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Abstract 

Climate can control not only the personal lifestyle but also other living beings. It is crucial 

to investigate historical climate to understand the current and future climates. Information 

about daily weather can give a better understanding of past life on earth. Long-term weather 

influences crop calendar as well as the development of civilizations. Unfortunately, existing, 

reconstructed daily weather data are limited after the 1850s due to the availability of 

instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-

ring width, ice core isotopes, etc.) which are either in an annual or decadal scale. However, 

there are many historical documents which contain information about whether such as personal 

diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been 

collected and converted into a digitized form. As such, diary data exist in many other countries. 

This study aims to reconstruct historical daily weather during the 18th and 19th centuries using 

personal daily diaries which have qualitative weather descriptions such as ‘cloudy’ or ‘sunny’ 

by incorporating this information to a Climate model using a data assimilation scheme. 

To reproduce climate, a numerical weather prediction model can be used. In this study, 

Global Spectral Model by Scripps Experimental Climate Prediction Center based on Global 

Seasonal forecast system in National Centres for Environmental Prediction’s is used. This 

model was used as the operational forecast model there until 2004 and as the basis for several 

model development projects.  However, these models are not perfect, and the results can be 

improved if observations available in the past can be incorporated to model results. Data 

Assimilation is useful to get the best estimate from a model and observations considering the 

model errors and the observation uncertainties. There are attempts to reconstruct past climate 

using other proxies such as Tree ring, Coral, Ice core, and sediment.  The merit of these climate 

reconstructions is they cover several thousand years sometimes beyond last millennium. 

However, limitation of these proxy reconstructions is they are either annual or seasonal and not 

available in all the regions. On the other hand, the personal diary information provides more 

frequent information allowing to reconstruct climate in high resolution using online data 

assimilation techniques.  In this study, we used Local Ensemble Kalman Filter which uses an 

ensemble forecast to calculate error covariances. Moreover it has localization ability that can-

do assimilation grid wise to each state vector parallelly considering all the observation in the 

local area which makes the computation more efficient. Chapter 2 discuss the assimilation 

system in detail and characteristics of diary data. Japan has a digitized database of old personal 

diaries from the 17th century. There are around 20 diaries in the 19th century.  Even though 
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personal diaries have valuable information about daily weather, they are limited to qualitative 

information such as descriptions like ‘sunny’ and ‘cloudy’ and it was a challenge to convert 

them to usable quantitative format to be used in the climate model. This qualitative information 

was converted to probabilistic representative quantitative values of Total column cloud content 

(TCC) and downward shortwave radiation (SR). 

Chapter 3 further investigated the possibility of assimilating uncertain weather 

information. It was not clear about proper model settings and sensitivity of the number of 

observation and observation uncertainty for uncertain weather assimilation up to now. This 

chapter found solutions to them with several experiments. When TCC data is assimilated, the 

correlation in average over Japan improved to 0.47 from -0.01. In particular, the correlation of 

TCC improved to 0.64 from -0.13 at Choshi station. There are no significant contributions to 

other variables (i.e.  correlation change in: Temperature 0.3 to 0.2, Precipitation -0.95 to 0.1 

and Pressure 0.18 to 0.3). Experiments with a different number of observation stations showed 

improvement in the correlation coefficient and RMSE around the observations sites even with 

18 number of stations. This indicates even the fewer number of weather records are available 

local improvement can be achieved over those regions. Further, the simulation using data from 

418 stations improved the results of not only the exact areas near the stations but also in remote 

areas. For instance, correlation coefficients of TCC, Temperature, Precipitation and Specific 

humidity in a non-assimilated site (i.e.  Choshi station) improved from -0.13 to 0.38 ,0.30 to 

0.57, -0.10 to 0.53, -0.13 to 0.61 respectively. Simulations with different observations 

uncertainties were carried out to investigate the sensitivity to observation uncertainty and found 

that if a small observation uncertainty is given, assimilation scheme neglects the observations 

because ensemble spread is away from the observations.  This was clear in results where an 

observation error with 1% achieved only 0.17 correlation while observations with an error of 

50% correlation improved correlation coefficient to 0.42.  Impact from the initial conditions 

was analyzed by doing simulations with perturbated simulations instead of initial conditions 

created from time shift method as in previous experiments. The correlation was better in time 

shift method (e.g., correlation decreased to 0.45 with perturbated initial condition method in 

comparisons to 0.64 in Choshi station using time shift method and RMSE increased to 39.9% 

in comparison to 32.6% in time shift method). Thus, it was decided to use time shift method to 

create ensembles. 

Real weather diary data is much different from the regular observations or synthesized 

observations used in Chapter 3 because they do not have any numbers. Lack of boundary data 

such as SST and Sea-ice fraction are other main challenges for simulation of forecast model 
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during the 19th century. Currently, there is not any study which has overcome these challenges 

to assimilate qualitative description data. Hence in Chapter 4, we evaluated the impact from 

poor boundary condition. Assimilation system’s skill was found to reduce mainly in 

precipitation when low-frequency Sea surface temperature and Sea-ice fraction data are used. 

Correlation of all station average in Precipitation in 1995 April reduced from 0.58 to 0.32 even 

though correlation in SR and TCC changed only slightly (i.e. 0.79 to 0.81 and 0.76 to 0.65 

respectively). Another challenge is the sensitivity of assimilation time, diary data information 

is mostly available in daily scale and impact on assimilating at particular time step has not been 

investigated earlier.  Separate experiments showed that assimilation results in morning and 

evening have only a slight difference. In spring the correlation coefficient of the average of all 

the station's changes from 0.54 to 0.43 in Precipitation, 0.66 to 0.72 in SR, 0.66 to 0.73 in TCC 

and 0.81 to 0.8 in Temperature when assimilation time changed to 3 pm from 9 am. Further, 

impact to model performance by assimilating only three weather classes data was evaluated in 

comparison to assimilating TCC from JMA observations with added 30% uncertainty, and it 

was found that the model could still capture the temporal variation even though correlation of 

TCC reduced to 0.47 to 0.57 and 0.32 from 0.54 in precipitation in comparison to direct TCC 

observation assimilation with 30% uncertainty at Choshi station.  

Chapter 5 evaluate the skill of the model in assimilating document weather data. The main 

limitation was the lack of instrumental data in the past. Hence an alternative approach was 

followed by assimilating weather classes data derived from recent description data. All these 

experiments were carried out with real data keeping the consistency with 19th Century data 

quality. This is the first study to carry out such realistic experiments to investigate the 

performance of assimilating weather class data into a climate model.  Several simulations were 

done in the recent period where observations data available for validation. Twentieth-century 

weather classes, data derived from JMA descriptions was utilized. SR assimilation could 

improve the correlation of TCC average in all the stations from 0.19 to 0.68 in spring while 

reducing RMSE by 8 %. Improvements in other seasons and fields such as precipitation could 

be achieved as well. Further, we investigated opportunities to improve the accuracy of the 

model by incorporating other information such as the absence of precipitation and found the 

correlation of precipitation in all the station average could be improved to 0.67 from 0.45 in 

spring.  Monthly anomaly values over 1995-1999 showed good correlation in precipitation, 

TCC, and SR. By analyzing pressure fields, it could be shown that the model could capture the 

synoptic scale weather patterns such as extratropical cyclones (ExT cyclones). Bootstrap 

experiments were done using only half observations to check model performance when some 
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diaries are absence. Even though the model performance was reduced to some extent satisfying 

correlation could be achieved. Correlation of all the stations average in TCC was 0.57, in SR 

was 0.72 and in precipitation was 0.45. 

Chapter 6 assimilate weather information from weather diaries in 19th century into the 

climate model for the first time in the historical data assimilation field using the settings and 

parameters identified from Chapter 2 and Chapter 3 with weather classes from other studies for 

1830s and weather classes directly from derived from Historical Weather Data Base for 1860s 

as explained in Chapter 2. The model could capture weather types such as ‘cloudy’ and ‘sunny’ 

after data assimilation in 1830s similar to conditions of weather classes. Similar skill was 

observed in 1860s experiments. Due to the lack of instrumental data for daily comparison, 

monthly temperature from early instruments in Yokohama was used to check the model 

performance. The correlation coefficient in temperature without data assimilation and with 

assimilation were 0.96 and 0.94 respectively which are evenly high because the model can 

capture the seasonality.  The model could produce ExT cyclones similar to 1995 when several 

diaries indicate rainy (weather class 3) during the spring period. By investigating precipitation 

anomaly from 1861 to 1864, 1861 May shown to be wet (19.0mm/month higher) and 1864 

relatively dry year (13.5 mm/month less).  

The last chapter makes the conclusions and discusses the recommendations for future 

studies. In this study, weather categories from qualitative description data could be converted 

to weather classes and assimilate into a general circulation model using a data assimilation 

scheme. The results showed that assimilation of weather classes using SR improved the 

correlation of non-assimilated variables as well, and it was revealed that the resulted 

atmospheric distributions could capture the actual synoptic weather events. To further expand 

this research, more information from diaries such as wind direction and snow information can 

be utilized. This study used only the diary data in Japan. In future, this methodology can be 

applied globally when more digitized diaries are available in different regions.  



ix 

 

Publication Lists 

Presentations on Conferences/Symposium (as a participant) 

Panduka Neluwala, Kei Yoshimura, Junpei Hirano, Mika Ichino, 2017 Assimilating Various 

Fields from Historical Documents: Idealized Experiments, 水文・水資源学会 2017 年度総

会・研究発表会, 北見, 2017/9/19-21 (Presentation) 

P. Neluwala, K. Yoshimura, K. Toride, J. Hirano, M. Ichino, A. Okazaki Reconstruction of 

Historical Weather by Assimilating Old Weather Diary Data, PP31A-1264, AGU Fall 

Meeting 2017, New Orleans, 2017/12/11-15 (Poster). 

Panduka Neluwala, Kei Yoshimura, Sensitivity analysis of historical weather documents 

assimilation for reconstructing past climate, fourth International Conference on Hydrology 

delivers Earth System Science to Society (HESSS4), Tokyo, 2017/05-16-19 (Presentation) 

Panduka Neluwala, Kinya Toride, and Kei Yoshimura, Assimilation Experiment of Weather 

Diary Data Using an LETKF System, the 3rd RIKEN International Symposium on Data 

Assimilation, Kobe, 2017/2/28-2017/3/2 (Presentation) 

Panduka Neluwala, Kei Yoshimura (2016) Reconstruction of historical weather patterns by 

data assimilation of old diaries and general circulation model World Archaeological 

Conference -8 (WAC8), Kyoto 2016/08/28-/09/02 (Presentation) 

 

  



x 

 

Table of Contents 

 

Acknowledgements .................................................................................................................. iii 

Abstract ...................................................................................................................................... v 

Publication Lists........................................................................................................................ ix 

Table of Contents ....................................................................................................................... x 

List of Tables ......................................................................................................................... xiii 

List of Figures ......................................................................................................................... xiv 

1. Introduction ........................................................................................................................ 1 

1.1. Background ................................................................................................................. 1 

1.2. Limitations in long-term annual or decadal reconstructions ....................................... 2 

1.3. Data availability and previous attempts ...................................................................... 3 

1.4. Dissertation outline ..................................................................................................... 5 

2. Material and Methods ........................................................................................................ 6 

2.1. Introduction ................................................................................................................. 7 

2.2. Data ............................................................................................................................. 9 

2.2.1. Weather classes .................................................................................................... 9 

2.2.2. Converting to numerical values ......................................................................... 12 

2.2.2.1. Using weather classes ................................................................................. 12 

2.2.3. Observation data for validation .......................................................................... 14 

2.3. Weather Forecast model ............................................................................................ 16 

2.3.1. Importance of a physical model ......................................................................... 16 

2.3.2. Numerical Weather prediction models .............................................................. 17 

2.3.3. GSM ................................................................................................................... 17 

2.3.3.1. Physics packages ........................................................................................ 18 

2.4. Data Assimilation ...................................................................................................... 18 

2.4.1. Introduction ........................................................................................................ 18 

2.4.2. Kalman filter ...................................................................................................... 19 

2.4.3. Local Ensemble Transform Kalman Filter (LETKF) ........................................ 20 

2.4.3.1. Localization and inflation techniques ......................................................... 21 

2.5. Development of Data Assimilation system ............................................................... 22 



xi 

 

2.5.1. Initial condition .................................................................................................. 23 

2.5.2. Boundary conditions .......................................................................................... 24 

2.6. Conclusion ................................................................................................................. 25 

3. Evaluation of Model Performance and Sensitivity Analysis of Environmental Settings 27 

3.1. Introduction ............................................................................................................... 28 

3.2. Experimental settings and input data ........................................................................ 28 

3.3. Data Assimilation over Japan .................................................................................... 29 

3.4. Importance of the diaries from other regions ............................................................ 32 

3.5. Observation uncertainty ............................................................................................ 39 

3.6. Initial conditions ........................................................................................................ 41 

3.7. Ensembles results ...................................................................................................... 42 

3.8. Conclusion ................................................................................................................. 43 

4. Preparation for Realistic Past Data Assimilation Experiment ......................................... 44 

4.1. Observation time ....................................................................................................... 45 

4.2. Impact of assimilating weather classes ..................................................................... 47 

4.3. Boundary conditions ................................................................................................. 49 

4.4. Conclusion ................................................................................................................. 51 

5. Application of Proposed Data Assimilation System and Validation ............................... 52 

5.1. Experiments in 1995.................................................................................................. 53 

5.1.1. Solar Radiation Assimilation ............................................................................. 53 

5.1.2. Performance in local observation stations ......................................................... 56 

5.1.2.1. Performance in different regions ................................................................ 56 

5.1.3. Precipitation estimation skill of the assimilation system. .................................. 60 

5.1.3.1. Unrealistic heavy precipitation ................................................................... 62 

5.1.4. TCC assimilation ............................................................................................... 65 

5.1.5. Precipitation information assimilation ............................................................... 66 

5.1.6. Summary of model performance ....................................................................... 69 

5.1.7. Spatial climatology ............................................................................................ 71 

5.1.8. Long-term simulation results (1995-1999) ........................................................ 72 

5.2. Patterns of consecutive daily values of weather classes ........................................... 73 

5.3. Impact on different weather types ............................................................................. 74 



xii 

 

5.3.1. The impact from ExT Cyclones ......................................................................... 75 

5.3.2. Impact from typhoons ........................................................................................ 81 

5.4. No of zero precipitation days .................................................................................... 88 

5.5. Bootstrap Experiment ................................................................................................ 89 

5.6. Conclusion ................................................................................................................. 93 

6. Weather Reconstruction Using 19th Century Diary Data ................................................. 94 

6.1. Experiments in 1830.................................................................................................. 94 

6.2. Experiments in the 1860s .......................................................................................... 96 

6.2.1. The impact from ExT Cyclones ......................................................................... 99 

6.3. Observed weather classes vs weather classes from the model. ............................... 101 

6.4. Comparison with other proxies ............................................................................... 103 

6.5. Long-term trend....................................................................................................... 103 

6.6. Conclusion ............................................................................................................... 104 

7. Final Conclusion and Recommendations....................................................................... 105 

7.1. Conclusion ............................................................................................................... 105 

7.2. Recommendations ................................................................................................... 106 

REFERENCES ...................................................................................................................... 107 

 

  



xiii 

 

List of Tables 

Table 2-1 Key information types from the digitized weather diary database ........................ 10 

Table 3-1: Correlation coefficients for simulations at each station ........................................ 32 

Table 3-2: Summary of the model performance statistics for simulations with different 

number of observations in Oita station. ....................................................................... 37 

Table 3-3: Summary of model simulation performance at Choshi station with difference 

observation uncertainties. ............................................................................................ 41 

Table 4-1: Examples of weather incidents with occurred time in personal diaries ................ 45 

Table 4-2: Summary of the model performance statistics for simulations with JMA 

observations and simplified weather classes................................................................ 49 

Table 4-3: SST impact on the average of all the observation stations ................................... 50 

Table 5-1: Stations covered in each region and improvement to the correlation coefficient. 57 

Table 5-2: Events with heavy precipitation ............................................................................ 62 

Table 5-3: Summary of model performance for the three experiments ................................. 66 

Table 5-4: Statistical significance .......................................................................................... 71 

Table 5-5: Different types of weather in Japan ...................................................................... 74 

Table 5-6: Different types of weather in Japan ...................................................................... 75 

Table 5-7: Properties of Typhoon Ryan ................................................................................. 81 

Table 5-8: Weather classes at observation stations ................................................................ 82 

Table 5-9: Typhoons in 1995 Early summer .......................................................................... 86 

Table 5-10: Performance of the bootstrap simulations in all the observation stations average

...................................................................................................................................... 93 



xiv 

 

List of Figures 

Fig. 2.1: An example of daily weather descriptions in old diaries: “Hirosaki-han Edo” Diary 

(“Weather diary records since the 18th century,” 2017) ................................................ 7 

Fig. 2.2: Information from weather descriptions ....................................................................... 8 

Fig. 2.3: Historical Weather Database on The Web(歴史天候データベース・オン・ザ・

ウェブ) .......................................................................................................................... 9 

Fig. 2.4: Weather Classes at Yokohama in 1863 ..................................................................... 11 

