordering, and thus without the static ME
effect and the accompanying reduction of the symmetry. The ME coupling influ-
ences the charge dynamics of the electrons in the magnetic energy scale, far below
the optical gap. Consequently, the magnetic excitations can be probed with an AC
electric field, e.g., by measuring the terahertz (THz) dielectric response.

For instance, electric-dipole-induced spin resonances are in principle possible
in a quantum spin gapped system, with a ground state made of nonmagnetic spin
singlet and no long-range order [157]. In fact, transitions between the spin singlet
and spin triplet states, which are forbidden for magnetic dipole transitions, have
been observed in various spin gapped systems in ESR experiments [158–162]. While
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potential singlet-triplet mixing due to, e.g., the DM interaction makes the transition
possible [163, 164], it has also been suggested that the ME effect is the origin of the
observed resonance [165, 166]. In Ref. [157], they recently showed the singlet-triplet
transitions in the spin-1/2 KCuCl3 compound are driven by the AC electric field.
Indeed, through the mechanism (iii) (which is generally allowed by symmetry), the
polarization is written in terms of Si×S j and thus has finite matrix elements between
singlet and triplet states.

In the previous chapter, we considered the effective polarization emerging from
virtual hopping of the electrons. This is yet another mechanism for the ME cou-
pling. In multiferroics, the mechanisms behind the electric polarization typically
rely on the electroelastic effects involving the displacement of the ions forming the
lattice. By contrast, the polarization emerging from virtual hopping is purely ‘elec-
tronic’, in the sense that it only involes the charge of the electrons carrying the spins.
By focussing on the Hubbard model, in this chapter we consider the electronic ME
coupling in the multi-band Hubbard model.

As mentioned in the previous chapter, the subgap optical conductivity due to
ME coupling was observed in some gapless spin liquids [26–29], and explained by
the electronic ME mechanism based on ring exchange interaction on triangular and
kagome lattices [26, 27].

More recently, a continuous subgap optical conductivity was observed in a dif-
ferent type of quantum spin liquid, which cannot be explained with the ME mech-
anism on triangular loops. In a series of THz spectroscopy measurements, the re-
sponse of α-RuCl3 was measured [30–34], and it was shown that it had a strong
electric-dipole-induced contribution [31]. The subgap optical conductivity is calcu-
lated in Chapter 5, and the experimental results are shown in Fig. 5.3. α-RuCl3 is
a Kitaev material, a d-orbital Mott insulator in close proximity to the Kitaev hon-
eycomb model [35]. The Kitaev honeycomb model is exactly solvable and has a
quantum spin liquid ground state. It was proposed to be realizable in real materi-
als through the Jackeli-Khaliullin mechanism [49], and has attracted much attention
in recent years. The Kitaev model can be analytically solved in terms of Majorana
Fermion, and is the focus of Chapter 5 where it is thoroughly described.

Potential Kitaev materials, such as ‘Kitaev Iridates’ A2IrO3 with A=Na, Li [50–
52, 167–169] and α-RuCl3 [53–55, 58, 170–172], nevertheless all eventually become
antiferromagnetic below a critical temperature TN (≈ 8K for α-RuCl3), which indi-
cates that the Kitaev spin model does not reflect all the physics of the materials.
Nonetheless, a residual continuum of excitations have been consistently observed
above and below TN which suggests some remnants of the Majorana physics of the
Kitaev model [31,56,58,59]. In order to calculate the optical conductivity in such sys-
tems, we first need to understand the underlying ME coupling, which is the focus of
the present chapter.

Motivated by the THz spectroscopy observation of the subgap optical conduc-
tivity, we aim to understand and derive the mechanisms behind the ME coupling
in α-RuCl3. The magnetic moments in the Kitaev materials come from the electrons
around the TM ions, ruthenium or iridium, in the 4d5 and 5d5 electronic configu-
ration, respectively. The orbitals in 4d and 5d TM compounds are relatively wide-
spread and thus close to an itinerant regime [173] or a molecular orbital crystal [174].
In addition, SOC is very strong in 4d and 5d compounds [87–89] and, combined
with the electron correlation, heavily influences the electronic and magnetic struc-
ture [87–89]. It is therefore natural to expect consequent charge fluctuations of the
localized particles through virtual hopping to neighboring ions, and a significant
electronic ME coupling.
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Starting from the three-band Hubbard model, we proceed to derive the effective
polarization operator in the low-energy manifold, in terms of pseudospin 1/2 vari-
ables on each TM site. Because of time reversal symmetry, there are no single-spin
terms and we only consider two-spin terms from nearest-neighbors. We identify two
microscopic mechanisms. To put it briefly, there are two types of matrix elements for
the position operator r: (i) the matrix elements ⟨i,α|r| j, β⟩, for ions i ! j with orbitals
α and β, originally used in the spin-current model [146], and (ii) the matrix elements
⟨i,α|r|i, β⟩ = riδα,β which involve only one site. For the mechanism (i), we express
the ME coupling in d5 Mott insulators such as Kitaev materials as a function of the
different ⟨i,α|r| j, β⟩ integrals. Hence, with additional first-principle calculations to
evaluate the integrals, the ME effect in Kitaev materials and other d5 Mott insulators
can be evaluated from the results of this chapter.

In addition to the honeycomb lattice of the Kitaev materials, we also consider the
electric polarization in the more simple perovskite lattice structure for the same d5

Hubbard model but with a different geometry for the superexchange mechanism.
The present chapter is structured as follows. In Sec. 4.1, we first introduce the

Hamiltonians. In Sec. 4.2, the allowed ME coupling between Pi j and Si×S j is derived
from symmetry. Next, we emphasize the importance of SOC in Sec. 4.3. In Sec. 4.4,
the two different electronic mechanisms for the polarization are discussed starting
from the usual LCAO (linear combination of atomic orbitals) approximation of the
tight-binding model. In Sec. 4.5, we explicitly calculate the polarization from the
mechanisms considered for the two different lattice structures. Finally, the results
are discussed in Sec. 4.6.

4.1 Model

We consider the Hamiltonian of a d5 Mott insulator in a strong octahedral crystal
field (CF) environment. The CF originates from the octahedral cage made of ligands
(oxygen or chloride) surrounding each TM ion. Because of the cubic symmetry, the d
orbitals are split into t2g and eg orbitals. The lower energy manifold is thus described
with one hole occupying the t2g orbitals and is six-fold degenerate.

That being said, we note that in 4d and 5d compounds, the complete neglect of
the eg orbitals is not always well justified [175]. Because of the large spatial extent
of the electronic states, the CF splitting ∆cubic is increased while the interactions are
reduced. Typically, ∆cubic = 1 − 5 eV, the Coulomb repulsion U = 0.5 − 3 eV, and
Hund’s coupling JH = 0.5 − 0.7 eV. However, heavier elements have larger SOC,
typically λ = 0.1 − 1 eV [175]. We are thus in a situation where Hund’s first rule
(of maximal spin) is violated and low-spin t2g-orbital configurations are preferred,
but significant eg-t2g mixing is not excluded due to the strong SOC. We nevertheless
neglect eg-t2g mixing for simplicity and work in the t2g-orbital subspace as is very
often done.

For Kitaev materials, this model has been largely discussed in the literature [176–
184]. The 2D Kitaev materials form a honeycomb lattice shown in Fig. 4.2 and two
ligands are shared on each TM-TM bond. This is the edge-sharing geometry shown
in Fig. 4.1(b). The model on a perovskite lattice corresponds to the corner-sharing ge-
ometry shown in Fig. 4.1(a) and has been discussed in the context of iridates or rho-
dates compounds such as the nearly 2D materials Sr2IrO4 and Sr2Ir1−xRhxO4 [135].
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FIGURE 4.1: A pair of TM ions and their neighboring ligands in the (a)
corner-sharing and (b) edge-sharing geometries where û = (x̂− ŷ)/

√
2

(a z-bond). The blue spheres are the TM ions and the red spheres the
ligands. In the ideal geometries, φ = 90◦ and ϕ = 180◦.

Accordingly, we consider the three-band Hubbard model for the holes with a
filling of one hole per site,

H = Hhop +Hion +Hint, (4.1)

which consists of a hopping, non-interacting on-site and interaction Hamiltonian,
respectively. The hole fermion operators are concisely written as

c†i = (c†i,yz,↑, c
†
i,yz,↓, c

†
i,xz,↑, c

†
i,xz,↓, c

†
i,xy,↑, c

†
i,xy,↓). (4.2)

The interaction is well described by the Kanamori Hamiltonian [185,186], which
consists of Hund’s coupling JH , intra orbital repulsion U, and inter orbital repulsion
U′ = U − 2JH (a good approximation for most materials [186]),

Hint =U
∑

i,a

ni,a,↑ni,a,↓ + (U′ − JH)
∑

i,a<b,σ

ni,a,σni,b,σ + U′i,a!bni,a,↑ni,b,↓

− JH

∑

i,a!b

c†i,a,↑ci,a,↓c†i,b,↓ci,b,↑ + JH

∑

i,a!b

c†i,a,↑c
†
i,a,↓ci,b,↓ci,b,↑. (4.3)

The hopping Hamiltonian is found by calculating the effective hopping between
neighboring TM ions in terms of the usual Slater-Koster integrals [187]. It consists
of both the superexchange through the ligand(s) between the TM ions and the direct
TM-TM hopping. For the superexchange, each hole can jump to the ligands with
filled p6 orbitals at a cost ∆pd, the charge-transfer energy. The physics of the sys-
tem depends on the relation between ∆pd and U. For the Mott insulators that we
consider, the first charge-excited states have polar states with double t2g hole occu-
pancy on a TM ion with energy gap ∼ U. By contrast, for the charge-excited states of
charge-transfer insulators, the hole occupies the p orbitals of a ligand at a cost ∆pd.
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FIGURE 4.2: Honeycomb crystal structure of Kitaev materials. The
blue spheres represent the magnetic TM ions and the red spheres the
ligand. Each TM-TM bond is in the edge-sharing geometry and the

2D plane is perpendicular to the [111] direction.

We hence consider the limit ∆pd ≫ U for which we can integrate out the states with
unfilled p in order to obtain the effective Hubbard Hamiltonian (4.1) involving only
TM sites. Furthermore, the intermediate states with two or more holes occupying
the p-orbitals of the ligands are neglected and the superexchange effective hopping
simply consists of the different TM-L-TM processes through each ligand (L) sepa-
rately.

Summing up the contributions of the different ligands,

Hhop = −
∑

⟨i j⟩
c†i (T̂i j ⊗ I2×2)c j, (4.4)

where T̂i j is the hopping matrix between TM sites i and j,

T̂αβ
i j = tαβi j +

∑

p

∑

γ=x,y,z

tαγip tβγjp
∆pd
. (4.5)

Here tαβi j is the direct hopping between the TM ions at sites i and j with respective
orbitals α and β found from the Slater-Koster integrals [187]. The second part is
the superexchange mechanism through the ligands labelled by p with orbitals γ in
terms of the tαγip TM-L hoping integrals. In the edge-sharing geometry, there are two
ligands (p = 1, 2), and there is only one in the corner-sharing geometry (p = 1) [see
Fig. 4.1]. The exact hopping matrix for both the edge- and corner-sharing geometries
are given based on symmetry considerations in the following section.

The on-site six-fold degenerate Hilbert space is lifted by Hion which consists of
both SOC and an additional CF splitting between the t2g orbitals. The holes orig-
inally have an L = 2 orbital angular momentum. However, the projected L = 2
angular momentum operators L onto the yz, xz, and xy orbitals is related to the L = 1
angular momentum operator L(p) of a single hole in the p orbitals in the {x, y, z} basis
by L(t2g) = −L(p). Therefore, the orbital angular momentum in t2g orbitals is partially
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quenched from L = 2 to 1. In other words, the holes have an effective L = 1 orbital
angular moment in addition to their intrinsic S = 1/2 spin angular momentum.

The SOC Hamiltonian is

HSO = λ/2
∑

i,a

c†i (La ⊗ σa)ci, (4.6)

where λ > 0 (for holes), σa are the Pauli matrices, and (La)bc = −iϵabc (ϵ is the three-
dimensional Levi-Civita tensor). In additional to the cubic CF, a lower-symmetry CF
distortion

HCF = ∆
∑

i

c†i [(L · n̂CF)2 ⊗ I2×2]ci, (4.7)

is usually expected, so that Hion = HSO + HCF. The unit vector n̂CF is the direction
of the extra CF elongation (∆ < 0) or compression (∆ > 0) [183]. We only explic-
itly consider the effects of a distortion perpendicular to the 2D systems considered:
a trigonal distortion (n̂CF = [111]) in the edge-sharing geometry, and a tetragonal
(n̂CF = [001]) distortion in the corner-sharing geometry. Explicitly (up to a constant),

L2
[111] = −

1
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ and L2

[001] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.8)

With only SOC (∆ = 0), the t2g orbitals are split into the states with J = 1/2 and
J = 3/2 total effective angular momentum with energy −λ and λ/2, respectively. The
|J, Jz⟩ states are given by

∣∣∣∣∣
1
2
,

1
2

〉
=

1√
3

(− |X, ↓⟩ − i |Y, ↓⟩ − |Z, ↑⟩)
∣∣∣∣∣
1
2
,−1

2

〉
=

1√
3

(− |X, ↑⟩ + i |Y, ↑⟩ + |Z, ↓⟩)
∣∣∣∣∣
3
2
,

3
2

〉
=

1√
2

(− |X, ↑⟩ − i |Y, ↑⟩)
∣∣∣∣∣
3
2
,

1
2

〉
=

1√
6

(− |X, ↓⟩ − i |Y, ↓⟩ + 2 |Z, ↑⟩)
∣∣∣∣∣
3
2
,−1

2

〉
=

1√
6

(|X, ↑⟩ − i |Y, ↑⟩ + 2 |Z, ↓⟩)
∣∣∣∣∣
3
2
,−3

2

〉
=

1√
2

(|X, ↓⟩ − i |Y, ↓⟩), (4.9)

where X = yz, Y = xz, and Z = xy.
The CF also splits the t2g states by itself into a b2g state and an eg pair of states. In

general, with both SOC and CF the states are split into three Kramers doublets.
Because λ > 0, the ground state is always a Kramers doublet which defines a

pseudospin 1/2 variable on each site. Moreover, it is assumed that the gap to the
other four excited states is larger than the magnetic scale of the effective pseudospin-
pseudospin interactions, which is roughly t2

eff/U where teff generally refers to the
amplitude of the TM-TM hopping integrals.

In Sec. 4.5, we use perturbation theory inHhop to calculate the polarization oper-
ator in the low-energy manifold. In order to perform analytical calculations, HCF is
also often neglected. Here we mostly consider it as a perturbation. Indeed, while the
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additional CF distortion lower the symmetry, its amplitude is typically small com-
pared to SOC. This situation is particularily relevant for late TM ions such as Ir, Os,
Rh, and Ru [49]. Nevertheless, we also perform numerical calculations exact in ∆ for
comparison.

4.2 Symmetry considerations

The finite elements in a tensor relating two physical quantities can be determined
from symmetry. This is in particular true for the spin-polarization coupling [149,
188, 189]. We explicitly consider the two edge- and corner-sharing geometries with
and withoutHCF.

In the low-energy Hilbert space, because of the time-reversal and inversion sym-
metry, the general form of the ME coupling for the bond ⟨i j⟩ is P = m̂

(
Si × S j

)
, or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Px
Py
Pz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mxx mxy mxz
myx myy myz
mzx mzy mzz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
Si × S j

)
x(

Si × S j
)
y(

Si × S j
)
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.10)

Here the operators Si refer to the pseudospin 1/2 variables defined in the low-energy
Hilbert space. From now on, we refer to them as “spins”.

In the original spin-current model proposed by H. Katsura, N. Nagaosa, and A.
V. Balatsky [146], Pi j ∝ êi j × (Si × S j), where êi j is the unit vector parallel to the
bond, which we henceforth call the Katsura-Nagaosa-Balatsky (KNB) coupling. For
a bond in the x direction, it corresponds to myz = −mzy and all other components
equal to zero in Eq. (4.10). However, for a sufficiently low symmetry, there are other
allowed matrix elements in m̂ determined from the symmetry of the ⟨i j⟩ bond.

4.2.1 Edge-sharing geometry

First, we consider the edge-sharing geometry with φ = 90◦ TM-L-TM bonds as
shown in Fig. 4.1(b).

Full octahedral symmetry

Six ligands form an octahedral cage around each TM ion which defines the x̂, ŷ and
ẑ directions. Without any further distortion, the point group is Oh.

In the Kitaev materials of Fig. 4.2, there are three different bond directions: (ŷ −
ẑ)/
√

2 (an x-bond), (ẑ − x̂)/
√

2 (a y-bond), and (x̂ − ŷ)/
√

2 (a z-bond). Henceforth, we
only consider the (x̂− ŷ)/

√
2 direction (as shown in Fig. 4.1) and the other two bonds

are simply related by cyclic permutations thanks to the C3 symmetry.
There are three twofold axes (with C2 symmetry) along û = (x̂ − ŷ)/

√
2, v̂ =

(x̂ + ŷ)/
√

2, and ŵ = ẑ [see Fig. 4.1]. The corresponding bond symmetry group, i.e.,
containing only elements that leave the bond unmoved, is D2h. From the character
table of the group shown in Table 4.1, we can directly read the allowed coupling be-
tween different functions; only quantities transforming under the same irreducible
representation can be coupled to each other [190].

For the t2g orbitals, the T2 irreducible representation of O splits into three different
irreducible representations of D2h: T2 → B1 ⊕ B2 ⊕ B3, for the dab orbitals where a and
b correspond to the û, v̂ and ŵ directions.
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TABLE 4.1: Character table of D2h with twofold axis in the a, b and c
directions. C2,α is a C2 rotation along the corresponding axis, σαβ is a
reflection across the αβ plane, and the ⟨i j⟩ bond is in the a direction.

D2h E C2,a C2,b C2,c I σbc σac σab functions
Ag 1 1 1 1 1 1 1 1 -

B1,g 1 1 −1 −1 1 1 −1 −1 S a

B2,g 1 −1 1 −1 1 −1 1 −1 S b

B3,g 1 −1 −1 1 1 −1 −1 1 S c

Au 1 1 1 1 −1 −1 −1 −1
(
Si × S j

)
a

B1,u 1 1 −1 −1 −1 −1 1 1 a, i- j antisym.
B2,u 1 −1 1 −1 −1 1 −1 1 b,

(
Si × S j

)
b

B3,u 1 −1 −1 1 −1 1 1 −1 c,
(
Si × S j

)
c

Therefore, the hopping matrices (4.5) between two sites with t2g orbitals must be

T̂Z(D2h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t11 0 0
0 t22 0
0 0 t33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B′,B′

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t2 0
t2 t1 0
0 0 t3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B,B

, (4.11)

where B = {x̂, ŷ, ẑ} and B′ = {û, v̂, ŵ} are two different bases.
Explicitly, the hopping parameters are [180]

t1 =
tddπ + tddδ

2
,

t2 =
−tddπ + tddδ

2
+

t2
pdπ

∆pd
,

t3 =
3tddσ + tddδ

4
, (4.12)

where tpdσ, tpdπ, tddσ, tddπ, and tddδ are Slater-Koster integrals [187].
The allowed spin-polarization couplings are found by comparing how the spin

operators and the polarization operators transform under the elements of the bond
symmetry group. The spin along the axes of B, S u, S v, and S w transform as B1,g,
B2,g, and B3,g, respectively, and the cross product in Si × S j introduces an extra B1,u,
odd under inversion. The polarization is a vector and hence Pα transforms as Bα,u.
Following Table 4.1, there are only two allowed independent coupling constants,

m̂(D2h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 m4
0 m5 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B′,B′

. (4.13)

Note that the matrix m̂ does not have to be symmetric or antisymmetric, unlike the
hopping matrix which is symmetric. Hence, even with the highest symmetry pos-
sible for the edge-sharing geometry, the ME effect is more general than the KNB
formula P ∝ êi j × (Si × S j), which would correspond to m4 = −m5.

