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Abstract

Climate can control not only the personal lifestyle but also other living beings. It is crucial
to investigate historical climate to understand the current and future climates. Information
about daily weather can give a better understanding of past life on earth. Long-term weather
influences crop calendar as well as the development of civilizations. Unfortunately, existing,
reconstructed daily weather data are limited after the 1850s due to the availability of
instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-
ring width, ice core isotopes, etc.) which are either in an annual or decadal scale. However,
there are many historical documents which contain information about whether such as personal
diaries. In Japan, around 20 diaries in average during the 16" - 19" centuries have been
collected and converted into a digitized form. As such, diary data exist in many other countries.
This study aims to reconstruct historical daily weather during the 18" and 19" centuries using
personal daily diaries which have qualitative weather descriptions such as ‘cloudy’ or ‘sunny’

by incorporating this information to a Climate model using a data assimilation scheme.

To reproduce climate, a numerical weather prediction model can be used. In this study,
Global Spectral Model by Scripps Experimental Climate Prediction Center based on Global
Seasonal forecast system in National Centres for Environmental Prediction’s is used. This
model was used as the operational forecast model there until 2004 and as the basis for several
model development projects. However, these models are not perfect, and the results can be
improved if observations available in the past can be incorporated to model results. Data
Assimilation is useful to get the best estimate from a model and observations considering the
model errors and the observation uncertainties. There are attempts to reconstruct past climate
using other proxies such as Tree ring, Coral, Ice core, and sediment. The merit of these climate
reconstructions is they cover several thousand years sometimes beyond last millennium.
However, limitation of these proxy reconstructions is they are either annual or seasonal and not
available in all the regions. On the other hand, the personal diary information provides more
frequent information allowing to reconstruct climate in high resolution using online data
assimilation techniques. In this study, we used Local Ensemble Kalman Filter which uses an
ensemble forecast to calculate error covariances. Moreover it has localization ability that can-
do assimilation grid wise to each state vector parallelly considering all the observation in the
local area which makes the computation more efficient. Chapter 2 discuss the assimilation
system in detail and characteristics of diary data. Japan has a digitized database of old personal

diaries from the 17" century. There are around 20 diaries in the 19" century. Even though
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personal diaries have valuable information about daily weather, they are limited to qualitative
information such as descriptions like ‘sunny’ and ‘cloudy’ and it was a challenge to convert
them to usable quantitative format to be used in the climate model. This qualitative information
was converted to probabilistic representative quantitative values of Total column cloud content

(TCC) and downward shortwave radiation (SR).

Chapter 3 further investigated the possibility of assimilating uncertain weather
information. It was not clear about proper model settings and sensitivity of the number of
observation and observation uncertainty for uncertain weather assimilation up to now. This
chapter found solutions to them with several experiments. When TCC data is assimilated, the
correlation in average over Japan improved to 0.47 from -0.01. In particular, the correlation of
TCC improved to 0.64 from -0.13 at Choshi station. There are no significant contributions to
other variables (i.e. correlation change in: Temperature 0.3 to 0.2, Precipitation -0.95 to 0.1
and Pressure 0.18 to 0.3). Experiments with a different number of observation stations showed
improvement in the correlation coefficient and RMSE around the observations sites even with
18 number of stations. This indicates even the fewer number of weather records are available
local improvement can be achieved over those regions. Further, the simulation using data from
418 stations improved the results of not only the exact areas near the stations but also in remote
areas. For instance, correlation coefficients of TCC, Temperature, Precipitation and Specific
humidity in a non-assimilated site (i.e. Choshi station) improved from -0.13 to 0.38 ,0.30 to
0.57, -0.10 to 0.53, -0.13 to 0.61 respectively. Simulations with different observations
uncertainties were carried out to investigate the sensitivity to observation uncertainty and found
that if a small observation uncertainty is given, assimilation scheme neglects the observations
because ensemble spread is away from the observations. This was clear in results where an
observation error with 1% achieved only 0.17 correlation while observations with an error of
50% correlation improved correlation coefficient to 0.42. Impact from the initial conditions
was analyzed by doing simulations with perturbated simulations instead of initial conditions
created from time shift method as in previous experiments. The correlation was better in time
shift method (e.g., correlation decreased to 0.45 with perturbated initial condition method in
comparisons to 0.64 in Choshi station using time shift method and RMSE increased to 39.9%
in comparison to 32.6% in time shift method). Thus, it was decided to use time shift method to

create ensembles.

Real weather diary data is much different from the regular observations or synthesized
observations used in Chapter 3 because they do not have any numbers. Lack of boundary data
such as SST and Sea-ice fraction are other main challenges for simulation of forecast model
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during the 19th century. Currently, there is not any study which has overcome these challenges
to assimilate qualitative description data. Hence in Chapter 4, we evaluated the impact from
poor boundary condition. Assimilation system’s skill was found to reduce mainly in
precipitation when low-frequency Sea surface temperature and Sea-ice fraction data are used.
Correlation of all station average in Precipitation in 1995 April reduced from 0.58 to 0.32 even
though correlation in SR and TCC changed only slightly (i.e. 0.79 to 0.81 and 0.76 to 0.65
respectively). Another challenge is the sensitivity of assimilation time, diary data information
is mostly available in daily scale and impact on assimilating at particular time step has not been
investigated earlier. Separate experiments showed that assimilation results in morning and
evening have only a slight difference. In spring the correlation coefficient of the average of all
the station's changes from 0.54 to 0.43 in Precipitation, 0.66 t0 0.72 in SR, 0.66t0 0.73in TCC
and 0.81 to 0.8 in Temperature when assimilation time changed to 3 pm from 9 am. Further,
impact to model performance by assimilating only three weather classes data was evaluated in
comparison to assimilating TCC from JMA observations with added 30% uncertainty, and it
was found that the model could still capture the temporal variation even though correlation of
TCC reduced to 0.47 to 0.57 and 0.32 from 0.54 in precipitation in comparison to direct TCC

observation assimilation with 30% uncertainty at Choshi station.

Chapter 5 evaluate the skill of the model in assimilating document weather data. The main
limitation was the lack of instrumental data in the past. Hence an alternative approach was
followed by assimilating weather classes data derived from recent description data. All these
experiments were carried out with real data keeping the consistency with 19th Century data
quality. This is the first study to carry out such realistic experiments to investigate the
performance of assimilating weather class data into a climate model. Several simulations were
done in the recent period where observations data available for validation. Twentieth-century
weather classes, data derived from JMA descriptions was utilized. SR assimilation could
improve the correlation of TCC average in all the stations from 0.19 to 0.68 in spring while
reducing RMSE by 8 %. Improvements in other seasons and fields such as precipitation could
be achieved as well. Further, we investigated opportunities to improve the accuracy of the
model by incorporating other information such as the absence of precipitation and found the
correlation of precipitation in all the station average could be improved to 0.67 from 0.45 in
spring. Monthly anomaly values over 1995-1999 showed good correlation in precipitation,
TCC, and SR. By analyzing pressure fields, it could be shown that the model could capture the
synoptic scale weather patterns such as extratropical cyclones (EXT cyclones). Bootstrap

experiments were done using only half observations to check model performance when some
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diaries are absence. Even though the model performance was reduced to some extent satisfying
correlation could be achieved. Correlation of all the stations average in TCC was 0.57, in SR

was 0.72 and in precipitation was 0.45.

Chapter 6 assimilate weather information from weather diaries in 19th century into the
climate model for the first time in the historical data assimilation field using the settings and
parameters identified from Chapter 2 and Chapter 3 with weather classes from other studies for
1830s and weather classes directly from derived from Historical Weather Data Base for 1860s
as explained in Chapter 2. The model could capture weather types such as ‘cloudy’ and ‘sunny’
after data assimilation in 1830s similar to conditions of weather classes. Similar skill was
observed in 1860s experiments. Due to the lack of instrumental data for daily comparison,
monthly temperature from early instruments in Yokohama was used to check the model
performance. The correlation coefficient in temperature without data assimilation and with
assimilation were 0.96 and 0.94 respectively which are evenly high because the model can
capture the seasonality. The model could produce EXT cyclones similar to 1995 when several
diaries indicate rainy (weather class 3) during the spring period. By investigating precipitation
anomaly from 1861 to 1864, 1861 May shown to be wet (19.0mm/month higher) and 1864

relatively dry year (13.5 mm/month less).

The last chapter makes the conclusions and discusses the recommendations for future
studies. In this study, weather categories from qualitative description data could be converted
to weather classes and assimilate into a general circulation model using a data assimilation
scheme. The results showed that assimilation of weather classes using SR improved the
correlation of non-assimilated variables as well, and it was revealed that the resulted
atmospheric distributions could capture the actual synoptic weather events. To further expand
this research, more information from diaries such as wind direction and snow information can
be utilized. This study used only the diary data in Japan. In future, this methodology can be

applied globally when more digitized diaries are available in different regions.

viii



Publication Lists

Presentations on Conferences/Symposium (as a participant)

Panduka Neluwala, Kei Yoshimura, Junpei Hirano, Mika Ichino, 2017 Assimilating Various
Fields from Historical Documents: Idealized Experiments, /K 3C « K& JRFE 2017 R
2 - fFge3 RS, LA, 2017/9/19-21 (Presentation)

P. Neluwala, K. Yoshimura, K. Toride, J. Hirano, M. Ichino, A. Okazaki Reconstruction of
Historical Weather by Assimilating Old Weather Diary Data, PP31A-1264, AGU Fall
Meeting 2017, New Orleans, 2017/12/11-15 (Poster).