Fig. 2.5: Available of weather classes data in 1995, data from 18 stations were used 

considering the availability of diary data in the past. .................................................. 12 

Fig. 2.6: Monthly JMA Total Cloud cover variations in 1995 over different stations ............ 13 

Fig. 2.7: Empirical relationships between (a): weather classes (1, 2 and 3) and TCC (b) 

Weather classes (1,2 and 3) and KT, the red line represents the median and star 

represent the mean in each box plot ............................................................................. 14 

Fig. 2.8: Comparison of JMA observations at Tokyo observation station and Chiba 

observation stations. ..................................................................................................... 15 

Fig. 2.9: Comparison of JMA observations vs NCEP reanalysis observations at Choshi 

station ........................................................................................................................... 16 

Fig. 2.10: Schematic diagram showing the process of data assimilation................................. 19 

Fig. 2.11: Schematic diagram showing the process of localization ......................................... 21 

Fig. 2.12: Schematic diagram of the experimental setup ......................................................... 23 

Fig. 2.13: SST data from NCEP-OI SST and Franke et al. (2017) over a random grid .......... 25 

Fig. 3.1: RMSE of TCC over Japan; (a) data assimilation simulation, (b)- control simulation 

without data assimilation, (c) improvement in RMSE (%) (b-a) ................................. 30 

Fig. 3.2: RMSE of TCC at Choshi station ............................................................................... 31 

Fig. 3.3: Influence of number of observations to model performances, RMSE difference of 

the assimilation and No assimilation model runs ........................................................ 34 

Fig. 3.4: Global mean of TCC (%) in (a) 18 station assimilation in Japan (b) 418 station Data 

assimilation simulation globally .................................................................................. 35 

Fig. 3.5: RMSE of TCC in 418 observation assimilation at Oita station................................. 36 

Fig. 3.6: RMSE of TCC in 418 observation assimilation at Choshi station ............................ 38 

Fig. 3.7: Sensitivity of observation uncertainties, TCC RMSE % difference between 

assimilation and No assimilation simulations .............................................................. 40 

Fig. 3.8: Sensitivity of observation uncertainties, TCC RMSE % difference between 

assimilation and No assimilation simulations .............................................................. 40 

Fig. 3.9: Performance of the model with different observation uncertainties ......................... 41 



xv 

 

Fig. 3.10: Performance of the model with different methods of ensemble initialization, (a) 

perturbation method, (b) Time shift method ................................................................ 42 

Fig. 3.11: Performance of the model with different number of ensembles ............................. 43 

Fig. 4.1: 6hour accumulated SR at 3 pm from January to March 2006 calculated using daily 

values vs 3 pm JMA SR data ....................................................................................... 46 

Fig. 4.2: Model performance in 1995 spring over Choshi observation station with the 

assimilation of TCC at two different times using three weather classes data. ............. 47 

Fig. 4.3: Performance with simple JMA weather classes ........................................................ 48 

Fig 4.4: Influence of SST temporal resolution on model performance.  The red and blue lines 

indicate the simulations results using SST from NCEP-OI SST (weekly SST & Sea-

Ice fraction) and Franke et al. (2017) (monthly SST & Sea-Ice fraction) respectively 

at Choshi station from April 1995 to May 1995. ......................................................... 50 

Fig. 5.1: Model performance in 1995 spring over all the station average with the assimilation 

of 3 classes (i.e. Rainy- Class 3, Cloudy- Class 2, Sunny Class -1) of weather data. . 55 

Fig. 5.2: Model performance in 1995 spring over Choshi observation station with the 

assimilation of 3 classes of weather data. .................................................................... 56 

Fig. 5.3: Regions ...................................................................................................................... 57 

Fig. 5.4: Region A .................................................................................................................... 58 

Fig. 5.5: Region B .................................................................................................................... 58 

Fig. 5.6: Region C .................................................................................................................... 59 

Fig. 5.7: Region D .................................................................................................................... 59 

Fig. 5.8: Six hourly model guess and analysis performance.................................................... 61 

Fig. 5.9: Times series variation of model performance at Choshi station ............................... 63 

Fig. 5.10: Pressure, Precipitation and TCC variation on 25th May .......................................... 64 

Fig. 5.11: Pressure, Precipitation and TCC variation on 29th May .......................................... 65 

Fig. 5.12: Performance after introducing zero precipitation days to data assimilation 

observations; (a)- all the station average, (b) – at Choshi station, (c) – at Wajima 

station ........................................................................................................................... 68 

Fig. 5.13: RMSE values of Solar radiation assimilation, No assimilation and Solar radiation 

assimilation with precipitation information assimilation experiments in different 

seasons ......................................................................................................................... 69 

Fig. 5.14: RMSE values of Solar radiation assimilation, No assimilation and Solar radiation 

assimilation with precipitation information assimilation experiments in different 

seasons ......................................................................................................................... 70 

Fig. 5.15: Spatial variation of TCC in different seasons (%)................................................... 72 

Fig. 5.16: March Anomaly variation from 1995 -1999 ........................................................... 73 



xvi 

 

Fig. 5.17: Number of rainy days vs. observed precipitation and model precipitation. ............ 74 

Fig. 5.18: Pressure distribution of ExT Cyclones and Anticyclones in May ........................... 77 

Fig. 5.19: Precipitation during ExT cyclone season. ............................................................... 78 

Fig. 5.20: Development of low-pressure area during the ExT cyclone 05/14-5/16 ................. 79 

Fig. 5.21: Performance of other variables during the ExT cyclone 14-17 May ...................... 80 

Fig. 5.22: (a) Track of Typhoon 199514 (RYAN), (b) Visual image of Ryan on 23rd 

September 1995 (Kitamot, 2015) ................................................................................. 81 

Fig. 5.23: Precipitation at different stations in September 1995 .............................................. 83 

Fig. 5.24: TCC and SR at Nagasaki station ............................................................................. 84 

Fig. 5.25: Development of low-pressure area during the Tropical cyclone 09/22-9/23 .......... 84 

Fig. 5.26: Precipitation during the Tropical cyclone 09/22-9/23 ............................................. 85 

Fig 5.27: BST Choshi performance at Choshi station ............................................................. 91 

Fig 5.28: Bootstrap simulations by neglecting half of the observations performance over all 

the stations ................................................................................................................... 92 

Fig 6.1: Availability of weather diary data in the 1830s and 1860s ........................................ 95 

Fig 6.2: TCC (%) and SR(W/m2) variation at Choshi station in Jan-March in 1830.............. 96 

Fig 6.3: Model performance in 1863 winter at Choshi station. The standard deviation of the 

ensemble spread is indicated by the shaded color. ...................................................... 97 

Fig 6.4: Model performance in 1863 spring at Choshi station. The standard deviation of the 

ensemble spread is indicated by the shaded color. ...................................................... 98 

Fig 6.5: Model performance in 1863 rainy season at Choshi station. The standard deviation of 

the ensemble spread is indicated by the shaded color. ................................................. 98 

Fig 6.6: Model performance in 1863 summer at Choshi station. The standard deviation of the 

ensemble spread is indicated by the shaded color. ...................................................... 99 

Fig. 6.7: Model weather classes in May 18th 1863 ................................................................ 100 

Fig. 6.8: Pressure and precipitation distribution of ExT Cyclones in May 18th 1863 .......... 100 

Fig 6.9:  Relative solar radiation of model vs weather classes at Wajima station ................. 101 

Fig 6.10:  Weather classes in May from 1995-2000 at Wajima station ................................. 102 

Fig 6.11:  weather classes at Takada station in May 1863. .................................................... 102 

Fig 6.12: Comparison with observed monthly temperature reconstructed using instrumental 

observations in Yokohama (Zaiki et al., 2006) .......................................................... 103 

Fig 6.13: Annual variation of precipitation and TCC in Choshi station ................................ 104 



1  Introduction 

1 

 

 

 

 

 

Chapter 1 

 

1. Introduction 

1.1. Background 

Information on past climate can help to study the influence of climate on agriculture, health 

and economy (Buntgen et al., 2011). To understand the changing atmospheric circulation due 

to the insolation and other factors investigation of past climate records is essential (Seppä and 

Birks, 2001) and to predict the future climate, it is essential to check the agreement between 

past data and the climate models (Lunt et al., 2013).   

One of the main barriers to reconstruct long-term data series is lack reliable data in the 

past. As an alternative to instrumental data, climate proxies such as stable water isotope data, 

Atmosphere CO2 concentration, sediment depositions are used for climate reconstructions. 

Tree ring data are shown to be a valuable proxy of precipitation and temperature. D’Arrigo 

et al., (2005) reconstructed December–February Nino-3 sea surface temperatures based on 

subtropical North American tree-ring records to examine characteristics of ENSO variability 

over the past six centuries (i.e. AD 1408–1978). Reconstructions of central European summer 

precipitation and temperature variability over the past 2500 years was done using tree ring data 

by Buntgen et al., (2011). 

Past millennium climate anomaly in Europe was analyzed by Goosse et al., (2012) by 

assimilating temperature reconstructed using multiple proxies such as Tree ring, Coral, Ice 

core, sediment  by of Mann et al., (2009)  to Earth system model (LOVECLIM) (Goosse et al., 

2010) using  particle filter data assimilation method developed by  (Leeuwen et al ., 2009). 

The stable isotopic ratio of precipitation differs according to the scale of the precipitation, 

for example, tropical cyclones have a low value compared to that of normal summer 
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precipitation. Hence the isotopic analysis of ancient freshwater fossil carbonate shells, fossil 

mammal teeth or tree rings can be used to analyze past tropical cyclone activities (Lawrence, 

1998). Steiger et al., (2017) showed water isotope data from ice cores could reconstruct 

historical climate in the 19th  century by assimilating isotope-enabled atmospheric model 

ECHAM5-wiso. Okazaki et al., (2017) showed the possibility of global climate reconstruction 

by assimilating to Isotopic proxies (δ18O in ice cores, corals, and tree-ring cellulose) to Isotope 

enable Global Circulation models (GCM).  

The merit of about climate reconstructions is they expand to several thousand years 

sometimes beyond the last millennium. However, the limitation of these proxy reconstructions 

is they are either annual or seasonal and not available in all the regions.  

1.2. Limitations in long-term annual or decadal reconstructions 

Climate can influence to the crops, food production and economy. Flowering and 

harvesting period are observed to be changed with the climate.  For instance, Cherry blossom 

day is changing over the last 50 years in Japan (Japan Meteorological Agency, 2016). On the 

other hand information about the flowering date can be used as a proxy for climate 

reconstructions.  Aono et al., (1994) has calculated the March temperature in Kyoto from the 

11th century using a statistical method with cherry blossom records. Temperature has a 

significant impact on the quality of wet rice during the ripening period. During the 2010 heat 

wave, in whole Japan except Hokkaido,  quality of rice got deteriorated  (MOEJ, 2012). To 

investigate this kind of phenomena, climate reconstruction with a higher temporal resolution 

would be better. 

Precipitation frequency too can influence the vegetation (Zhang et al., 2013).  Brien et al., 

(2013) has evaluated the impact of rainfall pattern on vegetation by changing the watering 

interval on different specie’s seeds and evaluating the germination process. According to them, 

frequency influences biomass production and influence the competition between the crops. To 

investigate this kind of incidents a long-term higher frequency weather information is useful. 

The two main limitation of traditional proxies are lack of availability, and their low 

temporal resolution can be overcome with document data which has monthly, daily or even 

sub-daily information (Mikami, 2008) in several areas where other proxies are not available. 
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1.3. Data availability and previous attempts  

Old documents are recently utilized for historical climate constructions (Franke et al., 

2017). However, the documents currently in used are limited to old instrumental records. On 

the other hand, there are qualitative data such as personal diaries. These records do not have 

numerical values but provide a lot of information about the historical period.   The value of 

weather information in personal descriptions is essential today as well. Even today many 

people post in social media about the weather events. A recent study about Twitter messages 

showed the possibility of retrieving weather information from these qualitative data in the 

present (Hannak et al., 2010). 

Lorrey et al., (2015) digitized the meteorological data from an instrumental diary belongs 

to New Zealand. That is one of the oldest instrumental observations in the mid-19th century 

(i.e. 1839-1844) in the southern hemisphere. It has qualitative instrumental observations and 

remarks about the weather such as the snow cover.  The study has found lower winter 

temperature in winter and warmer summer than present which may be linked to influence from 

ENSO. Analysis of weather on these periods helps to understand the difficulties faced by the 

early settlers.   

Monthly, seasonal and annual temperature reconstructions for Central Europe has been 

derived using documentary evidence since 1500 AD (Dobrovolný et al., 2010), they found 

long-term temperature decreasing trend over the last five centuries in three seasons winter, 

spring and summer. This example shows the importance of expanding similar investigations 

globally. Wang, (1992) has discussed sources of Chinese historical weather reports from 18th 

century Bell et al., (1978)  has analyzed the historical data with weather information in Europe 

during the medieval period in Europe. Zhang et al. (2013) reconstructed seasonal change in 

Beijing 1867-1897 using a diary with weather records considering the number of rainy days. 

However, it is limited to seasonal reconstructions without a physical model. Lake freezing date 

records are available since the 15th century and has been used to reconstruct winter temperature 

for five centuries (Mikami, 2008). 

Gathering of historical document data is ongoing for instance Yoshimura et al., (1993) 

have collected hundreds of Japanese personal data from the 17th century to 18th century and 

made a Historical Weather Data Base (HWDB) and those data are available online.  Similar 

information is available in other countries and has been used for climate reconstructions. 



1  Introduction 

4 

 

Toride et al. (2017) have shown the possibility of reconstructing past weather using 

uncertain weather information found in documents with idealize experiments. In that study, 

they have converted total column cloud percentage (TCC) into three classes 10% (Sunny), 50% 

(partially cloudy) and 90%(Cloudy) using recent climate data to synthesize personal weather 

data. That study can be recognized as the first step towards assimilating uncertain weather 

classes into a climate model. However, there are several limitations in that study. It is limited 

to making weather classes based on numerical values from recent instrumental observations 

and reanalysis data. However real diaries are much complicated and have only qualitative 

descriptive data. Hence it is required to develop a method to convert descriptive information to 

usable numbers. Moreover, that study used recent SST and Sea Ice data even though in the 19th 

century SST data is available only in the monthly low-quality state. Moreover, they do not 

cover the impact of observation availability or observation uncertainty level. There is diverse 

information in a diary such as presence of precipitation and can be assimilated even though the 

above study only assimilates TCC. These limitations indicate that further studies are crucial 

before using the actual weather diary data. Ichino et al., (2001) has developed weather classes 

using historical weather descriptions patterns and recent Japan Metrological Agency (JMA) 

weather patterns. In this study we utilized the weather classed derived from the JMA weather 

description data in the recent period to evaluate the model performance and weather classes 

from HWDB to reconstruct past weather.  

Only Europe and some other regions have instrumental observations before the mid-19th 

century (Lamb, 2005). Japan is a blind point in this pre-industrial period (Zaiki, 2006).On the 

other hand, Japan has much descriptive information in documents such as personal diaries.  

Hence, this study focused on Japan. The developed system can apply to the rest of the world 

as well.  

This study is the first study to assimilate information from a description data set into the 

climate model and will be an immense contribution to historical weather reconstruction studies  
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1.4. Dissertation outline 

Chapter 2 introduce the historical weather data availability and the process of converting 

these data into the simple weather classes such as sunny, cloudy and rainy. Furthermore, it 

describes how the simplified classes were transformed into numerical values by comparing 

with instrumental observations. Illustrate numerical models; Global circulation model is used 

as the climate model, and a data assimilation scheme is used to assimilate weather information 

to the climate model. 

Chapter 3 introduce the model with idealize experiments. Sensitivity to the number of 

observations, number of ensembles, sensitivity to observation error, improvements to other 

variables from single variable assimilation and impact from initial conditions are also 

discussed. 

Chapter 4 provides details about the experimental setup for past weather description data 

assimilation and test the influence of the boundary conditions , the influence of assimilation 

time and contribution from weather classes relative to exact values.   

Chapter 5 validates the proposed model using JMA observations in the recent period. 

Simulations results after assimilating Solar radiation derived from descriptive information 

against the ground observations are compared. Assimilation of alternative variables such TCC 

is also investigated. Improvement by incorporating additional information such as the absence 

of precipitation is also analyzed.   

Chapter 6 apply the model to the historical period during the 1830s and 1860s. Model 

results are compared with the 1995 experiments and observations and other proxy data. 

Importance of using weather documents over other regions are also shown.  

Chapter 7 conclude finding of this study and recommend possible future directions.  
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Chapter 2 

 

2. Material and Methods   

Abstract: 

To reproduce climate, a numerical weather prediction model can be used. In this study, 

Global Spectral Model by Scripps Experimental Climate Prediction Center based on Global 

Seasonal forecast system in National Centres for Environmental Prediction’s is used. This 

model was used as the operational forecast model there until 2004 and as the basis for several 

model development projects.  However, these models are not perfect and the results can be 

improved if observations available in the past can be incorporated to model results. Data 

Assimilation is useful to get the best estimate from a model and observations considering the 

model errors and the observation uncertainties. There are attempts to reconstruct past climate 

using other proxies such as Tree ring, Coral, Ice core, and sediment.  The merit of these climate 

reconstructions is they cover several thousand years sometimes beyond last millennium. 