Trigonal distortion

It is usual for materials to have a CF distortion deviating from the purely octahe-
dral CF. Let us consider a distortion perpendicular to the 2D plane. This distortion
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preserves the C3 symmetry and is typical for Kitaev materials. It corresponds to an
elongation or compression in the (x̂ + ŷ + ẑ)/

√
3 direction. The corresponding point

group is D3d and the symmetry group of a bond is reduced to D2h → C2h. Its charac-
ter table is shown in Table 4.2.

TABLE 4.2: Character table of C2h with twofold axis in the a direction.
C2,a is the C2 rotation around â, σbc is the reflection across the plane

perpendicular to â, and the ⟨i j⟩ bond is along the a direction.

C2h E C2,a I σbc functions
Ag 1 1 1 1 S a

Bg 1 −1 1 −1 S b, S c

Au 1 1 −1 −1 a,
(
Si × S j

)
a
, i- j antisym.

Bu 1 −1 −1 1 b,
(
Si × S j

)
b

c,
(
Si × S j

)
c

The hopping matrix has one additional t23 allowed matrix element,

T̂Z(C2h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t11 0 0
0 t22 t23
0 t23 t33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B′,B′

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t2 t4
t2 t1 t4
t4 t4 t3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B,B

, (4.14)

and the ME coupling matrix has three additional allowed matrix elements (diagonal
in the B′ basis),

m̂(C2h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 0 0
0 m2 m4
0 m5 m3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B′,B′

. (4.15)

Additional distortions

While the trigonal distortion is the most commonly considered CF, small C3-symmetry
breaking monoclinic distortion are also sometimes reported. In this case, the only
symmetry of the bond is the inversion symmetry relative to its center, and its sym-
metry group is reduced Ci. Therefore, the only constrain is the inversion symmetry
so that T has six independent matrix elements and m̂ has nine. In the following, we
only consider system with the C3 symmetry preserved.

There is, however, a special distortion which is worth mentioning. If the two lig-
ands on a given bonds are displaced along ±v̂, perpendicularly to the bond, the local
D2h symmetry of the system made of two ligands and two TM sites is left unbroken
(even though the bond symmetry should be lowered to C2h). This is because v̂ is one
of the C2 axes. Hence, the local microscopic processes produce a matrix m̂ consistent
with Eq. (4.15). Such a distortion is a convenient way to study the effect of a φ ! 90◦

angle in the TM-L-TM bond geometry and is considered in Appendix B.

4.2.2 Corner-sharing geometry

Let us now consider the corner-sharing geometry shown in Fig. 4.1 with ϕ = 180◦. If
ϕ ! 180◦, the inversion symmetry centered at the middle of the bond is broken and
couplings in addition to those of Eq. (4.10) are allowed. This case is considered in
Appendix B.2.
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Full octahedral symmetry

The two-octahedra structure has a C4 axis along x̂ and four C2 axes. It corresponds
to the group D4h, whose character table is shown in Table 4.3.

TABLE 4.3: Character table of D4h with â as the C4 axis. The 2C′2 rota-
tions are around b̂ and ĉ, the 2C′′2 ones around b̂ ± ĉ, and 2σv,d are the

corresponding reflections. The ⟨i j⟩ bond is along â.

D4h E 2C4,a C2,a 2C′2 2C′′2 I 2S 4 σbc 2σv 2σd functions
A1,g 1 1 1 1 1 1 1 1 1 1 -
A2,g 1 1 1 −1 −1 1 1 1 −1 −1 S a

B1,g 1 −1 1 1 −1 1 −1 1 1 −1 -
B2,g 1 −1 1 −1 1 1 −1 1 −1 1 bc
Eg 2 0 −2 0 0 2 0 −2 0 0 (S b, S c), (ac, ab)

A1,u 1 1 1 1 1 −1 −1 −1 −1 −1 -
A2,u 1 1 1 −1 −1 −1 −1 −1 1 1 a, i- j antisym.
B1,u 1 −1 1 1 −1 −1 1 −1 −1 1 (Si × S j)a
B2,u 1 −1 1 −1 1 −1 1 −1 1 −1 -
Eu 2 0 −2 0 0 −2 0 2 0 0 (b, c),(

(Si × S j)b, (Si × S j)c
)

For D4h, T2 → B2 ⊕ E for the three t2g orbitals. Here, the dyz orbital transforms as
B2g, while (dxy, dxz) transforms as Eg. The hopping matrix between the t2g orbitals is
thus

T̂x(D4h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 0 0
0 t2 0
0 0 t2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B,B

. (4.16)

Furthermore, we do not consider the direct TM-TM hopping in the corner-sharing

geometry. Thus, we find t1 = 0 and t2 = −
t2pdπ
∆pd
≡ t.

Similarly, the ME coupling is found to be

m̂x(D4h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 m1
0 −m1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B,B

. (4.17)

which corresponds to the KNB formula due to the high symmetry of the system
(unlike for the edge-sharing geometry).

Tetragonal distortion

The tetragonal distortion is a displacement of the ligands along ±ẑ from the TM ions
and the D4h symmetry is reduced to D2h. The D2h group was already encountered in
the edge-sharing geometry and thus the ME coupling is similar to Eq. (4.13). Hence,
a deviation from the KNB form is allowed and

m̂x(D2h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 m1
0 m2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B,B

. (4.18)
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Note that the explicit hopping matrix is not affected by the distortion because the
ligand relevant to the hopping is not affected.

4.3 Importance of spin-orbit coupling

In general, the coupling between the spin and electric polarization operators can
emerge from two different sources. The intrinsic Pauli exclusion principle prevents
two electrons with the same magnetic state to be on the same site. This is in par-
ticular the origin of the ME effect derived Chapter 3. Alternatively, SOC explicitly
couples the motion of an electron with its spin. In this section we discuss the role
of SOC and show why it is necessary in order to observe a finite coupling involving
two-spin operators in systems with inversion symmetry.

Because of inversion symmetry, P = m̂(Si × S j) only has finite matrix elements
between the spin singlet state and the spin triplet states. Without SOC, the pseu-
dospins 1/2 forming the ground state manifold are the original spins of the holes.
Now, the microscopic operator P is, by definition, independent of the spin of the
electrons. Thus, because the hopping is also spin-independent, the effective polar-
ization operator vanishes in the ground state manifold without SOC. Of course, this
argument is only valid when the inversion symmetry is respected. ME effects not
relying on SOC, such as the exchange-striction mechanism [142], exist in systems
without inversion symmetry.

For a more in-depth understanding of the role of SOC, let us consider a bond
⟨i j⟩ and two single-hole wave functions, one on each site, in the on-site ground state
manifold. They both transform as a representation, say Γ, of the bond symmetry
group. With SOC, Γ is a 2D representation of the spin double group. Without SOC,
Γ is just a 1D representation with an extra spin degeneracy.

When building the two-site wave functions, we have an extra degree of freedom
coming from the site index: either symmetric or anti-symmetric. The correspond-
ing 1D representations of the bond symmetry group are Γsym = 1, the trivial repre-
sentation, or Γantisym, whose identification depends on the group but is odd under
inversion symmetry. It is indicated as “i- j antisym.” in Tables 4.1, 4.2, and 4.3. Nev-
ertheless, the fermionic statistic imposes the two-hole state to be overall odd under
exchange.

Without SOC, Γ⊗Γ = 1 but both spin singlet and triplet states are available which
hence transform as Γsym and Γantisym, respectively. Because P is odd under inversion,
only matrix elements between singlet and triplet states are possible which, as already
mentioned, must vanish.

With SOC though, each irreducible representation Γk in Γ ⊗ Γ = ∑
k Γk must be

paired with either Γsym or Γantsym depending on its parity under exchange. Never-
theless, the apparent dichotomy does not correspond to triplet and singlet anymore,
so that P can in principle have finite matrix elements between states of different par-
ity.

4.4 Electric polarization

In order to calculate the effective polarization operator P in the ground state mani-
fold (i.e., in terms of spin operators) we first need an expression in second quantized
notation. In a “pure” lattice model, this was defined intuitively in Eq. (3.9). How-
ever, we are now interested in a more complex model with extra ligand sites (which
we eventually integrate out). Moreover, we consider actual d-orbital wave functions
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with different charge distributions around the TM ions, from which can emerge a fi-
nite ME effect (as was first derived in the spin current model [146]). The microscopic
P is evidently spin-independent and we thus omit the spin degree of freedom in the
notation.

It is instructive to take a step back from the tight-binding formulation and to start
form the Bloch wave functions

ψm(k, r) =
1
N

∑

n
am(Rn, r)eik·r, (4.19)

where Rn are lattice vectors, N is the number of unit cells and am(Rn, r) is a Wannier
function for the unit cells at Rn. The tight-binding model is obtained from the LCAO
approximation, which consists of replacing the Wannier function by isolated atomic
orbitals, or a linear combinations of them (for unit cells with multiple ions).

For a single bond with two TM ions at positions rTM
1 and rTM

2 , and M ligands at
positions rL

p (p = 1, . . . ,M), the possible atomic orbitals are

ψat(r) =
{
ψα(r − rTM

1 ), ψα(r − rTM
2 ) (d orbitals)

ψγ(r − rL
p) p = 1, . . . ,M (p orbitals) , (4.20)

where α ∈ {yz, xz, xy, x2 − y2, 3z2 − r2}, and γ ∈ {x, y, z} denotes the d and p orbitals,
respectively. Moreover, the orthogonality of the different atomic orbitals is assumed
for simplicity. The above atomic orbitals are labelled |R,α⟩ for an ion at position R
with orbital α.

In the following, we argue that in this formalism there are two kinds of contri-
butions to the polarization, defined by the number of sites involved in the matrix
elements ⟨R,α|P|R′, β⟩. These are grouped into the single-site terms (with R = R′)
and the two-site terms (with R ! R′), which we label “lattice polarization” and “hop-
ping polarization”, respectively.

4.4.1 Lattice polarization

Because the product of two p or two d orbitals is even under inversion, we have

⟨R,α|r|R, β⟩ = Rδαβ + ⟨0,α|r|0, β⟩ = Rδαβ. (4.21)

The lattice polarization is thus
∑

i rini, which is intrinsic to any lattice model and
corresponds to the operator used in Chapter 3. Here ni =

∑
α ni,α =

∑
α c†i,αci,α and the

ri vectors are the positions of both ligands and TM ions. As discussed in Chapter 3,
the Mott insulator is charge neutral, so that the lattice polarization reads

Plat =
∑

i∈TM

rTM
i δni +

∑

p∈L
rL

pδnp, (4.22)

where δni = ni−nTM for TM ions and δnp = np−nL for ligands. Here nTM and nL are the
numbers of electrons (or holes) in the ground state manifold on TM and ligand sites,
respectively. In our concrete model we have nTM = 1 and nL = 0 for the holes. The
lattice polarization defined here is equivalent (up to a time derivative) to the lattice
current (also called the Hubbard current) used in Chapter 2. Hence, the coupling of
an electric field to the lattice polarization is equivalent to the coupling arising from
the Peierls substitution in the hopping integrals.
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The virtual hopping mechanism behind Plat was already discussed in Chapter 3.
We now have several hopping amplitudes and we henceforth refer to the general
effective TM-TM hopping amplitude as teff . For a finite teff/U, the ground states
contain a small fraction of polar states and we calculate the resulting Plat using per-
turbation theory in powers of teff/U. In the present model, however, there is another
step which consists of integrating out the intermediate states with one hole on a lig-
and. In the end, there are two types of contributions to Plat coming from the TM ions
at rTM

i and from the ligands at rL
p in Eq. (4.22). The contribution from the TM ions at

second order in the TM-TM hopping is obtained by using the effecting hopping (4.5)
in Eq. (3.28), so that

P(TM)
lat,⟨i j⟩,eff = P

[
H i j

hop
Q j

(E0 −H0)2H
ji

hop −H
ji

hop
Qi

(E0 −H0)2H
i j
hop

]
Pai j, (4.23)

where H0 is the local Hamiltonian H = Hion + Hint, H ji
hop is the hopping from site

i to j defined in Eq. (4.4), and P and Qk are the projection operators on the ground
state manifold ofH0 (with energy E0) and polar states with two holes at the TM site
k, respectively. Additionally, ai j is the vector separating the TM ions i and j whose
norm is a, the lattice spacing. Thus, P(TM)

lat,⟨i j⟩ scales as t2
eff/U

2 or t4
pd/(∆

2
pdU2) where tpd

generally denotes the TM-L hopping integrals.
The second contribution arises when applying Plat on a state with one hole on a

ligand. After integrating out the intermediate states, it reads

P(L)
lat,⟨i j⟩ =

∑

p

∑

γ=x,y,z

tαγip tβγjp
∆2

pd
rL

p

(
c†i,αc j,β + c†j,βci,α

)
, (4.24)

where the p runs over all ligands at positions rL
p between the TM sites i and j and γ

labels their p orbitals. The operator P(L)
lat,⟨i j⟩ scales as t2

pd/∆
2
pd, and its projection to the

ground state manifold is obtained at first order inHhop,

P(L)
lat,⟨i j⟩,eff = P

[
P(L)

lat,i j

Q j

E0 −H0
H ji

hop + P(L)
lat, ji

Qi

E0 −H0
H i j

hop

]
P +H.c., (4.25)

which scales as t2
pdteff/(∆2

pdU) or t4
pd/(∆

3
pdU). Therefore, it is smaller than the contri-

bution from the TM ions by a U/∆pd ≪ 1 factor. Note that this result is not valid for
a charge-transfer insulator.

4.4.2 Hopping polarization

Let us now consider the matrix elements

〈
R,α

∣∣∣r
∣∣∣R′, β

〉
=

〈
R,α

∣∣∣r − r0
∣∣∣R′, β

〉
=

〈
−d

2
,α

∣∣∣∣∣r
∣∣∣∣∣
d
2
, β

〉
(4.26)

with R ! R′. Here r0 = (R+R′)/2 and d = R′−R is the vector separating the two ions:
either TM-TM (in which case ∥d∥ = a) or TM-L. We thus have two types of integrals:
p-d and d-d integrals. The p-d integrals satisfy ⟨R,α|r|R′, γ⟩ = ⟨R, γ|r|R′,α⟩ and the
d-d integrals satisfy ⟨R,α|r|R′, β⟩ = − ⟨R, β|r|R′,α⟩. In second quantized notation, it
becomes

Phop =
∑

⟨i, j⟩

∑

α,β

pi j(α, β)
(
c†i,αc j,β + c†j,βci,α

)
, (4.27)
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where pi j(α, β) is the “effective hopping polarization integral” (the equivalent of the
hopping matrix T̂i j) between the TM ions at site i and j with orbitals α and β, respec-
tively. Because it behaves as a hopping operator, the projection to the ground state
manifold is similarly obtained from Eq. (4.25).

As for the hopping matrix (4.5), pi j(α, β) has a direct TM-TM hopping contribu-
tion from the d-d integrals and a TM-L-TM superexchange-like contribution form
the p-d integrals:

pi j(α, β) =
〈
rTM

i ,α
∣∣∣r
∣∣∣rTM

j , β
〉
+

∑

p

∑

γ=x,y,z

〈
rTM

i ,α
∣∣∣r
∣∣∣rL

p, γ
〉

tβγjp + tαγip

〈
rL

p, γ
∣∣∣∣r
∣∣∣∣rTM

j , β
〉

∆pd
, (4.28)

where p and γ label the ligands between the two TM ions and their orbitals.
In the original KNB article about the spin current model [146], similar p-d inte-

grals were used to derive the ME coupling. However, the integrals were roughly
evaluated by neglecting the atomic spacing (i.e., by setting d = ∥d∥ = 0). Following
this approximation, all the finite p-t2g integrals,

〈
pz

∣∣∣y
∣∣∣dyz

〉
and its six permutations,

are equal to each other.
However, this approximation is not clearly justified and in the following we dis-

cuss the different p-d and d-d integrals for a general vector d separating the two
ions. The method used is reminiscent of the original work of Slater and Koster, in
which the hopping integrals of the Hamiltonian are evaluated [187]. We find five dis-
tinct p-d polarization integrals and two distinct d-d polarization integrals allowed by
symmetry.

To recapitulate, we have identified two different mechanisms. First, the lattice
polarization itself has a contribution from the TM ions which scales as a · t4

pd/(∆
2
pdU2)

and a contribution from the ligands which scales as a · t4
pd/(∆

3
pdU) (which is system-

atically smaller). Secondly, the effective hopping polarization in the ground state
manifold is obtained at first order in Hhop and thus scales as peffteff/U, where peff
represents the amplitude of the hopping polarization between two TM sites defined
by Eq. (4.28). In terms of p-d integrals, the scaling reads ppdt3

pd/(∆
2
pdU). Thus, we can

determine the dominant contribution by comparing peff and a · teff/U, or by directly
comparing ppd and a · tpd/U.

4.4.3 Polarization integrals

The
〈
−d

2 ,α
∣∣∣r
∣∣∣d
2 , β

〉
integrals can be classified with respect to the angular momentum

along d of the different spherical harmonics centered at −d/2 and d/2 (for the or-
bitals), and at the origin (for r). The p orbitals are linear combinations of pσ, and
pπ± and the d orbitals are linear combinations of dσ, dπ± and dδ± functions, where σ,
π±, and δ± refer to the functions with m = 0, m = ±1 and m = ±2 angular momentum
along d, respectively. As shown in Table 4.4, they coincide with the cubic harmonics.
In the following, the positions of the two ions are implicitly set to −d/2 and d/2 and
the integrals are written ⟨α|r|β⟩.