Panduka Neluwala, Kei Yoshimura, Sensitivity analysis of historical weather documents
assimilation for reconstructing past climate, fourth International Conference on Hydrology
delivers Earth System Science to Society (HESSS4), Tokyo, 2017/05-16-19 (Presentation)

Panduka Neluwala, Kinya Toride, and Kei Yoshimura, Assimilation Experiment of Weather
Diary Data Using an LETKF System, the 3rd RIKEN International Symposium on Data
Assimilation, Kobe, 2017/2/28-2017/3/2 (Presentation)

Panduka Neluwala, Kei Yoshimura (2016) Reconstruction of historical weather patterns by
data assimilation of old diaries and general circulation model World Archaeological
Conference -8 (WACS8), Kyoto 2016/08/28-/09/02 (Presentation)



Table of Contents

ACKNOWIEAGEMENTS ... bbbt ii
AADSTTACT ... et bbb bbb e %
0] o] Tox= L To o I 1TSS IX
I 10] (o) O] 01 (=] OSSPSR X
LISE OF TADIES ...t b e bbbt xiii
LIST OF FIQUIES ...ttt sttt st e et r e nbe st st e e beeneenneeeas Xiv
I | 1 (oo [0 Tox 1 o] TSRS PR PSRRI 1
IO O = 7 o 1 [ (o1 Vo S S ROPSPURRTIN 1
1.2.  Limitations in long-term annual or decadal reconstructions..............ccocoocervvrvrienenne. 2
1.3. Data availability and previous attempts ..........cccooveiiiiiiieii i 3
1.4, DisSertation OULIING .......ccuviiiiieiiee e re e nre s 5

2. Material and MELNOUS .........oiiiiiiie ettt neenreas 6
2.1 INEOTUCTION ..ottt bbbttt bbbt r et e e 7
2.2, DALA ..ot b e 9
2.2.1. WEALNET ClASSES ...vieuiiiiiieite ettt bbb 9
2.2.2.  Converting to NUMETICAl VAIUES .........cceiiiiiiiiiiirieeeeee e 12
2.2.2.1. USING WEALNET CIASSES .......uiiiiiiiiiiiieiee e 12

2.2.3.  Observation data for validation..............cceocvvierieeie i 14

2.3.  Weather FOrecast MOEL............ccoiiiiiiiiiieeie e 16
2.3.1.  Importance of a physical MOdel..........cccccooiiiiiiiiii e 16
2.3.2. Numerical Weather prediction Models ............ccocoriiiiiiiiiiiieeeeen 17
2.3.3.  GSIM ettt ere s 17
2.3.3.1.  PhYSICS PACKAGES ......ccvcuiiiiiiiiii s 18

P B T - W AN [ 4] - 11 o] o PSS 18
ot R 1 11 £ (1 o1 1 o o USRS 18
242, KaIMAN FHTEE ..o e 19
2.4.3. Local Ensemble Transform Kalman Filter (LETKF) ..o, 20
2.4.3.1. Localization and inflation teChNIQUES..........ccccoieiiiiiiciii e, 21

2.5.  Development of Data AsSiMilation SYSteM .........cccovverieiiiereerieseere e 22

X



2.5. 1. INIIAL CONTITION ..ottt e e e eee e 23

2.5.2.  BouNdary CONGITIONS ......ccuveiiiiieiieeie e sieeie ettt eneesree e e 24

2.6.

CONCIUSTON. ..ttt e e e et e e ettt e e e e e e e e e e e eaeeeenaaaenes 25

3. Evaluation of Model Performance and Sensitivity Analysis of Environmental Settings 27

T8 I |11 £ [Nt A o] o OSSPSR 28
3.2.  Experimental settings and input data ..............cccovveiinieiieeni e 28
3.3.  Data AsSImiIlation OVEr JAPAN..........ccviiiiiieieieiie e 29
3.4. Importance of the diaries from Other regions............coovvieieiiiencie e, 32
3.5, ODbServation UNCEIAINTY .........ccccieiieieiie ettt sre e e e e e 39
3.6, INITIAL CONUITIONS.....ciiiiiiie et nne e e sreense e 41
3.7, ENSEMDIES FESUILS ...t e 42
KIS T 0o 0 Tod 1313 [o] o OSSPSR 43
4.  Preparation for Realistic Past Data Assimilation Experiment............cccccoovoniniinnnienen, 44
4.1, ODSEIVALION TIME ....iiiiiiiciieieee ettt reene e e 45
4.2.  Impact of assimilating Weather CIaSSES ...........coeiiririiiiiiiieee e 47
4.3.  BoUNdary CONAITIONS .....c.cooveiiiiiiiiiisiisieeiee bbb 49
A4, CONCIUSION. ..ottt ettt bt e b reene e e e 51
5. Application of Proposed Data Assimilation System and Validation...............ccccccevenie.. 52
5.1, EXPeriments iN 1995.........i it 53
5.1.1.  Solar Radiation ASSIMIlALION ........cccoveiiiiiiiiiiiie i 53
5.1.2.  Performance in local observation Stations ............ccccceveveveiiienieenn e, 56
5.1.2.1. Performance in different regions ..........ccccoocveveiiieie e 56
5.1.3.  Precipitation estimation skill of the assimilation system. ............cc.ccocevvreriennn. 60
5.1.3.1.  Unrealistic heavy preCipitation...........cccccevvereiieenieeie e 62
514, TCC aSSIMIALION ..o 65
5.1.5. Precipitation information assimilation..............cc.ccooviiiiiiinn e 66
5.1.6.  Summary of model performance ...........ccccoe i 69
5.1.7.  Spatial Climatology ........coociiiiiiiiiiieiee s 71
5.1.8. Long-term simulation results (1995-1999) .........ccccuvirimierenenineseseeee e 72
5.2. Patterns of consecutive daily values of weather Classes ..........cccoveviiiiiiiiie e, 73
5.3.  Impact on different Weather tyPes.........coeeiiiiiiiiie e 74

Xi



5.3.1.  The impact from EXT CYCIONES........cceiveiiiiieiiee e 75

5.3.2.  Impact from tYPhOONS ........cciiiiiiiee e 81

5.4.  No of zero preCipitation days .........ccccveieiieiicie e 88
5.5.  BOOtStrap EXPErIMENT........cccueiiiiieiieiie ettt ste et esne e e e e 89
5.6, CONCIUSTON. ...ttt ettt bbbt 93

6. Weather Reconstruction Using 19" Century Diary Data..............ccccveeveervreeeneesieneenenn, 94
6.1.  EXPeriments iN 1830......c.cciiiiiiiiiiiiieeie e 94
6.2.  EXperiments iN the 1860S .........cccoiiiiiiieieiesie e 96
6.2.1. The impact from EXT CYCIONES........ccciveiiiiieieeie e 99

6.3. Observed weather classes vs weather classes from the model...............ccocoeiennn 101
6.4. Comparison With Other ProXi€s ..........ccciiveiieiicie e 103
6.5,  LONQ-TErM trENG... ..o 103
B.6.  CONCIUSION....c.uiiiiitiitieiet ettt 104

7. Final Conclusion and ReCOMMENdAtioNS............ooveiiirieiininieieesi e 105
7.1 CONCIUSTON. ...ttt bbb 105
7.2, RECOMMENTALIONS .....ouvieiiitiitceie ettt 106
REFERENGCES ... .ottt ettt e e neennee s 107

xii



List of Tables

Table 2-1 Key information types from the digitized weather diary database ........................ 10
Table 3-1: Correlation coefficients for simulations at each station.............ccccceeeeevveieiiennenn, 32

Table 3-2: Summary of the model performance statistics for simulations with different
number of observations in Oita SAtiON. ..o 37

Table 3-3: Summary of model simulation performance at Choshi station with difference

0DSErVation UNCEMAINTIES. ....ooveiviiiiiiiiiisisieie et bbbt 41
Table 4-1: Examples of weather incidents with occurred time in personal diaries................ 45
Table 4-2: Summary of the model performance statistics for simulations with JIMA

observations and simplified weather ClasSeS. ..........cccovveiiiiiiniiiie e 49
Table 4-3: SST impact on the average of all the observation stations ............cccccoeevevervennenn 50

Table 5-1: Stations covered in each region and improvement to the correlation coefficient. 57

Table 5-2: Events with heavy preCipitation...........cccocveeiieie e 62
Table 5-3: Summary of model performance for the three experiments .............cccccoevveeveenenn, 66
Table 5-4: Statistical SIGNITICANCE ..........cceieeiiie e 71
Table 5-5: Different types of weather in Japan ............cccoovveiiie i, 74
Table 5-6: Different types of weather in JAPan .........cccooeiiveiiie e 75
Table 5-7: Properties of TYPhoon RYan ..o 81
Table 5-8: Weather classes at 0bservation Stations .............coccovverireinincieineeseseeenes 82
Table 5-9: Typhoons in 1995 Early SUMMET ........cccovieieiieiieie e 86

Table 5-10: Performance of the bootstrap simulations in all the observation stations average

Xiii



Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

List of Figures

2.1: An example of daily weather descriptions in old diaries: “Hirosaki-han Edo” Diary

(“Weather diary records since the 18th century,” 2017).....ccccvvviiiiiiiiiniiniiiee e 7
2.2: Information from weather deSCriptions .........c.cccveiiieiieeiece e 8
2.3: Historical Weather Database on The Web(JJE 5! RigeT— & _X— R « A« 4 -

L5 =077 1O 9
2.4: Weather Classes at YOKOhama in 1863 ........cccooviiiiiinininieieieese s 11
2.5: Available of weather classes data in 1995, data from 18 stations were used

considering the availability of diary data in the past. .........cccoceviriiiinieiceniecce e, 12
2.6: Monthly JMA Total Cloud cover variations in 1995 over different stations............. 13

2.7: Empirical relationships between (a): weather classes (1, 2 and 3) and TCC (b)
Weather classes (1,2 and 3) and KT, the red line represents the median and star
represent the mean in each BOX PIOt...........cccvoviiiiiicie e 14