However, limitation of these proxy reconstructions is they are either annual or seasonal and not 

available in all the regions. On the other hand, the personal diary information provides more 

frequent information allowing to reconstruct climate in high resolution using online data 

assimilation techniques.  In this study, we used Local Ensemble Kalman Filter which uses an 

ensemble forecast to calculate error covariances. And it has localization ability that can-do 

assimilation grid wise to each state vector parallelly considering all the observation in the local 

area which makes the computation more efficient. Chapter 2 discuss the assimilation system in 

detail and characteristics of diary data. Japan has a digitized database of old personal diaries 

from the 17th century. There are around 20 diaries in the 19th century.  Even though personal 

diaries have valuable information about daily weather, they are limited to qualitative 

information such as descriptions like ‘sunny’ and ‘cloudy’, and it was a challenge to convert 

them to usable quantitative format to be used in the climate model. This qualitative information 
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was converted to probabilistic representative quantitative values of Total column cloud content 

(TCC) and downward shortwave radiation (SR). 

2.1. Introduction 

Weather information can be found on personal diary records in several countries. For 

example, Mikami et al., (1988) discussed about  Japanese diary data. Similarly,   Zhang et al., 

(2013) using Chinese diary data and Bernhardt et al., (2015) using the United States have 

reconstructed regional weather patterns with information from diary data. A sample of a 

Japanese diary page is shown in Fig. 2.1. The descriptions in diaries provide information about 

precipitation, wind and cloudiness. Most of the documents have only keywords such as 

‘sunny’, ‘cloudy’, ‘rainy’ etc. as shown in Fig. 2.2. Several diaries have information in detail 

with time and weather intensity such as ‘heavy rain’, ‘early morning rain’ etc. 

 

Fig. 2.1: An example of daily weather descriptions in old diaries: “Hirosaki-han Edo” Diary 

(“Weather diary records since the 18th century,” 2017) 
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This study used the weather information from the HWDB, which has 50 diaries with 

weather information during the 19th century, 23 diaries during the 18th century and 11 diaries 

during17th century. However, a single diary does not cover the whole period or continues. For 

instance, there are only 21 diary records in 1860. The weather data is available online 

(Yoshimura, 2006) at https://tk2-202-10627.vs.sakura.ne.jp/. The website shows ‘good 

weather’, ‘bad weather’ of all the weather diaries in Japan on each day in maps or tables. Here 

the good weather means the state of weather that is closest towards a sunny day and bad weather 

mean state furthers from sunny. In someday the weather can be sunny throughout the period. 

In this case, both these may have similar information. However, in many days weather can 

change during the day. If the weather was cloudy in the morning and become sunny in the 

afternoon, good weather would indicate sunny and bad weather will indicate cloudy. However, 

as it is difficult to extract data from the website the raw digitized weather was collected through 

personal communications and will be explained in the next section.  

 
 

Fig. 2.2: Information from weather descriptions 

https://tk2-202-10627.vs.sakura.ne.jp/
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Fig. 2.3: Historical Weather Database on The Web(歴史天候データベース・オン・ザ・

ウェブ) 

 

2.2. Data 

2.2.1. Weather classes 

The information from the diaries cannot be used directly as they have a lot of information 

in various styles. HWDB has information about wind, thunder and warmth. However, to reduce 

the complexity, only the information representing sunshine and precipitation was utilized as 

this is the first attempt to use such data in a climate model. Even though information about 

these two variables provides a lot of information as the given categories as Table 2-1, 

converting these categories into a usable format is a challenging task. If we have a digital range 

we can follow the Toride et al. (2017) as explained in the introduction, however, because these 

data are qualitative which only words, first it was necessary to convert the weather categories 

into a usable format (simple weather classes). Converting to weather classes can be done by 
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simplifying either category information in Table 2-1 or reading the text descriptions. Ichino et 

al., (2007) has converted the text descriptions in diaries into three weather classes (i.e. 1,2 and 

3) considering sunshine and precipitation information in the diaries. However, the weather 

classes data produced by them is available only for a limited period and locations, a separate 

algorithm was prepared to convert whether categories in Table 2-1 to weather classes in this 

study while keeping the consistency with classes by Ichino et al., (2007).   

Table 2-1 Key information types from the digitized weather diary database  

TH code Meaning in Japanese Meaning 

0 記 述なし 判読不能(虫 食いその他) No data 

1 快 晴, 晴, 吉, 能 Clear, Sunny 

2 薄 晴, 薄 曇 り Slightly Cloudy 

3 曇, 陰 Cloudy 

4 に わか雨,時 雨(雷 鳴,雷 電はなし) Shower 

5 雷 雨 Thunder Storm 

6 大 雷雨, 雷 大雨 Heavy Thunderstorm 

7 小 雨, 細 雨 Light rain 

8 雨, 降 Rain 

9 大 雨, 甚 雨 Heavy Rain 

A あ られ, 雹, 霙 Hail 

B に わか雪 Snow Shower 

C 小 雪 Light Snow 

D 雪, 大 雪 Snow, Heavy Snow 

 

In early 19th century, Japan had a strong famine during the 1830s in the Edo period. To see 

the possibility of reconstruction of weather in 1830, using the weather classes data of Ichino et 

al., (2007) an experiment was done in this period. However, there is no instrumental 

observation to evaluate model performance in the past. Hence several experiments were carried 

out in 1860 where few instrumental observations are available. 1860s diary data was converted 
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to classes in this study. The conversion was done to keep the consistency with the classes of 

Ichino et al., (2007) as follows.  

Class 1 - Sunny and no precipitation 

Class 2- Change from sunny to cloudy or sunny day with little precipitation or cloudy day 

Class 3- Cloudy and Precipitation  

The Fig. 2.4 shows the weather classes in Yokohama station during 1863 from Ichino et 

al., (2007) and the derived weather classes from the HDWB in this study. According to the 

results, only a few days have a mismatch due to the different interpretation of nighttime rainfall 

in few days.  

 

Fig. 2.4: Weather Classes at Yokohama in 1863 

 

 This study aims to use information in historical details into climate models. However, due 

to lack of validation data in the past, we focused in recent descriptions data of JMA as Ichino 

et al., (2007) has converted the JMA description data into weather classes keeping the 

consistency with the diary weather information.  Hence, we considered they are similar and 

used to evaluate the model performance before applying the historical weather data. We 

utilized 18 stations (see Fig. 2.5) data in Japan.  
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Fig. 2.5: Available of weather classes data in 1995, data from 18 stations were used 

considering the availability of diary data in the past. 

 

2.2.2. Converting to numerical values   

2.2.2.1. Using weather classes  

To assimilate the weather classes, it is essential to convert them to physical variables. 

Weather classes are found to be correlated to daily downward shortwave solar radiation at the 

surface (SR) Ichino et al., (2007).  On the other hand, the Previous idealized study has shown 

the potential to assimilate TCC classes (Toride et al., 2017) in numerical models. Toride et al., 

(2017) converted TCC in JMA data to weather classes to check the contribution from weather 

classes using following simple approach 

 Less than 20% –> 10% (Sunny)  

• 20-80% -> 50% (Partially Cloudy)  

• More than80% -> 90% (Cloudy) 

However, there was no evaluation for the suitability of above classes, and it limits to 

convert weather classes from TCC. Hence the correlation between the weather classes and SR 

and TCC were evaluated and empirical relationships were developed between the variables and 

weather classes using the recent JMA observations in these stations.  

Ichino et al., (2007)  introduced an empirical relationship between  TK  (Daily clearness 

index) and weather classes in each month. Values are calculated from in d s TQ Q K=    Eq. 2-1
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d s TQ Q K=    Eq. 2-1 using 20 year’s (i.e. 1979-1998)  JMA SR data ( sQ ) and Top atmosphere 

solar radiation ( dQ ).    

 d s TQ Q K=    Eq. 2-1 

These Tokyo station’s TK  values were used for some basic experiments over Japan. 

However, as climatology differs from one location to another (see Fig. 2.6)  TK  values were 

calculated using a similar approach for each of the 18 stations using JMA data and weather 

classes data in 1995-1999.  

 

Fig. 2.6: Monthly JMA Total Cloud cover variations in 1995 over different stations 

 

Similarly, for each month TCC values for each weather class was calculated using the 

weather class’ data and JMA daily average cloud cover data for the 5-year period.  
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(a) (b) 

Fig. 2.7: Empirical relationships between (a): weather classes (1, 2 and 3) and TCC (b) 

Weather classes (1,2 and 3) and KT, the red line represents the median and star represent the 

mean in each box plot 

 

Box and whisker diagram in Fig. 2.7 (a) show the calculated monthly SR and TCC values 

at Choshi observation station for each weather classes. A noticeable trend in SR for each 

weather class can be identified as stated by  (Ichino et al., 2001) and SR values have smaller 

error variance compared to TCC. On the other hand, TCC ranges have a higher overlap (for 

instance weather classes 2 and 3 has a very high overlap and large error variance). To represent 

these errors, for SR 50 w/m2 value random error is added for solar radiation as they have similar 

variance. For TCC considering their variance 10%, 20%, 30% random error is added for TCC 

values of each category respectively.    

These calculated TCC and Kc values for each weather class would be a probabilistic 

representative value, and the actual value lies in the range. Hence we added a random 

normalized error considering the standard deviation of these values.   

2.2.3. Observation data for validation  

To evaluate the model, JMA observations are considered. However, the model has a larger 

grid size around 200 km even though JMA is point observations. On the other hand, the model 

may produce average results for the whole area causing to average different climatology and 

topography as well.  Due to this model may have a bias from the JMA observations and may 

deviate from the point observations. To evaluate the impact, a comparison between Tokyo JMA 

observation station and Chiba observation station data were done and as shown in Fig. 2.8. 

Even though they are only around 100 km away and fall into the same grid, a noticeable 

difference can be seen. Chiba station has more precipitation events, and only two precipitation 
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events are overlapped, in those two events (01/14,01/21) too Chiba has a considerably higher 

amount of precipitation and around 3-degree low temperature.  

  

  

 

Fig. 2.8: Comparison of JMA observations at Tokyo observation station and Chiba 

observation stations.    

 

To check the impact of resolution further, JMA results were compared with a reanalysis 

dataset which has a similar characteristic with the proposed model. A data set produced by 

applying spectral nudging to National Centers for Environmental Prediction–Department of 

Energy (NCEP–DOE) Reanalysis-2  “NCEP_Reanalysis 2 data” ( n.d.), Kanamitsu et al., 

(2002a) will be referred as NCEP data here onwards was used for this purpose. Fig. 2.9 shows 

the results, here a significant bias in the pressure can be seen in NCEP data which may be due 

to the averaging topography in the grid.  Temperature also has a positive bias even though 

temporal correlation is very high. JMA does no directly measure TCC directly instead it 

provides Cloud cover in 1-10 scale, to compare the two types, NCEP TCC percentage also 

brought to a 1-10 scale by dividing 10. According to the figure, it has a good correlation with 
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NCEP data thus JMA cloud observations are used as TCC observations in this study. The 

pressure between JMA and NCEP has a considerable bias through the period indicating that 

model results too has a similar bias. To investigate further the influence of resolution, it is 

required to compare the more grids which have various local climatologies.  

  

  

 

Fig. 2.9: Comparison of JMA observations vs NCEP reanalysis observations at Choshi 

station 

 

2.3. Weather Forecast model  

2.3.1. Importance of a physical model 

In historical climate reconstruction, statistical and empirical methods are used. (Ge et al., 

2005) used an empirical method based on field experiments to reconstruct precipitation using 

memo documents to the emperor which consists of 104,996 records of moisture penetration 

depth after precipitation and snow depth information. However, from those data, it would be 
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possible to estimate other variables if a numerical weather prediction model base on physics 

could be used.  In a numerical weather prediction model once a variable is improved other 

deterministic variables would also improve. (McGregor et al., 2013) used a coupled general 

circulation model (CGCM) was used to investigate changes in El Niño–Southern Oscillation 

variance over the past six centuries. Compo et al., (2006) used NCEP global medium-range 

forecast model used in 1998 (Kanamitsu et al., 1991) to check the possibility of developing 

100-Year Reanalysis Using Only Surface Pressure Data.  

2.3.2. Numerical Weather prediction models  

To represent the physical process in planetary atmosphere, numerical models are used 

based on Navier–Stokes equations. Atmosphere Global Circulation models (AGCMs) are 

developed in two different approaches called grid pin models and spectral models. In grid point 

model variables are assigned above the intersection of each grid in a regular matrix whereas in 

the spectral model’s known as Global Spectral Models (GSM) variables are represented by a 

periodic function which is calculated as the sum of spectral harmonics. The spectral 

representation of variables has several advantages such as the exact calculation of space 

derivatives, no pole problems, and no instability arising from aliasing in an ideal situation 

(Orszag et al., 1970). Hence in this study global spectral model is used. Several researchers 

used Global Spectral Model (GSM) developed by NCEP to investigate data assimilation 

techniques. Szunyogh et al., (2007) used NCEP Global Forecast System (NCEP-GFS) GSM  

that was in operational use at the beginning of 2001 to investigate performance of LEKF, 

Whitaker et al., (2008) used NCEP-GFS GSM which was operation in March 2004 to 

investigate the performance of ensemble data assimilation including LETKF.   

2.3.3. GSM 

In this study, GSM by Scripps Experimental Climate Prediction Center (ECPC) based on  

Global Seasonal forecast system (SFM)  in National Centers for Environmental Prediction’s  

(NCEP) which was an operational seasonal forecast system by NCEP  (Kanamitsu et al., 

2002b) is used. This model was used as the operational forecast model at NCEP until 2004, 

and as the basis for several model development projects (Saha et al., 2006). Yoshimura et al., 

(2014) assimilate information from isotopes by carrying out observation system simulation 

experiment (OSSE) where synthetic data is created mimicking the actual data from satellite or 

ground observations. This study demonstrated how only isotope data assimilation could 

improve the isotope fields and atmospheric dynamics (temperature, wind speed, humidity, and 
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surface pressure) into the above GSM. Toride et al., (2017) used the same GSM to evaluate the 

performance of climate model with uncertain weather information. Considering the similarity 

of this study, the same GSM was utilized in this study.  

2.3.3.1. Physics packages 

The model’s physics packages include the following schemes; 

• Longwave radiation scheme of Chou and Suarez (1994),  

• Shortwave radiation scheme of Chou (1992),  

• Relaxed Arakawa–Schubert convective parameterization (Moorthi and Suarez, 

1992),  

• Non-local vertical diffusion (Hong and Pan, 1998),  

• Mountain drag (Alpert et al., 1988),  

• Shallow convection (Tiedtke, 1983),  

• Noah land surface scheme (Ek et al., 2003).  

The commonly use  T62 grid system (about 200 km horizontally) and vertically 28 sigma 

layers was applied in this study. The time step of the model was set to 20-30 minutes depending 

on the situation. 

2.4. Data Assimilation  

2.4.1. Introduction  

After the model forecast, if there are observations, information from the observations can 

be incorporated to the guess and use as the initial condition for the next model run. Both the 

information from diaries and the model has an uncertainty. Data Assimilation is useful to get 

the best estimate from a model and observations. In this study, our focus is to obtain an accurate 

estimation with the available information and know physical laws between the variables (i.e. 

model). Considering the model errors and the observation errors with a Bayesian approach as 

shown in the schematic diagram (see Fig. 2.10). As in Eq. 2-2 Bayesian methods provide the 

probability to occur some event when there is some knowledge about it.   
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Fig. 2.10: Schematic diagram showing the process of data assimilation  
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Eq. 2-2 

 

Where  ( )P x  is the probability density function (PDF) of model state before the 

observation is known (prior) and ( )0p y  is the PDF of the observations and ( )0|p x y is 

probability density function of model state if the observation occurs (Likelihood).   

2.4.2. Kalman filter 

A Kalman filter is one of the classical data assimilation method among various 

assimilation schemes. However, as this model is a linear model it is problematic to be used in 

a nonlinear forecasting models such as the GSM because for error covariance of the nonlinear 

models cannot be estimated beforehand unlikely in linear models on the other hand 

computational cost is significantly high due to the calculation of the time evolution of the error 

covariance (Tippett et al. 2003). 

There are two kinds of approaches, stochastic and deterministic approaches in 1994 

(Evensen, 1994) introduced Ensemble Kalman Filter (EnKF) a stochastic approach to handle 

the above limitations of the Kalman Filter by using ensembles to forecast error covariance and 

model estimate error covariance. This Enkf was successfully applied to a perfect model 

experiment using a low-resolution atmosphere model by Houtekamer and Mitchell (1998). 

However stochastic approach requires to add and perturbation to observation to update 

ensemble members who can add a bias to the estimate of analysis error covariance (Whitaker 

and Hamill, 2002). 

On the other hand perturbed observations are not necessary for creating the ensembles 

when using  Deterministic methods, such as the Ensemble Square Root Filter (EnSRF),  
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(Tippett et al., 2003). To increase the efficiency Bishop et al., (2001) introduced a deterministic 

method, ensemble Transform Kalman Filter (ETKF) which finds a transformation matrix 

which makes covariance calculation more efficient. 