TABLE 4.4: Cubic harmonics of p and d orbitals expressed with re-
spect to their component of angular momentum along the ẑ axis.

x y z yz xz xy x2−y2

2
3z2−r2

2
√

3
π+ π− σ π− π+ δ+ δ− σ
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First, there are five independent p-d integrals. In other words, there are five
symmetry channels allowed. The σ component of r is along d (longitudinal) and the
π± components are orthogonal to it (transverse). The two longitudinal integrals are

P∥pdσ = ⟨pσ|σ|dσ⟩ (4.29)

P∥pdπ =
〈
pπ±

∣∣∣σ
∣∣∣dπ±

〉
(4.30)

and the three transverse integrals are

P⊥pπdσ =
〈
pπ±

∣∣∣π±
∣∣∣dσ

〉
, (4.31)

P⊥pσdπ =
〈
pσ

∣∣∣π±
∣∣∣dπ±

〉
, (4.32)

P⊥pπdδ =
〈
pπ±

∣∣∣π∓
∣∣∣dδ+

〉
= ± 〈

pπ±
∣∣∣π±

∣∣∣dδ−
〉
. (4.33)

In this notation σ and π± directly labels the projections of r on the σ and π± axes.
There are two finite transverse d-d integrals,

P⊥dσdπ =
〈
dσ

∣∣∣π±
∣∣∣dπ±

〉
= − 〈

dπ±
∣∣∣π±

∣∣∣dσ
〉
, (4.34)

P⊥dπdδ =
〈
dπ±

∣∣∣π∓
∣∣∣dδ+

〉
= ± 〈

dπ±
∣∣∣π±

∣∣∣dδ−
〉
= − 〈

dδ+
∣∣∣π∓

∣∣∣dπ±
〉
= ∓ 〈

dδ−
∣∣∣π±

∣∣∣dπ±
〉
, (4.35)

and the longitudinal integrals vanish.
From symmetry considerations, it is possible to calculate all

〈
−d

2 ,α
∣∣∣r
∣∣∣d
2 , β

〉
p-d

and d-d integrals for any vector d. We follow the notation of Slater and Koster [187]
and use (l,m, n) for the direction cosines of d. For instance we find

〈
px

∣∣∣x
∣∣∣dxy

〉
=
√

3l3mP∥pdσ + lm
(
1 − 2l2

)
P∥pdπ

+
√

3lm
(
1 − l2

)
P⊥pπdσ + lm

(
1 − 2l2

)
P⊥pσdπ

− lm
(
1 − l2

)
P⊥pπdδ. (4.36)

Expressions for all the other p-t2g and t2g-t2g integrals are given in Appendix A. In
particular, for d along the ẑ axis, the six mentioned p-t2g integrals split into three,

⟨px|z|dxz⟩ = ⟨py|z|dyz⟩ = P∥pdπ,

⟨pz|y|dyz⟩ = ⟨pz|x|dxz⟩ = P⊥pσdπ,

⟨px|y|dxy⟩ = ⟨py|x|dxy⟩ = P⊥pπdδ. (4.37)

In the limit where d = ∥d∥ → 0, the d-d integrals vanish and the integrals of Eq. (4.37)
are equal. This can be seen in Fig. 4.3,

The polarization integrals in Eqs. (4.29), (4.29), and (4.29) are evaluated numeri-
cally as a function of d using the hydrogen-like atomic obritals defined by

ψnlm(r) = Rnl(r)Ylm(θ, φ)

Rnl(r) =

√(
2Z
na0

)3 (n − l − 1)!
2n[(n + l)!]

e−Zr/na0

(
2Zr
na0

)l

L2l+1
n−l−1

(
2Zr
na0

)
, (4.38)

where Ylm(θ, φ) are spherical harmonics, Z is the atomic number, r is the distance from
the nucleus, a0 is the Bohr radius, and L2l+1

n−l−1 are generalized Laguerre polynomials.
Figure 4.3 shows the results for chromium (Z = 24, 3d orbitals) and oxygen (Z = 8,
2p orbitals) on the left, and for ruthenium (Z = 44, 4d orbitals) and chloride (Z = 17,
3p orbitals) on the right. We note that for a typical inter-atomic distance 2Å ∼ 3.8a0,
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the integrals are smaller than their zeroth order approximations (at d = 0) by a factor
of ∼ 104−6.
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FIGURE 4.3: The different p-d (top) and d-d (bottom) polarization in-
tegrals as a function of the atomic spacing d, in units of a0, the Bohr ra-
dius. The cases of chromium and oxygen atoms (left) and ruthenium
and chloride atoms (right) are plotted using hydrogen-like atomic or-

bitals.

Nevertheless, it is important to realize that the hydrogen-like atom model is gen-
erally not a very good approximation. This is especially true for 4d and 5d TM
compounds because of the large spatial extent of the actual electronic orbitals. In
such a case, the polarization integrals would be enhanced (as for the kinetic hop-
ping integrals) reflecting the higher itinerancy of the system. While first-principle
calculations are necessary for a better evaluation of the integrals, the symmetry clas-
sification presented here is still valid.

4.5 Microscopic mechanisms

We are now ready to calculate the effective polarization operators originating from
the microscopic operators defined in Sec. 4.4. Our goal is to explicitly calculate the
allowed coupling constants m1−5 in Eq. (4.15) for the edge-sharing geometry, and
m1−2 in Eq. (4.18) for the corner-sharing geometry. The contributions coming from
Plat and Phop are split as

mi = aAi + Bi, (4.39)

whereAi and Bi originate from the lattice and hopping polarization operator, respec-
tively. Here the contributions Ai are unitless while the contributions Bi have units
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of distance coming from the polarization integrals. In the following, we present the
calculations in detail and the final results are summarized in Tables 4.5 and 4.6.

4.5.1 Edge-sharing geometry

Lattice polarization

Let us consider the ideal edge-sharing geometry with two TM ions at sites i and j
separated by the vector aû, and two ligands also separated by a distance a when
φ = 90◦ as shown in Fig. 4.1. In Appendix B, the calculations are extended to include
the φ ! 90◦ case. Choosing the origin for P at the middle of the bond, the contribution
Plat from the TM ions is always along û and the contribution from the ligands is
perpendicular to it. Without any distortion, it is in the v̂ direction.

Without trigonal distortion, we see in Eq. (4.13) that from symmetry considera-
tions, m1 = 0. Hence, the contribution to Plat along the bond coming from the TM
ions vanishes due to the high D2h symmetry of the bond. More intuitively, this can
be understood from the original microscopic Hamiltonian (4.1). With the trigonal CF
∆ = 0, the on-site Hamiltonian is O(3) rotationally invariant because we neglect the
eg orbitals. The bond symmetry is encoded in the hopping matrix which has three
eigenvectors corresponding to the three C2 axes of the D2h group: û, v̂, and ŵ. The
on-site energy eigenstates are grouped into three Kramers pairs (or three states with
a pseudospin variable). Because SOC is rotationally invariant, the hopping is com-
pletely diagonal with respect to the pseudospins. As the polarization only connect
states with different parities, the contribution from P(TM)

lat along the bond must van-
ish. When ∆ ! 0, the hopping is no longer diagonal with respect to the pseudospins
and a finite contribution is possible.

In fact, when the CF Hamiltonian and the hopping can be simultaneously diag-
onalized (i.e., when (x̂ + ŷ + ẑ)/

√
3 is an eigenvector of the hopping matrix T̂ (C2h)),

there is an accidental symmetry and the D2h symmetry is recovered. In this case too,
m1 must vanish. We find that this happens when t1 + t2 − t3 − t4 = 0.

Using perturbation theory at second order inHhop, we find a contribution to m1,

P(TM)
lat, eff = A1

[
û ·

(
Si × S j

)]
aû. (4.40)

From Eq. (4.23),
A1

[
û ·

(
Si × S j

)]
= Pi j − P ji, (4.41)

where
Pi j = PH i j

hop
Q j

(E0 −H0)2H
ji

hopP. (4.42)

Here, H0 = HSOC + HCF + Hint. However, the calculation is too cumbersome to be
performed analytical with the introduction of the trigonal CF. The analytical calcula-
tion is made possible by treating bothHhop andHCF as perturbations. At the lowest
order (second order in the hopping and first order in ∆),

Pi j =

⎡
⎢⎢⎢⎢⎣−

2
3λ
P 1

2
H i j

hop
Q j

(E0 −H ′0)2H
ji

hopP 3
2
HCFP 1

2
+ P 1

2
H i j

hop
Q j

(E0 −H ′0)2HCF
Q j

E0 −H ′0
H ji

hopP 1
2

⎤
⎥⎥⎥⎥⎦

+ H.c., (4.43)

where H ′0 = HSOC +Hint, and P 1
2

and P 3
2

are the projection operators on the J = 1/2
states and the J = 3/2 states [defined in Eq. (4.9)], respectively. The full expression
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of A1 is too large to be printed in its entirety, but it can be written as

A1 =∆(t1 + t2 − t3 − t4)
JH

λ
×

∑
a+b+c=9 fabc(t1, t2, t3, t4)UaJb

Hλ
c

∑
a+b+c=12 nabcUaJb

Hλ
c

(4.44)

−−−−−−→
U≫JH ,λ

√
2

64
81
∆(t1 + t2 − t3 − t4)(t1 + t2 + t3)

JH

λU3 ,

where the functions fabc are linear in t1−4 and the quantities nabc are scalars. Note that
while Eq. (4.44) vanishes when JH = 0, we find that this is not the case when using
exact diagonalization on the two-site cluster. Hence we conclude that some higher
order terms remain when JH = 0 in the perturbation theory.

The calculation of A1 was also performed using perturbation exact in ∆ and us-
ing exact diagonalization on a two-site system. The perturbation exact in ∆was per-
formed from Eq. (3.31) using a basis in which the interaction Hamiltonian is block-
diagonal to accelerate the calculations [62,135]. In Fig. 4.4, we plotA1 calculated with
the three methods: exact diagonalization, perturbation theory (quadratic in the hop-
ping) and from Eq. (4.44) (quadratic in the hopping and linear in the CF distortion).
The physical parameters were set to U = 2310 meV, JH = 320 meV, λ = 140 meV,
which correspond to typical values for α-RuCl3 [180, 182]. In Fig. 4.4(a), (b), and (c),
we set t1 = t3 = 0 and calculate A1 as a function of t2 and ∆. For α-RuCl3, the trigonal
CF distortion ∆ is typically somewhere between −15 meV and −70 meV (not so small
compared to λ), and t2 ≈ 150 meV. In Fig. 4.4(d), we also consider finite values for t1
and t3 and plot exact diagonalization results for different sets of realistic values. We
find that for typical values of the hopping amplitudes, the perturbation theory cal-
culations very well reproduces the exact diagonalization calculations. Moreover, the
perturbation theory linear in ∆ is, in most cases, a surprisingly good approximation
up to relatively large values of ∆ as along as ∆ < λ (which is usually the case in 4d
and 5d materials due to strong SOC). Interestingly, the behavior depends consider-
ably on the hopping integrals and their relative amplitudes. In particular, the sign
of A1 changes as |t3/t2| increases. Finally, we properly observe in Fig. 4.4(c) and (d)
the fact that both SOC and the trigonal CF are required in order have a finite P along
the bond. Indeed, A1 → 0 for ∆→ ±∞, which is equivalent to λ→ 0.
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FIGURE 4.4: Numerical evaluation of A1 in Eq. (4.40). Results using
exact diagonalization (ED) (red line), perturbation theory (PT) exact
in ∆ (blue line), and perturbation theory linear in ∆ (green dashed
line) are plotted in (a), (b), and (c), for typical values of the physical
parameters: U = 2310 meV, JH = 320 meV, λ = 140 meV, and we set
t1 = t3 = 0. It is plotted (a) as a function of t2 with ∆ = 100 meV, (b)
as a function of t2 with ∆ = −30 meV, and (c) as a function of ∆ with
t2 = 150 meV. (d) shows ED calculation of A1 as a function of ∆ for
different sets of values t1−3 taken from the literature [180, 182]. The

values are indicated in meV units.

The second contribution to Plat is given in Eq. (4.24). It comes from the interme-
diate states with holes on the ligands. After integrating out the intermediate states,
it is closely related to the terms in the hopping matrix T̂ arising from the TM-L-TM
processes. However, the two different ligands are in opposite directions from the
middle of the bond so that the corresponding matrix is antisymmetric. For sim-
plicity, in the following we neglect the displacement of the ligands caused by the
trigonal CF (i.e., we assume that the two ligands are in the ±v directions). Hence, we
only consider the effect of ∆ throughHCF. In this case,

P(L)
lat =

t2
pdπ

∆2
pd

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣c
†
i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ c j +H.c.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
a
2

v̂. (4.45)

With ∆ ! 0, we now from symmetry [see Eq. (4.15)] that in general A2−5 are finite.
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Neglecting the displacement of the ligands along the w axis is equivalent to neglect-
ing A3 and A5 so that

P(L)
lat, eff =

[
A2v̂ ·

(
Si × S j

)
+ A4ŵ ·

(
Si × S j

)]
av̂. (4.46)

Moreover, without trigonal CF, only A4 is finite and A2 = 0. We already mentioned
that an extra U/∆pd factor is expected in A2 and A4 relatively to the contribution A1
from the TM ions. Hence, the A1 component should be dominant in the U ≪ ∆pd
limit, as long as ∆ is not too small (in which case A4 may be larger).

The results for A2 and A4 are given in Table 4.5. The calculation is similar to that
of the hopping polarization given in the following.

Hopping polarization

Let us now calculate the coupling constants B1−5 arising from Phop. In the C2h bond
symmetry, the operator (given in Eq. (4.27)) can always be decomposed as

Phop =
[
b1M̂u

]
û +

[
b2M̂v + b4M̂w

]
v̂ +

[
b5M̂v + b3M̂w

]
ŵ, (4.47)

where the hopping operators M̂n (with n ∈ {u, v,w}) are defined by

M̂u =
1√
2

c†i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 1
−1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ c j +H.c.,

M̂v =
1√
2

c†i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1
0 0 1
1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ c j +H.c.,

M̂w = c†i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
−1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ c j +H.c.. (4.48)

The hopping operators are defined such that M̂n transforms as
(
Si × S j

)
n

in the higher
symmetry D2h group.

Without trigonal distortion, M̂n is proportional to
(
Si × S j

)
n

when projected in the
ground state manifold because of the D2h symmetry, and only b4 and b5 are non-zero
in Eq. (4.47) (which contributes to B4 and B5, respectively). With the addition of
HCF,

(
Si × S j

)
v

and
(
Si × S j

)
w

both transform as the irreducible representation Bu of
C2h. Hence, the b2 and b4 terms mix and contribute to both B2 and B4, and similarly
the b5 and b3 contribute to both B5 and B3. From Eq. (4.25), at first order inHhop the
effective operators are concisely written as

M̂n,eff = PM̂n
Q

E0 −H0
HhopP +H.c., (4.49)

where Q = Qi+Q j is the projector on polar states. When ∆ ! 0, we also treatHCF as a
perturbation, as in Eq. (4.43), and at first order in both ∆ and the hopping we obtain

M̂n,eff =

[
− 2

3λ
P 1

2
M̂n

Q

E0 −H ′0
HhopP 3

2
HCFP 1

2
− 2

3λ
P 1

2
Hhop

Q

E0 −H ′0
M̂nP 3

2
HCFP 1

2

+ P 1
2
M̂n

Q

E0 −H ′0
HCF

Q

E0 −H ′0
HhopP 1

2

]
+H.c.. (4.50)
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When ∆ = 0, we can write M̂n,eff = Mn
(
Si × S j

)
·n̂ so that B4 = b4Mw and B5 = b5Mv.

From Eq. (4.49) we explicitly calculate

Mn =

∑
a+b+c=4 gn

abc(t1, t2, t3)UaJb
Hλ

c

∑
a+b+c=5 mabcUaJb

Hλ
c

−−−−−→
U≫JH

−16
9

2t1 + t3
U

≡ M, (4.51)

where the functions gn
abc are linear in t1−3 and the quantities mabc are scalars. Here

(unlike for Eq. (4.44)), U ≫ λ is not assumed. We see that Hund’s coupling is respon-
sible for the anisotropy as Mu = Mv = Mw ≡ M when JH/U = 0. This is reminiscent
of the effective Hamiltonian which only exhibits the anisotropic Kitaev magnetic
interaction when JH ! 0 [180].

When ∆ ! 0 and in the U ≫ JH limit, we calculate

M̂u,eff −−−−−→
U≫JH

[
M − 32

81
∆

2t1 + 4t2 + t3 + 8t4
λU

](
Si × S j

)
· û

M̂v,eff −−−−−→
U≫JH

[
M +

32
81
∆

2t1 − 4t2 + t3 − 8t4
λU

](
Si × S j

)
· v̂ +

[√
2

32
81
∆

2t1 + t3
λU

](
Si × S j

)
· ŵ

M̂w,eff −−−−−→
U≫JH

[
M − 128

81
∆

t2 + 2t4
λU

](
Si × S j

)
· ŵ +

[√
2

32
81
∆

2t1 + t3
λU

](
Si × S j

)
· v̂. (4.52)

From Eqs. (4.52) and (4.47), we can relate the contributions B1−5 in Eq. (4.39) to the
coefficients b1−5, which we still need to calculate. We note that while the expressions
in Eq. (4.52) are only valid in a certain limit, they can be obtained without approxi-
mation numerically.

The coefficients b1−5 are expressed in terms of the polarization integrals intro-
duced in Sec. 4.4 using Eq. (4.28). Because we neglect their displacement, the two
ligands are at a d = a/

√
2 distance in the x̂ and −ŷ directions from site i, and only b4

and b5 are finite. We calculate

b4 = −P⊥dπdδ −
√

2
P∥pdπtpdπ

∆pd
,

b5 =
1
4

(√
6P⊥dσdπ −

√
2P⊥dπdδ

)
+
√

2
P⊥pσdπtpdπ

∆pd
. (4.53)

Therefore, even when ∆ = 0, the KNB formula P ∝ û×
(
Si × S j

)
(which corresponds to

b4 = −b5) is only recovered when a = 0. Indeed, in this case the d-d integrals vanish
and P∥pdπ = P⊥pσdπ. The final expressions for B1−5 are given in Table 4.5.

The expressions taking into account the displacement of the ligands towards the
bond (φ ! 90◦ but still along the v axis) is given in Appendix B.1.

4.5.2 Corner-sharing geometry

Here we repeat the same calculation for the corner-sharing geometry with ϕ = 180◦

depicted in Fig. 4.1(a) for a bond in the x̂ direction. The more general ϕ ! 180◦ case,
which lacks inversion symmetry, is considered in Appendix B.2.

Lattice polarization

We show that for the corner-sharing geometry, the lattice polarization vanishes in
the ground state manifold. From Eqs. (4.17) and (4.18), we infer that there is no
polarization along the bond and P(T M)

lat,eff = 0 even with the tetragonal distortion (which
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TABLE 4.5: Coupling coefficients defined in Eqs. (4.15) and (4.39) for
the edge-sharing geometry in the JH/U → 0 limit (and λ/U → 0 for
A1). The CF is included through HCF but the displacement of the

ligands is neglected.

A1 =
√

2 64
81∆(t1 + t2 − t3 − t4)(t1 + t2 + t3) JH

λU3

A2 = − t2pdπ

∆2
pd

√
2 16

81∆
2t1+t3
λU

A3 = 0

A4 =
t2pdπ

∆2
pd

[
8
9

2t1+t3
U + 64

81∆
t2+2t4
λU

]

A5 = 0
B1 = 0

B2 = −[P⊥dπdδ +
√

2
P∥pdπtpdπ

∆pd
]
√

2 32
81∆

2t1+t3
λU

B3 = [ 1
4

(√
6P⊥dσdπ −

√
2P⊥dπdδ

)
+
√

2
P⊥pσdπtpdπ

∆pd
]
√

2 32
81∆

2t1+t3
λU

B4 = [P⊥dπdδ +
√

2
P∥pdπtpdπ

∆pd
]
[

16
9

2t1+t3
U + 128

81 ∆
t2+2t4
λU

]

B5 = [ 1
4

(√
6P⊥dσdπ −

√
2P⊥dπdδ

)
+
√

2
P⊥pσdπtpdπ

∆pd
]
[
−16

9
2t1+t3

U + 32
81∆

2t1−4t2+t3−8t4
λU

]

we verified using perturbation theory). Moreover, the ligand is located exactly at the
middle of the bond so that P(L)

lat = 0 by definition. Therefore, there is no ME effect
from the lattice polarization.