2.8: Comparison of JMA observations at Tokyo observation station and Chiba
ODSEIVALION STALIONS. .. e.vieiieiieieie ettt bbb 15

2.9: Comparison of JMA observations vs NCEP reanalysis observations at Choshi
]t LU o] PSSRSO 16

2.10: Schematic diagram showing the process of data assimilation............c.cc.ccecvvevenenne. 19

2.11: Schematic diagram showing the process of localization..............c.ccocoovviniiiniene. 21

2.12: Schematic diagram of the experimental SEtUP..........coovviiiiiiiiics e 23

2.13: SST data from NCEP-OI SST and Franke et al. (2017) over a random grid .......... 25

3.1: RMSE of TCC over Japan; (a) data assimilation simulation, (b)- control simulation
without data assimilation, (c) improvement in RMSE (%) (b-2)........ccccooeveivevivenenne. 30

3.2: RMSE of TCC at Choshi StAtiON .........ccoeiiiiieieie e 31

3.3: Influence of number of observations to model performances, RMSE difference of
the assimilation and No assimilation model runs ..........ccoovveeiieie e 34

3.4: Global mean of TCC (%) in (a) 18 station assimilation in Japan (b) 418 station Data
assimilation simulation globally ... 35

3.5: RMSE of TCC in 418 observation assimilation at Oita station.............cccccceeervennee. 36

3.6: RMSE of TCC in 418 observation assimilation at Choshi station .............c.cccccee...... 38

3.7: Sensitivity of observation uncertainties, TCC RMSE % difference between
assimilation and No assimilation SIMUlAtioNS............ccceviiiiiiniine s 40

3.8: Sensitivity of observation uncertainties, TCC RMSE % difference between
assimilation and No assimilation SIMUlationS............cccevviieriiere e 40

3.9: Performance of the model with different observation uncertainties ...............ccc...... 41

Xiv



Fig. 3.10: Performance of the model with different methods of ensemble initialization, (a)

perturbation method, (b) Time shift method.............cccooe e, 42
Fig. 3.11: Performance of the model with different number of ensembles ...............cccvvenee. 43
Fig. 4.1: 6hour accumulated SR at 3 pm from January to March 2006 calculated using daily

values VS 3 PM JMA SR GALA ......cc.oiiiiiiiiiieeeee e 46
Fig. 4.2: Model performance in 1995 spring over Choshi observation station with the

assimilation of TCC at two different times using three weather classes data.............. 47
Fig. 4.3: Performance with simple JMA weather Classes .........cccccveverieereeieiieieee e 48

Fig 4.4: Influence of SST temporal resolution on model performance. The red and blue lines
indicate the simulations results using SST from NCEP-OI SST (weekly SST & Sea-
Ice fraction) and Franke et al. (2017) (monthly SST & Sea-Ice fraction) respectively
at Choshi station from April 1995 to May 1995. ... 50

Fig. 5.1: Model performance in 1995 spring over all the station average with the assimilation
of 3 classes (i.e. Rainy- Class 3, Cloudy- Class 2, Sunny Class -1) of weather data. .55

Fig. 5.2: Model performance in 1995 spring over Choshi observation station with the

assimilation of 3 classes of weather data. ...........cccovieriiiiiiei e 56
T TR TG S LT [ To] ST 57
T TR S T T To] 1 PSSR 58
T TS LT [ To] 1 = USSR 58
FIQ. 5.6: REGION C ..ottt bbbt 59
FIQ. 5.7: REGION Dot bbbt 59
Fig. 5.8: Six hourly model guess and analysis performance............cccoevereniiennninieieien. 61
Fig. 5.9: Times series variation of model performance at Choshi station ............cc.ccoceeeenee. 63
Fig. 5.10: Pressure, Precipitation and TCC variation on 25" May ...........cccccccevueveireeereruennnan. 64
Fig. 5.11: Pressure, Precipitation and TCC variation on 29" May ...........cccoeeeverrereereenenenns 65

Fig. 5.12: Performance after introducing zero precipitation days to data assimilation
observations; (a)- all the station average, (b) — at Choshi station, (c) — at Wajima
R LU ] SO PUTRTRPSRR 68

Fig. 5.13: RMSE values of Solar radiation assimilation, No assimilation and Solar radiation
assimilation with precipitation information assimilation experiments in different
R 1<T2 0] LTSRS PPRTPPRTOPPRPPRN 69

Fig. 5.14: RMSE values of Solar radiation assimilation, No assimilation and Solar radiation
assimilation with precipitation information assimilation experiments in different

K=o 0] O U RO U TP P UTRPPPOUPTUPROTN 70
Fig. 5.15: Spatial variation of TCC in different seasons (%0)........ccccvvvviveeiiieiiieiie e, 72
Fig. 5.16: March Anomaly variation from 1995 -1999 ..........cccccciiiiiii i 73

XV



Fig. 5.17: Number of rainy days vs. observed precipitation and model precipitation............. 74

Fig. 5.18: Pressure distribution of EXT Cyclones and Anticyclones in May.............cccccveuvenne. 77
Fig. 5.19: Precipitation during EXT CYCIONE SEASON. .......ccvevveiiieiiiiie e 78
Fig. 5.20: Development of low-pressure area during the EXT cyclone 05/14-5/16................. 79
Fig. 5.21: Performance of other variables during the EXT cyclone 14-17 May .........cccccccue.... 80
Fig. 5.22: (a) Track of Typhoon 199514 (RYAN), (b) Visual image of Ryan on 23rd
September 1995 (Kitamot, 2015)......cceiiiiiiieieiiesie i 81
Fig. 5.23: Precipitation at different stations in September 1995..........cccccevvviieviiie e 83
Fig. 5.24: TCC and SR at Nagasaki Station ..............cccevvereiieiieeie e 84
Fig. 5.25: Development of low-pressure area during the Tropical cyclone 09/22-9/23.......... 84
Fig. 5.26: Precipitation during the Tropical cyclone 09/22-9/23...........ccccoceiveiieiviesieieecene 85
Fig 5.27: BST Choshi performance at Choshi Station .............c.ccocveieiiieienenciesseeeees 91
Fig 5.28: Bootstrap simulations by neglecting half of the observations performance over all
TNE STALIONS ...ttt 92
Fig 6.1: Availability of weather diary data in the 1830s and 1860S ............cc.ccoevrvrvrvriieiienn. 95
Fig 6.2: TCC (%) and SR(W/m2) variation at Choshi station in Jan-March in 1830.............. 96
Fig 6.3: Model performance in 1863 winter at Choshi station. The standard deviation of the
ensemble spread is indicated by the shaded color. ...........ccccoovveiiiiciicc e, 97
Fig 6.4: Model performance in 1863 spring at Choshi station. The standard deviation of the
ensemble spread is indicated by the shaded COIOT. ..........cceveiiiiiiiii 98
Fig 6.5: Model performance in 1863 rainy season at Choshi station. The standard deviation of
the ensemble spread is indicated by the shaded COIOF...........cccoeeiiiiiiiiiiee, 98
Fig 6.6: Model performance in 1863 summer at Choshi station. The standard deviation of the
ensemble spread is indicated by the shaded COIOr. ...........ceoieiiiiiiiii 99
Fig. 6.7: Model weather classes in May 18™ 1863 ..........ccccevvieveeieeeeeeeeee e 100
Fig. 6.8: Pressure and precipitation distribution of EXT Cyclones in May 18th 1863 .......... 100
Fig 6.9: Relative solar radiation of model vs weather classes at Wajima station.................. 101
Fig 6.10: Weather classes in May from 1995-2000 at Wajima station.................cccceeveenen. 102
Fig 6.11: weather classes at Takada station in May 1863............ccccooerereieninenenieeee, 102
Fig 6.12: Comparison with observed monthly temperature reconstructed using instrumental
observations in Yokohama (Zaiki et al., 2006)...........ccccurivririieiineieiesescseeeeees 103
Fig 6.13: Annual variation of precipitation and TCC in Choshi station...............cccceeveieneen. 104

XVi



1 Introduction

Chapter 1

Introduction

1.1. Background

Information on past climate can help to study the influence of climate on agriculture, health
and economy (Buntgen et al., 2011). To understand the changing atmospheric circulation due
to the insolation and other factors investigation of past climate records is essential (Seppéa and
Birks, 2001) and to predict the future climate, it is essential to check the agreement between
past data and the climate models (Lunt et al., 2013).

One of the main barriers to reconstruct long-term data series is lack reliable data in the
past. As an alternative to instrumental data, climate proxies such as stable water isotope data,
Atmosphere CO2 concentration, sediment depositions are used for climate reconstructions.

Tree ring data are shown to be a valuable proxy of precipitation and temperature. D’ Arrigo
et al., (2005) reconstructed December—February Nino-3 sea surface temperatures based on
subtropical North American tree-ring records to examine characteristics of ENSO variability
over the past six centuries (i.e. AD 1408-1978). Reconstructions of central European summer
precipitation and temperature variability over the past 2500 years was done using tree ring data
by Buntgen et al., (2011).

Past millennium climate anomaly in Europe was analyzed by Goosse et al., (2012) by
assimilating temperature reconstructed using multiple proxies such as Tree ring, Coral, Ice
core, sediment by of Mann et al., (2009) to Earth system model (LOVECLIM) (Goosse et al.,
2010) using particle filter data assimilation method developed by (Leeuwen et al ., 2009).

The stable isotopic ratio of precipitation differs according to the scale of the precipitation,

for example, tropical cyclones have a low value compared to that of normal summer

1
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precipitation. Hence the isotopic analysis of ancient freshwater fossil carbonate shells, fossil
mammal teeth or tree rings can be used to analyze past tropical cyclone activities (Lawrence,
1998). Steiger et al., (2017) showed water isotope data from ice cores could reconstruct
historical climate in the 19" century by assimilating isotope-enabled atmospheric model
ECHAMbS-wiso. Okazaki et al., (2017) showed the possibility of global climate reconstruction

by assimilating to Isotopic proxies ( § 20 in ice cores, corals, and tree-ring cellulose) to Isotope

enable Global Circulation models (GCM).