Below we provide a basic explanation to the ensemble Kalman filter method  used in this 

study Following the notation in Whitaker and Hamill (2002), the EnKF update equations are 

𝐱𝑎 = 𝐱̅𝑏 + 𝐊(𝐲0 − 𝐇𝐱𝑏) Eq. 2-3 

𝐏𝑎 = (𝐈 − 𝐊𝐇)𝐏𝑏  

Where, 

 𝐱𝑏 - m-dimensional model background state vector 

 𝐱𝑎 - model analysis state vector 

 𝐲0 - p-the dimensional vector of observed values 

 𝐇 – observational operator that converts the models state to the observation space 

𝐏𝑏 is the m × m-dimensional background error covariance matrix 

𝐏𝑎 - analysis error covariance 

𝐈 - m × m-dimensional identity matrix, and the overbar denotes an ensemble mean 

𝐊 - m × p-dimensional Kalman gain matrix 

𝐊 = 𝐏𝑏𝐇T(𝐇𝐏𝑏𝐇T + 𝐑)−1 

Where, 

 𝐑 -p × p-dimensional observational error covariance matrix.  

In this study, the model state vectors consist of air temperature, specific humidity, surface 

air pressure, precipitation, total column cloud content and downward shortwave radiation. The 

model background state 𝐱𝑏 is calculated by running the GSM to the analysis model state 𝐱𝑎 

from the previous time step.  

Even though H can be a complex nonlinear operator here, it only extracts the variables 

from the 𝐱𝑏  at observation locations. Next chapter explain about the 𝐲0  extraction from 

weather dairies and the observational error 𝐑. 

2.4.3. Local Ensemble Transform Kalman Filter (LETKF) 

Ott et al., (2004, 2002) introduced Local Ensemble Kalman Filter (LEKF), which has 

localization ability that can-do assimilation grid wise to each state vector parallel considering 

all the observation in the local area which makes the computation faster. Also, a lesser number 

of ensembles are required to this. In this study, we used the LETKF (Hunt et al., 2007), Harlim 
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et al., (2005) which applies the ETKF locally as in the LEKF. Final equations of LETKF are 

as below  

a f fX x X T= +    

( ) ( )( ) ( )
1

1 0 21
Ta f aT P Y R y H X m P−  =  − + −    

( ) ( ) 11
TaP m Y R Y − = −  +  

 
  

Pa – analysis error covariance matrix m-ensembles N-dimensional 

If the observational errors are uncorrelated and R is diagonal 

20 ensembles enough  (Miyoshi and Yamane, 2007) 

 - Inflation parameter to keep filter divergence 

H- Linear observation operator 

R- Observational error covariance matrix 

2.4.3.1. Localization and inflation techniques  

Due to the localization, data assimilation can minimize the errors due to the random 

correlations among distant localization allowing to use lesser number of ensembles  (Hamill et 

al., 2001). To reduce the influence of discontinuity, we use a Gaussian function as in Eq. 2-3 

introduce by Miyoshi and Yamane (2007) to smoothen the weighting function. 

 
Fig. 2.11: Schematic diagram showing the process of localization   
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We use a Gaussian function introduce by Miyoshi and Yamane (2007)to smoothen the 

weighting function to minimize the discontinuity. 500km is used as the minimum physical 

distance  

2

2
( ) exp(

2

r
w r



 
= − 

   

Eq. 2-4 

Where, 

r- Distance between the local patch center and observation 

 - Minimum physical distance 

Furthermore, the covariance inflation method was used to overcome a common limitation, 

an underestimation of the error variance (Anderson, 2009) in ensemble filters. In this study 

adaptive covariance inflation method by Miyoshi et al., (2011) was used, which estimates 

multiplicative inflation parameters adaptively. 

2.5. Development of Data Assimilation system  

Fig. 2.12 show a schematic diagram of the developed model in this study. In this study 

GSM explained in section 2.3.2 is used to forecast the climate and the data assimilation 

technique (i.e. LETKF) is used to incorporate the observation whenever the observations are 

available. Forecast model provides an ensemble guess from the initial ensemble condition from 

the previous time step and the assimilation scheme incorporate observations into the model 

guess ensembles and provide the ensemble analysis for the next initial condition of the model. 

If no observations are available, model guess will be directly used as the next initial condition. 

This procedure repeats until the end of the simulation in 6-hour cycles. 



2  Material and Methods 

23 

 

 

Fig. 2.12: Schematic diagram of the experimental setup  

 

2.5.1. Initial condition  

In order to start a model which is known as initializing the model, it is essential to specify 

specific variables (Reichler and Roads, 2003). As the assimilation system is an ensemble 

forecast, the forecast model runs parallelly multiple runs initiated with different initial 

conditions.  

 In most of the ensemble forecast studies ensembles are created by picking the initial 

condition from another timestamp (Yoshimura et al., 2014), (Toride et al., 2017). Even though 

the initial condition is not so critical in an atmosphere model due to the low memory about the 

initial condition in the atmosphere, another method to create ensembles was investigated to 

check model performance. Ensembles can be created by adding a perturbation to the variables 

of the actual data (Toth et al., 1993), (“Ensemble Prediction Systems,” 2016). Both of these 

methods were investigated in section 3.6 and found to have no significant difference in model 
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behavior. Hence the commonly used Time shift method is used in this study as well to create 

ensembles. 

 However, before the 19th century, there isn’t any daily dataset that has sufficient data to 

initialize the mode. Thus initial condition from a random recent year was selected, and one-

year spin-up was carried out to bring the model to an equilibrium state. Then each ensemble 

was then initiated from a different day from the starting date following  Yoshimura, et al., 

(2014) to create the ensemble forecast. The same procedure was used for the experiment in the 

resent period to keep the consistency.  

2.5.2. Boundary conditions  

GSM model requires SST and Sea-Ice fraction data as a boundary condition to the 

atmosphere model. In the present these products are available in high temporal resolution and 

spatial resolution. Lack of high quality in SST and Sea-Ice fraction data is a limitation to 

climate reconstructions (Reichler and Roads, 2003). Even though there are data sets on annual 

scale for thousands of years, higher temporal resolution data is limited. The daily SST 

reconstructions such as National Oceanic and Atmospheric Administration (NOAA) Optimum 

Interpolation Sea Surface Temperature (OISST)  (Reynolds et al., 2007) are limited to 1981 

and monthly SST data such as Hadley Center Global Sea-Ice fraction and Sea Surface 

Temperature (HadISST)   (Rayner et al., 2003)  is limited to 1870s. The annual SST and sea-

ice fraction data products are not sufficient for daily reconstructions like this study. Recent 

studies of  (Franke et al., 2017) has developed monthly SST data since 1600 by incorporating 

seasonally anomaly and ENSO signals from HadISST into the 1500 year annual SST 

reconstruction of Mann et al.,  (2009) and a sea-ice fraction data climatology from HadISST 

1.1 data set before 1870. Franke et al., (2017) SST is the optimum SST and Sea-ice fraction 

data that we can find. Hence, we used SST data and Sea-ice fraction data of Franke et al., 

(2017) after interpolated into daily values as in Fig. 2.13. Those are the optimum SST data and 

sea-ice fraction available for the focus period of this study.  In this study even though several 

experiments were carried out in 1995 for validation purposes, the boundary conditions were 

kept in similar quality to the interested period in the 19th century. We did a separate experiment 

to check the influence between weekly SST data from NOAA OISST and Monthly Franke et 

al., (2017) data to the model performance with same observational error and model settings by 

assimilating solar radiation similar to the other experiments and results are shown in section 

4.3. 
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Fig. 2.13: SST data from NCEP-OI SST and Franke et al. (2017) over a random grid 

 

2.6. Conclusion   

Weather documents were shown to be an excellent alternative proxy in the absence of 

instrumental data. The data from the documents are not numbers, and the uncertainty of the 

documents was explained.  The online database has data as ‘good weather’, and ‘bad weather’ 

and the raw digitized data consists of many weather categories as explained.  It was shown that 

this information can be simplified to weather classes such as ‘sunny’, ‘cloudy’ and ‘rainy’. The 

weather classes were successfully converted to numerical value considering the probabilistic 

spread. The consistency of converting the data was confirmed with continues weather class 

data from Ichino et al., (2007) at Yokohama station. Only one weather event was differently 

simplified which was due to neglecting nighttime precipitation by the proposed method. A 

limitation to validate the proposed system was lack of instrumental data, hence experiments in 

the recent period with description data of JMA was proposed. Impact of the model resolution 

was briefly examined by comparing two-point observation stations in the same grid which are 

apart around 100 km, and results showed a bias in some variables and a different number of 

precipitation events. Both stations have the same major weather events even though the 

magnitude is slightly different. The impact of resolution was further analyzed by comparing 

JMA point data observations with NCEP data which has a similar resolution with the proposed 

model and found to lies between the two points in temporal variation while several variables 

have a uniform bias throughout the period. Selection of Climate forecast model was discussed, 

and GSM was selected considering its ability to couple with a Data assimilation scheme and 
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extensively used in similar studies. For the data assimilation scheme LETKF was selected due 

to the low computational cost and higher performance and ability parallel computation. 

Preparation of initial conditions and boundary conditions is a challenge in historical climate 

reconstructions and alternative methods were discussed to overcome the limitations of data.    
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Chapter 3 

 

3. Evaluation of Model Performance 

and Sensitivity Analysis of 

Environmental Settings  

 

Abstract: 

This chapter further investigated the possibility of assimilating uncertain weather 

information. It was not clear about proper model settings and sensitivity of the number of 

observation and observation uncertainty for uncertain weather assimilation up to now. This 

chapter found solutions to them with several experiments. When TCC data is assimilated 

correlation improved to 0.47 from -0.01 in average over Japan. In particular, the correlation of 

TCC improved to 0.64 from -0.13 at Choshi station. There are no significant contributions to 

other variables (i.e.  correlation change in: Temperature 0.3 to 0.2, Precipitation -0.95 to 0.1 

and Pressure 0.18 to 0.3). Experiments with a different number of observation stations showed 

improvement in the correlation coefficient and RMSE around the observations sites even with 

18 number of stations. This indicates even the fewer number of weather records are available 

local improvement can be achieved over those regions. Further, the simulation using data from 

418 stations improved the results of not only the exact areas near the stations but also in remote 

areas. For instance, correlation coefficients of TCC, Temperature, Precipitation and Specific 

humidity in a non-assimilated site (i.e.  Choshi station) improved from -0.13 to 0.38 ,0.30 to 

0.57, -0.10 to 0.53, -0.13 to 0.61 respectively. Simulations with different observations 

uncertainties were carried out to investigate the sensitivity to observation uncertainty and found 

that if a small observation uncertainty is given, assimilation scheme neglects the observations 
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because ensemble spread is away from the observations.  This was clear in results where an 

observation error with 1% achieved only 0.17 correlation while observations with an error of 

50% correlation improved correlation coefficient to 0.42.  Impact from the initial conditions 

was analyzed by doing simulations with perturbated simulations instead of initial conditions 

created from time shift method as in previous experiments. The correlation was better in time 

shift method (e.g., correlation decreased to 0.45 with perturbated initial condition method in 

comparisons to 0.64 in Choshi station using time shift method and RMSE increased to 39.9% 

in comparison to 32.6% in time shift method). Thus, it was decided to use time shift method to 

create ensembles. 

3.1. Introduction  

Toride et al., (2017) developed a system to assimilate TCC into GSM using LETKF as 

explained in Chapter 2. In that study, idealized experiments were done by assimilating TCC 

data of 18 stations in Japan from NCEP data and weather classed derived from JMA 

Instrumental data. The NCEP data assimilation experiments were done with high uncertainty 

of 30% TCC, to evaluate the feasibility of assimilating uncertain data. They further did weather 

class assimilating derived from JMA data as explained in section 2.2.1 to investigate the 

possibility of assimilating weather classes. To assimilate real weather description data, it is 

essential to understand the model performance due to several factors such as observation 

uncertainty, number of observations, assimilation time and improvement in the surrounding 

area. Furthermore, the required number of ensembles for a unique assimilation system may 

differ from traditional experiments. This information is lacking in above idealistic study.  

Hence, separate experiments were done to investigate the above points.  Firstly, idealistic 

simulations similar to Toride et al., (2017)  were done by assimilating NCEP data and weather 

classed data Idealize experiments were set up following observation system simulation (OSSE) 

experiments  Miyoshi and Yamane, (2007), Yoshimura et al., (2014) and Toride et al., (2017).  

3.2. Experimental settings and input data 

 NCEP data is used to create synthetic cloud observations, and 20 ensembles were used 

for the experiments with the boundary conditions and initial conditions from NCEP data as 

explained in Chapter 2.5. The period of experiments is from January 2006 to March 2006. TCC 

assimilation was done once a day.  
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3.3. Data Assimilation over Japan 

In this experiment, the influence of assimilating uncertain weather information over Japan 

to represent Japanese weather diary data investigated. Here only 18 stations were considered 

as observations stations considering the availability of diary data.  30% of random error was 

added to the TCC values of NCEP data to incorporate the uncertainty similar to Toride et al., 

(2017).  

Experiment results are shown in Fig. 3.1 and  Fig. 3.2. According to the RMSE maps in 

Fig. 3.1,  a considerable improvement can be seen in cloud cover all over Japan region 

represented by dark blue color. In temperature, a slight improvement can be seen in most if the 

area while no considerable change in China seaside, Aomori and Morioka areas. In 

precipitation and pressure, only southern side and the northern side has a slight improvement. 

In most of the areas, there is no considerable change.   

Fig. 3.2 shows the model performance in January at Choshi station (model grid: latitude 

35.238, longitude 140.625).  There is a significant improvement in TCC; correlation coefficient 

increased to 0.64 from -0.13 correlations in control simulation. Slight improvement in other 

variables can also be observed. In pressure, Correlation coefficient increased to 0.33 from 0.12, 

and in temperature, it increased to 0.47 from 0.30, and in humidity, it improved to 0.44 from -

0.12. U wind improved to 0.2 from 0.06. Precipitation correlation in the control simulation 

without data assimilation is very poor and has a negative correlation of -0.1. With data 

assimilation, it is improved 0.1. In overall poor TCC data assimilation could improve the 

model’s TCC and several other variables.   
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 U wind (m/s)  

   
 Surface Temperature C  

   
 Precipitation (mm/6hr)  

   
 Pressure (Pa)  

(a) (b) (c) 

Fig. 3.1: RMSE of TCC over Japan; (a) data assimilation simulation, (b)- control 

simulation without data assimilation, (c) improvement in RMSE (%) (b-a) 
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(a) TCC (b) Pressure /Pa 

  
(c) Temperature/ K Precipitation / (mm/day) 

   
(e) U-Wind /(m/s) (f) Humidity / (Kg/Kg) 

-- Assimilation simulation, -- No Assimilated Simulation, --Observation 

Fig. 3.2: RMSE of TCC at Choshi station 
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Table 3-1: Correlation coefficients for simulations at each station 

Station DA NA 

 Correlation  

1 0.317282 -0.01946 

2 0.318258 0.071102 

3 0.545725 0.163876 

4 0.48921 -0.02382 

5 0.412977 0.087332 

6 0.555097 0.005416 

7 0.354535 -0.0829 

8 0.501692 -0.02067 

9 0.571858 -0.00704 

10 0.434217 0.037434 

11 0.638069 -0.13648 

12 0.540657 0.022072 

13 0.46876 -0.03124 

14 0.638592 -0.13648 

15 0.542312 0.022072 

16 0.470525 -0.03124 

17 0.311282 -0.31897 

18 0.434656 0.188849 

Average 0.474761 -0.01167 

 

3.4. Importance of the diaries from other regions  

Document data is available over several countries. In the 19th century, instrumentation was 

available mainly in Europe and few other countries as explained in Chapter 1.1. If the 

information from all over the world can be utilized with available instrumental observations, a 

better historical climate can be constructed. We did several experiments to check the 

performance with different observation numbers of 418, 200, 100, 50, 20 in addition to 18 

station experiment over Japan. Synthetic TCC derived from NCEP reanalysis data was 

assimilated. 30% normalized random error is added to represent high uncertain data. In this 

study one single simulation was done for each number of experiments to save time. However, 

multiple simulations would improve the accuracy further removing impact due to random error 

added to true observations in idealistic simulations. 

The global maps in Fig. 3.3 shows the RMSE difference in TCC between the assimilation 

experiment and no assimilation experiment which represent the skill of the assimilation from 

2006 January to March. With an observation number is 418 per day considerable improvement 

could be achieved. Many areas around observations have an improvement over 10% TCC (i.e. 
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represented by dark blue). When the number of diaries decreases to 20, improvement limits to 

local stations. Fig. 3.3 (f) shows the experiment over Japan with 18 stations explained in the 

previous section. Even though the global change is minimal similar to 20 observation 

simulation as in Fig. 3.3 (e), a clear regional improvement can be seen over Japan.  Around 

10% TCC RMSE improvement can be seen over Japan as represented by blue color over Japan. 