Hopping polarization

In the corner-sharing geometry, we directly decompose the microscopic operator
Phop (given in Eq. (4.27)) into

Phop =
[
−tpdπP⊥pπdσN̂z

]
ŷ +

[
tpdπP⊥pπdσN̂y

]
ẑ, (4.54)

where N̂a = [c†i Âac j +H.c.], and (Âa)bc = ϵabc for a = x, y, and z.
In the U ≫ JH limit, we obtain

N̂z,eff −−−−−→
U≫JH

[
32
9

t
U
− 64

81
∆

t(U + 6λ)
U2λ

](
Si × S j

)
z

N̂y,eff −−−−−→
U≫JH

[
32
9

t
U
+

128
81
∆

t(U − 3λ)
U2λ

](
Si × S j

)
y
. (4.55)

In this case too, JH is responsible for the anisotropy when ∆ = 0. The final expres-
sions for the m1 and m2 coupling constants of Eq. (4.18) are given in Table 4.6. In this
geometry, the KNB formula is respected when ∆ = 0 and the deviation emereging
from the tetragonal CF roughly scales as ∆/λ relatively to the ∆ = 0 contribution. We
emphasize that this scaling is only accurate in the λ ≫ ∆ limit.
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TABLE 4.6: Coupling coefficients defined in Eqs. (4.18) and (4.39) for
the corner-sharing geometry in the JH/U → 0 limit. The CF is in-
cluded throughHCF but the displacement of the ligands is neglected

A1 = 0
A2 = 0
B1 = −tpdπP⊥pπdσ

[
32
9

t
U − 64

81∆
t(U+6λ)

U2λ

]

B2 = tpdπP⊥pπdσ

[
32
9

t
U +

128
81 ∆

t(U−3λ)
U2λ

]

4.6 Discussion

In this chapter, a theory for the electric polarization in d5 Mott insulators from elec-
tronic mechanisms was developed. In particular, we reconciled two approaches
used to explain ME behaviors.

The “hopping polarization” relies on matrix elements such as
〈
dxy

∣∣∣y
∣∣∣py

〉
and is

related to the formalism originally used in the spin-current model [146] and in other
extensions [188]. From symmetry considerations, the theory was expanded by clas-
sifying the different two-center integrals (without neglecting the ion-ion distance).
This classification is reminiscent of the one used by Slater and Koster for the hopping
integrals [187].

Secondly, the “lattice polarization”, intrinsic to any lattice model and already
discussed in Chapter 3, is defined by the positions of the particles on the lattice.
ME effects arising from the lattice polarization were first mentioned in Ref. [40] in
lattices with triangular loops. Such ME effects were shown to lead to a subgap opti-
cal conductivity in some quantum spin liquids in the triangular and kagome lattice.
In this chapter, we proved that in multi-orbital systems with strong SOC, the same
mechanism based on virtual hopping of the electrons lead to a finite ME effects on
single bonds, at second order in the hopping Hamiltonian. From our results, we con-
clude that (i) in the ∆pd ≫ U limit, the P(L)

lat contribution is suppressed by a factor
of U/∆pd compared to P(TM)

lat , and (ii) the edge-sharing geometry is crucial to observe
a finite Peff along the TM-TM bond. Indeed, in the corner-sharing geometry, even
when ϕ ! 180◦ (as shown in Appendix B.2), the effective polarization along the
bond vanishes.

We thus stress that, while in the corner-sharing geometry, the polarization is ba-
sically Pi j ∝ êi j × Si × S j with corrections arising from the CF distortion, in the intrin-
sically more involved edge-sharing geometry, the spin-polarization coupling always
deviates from the KNB formula.

The contributions from the two mechanisms considered, Phop,eff and Plat,eff , are
set side by side by comparing the relevant kinetic and polarization integrals. Specif-
ically, if ppd ≫ a ·tpd/U, the Phop,eff dominates, and if ppd ≪ a ·tpd/U, Plat,eff does. Actu-
ally, it is slightly more complex as can be seen in Table 4.5. The leading contribution
of Plat,eff comes from A1 and the one of Phop,eff from B4 and B5. Hence, the lattice po-
larization as an extra JH∆/(λU) factor relatively to the hopping polarization. In other
words, in the limit where ∆pd/U → ∞, the leading contribution in

∥∥∥Plat,eff
∥∥∥/

∥∥∥Phop,eff
∥∥∥

scales as JH∆/(λU) × atpd/(ppdU). However, because in 4d and 5d TM compounds
the different energy scales are not so distinct (∆ " t1−4 " λ " JH " U), this result
might not always be accurate. We also note that the different ME coupling constants
m1−5 in Eq. (4.39) can be evaluated more accurately by performing the perturbation
theory calculations numerically or by using exact diagonalization on finite-size clus-
ters. Nevertheless, complementary first-principle methods are needed to evaluate
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the different physical parameters, in particular the polarization integrals which is a
new concept and has thus not been calculated yet. The ME effects in d5 Mott insula-
tors can then be calculated from our results.

The original motivation for the calculations performed in this chapter is the THz
optical conductivity observed in α-RuCl3 [30–34]. We thus proposed a potential mi-
croscopic origin for the subgap optical conductivity in terms of the charge fluctua-
tion of the electrons. In the following chapter, we calculate the dynamical response
of Peff and the resulting optical conductivity in the magnetic ground state manifold
described with the ‘pure Kitaev model’.
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Chapter 5

Optical conductivity of ideal Kitaev
materials

In this final chapter, motivated by recent experiments of THz spectroscopy of α-RuCl3
[30–34] (some of them shown in Fig. 5.3), we consider the subgap optical conductivity
of Kitaev materials using the results for the ME coupling derived in Chapter 4. In
particular, the authors of Ref. [31] showed that the continuous absorption spectrum has
a large contribution which originates from electric-dipole-induced transitions. That
being said, we consider the limit where the low-energy physics is governed by the
“pure” Kitaev model which we discuss in detail in Sec. 5.1.

The dynamics of Kitaev materials in the magnetic energy scale is determined from
the low-energy effective spin Hamiltonian emerging from the original microscopic Hamil-
tonian (4.1). Including the trigonal distortion, it generally reads

Heff =
∑

α!β!γ

∑

⟨i j⟩γ

[
KS γ

i S γ
j + JSi · S j + ΓS α

i S β
j + Γ

′(S γ
i S α

j + S α
i S γ

j )
]
, (5.1)

where γ ∈ {x, y, z} and ⟨i j⟩γ denotes the ⟨i j⟩ nearest-neighbor bonds in the ûγ direction,
as depicted in Fig. 5.1. This Hamiltonian is called the KHΓΓ′ model because it contains
the Kitaev interaction (the first term), the Heisenberg interaction (the second term), and
the anisotropic Γ and Γ′ terms.

A

B

1
2

3

4
5

6

y x

z ûxûy

ûz

n1n2

FIGURE 5.1: (Left) Honeycomb crystal structure of Kitaev materials.
(Right) Three hexagonal plaquettes of the honeycomb lattice. The dif-
ferent bond types (γ = x, y, z) are along the unit vectors ûx, ûy, and ûz,
respectively. The A and B sublattices are colored in black and grey, re-
spectively. The region encircled by a dashed line represents a unit cell

and n1 and n2 are vectors connecting neighboring unit cells.

Historically, the Kitaev honeycomb model (the first term in Eq. (5.1)) was introduced
in 2006 by A. Kitaev [35]. This model is a rare instance of an exactly solvable 2D inter-
acting quantum model. Moreover, its ground state is a quantum spin liquid, an elusive
state of matter fist predicted by Anderson in 1973 [191] but still not conclusively ob-
served experimentally. The Kitaev model is solved in terms of Majorana quasiparticles
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dyz

dyz

dxz

dxz

pzpz

FIGURE 5.2: Orbitals active in the TM-L-TM hopping processes (for a z
bond) leading to the Jackeli-Khaliullin mechanism. The black and grey

disks represent the TM ions and the ligands, respectively.

and provides an ideal playground to study a whole class of spin liquids thanks to its
analyticity [47].

In addition, its potential realization in actual materials was suggested by Jackeli
and Khaliullin [49] and the model has attracted a lot of attention in the last decade. The
Jackeli-Khaliullin mechanism originates from the TM-L-TM hopping processes with
angle φ = 90◦ shown in Fig. 5.2. Neglecting the direct hopping, the hopping is described

by Eq. (4.12) with t2 =
t2pdπ
∆pd

, so that the hopping matrix for the γ = x, y, and z bonds are

Tx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 t2
0 t2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ty =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 t2
0 0 0
t2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Tz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 t2 0
t2 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5.2)

In this case, the effective Hamiltonian is exactly the Kitaev model and only K ! 0 in
Eq. (5.1).

That being said, the different potential Kitaev materials mentioned in Chapter 4 all
eventually reach a magnetically ordered state below TN [50–55]. There are thus devia-
tions from the pure Kitaev model [192].

Nevertheless, for α-RuCl3, various experimental results suggest a close proximity to
the Kitaev model. These include Raman scattering [56, 57], inelastic neutron scattering
[58, 59], THz spectroscopy [30–34], where an unusual broad magnetic excitation was
observed, and thermal transport experiments [60,61], where a finite thermal Hall effect
was observed. The observations made in these experiments have been attributed to the
fractionalized spin excitations of the Kitaev model.

However, the interpretation of the observations in terms of Majorana quasiparticles
is still controversial [173, 193], and the question of the origin of the unorthodox experi-
mental results is not yet settled.

In this chapter, we show that the continuous subgap optical conductivity can be
explained in terms Majorana fermions. We combine the results of Chapter 4 for the
effective electric polarization operator with the known exact results of the Kitaev model
in order to calculate the optical conductivity originating from the Majorana fermions
in the ‘pure Kitaev limit’. We show that even in this pristine limit, there is a non-
trivial contribution to the optical conductivity which matches the experimental results
surprisingly well. This suggests that the continuous part of the spectrum of the real
material mostly originates from Majorana quasiparticles, even with the addition of the
integrability-breaking terms in the Hamiltonian (5.1).

In Fig. 5.3(a), (b), and (c), we show three different THz spectroscopy measurements
of α-RuCl3 from Refs. [31], [33], and [32], respectively. The observed subgap optical
conductivity is the main motivation for the calculations done in this chapter.
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The absorption spectra are shown for different temperatures, and are plotted in
terms of different related physical quantities (the real part of optical conductivity in
Fig. 5.3(a), the imaginary part of the dielectric constant in Fig. 5.3(b), and the absorption
coefficient in Fig. 5.3(c)). In Fig. 5.3(c), the T = 60 K spectrum is taken as a reference. In
Fig. 5.3(a) and (b), a double-peak structure can be seen with a first peak at around 1.5
meV, and a second broader peak above 4 meV. Moreover, there is a gap below 1 meV.
The second peak can also be seen in Fig. 5.3(c) (the frequencies below 2 meV are not
shown so that the first peak cannot be seen). In addition, there is a magnon peak at
around 2.5 meV in Fig. 5.3(a) and (c) below 6 K, which is due to the magnetic ordering.
Note that we do not predict this peak in our calculations because we only consider the
spin liquid state.

We also show our final results for the optical conductivity in Fig. 5.3(d) for com-
parison. A similar figure is also shown in Fig. 5.11 at the end of this chapter. In the
rest of the chapter, in particular in Sec. 5.2, we explain how we calculated this plot.
The plot shows the subgap optical conductivity calculated in the pure Kitaev model for
two different ME mechanisms corresponding to σ′A and σ′B (more details are given in
Sec. 5.2). The overall two-peak structure with a low-energy gap is also found from our
calculations (for α-RuCl3, JK ≈ 1.5 meV).

In Sec. 5.1, we first introduce the Kitaev model and its exact solution in terms of
Majorana fermions. Then, in Sec. 5.2, we calculate the subgap optical conductivity by
combining analytical and numerical methods.

FIGURE 5.3: (a), (b), and (c): THz spectroscopy measurements of α-
RuCl3. (d): subgap optical conductivity calculated in the pure Kitaev
model. Reprinted figures with permission from Refs. [31] and [32] Copy-

right (2017) by the American Physical Society, and from Ref. [33].
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5.1 The Kitaev honeycomb model

Exact analytical results for the dynamics of the Kitaev model [42] have been used
to predict the signatures of Majorana quasiparticles in Raman [43, 47, 57], inelastic
neutron [44–47], and resonant x-ray scatterings [48]. Here we present a short deriva-
tion of the main analytical properties of the model that we will use to calculate the
optical conductivity.

We use the following notation for the Kitaev model,

HK = −
∑

a=x,y,z

∑

⟨i j⟩a
Ja

Kσ
a
i σ

a
j , (5.3)

where the Pauli matrices σi = 2Si. Later, we will set Jx
K = Jy

K = Jz
K = JK (= −K/4),

but for now we keep the Hamiltonian general. The Hamiltonian (5.3) is solvable
due to its macroscopic number of conserved quantities. The most important obser-
vation is that on each hexagon of the honeycomb lattice, there is a specific product
of Pauli matrices Wp = σ

y
1σ

z
2σ

x
3σ

y
4σ

z
5σ

x
6 [refer to Fig. 5.1 for site labels] which satisfies

[Wp,HK] = 0, and for any pair of hexagons [Wp,Wp′] = 0. Hence, on each plaquette
there is a Z2 conserved quantity wp = ±1 (the eigenvalue of Wp). Those operators are
usually called Z2 flux operators and the plaquette p is said to be flux-free for wp = 1
and to have a flux when wp = −1, by analogy with a magnetic flux. For a system
with N unit cells and periodic boundary conditions, the full Hilbert space can thus
be separated in different flux sectors for different sets of {w1, . . . ,wN}. As there are
2N spins for N plaquettes, the total dimension is 22N and each of the 2N flux sectors
still has a large size of 2N .

In his seminal paper, Kitaev introduced on each site four Majorana fermions ĉi,
b̂x

i , b̂y
i , and b̂z

i which satisfy usual Majorana fermion anti-commutation relations

{b̂a
i , b̂

b
j} = 2δi jδab, {b̂a

i , ĉ j} = 0, {ĉi, ĉ j} = 2δi j, (5.4)

where a, b ∈ {x, y, z}. They are called Majorana fermions because they anticommute
with each other, they are their own complex conjugate ĉ†i = ĉi, and their square is ĉ2

i =

1. Majorana fermions can be thought of as the “real” and “imaginary” parts of usual
“complex” fermions, in the sense that any complex fermion can be decomposed into
two Majorana fermions, and inversely, a complex fermion can always be built out of
two Majorana fermions. The dimension of the on-site Hilbert space spanned by the
four Majorana fermions is 4, and the operators written with a “hat” symbol act in
this Hilbert space. For now this is just an arbitrary definition, but a special mapping
between the spin on each site and the four Majorana fermions is introduced,

σ̂a
i = iĉib̂a

i ⇒ {σ̂a
i , σ̂

b
i } = 2δab, [σ̂a

i , σ̂
b
j] = 0 for i ! j, (5.5)

and the Hamiltonian becomes

ĤK = i
∑

a

∑

⟨i j⟩a
Ja

Kû⟨i j⟩a ĉiĉ j, û⟨i j⟩a = ib̂a
i b̂a

j . (5.6)

Note that bond operators û⟨i j⟩a = −û⟨i j⟩a and we use the convention i ∈ A sublattice
and j ∈ B sublattice from now on. The variables û⟨i j⟩a are constants of motion with,
again, eigenvalues ±1. They fix the Z2 fluxes as we have

Ŵp = û12û32û34û54û56û16, (5.7)
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for the hexagon of Fig. 5.1. Therefore, the Hamiltonian is block diagonal in sectors
with different sets of values {u⟨i j⟩a} (u⟨i j⟩a , without the hat, refers to the eigenvalue
of û⟨i j⟩a) and the problem is reduced to a problem of free fermions in each sector.
The Hamiltonian (5.6) is indeed quadratic in the c fermions once the bond variables
are fixed. For this reason, the b Majorana fermions are called flux fermions and the c
Majorana femrions are called matter or itinerant fermions. A matter fermions moving
around a hexagon picks up a phase equal to 0 or π depending on the value wp = ±1,
hence the analogy with the magnetic flux.

Because the original “physical” Hilbert space of the 2N spins is of size 22N , the
new Hilbert space, of size 42N , is artificially enlarged and a projection to the physical
Hilbert space is required for the mapping between spins and Majorana to be reli-
able. This mapping is uniquely defined by requiring the correct SU(2) spin algebra
[σ̂a, σ̂b] = 2iϵabcσ̂c, which translates to imposing

D̂ j ≡ ĉ jb̂x
j b̂

y
jb̂

z
j = 1. (5.8)

The operators D̂ j commute with all the spin operators and with ĤK in the enlarged
Hilbert space (but not with the ûi j’s). In other words, a state in the enlarged Hilbert
space is physical if it satisfies D̂ j |Ψ⟩phys = |Ψ⟩phys for all sites j. Because D̂ j has eigen-
values ±1, the projector P onto the physical Hilbert space is

P =
∏

i

1 + D̂i

2
(5.9)

Note that several choices for the sets {u⟨i j⟩a} can give the same set of fluxes {wp}.
This is due to the extra dimensions of the enlarged Hilbert space, which can be un-
derstood as an extra gauge choice [47]. At each site, we can introduce the gauge
transformation ĉi → θiĉi and ûi j → θiûi jθ j, where θi ± 1. It does not change the flux
in each plaquette and thus the energy spectrum for a given set {wp} is also invariant.
This gives 22N different choices for the gauge variable and thus the 24N states of the
enlarged Hilbert space are 22N-fold degenerate.

Furthermore, we introduce the complex bond fermions on each bond ⟨i j⟩a (i ∈ A,
j ∈ B) defined by

χ̂⟨i j⟩a =
1
2

(b̂a
i + ib̂a

j), a = x, y, z. (5.10)

In terms of the bond fermions,

σ̂a
i = iĉi

(
χ̂⟨i j⟩a + χ̂

†
⟨i j⟩a

)
(i ∈ A)

σ̂a
j = c j

(
χ̂⟨i j⟩a − χ̂†⟨i j⟩a

)
( j ∈ B)

û⟨i j⟩a = 2χ̂†⟨i j⟩a χ̂⟨i j⟩a − 1 (5.11)

Therefore, when working with states |Ψ⟩ for which the bond fermion numbers χ̂†⟨i j⟩a χ̂⟨i j⟩a
(and thus û⟨i j) are good quantum numbers, any states can can be written as a direct
product

|Ψ⟩ = |F⟩ ⊗ |M⟩ , (5.12)

where χ̂†i jχ̂i j |F⟩ = ui j+1
2 |F⟩ (F stands for flux and M for matter). The spin operator

σ̂a
i has two effects: it adds a Majorana matter fermion at site i and it changes the

bond fermion number of the bond ⟨i j⟩a, which is equivalent to changing u⟨i j⟩a →
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−u⟨i j⟩a . Therefore, the operator σ̂a
i adds a π flux to the two hexagons sharing the

bond ⟨i j⟩a. This is depicted in Fig. 5.4 for a a = x bond. Moreover, because the
u⟨i j⟩a ’s are constants of motion, this property is also true at finite time for σ̂a

i (t) (in the
Heisenberg picture).

5.1.1 Diagonalization and Bogoliubov transformation

In a given flux sector and choice for the set {ui j = ±1}, the Hamiltonian is conve-
niently written in matrix notation as

ĤK =
i
2

(
cA cB

) ( 0 M
−Mᵀ 0

) (
cA
cB

)
, (5.13)

where cA (cB) is an array of the N matter Majorana fermions on the A (B) sublattice.
The real matrix M is defined by the relation Mi j = Ja

Ku⟨i j⟩a (for a a-bond) and we have
used the relation ui j = −u ji. Note that in this notation, the indices i ∈ A and j ∈ B are
mutually exclusive. The eigenmodes are obtained from a canonical transformation
of the above matrix [194]. In order to do so we use the singular value decomposition
of the matrix M (possible for any real matrix) into M = US Vᵀwhere U and V are N×N
orthogonal matrices, S = diag(ϵ1, . . . ϵN) is an N × N diagonal matrix, and ϵ1−N ≥ 0 are
the singular values of M. We define the new Majorana fermions

(d̂′1, . . . , d̂
′
N) = cAU,

(d̂′′1 , . . . , d̂
′′
N) = cBV, (5.14)

and the Hamiltonian becomesHK = i
∑N

m=1 ϵmd̂′nd̂′′n . In terms of the complex fermions

âm =
1
2

(
d̂′m + id̂′′m

)
â†m =

1
2

(
d̂′m − id̂′′m

)
, (5.15)

the Hamiltonian takes the canonical form

HK =
∑

m
ωm

(
â†mâm −

1
2

)
, (5.16)

where ωm = 2ϵm. This diagonalization procedure can be done with systems of 2N ∼
10000 spins in less than a minute (we used systems of size up to 80× 80 unit cells, or
12800 spins).