The merit of about climate reconstructions is they expand to several thousand years
sometimes beyond the last millennium. However, the limitation of these proxy reconstructions

is they are either annual or seasonal and not available in all the regions.

1.2. Limitations in long-term annual or decadal reconstructions

Climate can influence to the crops, food production and economy. Flowering and
harvesting period are observed to be changed with the climate. For instance, Cherry blossom
day is changing over the last 50 years in Japan (Japan Meteorological Agency, 2016). On the
other hand information about the flowering date can be used as a proxy for climate
reconstructions. Aono et al., (1994) has calculated the March temperature in Kyoto from the
11" century using a statistical method with cherry blossom records. Temperature has a
significant impact on the quality of wet rice during the ripening period. During the 2010 heat
wave, in whole Japan except Hokkaido, quality of rice got deteriorated (MOEJ, 2012). To
investigate this kind of phenomena, climate reconstruction with a higher temporal resolution

would be better.

Precipitation frequency too can influence the vegetation (Zhang et al., 2013). Brien etal.,
(2013) has evaluated the impact of rainfall pattern on vegetation by changing the watering
interval on different specie’s seeds and evaluating the germination process. According to them,
frequency influences biomass production and influence the competition between the crops. To

investigate this kind of incidents a long-term higher frequency weather information is useful.

The two main limitation of traditional proxies are lack of availability, and their low
temporal resolution can be overcome with document data which has monthly, daily or even

sub-daily information (Mikami, 2008) in several areas where other proxies are not available.
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1.3. Data availability and previous attempts

Old documents are recently utilized for historical climate constructions (Franke et al.,
2017). However, the documents currently in used are limited to old instrumental records. On
the other hand, there are qualitative data such as personal diaries. These records do not have
numerical values but provide a lot of information about the historical period. The value of
weather information in personal descriptions is essential today as well. Even today many
people post in social media about the weather events. A recent study about Twitter messages
showed the possibility of retrieving weather information from these qualitative data in the
present (Hannak et al., 2010).

Lorrey et al., (2015) digitized the meteorological data from an instrumental diary belongs
to New Zealand. That is one of the oldest instrumental observations in the mid-19" century
(i.e. 1839-1844) in the southern hemisphere. It has qualitative instrumental observations and
remarks about the weather such as the snow cover. The study has found lower winter
temperature in winter and warmer summer than present which may be linked to influence from
ENSO. Analysis of weather on these periods helps to understand the difficulties faced by the

early settlers.

Monthly, seasonal and annual temperature reconstructions for Central Europe has been
derived using documentary evidence since 1500 AD (Dobrovolny et al., 2010), they found
long-term temperature decreasing trend over the last five centuries in three seasons winter,
spring and summer. This example shows the importance of expanding similar investigations
globally. Wang, (1992) has discussed sources of Chinese historical weather reports from 18th
century Bell et al., (1978) has analyzed the historical data with weather information in Europe
during the medieval period in Europe. Zhang et al. (2013) reconstructed seasonal change in
Beijing 1867-1897 using a diary with weather records considering the number of rainy days.
However, it is limited to seasonal reconstructions without a physical model. Lake freezing date
records are available since the 15" century and has been used to reconstruct winter temperature
for five centuries (Mikami, 2008).

Gathering of historical document data is ongoing for instance Yoshimura et al., (1993)
have collected hundreds of Japanese personal data from the 17" century to 18" century and
made a Historical Weather Data Base (HWDB) and those data are available online. Similar

information is available in other countries and has been used for climate reconstructions.
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Toride et al. (2017) have shown the possibility of reconstructing past weather using
uncertain weather information found in documents with idealize experiments. In that study,
they have converted total column cloud percentage (TCC) into three classes 10% (Sunny), 50%
(partially cloudy) and 90%(Cloudy) using recent climate data to synthesize personal weather
data. That study can be recognized as the first step towards assimilating uncertain weather
classes into a climate model. However, there are several limitations in that study. It is limited
to making weather classes based on numerical values from recent instrumental observations
and reanalysis data. However real diaries are much complicated and have only qualitative
descriptive data. Hence it is required to develop a method to convert descriptive information to
usable numbers. Moreover, that study used recent SST and Sea Ice data even though in the 19t
century SST data is available only in the monthly low-quality state. Moreover, they do not
cover the impact of observation availability or observation uncertainty level. There is diverse
information in a diary such as presence of precipitation and can be assimilated even though the
above study only assimilates TCC. These limitations indicate that further studies are crucial
before using the actual weather diary data. Ichino et al., (2001) has developed weather classes
using historical weather descriptions patterns and recent Japan Metrological Agency (JMA)
weather patterns. In this study we utilized the weather classed derived from the JMA weather
description data in the recent period to evaluate the model performance and weather classes

from HWDB to reconstruct past weather.

Only Europe and some other regions have instrumental observations before the mid-19™
century (Lamb, 2005). Japan is a blind point in this pre-industrial period (Zaiki, 2006).0On the
other hand, Japan has much descriptive information in documents such as personal diaries.
Hence, this study focused on Japan. The developed system can apply to the rest of the world

as well.

This study is the first study to assimilate information from a description data set into the

climate model and will be an immense contribution to historical weather reconstruction studies
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1.4. Dissertation outline

Chapter 2 introduce the historical weather data availability and the process of converting
these data into the simple weather classes such as sunny, cloudy and rainy. Furthermore, it
describes how the simplified classes were transformed into numerical values by comparing
with instrumental observations. Illustrate numerical models; Global circulation model is used
as the climate model, and a data assimilation scheme is used to assimilate weather information

to the climate model.

Chapter 3 introduce the model with idealize experiments. Sensitivity to the number of
observations, number of ensembles, sensitivity to observation error, improvements to other
variables from single variable assimilation and impact from initial conditions are also

discussed.

Chapter 4 provides details about the experimental setup for past weather description data
assimilation and test the influence of the boundary conditions , the influence of assimilation

time and contribution from weather classes relative to exact values.

Chapter 5 validates the proposed model using JMA observations in the recent period.
Simulations results after assimilating Solar radiation derived from descriptive information
against the ground observations are compared. Assimilation of alternative variables such TCC
is also investigated. Improvement by incorporating additional information such as the absence
of precipitation is also analyzed.

Chapter 6 apply the model to the historical period during the 1830s and 1860s. Model
results are compared with the 1995 experiments and observations and other proxy data.

Importance of using weather documents over other regions are also shown.

Chapter 7 conclude finding of this study and recommend possible future directions.
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Chapter 2

Material and Methods

Abstract:

To reproduce climate, a numerical weather prediction model can be used. In this study,
Global Spectral Model by Scripps Experimental Climate Prediction Center based on Global
Seasonal forecast system in National Centres for Environmental Prediction’s is used. This
model was used as the operational forecast model there until 2004 and as the basis for several
model development projects. However, these models are not perfect and the results can be
improved if observations available in the past can be incorporated to model results. Data
Assimilation is useful to get the best estimate from a model and observations considering the
model errors and the observation uncertainties. There are attempts to reconstruct past climate
using other proxies such as Tree ring, Coral, Ice core, and sediment. The merit of these climate
reconstructions is they cover several thousand years sometimes beyond last millennium.
However, limitation of these proxy reconstructions is they are either annual or seasonal and not
available in all the regions. On the other hand, the personal diary information provides more
frequent information allowing to reconstruct climate in high resolution using online data
assimilation techniques. In this study, we used Local Ensemble Kalman Filter which uses an
ensemble forecast to calculate error covariances. And it has localization ability that can-do
assimilation grid wise to each state vector parallelly considering all the observation in the local
area which makes the computation more efficient. Chapter 2 discuss the assimilation system in
detail and characteristics of diary data. Japan has a digitized database of old personal diaries
from the 17" century. There are around 20 diaries in the 19" century. Even though personal
diaries have valuable information about daily weather, they are limited to qualitative
information such as descriptions like ‘sunny’ and ‘cloudy’, and it was a challenge to convert

them to usable quantitative format to be used in the climate model. This qualitative information
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was converted to probabilistic representative quantitative values of Total column cloud content
(TCC) and downward shortwave radiation (SR).

2.1. Introduction

Weather information can be found on personal diary records in several countries. For
example, Mikami et al., (1988) discussed about Japanese diary data. Similarly, Zhang et al.,
(2013) using Chinese diary data and Bernhardt et al., (2015) using the United States have
reconstructed regional weather patterns with information from diary data. A sample of a
Japanese diary page is shown in Fig. 2.1. The descriptions in diaries provide information about
precipitation, wind and cloudiness. Most of the documents have only keywords such as
‘sunny’, ‘cloudy’, ‘rainy’ etc. as shown in Fig. 2.2. Several diaries have information in detail

with time and weather intensity such as ‘heavy rain’, ‘early morning rain’ etc.