However, the influence on other regions is negligibly small. While some areas have a slight 

improvement, some areas have worsened the accuracy which may be a result of random 

correlations.  
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(a) 418 stations (b) 200 stations 

 

 

(c) 10 stations (d) 50 stations 

 
 

(e) 20 stations (f) 18 stations over Japan 

 

 
Fig. 3.3: Influence of number of observations to model performances, RMSE difference of 

the assimilation and No assimilation model runs   

 

Fig. 3.4 shows simulations with 418 stations and 18 stations observations (i.e. max and 

min number of stations). In Fig. 3.4 (a) both Data assimilation simulation and control run has 

a similar variation which confirms Toride et al., (2017) that by only assimilating uncertain data 

in a particular region, cannot make a noticeable improvement in a global scale. Performance of 

non-assimilated variables is also having no improvements on a global scale. In Fig. 3.4. (b) 
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realistic variation in TCC can be seen, however still the correlation is not improved in the 

global average.  

 
 

-- Assimilation simulation, -- No Assimilated Simulation, --Observation 

(a) 18 stations in Japan (b) 418 stations 

Fig. 3.4: Global mean of TCC (%) in (a) 18 station assimilation in Japan (b) 418 station Data 

assimilation simulation globally 

 

In global observation data assimilation (i.e. with 418 stations) clear improvement in the 

assimilated variable and non-assimilated variables at the observation stations can be seen. Fig. 

3.5 shows the performance at Oita station (model grid lat. 33.33 lon. 131.25). Summary of 

performance of 18 station assimilation and 418 stations are given in Table 3-2. Orange color 

represent the higher correlation among the two. It is clear that 418 has a better performance at 

Oita station.   

 Furthermore, non-assimilated areas are improved. Fig. 3.6 shows the performance at 

Choshi station where observations were not assimilated. All the variables are improved well 

compared to the regional observation including this observation site as in figure Fig. 3.6. As 

expected, improvement in TCC is less than using this station as an observation site directly. 
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(a) TCC (b) Pressure /Pa 

  
(c) Temperature/ K Precipitation / (mm/day) 

  
(e) U-Wind /(m/s) (f) Humidity / (Kg/Kg) 

Fig. 3.5: RMSE of TCC in 418 observation assimilation at Oita station 
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Table 3-2: Summary of the model performance statistics for simulations with different number 

of observations in Oita station.  

No of 

Observations 

TCC% Precipitation 

Kg/m2/s *10-5 

Humidity

/ (g/kg)  

U / 

(m/s)  

Pressure 

/Pa 

Temperature/ 

K 

RMSE 

No obs. 43.7 6.6 2.2 3.97 437 4.08 

18 obs. 35.6 7.2 2.0 3.39 426 4.14 

418 obs. 34.4 7.5 1.7 3.54 496 3.18 

R 

No obs. 0.16 -0.1 -0.16 0.23 0.05 0.14 

18 obs. 0.54 0.27 0.22 0.26 0.35 0.19 

418 obs. 0.58 0.39 0.59 0.42 0.30 0.59 
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Fig. 3.6: RMSE of TCC in 418 observation assimilation at Choshi station 
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3.5. Observation uncertainty  

The weather documents have a very higher uncertainty which is represented by the 

observational error in the model. Hence several experiments were done with random errors of 

(1%, 5%, 10%,20%, 30% 50%) with a normal distribution. Two types of experiments were 

done with 18 stations over Japan and 418 stations over globally. Fig. 3.7 and Fig. 3.8 shows 

the improvement of RMSE in each observation error percentage in regional and global 

assimilations respectively. The results show that when the observation error is 1% (near to true 

observation), the results do not improve and when the observation error increases the results 

improve. Similar results can be seen in global experiments as well in Fig. 3.8. This is due to 

the model ensemble spread is away from the truth due to the model bias and errors causing the 

assimilating scheme to neglect the observations. This can be clearly seen in ensembles plots in  

Fig. 3.9. For example, in Fig. 3.9 (b) because the model ensemble spread has a very low TCC 

it neglects the observations which have a very high TCC, on the other hand in Fig. 3.9 (a) has 

a wide ensemble spread enabling it to capture the observation. So even the observations are 

very accurate if the model is not that accurate data assimilation system would not be very 

effective. However, in diary assimilation, it would not be an issue because observation 

uncertainty is much higher than model uncertainties. Table 3-3 shows a summary of the model 

simulation performance (i.e. RMSE and correlation coefficient) at Choshi station. Those results 

too explain the same phenomena.  



3  Evaluation of Model Performance and Sensitivity Analysis of Environmental 

Settings 

40 

 

   

 

(a) 1% (a) 5% (a) 10% 

   
(a) 20% (a) 30% (a) 50%  

Fig. 3.7: Sensitivity of observation uncertainties, TCC RMSE % difference between 

assimilation and No assimilation simulations  

 

 

  
(a) 10% (a) 20% 

  

 
(a) 30% (a) 50% 

Fig. 3.8: Sensitivity of observation uncertainties, TCC RMSE % difference between 

assimilation and No assimilation simulations  
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(a) 30% (b) 5% 

  
(c) 50% (d) 10% 

-- Assimilation simulation, -- No Assimilated Simulation, --Observation 

Fig. 3.9: Performance of the model with different observation uncertainties 

 

Table 3-3: Summary of model simulation performance at Choshi station with difference 

observation uncertainties.  

Error % 
Point R.M.S.E 

TCC 

Point 

C.C. 

No 

Assimilation 

46.9 -0.14 

1 45.37 0.17 

5 41.38 0.43 

10 38.56 0.46 

20 36.96 0.50 

30 34.20 0.61 

50 39.12 0.42 

 

3.6. Initial conditions  

To create the initial conditions for the ensembles, below two methods were investigated 

as explained in section 2.5.1. 

1- Perturbation method - Adding a perturbation to temperature and pressure 
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For this experiment, perturbation was added by adding a perturbation to temperature and 

pressure.  1 C temperature and 100 pa pressure variation were added to each ensemble. For 

example, for an assimilation scheme with 7 ensembles a temperature difference of   -3, -2, -1, 

0, 1, 2, 3 C and pressure difference of -300, -200, -100, 0, 100, 200, 300 Pa would be added 

respectively.   

2- Timeshift method- Adding a temporal shift   

For this experiment, ensembles are chosen from a different continuous period from the 

model starting date. For example, in this case for each ensemble data from different date since 

January 1st was used.  

The results are shown in Fig. 3.10.  The behavior of both assimilation simulations gave 

similar results, the perturbated simulation has a slightly lower performance with 0.45 

correlation and 39.9 % TCC RMSE in comparison 0.64 correlation and 32.6 % TCC RMSE of 

Time Shift simulations. Similarly, control run without data assimilation also has slightly less 

performance in Perturbation method. Considering the model performance and usage in 

previous studies, timeshift method is used to create the initial conditions of the model. 

  
(a) (b) 

-- Assimilation simulation, -- No Assimilated Simulation, --Observation 

Fig. 3.10: Performance of the model with different methods of ensemble initialization, (a) 

perturbation method, (b) Time shift method 

 

3.7. Ensembles results 

Fig. 3.10 show the RMSE and R change with the number of ensembles (a) SR and (b) TCC 

respectively RMSE decreases in SR and TCC when the number of ensembles increases. 

However, there is a slight increase in RMSE when the number of ensembles are increased to 

60. However, it is not considerable compared to the reduction of improvements from 10 to 30 

ensembles (i.e. 16.5 to 12.5 W/m2). The correlation coefficient is also increased from 10 to 30. 
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Considering the computational cost 30 ensembles are used for regular experiments and 20 

ensembles are used to some sensitivity tests which does not require higher accuracy.    

  

(a) SR  (b) TCC 

Fig. 3.11: Performance of the model with different number of ensembles 

 

3.8. Conclusion  

This chapter checked the performance of the model with similar experiments as in previous 

literature with Idealistic experiments to evaluate the assimilation system. It was found that by 

assimilating TCC , correlation coefficient was increased to 0.64 from -0.13 in the control run. 

Also, the other variables like wind (Correlation 0.23 to 0.25), humidity (Correlation -0.13 to 

0.44), temperature (Correlation 0.30 to 0.47) and precipitation (Correlation -0.1 to 0.1), 

Pressure (Correlation 0.19 to 0.32) was also improved proving that assimilating of a single 

variable can improve the other variables to some extent. The impact of the observation error 

was investigated with different values of observation error percentages. As expected even if 

the observation is very accurate if it stays outside the model ensemble spread the assimilation 

would not utilize those observations. Thus, the Correlation coefficient was improved up to 30% 

TCC error (0.61) and tends to decrease afterward at Choshi station.  Furthermore, sensitivity 

to number of observations was investigated, and global RMSE was improved as expected with 

the number of observations. Sensitivity experiment indicated 30 number of ensembles would 

be suitable considering the accuracy and the computational cost.  
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Chapter 4 

 

4. Preparation for Realistic Past Data 

Assimilation Experiment 

Abstract: 

 Real weather diary data is entirely different from the regular observations or synthesized 

observations used in Chapter 3 because they do not have any numbers. Lack of boundary data 

such as SST and Sea-ice fraction are other main challenges for simulation of forecast model 

during the 19th century. Currently, there is not any study which has overcome these challenges 

to assimilate qualitative description data. Hence in Chapter 4, we evaluated the impact from 

poor boundary condition. Assimilation system’s skill was found to reduce mainly in 

precipitation when low-frequency Sea surface temperature and Sea-ice fraction data are used. 

Correlation of all station average in Precipitation in 1995 April reduced from 0.58 to 0.32 even 

though correlation in SR and TCC changed only slightly (i.e. 0.79 to 0.81 and 0.76 to 0.65 

respectively). Another challenge is the sensitivity of assimilation time, diary data information 

is mostly available in daily scale and impact on assimilating at particular time step has not been 

investigated earlier.  Separate experiments showed that assimilation results in morning and 

evening have only a slight difference. In spring the correlation coefficient of the average of all 

the stations’ changes from 0.54 to 0.43 in Precipitation, 0.66 to 0.72 in SR, 0.66 to 0.73 in TCC 

and 0.81 to 0.8 in Temperature when assimilation time changed to 3 pm from 9 am. Further, 

impact to model performance by assimilating only three weather classes data was evaluated in 

comparison to assimilating TCC from JMA observations with added 30% uncertainty, and it 

was found that the model could still capture the temporal variation even though correlation of 

TCC reduced to 0.47 to 0.57 and 0.32 from 0.54 in precipitation in comparison to direct TCC 

observation assimilation with 30% uncertainty at Choshi station. 
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4.1. Observation time  

Information about the occurring time of weather incidents is only available in limited 

records. Records like ‘heavy rain at 10 am’ provides specific information about the time of the 

rain. Examples for records with time information in weather diaries are given in Table 4-1. 

However, the information about time is still difficult to utilize as the information about the time 

is not yet digitized into a usable format and many weather records do not have information 

about time.  In this study information about the time was not taken into consideration, which 

is a limitation of the current study. Instead, all the information is assumed to occur at a specific 

time during the day.  

Table 4-1: Examples of weather incidents with occurred time in personal diaries 

 Description  English Translation  

1 ﾖﾆｲﾘ / ｱﾒ / ﾌﾙ early night / rain / fall 

2 ﾊﾚ / ｹｻ ﾏﾃﾞ / ﾌｳｳ ﾉ / ﾄｺﾛ / ﾐｺｸ ﾏｴ ﾖﾘ / 

ﾔﾐ / ﾊﾚ 

sunny/ until morning / rain and wind / but 

/ around 10 am/ (rain and wind) stopped/ 

sunny (after that) 

3 ｾｲﾃﾝ / ﾐﾅﾐｶｾﾞ / ﾌｸ / ﾖﾅｶ / ｱﾒ / ﾌﾙ fine / southerly wind / blown / at night / 

rain / fall 

 

As this is an online assimilation system, it is computationally costly and challenging to 

include daily variables in the state vector. Hence the instantaneous values are either assumed 

as daily averages or calculated empirically from the daily average. In TCC assimilation, it is 

assumed that instantaneous value at 3 pm is equal to the daily average. This adds extra 

uncertainty to the observations. For the SR accumulated 6hourly SR was calculated empirically 

using the daily solar radiation values. A satisfactory relationship could be achieved between 

the daily average of SR and 3 pm SR.  Following empirical equation was found using trial and 

error method. Here TOA is used to get the proper sub-annual variation. Fig. 4.1 shows the daily 

SR and SR at 3 pm.  

3.26hrSR DSR
Tx

=    
Eq. 4-1 

.236

1.1
TOA

Tx
TOAS

 
=  
 

  
 

 

Where; 
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hrSR  - SR at 3 pm 

DSR  - Daily SR 

TOA – Top atmosphere Download solar radiation 

TOAS- Annual sum of TOA  

 

 

Fig. 4.1: 6hour accumulated SR at 3 pm from January to March 2006 calculated using daily 

values vs 3 pm JMA SR data 

 

To check the influence of the data assimilation time, separate experiments were done. 

Assimilation of TCC was done instead of SR to remove strong impact from the diurnal cycle. 

TCC data from the weather class data were assimilated at 9.00 am and 3.00pm local time  

Fig. 4.2  show the influence of assimilation time on the Cloud assimilation. Assimilating 

weather information in the evening (i.e. 3 pm) has a slightly higher performance than the 

morning (i.e. 9 am). Both simulations have a similar TCC RMSE values 19.4% and 19.2% 

respectively. However, Correlation coefficient in afternoon assimilation is higher by 0.1. 

Similar improvement could be seen in SR. However, correlation is slightly decreased in the 

precipitation even though the RMSE value is decreased.  Assimilation at a particular time may 

shift the precipitation time causing mismatches in the model behavior. For instance, if the 

precipitation was in the afternoon, it may be assimilated in the morning because diary data do 

not always have occurrence time.  This may be one reason the change performance in the 
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precipitation. However, proper time of assimilation may differ from season to season, and more 

investigation can be done for further investigation. As there is no other alternative at the 

moment due to the lack of details in diaries assimilation was done at 3.00 pm where more 

variables get improved.  

  

  

--Assimilation at 9.000 am, – Assimilation at 3.00 pm, --Observation  
      - Rainy        - Cloudy                   - Sunny  

Fig. 4.2: Model performance in 1995 spring over Choshi observation station with the 

assimilation of TCC at two different times using three weather classes data. 

 

4.2. Impact of assimilating weather classes 

In Chapter 3, experiments were done using NCEP data. However, dairy data are local 

observations and has different character it is to the grid wise NCEP results. Hence. JMA point 

observations were used to analyze model performance with the assimilation of uncertain 

weather data further. In the diaries, variations are not linear instead consists with only weather 

classes such as ‘sunny’ and ‘cloudy’ as explained in Chapter 2. Hence in this section 

assimilation results of weather classes and exact values are compared using below two 

experiments. 

a- Using exact JMA TCC values 
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b- Using TC weather classes made according to (Toride et al., 2017) 

According to the Fig. 4.3 when only weather classes are given due to the higher uncertainty 

model produce lower estimations even though it could still capture the temporal variation well. 

Model miss the precipitation event on February 27 due to underestimation of TCC and in both 

two major precipitation events on 15th January and 2nd February the precipitation amount 

decreases. The accuracy of precipitation reduced considerably. The correlation coefficient 

reduced to 0.01 from 0.37. All the station average statistics in Table 4-2 shows the reduction 

in all the stations averages as well. Hence it is clear that when the observations are limited to 

weather classes information, the accuracy reduced. However most importantly still it improves 

correlation and RMSE values than no assimilation simulation, 

  

  

  
(a) TCC assimilation using direct JMA 

observations 

(b) TCC assimilation using simple weather 

classes from JMA observations 

Fig. 4.3: Performance with simple JMA weather classes 
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Table 4-2: Summary of the model performance statistics for simulations with JMA 

observations and simplified weather classes.   

Observations TCC  

 RMSE % R 

Average of all stations 

No observation 30.9 0.21 

Weather classes ass. 20.7 0.58 

Direct ass. 16.9 0.62 

At Choshi station 

No observation 51.0 0.21 

Weather classes ass. 37.4 0.47 

Direct ass. 32.63 0.57 

 

4.3. Boundary conditions  

Model performance over monthly SST and weekly NCEP OI SST is shown in Fig 4.4. The 

blue line shows Control simulation without data assimilation, and the red line shows the 

assimilation simulation. The assimilated weather classes are shown on the top (i.e. blue square- 

Rainy, Pink Triangle –Cloudy, Green star – Sunny). The impact from different SST would be 

discussed in this section. There are several weather events in this period. Assimilation system’s 

skill capturing those events are discussed below the change in the RMSE  difference in an 

assimilated variable (i.e. SR) in  Fig 4.4  is smaller (3.5 W/m2 increase), and R change is 

negligible (0.03), and in Temperature, RMSE is worsened by 0.7 K, and R improved by 0.12. 

In TCC RMSE improved by 2% and R improve by 0.11. However, in precipitation, there is a 

considerable reduction in correlation (reduced from 0.55 to 0.08). This is visible in the 

precipitation graph. The blue line has an inferior skill compared to the red (with accurate SST 

and Sea-Ice fraction).  