The eigenmodes of two different flux sectors corresponding to the Hamiltonians

Ĥa =
∑

m
ωa

m

(
â†mâm −

1
2

)
and Ĥb =

∑

m
ωb

m

(
b̂†mb̂m −

1
2

)
(5.17)

are related by the Bogoliubov transformation b̂†m =
∑

n
(
Xmnâ†n +Ymnân

)
, or

(
X∗ Y∗
Y X

) (
a
a†

)
=

(
b
b†

)
, (5.18)

where a = (â1, . . . , âN) and b = (b̂1, . . . , b̂N). The transformation matrices obey the
conditions

XX† +YY† = 1, XYᵀ +YXᵀ = 0,

X†X +YᵀY∗ = 1, XᵀY∗ +Y†X = 0, (5.19)
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and are related to the orthogonal matrices Ua, Va, and Ub, Vb (of the two singular
value decompositions) by

X = 1
2

[
Uᵀb Ua + Vᵀb Va

]
,

Y = 1
2

[
Uᵀb Ua − Vᵀb Va

]
. (5.20)

Note that Eq. (5.18) exists for any pair of sets of complex fermions. However, in our
construction, X∗ = X and Y∗ = Y as the matrices are actually always real.

Finally, the Hamiltonians Ĥa and Ĥb define two ground states
∣∣∣Ma

0

〉
and

∣∣∣Mb
0

〉

with energies Ea
0 = −

∑
m ω

a
m/2 and Eb

0 = −
∑

m ω
b
m/2, respectively. The states exist in

the “matter” Hilbert space and are generally related by the expression [195]

∣∣∣Mb
0

〉
=

[
det

(
X†X

)]1/4
e−

1
2
∑

mn Fmnâ†mâ†n
∣∣∣Ma

0

〉
, (5.21)

where
F = [X∗]−1Y∗. (5.22)

In our case, we also have
[
det

(
X†X

)]1/4
=
√
|det(X)| and thus

〈
Mb

0

∣∣∣Ma
0

〉
=

√
|det(X)|. (5.23)

Note that the relation (5.21) only makes sense when the two ground states have the
same matter fermion parity. In general, Hamiltonians quadratic in Majorana fermions
do not conserve the total fermion number, but conserve the total fermion parity,
defined by the parity of the total number of complex fermions in any basis. In-
deed, Bogoliubov transformations between different bases conserve the parity [see
Eq. (5.18)]. If the ground states

∣∣∣Ma
0

〉
and

∣∣∣Mb
0

〉
have different parities, we have〈

Mb
0

∣∣∣Ma
0

〉
= 0 and det(X) = 0, and thus F is ill-defined.

5.1.2 Ground state flux sector

To find the overall ground state of ĤK , one must, in principle, compare the ground
state energies for all possible flux sectors. Fortunately, Lieb showed that in such
translationally invariant system, the ground state is in the flux free sector [196] (ex-
cept for small system sizes [197]). We still have a gauge choice and simply choose
ui j = 1 on all bonds.

In the flux-free sector, the Hamiltonian is easily solved after a Fourier transform
to momentum space. In order to do so, we first introduce complex fermions on each
z-bond (green bonds in Fig. 5.1) ⟨i j⟩z at position r (which denotes the position of the
unit cells of the ⟨i j⟩z bond),

f̂r =
1
2

(ĉAr + iĉBr), and f̂ †r =
1
2

(ĉAr − ĉBr). (5.24)

In vector notation, this is equivalent to cA = f † + f and cB = i( f † − f ), and the
Hamiltonian reads [47]

Ĥ0 =
1
2

(
f † f

) ( h ∆

∆† −h

) (
f
f †

)
, (5.25)
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where

h = M + Mᵀ = hᵀ,
∆ = Mᵀ − M = −∆ᵀ. (5.26)

After the Fourier transform

f̂q =
1√
N

∑

r
eiq·r f̂r, f̂ †q =

1√
N

∑

r
e−iq·r f̂ †r = ( f̂q)†,

∆q =
∑

r−r′
eiq·(r−r′)∆r−r′ , hq =

∑

r−r′
eiq·(r−r′)hr−r′ , (5.27)

we obtain

Ĥ0 =
1
2

∑

q

(
f̂ †q f̂−q

) ( hq ∆q
−∆q −hq

) (
f̂q
f̂ †−q

)
. (5.28)

The Hamiltonian is just like a Bogoliubov-de Gennes Hamiltonian for superconduc-
tors. Finally, we notice that ∆q = −2i Im(Mq) and hq = 2 Re(Mq), where

Mq =
∑

r−r′
eiq·(r−r′)Mr−r′ =

∑

a=x,y,z
Ja

Keiq·na . (5.29)

Here nx = n1 = (1/2,
√

3/2), ny = n2 = (−1/2,
√

3/2) and nz = (0, 0) [see Fig. 5.1].
Because ∆q is imaginary, the Hamiltonian is made diagonal by a simple Bogoliubov
transformation [35], (

âq
â†−q

)
=

(
cos θq −i sin θq
−i sin θq cos θq

) (
f̂q
f̂ †−q

)
, (5.30)

where tan 2θq = Im(Mq)/Re(Mq). The final Hamiltonian is given by

H0 =
∑

q
2
∣∣∣Mq

∣∣∣
(
â†qâq −

1
2

)
. (5.31)

Therefore, the ground state |M0⟩ (such that âq |M0⟩ = 0) is a spin liquid with two types
of excitations: static localized flux excitations (i.e., with a π flux in some plaquettes),
and itinerant matter Majorana fermions. The flux excitations are gapped while the
matter excited states â†q |M0⟩ have an energy spectrum ωq = 2

∣∣∣Jx
Keiq·n1 + Jy

Keiq·n1 + Jz
K

∣∣∣
which is gapless if

∣∣∣Jz
K

∣∣∣ <
∣∣∣Jx

K

∣∣∣ +
∣∣∣Jy

K

∣∣∣ (or any of the other two permutations), and
otherwise gapped. In particular, at the isotropic point Jx

K = Jx
K = Jz

K ≡ JK that we
consider thereupon, the dispersion is gapless and very similar to that of graphene
with a linear dispersion at the two Dirac points.

5.1.3 Projection operator

Finally, we state some properties of the projection operator P in Eq. (5.9), which will
prove useful to calculate the correlation functions. By expanding the product,

P =
1

22N

⎛
⎜⎜⎜⎜⎜⎜⎝1 +

2N∑

i=1

D̂i +

2N∑

i1<i2

D̂i1 D̂i2 + · · · +
∏

i

D̂i

⎞
⎟⎟⎟⎟⎟⎟⎠ =

1
22N

∑

{i}

∏

i∈{i}
D̂i, (5.32)

where in the last summation, {i} runs over all possible subsets of distinct indices in
Λ = {1, . . . , 2N}. We also define D̂ =

∏
i∈Λ D̂i. Because D̂2

i = 1, the products
∏

i∈S D̂i
for two complementary sets S = {i} and S = Λ\{i} only differ by a factor D̂ so that P
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can be factorized [198, 199],

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
22N−1

∑′

{i}

∏

i∈{i}
D̂i

⎞
⎟⎟⎟⎟⎟⎟⎠

(
1 + D̂

2

)
≡ P′P0, (5.33)

where the primed sum only runs on half the possible subsets so that if {i} is included,
Λ\{i} is not. Therefore, the value of D = ±1 (a product of all 8N Majorana fermions),
splits the Hilbert space in two: if D = −1 the system is unphysical and the projection
vanishes, and if D = 1, the projection P′ results in a superposition of all states with
nonequivalent bond fermion numbers χ̂†⟨i j⟩a χ̂⟨i j⟩a but with the same wp fluxes in all
plaquettes (i.e., a superposition of all gauge choices {θi}). Because the operators D̂i
commute with all the spin operators, for any operators Ô written in terms of spins
and any unprojected state |Ψ⟩ in the D = 1 sector,

⟨Ψ|PÔP|Ψ⟩ = ⟨Ψ|ÔP′|Ψ⟩ . (5.34)

Furthermore, we note that in P′, except for the identity, there are only terms that
changes the bond fermions numbers on one or several bonds. Thus, if Ô does not
change any bond fermion numbers,

⟨Ψ|PÔP|Ψ⟩
| ⟨Ψ|P|Ψ⟩|2

= ⟨Ψ|Ô|Ψ⟩ , (5.35)

and the projection into the physical Hilbert space is unnecessary [47, 198]. In the
calculations of the following section, only a few operators will require the projection
P′, which, by imposing the conservation of the bond fermions numbers, boils down
to simply keeping one of the terms in P′ (typically a pair D̂iD̂ j).

The value D = ±1 is very closely related to the total fermion parity of the system,
(−1)Nχ+N f , where Nχ =

∑
⟨i j⟩ χ̂

†
i jχ̂i j is the total flux fermion number, and N f =

∑
r f̂ †r fr

the total matter fermion number. However, in Ref. [199], the authors showed that
the actual relation between D and the fermion parities in a system with periodic
conditions is not trivial and has an extra factor

D = (−1)θ(−1)Nχ+N f , (5.36)

where θ depends on the shape of the system, its size, and the choice of boundary
conditions. In fact, their results show that the calculations of physical quantities in
other works were performed without the extra θ factor and thus in the unphysical
sector. Indeed, the authors of Ref. [194] made clear that the ground state in the flux-
free sector |0⟩ = |F0⟩ ⊗ |M0⟩ is actually always unphysical for systems with periodic
boundary conditions.

Nevertheless, in Ref. [194], the authors showed that in the thermodynamics limit
N → ∞, dynamical quantities such as the spin structure factor converge to the same
values in the physical and unphysical sectors so that the distinction is not important.
For this reason, in the following section we use |0⟩ as if it were a physical state.

5.2 Dynamical correlation functions

The main objective of this chapter is to calculate the subgap optical conductivity
of idealized Kitaev materials using the pure Kitaev model. It is instructive to first
calculate the more “simple” dynamical spin susceptibility.
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5.2.1 Spin susceptibility

The dynamical spin susceptibility is directly related to the spin structure factor which
has been calculated analytically in the Kitaev model [42, 44, 45, 47] and is typically
measured with inelastic neutron scattering. For THz spectroscopy and ESR mea-
surements, the actual measured quantity is the imaginary part of the dynamical
spin susceptibility χ′′(ω), which is related to the spin structure factor S (ω) via the
fluctuation-dissipation theorem χ′′(ω) = (1− e−βω)S (ω)/2, where β is the inverse tem-
perature. We only consider the T = 0 situation at the Γ point q = (0, 0). Using the
Kubo formula (see Eq. (1.13)) we have

χab(ω) =
i

4S

∑

i j

∫ ∞

0
dteiωt ⟨0|σa

i (t)σb
j(0)|0⟩ , (5.37)

where S is the total surface1. Here i and j both run over all lattice sites, and |0⟩ =
|F0⟩ |M0⟩ is the ground state of the Kitaev model. The ground state is flux-free and
we work with the gauge where ui j = 1 on all bonds. It follows that χ̂†i j |F0⟩ = 0
and ⟨F0| χ̂i j = 0. Using Eq. (5.11) to express the spin operators in terms of Majorana
fermions, we obtain

⟨0|σ̂a
i (t)σ̂b

j(0)|0⟩ = − ⟨M0| ⟨F0| eiH tĉiχ̂
†
⟨ik⟩ae−iH tĉ jχ̂⟨ jl⟩b |F0⟩ |M0⟩ , if i ∈ A, j ∈ A,

= i ⟨M0| ⟨F0| eiH tĉiχ̂
†
⟨ik⟩ae−iH tĉ jχ̂⟨l j⟩b |F0⟩ |M0⟩ , if i ∈ A, j ∈ B,

= −i ⟨M0| ⟨F0| eiH tĉiχ̂
†
⟨ki⟩ae−iH tĉ jχ̂⟨ jl⟩b |F0⟩ |M0⟩ , if i ∈ B, j ∈ A,

= − ⟨M0| ⟨F0| eiH tĉiχ̂
†
⟨ki⟩ae−iH tĉ jχ̂⟨l j⟩b |F0⟩ |M0⟩ , if i ∈ B, j ∈ B,

(5.38)

where k is the nearest-neighbor connected to i by an a-bond and l is the nearest-
neighbor connected to j by a b-bond. We now want to integrate out the flux degree
of freedom. As already mentioned, a single spin operator reverses the fluxes of the
two plaquettes on each side of the bond it affects. Because we take the expectation
value in the flux-free sector, the two pairs of plaquettes affected by σ̂a

i and σ̂b
j must

be the same so that the product σ̂a
i σ̂

b
j does not change the flux in any hexagon. This

is due to the orthogonality of the sectors with different flux patterns. Therefore, only
terms with a = b and either ⟨i j⟩a forming a nearest-neighbor pair or i = j give finite
contributions, as can be seen in Fig. 5.4. This was first shown in Ref. [42] using the
selection rules of the flux sectors that we just described.

To show this concretely, we use the important relation

χ†⟨i j⟩γe
−iH t = e−i(H+Vi j)tχ†⟨i j⟩γ , (5.39)

where Vi j = −2iJKĉiĉ j. LetH0 be the matter Hamiltonian in the flux-free sector with
u = 1 on all bonds. Then, Eq. (5.39) implies thatH0 + Vi j is the Hamiltonian with all
bond variables u = 1 except on the bond ⟨i j⟩γ where u⟨i j⟩γ = −1.

1In order to obtain a physical quantity, one must replace S → a⊥S where a⊥ is the inter-layer dis-
tance
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FIGURE 5.4: Effects of σ̂a
i and σ̂b

j with a = b = x when applied on the
flux-free sector. Both operators create two adjacent π fluxes, indicated
in grey, which share the x bond connected to site i or j (indicated in
blue), respectively. The two pairs of fluxes only cancel if a = b and if i

and j are nearest neighbors separated by a a-bond (or if i = j).

In the final step, we use ⟨F0|χ̂†⟨ik⟩a χ̂⟨l j⟩b |F0⟩ = δilδ jk (and thus a = b). For each bond,
say the a-bond ⟨i j⟩a with i ∈ A and j ∈ B, we have four terms

⟨0|σ̂a
Ai(t)σ̂

a
Ai(0)|0⟩ = ⟨M0| eiH0tĉAie−i(H0+Vi j)tĉAi |M0⟩ ,

⟨0|σ̂a
Ai(t)σ̂

a
B j(0)|0⟩ = −i ⟨M0| eiH0tĉAie−i(H0+Vi j)tĉB j |M0⟩ ,

⟨0|σ̂a
B j(t)σ̂

a
Ai(0)|0⟩ = i ⟨M0| eiH0tĉB je−i(H0+Vi j)tĉAi |M0⟩ ,

⟨0|σ̂a
B j(t)σ̂

a
B j(0)|0⟩ = ⟨M0| eiH0tĉB je−i(H0+Vi j)tĉB j |M0⟩ . (5.40)

The spin correlation is thus ultra-short ranged. All correlations beyond nearest-
neighbor pairs vanish completely. Moreover, only pairs of spins along the same
direction (corresponding to the bond direction) give a finite contribution. Hence
χ′′ab = 0 for a ! b and χ′′ is isotropic because of the C3 symmetry (χxx = χyy = χzz ≡ χ).
This flux selection rule, which originates in the static nature of the fluxes, is eas-
ily understood by graphically identifying the fluxes affected by a given operator as
shown in Fig. 5.4. This will be useful when dealing with the optical conductivity as
we will have four-spin operators.

For the spin structure factor, there exist different methods of calculating the ma-
trix elements (5.40), such as a mapping to the exact X-ray edge problem [44, 47].
Here, we use the so-called “few-particle response” approach as it is also applicable
for the electric-dipole-induced response. In the following, we show how to use this
approach in order to calculate the optical conductivity.

We have two matter Hamiltonians: the flux-free HamiltonianH0 ≡ Ha (all u⟨i j⟩’s =
1) and the two-flux Hamiltonian H0 + Vi j ≡ Hb (all u⟨i j⟩’s = 1 except for u⟨i j⟩ = −1),
and we use the notations introduced in Sec. 5.1.1. In the Lehmann representation,

〈
Ma

0

∣∣∣ eiHatĉie−iHbtĉ j
∣∣∣Ma

0

〉
=

∑

λ

e−i∆λt
〈
Ma

0

∣∣∣ĉi
∣∣∣λ
〉 〈
λ
∣∣∣ĉ j

∣∣∣Ma
0

〉
, (5.41)

where ∆λ = Eb
λ−Ea

0,Ha
∣∣∣Ma

0

〉
= Ea

0

∣∣∣Ma
0

〉
, and |λ⟩ are the eigenstates ofHb with energies

Eb
λ, so that

∑
λ |λ⟩⟨λ| = 1. After a Fourier transform and keeping only the imaginary
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part in Eq. (5.37), we obtain

χ′′(ω) =
1

6
√

3

(
ΠAi,Ai − iΠAi,B j + iΠB j,Ai + ΠB j,B j

)
, (5.42)

where
Πkl(ω) = π

∑

λ

⟨Ma
0 |ĉk|λ⟩⟨λ|ĉl|Ma

0⟩δ(ω − ∆λ). (5.43)

In Eq. (5.42), we used the fact that there are N bonds of any type (x, y, or z) so that
we can just multiply by N the contribution of a single bond, in this case an arbitrary
⟨i j⟩ bond. Furthermore, the total surface is S = Nsh where sh = (3

√
3/2)a2 is the

area of a single hexagon and a is the length of the bonds (which we set to unity).
We also used the fact that Πkl is real when k and l are on the same sublattice and
purely imaginary when on different sublattices, as we show shortly. Interestingly,
even though the system is gapless, the spin susceptibility must vanish below a so-
called flux gap ∆b

0 = Eb
0 − Ea

0 ≈ 0.263JK because only transitions from the flux-free
sector to the two-flux sectors are allowed.

In the few-particle response approach, we write the states |λ⟩ with M excited
fermions as

|λ⟩ = b̂†λ1
b̂†λ2
. . . b̂†λM

∣∣∣Mb
0

〉
, (5.44)

with energy Eλ =
∑M

m=1 ω
b
λm
+ Eb

0.
We verify numerically that the ground states

∣∣∣Ma
0

〉
= |M0⟩ and

∣∣∣Mb
0

〉
have the same

fermion parity2. Hence, only states with odd M contribute. In fact, it was shown
in Refs. [43, 47] that the contribution to the total weight of the response quickly de-
creases for increasing M, and that single-particle excitations (M = 1) capture 98% of
the total weight. In the following, we derive a way to systematically calculate the
response for any M and explicitly consider the excited states with M = 1 and M = 3.