Fig. 2.1: An example of daily weather descriptions in old diaries: “Hirosaki-han Edo” Diary
(“Weather diary records since the 18th century,” 2017)
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Fig. 2.2: Information from weather descriptions

This study used the weather information from the HWDB, which has 50 diaries with
weather information during the 19" century, 23 diaries during the 18" century and 11 diaries
during17" century. However, a single diary does not cover the whole period or continues. For
instance, there are only 21 diary records in 1860. The weather data is available online
(Yoshimura, 2006) at https://tk2-202-10627.vs.sakura.ne.jp/. The website shows ‘good

weather’, ‘bad weather’ of all the weather diaries in Japan on each day in maps or tables. Here

the good weather means the state of weather that is closest towards a sunny day and bad weather
mean state furthers from sunny. In someday the weather can be sunny throughout the period.
In this case, both these may have similar information. However, in many days weather can
change during the day. If the weather was cloudy in the morning and become sunny in the
afternoon, good weather would indicate sunny and bad weather will indicate cloudy. However,
as it is difficult to extract data from the website the raw digitized weather was collected through

personal communications and will be explained in the next section.
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2.2. Data

2.2.1. Weather classes

The information from the diaries cannot be used directly as they have a lot of information
in various styles. HWDB has information about wind, thunder and warmth. However, to reduce
the complexity, only the information representing sunshine and precipitation was utilized as
this is the first attempt to use such data in a climate model. Even though information about
these two variables provides a lot of information as the given categories as Table 2-1,
converting these categories into a usable format is a challenging task. If we have a digital range
we can follow the Toride et al. (2017) as explained in the introduction, however, because these
data are qualitative which only words, first it was necessary to convert the weather categories
into a usable format (simple weather classes). Converting to weather classes can be done by
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simplifying either category information in Table 2-1 or reading the text descriptions. Ichino et
al., (2007) has converted the text descriptions in diaries into three weather classes (i.e. 1,2 and
3) considering sunshine and precipitation information in the diaries. However, the weather
classes data produced by them is available only for a limited period and locations, a separate
algorithm was prepared to convert whether categories in Table 2-1 to weather classes in this

study while keeping the consistency with classes by Ichino et al., (2007).

Table 2-1 Key information types from the digitized weather diary database

TH code Meaning in Japanese Meaning

0 Al iR 7e U HIBEARECR &V 2 Dfll) | No data

1 P, IS, & 68 Clear, Sunny
2 I, RV Slightly Cloudy
3 =, 2 Cloudy

4 (2 o0, (ER WS, &1L 7e L) | Shower

5 W Thunder Storm

6 K EH, B KW Heavy Thunderstorm
7 NGRS Light rain

8 N, B Rain

9 KW, # W Heavy Rain

A b b, B, & Hail

B Z oE Snow Shower

C N Light Snow

D Ef N Snow, Heavy Snow

In early 19" century, Japan had a strong famine during the 1830s in the Edo period. To see
the possibility of reconstruction of weather in 1830, using the weather classes data of Ichino et
al., (2007) an experiment was done in this period. However, there is no instrumental
observation to evaluate model performance in the past. Hence several experiments were carried

out in 1860 where few instrumental observations are available. 1860s diary data was converted

10
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to classes in this study. The conversion was done to keep the consistency with the classes of

Ichino et al., (2007) as follows.
Class 1 - Sunny and no precipitation
Class 2- Change from sunny to cloudy or sunny day with little precipitation or cloudy day
Class 3- Cloudy and Precipitation

The Fig. 2.4 shows the weather classes in Yokohama station during 1863 from Ichino et
al., (2007) and the derived weather classes from the HDWB in this study. According to the
results, only a few days have a mismatch due to the different interpretation of nighttime rainfall

in few days.

w

Catogory

N

Ll

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 Days

———— From HWDB weather catogories === From Ichino et.al. (2007)

Fig. 2.4: Weather Classes at Yokohama in 1863

This study aims to use information in historical details into climate models. However, due
to lack of validation data in the past, we focused in recent descriptions data of JMA as Ichino
et al., (2007) has converted the JMA description data into weather classes keeping the
consistency with the diary weather information. Hence, we considered they are similar and
used to evaluate the model performance before applying the historical weather data. We

utilized 18 stations (see Fig. 2.5) data in Japan.
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Fig. 2.5: Available of weather classes data in 1995, data from 18 stations were used

considering the availability of diary data in the past.

2.2.2. Converting to numerical values
2.2.2.1. Using weather classes

To assimilate the weather classes, it is essential to convert them to physical variables.
Weather classes are found to be correlated to daily downward shortwave solar radiation at the
surface (SR) Ichino et al., (2007). On the other hand, the Previous idealized study has shown
the potential to assimilate TCC classes (Toride et al., 2017) in numerical models. Toride et al.,
(2017) converted TCC in JMA data to weather classes to check the contribution from weather

classes using following simple approach
Less than 20% —> 10% (Sunny)
e 20-80% -> 50% (Partially Cloudy)
e More than80% -> 90% (Cloudy)

However, there was no evaluation for the suitability of above classes, and it limits to
convert weather classes from TCC. Hence the correlation between the weather classes and SR
and TCC were evaluated and empirical relationships were developed between the variables and

weather classes using the recent JMA observations in these stations.

Ichino et al., (2007) introduced an empirical relationship between K; (Daily clearness

index) and weather classes in each month. Values are calculated from in Q, =Q.K; Eq. 2-1

12
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Q, =Q.K; EQ.2-1using 20 year’s (i.e. 1979-1998) JMA SR data (Q, ) and Top atmosphere

solar radiation (Q, ).

Q, =Q.K; Eq.2-1
These Tokyo station’s K; values were used for some basic experiments over Japan.

However, as climatology differs from one location to another (see Fig. 2.6) K, values were

calculated using a similar approach for each of the 18 stations using JMA data and weather
classes data in 1995-1999.

e—e Obihiro o—e Onahama o—o Kofu e—e Shionomisaki oo Oita
10—H Sapporo oo Wajima o—o Nagoya e—e Kochi oo Kagoshima |
e—e Aomori e—o Takada oo Maizuru e—e Hamada eo—e Nagasaki

e—e Morioka oo Choshi e—o Yonago

JMA TCC index (1-10)

0 2 4 6 8 10 Month 12

Fig. 2.6: Monthly JMA Total Cloud cover variations in 1995 over different stations

Similarly, for each month TCC values for each weather class was calculated using the

weather class’ data and JMA daily average cloud cover data for the 5-year period.

13



2 Material and Methods
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Fig. 2.7: Empirical relationships between (a): weather classes (1, 2 and 3) and TCC (b)
Weather classes (1,2 and 3) and KT, the red line represents the median and star represent the

mean in each box plot

Box and whisker diagram in Fig. 2.7 (a) show the calculated monthly SR and TCC values
at Choshi observation station for each weather classes. A noticeable trend in SR for each
weather class can be identified as stated by (Ichino et al., 2001) and SR values have smaller
error variance compared to TCC. On the other hand, TCC ranges have a higher overlap (for
instance weather classes 2 and 3 has a very high overlap and large error variance). To represent
these errors, for SR 50 w/m? value random error is added for solar radiation as they have similar
variance. For TCC considering their variance 10%, 20%, 30% random error is added for TCC

values of each category respectively.

These calculated TCC and Kc values for each weather class would be a probabilistic
representative value, and the actual value lies in the range. Hence we added a random
normalized error considering the standard deviation of these values.

2.2.3. Observation data for validation

To evaluate the model, JMA observations are considered. However, the model has a larger
grid size around 200 km even though JMA is point observations. On the other hand, the model
may produce average results for the whole area causing to average different climatology and
topography as well. Due to this model may have a bias from the JMA observations and may
deviate from the point observations. To evaluate the impact, a comparison between Tokyo JMA
observation station and Chiba observation station data were done and as shown in Fig. 2.8.
Even though they are only around 100 km away and fall into the same grid, a noticeable
difference can be seen. Chiba station has more precipitation events, and only two precipitation

14
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events are overlapped, in those two events (01/14,01/21) too Chiba has a considerably higher

amount of precipitation and around 3-degree low temperature.
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Fig. 2.8: Comparison of JMA observations at Tokyo observation station and Chiba

observation stations.

To check the impact of resolution further, JMA results were compared with a reanalysis
dataset which has a similar characteristic with the proposed model. A data set produced by
applying spectral nudging to National Centers for Environmental Prediction—Department of
Energy (NCEP-DOE) Reanalysis-2 “NCEP_Reanalysis 2 data” ( n.d.), Kanamitsu et al.,
(2002a) will be referred as NCEP data here onwards was used for this purpose. Fig. 2.9 shows
the results, here a significant bias in the pressure can be seen in NCEP data which may be due
to the averaging topography in the grid. Temperature also has a positive bias even though
temporal correlation is very high. JMA does no directly measure TCC directly instead it
provides Cloud cover in 1-10 scale, to compare the two types, NCEP TCC percentage also

brought to a 1-10 scale by dividing 10. According to the figure, it has a good correlation with
15
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NCEP data thus JMA cloud observations are used as TCC observations in this study. The
pressure between JMA and NCEP has a considerable bias through the period indicating that
model results too has a similar bias. To investigate further the influence of resolution, it is
required to compare the more grids which have various local climatologies.

Cloud cover Pressure
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Fig. 2.9: Comparison of JMA observations vs NCEP reanalysis observations at Choshi

station

2.3. Weather Forecast model

2.3.1. Importance of a physical model

In historical climate reconstruction, statistical and empirical methods are used. (Ge et al.,
2005) used an empirical method based on field experiments to reconstruct precipitation using
memo documents to the emperor which consists of 104,996 records of moisture penetration
depth after precipitation and snow depth information. However, from those data, it would be
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possible to estimate other variables if a numerical weather prediction model base on physics
could be used. In a numerical weather prediction model once a variable is improved other
deterministic variables would also improve. (McGregor et al., 2013) used a coupled general
circulation model (CGCM) was used to investigate changes in El Nifio—Southern Oscillation
variance over the past six centuries. Compo et al., (2006) used NCEP global medium-range
forecast model used in 1998 (Kanamitsu et al., 1991) to check the possibility of developing

100-Year Reanalysis Using Only Surface Pressure Data.