Idealize experiments with JMA TCC observations was also done. The correlation 

coefficient was increased to 0.6 from 0.2 at Choshi station, and daily RMSE was decreased 

from 51 TCC to 33 TCC. The remaining large RMSE was due to the bias of the model. 

Precipitation degradation is apparent in average of all the station. 
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Table 4-3 as well. This may be due to change in the weather pattern due to poor quality SST.   

 
 

  

(a) (b) 
-- Assimilation with monthly Sea-Ice & SST, – Assimilated with weekly SST & Sea-Ice, --Observation 

                                                   - Rain          -   Cloudy                  - Sunny 

Fig 4.4: Influence of SST temporal resolution on model performance.  The red and blue lines 

indicate the simulations results using SST from NCEP-OI SST (weekly SST & Sea-Ice 

fraction) and Franke et al. (2017) (monthly SST & Sea-Ice fraction) respectively at Choshi 

station from April 1995 to May 1995.  

 

Table 4-3: SST impact on the average of all the observation stations 

  RMSE 

  TCC (%) Radiation(w/m2) Temperature K Precipitation (mm/day) 

SST weekly 19.58 55.03 2.52 5.11 

SST monthly 19.15 53.27 3.12 6.61 

  R- correlation coefficient  

  TCC Radiation Temperature Precipitation  

SST weekly 0.67 0.79 0.62 0.58 

SST monthly 0.65 0.81 0.77 0.32 

 

In conclusion low-quality SST in 19th century significantly reduces the precipitation forecast.    
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4.4. Conclusion  

Assimilating daily weather information at a particular time add further uncertainty and it 

was found that assimilating in the afternoon has slightly higher performance (i.e. the correlation 

coefficient increased to 0.75 from 0.65). Assimilating weather classed gave minor 

improvement as expected but still provide higher accuracy than no assimilation simulation. 

Their assimilation increased by 4.2% and correlation decreased by 0.04. It was found that poor 

SST and Sea-Ice fraction data lead to reduce the model performance especially in precipitation 

(average R reduce from 0.6 to 0.3). This gives the message that when the SST and SI products 

improve the future, historical reconstruction results would be improved further.  

The simplified weather classes data too added some improvement even with the 30% error. 

TCC RMSE% average of all the stations was decreased to 33% from 51%. The correlation was 

improved by 0.26, and there was no improvement in temperature and correlation reduced than 

the control simulation. In precipitation there RMSE was improved by only 1.1 TCC % even 

though correlation was improved by 0.2. In conclusion assimilation of uncertain weather 

information (i.e. TCC classes) can improve the assimilating variable while and correlation of 

few other variables even though improvement is less than assimilating exact values. In the 

absence of accurate observation, these document data would be an excellent source of 

information to climate models. 

This chapter has overcome the barriers against assimilating real weather description data 

for the first time in weather diary assimilation field. Those findings would be utilized for the 

weather description data assimilation in Chapter 5. 
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Chapter 5 

 

5. Application of Proposed Data 

Assimilation System and Validation    

Abstract: 

This chapter evaluates the skill of the model in assimilating document weather data. The 

main limitation was the lack of instrumental data in the past. Hence an alternative approach 

was followed by assimilating weather classes data derived from recent description data. All 

these experiments were carried out with real data keeping the consistency with 19th Century 

data quality. This is the first study to carry out such realistic experiments to investigate the 

performance of assimilating weather class data into a climate model.  Several simulations were 

done in the recent period where observations data available for validation. Twentieth-century 

weather classes, data derived from JMA descriptions was utilized. SR assimilation could 

improve the correlation of TCC average in all the stations from 0.19 to 0.68 in spring while 

reducing RMSE by 8 %. Improvements in other seasons and fields such as precipitation could 

be achieved as well. Further, we investigated opportunities to improve the accuracy of the 

model by incorporating other information such as the absence of precipitation and found the 

correlation of precipitation in all the station average could be improved to 0.67 from 0.45 in 

spring.  Monthly anomaly values over 1995-1999 showed good correlation in precipitation, 

TCC, and SR. By analyzing pressure fields, it could be shown that the model could capture the 

synoptic scale weather patterns such as extratropical cyclones. Bootstrap experiments were 

done using only half observations to check model performance when some diaries are absence. 

Even though the model performance was reduced to some extent, satisfying correlation could 

be achieved. Correlation of all the stations average in TCC was 0.57, in SR was 0.72 and in 

precipitation was 0.45. 
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5.1. Experiments in 1995 

5.1.1. Solar Radiation Assimilation  

The  Fig. 5.1 shows the regional average in TCC, SR, Precipitation, and Temperature. Here 

spring period is shown as it has a subtle variation in weather with several precipitation days 

and sunny days.  The blue line shows Control simulation without data assimilation, and the red 

line shows the assimilation simulation. The assimilated weather classes are shown on the top 

(i.e. blue square- rainy, Pink Triangle – cloudy, Green star – Sunny) There are several weather 

events in this period. Assimilation system’s skill capturing those events are discussed below.   

There are two longer cloudy periods (three days of weather class 3) from 28th April to 4th 

May and 11th May to 18th May (three days with weather class 3 and two days with weather 

class 2) which are shown by purple dotted rectangles. The observed SR and TCC clearly show 

low SR and high TCC in this period. The model could nicely capture both these events. In both 

of these periods, precipitation present in the observations, the model was able to produce the 

precipitation in the first period. However, the model could not capture the precipitation peak 

in the second period as the SR and TCC on 1st May was not constrain well by the data 

assimilation.   

There is a longer sunny period from 5th May to 11th May (continues weather class 1). The 

observation shows very low cloudiness and very high radiation during this period without any 

precipitation events. The control run could not capture this variation and in the Model 

simulation with data assimilation could undoubtedly produce high solar radiation and lower 

cloudiness with negligible precipitation events.      

Other than in above weather events there are nine precipitation events in this period which 

has more than 10 mm/day precipitation (04/09, 04/12, 04/14, 04/19, 04/22, 04/23, 05/21, 05/25, 

05/29, shown by purple downward arrows). During all these days the weather class is three 

except April 12th which has weather class 2. The model could not capture only three 

precipitation events including the event on April 12th (04/09, 04/12, 04/19).     

In overall weather class assimilation could constrain the SR of the model throughout the 

period capturing all the local events. The RMSE value was decreased to 58.2 W/m2 from 102.0 

W/m2 which is almost half of the control run. The control simulation without assimilating SR 

has a marginal correlation value of 0.06 which is very low compared to the 0.83 correlation in 

the simulation with data assimilation. Non-assimilated variables also improved. In TCC, the 
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model’s correlation improved from 0.19 to 0.68 and RMSE reduced to 20% from 28%. 

However, the model has underestimation in all the cloud peaks which may be due to the large 

size of the grid compared to single observations sites. In precipitation model capture many 

precipitation events but few unrealistic precipitation events occurred as in event near April 17th. 

Overestimation in precipitation in most of the precipitation events occurred which may be due 

to the impact of lowering the radiation and increasing the TCC than the model’s usual range 

caused from assimilating from point observations which may have a bias between the large 

grid of the model and the observations or shift in synoptic scale event location. This is further 

investigated in section 5.1.3.  Due to the overestimation, the RMSE value was only slightly 

improved even though the correlation coefficient increased to 0.45 from negligible correlation 

in the control run. On the other hand, in temperature even though several changes in daily 

temperature could be captured (green arrows) some variations could not be captured (orange 

arrows). The control simulation does not have a noticeable daily variation.  Hence the RMSE 

is less as it lies along the mean of the observations.  Both simulations have a good long-term 

seasonal correlation as the model has the skill to produce seasonal variations without data 

assimilation. 

In summary, the simulation could capture most of the observed incidents. The missed 

event may be due to the observation uncertainty and poor boundary data.  
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(a) SR  

 

(b) TCC 

 

(c) Precipitation  

 

(d) Temperature 

-- No Assimilation, – Assimilated, --Observation       - Rainy          - Cloudy                  - Sunny  

Fig. 5.1: Model performance in 1995 spring over all the station average with the assimilation 

of 3 classes (i.e. Rainy- Class 3, Cloudy- Class 2, Sunny Class -1) of weather data.   
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5.1.2. Performance in local observation stations  

Model performance is evaluated over several observation stations. Fig. 5.2 shows the 

weather class assimilation results in Choshi station during the same period as in the previous 

section. The data assimilation simulation could capture the temporal variation quite well by 

decreasing the RMSE from 111 w/m2 to 76 w/m2 relative to the control run without data 

assimilation. On the other hand, the control simulation has a very low correlation compared to 

the correlation of 0.57 in the SR. Similarly, the other variables too have a similar performance 

as in the average results.   

  

  

Fig. 5.2: Model performance in 1995 spring over Choshi observation station with the 

assimilation of 3 classes of weather data. 

 

5.1.2.1. Performance in different regions   

Japan was divided into four areas as shown in below figure. 
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Fig. 5.3: Regions  

Table 5-1: Stations covered in each region and improvement to the correlation coefficient. 

Region Station and improvement in Correlation coefficient  

A Sapporo (0.22), Obihiro (NA), Aomori (0.33), Morioka 

(0.17)  

  

B Yonago (0.5), Maizuru (0.25), Wajima (0.27), Takada 

(0.11) 

  

C Kofu (0.43), Choshi (0.16), Nagoya (0.49), Shinomisaki 

(0.43) 

  

F Kagoshima (0.57), Nagasaki (0.2), Oita (0.23) 

  

 

Below sections show the results in region wise. Considering the figures Fig. 5.4- Fig. 5.7 

and table 1, the region A has less intense precipitation events, which is due to less frequency 

of extratropical cyclones (ExT cyclones) in region A during this period. This area has a lower 

correlation which may be due to the weather in this area is not governed by synoptic scale 

events like other regions and has fewer observation stations relative to the west.  In region B 

too, stations in the east side have a lesser correlation.    

Region C and D have a higher correlation which is due to the higher influence of synoptic 

scale events such as ExT cyclones over that area and a higher number of observation stations.  

A 

B 

C 

D 
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Sapporo Obihiro  

 
 

Aomori Morioka 

Fig. 5.4: Region A  

 

  
Yonago Maizru 

  
Wajima  Takada 

Fig. 5.5: Region B 
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Kofu Choshi 

  
Nagoya  Shinomisaki 

Fig. 5.6: Region C  

 

  
Kagoshima Nagasaki 

 

 

Oita  

Fig. 5.7: Region D  
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5.1.3. Precipitation estimation skill of the assimilation system. 

To investigate the skill of the GSM forecast, GSM’s guess (forecast before data 

assimilation) and the analysis (after data assimilation) were compared. The Fig. 5.8 shows the 

6 hourly results of the guess simulation and the analysis simulation in the Hamada station from 

1st April to 16th April. During this period there were two days with class 3 weather on April 

09th and April 14th. Both days SR was decreased after the assimilation and 9th reduction is 

higher than 14th. In both days reduction in observed daily SR and presence of precipitation 

events were observed. Both days model TCC increased. However, both days model guess does 

not forecast a precipitation event, but the analysis could capture observed precipitation event 

on April 9th. Less reduction of Solar radiation on 14th might be a reason.  During the sunny 

days, analysis tends to increase the guess solar radiation slightly while reducing TCC. Even 

though there is no significant change to the solar radiation during sunny days considerable 

variation in observed TCC can be seen. There is an unrealistic precipitation event on 6th April 

in the analysis. Diary indicated sunny during this day. However, SR was reduced and TCC was 

very high even though there is no precipitation event in observations. Artificial change to TCC 

and solar radiation may be the reason for the unrealistic precipitin event.  Also, the guess has 

several unrealistic precipitation events, and it is complicated to find a reason. A probable reason 

may be due to poor SST quality.  

There is an increasing trend in the temperature up to 9th April. The guess run could capture 

this up to 7th April and then it starts to decrease, but the assimilation run could capture the 

increasing temperature up to 9th April and the sudden drop on 10th April.   
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-- Guess (6hourly) – Analysis(6hourly) -- Observation (JMA) -daily  
Fig. 5.8: Six hourly model guess and analysis performance.  
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5.1.3.1. Unrealistic heavy precipitation  

Two events with higher estimation of precipitation during weather class one and three are 

analyzed further.  

Table 5-2: Events with heavy precipitation 

Date Weather Class TCC (JMA) Precipitation Model 

Precipitation 

May 25th 1 -Sunny >70%  0 Very high 

May 29th 3- Rainy 100% 10 mm/day  

     

 

These two events are identified from the times series variation of precipitation in the 

following figure as indicated by the red arrows. The Solar radiation and TCC variation on these 

days is typical.  By checking the pressure map plots on May 25th and May 29th high TCC can 

be observed over Japan in reanalysis data and in the model simulations as well. The reanalysis 

data has the ExT cyclone towards north-west Japan and a small low-pressure area over east 

Japan.  The assimilation introduces an excessively low pressure around the Kanto area, an ExT 

cyclone over Kanto region causing heavy precipitation while the observed precipitation is 

smaller.  
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Fig. 5.9: Times series variation of model performance at Choshi station  
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Pressure /Pa 

   
Precipitation /(mm/day) 

   
TCC 

(a) No Assimilation (b) Data assimilation (c) Reanalysis data 

Fig. 5.10: Pressure, Precipitation and TCC variation on 25th May  
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(a) No Assimilation (b) Data assimilation (c) Reanalysis data 

Fig. 5.11: Pressure, Precipitation and TCC variation on 29th May  

 

In Conclusion, due to the data assimilation, the guess run has an improved skill, the 

analysis further improves the performances. However, some unrealistic precipitation events are 

occurring in the guess and in the assimilation, which may be due to the influence due to 

inaccurate weather class, influence due to resolution, a shift in the produced synoptic scale 

event and lack of observations to reproduce the exact event.  

 

5.1.4.  TCC assimilation 

In this experiment performance of the model was checked in two aspects. Firstly, the 

influence of assimilation time (as explained in section 4.5.3) is investigated and then the 

performance of TCC assimilation was compared with SR assimilation as explained in Chapter 

4. The results are shown in Fig. 4.2. The blue line is the cloud cover assimilation at 9 am. and 

the red line is the cloud cover assimilation at 3 pm.  
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 By comparing RMSE and correlation coefficient values between the SR assimilation at 3 

pm and TCC assimilation at 3 pm in Table 5-3. SR assimilation has a better performance in 

correlation coefficient in all the variables except temperature, in temperature correlation 

coefficients differ only by 0.01. However, TCC assimilation does not produce overestimation 

of precipitation as in SR assimilation. Control simulation has the lowest RMSE as it does not 

have a matching temporal variation. In the data assimilation when the model is constrained to 

produce lower SR and higher TCC similar to observed values, the precipitation tends to 

overestimate. As the SR assimilation has a higher constraint on these fields, it causes a higher 

RMSE than TCC assimilation.  In summary, TCC assimilation has a lower skill than the SR 

assimilation to capture the observed trend.   

Table 5-3: Summary of model performance for the three experiments 

Variable RMSE/R SR TCC 3 pm TCC 9 am Noobs 

TCC RMSE (%) 16.02 15.62 15.71 27.49 

 
R 0.72 0.69 0.67 0.30 

SR RMSE(W/m2) 34.34 39.82 43.69 71.56 

 
R 0.89 0.79 0.73 0.65 

Temp RMSE(K) 2.48 2.26 2.27 1.96 

 
R 0.95 0.96 0.96 0.97 

Precipitation 
RMSE 
(mm/day) 12.30 8.60 8.97 6.03 

 
R 0.33 0.23 0.32 0.12 

 

5.1.5. Precipitation information assimilation  

The weather data has several other information in addition to weather type 

(sunny<>cloudy) such as;  

• Rain and snow information (rain, fog, snow etc.)  

• About Temperature (warm<>cold) 

• Special info (Thunder, Typhoon, saium, storm)  

• Wind (weak<>strong) and wind direction 

The uncertainty of the model can be further reduced if this information can be utilized. 

However, it is a challenge to develop a sufficient relationship to be used in the model. For 

example, the temperature can be related to precipitation events as in (Mikami, 2008). However, 
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these relationships depend on the region and season which require individual examination. In 

this study, we utilized the information about dry days by assimilating minimal random 

precipitation amount when precipitation is zero. 1 mm precipitation was assimilated with 

specified observation error of 2 mm/day.   

The information from the dry days intends to minimize the unrealistic precipitation events 

occur in the solar radiation assimilation. Fig. 5.12 shows the improvement in precipitation by 

incorporating dry day’s information. From Fig. 5.12 (a) it is evident that information of dry 

days minimized the unrealistic precipitation incidents. The correlation coefficient increased to 

0.67 from 0.45. RMSE decreased to 12 mm/day from 17 mm/day. The precipitation events on 

12th April and 14th April could be captured after introducing the zero-precipitation information.  

Fig. 5.12 (b) shows the simulation results at Choshi station and Fig. 5.12 (c) shows the 

simulation results at Wajima station. These two stations are located opposite sides of Japan. In 

both stations, correlation is improved considerably. However, it leads to further overestimation 

of the Precipitation in the two local stations even though average RMSE of all stations 

decreased.    
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Fig. 5.12: Performance after introducing zero precipitation days to data assimilation 

observations; (a)- all the station average, (b) – at Choshi station, (c) – at Wajima station 

 

-- Assimilation (SR) 
– Assimilation SR with precipitation info 

– Observation (JMA) 

(a)  

(c)  

(b)  
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5.1.6. Summary of model performance 

Summary of the RMSE and R for different seasons are given in Fig. 5.13 and Fig. 5.14. 