All that is left to do is to calculate the different matrix elements
〈
Ma

0

∣∣∣ĉk
∣∣∣λ
〉
. This

is done explicitly by using the Bogoliubov transformation (5.18) and the relation
between the ground states

∣∣∣Ma
0

〉
and

∣∣∣Mb
0

〉
in Eq. (5.21). For the single-particle states

we find
〈
Ma

0

∣∣∣ĉAib̂†λ
∣∣∣Mb

0

〉
=

√
|det(X)|

(
UaX∗−1

)
iλ〈

Ma
0

∣∣∣ĉB jb̂†λ
∣∣∣Mb

0

〉
= −i

√
|det(X)|

(
VaX∗−1

)
jλ
, (5.45)

where we used different identities in Eq. (5.19) to simplify the equations. In addi-
tion, because in our specific construction we showed that X is real, we see that the
single-particle contribution to Πkl is real (imaginary) for sites on the same sublattice
(different sublattices). The three-particle matrix elements are found to be (after a

2This is not always true in the anisotropic case Jx
K ! Jy

K ! Jz
K .
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number of simplifications)

〈
Ma

0

∣∣∣ĉAib̂†λ1
b̂†λ2

b̂†λ3

∣∣∣Mb
0

〉
=

√
|det(X)|

[ (
UaX∗−1

)
iλ1

(
YX∗−1

)
λ2λ3

+
(
UaX∗−1

)
iλ2

(
YX∗−1

)
λ3λ1

+
(
UaX∗−1

)
iλ3

(
YX∗−1

)
λ1λ2

]
,

〈
Ma

0

∣∣∣ĉB jb̂†λ1
b̂†λ2

b̂†λ3

∣∣∣Mb
0

〉
= −i

√
|det(X)|

[ (
VaX∗−1

)
jλ1

(
YX∗−1

)
λ2λ3

+
(
VaX∗−1

)
jλ2

(
YX∗−1

)
λ3λ1

+
(
VaX∗−1

)
jλ3

(
YX∗−1

)
λ1λ2

]
. (5.46)

In general, we have a sort of modified Wick’s theorem, which is already apparent
in Eq. (5.46). It is consistent with some matrix elements calculated in other works,
but yields significantly simplified expressions. It is written as

〈
Ma

0

∣∣∣x1 . . . x2n
∣∣∣Mb

0

〉
=

( √
|det(X)|

)1−n ∑
(−1)P

〈
Ma

0

∣∣∣xi1 x j1

∣∣∣Mb
0

〉
. . .

〈
Ma

0

∣∣∣xin x jn

∣∣∣Mb
0

〉
, (5.47)

where the sum is over all partitions of 1, . . . , 2n into pairs {(i1, j1), . . . , (in, jn)} with
im < jm, and P is the permutation that takes 1, . . . , 2n to i1, j1, . . . , in, jn. Furthermore,
the operators xi can be any linear combination of matter fermions, both complex and
Majorana (i.e., any linear combination of ĉi, b̂λ, b̂†λ, âm, and â†m). In particular, we have

〈
Ma

0

∣∣∣b̂†λ1
b̂†λ2

∣∣∣Mb
0

〉
=

√
|det(X)|

(
YX∗−1

)
λ1λ2
, (5.48)

which, when combined with Eqs. (5.45) and (5.47) reproduces Eq. (5.46). For states
with M > 3, we thus just have to keep adding extra

〈
Ma

0

∣∣∣b̂†λb̂†λ′
∣∣∣Mb

0

〉
terms. This shows

that indeed Πkl is always real (imaginary) for sites on the same sublattice (different
sublattices).

The spin susceptibility from single-particle excitations and three-particle excita-
tions is plotted in Fig. 5.5, and is consistent with the results of Ref. [44].

5.2.2 Optical conductivity

In order to calculate the optical response of the Kitaev materials from the effective
low-energy polarization operator Peff , we need to know its dynamical evolution in
the low-energy manifold. The low-energy optical conductivity is thus

σα(ω) =
ω

V

∫ ∞

0
dteiωt ⟨0|Pαeff(t)Pαeff(0)|0⟩ , (5.49)

where Peff =
∑
⟨i j⟩ Pi j and, in the C2h bond symmetry group [see Eq. (4.15)],

Pi j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 0 0
0 m2 m4
0 m5 m3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B′γB′γ

(Si × S j), (5.50)

where the matrix m̂ is explicitly written in the B′γ = {ûγ, v̂γ, ŵγ} basis attached to the
bond ⟨i j⟩γ (see Fig. 4.1), and ûγ is along the bond and corresponds to the vectors in
Fig. 5.1. Note that v̂γ and ŵγ are not simply in-plane and out-of-plane vectors as is
seen in Fig. 4.2. Specifically, in terms of the B = {x̂, ŷ, ẑ} basis fixed by the octahedral
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FIGURE 5.5: Dynamical spin susceptibility from single-particle exci-
tations χ′′1 (ω) and three-particle excitations χ′′3 (ω) in units of 1/JK . The
computations were performed in a system of N = 20 × 20 unit cells
(with Gaussian broadening δ = 0.1JK) and of N = 80 × 80 unit cells
(with δ = 0.05JK) only for χ′′1 . Only frequencies up to ω = ∆b

0 + ω
b
N are

shown for χ′′3 .

CF shown in Fig. 5.6 (see also Fig. 4.1),

ûx =
1√
2

(ŷ − ẑ) ûy =
1√
2

(ẑ − x̂) ûz =
1√
2

(x̂ − ŷ)

v̂x =
1√
2

(ŷ + ẑ) v̂y =
1√
2

(ẑ + x̂) v̂z =
1√
2

(x̂ + ŷ)

ŵx = x̂ ŵy = ŷ ŵz = ẑ
(5.51)

The matrix elements m1−5 are given in Table 4.5.
Two remarks are in order. First, we have to remember that we consider the pure

Kitaev limit. That is, only the hopping t2 ! 0 and ∆ = 0 in the original Hubbard
model. The matrix elements of m̂ should therefore reflect this limit. Concretely,
from Table 4.5, we thus only have two finite parameters: m4 = B4 and m5 = B5.
Moreover, B4 ≈ −B5 for small atomic spacing. However, if the lattice polarization
mechanism is dominant, peff ≪ a teff/U and ∆ ! 0, then the polarization is along
the bond and it also makes sense to consider a finite m1 = A1 ∝ ∆ at first order in
the trigonal distortion ∆. Secondly, the matrix m̂ is the same for every bond when
written in a bond-dependent basis B′γ. We thus need to rewrite the coupling in a
bond-independent basis in order to calculate the optical conductivity. For Kitaev
materials, the Ising axes in the

∑
⟨i j⟩ S

γ
i S γ

j Hamiltonian are the axes of the B = {x̂, ŷ, ẑ}
basis fixed by the octahedral CF. It is convenient to choose a basis B̃ = {X,Y,Z} for the
polarization where X and Y are in the plane and Z is out-of-plane. For concreteness,
let us choose the vectors as indicated in Fig. 5.6. (In the end, σα(ω) turns out to
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x̂

ŷ

ẑ

Z X

Y

FIGURE 5.6: Single z-bond of a Kitaev material with two magnetic
sites (large black circles) and the surrounding ligands (red circles).
The bases B = {x̂, ŷ, ẑ} and B̃ = {X,Y,Z} are shown. The filled (empty)
red circles are the ligands above (below) the magnetic sites, in the Z

direction.

be isotropic in the 2D plane, so that the orientation of the basis in the plane is not
important.) The bases B̃ for Pi j and B for Si × S j are thus independent of the bond
type and the coupling matrix becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PX
i j

PY
i j

PZ
i j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
B̃

= m̂γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Si × S j)x
(Si × S j)y
(Si × S j)z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
B

, (5.52)

where

m̂γ ≡ RB′γ→B̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 0 0
0 m2 m4
0 m5 m3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠RB→B′γ . (5.53)

Here, RB1→B2 stands for the change of basis from basis B1 to B2. Using Einstein
notation, Eq. (5.52) is written as

Pα⟨i j⟩γ =
1
4

m̂γ
αβϵβabσ

a
i σ

b
j . (5.54)

We are now in a position to calculate the matrix elements ⟨0|Pαi j(t)P
α
kl(0)|0⟩. From

the flux selection rule, we can considerably reduce the number of relevant terms.
Without loss of generality, let us consider a z-bond. Because a ! b in Eq. (5.54), the
operator σa

i σ
b
j always creates a pair of π fluxes: both σa

i and σb
j create two π fluxes

but there is always one hexagon where two π fluxes add and cancel. The six corre-
sponding operators are shown in Fig. 5.7. For the first two operators O1 ≡ σx

i σ
y
j and

O2 ≡ σy
iσ

x
j , no other operators in P =

∑
i j Pi j create the same flux pattern. Hence,

the correlation functions ⟨O1(t)O1(0)⟩, ⟨O1(t)O2(0)⟩, ⟨O2(t)O1(0)⟩, and ⟨O2(t)O2(0)⟩ ap-
pear in ⟨Pα(t)Pα(0)⟩. Using the mirror symmetry (X,Y,Z) → (−X,Y,Z) of the Kitaev
spin Hamiltonian, one can show that there are only two independent correlation
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σx
i σ

y
j

j

π

00

π

i

σ
y
i σ

z
j σx

i σ
z
j σz

i σ
x
j σz

i σ
y
jσ

y
i σ

x
j

FIGURE 5.7: Different spin operators appearing in Pi j for a z-bond
⟨i j⟩z and their respective flux configurations. The grey plaquettes in-
dicate where the π fluxes are created and the striped plaquettes indi-

cate were two π fluxes cancel each other.

functions,

C1(t) ≡ ⟨O1(t)O1(0)⟩ = ⟨O2(t)O2(0)⟩, C2(t) ≡ ⟨O1(t)O2(0)⟩ = ⟨O2(t)O1(0)⟩, (5.55)

which are the same for any bonds (due to C3 and translation symmetry). For the
other four operators, it is not so simple because the same flux patterns are possi-
ble for bonds other than ⟨i j⟩γ. All operators in P =

∑
i j Pi j creating the same pair of

fluxes as the third operator in Fig. 5.7 (σy
iσ

z
j) are shown in Fig. 5.8 and labelled O3−6.

Moreover, we explicitly labelled from 1 to 6 the six sites which are relevant for the
operators. From these operators, we have a maximum of 16 new correlation func-

O5 = σ
y

6
σ
z

5

5

6

O4 = σ
z

4σ
y

5

4

5

O6 = σ
z

2σ
y

1

2

1

O3 = σ
y

2
σ
z

3

2

3

4

5

6

1
π

π

FIGURE 5.8: All the spin operators appearing in
∑

kl Pkl which create
the same pair of flux as O3 = σy

iσ
z
j. The bond corresponding to the

operators are indicated in red. The grey plaquettes show where the π
fluxes are created and the six relevant sites are labelled from 1 to 6.

tions ⟨Om(t)On(0)⟩, with m, n = 3, . . . 6. However, as before, most of them are related
by mirror symmetry and there are only four independent correlation functions,

C3(t) ≡ ⟨O3(t)O3(0)⟩, C4(t) ≡ ⟨O3(t)O4(0)⟩,
C5(t) ≡ ⟨O3(t)O5(0)⟩, C6(t) ≡ ⟨O3(t)O6(0)⟩. (5.56)

Finally, the last three flux configurations for the ⟨i j⟩z bond in Fig. 5.7 are also simply
related by mirror symmetries and the corresponding correlation functions involve
the same C3−6(t).
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Let us now explicitly write ⟨Pαi j(t)
∑

kl Pαkl(0)⟩ as a function of C1−6(t) using Eq. (5.54).
In order to do so, we split Pαi j into the six operators of Fig. 5.7 and obtain

∑

kl

⟨Pα⟨i j⟩z(t)P
α
kl(0)⟩ = 1

16

[
(mz

αz)
2(C1(t) −C2(t))

+ (mz
αz)

2(C1(t) −C2(t))

+ (mz
αx)2(C3(t) −C4(t)) + mz

αxmy
αx(C5(t) −C6(t))

+ (mz
αy)2(C3(t) −C4(t)) + mz

αymx
αy(C5(t) −C6(t))

+ (mz
αy)2(C3(t) −C4(t)) + mz

αymx
αy(C5(t) −C6(t))

+ (mz
αx)2(C3(t) −C4(t)) + mz

αxmy
αx(C5(t) −C6(t))

]
, (5.57)

where each line comes from one of the operators in Fig. 5.7 (in the same order).
Summing over all the ⟨i j⟩ bonds, we get

⟨Pα(t)Pα(0)⟩ = N
8

∑

γ

[
(mγ

αγ)2(C1(t) −C2(t))
]

+
N
8

∑

γ!ν!µ

[
(mγ

αµ)2(C3(t) −C4(t)) + mγ
αµmν

αµ(C5(t) −C6(t))
]
. (5.58)

Using Eq. (5.52) it becomes

⟨PX(t)PX(0)⟩ = N
16

(
√

2m3 − m4)2(C1(t) −C2(t)) +
N
16

[
3m2

1 + (m2 −
√

2m5)2
]
(C3(t) −C4(t))

+
N
32

[
3m1(m1 + 2m2 − 2

√
2m5) − (m2 −

√
2m5)2

]
(C5(t) −C6(t)),

⟨PY (t)PY (0)⟩ =⟨PX(t)PX(0)⟩,

⟨PZ(t)PZ(0)⟩ =N
8

[
(m3 +

√
2m4)2(C1(t) −C2(t))

+ (
√

2m2 + m5)2(C3(t) −C4(t) +C5(t) −C6(t))
]
, (5.59)

which shows that the optical conductivity is isotropic in the plane. We also verify
⟨Pα(t)Pβ(0)⟩ = 0 for α ! β.

The final step consists of calculating the correlation functions C1−6(t) and their
Fourier transforms using the Majorana formalism. There are three different flux
sectors to consider: the flux-free sector, the two-flux sector with adjacent π fluxes,
and the two-flux sector with π fluxes separated by a bond. To simplify the notation,
we write all the operator in the same four-hexagon cluster centered around the ⟨25⟩
x-bond, i.e., we use the ⟨i j⟩ = ⟨25⟩x bond for the C1 and C2 correlation function,
as shown in Fig. 5.9. We need to calculate the expectation values of the four-spin
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operators (we drop the hat symbol to lighten the notation)

C1(t) = ⟨M0| ⟨F0|σx
2(t)σy

5(t)σx
2(0)σy

5(0) |F0⟩ |M0⟩
C2(t) = ⟨M0| ⟨F0|σx

2(t)σy
5(t)σy

2(0)σx
5(0)P′ |F0⟩ |M0⟩

C3(t) = ⟨M0| ⟨F0|σy
2(t)σz

3(t)σy
2(0)σz

3(0) |F0⟩ |M0⟩
C4(t) = ⟨M0| ⟨F0|σy

2(t)σz
3(t)σz

4(0)σy
5(0) |F0⟩ |M0⟩

C5(t) = ⟨M0| ⟨F0|σy
2(t)σz

3(t)σy
6(0)σz

5(0)P′ |F0⟩ |M0⟩
C6(t) = ⟨M0| ⟨F0|σy

2(t)σz
3(t)σz

2(0)σy
1(0)P′ |F0⟩ |M0⟩ . (5.60)

Note that for C2(t), C5(t), and C6(t), while the flux in each hexagon is left unchanged
by the four-spin operators, the bond fermion numbers are changed on some bonds.
Hence, Eq. (5.35) cannot be used and the projector P′ onto the physical Hilbert space
is necessary. Here, it amounts to replacing P′ with D2D5, which reads

D2D5 = −iu⟨25⟩xc2c5(χ†⟨2·⟩y + χ⟨2·⟩y)(χ
†
⟨2·⟩z + χ⟨2·⟩z)(χ

†
⟨·5⟩y − χ⟨·5⟩y)(χ

†
⟨·5⟩z − χ⟨·5⟩z), (5.61)

where ⟨i·⟩γ refers to the γ-bond that includes the site i (e.g., ⟨2·⟩z = ⟨23⟩).
We do not show the detailed calculation but simply state the main steps. As

before, we first integrate out the flux sector. Then, we are left with an expression
with either four or six matter fermions. For instance,

C3(t) = − ⟨M0| eiH0tc2c3e−i(H0+V21+V23)tc2c3 |M0⟩ . (5.62)

For the matter Hamiltonian H({u}) in a general flux sector in the gauge defined by
{u⟨i j⟩γ }, we have

ciH({u})ci = H({ũ}), where ũ⟨mn⟩ =

{
−u⟨mn⟩ if i = m or n
u⟨mn⟩ else . (5.63)

Then, from the relation cieOci = eciOci , which is equivalent to a change of gauge, we
obtain

C3(t) = ⟨M0| eiH0tc3e−i(H0+V25)tc3 |M0⟩ . (5.64)

This is exactly the kind of expressions that we obtained for the spin susceptibility as
it involves the same matter Hamiltonians (with the same pairs of adjacent π fluxes).
Let us similarly labelHa ≡ H0 andHb ≡ H0 + V25.3

The correlation functions C3−6 can be written using the same matter Hamilto-
nian Hb. However, for C1 and C2, we define the Hamiltonian Hc ≡ H0 + V23 + V65,
depicted in Fig. 5.9, whose ground state

∣∣∣Mc
0

〉
also has the same matter fermion par-

ity as
∣∣∣Ma

0

〉
and

∣∣∣Mb
0

〉
. After the Fourier transform, the final expressions for C̃i(ω) =

Re{
∫ ∞

0 dteiωtCi(t)} are

C̃3 = Π33(ω), C̃4(ω) = iΠ34(ω), C̃5(ω) = −iΠ36(ω), C̃6(ω) = −Π31(ω), (5.65)
3Note that we could further simplify c3e−iHbtc3 = e−i(Hb+V⟨·3⟩x+V⟨·3⟩y+V⟨·3⟩z ), and eliminate the c3 operator.

However, in this new gauge the ground state must have the opposite matter fermion parity than that
of

∣∣∣Mb
0

〉
(because three bond fermions are added while the total parity cannot be changed by the gauge

transformation). For this reason, we work withHa andHb (whose ground states have the same matter
fermion parity) and the relation (5.21) between

∣∣∣Ma
0

〉
and

∣∣∣Mb
0

〉
holds.
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Ha = H0 Hb = H0 + V25 Hc = H0 + V23 + V65

−1

−1
2

3

4

5

6

1

2

3

4

5

6

1
π

π
2

3

4

5

6

1

π

π

−1

FIGURE 5.9: Three Hamiltonians defined in the matter Hilbert space
and in different flux sectors. The gauge used to defined them is indi-
cated by the green bonds for which u = −1, and u = 1 on all the other

bonds.

where Πkl(ω) is the operator that was defined for the spin susceptibility in Eq. (5.43),

Πkl(ω) = π
∑

λb

⟨Ma
0 |ck|λb⟩⟨λb|cl|Ma

0⟩δ(ω − ∆λb). (5.66)

Here we explicitly write λb to indicate that the |λb⟩’s are eigenstates ofHb, and ∆λb =

Eb
λb
− Ea

0. For the correlation functions C1 and C2 we find

C̃1(ω) = π
∑

λc

|⟨Ma
0 |λc⟩|2δ(ω − ∆λc)

C̃2(ω) = −iπ
∑

λc

⟨Ma
0 |c2c5|λc⟩⟨λc|Ma

0⟩δ(ω − ∆λc), (5.67)

where |λc⟩ are the eigenstates ofHc and ∆λc = Ec
λc
−Ea

0. ForHc, the flux gap is slightly
different: ∆0

c = Ec
0 − Ea

0 ≈ 0.226JK (∆0
b ≈ 0.263JK).

The correlations functions can be calculated with the few-particle response ap-
proach. The matrix elements in the correlation functions C̃3−6 are given by Eqs. (5.45)
and (5.46) for the single-particle and three-particle contributions, respectively. The
matrix elements in C̃1−2 are remarkably different. Because they contain zero or two
matter fermions, an even number, only the states |λc⟩ with an even number of exci-
tations contributes. Most importantly, the ground state |λc⟩ =

∣∣∣Mc
0

〉
also contributes

to the response which results in a peaked response at the energy ω = ∆c
0 = Ec

0 − Ea
0.