2.3.2. Numerical Weather prediction models

To represent the physical process in planetary atmosphere, numerical models are used
based on Navier—Stokes equations. Atmosphere Global Circulation models (AGCMs) are
developed in two different approaches called grid pin models and spectral models. In grid point
model variables are assigned above the intersection of each grid in a regular matrix whereas in
the spectral model’s known as Global Spectral Models (GSM) variables are represented by a
periodic function which is calculated as the sum of spectral harmonics. The spectral
representation of variables has several advantages such as the exact calculation of space
derivatives, no pole problems, and no instability arising from aliasing in an ideal situation
(Orszag et al., 1970). Hence in this study global spectral model is used. Several researchers
used Global Spectral Model (GSM) developed by NCEP to investigate data assimilation
techniques. Szunyogh et al., (2007) used NCEP Global Forecast System (NCEP-GFS) GSM
that was in operational use at the beginning of 2001 to investigate performance of LEKF,
Whitaker et al., (2008) used NCEP-GFS GSM which was operation in March 2004 to

investigate the performance of ensemble data assimilation including LETKF.

2.3.3. GSM

In this study, GSM by Scripps Experimental Climate Prediction Center (ECPC) based on
Global Seasonal forecast system (SFM) in National Centers for Environmental Prediction’s
(NCEP) which was an operational seasonal forecast system by NCEP (Kanamitsu et al.,
2002b) is used. This model was used as the operational forecast model at NCEP until 2004,
and as the basis for several model development projects (Saha et al., 2006). Yoshimura et al.,
(2014) assimilate information from isotopes by carrying out observation system simulation
experiment (OSSE) where synthetic data is created mimicking the actual data from satellite or
ground observations. This study demonstrated how only isotope data assimilation could

improve the isotope fields and atmospheric dynamics (temperature, wind speed, humidity, and
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surface pressure) into the above GSM. Toride et al., (2017) used the same GSM to evaluate the
performance of climate model with uncertain weather information. Considering the similarity

of this study, the same GSM was utilized in this study.

2.3.3.1. Physics packages

The model’s physics packages include the following schemes;

e Longwave radiation scheme of Chou and Suarez (1994),
e Shortwave radiation scheme of Chou (1992),

e Relaxed Arakawa—Schubert convective parameterization (Moorthi and Suarez,
1992),

e Non-local vertical diffusion (Hong and Pan, 1998),
e Mountain drag (Alpert et al., 1988),
e Shallow convection (Tiedtke, 1983),
e Noah land surface scheme (Ek et al., 2003).
The commonly use T62 grid system (about 200 km horizontally) and vertically 28 sigma
layers was applied in this study. The time step of the model was set to 20-30 minutes depending

on the situation.

2.4. Data Assimilation

2.4.1. Introduction

After the model forecast, if there are observations, information from the observations can
be incorporated to the guess and use as the initial condition for the next model run. Both the
information from diaries and the model has an uncertainty. Data Assimilation is useful to get
the best estimate from a model and observations. In this study, our focus is to obtain an accurate
estimation with the available information and know physical laws between the variables (i.e.
model). Considering the model errors and the observation errors with a Bayesian approach as
shown in the schematic diagram (see Fig. 2.10). As in Eq. 2-2 Bayesian methods provide the

probability to occur some event when there is some knowledge about it.
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Fig. 2.10: Schematic diagram showing the process of data assimilation
P(¥o I X)P(x) Eq. 2-2
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Where  P(x) is the probability density function (PDF) of model state before the
observation is known (prior) and p(y,) is the PDF of the observations and p(x|y,)Iis

probability density function of model state if the observation occurs (Likelihood).

2.4.2. Kalman filter

A Kalman filter is one of the classical data assimilation method among various
assimilation schemes. However, as this model is a linear model it is problematic to be used in
a nonlinear forecasting models such as the GSM because for error covariance of the nonlinear
models cannot be estimated beforehand unlikely in linear models on the other hand
computational cost is significantly high due to the calculation of the time evolution of the error
covariance (Tippett et al. 2003).

There are two kinds of approaches, stochastic and deterministic approaches in 1994
(Evensen, 1994) introduced Ensemble Kalman Filter (EnKF) a stochastic approach to handle
the above limitations of the Kalman Filter by using ensembles to forecast error covariance and
model estimate error covariance. This Enkf was successfully applied to a perfect model
experiment using a low-resolution atmosphere model by Houtekamer and Mitchell (1998).
However stochastic approach requires to add and perturbation to observation to update
ensemble members who can add a bias to the estimate of analysis error covariance (Whitaker
and Hamill, 2002).

On the other hand perturbed observations are not necessary for creating the ensembles

when using Deterministic methods, such as the Ensemble Square Root Filter (EnSRF),
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(Tippett et al., 2003). To increase the efficiency Bishop et al., (2001) introduced a deterministic
method, ensemble Transform Kalman Filter (ETKF) which finds a transformation matrix

which makes covariance calculation more efficient.

Below we provide a basic explanation to the ensemble Kalman filter method used in this
study Following the notation in Whitaker and Hamill (2002), the EnKF update equations are

x% = xb + K(y°® — Hx?) Eq. 2-3
P% = (I - KH)P?
Where,

x? - m-dimensional model background state vector

x? - model analysis state vector

y? - p-the dimensional vector of observed values

H — observational operator that converts the models state to the observation space
P? is the m x m-dimensional background error covariance matrix

P2 - analysis error covariance

I - m x m-dimensional identity matrix, and the overbar denotes an ensemble mean

K - m x p-dimensional Kalman gain matrix
K =P’H"(HP’HT + R)!
Where,
R -p x p-dimensional observational error covariance matrix.

In this study, the model state vectors consist of air temperature, specific humidity, surface
air pressure, precipitation, total column cloud content and downward shortwave radiation. The
model background state x? is calculated by running the GSM to the analysis model state x*

from the previous time step.

Even though H can be a complex nonlinear operator here, it only extracts the variables
from the x” at observation locations. Next chapter explain about the y° extraction from

weather dairies and the observational error R.

2.4.3. Local Ensemble Transform Kalman Filter (LETKF)

Ott et al., (2004, 2002) introduced Local Ensemble Kalman Filter (LEKF), which has
localization ability that can-do assimilation grid wise to each state vector parallel considering
all the observation in the local area which makes the computation faster. Also, a lesser number
of ensembles are required to this. In this study, we used the LETKF (Hunt et al., 2007), Harlim
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et al., (2005) which applies the ETKF locally as in the LEKF. Final equations of LETKF are

as below
X*=x"+oX T

T=P%(aY) R‘l(yo —m){(m_l)pa]%

P* =|(m-1)1/ p+(av) R7Y |

Pa — analysis error covariance matrix m-ensembles N-dimensional
If the observational errors are uncorrelated and R is diagonal
20 ensembles enough  (Miyoshi and Yamane, 2007)

p - Inflation parameter to keep filter divergence

H- Linear observation operator
R- Observational error covariance matrix

2.4.3.1. Localization and inflation techniques

Due to the localization, data assimilation can minimize the errors due to the random
correlations among distant localization allowing to use lesser number of ensembles (Hamill et
al., 2001). To reduce the influence of discontinuity, we use a Gaussian function as in Eq. 2-3

introduce by Miyoshi and Yamane (2007) to smoothen the weighting function.

Fig. 2.11: Schematic diagram showing the process of localization
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We use a Gaussian function introduce by Miyoshi and Yamane (2007)to smoothen the
weighting function to minimize the discontinuity. 500km is used as the minimum physical

distance

12 Eq. 2-4
w(r) =exp(| —
(r) p(( szj
Where,
r- Distance between the local patch center and observation
P - Minimum physical distance

Furthermore, the covariance inflation method was used to overcome a common limitation,
an underestimation of the error variance (Anderson, 2009) in ensemble filters. In this study
adaptive covariance inflation method by Miyoshi et al., (2011) was used, which estimates

multiplicative inflation parameters adaptively.

2.5. Development of Data Assimilation system

Fig. 2.12 show a schematic diagram of the developed model in this study. In this study
GSM explained in section 2.3.2 is used to forecast the climate and the data assimilation
technique (i.e. LETKF) is used to incorporate the observation whenever the observations are
available. Forecast model provides an ensemble guess from the initial ensemble condition from
the previous time step and the assimilation scheme incorporate observations into the model
guess ensembles and provide the ensemble analysis for the next initial condition of the model.
If no observations are available, model guess will be directly used as the next initial condition.

This procedure repeats until the end of the simulation in 6-hour cycles.
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Fig. 2.12: Schematic diagram of the experimental setup

2.5.1. Initial condition

In order to start a model which is known as initializing the model, it is essential to specify
specific variables (Reichler and Roads, 2003). As the assimilation system is an ensemble
forecast, the forecast model runs parallelly multiple runs initiated with different initial

conditions.

In most of the ensemble forecast studies ensembles are created by picking the initial
condition from another timestamp (Yoshimura et al., 2014), (Toride et al., 2017). Even though
the initial condition is not so critical in an atmosphere model due to the low memory about the
initial condition in the atmosphere, another method to create ensembles was investigated to
check model performance. Ensembles can be created by adding a perturbation to the variables
of the actual data (Toth et al., 1993), (“Ensemble Prediction Systems,” 2016). Both of these
methods were investigated in section 3.6 and found to have no significant difference in model
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behavior. Hence the commonly used Time shift method is used in this study as well to create

ensembles.

However, before the 19" century, there isn’t any daily dataset that has sufficient data to
initialize the mode. Thus initial condition from a random recent year was selected, and one-
year spin-up was carried out to bring the model to an equilibrium state. Then each ensemble
was then initiated from a different day from the starting date following Yoshimura, et al.,
(2014) to create the ensemble forecast. The same procedure was used for the experiment in the
resent period to keep the consistency.