According to seasonal results in summer, RMSE precipitation is higher due to frequent tropical 

cyclones and lack of the skill of the model to reproduce them. The model has a negative 

correlation in both with and without data assimilation simulation in temperature during the 

winter period. 

  

  

 

Fig. 5.13: RMSE values of Solar radiation assimilation, No assimilation and Solar radiation 

assimilation with precipitation information assimilation experiments in different seasons  
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Fig. 5.14: RMSE values of Solar radiation assimilation, No assimilation and Solar radiation 

assimilation with precipitation information assimilation experiments in different seasons  

 

Statistically significant was checked by caring out t-test to observation mean, and the 

results have higher significance levels as shown in Table 5-4. For instance, precipitation after 

data assimilation is significant at p < .05 in most of the season and least value is 5.8E-02 which 

also indicates it is near to p < .05. 
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Table 5-4: Statistical significance  

Variable P Value T value 

 
Data 

Assam. 
No 

Assam. 
Data Assam. 

No 
Assam. 

Winter (January -March) 

TCC (%) 1.3E-04 1.4E-24 4.0E+00 1.3E+01 

Radiation(w/m^2) 4.3E-01 2.9E-11 -7.9E-01 -7.4E+00 

Temperature (K) 3.5E-76 3.7E-94 4.6E+01 6.6E+01 

Precipitation(mm/day) 9.9E-06 3.9E-01 -4.6E+00 8.6E-01 

Spring (April-June) 

TCC (%) 2.7E-04 1.8E-09 3.8E+00 6.5E+00 

Radiation(w/m^2) 6.2E-04 2.3E-12 -3.5E+00 -7.8E+00 

Temperature (K) 8.2E-55 2.9E-58 2.8E+01 3.0E+01 

Precipitation(mm/day) 5.8E-02 7.7E-01 -1.9E+00 -3.0E-01 

Rainy season (June-Aug) 

TCC (%) 5.6E-09 6.4E-18 6.3E+00 1.0E+01 

Radiation(w/m^2) 1.5E-03 6.2E-18 -3.3E+00 -1.0E+01 

Temperature (K) 2.9E-64 8.4E-64 3.5E+01 3.4E+01 

Precipitation(mm/day) 2.1E-04 4.2E-01 -3.8E+00 -8.1E-01 

Summer (August- October) 

TCC (%) 6.3E-11 1.9E-25 7.2E+00 1.3E+01 

Radiation(w/m^2) 4.6E-01 1.3E-07 -7.3E-01 -5.6E+00 

Temperature (K) 2.6E-68 1.5E-70 3.8E+01 3.9E+01 

Precipitation(mm/day) 1.2E-05 4.2E-02 -4.6E+00 -2.1E+00 

 

5.1.7. Spatial climatology  

Fig. 5.15 compare the model climatology with the observations. GSM has the skill to 

produce the seasonal climatology without data assimilation. The figure shows the spatial 

variation in 4 different seasons Winter (Jan-March), Spring (April-June), Rainy season (June-

August), Summer (August - October).  Even though the seasonal trend is captured in the no 

assimilation simulation, it has a bias which could be reduced with data assimilation. This is 

clear in winter where no assimilation run has mostly TCC less than 50% (red) while the 

assimilation run has TCC more than 50% in the China Sea side becoming closer to the 

observations.  
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Jan-March April-June June-Aug Aug-Oct 

Assimilation  

    

No Assimilation 

    

Observations 

 
Fig. 5.15: Spatial variation of TCC in different seasons (%) 

 

5.1.8. Long-term simulation results (1995-1999) 

Experiments were carried out for several years to evaluate the model performance on 

different years and to compare the relative or the anomaly performance of the model. Fig. 5.16 

shows the April anomaly variation during this period. Even the model has a bias model could 

follow the annual trend well with data assimilation except in temperature in 1996.  
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-- Control simulation        -- Ensemble data assimilation    – Observation (JMA)  

Fig. 5.16: March Anomaly variation from 1995 -1999 

 

5.2. Patterns of consecutive daily values of weather classes 

Occurrence of Each weather class in January is calculated for a 5-year period (1995-2000). 

From a similar analysis to all the months, it is possible to identify long-term impacts such as 

droughts. A lesser number of rainy days can indicate drought conditions and a higher number 

of rainy days can indicate the wet condition.  

From the line graph in Fig. 5.17, 1998 has higher number rainy days (lower number of 

sunny days), and this was captured by model which produced higher rainfall in 1998 May. 
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Table 5-5: Different types of weather in Japan   

Year Rainy Cloudy Sunny TCC 

 (%) 

 

Radiation 

(w/m2) 

Temperature 

(K) 

Precipitation/ 

(mm/day) 

    Model Obs. Model Obs. Model Obs. Model Obs. 

1995 8 6 45 46.7 46.0 134.6 129.6 281.2 279.5 7.7 1.2 

1996 9 4 46 46.3 48.8 132.0 124.9 281.2 278.8 7.3 1.3 

1997 6 7 46 43.1 41.3 139.9 137.3 281.2 280.2 6.1 2.1 

1998 18 6 34 44.9 57.7 127.5 105.3 281.9 280.0 8.4 4.4 

1999 9 4 46 43.2 40.2 133.1 132.9 282.0 280.0 6.2 2.0 

 

 

 

Fig. 5.17: Number of rainy days vs. observed precipitation and model precipitation.  

5.3. Impact on different weather types 

Japanese climate depends on different sources during various periods (Hiroyuki Kusu, 

2013), (Kurashima, 2002), (Kodama, 1992).  A summary of weather is given in below table.   
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Table 5-6: Different types of weather in Japan   

Weather type Period 

  

Winter (continental high pressure and low 

oceanic pressure) 

Winter- December, Jan, Feb 

ExT Cyclone Mostly in Spring, sometimes in Winter 

Moving high pressure (Antic cyclones) from 

west to east 

Spring/Autumn - March, April may, 

October, November December 

Summer type August September  

Typhoon Late summer – mostly in September and 

sometimes August 

Baiu system Early summer- June, July 

  

 

The scale of these weather systems is different, the extratropical cyclones (ExT cyclones) 

occur in synoptic scale with slow moment while typhoon occurs in a smaller scale with rapid 

movement. The Baiu system produce local weather. Due to the model resolution and low 

assimilation interval, skill of the assimilation system capturing small-scale rapidly changing 

events such as typhoons and Baiu would be lower. On the other hand, assimilation system 

would be able to capture synoptic scale weather events more accurately. Following section 

would discuss the model performance during ExT cyclones and Typhoons.   

5.3.1. The impact from ExT Cyclones 

Fig. 5.18 shows the precipitation during May-June 1995. There are several precipitation 

events and found to be mostly due to the Ext Cyclones. ExT cyclones occurred during 

following data 

• May 3rd - 4th   - away from the mainland in the northward of Hokkaido 

• May 7t-8th – Anticyclone – strong over Onahama, Morioka area 

• May 14th-16th - from west Japan to east Japan through mainland   

• May 17-19- Anticyclone- from East Japan up to Kanto area 

• May 21st-23rd from west Japan to east Japan through mainland   

• May 23-25 Anticyclone- from East Japan  

• May 25th Over Hokkaido  

• May 29th Over Aomori  
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The pressure reduced to mean sea level and wind vectors of the key events are shown in 

Fig. 5.18. During May 7th there is a high-pressure zone over Japan, and several diaries catch 

this by indicating sunny weather. In reanalysis data pressure center is more towards eastern 

side however in the data assimilation simulation this was simulated shifted to little bit west 

Japan. There is a movement of an ExT cyclone from 14 to 16th May. The data assimilation 

simulation could capture this well while no assimilation simulation could not capture that 

event. A shift in the time and path of ExT cyclone can be observed which may be due to long 

assimilation interval, lack of observations outside and Japan and low model resolution. Again, 

during May 15-18, a large high-pressure zone moved over Japan and could be captured in the 

data assimilation simulation. During May 22 another ExT cyclone was occurred and could be 

captured. During May 25th there is an ExT in the northern side of Japan, data assimilation 

simulation could capture an ExT, but it was shifted towards central Japan creating unrealistic 

precipitation over that area.  
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 No Data assimilation                  Data Assimilation                        Reanalysis data  

 
(a) May 7 

 
(b) May 15 

 
(c) May 17  

 
(d) May 22 

 
(e) May 25 

Fig. 5.18: Pressure distribution of ExT Cyclones and Anticyclones in May 
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Fig. 5.19: Precipitation during ExT cyclone season.  

 

Fig. 5.19 shows the precipitation during May and June period. Precipitation during ExT 

cyclones is visible in at least few stations that affected by the ExT cyclone. The May 15th ExT 

cyclone had strong pressure deference, and it caused the heaviest precipitation during May. 

The model also could capture this precipitation event. During other ExT cyclone model tend to 

overestimate than observations. Even though on May 25th ExT cyclone did not travel over 

central Japan, model simulate the ExT cyclones as traveling over central Japan causing a 

significant precipitation event over that region even though in reality there was no precipitation. 

The shift in the location of ExT cyclone is the reason for unrealistic precipitation and 

sometimes heavy precipitation forecast. In comparison, no assimilation simulation could not 

capture most of the weather events. The capability to produce ExT cyclones using uncertain 

description data would be an exciting result to future studies.  

Fig. 5.20 shows the progression of ExT cyclone from 14th May to 17th May of the 

simulations with data assimilation and without data assimilation in comparison to the reanalysis 

data in detail. The low-pressure zone enters from south-west direction and move to central 

Japan on 15th May and then move to North-East direction. Thus, ExT cyclone impact on whole 

of Japan during this period. In the background, there is a high-pressure zone in East-South side 

and low pressure in West-North Direction. Without data assimilation, it could not capture the 

movement of the ExT cyclone at all. However, it could capture the generous low pressure and 

high-pressure zone in East-South side and in West-North Direction. On the other hand, with 

the data assimilation, we could see the passage of high pressure over Japan on 14th May and 

Choshi 
Nagoya 

Kofu 
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movement of ExT cyclone from 15th to 17th, but there is a shift in the time in the movement. 

This may be because the weather data is assimilated only at a particular time step of the day 

(i.e., at 3.00 pm).  

              No Data assimilation                  Data Assimilation                 Reanalysis data 
 

Fig. 5.20: Development of low-pressure area during the ExT cyclone 05/14-5/16 

 

Fig. 5.21 shows the performance of other variables on 14th. Data assimilation system could 

capture the precipitation event, but it is overestimated and earlier than the actual event. This is 

because there is a shift in the location of the ExT cyclone in the simulation. Similarly, the 

pressure reduced to MSL, 10m Geopotential height at 500 level shows the zonal pressure 

difference which decides the path of the ExT cyclone. In TCC model could capture spatial 

distribution well. The China side has a lower TCC, and Japan seaside has higher TCC in North-

East direction. Simulation without data assimilation could also capture this variation to some 

extent. Temperature and SR also has a similar variation in the two simulations in comparison 

to reanalysis data.  

May 16 

May 15 

May 14 
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No Data assimilation                     Data Assimilation                        Reanalysis data  

 
(a) Precpitation (mm/day) 

 
(b) Geo Potential height at 500 (m) 

 
(c) TCC (%) 

 
(d) Temperature  (K) 

 
(e) SR 

Fig. 5.21: Performance of other variables during the ExT cyclone 14-17 May  
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5.3.2. Impact from typhoons 

Japan is located in the Pacific Ocean and faced by many typhoons which impact the 

weather from end of spring to the beginning of winter. Some diary data has information about 

the typhoons. However, as specific attention is not given to individual diaries, and only three 

weather classes are considered, all the precipitation events including typhoon are categories as 

class 3(rainy). However, as typhoon affects a large area, multiple diaries in different areas can 

indicate heavy rain and high cloudiness. Specific attention was given to average scale typhoon 

Ryan (i.e., Typhoon 199514). Table 5-7 shows the properties of Typhoon Ryan  

Table 5-7: Properties of Typhoon Ryan   

Property  Value 

Minimum Pressure 940 (hPa) 

Maximum Wind 85 (knots) 

Largest Diameter of Storm Wind 370 (km) 

Largest Diameter of Gale Wind 1000 (km) 

Average Speed 23.1 (km/h)  

 

The Typhoon entered Japan on 23rd September 1995 from the southern side and crossed to 

China seas side before crossing northern Japan again as shown in Fig. 5.22. As shown in Fig. 

5.22 (b) the typhoon impacted on a large area and causing high cloudiness. In weather classes, 

this condition would be indicated by class 3.   

 
 

(a) (b) 

Fig. 5.22: (a) Track of Typhoon 199514 (RYAN), (b) Visual image of Ryan on 23rd 

September 1995 (Kitamot, 2015) 
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Fig. 5.23 shows precipitation during the typhoon (blue square s21st to 24th September) 

Ryan at different locations.  As the typhoon enter Japan from southern side around Nagasaki, 

observations show very high precipitation of more than 100 mm during one day at Oita and 

Nagasaki stations. According to Table 5-8, all the stations have weather class 3 at least once 

during two days. Kochi, Nagasaki, Shnomaaki, Kagoshima areas show weather class 3 in the 

first two days and reduce in the third day when the Typhoon move up on the other hand in the 

northern stations, the first day is class 1 or 2, and then it became weather class 3 in the third 

day. Many stations have precipitation (more than 20 mm/day) at least once except the stations 

shown in yellow.  However, the model shows higher precipitation in most of the stations 

probably because all the stations have weather class 3.     

Table 5-8: Weather classes at observation stations   

Station Weather Class   

22nd   23rd  24th  Observed 

Precipitation 

>20mm/day 

Model 

Precipitation 

>40mm/day 

Obihiro - - -   

Sapporo 1 1 3 Y Y 

Aomori 1 1 3 N Y 

Morioka 1 2 3 N Y 

Onahama 2 2 3 N Y 

Choshi 1 1 3 N N 

Takada 1 3 3 N Y 

Kofu 2 2 3 N N 

Wajima 2 3 3 N Y 

Maizuru 3 3 3 Y Y 

Nagoya 3 3 3 Y Y 

Yonago 1 1 3 Y Y 

Oita 1 3 3 Y (>80) Y 

Hamada 3 3 3 Y (>40) Y 

Kochi 3 3 2 Y (>40) Y 

Nagazaki 3 3 2 Y (>80) Y 

Shinomisaki 3 3 2 Y Y 

Kagoshima 3 3 1 Y (>40) Y 

 

Fig. 5.24 shows the TCC and SR at Nagasaki station. SR goes to the minimum value in 

September during TCC peak. The model could capture this change very well.  

Considering all the results. The model could capture the heavy precipitation, however as 

the model has a lower resolution model could not capture the typhoon itself. By comparing 

with other events, it is possible to judge manual that these results occurred due to a typhoon 

and the movement if from south to north. A limitation in this study is only three weather classes 
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are considered thus it is difficult to distinguish between heavy precipitation events and regular 

precipitation events. If the information about typhoons can also take into consideration, better 

results would be able to achieve.  

  

(a) Oita (b) Nagasaki 

  
(c) Onahama  (d) Kochi 

  
(e) Kofu  (e) Kagoshima 

  
(f) Choshi (g) Aomori 

-- No Assimilation, – Assimilated, --Observation     -Rainy              - Cloudy                   - Sunny 

Fig. 5.23: Precipitation at different stations in September 1995  
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Fig. 5.24: TCC and SR at Nagasaki station 

 

              No Data assimilation                  Data Assimilation                 Reanalysis data 

 
Fig. 5.25: Development of low-pressure area during the Tropical cyclone 09/22-9/23 
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              No Data assimilation                  Data Assimilation                 Reanalysis data 

 
Fig. 5.26: Precipitation during the Tropical cyclone 09/22-9/23 

 

More Typhoons are analyzed to investigate model skill further during the typhoons. The results 

are shown Table 5-9. According to the results, the model could not capture the Typhoon 

movement well in most of the cases. Mostly it could capture the precipitation events but not a 

low-pressure center as in the Typhoon.          

 

 

 

 

 

Sep 24 

Sep 23 
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Sep 25 
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Table 5-9: Typhoons in 1995 Early summer   

 

1995   
199503 

(FAYE) 

07/22 

 

During this typhoon, the low-

pressure center is not well 

captured. However, there is a 

small low-pressure center 

around lon 130 and lat 30 

corresponding to the typhoon.   

 Reanalysis Model with DA 
Pressure 

  
Precipitatio

n 

  
Observed 

weather 

classes  

 

Many diaries indicate class 

three during the Typhoon  
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199507 

(JANIS) 

08/28 

 

This typhoon arrives with less 

strength; reanalysis data shows 

the movement of the pressure 

centre. However, Data 

assimilation does not have a 

similar pressure pattern.  

 Reanalysis Model with DA 
Pressure  

 
 

Precipitatio

n 

  
Observed 

weather 

classes 

09/17 

 

09/16
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199512 

(OSCAR) 

09/17 

 

During these days, Typhoon 

travel in Japan sea side from 

west to east away from the 

mainland. Only Tokyo Chiba 

area got influenced. The model 

does not capture this event even 

though there is a slight low-

pressure center in the south.  