The zero-particle matrix elements are,
〈
Ma

0

∣∣∣Mc
0

〉
=

√
|det(X)|,

〈
Ma

0

∣∣∣ĉAiĉB j
∣∣∣Mc

0

〉
= i

√
|det(X)|

(
UaV†a − UaFVᵀa

)
i j
, (5.68)

where the matrices X and F are defined in Sec. 5.1.1 for the Bogoliubov transforma-
tion between the canonical complex fermions ofHa andHc. To avoid confusion with
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the matter Majorana fermions, we use the notation Hc =
∑
λ ω

c
λĉ
†
λĉλ + Ec

0. The two-
particle matrix elements

〈
Ma

0

∣∣∣ĉ†λ1
ĉ†λ2

∣∣∣Mc
0

〉
=
√
|det(X)|

(
YX∗−1

)
λ1λ2

were already calcu-
lated in Eq. (5.48) and from the pseudo-Wick’s theorem (5.47) and Eq. (5.45) we find

〈
Ma

0

∣∣∣ĉAiĉB jĉ
†
λ1

ĉ†λ2

∣∣∣Mc
0

〉
= i

√
|det(X)|

[ (
UaV†a − UaFVᵀa

)
i j

(
YX∗−1

)
λ1λ2

+
(
UaX∗−1

)
iλ1

(
VaX∗−1

)
jλ2

−
(
UaX∗−1

)
iλ2

(
VaX∗−1

)
jλ1

]
. (5.69)

In Eq. (5.58), only the differences C̃i − C̃i+1 for i = 1, 3, and 5 appear. In Fig. 5.10,
the single- and three-particle contributions to C̃3 − C̃4 and C̃5 − C̃6 and the zero- and
two-particle contributions to C̃1 − C̃2 are plotted.

Finally, we can calculate the optical conductivity from Eq. (5.59). We already saw
that there can be up to five independent parameters m1−5 for the ME coupling in
a system with C3 symmetry. As mentioned earlier, if the lattice polarization mecha-
nism is dominant, the ME coupling is well described with only m1 = A1 ≡ A (Pi j ∥ ûγ,
where ûγ is along the ⟨i j⟩γ bond), and if the hopping polarization mechanism is dom-
inant, the ME coupling is well described with only m4 = B4 and m5 = B5. Moreover,
we assume the deviation from the KNB coupling to be small (i.e., m4 ≈ −m5 and
Pi j ∝ ûγ × Si × S j) and set −B4 = B5 ≡ B.

In the following, we consider the optical conductivityσ′(ω) for the two scenarios:

P⟨i j⟩γ = A
[
ûγ ·

(
Si × S j

)]
· ûγ ⇒ σ′A(ω),

P⟨i j⟩γ = B
[
ûγ ×

(
Si × S j

)]
⇒ σ′B(ω).

The in-plane σ∥ and out-of-plane σ⊥ components of the optical conductivity are
found from Eqs. (5.49) and (5.59) and are related to the correlation functions by

σ′A∥ (ω) =
ω

24
√

3
A2

[
3(C̃3(ω) − C̃4(ω)) +

3
2

(C̃5(ω) − C̃6(ω))
]
,

σ′A⊥ (ω) = 0,

σ′B∥ (ω) =
ω

24
√

3
B2

[
(C̃1(ω) − C̃2(ω)) + 2(C̃3(ω) − C̃4(ω)) − (C̃5(ω) − C̃6(ω))

]
,

σ′B⊥ (ω) =
ω

24
√

3
B2

[
4(C̃1(ω) − C̃2(ω)) + 2(C̃3(ω) − C̃4(ω)) + 2(C̃5(ω) − C̃6(ω))

]
, (5.70)

where we have used S = N(3
√

3/2) for the total surface. In Fig. 5.11, σ′A∥ /A
2, σ′B∥ /B

2,
and σ′B⊥ /B

2 are plotted. Those are unitless quantities. To recover the proper units,
σ′A/A2 and σ′B/B2 have to be multiplied by e2A2/(!a⊥) and e2B2/(!a2a⊥), respec-
tively. The magnetic dipole contribution ωχ′′(ω) is also shown for comparison. The
electric-dipole-induced and magnetic-dipole-induced absorption rates from the same
electromagnetic wave scale as σ′(ω) and (gµB/c)2ωχ′′(ω), respectively [see Eq. (2.1)],
so that the unitless quantity ωχ′′(ω) has to be multiplied by (gµB)2/(!c2a2a⊥) in or-
der to be compared with the optical conductivity. The optical conductivity σ′A(ω)
corresponds to what we calculated in Ref. [62].
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FIGURE 5.10: Relevant correlations functions C(n)
i − C(n)

i+1 from zero-,
single-, two-, and three-particle excitations (n = 0, 1, 2, and 3, respec-
tively). The computations were performed in a system of N = 20 × 20
unit cells (with Gaussian broadening δ = 0.1JK) for n = 3, N = 40 × 40
unit cells (with δ = 0.07JK) for n = 2, and N = 80 × 80 unit cells (with
δ = 0.07JK) for n = 1 and 0. Only frequencies up to ω = ∆b

0 + ω
b
N are

shown.

FIGURE 5.11: Optical conductivity defined in Eq. (5.70) originating
from up to three-particle excitations. The magnetic dipole contribu-
tion ωχ′′(ω) (with a 0.8 factor) is also shown for comparison. Only

frequencies up to ω = ∆b
0 + ω

b
N are shown.
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5.3 Discussion

The optical response of the pure Kitaev model has been derived using the analyticity
of the model and a generally allowed coupling between electric polarization and
spin operators discussed in Chaper 4, arising from virtual hopping of the electrons
between the magnetic sites via the ligands.

In the many THz spectroscopy experiments performed for the Kitaev material
α-RuCl3 [30–34], the absorption originates from both magnetic-dipole-induced and
electric-dipole-induced transitions. However, the material being a Mott insulator,
often only the magnetic-dipole-induced transitions are discussed.

Nevertheless, it was shown in Ref. [31] that the absorption continuum of α-RuCl3
is too strong to be attributed to direct coupling to magnetic dipole moments, and
that there is a dominant contribution from electric-dipole-induced transitions. Be-
cause, even in the Mott insulating phase, the orbitals of 4d ruthenium are slightly
delocalized, fluctuations of the electronic charge are expected. Thus, we proposed a
mechanism for the optical conductivity through virtual hopping of the electrons in
Chapter 4.

In the present chapter, we showed that even in the pure Kitaev limit, a finite
subgap optical conductivity arises from the finite ME coupling. It has both simi-
larities and differences from the purely magnetic response. On the one hand, the
electric-dipole-induced transitions from the ground states are only allowed between
the flux-free sector and a two-flux sector. For an effective polarization operator on
a γ-bond involving (Si × S j) · ûγ and (Si × S j) · v̂γ, the two π fluxes are in adjacent
hexagons, as shown in Fig. 5.7, because they always contain either a σγi or σγj term.
In this case, the relevant matter Hamiltonian isHb. Interestingly, the same Hamilto-
nian is required for the calculation of the simpler spin dynamical correlation func-
tion, which implies that the transitions take place between the same flux sectors.
However, whereas the spin susceptibility has a peak around ω ≈ 0.5JK , the optical
conductivity peaks around ω ≈ 5JK .

On the other hand, for an effective polarization operator involving (Si × S j) · ŵγ,
the two fluxes are in hexagons separated by the ⟨i j⟩γ bond, as shown in Fig. 5.7,
because in this case there is no σγ term. Hence, another matter Hamiltonian Hc is
needed. Those transitions have different parity properties which result in a strong
delta peak contribution right at the flux gap ω = ∆c

0 in Fig. 5.11.
We considered the optical conductivity for two different scenarios concerning the

ME coupling. For Pi j = A
[
ûγ ·

(
Si × S j

)]
· ûγ, only the two-flux sector with adjacent

π fluxes is relevant and there are no delta peak at ω = ∆c
0. Moreover the out-of-

plane optical conductivity vanishes. For the KNB mechanism, however, both in-
plane and out-of-plane optical conductivities are finite and show a sharp peak at
ω = ∆c

0. Hence, the optical conductivity has a two-peak structure.
One must be cautious when comparing our findings with the THz experiments.

Obviously, experiments are performed at finite temperatures and our results are only
valid at T = 0. Moreover, in real Kitaev materials, additional integrability breaking
terms are indispensable to explain the antiferromagnetic order below TN .

In this case, even the calculation of the spin susceptibility becomes a challenge.
In recent articles, it was shown that the spin structure factor evolves smoothly from
the results of the pure Kitaev model using numerical [193,200,201] and parton mean-
field methods [202] close to the Kitaev spin liquid regime of the pure Kitaev model.
We thus expect that our results are meaningful physically in the putative proximate
Kitaev spin liquid. It is indeed believed that, for α-RuCl3, even away from the pure
Kitaev limit, there are still remnants of the Majorana physics and the continuum
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observed in the response can be understood in terms of fractionalized spin excita-
tions [56,58–60]. In addition, it was shown that even below TN an in-plane magnetic
field of 8 T suppresses the magnetic order and the system is in a field-induced quan-
tum spin liquid state [203].

Because we do not know the values of A and B, it is hard to evaluate the different
contributions we calculated in terms of a physical THz response. However, if we
compare the magnetic dipole contribution ωχ′′(ω) × (gµB)2/(!c2a2a⊥) (with g = 2)
with the results in Ref. [31], it only accounts for around 7% of the measured signal
just above the sharp gap atω ≈ 1 meV (ω ≈ 0.7JK for a typical value of JK ≈ 1.5 meV).
We thus conclude that the main weight of the spectrum originates from electric-
dipole-induced transitions.

Furthermore, the spectrum we calculated bears striking similarities with the loss
spectrum obtained in some of the THz spectroscopy measurements (see Fig. 5.3). A
double-peak spectrum with peaks at energies ω ≈ 2 meV and ω ≈ 7 meV and a gap-
like feature below ω ≈ 1 meV is typically observed (see, e.g., Refs. [31, 33]). Those
peaks cannot be attributed to the phonon mode, which is located at around ω ≈ 15
meV.
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Chapter 6

Summary and outlook

In the present thesis, electric-dipole-induced magnetic transitions were investigated
in different systems. The study of electron spin dynamics and how it can be affected
by the motional degree of freedom of the electrons is related to various areas of
physics. In the context of semiconductors physics, access to electric-field-mediated
spin control has applications in spintronics. In the context of multiferroics, electro-
magnons, spin waves which can be exited by an AC electric field, have been ex-
tensively studied, motivated by both the potential real-world applications and the
fundamentally interesting physics at play. Moreover, in the contexts of quantum
spin liquids, optical measurements have been shown to be insightful probes of the
fractionalized spin excitations of some systems. With this background in mind, we
chose to focus on a simple and universal model, the Hubbard model, and extensively
investigated the different origins of electric-dipole-induced magnetic transitions.

The Hubbard model is a deceptively simple model which has evolved from a toy
model to an experimentally relevant model for strongly correlated electron systems.
The model can describe both metals and insulators and we correspondingly used
two approaches. The thesis was therefore effectively split in two parts.

First, the weak coupling limit was studied in Chapter 2. The synergetic effect of
SOC and Zeeman coupling on the spin resonance has non-trivial effects even when
neglecting interactions. We reviewed the original results of combined resonances
(cyclotron and spin flip) in the Landau levels of a 2DEG in the Zeeman limit, and
also discussed already known results of EDSR in the Tomonaga-Luttinger liquid
that we generalized. Then, we presented our original results concerning EDSR in
a lattice model. We showed how the lattice potential affects the optical spectrum
and observed characteristic dependencies on the relative direction of the magnetic
field and the SOC vector, and on the Fermi energy. In the 2D model in particu-
lar, we showed that the resonance spectrum, which is a single peak at the Zeeman
energy for vanishing SOC, has a finite width even at T = 0. In addition, the spec-
trum shows multiple Van Hove-like singularities whose characteristics depend on
the band structure.

We also described the evolution of the resonance for finite U in small systems
using exact diagonalization. We showed that at quarter-filling, the Hubbard inter-
action modifies the amplitude and frequency of the resonance. In the half-filled
case, the system becomes a Mott insulator and the resonance observed at U = 0 is
enhanced for small U but vanishes when the optical gap becomes larger than the
kinetic hopping amplitude t. This shows that the SOC-induced EDSR in metallic
systems, introduced as a fundamentally single-particle phenomenon, relies on the
spinful particles to be optically gapless.

Also in Chapter 2, the same half-filled 1D Hubbard model was investigated from
the strong-coupling limit, U/t → ∞. In this limit, we showed how the interplay
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of SOC and Zeeman coupling affects the optical transitions between the upper and
lower Hubbard bands at ω ∼ U ± 4t.

As a future prospect, it would be interesting to apply our results to actual mate-
rials and predict their magnetic-dipole-induced and electric-dipole-induced absorp-
tion spectrum. ESR is above all an experimental method for studying materials and
it is thus important to consider experimentally relevant scenarios. Our results rely
on the presence of a periodic potential, which justify the discrete model on the lat-
tice, and on strong SOC. Metallic iridates, and other heavy 5d or 4d TM compounds,
would thus be prime candidates. Indeed, 4d and 5d orbitals are characterized by
their delocalization (they are less localized than, e.g., 3d, 4 f , and 5 f orbitals). They
are thus well described by the Hubbard model with large hoping amplitudes which
tends to reduce the electronic repulsion U and the correlation effects. In addition, the
heavy TM ions have especially strong SOC. Of course, actual materials have more
complicated physics than the pristine models we used, and additional considera-
tions are in order (such as more complex realistic lattices or the additional orbital
degree of freedom).

Secondly, in the strong-coupling limit, other mechanisms relying on the strong
electronic correlation were considered. To this end, a different formalism was intro-
duced where the hopping Hamiltonian is regarded as a perturbation.

In Chapters 3, 4, and 5, we investigated low-energy optical transitions in the
Mott insulating phase of the Hubbard model, i.e., below the optical gap. Our main
original results consist of (i) the derivation of the two-spin ME coupling arising from
the valence electron charge fluctuation in single-band and d5 Mott insulators, and of
(ii) the calculation of the resulting subgap optical conductivity in the pure Kitaev
model.

By carefully considering the different matrix elements of the electronic polar-
ization operator in the tight-binding formulation, we identified two distinct micro-
scopic origins for the electronic ME coupling. From the point-like behavior of the
charged particles on the lattice, a finite effective polarization emerges from states
with doubly occupied sites via virtual hopping. This phenomenon generally occurs
on any lattice model, but the resulting ME effect only systematically arises on closed
loops of odd number of sites. However, we showed that for the involved geome-
try of the Kitaev materials, TM ions with edge-sharing octahedral ligand structures,
the ME effect arises even on single bonds. The geometry is indeed important as we
showed that the corresponding ME effect is generally absent in the corner-sharing
geometry of the perovskite structure.

Additionally, the polarization also has finite matrix elements caused by the charge
distribution of the electrons around each ions, i.e., not taken into account by the
purely point-like description of the Hubbard model. This lead us to introduce the
concept of ‘polarization hopping integrals’ which are the equivalent of the usual ki-
netic hopping integrals of the tight-binding model, but for the electric polarization
operator instead of the Hamiltonian. The original spin current model made use of
such (simplified) integrals to derive the Pi j ∝ êi j × (Si × S j) ME coupling. However,
by carefully classifying the integrals with respect to different symmetry channels, we
derived a more general ME coupling in d5 Mott insulators. All things considered, we
reconciled two approaches to the electronic ME effect in the Hubbard model. We re-
visited them, and exhaustively derived the resulting ME coupling in a specific class
of Mott-insulating TM compounds.

Finally, the limiting case of the pure Kitaev model was studied. Combining an
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analytical formulation of the Hamiltonian in terms of Majorana fermions in an en-
larged Hilbert space, Bogoliubov transformations, and exact diagonalization, we
calculated and compared the subgap optical conductivity emerging from different
two-spin ME coupling. In the Kitaev model, the physics is formulated in terms of
Z2 fluxes and itinerant Majorana fermions. Thanks to the macroscopic number of
conserved quantities, the dynamical response functions could be handily evaluated
at T = 0 in large systems of more than 104 spins. Because of the quantum spin
liquid ground state and the fractionalized magnetic excitations, the subgap optical
conductivity is continuous.

The dielectric loss spectrum of the Kitaev materials α-RuCl3 measured with THz
spectroscopy has been reported by a number of sources [30–34]. A recurring feature
is indeed the continuous low-frequency response which is attributed to remnants
of the Kitaev physics. Although a magnetic-dipole-induced response is of course
also contributing, it has been argued that the main contribution is electric-dipole-
induced. We believe that our results, even though calculated in pristine conditions,
shed light on the origin of the electric-dipole-induced transitions. In particular, the
calculated spectrum bears striking similarities with the experimentally measured
absorption spectrum: a two-peak structure with a sharp gap below !ω ≈ 1 meV (see,
e.g., [33]).

As a further perspective, it would be interesting to study the optical response of
Kitaev materials away from the pure Kitaev model (with the addition of analyticity-
breaking terms), and at finite temperatures. While our results explain the origin
behind the spectroscopy results, additional considerations are required in order to
directly compare our results with the experimental ones. In particular, the following
two questions are still unanswered: (1) Why does the THz response exhibits such
an anomalous temperature dependence? (2) What is the origin of the gap observed
below 1 meV up to room temperature? A full understanding of the relation between
the dynamical responses and the different magnetic interactions is still lacking. It
would therefore be interesting to study the electric-dipole-induced spin resonance
(or other dynamical response functions) in the full KHΓΓ′ using appropriate meth-
ods. Exact analytical method cannot be used but other numerical and approximative
analytical methods are relevant to the problem [200, 202, 204].

Finally, in this thesis we chose to focus on d5 TM compounds with a specific
lattice structure because we were motivated by experimental results. Nevertheless,
the theory of the ME effect in the Hubbard model is evidently not limited to d5

materials and thus a generalization to any other microscopic structure is possible.
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Appendix A

Polarization integrals

In Table A.1 we list the polarization integrals calculated in Sec. 4.4 for a general
bond direction d with direction cosines (l,m, n). The entries not written in the table
are found by cyclically permuting the coordinates and direction cosines.
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Appendix B

Magnetoelectric coupling with
φ ! 90◦ and ϕ ! 180◦

B.1 Edge-sharing geometry with φ ! 90◦

In this Appendix, we first consider the displacement of the two ligands toward the
middle of the bond along ±v̂ in the edge-sharing geometry. As discussed in Sec. 4.5.1,
v̂ is one of the C2 axis so that the results will be consistent with the original D2h sym-
metry group of the bond. Therefore, we can study the angle dependence away from
the ideal φ = 90◦ bond geometry without introducing additional coupling constant.

The hopping integrals are found to be

t1 =
tddπ + tddδ

2
+

t2
pdπ

∆pd
cos(φ),

t2 =
−tddπ + tddδ

2
+

t2
pdπ

∆pd
,

t3 =
3tddσ + tddδ

4
+

3
2

t2
pdσ

∆pd
cos3(φ) +

(√
3tpdσ − tpdπ

)
tpdπ

∆pd
sin(φ) sin(2φ). (B.1)

We note that the integrals themselves also depend on φ because of the change in the
TM-L distance and/or the TM-TM distance. We do not consider this dependence.1

B.1.1 Mechanism

Lattice polarization

The two ligands are separated by a distance ã = a cot(φ/2) in the v̂ direction where a
is still the TM-TM distance. Then P(L)

lat (given by Eq. (4.45) when φ = 90◦) becomes

P(L)
lat =

t2
pdπ

∆2
pd

sin(φ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣c
†
i
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⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ c j +H.c.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
ã
2

v̂. (B.2)

Note that the tpdπ integral also depends on φ if the TM-L distance d = a/(2 cos(φ/2))
is not kept constant.