2.5.2. Boundary conditions

GSM model requires SST and Sea-lce fraction data as a boundary condition to the
atmosphere model. In the present these products are available in high temporal resolution and
spatial resolution. Lack of high quality in SST and Sea-Ice fraction data is a limitation to
climate reconstructions (Reichler and Roads, 2003). Even though there are data sets on annual
scale for thousands of years, higher temporal resolution data is limited. The daily SST
reconstructions such as National Oceanic and Atmospheric Administration (NOAA) Optimum
Interpolation Sea Surface Temperature (OISST) (Reynolds et al., 2007) are limited to 1981
and monthly SST data such as Hadley Center Global Sea-lce fraction and Sea Surface
Temperature (HadISST) (Rayner et al., 2003) is limited to 1870s. The annual SST and sea-
ice fraction data products are not sufficient for daily reconstructions like this study. Recent
studies of (Franke et al., 2017) has developed monthly SST data since 1600 by incorporating
seasonally anomaly and ENSO signals from HadISST into the 1500 year annual SST
reconstruction of Mann et al., (2009) and a sea-ice fraction data climatology from HadISST
1.1 data set before 1870. Franke et al., (2017) SST is the optimum SST and Sea-ice fraction
data that we can find. Hence, we used SST data and Sea-ice fraction data of Franke et al.,
(2017) after interpolated into daily values as in Fig. 2.13. Those are the optimum SST data and
sea-ice fraction available for the focus period of this study. In this study even though several
experiments were carried out in 1995 for validation purposes, the boundary conditions were
kept in similar quality to the interested period in the 19" century. We did a separate experiment
to check the influence between weekly SST data from NOAA OISST and Monthly Franke et
al., (2017) data to the model performance with same observational error and model settings by
assimilating solar radiation similar to the other experiments and results are shown in section
4.3.
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Fig. 2.13: SST data from NCEP-OI SST and Franke et al. (2017) over a random grid

2.6. Conclusion

Weather documents were shown to be an excellent alternative proxy in the absence of
instrumental data. The data from the documents are not numbers, and the uncertainty of the
documents was explained. The online database has data as ‘good weather’, and ‘bad weather’
and the raw digitized data consists of many weather categories as explained. It was shown that
this information can be simplified to weather classes such as ‘sunny’, ‘cloudy’ and ‘rainy’. The
weather classes were successfully converted to numerical value considering the probabilistic
spread. The consistency of converting the data was confirmed with continues weather class
data from Ichino et al., (2007) at Yokohama station. Only one weather event was differently
simplified which was due to neglecting nighttime precipitation by the proposed method. A
limitation to validate the proposed system was lack of instrumental data, hence experiments in
the recent period with description data of JMA was proposed. Impact of the model resolution
was briefly examined by comparing two-point observation stations in the same grid which are
apart around 100 km, and results showed a bias in some variables and a different number of
precipitation events. Both stations have the same major weather events even though the
magnitude is slightly different. The impact of resolution was further analyzed by comparing
JMA point data observations with NCEP data which has a similar resolution with the proposed
model and found to lies between the two points in temporal variation while several variables
have a uniform bias throughout the period. Selection of Climate forecast model was discussed,

and GSM was selected considering its ability to couple with a Data assimilation scheme and
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extensively used in similar studies. For the data assimilation scheme LETKF was selected due
to the low computational cost and higher performance and ability parallel computation.
Preparation of initial conditions and boundary conditions is a challenge in historical climate

reconstructions and alternative methods were discussed to overcome the limitations of data.
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Chapter 3

Evaluation of Model Performance
and Sensitivity Analysis of
Environmental Settings

Abstract:

This chapter further investigated the possibility of assimilating uncertain weather
information. It was not clear about proper model settings and sensitivity of the number of
observation and observation uncertainty for uncertain weather assimilation up to now. This
chapter found solutions to them with several experiments. When TCC data is assimilated
correlation improved to 0.47 from -0.01 in average over Japan. In particular, the correlation of
TCC improved to 0.64 from -0.13 at Choshi station. There are no significant contributions to
other variables (i.e. correlation change in: Temperature 0.3 to 0.2, Precipitation -0.95 to 0.1
and Pressure 0.18 to 0.3). Experiments with a different number of observation stations showed
improvement in the correlation coefficient and RMSE around the observations sites even with
18 number of stations. This indicates even the fewer number of weather records are available
local improvement can be achieved over those regions. Further, the simulation using data from
418 stations improved the results of not only the exact areas near the stations but also in remote
areas. For instance, correlation coefficients of TCC, Temperature, Precipitation and Specific
humidity in a non-assimilated site (i.e. Choshi station) improved from -0.13 to 0.38 ,0.30 to
0.57, -0.10 to 0.53, -0.13 to 0.61 respectively. Simulations with different observations
uncertainties were carried out to investigate the sensitivity to observation uncertainty and found

that if a small observation uncertainty is given, assimilation scheme neglects the observations
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because ensemble spread is away from the observations. This was clear in results where an
observation error with 1% achieved only 0.17 correlation while observations with an error of
50% correlation improved correlation coefficient to 0.42. Impact from the initial conditions
was analyzed by doing simulations with perturbated simulations instead of initial conditions
created from time shift method as in previous experiments. The correlation was better in time
shift method (e.g., correlation decreased to 0.45 with perturbated initial condition method in
comparisons to 0.64 in Choshi station using time shift method and RMSE increased to 39.9%
in comparison to 32.6% in time shift method). Thus, it was decided to use time shift method to

create ensembles.

3.1. Introduction

Toride et al., (2017) developed a system to assimilate TCC into GSM using LETKF as
explained in Chapter 2. In that study, idealized experiments were done by assimilating TCC
data of 18 stations in Japan from NCEP data and weather classed derived from JMA
Instrumental data. The NCEP data assimilation experiments were done with high uncertainty
of 30% TCC, to evaluate the feasibility of assimilating uncertain data. They further did weather
class assimilating derived from JMA data as explained in section 2.2.1 to investigate the
possibility of assimilating weather classes. To assimilate real weather description data, it is
essential to understand the model performance due to several factors such as observation
uncertainty, number of observations, assimilation time and improvement in the surrounding
area. Furthermore, the required number of ensembles for a unique assimilation system may

differ from traditional experiments. This information is lacking in above idealistic study.

Hence, separate experiments were done to investigate the above points. Firstly, idealistic
simulations similar to Toride et al., (2017) were done by assimilating NCEP data and weather
classed data Idealize experiments were set up following observation system simulation (OSSE)
experiments Miyoshi and Yamane, (2007), Yoshimura et al., (2014) and Toride et al., (2017).

3.2. Experimental settings and input data
NCEP data is used to create synthetic cloud observations, and 20 ensembles were used
for the experiments with the boundary conditions and initial conditions from NCEP data as

explained in Chapter 2.5. The period of experiments is from January 2006 to March 2006. TCC

assimilation was done once a day.
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3.3. Data Assimilation over Japan

In this experiment, the influence of assimilating uncertain weather information over Japan
to represent Japanese weather diary data investigated. Here only 18 stations were considered
as observations stations considering the availability of diary data. 30% of random error was
added to the TCC values of NCEP data to incorporate the uncertainty similar to Toride et al.,
(2017).

Experiment results are shown in Fig. 3.1 and Fig. 3.2. According to the RMSE maps in
Fig. 3.1, a considerable improvement can be seen in cloud cover all over Japan region
represented by dark blue color. In temperature, a slight improvement can be seen in most if the
area while no considerable change in China seaside, Aomori and Morioka areas. In
precipitation and pressure, only southern side and the northern side has a slight improvement.

In most of the areas, there is no considerable change.

Fig. 3.2 shows the model performance in January at Choshi station (model grid: latitude
35.238, longitude 140.625). There is a significant improvement in TCC; correlation coefficient
increased to 0.64 from -0.13 correlations in control simulation. Slight improvement in other
variables can also be observed. In pressure, Correlation coefficient increased to 0.33 from 0.12,
and in temperature, it increased to 0.47 from 0.30, and in humidity, it improved to 0.44 from -
0.12. U wind improved to 0.2 from 0.06. Precipitation correlation in the control simulation
without data assimilation is very poor and has a negative correlation of -0.1. With data
assimilation, it is improved 0.1. In overall poor TCC data assimilation could improve the

model’s TCC and several other variables.
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Fig. 3.1: RMSE of TCC over Japan; (a) data assimilation simulation, (b)- control

simulation without data assimilation, (c) improvement in RMSE (%) (b-a)
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Table 3-1: Correlation coefficients for simulations at each station

Station DA NA
Correlation
1 0.317282 | -0.01946
2 | 0.318258 | 0.071102
3 | 0.545725 | 0.163876
4 0.48921 | -0.02382
5| 0.412977 | 0.087332
6 | 0.555097 | 0.005416
7 | 0.354535 | -0.0829
8 | 0.501692 | -0.02067
9 | 0.571858 | -0.00704
10 | 0.434217 | 0.037434
11 | 0.638069 | -0.13648
12 | 0.540657 | 0.022072
13 | 0.46876 | -0.03124
14 | 0.638592 | -0.13648
15 | 0.542312 | 0.022072
16 | 0.470525 | -0.03124
17 | 0.311282 | -0.31897

18 | 0.434656 | 0.188849
Average | 0.474761 | -0.01167

3.4. Importance of the diaries from other regions

Document data is available over several countries. In the 19" century, instrumentation was
available mainly in Europe and few other countries as explained in Chapter 1.1. If the
information from all over the world can be utilized with available instrumental observations, a
better historical climate can be constructed. We did several experiments to check the
performance with different observation numbers of 418, 200, 100, 50, 20 in addition to 18
station experiment over Japan. Synthetic TCC derived from NCEP reanalysis data was
assimilated. 30% normalized random error is added to represent high uncertain data. In this
study one single simulation was done for each number of experiments to save time. However,
multiple simulations would improve the accuracy further removing impact due to random error

added to true observations in idealistic simulations.