Pressure 

  
Observed 

weather 

classes 

 

 

 

5.4. No of zero precipitation days 

Zero precipitation days in each month was compared between the observations and two 

model simulations (i.e. with and without data assimilation). As the ensemble mean is an 

average, it cannot produce precisely zero values. Hence zero precipitation days were calculated 

in each ensemble and averaged. The following figure shows the results of Wajima, Choshi, 

Nagasaki and Aomori stations representing four sides of Japan. Spring has the least difference 

in all stations as the model could capture synoptic scale weather well during the period. In 

overall data assimilation simulation produced better results at Wajima and Nagoya. At Choshi 

data assimilation reduce the number of dry days especially in summer which due to less 

accurate typhoon effects as discussed earlier. Annual comparison of zero precipitation days can 

help to identify long-term weather events such as droughts.   
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Wajima station (RMSE, DA:19, NA:36) Choshi station (RMSE, DA:106, NA:55) 

  
Nagazaki station (RMSE, DA:16, NA:12) Aomori station (RMSE, DA:26, NA:42) 

 
Fig1: No of zero precipitation dates in each month 

 

5.5. Bootstrap Experiment  

Diary data do not cover all the regions in Japan. Sometimes a diary can be discontinuing 

for a short time. Hence it is essential to investigate whether it is possible to improve an area 

without diary data from available diary observations in the surrounding area. For that two kinds 

of experiments were carried out in recent period with the same conditions as in Chapter 5. 

• Removing one observation (BST Choshi simulation)  

• Removing several observations (BST2 simulation) 

o Only nine stations (Obihiro, Aomori, Onahama, Takada, Kofu, Maizuru, 

Shionomisaki, Hamada, Kagoshima) 

For this experiment in 1995 , three weather classes data was used. In the results, the control 

simulation is the same as discussed in section 5.1.1. The results are given in Fig 5.27 (a) and 

(b) respectively. In the BST Choshi experiment, it could capture the SR to some extent 

however, R is lower (0.44) than the control run (0.57) and also the RMSE value increased from 

81.7 W/m2 from 76.71 W/m2. TCC also has a similar performance in the BST Choshi run. In 

precipitation BST Choshi experiment overestimate the precipitation events causing to RMSE 
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to increase to 17.84 mm/day, and BST Choshi experiment also has similar unrealistic 

precipitation events as in control experiment. In BST2 experiments results of TCC and 

precipitation reduce further. However, in solar radiation BST2 experiments have slightly higher 

performance than BST 1 Choshi experiment. Change in temperature is small. 
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(a) BST Choshi simulation (b) BST2 simulation 

-- BST experiments   -- Regular Assimilation (control run) -- Observations 

Fig 5.27: BST Choshi performance at Choshi station  
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Fig 5.28 and Table 5-10 shows the performance over all the stations. Removing Choshi 

station has a slight impact on the average performance. Interestingly it improves the 

performance in SR and TCC in both RMSE and correlation and in precipitation correlation 

improves while RMSE worsen. In temperature, correlation decreases 0.03 and RMSE improve 

by 0.02. This shows that impact of missing one station is minor and improvement in some 

variables can be due to the mismatch between the local weather and the climate in the grid as 

Choshi station stay very near to sea while most of the grid consists of land including Tokyo 

area. In the BST2 experiment where half of the observation removed, noticeable decrees in all 

the variables could be observed in average. For instance, SR RMSE was increased to 55 % 

from 58.2 %, and correlation decreased to 0.7 from 0.83. However, still results are better than 

no data assimilation. Without data assimilation, SR RMSE was high as 102 and correlation was 

0.06, and in precipitation, correlation was negative while even half of the observations it is 

possible to have a closer correlation in precipitation and default data assimilation 

 

  

 
 

-- Default data assimilation experiment -- Bootstrap experiment (BST2) -- Observations 

Fig 5.28: Bootstrap simulations by neglecting half of the observations performance over all 

the stations   
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Table 5-10: Performance of the bootstrap simulations in all the observation stations average 

Variable RMSE/R 
Default 

DA 
BST Choshi BST 2 Noobs 

TCC RMSE (%) 19.7 19.0 22.1 28.1  
R 0.68 0.74 0.57 0.19 

SR RMSE(W/m2) 58.2 54 66 102 
 

R 0.83 0.86 0.7 0.06 

Temp RMSE(K) 2.38 2.36 2.0 1.84  
R 0.85 0.82 0.87 0.86 

Precipitation RMSE (mm/day) 6.7 7.6 8.4 6.47  
R 0.45 0.58 0.45 -0.19 

 

5.6. Conclusion  

In this chapter, the proposed model was evaluated with recent instrumental data in the 

1990s. By assimilating SR derived from the weather classes, improvement in Solar radiation, 

TCC, Precipitation and Temperature could be observed. Assimilation of TCC also gave similar 

improvement even though it is less in overall accuracy than SR assimilation. Poor SST, Sea-

Ice fraction and uncertainty of weather classes limit the accuracy of reconstruction. 

Precipitation was overestimated due to shift in the synoptic scale events and limited number of 

weather classes which doesn’t distinguish between heavy and light precipitation events.  Those 

events could be eliminated to some extent by assimilating information about sunny days (i.e. 

No precipitation days). From results of 1995-1999 it could be shown that model could capture 

the annual trend precipitation. In spring the model could capture synoptic scale events such as 

ExT cyclones even though location and time were little bit shifted. In the bootstrap experiment 

even without half of the observations the results were improved. Thus, assimilation of weather 

diary information can improve the surrounding areas as well.  In summary assimilation of 

weather classes data enable the model to capture observed precipitation events and other 

variations indicating the advantage of using weather diary data in climate reconstructions.   
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Chapter 6 

 

6. Weather Reconstruction Using 19th 

Century Diary Data 

Abstract: 

This chapter assimilate weather information from weather diaries in 19th century into the 

climate model for the first time in the historical data assimilation field using the settings and 

parameters identified from Chapter 2 and Chapter 3 with weather classes from other studies for 

1830s and weather classes directly from derived from Historical Weather Data Base for 1860s 

as explained in Chapter 2. The model could capture weather types such as ‘cloudy’ and ‘sunny’ 

after data assimilation in 1830s similar to conditions of weather classes. Similar skill was 

observed in 1860s experiments. Due to the lack of instrumental data for daily comparison, 

monthly temperature from early instruments in Yokohama was used to check the model 

performance. The correlation coefficient in temperature without data assimilation and with 

assimilation were 0.96 and 0.94 respectively which are evenly high because the model can 

capture the seasonality.  The model could produce ExT cyclones similar to 1995 when several 

diaries indicate rainy (weather class 3) during the spring period. By investigating precipitation 

anomaly from 1861 to 1864, 1861 May shown to be wet (19.0mm/month higher) and 1864 

relatively dry year (13.5 mm/month less). 

6.1. Experiments in 1830 

In 1830s SR assimilation using weather classes derived from diary data   Ichino, (2007) 

was done. Only eight diaries which have records of 1830s are available as shown in Fig 6.1(a).  

Fig 6.2 shows the model performances in the winter period, here the green line shows the 

weather class. As highlighted by the black box in end of January (22nd January to 01st February) 
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and in End of February (18th February 28th February), model variables could be well 

constrained using weather classes assimilation. In the first-period weather class is continuously 

2 (i.e. cloudy) and this was well represented by model’s low SR during the period. The TCC 

has a higher value except on 27th January. In the second box the weather class change to 2 from 

1 and again to 2 after 4 days. This was well captured by the model with data assimilation while 

the control run without assimilation could only capture peak for few days. In overall, the model 

with weather classes assimilation has an evident temporal variation whereas the control run 

without assimilation could not capture the trend in a weather classes and has a more substantial 

standard deviation in the ensembles. As there are no validation data available in this period 

further investigation was done with late 19th century data (i.e. 1863) where some monthly 

instrumental data is available. 

 
 

(a) 1830 (b) 1860 

Fig 6.1: Availability of weather diary data in the 1830s and 1860s 
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-- No assimilation – Assimilated o- weather classes 

 

Fig 6.2: TCC (%) and SR(W/m2) variation at Choshi station in Jan-March in 1830 

 

6.2. Experiments in the 1860s 

For this experiment, weather classes converted directly from HWDB as explained in 

section 2.2.2 was used. There are around 21 diary data in the 1860s as shown in Fig 6.1(b). 

However, several diaries overlap in the same model grid. In such circumstances, nearest 

observation to the model grid is used. The other document data can be used to evaluate 

observation uncertainty. The model performance is shown in Fig 6.3- Fig 6.6. By comparing 

the weather classes shown on the top of the figures and the model performance, it is clear that 

assimilation ensembles have a smaller standard deviation while the no assimilation run has a 

substantial uncertainty. Ensemble spread of TCC in the control run is quite high and the 

ensemble mean could not capture the weather classes on the other hand simulation with data 

assimilation has a narrow ensemble spread.  Even though there are no direct instrumental 

observations in the 1860s, there is monthly temperature, and precipitation datasets and 

Comparison with those data will be discussed in the next section. 



6  Weather Reconstruction Using 19th Century Diary Data 

97 

 

  

 
 

-- No assimilation – Assimilated 

Fig 6.3: Model performance in 1863 winter at Choshi station. The standard deviation of the 

ensemble spread is indicated by the shaded color.  

 

In winter Choshi station do not has large precipitation events. In spring there are several 

precipitation events, and this is captured in the ensemble mean of assimilation run whereas the 

control run without assimilation does not produce any precipitation events as experienced 

in1995.  
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-- No assimilation – Assimilated 
Fig 6.4: Model performance in 1863 spring at Choshi station. The standard deviation of the 

ensemble spread is indicated by the shaded color.  

 

In the rainy season, many records indicate rain (Blue squares) model results show several 

intense precipitation events.  

  

  
-- No assimilation – Assimilated 
Fig 6.5: Model performance in 1863 rainy season at Choshi station. The standard deviation 

of the ensemble spread is indicated by the shaded color.  
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In the summer period, the sunny category is frequent and intense perception events could 

be observed during rainy and cloudy days.  

  

  
-- No assimilation – Assimilated 
Fig 6.6: Model performance in 1863 summer at Choshi station. The standard deviation of 

the ensemble spread is indicated by the shaded color.  

 

6.2.1. The impact from ExT Cyclones 

As highlighted by the green box in Fig 6.5, May 18th has higher precipitation.  Fig. 6.7 

shows the weather classes during 18th May 1863. Most of the diaries indicate rainy weather 

which may be mostly due to an Ext cyclone.  
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Fig. 6.7: Model weather classes in May 18th 1863 

 

 
 

 

   
Fig. 6.8: Pressure and precipitation distribution of ExT Cyclones in May 18th 1863 
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6.3. Observed weather classes vs weather classes from the model. 

As there are were no observations to compare in 1860s, model’s weather classes can be 

compared with input weather classes to check wehather model could capture the weather 

classes. When assimilating weather descriptions, weather classes were converted to Solar 

radiation and assimilated to the model as explained in Chapter 2. A similar method was made 

to calculate weather classes backward from model Solar radiation values using data in recent 

period. Fig. 1 shows the relative solar radiation vs weather classes considering May data for 

five years from 1995-2000. This relationship was made to calculate weather classes from model 

simulations. As expected, solar radiation in the model has a clear correlation with observed 

weather classes.  

 

Fig 6.9:  Relative solar radiation of model vs weather classes at Wajima station 

The calculated Kt values at each month at each observation site can be used to calculate 

weather classes from the model. Kt values from Fig 6.9 was adjusted to maximize the equal 

number of stations for five years. Fig2. Shows the weather classes derived using the above 

method at Wajima station for five years.  Results show assimilated solar radiation can represent 

the original weather classes well.  

3-Sunny 3-Rainy 2-Cloudy 

K
t 
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Fig 6.10:  Weather classes in May from 1995-2000 at Wajima station 

Table: Total classes from model and observations 
 

Weather class 

 3 2 1 

Kt values 0.37 0.37-
0.5 

0.5 

Model 45 21 88 

Observations 42 21 91 

 

This relationship was applied to Takada station in 1863, Kt values were increased by 0.12 

to match the higher monthly mean of Takada station. Fig3 shows the model weather classes vs 

observed weather classes at Takada station in 1863 May. Even though the observation has 

several missing values a clear match can be seen with the model weather classes. Moreover, 

model indicate weather class 2 on 18th and 3 on 19th during the ExT cyclone.  

 

Fig 6.11:  weather classes at Takada station in May 1863.  
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In Fig. 6.8 development of low-pressure center can be seen similar to 1995 by manually 

comparing pressure values at centre.  It would be useful to make some method to identify ExT 

cyclones automatically in further studies.  

6.4. Comparison with other proxies  

There are several instrumental observations in the 1860s by different observers (i.e. P. 

Mourier (1865), P.A.L. Savatier (1866/12– 1868/01), J.C. Hepburn (1860, 1863–1869)) (Zaiki 

et al., 2006). However, these instrumental observations are not sometimes continuous and have 

a considerable uncertainty and do not follow standards. Hence only monthly Temperature and 

precipitation has been reconstructed from these early instrumental data ( Zaiki et al., (2006), 

Hirano et al., (2018)). Fig 6.12 shows the assimilation and no assimilation run with the monthly 

observations. From 1995 observations it was found that the model has the skill to capture the 

seasonal climatology even without data assimilation. Hence here both experiments show 

similar performance and underestimation in summer was common in recent experiment as well.  

 

Fig 6.12: Comparison with observed monthly temperature reconstructed using instrumental 

observations in Yokohama (Zaiki et al., 2006) 

 

6.5. Long-term trend  

Due to the lack of instrumental data for daily comparison, monthly temperature from early 

instruments in Yokohama was used to check the model performance. The correlation 
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coefficient in temperature without data assimilation and with assimilation were 0.96 and 0.94 

respectively which are evenly high because the model can capture the seasonality.  The model 

could produce ExT cyclones similar to 1995 when several diaries indicate rainy (weather class 

3) during the spring period. By investigating precipitation anomaly from 1861 to 1864, 1861 

May shown to be wet (19.0mm/month higher) and 1864 relatively dry year (13.5 mm/month 

less). 

  
Fig 6.13: Annual variation of precipitation and TCC in Choshi station 

 

6.6. Conclusion 

Proposed weather reconstruction methodology could be successfully applied to 19th 

century using information from real weather diaries. This is the first study to use weather 

information from personal recording in a climate model. The performance of the model is was 

analyzed in different seasons and annually. Monthly performance was compared with other 

proxies. Weather classes calculated from model results show similar classes to observed 

weather classes.  Model could produce synoptic scale weather events as seen in 1995. Further, 

annual trend was investigated to identify the long-term trend in monthly precipitation and TCC.   
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Chapter 7 

 

7. Final Conclusion and 

Recommendations 

Abstract: 

The last chapter makes the conclusions and discusses recommendations for future studies. 

In this study, weather categories from qualitative description data could be converted to 

weather classes and assimilate into a general circulation model using a data assimilation 

scheme. The results showed that assimilation of weather classes using solar radiation improved 

the correlation of non-assimilated variables as well, and it was revealed that the resulted 

atmospheric distributions could capture the actual synoptic weather events. To further expand 

this research, more information from diaries such as wind direction and snow information can 

be utilized. This study used only the diary data in Japan. In future, this methodology can be 

applied globally when more digitized diaries are available in different regions. 

7.1. Conclusion 

The objective of this study is to develop a method to reconstruct weather during 18th and 

19th centuries using personal diary data with a data assimilation scheme. For that GSM is used 

as the climate forecasting and LETKF was used as the data assimilation. Weather classes from 

HWDB were used for the past weather reconstruction and weather classes JMA description 

were used for validation the procedure.  

Simplification of complex weather categories in HWDB could be successfully simplified 

into three simple weather classes and shown to be consistence with the weather classes from 

the other studies. Furthermore, the weather classes were shown to be correlated with SR and 

TCC. 
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Assimilation of weather classes using SR improves the correlation of non-assimilation 

variable as well. However, overestimation of precipitation events and a low correlation of 

temperature in winter period was noticed.  

Information such as absence of precipitation could further improve the model 

performances removing the unrealistic rainfalls and improving the skill to capture more 

precipitation events. 

7.2. Recommendations  

In this study, the importance of using weather diary data was evaluated and practically 

shown with HWD in the 19th century. However the usage of weather diary data was limited to 

Japan, and this can be expanded by applying the same methodology to available weather 

documents found in other regions. 

Information about the time of the weather events is not utilized due to the unavailability 

of usable format. If the assimilation can be done at the specific time slots using the records 

about the time, the results can be improved further. 

 Furthermore, empirical relationships between different variables can be investigated in 

area wise in monthly scale. With the aid of such relationship, by offline assimilation to the 

monthly averages of online assimilation may provide better results and would be an interesting 

area to investigate.  

Even though the 19th-century model results are obtained, proper validation could not be 

done due to the unavailability of instrumental data. Other approaches such as validating with 

other proxy data and anomaly comparison can be made.  
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