1Our results are similar to Ref. [180] except for t3, which might be caused by a different microscopic
definition of φ.
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Lattice polarization

Because there are still no displacement along ŵ, only b4 and b5 are non-zero. We
find,

b4 = −P⊥dπdδ − 2 sin(φ/2)
tpdπ
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If we actually consider the displacement along [111] corresponding to the trigo-
nal distortion (displacement of the ligands perpendicular to the plane), all b1−5 are
finite but the calculation is too cumbersome to be done analytically. It can however
be done numerically.

B.2 Corner-sharing geometry with ϕ ! 180◦

We now consider the more general corner-shared geometry where a displacement
of the ligand perpendicular to the bond is allowed. If the ligand displacement is
staggered along the square lattice (such as for Sr2IrO4), it correspond to a relative
rotation of neighboring octahedral structures along the ẑ axis such that ϕ ! 180 [see
Fig. 4.1(a)]. The inversion symmetry centered at the middle of the bonds is obviously
broken in this case. After the rotation, the cubic orbitals are defined relatively to
two different bases, BA = {x̂A, ŷA, ẑ} and BB = {x̂B, ŷB, ẑ}, separated by a 2α = π − ϕ
rotation along the ẑ axis. We furthermore consider a uniform tetragonal distortion
∆A = ∆B = ∆. A staggered tetragonal distortion (corresponding to ∆A = −∆B) is
also possible (and even expected in some systems [205]), but we do not consider it
explicitly. For a bond in the x̂ direction, we define α > 0 for a displacement of the
ligand in the +ŷ direction.

Full octahedral symmetry with α ! 0

The symmetry group of the bond is reduced to C2v. The corresponding character
table is shown in Table B.1.

TABLE B.1: Character table of C2v. The ⟨i j⟩ bond is along the x̂ axis.

C2v E C2,y σxy σyz functions

A1 1 1 1 1 y,
(
Si × S j

)
z

A2 1 1 −1 −1 xz, S y,
(
Si × S j

)
x

B1 1 −1 1 −1 x, xy, S y, i- j antisym.
B2 1 −1 −1 1 z, yz, S y,

(
Si × S j

)
y

Because of the lack of inversion symmetry, the hopping can be antisymmetric
and the effective polarization can couple to symmetric two-spin operators. Then,
ME coupling contains at most thirty independent coefficients, instead of nine.

The hopping matrices between for x-bonds and y-bonds are
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T̂x(C2v) =
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Neglecting the direct d-d hopping, we have (written in the BA and BB bases)

T̂x =
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In the C2v group, the ME coupling (for an x-bond) is
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(B.6)

The change of basis from B to BA(B) for the spin operators corresponds to the
transformation Si → eiαS zSie−iαS z (S j → e−iαS zS jeiαS z). For two-spin operators, the
change of bases (B,B) → (BA,BB) does not change the irreducible representation of
the two-spin operators, so that Eq. (B.6) is left unchanged by the change of bases (the
values of the coupling coefficients would nevertheless be altered). Henceforth, we
use the B basis for P and in the BA and BB bases for Si and S j, respectively.

Tetragonal distortion

The uniform tetragonal distortion does not affect the C2v symmetry group or the
form of m̂.

B.2.1 Mechanism

Lattice polarization

In Eq. (B.6), only the mΓ1 coupling constant lead to a polarization along the bond.
However, because the 3 × 3 matrices defining the tetragonal CF and the hopping
commute, the hopping is diagonal in terms of the pseudospin variables, and P(TM)

lat
vanishes.

The contribution from the ligand is given by

P(L)
lat,x = tan(α)

[
c†i T̂xc j +H.c.

]a
2

ŷ (B.7)

P(L)
lat,y = − tan(α)

[
c†i T̂yc j +H.c.

]a
2

x̂, (B.8)

for x-bonds and y-bonds, respectively. As shown in the next subsection, the corre-
sponding effective operators only lead to a ME coupling involving diagonal two-
spin operators S α

i S α
j .
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Hopping polarization

For a x-bond, we have

Phop =
[
N̂x

S + N̂x
A

]
x̂ +

[
N̂y

S + N̂y
A

]
ŷ +

[
N̂z

S + N̂z
A

]
ẑ, (B.9)

where

N̂a
S/A = c†i N̂a

S/Ac j +H.c.. (B.10)

Here, S and A stand for symmetric and antisymmetric. By defining (Âa)bc = ϵabc and
(Ŝa)bc = |ϵabc| (ϵ is the Levi-Civita tensor), we find

N̂ x
S = sin(α)tpdπP⊥pπdσŜz, N̂ x

A = 0,

N̂y
S = −2 sin(α)tpdπ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 P∥pdπ 0
0 0 P⊥pσdπ + (P∥pdπ + P⊥pσdπ) cos(2α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

N̂y
A = − cos(α)tpdπP⊥pπdσÂz,

N̂ z
S = − sin(2α)tpdπP⊥pσdπŜx, N̂ z

A = cos(2α)tpdπP⊥pπdσÂy. (B.11)

For a y-bond, the corresponding expressions are obtained after a π/2 rotation around
ẑ.

From the C2v symmetry, we infer that Âa,eff = aa
(
Si × S j

)
a

and Ŝa,eff = sa|ϵabc|S b
i S c

j,
respectively. In the limit of U ≫ JH , the antisymmetric operators are

az =
32
9

t
[
cos2(α)

U
+ ∆

2
9
−2U − 3λ + (U − 3λ) cos(2α)

U2λ

]

ay =
32
9

t
[
cos2(α)

U
+ ∆

1
9
−U − 6λ + (5U − 6λ) cos(2α)

U2λ

]
. (B.12)

Once again, JH is responsible for the anisotropy when ∆ = 0. For the symmetric
operators, the off-diagonal matrices result in a contribution proportional to JH . In
the limit of U ≫ JH ,

sz =tJH
32
9

[
1 − 2 cos(2α)
(2U + 3λ)2 − ∆

4
9

(2U − 9λ)(−1 + 2 cos(2α))
λ(2U + 3λ)2

]

sx =tJH
64
9

[
cos2(α)

(2U + 3λ)2 − ∆
2
9

U + 18λ + (U + 9λ) cos(2α)
λ(2U + 3λ)2

]
. (B.13)

Finally, the N̂y
S term in Eq. (B.11) yields diagonal S a

i S a
j terms with a = x, y and z, in

addition to a constant. Here too, in the absence of JH the contribution is isotropic. In
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the limit of U ≫ JH and U ≫ λ,
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 1 0
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9
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λ

]
,
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⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
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0 0 1

⎞
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16
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t
U
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2
9

1 + 4 cos(2α)
λ

]
Si · S j

+
8
9

t
U

[
1 − 5 cos(2α) + ∆

4
9

1 − 8 cos(2α)
λ

]
. (B.14)

We can thus write all the ME coupling constants of Eq. (B.6) as a function of the

kinetic hopping integral t =
t2pdπ
∆pd

, the polarization hopping integrals, and the other
physical parameters defined in the microscopic Hamiltonian.
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[142] I. A. Sergienko, C. Şen, and E. Dagotto. Ferroelectricity in the magnetic E-
phase of orthorhombic perovskites. Phys. Rev. Lett., 97(22):227204, 2006.

[143] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han. Bond electronic polarization
induced by spin. Phys. Rev. B, 74(22):224444, 2006.

[144] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han. Microscopic theory of spin-
polarization coupling in multiferroic transition metal oxides. Phys. Rev. B,
76(14):144424, 2007.



136 BIBLIOGRAPHY

[145] T.-h. Arima. Ferroelectricity induced by proper-screw type magnetic order. J.
Phys. Soc. Jpn., 76(7):073702–073702, 2007.

[146] H. Katsura, N. Nagaosa, and A. V. Balatsky. Spin current and magnetoelectric
effect in noncollinear magnets. Phys. Rev. Lett., 95(5):057205, 2005.

[147] M. Mostovoy. Ferroelectricity in spiral magnets. Phys. Rev. Lett., 96(6):067601,
2006.

[148] I. A. Sergienko and E. Dagotto. Role of the Dzyaloshinskii-Moriya interaction
in multiferroic perovskites. Phys. Rev. B, 73(9):094434, 2006.

[149] T. A. Kaplan and S. D. Mahanti. Canted-spin-caused electric dipoles: A local
symmetry theory. Phys. Rev. B, 83:174432, May 2011.

[150] A. Pimenov, A. Mukhin, V. Y. Ivanov, V. Travkin, A. Balbashov, and A. Loidl.
Possible evidence for electromagnons in multiferroic manganites. Nature
Physics, 2(2):97, 2006.

[151] A. Sushkov, R. V. Aguilar, S. Park, S. Cheong, and H. Drew. Electromagnons
in multiferroic YMn2O5 and TbMn2O5. Phys. Rev. Lett., 98(2):027202, 2007.

[152] H. Katsura, A. V. Balatsky, and N. Nagaosa. Dynamical magnetoelectric cou-
pling in helical magnets. Phys. Rev. Lett., 98(2):027203, 2007.

[153] M. Cazayous, Y. Gallais, A. Sacuto, R. De Sousa, D. Lebeugle, and D. Colson.
Possible observation of cycloidal electromagnons in BiFeO3. Phys. Rev. Lett.,
101(3):037601, 2008.

[154] S. Seki, N. Kida, S. Kumakura, R. Shimano, and Y. Tokura. Electromagnons in
the spin collinear state of a triangular lattice antiferromagnet. Phys. Rev. Lett.,
105(9):097207, 2010.

[155] Y. Takahashi, R. Shimano, Y. Kaneko, H. Murakawa, and Y. Tokura. Magne-
toelectric resonance with electromagnons in a perovskite helimagnet. Nature
Physics, 8(2):121, 2012.

[156] S. H. Chun, K. W. Shin, H. J. Kim, S. Jung, J. Park, Y.-M. Bahk, H.-R. Park,
J. Kyoung, D.-H. Choi, D.-S. Kim, et al. Electromagnon with Sensitive Tera-
hertz Magnetochromism in a Room-Temperature Magnetoelectric Hexaferrite.
Phys. Rev. Lett., 120(2):027202, 2018.

[157] S. Kimura, M. Matsumoto, M. Akaki, M. Hagiwara, K. Kindo, and H. Tanaka.
Electric dipole spin resonance in a quantum spin dimer system driven by mag-
netoelectric coupling. Phys. Rev. B, 97:140406, Apr 2018.

[158] W. Lu, J. Tuchendler, M. von Ortenberg, and J. P. Renard. Direct observation
of the Haldane gap in NENP by far-infrared spectroscopy in high magnetic
fields. Phys. Rev. Lett., 67:3716–3719, Dec 1991.

[159] T. M. Brill, J. P. Boucher, J. Voiron, G. Dhalenne, A. Revcolevschi, and J. P.
Renard. High-Field Electron Spin Resonance and Magnetization in the Dimer-
ized Phase of CuGeO3. Phys. Rev. Lett., 73:1545–1548, Sep 1994.

[160] H. Nojiri, H. Ohta, S. Okubo, O. Fujita, J. Akimitsu, and M. Motokawa. Sub-
millimeter Wave ESR Study of Spin Gap Excitations in CuGeO3. J. Phys. Soc.
Jpn., 68(10):3417–3423, 1999.



BIBLIOGRAPHY 137

[161] T. Rõõm, U. Nagel, E. Lippmaa, H. Kageyama, K. Onizuka, and Y. Ueda. Far-
infrared study of the two-dimensional dimer spin system SrCu2(BO3)2. Phys.
Rev. B, 61:14342–14345, Jun 2000.

[162] H. Nojiri, H. Kageyama, Y. Ueda, and M. Motokawa. ESR Study on the Excited
State Energy Spectrum of SrCu2(BO3)2 –A Central Role of Multiple-Triplet
Bound States–. J. Phys. Soc. Jpn., 72(12):3243–3253, 2003.

[163] T. Sakai and H. Shiba. Numerical Study of a Model for NENP: One-
Dimensional S=1 Antiferromagnetin a Staggered Field. J. Phys. Soc. Jpn.,
63(3):867–871, 1994.

[164] T. Sakai. Direct Observation of Spin Gaps in Electron Spin Resonance. J. Phys.
Soc. Jpn., 72(Suppl.B):53–60, 2003.

[165] O. Cépas and T. Ziman. Theory of phonon-assisted forbidden optical transi-
tions in spin-gap systems. Phys. Rev. B, 70:024404, Jul 2004.

[166] Z. Wang, D. Kamenskyi, O. Cépas, M. Schmidt, D. L. Quintero-Castro, A. T.
M. N. Islam, B. Lake, A. A. Aczel, H. A. Dabkowska, A. B. Dabkowski,
G. M. Luke, Y. Wan, A. Loidl, M. Ozerov, J. Wosnitza, S. A. Zvyagin, and
J. Deisenhofer. High-field electron spin resonance spectroscopy of singlet-
triplet transitions in the spin-dimer systems Sr3Cr2O8 and Ba3Cr2O8. Phys.
Rev. B, 89:174406, May 2014.

[167] Y. Singh and P. Gegenwart. Antiferromagnetic Mott insulating state in single
crystals of the honeycomb lattice material Na2IrO3. Phys. Rev. B, 82(6):064412,
2010.

[168] J. Chaloupka, G. Jackeli, and G. Khaliullin. Kitaev-Heisenberg model on a
honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. Phys. Rev.
Lett., 105(2):027204, 2010.

[169] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and
P. Gegenwart. Relevance of the Heisenberg-Kitaev model for the honeycomb
lattice iridates A2IrO3. Phys. Rev. Lett., 108(12):127203, 2012.

[170] I. Pollini. Electronic properties of the narrow-band material α-RuCl3. Phys.
Rev. B, 53(19):12769, 1996.

[171] K. Plumb, J. Clancy, L. Sandilands, V. V. Shankar, Y. Hu, K. Burch, H.-Y. Kee,
and Y.-J. Kim. α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb
lattice. Phys. Rev. B, 90(4):041112, 2014.

[172] H.-S. Kim, V. S. V., A. Catuneanu, and H.-Y. Kee. Kitaev magnetism in honey-
comb RuCl3 with intermediate spin-orbit coupling. Phys. Rev. B, 91(24):241110,
2015.

[173] S. Trebst. Kitaev Materials. arXiv:1701.07056, 2017.

[174] I. I. Mazin, H. O. Jeschke, K. Foyevtsova, R. Valentí, and D. I. Khomskii.
Na2IrO3 as a Molecular Orbital Crystal. Phys. Rev. Lett., 109:197201, Nov 2012.

[175] G. L. Stamokostas and G. A. Fiete. Mixing of t2g − eg orbitals in 4d and 5d
transition metal oxides. Phys. Rev. B, 97:085150, Feb 2018.



138 BIBLIOGRAPHY

[176] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee. Generic spin model for the honeycomb
iridates beyond the Kitaev limit. Phys. Rev. Lett., 112(7):077204, 2014.

[177] J. G. Rau and H.-Y. Kee. Trigonal distortion in the honeycomb iridates: Prox-
imity of zigzag and spiral phases in Na2IrO3. arXiv:1408.4811, 2014.

[178] Y. Sizyuk, C. Price, P. Wölfle, and N. B. Perkins. Importance of anisotropic
exchange interactions in honeycomb iridates: minimal model for zigzag anti-
ferromagnetic order in Na2IrO3. Phys. Rev. B, 90(15):155126, 2014.

[179] H.-S. Kim and H.-Y. Kee. Crystal structure and magnetism in α-RuCl3: An ab
initio study. Phys. Rev. B, 93(15):155143, 2016.

[180] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valenti. Challenges in design of
Kitaev materials: Magnetic interactions from competing energy scales. Phys.
Rev. B, 93(21):214431, 2016.

[181] R. Yadav, N. A. Bogdanov, V. M. Katukuri, S. Nishimoto, J. van den Brink, and
L. Hozoi. Kitaev exchange and field-induced quantum spin-liquid states in
honeycomb α-RuCl3. Sci. Rep., 6:37925, 2016.

[182] W. Wang, Z.-Y. Dong, S.-L. Yu, and J.-X. Li. Theoretical investigation of mag-
netic dynamics in α-RuCl3. Phys. Rev. B, 96(11):115103, 2017.

[183] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P. Gegen-
wart, and R. Valenti. Models and Materials for Generalized Kitaev Magnetism.
J. Phys. Condens. Matter, 2017.

[184] Y. S. Hou, H. J. Xiang, and X. G. Gong. Unveiling magnetic interactions of
ruthenium trichloride via constraining direction of orbital moments: Potential
routes to realize a quantum spin liquid. Phys. Rev. B, 96(5):054410, 2017.

[185] J. Kanamori. Electron correlation and ferromagnetism of transition metals.
Progr. Theor. Phys., 30(3):275–289, 1963.

[186] A. Georges, L. de’ Medici, and J. Mravlje. Strong correlations from Hund’s
coupling. Annu. Rev. Condens. Matter Phys., 4:137, 2013.

[187] J. C. Slater and G. F. Koster. Simplified LCAO method for the periodic potential
problem. Phys. Rev., 94(6):1498, 1954.

[188] S. Miyahara and N. Furukawa. Theory of antisymmetric spin-pair-dependent
electric polarization in multiferroics. Phys. Rev. B, 93(1):014445, 2016.

[189] M. Matsumoto, K. Chimata, and M. Koga. Symmetry Analysis of Spin-
Dependent Electric Dipole and Its Application to Magnetoelectric Effects. J.
Phys. Soc. Jpn., 86(3):034704, 2017.

[190] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio. Applications of group theory
to the physics of solids, 2008.

[191] P. Anderson. Resonating valence bonds: A new kind of insulator? Materials
Research Bulletin, 8(2):153 – 160, 1973.

[192] H. Matsuura and M. Ogata. A Poor Man’s Derivation of Quantum Compass–
Heisenberg Interaction: Superexchange Interaction in J–J Coupling Scheme. J.
Phys. Soc. Jpn., 83(9):093701, 2014.



BIBLIOGRAPHY 139

[193] S. M. Winter, K. Riedl, P. A. Maksimov, A. L. Chernyshev, A. Honecker, and
R. Valenti. Breakdown of magnons in a strongly spin-orbital coupled magnet.
Nat. Commun., 8(1):1152, 2017.

[194] F. Zschocke and M. Vojta. Physical states and finite-size effects in Kitaev’s hon-
eycomb model: Bond disorder, spin excitations, and NMR line shape. Phys.
Rev. B, 92:014403, Jul 2015.

[195] J. Blaizot and G. Ripka. Quantum Theory of Finite Systems. MIT Press, Cam-
bridge, 1986.

[196] E. H. Lieb. Flux Phase of the Half-Filled Band. Phys. Rev. Lett., 73(16):2158,
1994.

[197] B. Dóra and R. Moessner. Gauge field entanglement in Kitaev’s honeycomb
model. Phys. Rev. B, 97:035109, Jan 2018.

[198] H. Yao, S.-C. Zhang, and S. A. Kivelson. Algebraic Spin Liquid in an Exactly
Solvable Spin Model. Phys. Rev. Lett., 102:217202, May 2009.

[199] F. L. Pedrocchi, S. Chesi, and D. Loss. Physical solutions of the Kitaev honey-
comb model. Phys. Rev. B, 84:165414, Oct 2011.

[200] M. Gohlke, R. Verresen, R. Moessner, and F. Pollmann. Dynamics of the
Kitaev-Heisenberg Model. Phys. Rev. Lett., 119:157203, Oct 2017.
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