The global maps in Fig. 3.3 shows the RMSE difference in TCC between the assimilation
experiment and no assimilation experiment which represent the skill of the assimilation from
2006 January to March. With an observation number is 418 per day considerable improvement

could be achieved. Many areas around observations have an improvement over 10% TCC (i.e.
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represented by dark blue). When the number of diaries decreases to 20, improvement limits to
local stations. Fig. 3.3 (f) shows the experiment over Japan with 18 stations explained in the
previous section. Even though the global change is minimal similar to 20 observation
simulation as in Fig. 3.3 (e), a clear regional improvement can be seen over Japan. Around
10% TCC RMSE improvement can be seen over Japan as represented by blue color over Japan.
However, the influence on other regions is negligibly small. While some areas have a slight
improvement, some areas have worsened the accuracy which may be a result of random

correlations.
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Fig. 3.3: Influence of number of observations to model performances, RMSE difference of
the assimilation and No assimilation model runs

Fig. 3.4 shows simulations with 418 stations and 18 stations observations (i.e. max and
min number of stations). In Fig. 3.4 (a) both Data assimilation simulation and control run has
a similar variation which confirms Toride et al., (2017) that by only assimilating uncertain data
in a particular region, cannot make a noticeable improvement in a global scale. Performance of

non-assimilated variables is also having no improvements on a global scale. In Fig. 3.4. (b)
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realistic variation in TCC can be seen, however still the correlation is not improved in the

global average.
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assimilation simulation globally

In global observation data assimilation (i.e. with 418 stations) clear improvement in the
assimilated variable and non-assimilated variables at the observation stations can be seen. Fig.
3.5 shows the performance at Oita station (model grid lat. 33.33 lon. 131.25). Summary of
performance of 18 station assimilation and 418 stations are given in Table 3-2. Orange color
represent the higher correlation among the two. It is clear that 418 has a better performance at
Oita station.

Furthermore, non-assimilated areas are improved. Fig. 3.6 shows the performance at
Choshi station where observations were not assimilated. All the variables are improved well
compared to the regional observation including this observation site as in figure Fig. 3.6. As
expected, improvement in TCC is less than using this station as an observation site directly.
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Fig. 3.5: RMSE of TCC in 418 observation assimilation at Oita station
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Table 3-2: Summary of the model performance statistics for simulations with different number

of observations in Oita station.

RMSE
No obs. 43.7 6.6 2.2 3.97 437 4.08
18 obs. 35.6 7.2 2.0 3.39 426 4.14
418 obs. 344 7.5 1.7 3.54 496 3.18
R
No obs. 0.16 -0.1 -0.16 0.23 0.05 0.14
18 obs. 0.54 0.27 0.22 0.26 | 0.35 0.19
418 obs. 0.58 0.39 0.59 0.42 10.30 0.59
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3.5. Observation uncertainty

The weather documents have a very higher uncertainty which is represented by the
observational error in the model. Hence several experiments were done with random errors of
(1%, 5%, 10%,20%, 30% 50%) with a normal distribution. Two types of experiments were
done with 18 stations over Japan and 418 stations over globally. Fig. 3.7 and Fig. 3.8 shows
the improvement of RMSE in each observation error percentage in regional and global
assimilations respectively. The results show that when the observation error is 1% (near to true
observation), the results do not improve and when the observation error increases the results
improve. Similar results can be seen in global experiments as well in Fig. 3.8. This is due to
the model ensemble spread is away from the truth due to the model bias and errors causing the
assimilating scheme to neglect the observations. This can be clearly seen in ensembles plots in
Fig. 3.9. For example, in Fig. 3.9 (b) because the model ensemble spread has a very low TCC
it neglects the observations which have a very high TCC, on the other hand in Fig. 3.9 (a) has
a wide ensemble spread enabling it to capture the observation. So even the observations are
very accurate if the model is not that accurate data assimilation system would not be very
effective. However, in diary assimilation, it would not be an issue because observation
uncertainty is much higher than model uncertainties. Table 3-3 shows a summary of the model
simulation performance (i.e. RMSE and correlation coefficient) at Choshi station. Those results

too explain the same phenomena.
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Table 3-3: Summary of model simulation performance at Choshi station with difference
observation uncertainties.
Point R.M.S.E Point

Sl TCC c.C.
No 46.9 -0.14
Assimilation

1 45.37 0.17

5 41.38 0.43

10 38.56 0.46

20 36.96 0.50

30 34.20 0.61

50 39.12 0.42

3.6. Initial conditions

To create the initial conditions for the ensembles, below two methods were investigated

as explained in section 2.5.1.

1- Perturbation method - Adding a perturbation to temperature and pressure
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For this experiment, perturbation was added by adding a perturbation to temperature and
pressure. 1 C temperature and 100 pa pressure variation were added to each ensemble. For
example, for an assimilation scheme with 7 ensembles a temperature difference of -3, -2, -1,
0, 1, 2, 3 C and pressure difference of -300, -200, -100, 0, 100, 200, 300 Pa would be added

respectively.
2- Timeshift method- Adding a temporal shift

For this experiment, ensembles are chosen from a different continuous period from the
model starting date. For example, in this case for each ensemble data from different date since

January 1% was used.

The results are shown in Fig. 3.10. The behavior of both assimilation simulations gave
similar results, the perturbated simulation has a slightly lower performance with 0.45
correlation and 39.9 % TCC RMSE in comparison 0.64 correlation and 32.6 % TCC RMSE of
Time Shift simulations. Similarly, control run without data assimilation also has slightly less
performance in Perturbation method. Considering the model performance and usage in

previous studies, timeshift method is used to create the initial conditions of the model.
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Fig. 3.10: Performance of the model with different methods of ensemble initialization, (a)
perturbation method, (b) Time shift method

3.7. Ensembles results

Fig. 3.10 show the RMSE and R change with the number of ensembles (a) SR and (b) TCC
respectively RMSE decreases in SR and TCC when the number of ensembles increases.
However, there is a slight increase in RMSE when the number of ensembles are increased to
60. However, it is not considerable compared to the reduction of improvements from 10 to 30

ensembles (i.e. 16.5 to 12.5 W/m?). The correlation coefficient is also increased from 10 to 30.
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Considering the computational cost 30 ensembles are used for regular experiments and 20

ensembles are used to some sensitivity tests which does not require higher accuracy.
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Fig. 3.11: Performance of the model with different number of ensembles

3.8. Conclusion

This chapter checked the performance of the model with similar experiments as in previous
literature with Idealistic experiments to evaluate the assimilation system. It was found that by
assimilating TCC , correlation coefficient was increased to 0.64 from -0.13 in the control run.
Also, the other variables like wind (Correlation 0.23 to 0.25), humidity (Correlation -0.13 to
0.44), temperature (Correlation 0.30 to 0.47) and precipitation (Correlation -0.1 to 0.1),
Pressure (Correlation 0.19 to 0.32) was also improved proving that assimilating of a single
variable can improve the other variables to some extent. The impact of the observation error
was investigated with different values of observation error percentages. As expected even if
the observation is very accurate if it stays outside the model ensemble spread the assimilation
would not utilize those observations. Thus, the Correlation coefficient was improved up to 30%
TCC error (0.61) and tends to decrease afterward at Choshi station. Furthermore, sensitivity
to number of observations was investigated, and global RMSE was improved as expected with
the number of observations. Sensitivity experiment indicated 30 number of ensembles would

be suitable considering the accuracy and the computational cost.
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Chapter 4

Preparation for Realistic Past Data
Assimilation Experiment

Abstract:

Real weather diary data is entirely different from the regular observations or synthesized
observations used in Chapter 3 because they do not have any numbers. Lack of boundary data
such as SST and Sea-ice fraction are other main challenges for simulation of forecast model
during the 19th century. Currently, there is not any study which has overcome these challenges
to assimilate qualitative description data. Hence in Chapter 4, we evaluated the impact from
poor boundary condition. Assimilation system’s skill was found to reduce mainly in
precipitation when low-frequency Sea surface temperature and Sea-ice fraction data are used.
Correlation of all station average in Precipitation in 1995 April reduced from 0.58 to 0.32 even
though correlation in SR and TCC changed only slightly (i.e. 0.79 to 0.81 and 0.76 to 0.65
respectively). Another challenge is the sensitivity of assimilation time, diary data information
is mostly available in daily scale and impact on assimilating at particular time step has not been
investigated earlier. Separate experiments showed that assimilation results in morning and
evening have only a slight difference. In spring the correlation coefficient of the average of all
the stations’ changes from 0.54 to 0.43 in Precipitation, 0.66 t0 0.72 in SR, 0.66 t0 0.73in TCC
and 0.81 to 0.8 in Temperature when assimilation time changed to 3 pm from 9 am. Further,
impact to model performance by assimilating only three weather classes data was evaluated in
comparison to assimilating TCC from JMA observations with added 30% uncertainty, and it
was found that the model could still capture the temporal variation even though correlation of
TCC reduced to 0.47 to 0.57 and 0.32 from 0.54 in precipitation in comparison to direct TCC

observation assimilation with 30% uncertainty at Choshi station.
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4.1. Observation time

Information about the occurring time of weather incidents is only available in limited
records. Records like ‘heavy rain at 10 am’ provides specific information about the time of the
rain. Examples for records with time information in weather diaries are given in Table 4-1.
However, the information about time is still difficult to utilize as the information about the time
is not yet digitized into a usable format and many weather records do not have information
about time. In this study information about the time was not taken into consideration, which
is a limitation of the current study. Instead, all the information is assumed to occur at a specific

time during the day.

Table 4-1: Examples of weather incidents with occurred time in personal diaries

Description English Translation
1 =AY [ TA TN early night / rain / fall
2 N 7T 790 ) baw [ 327 =wx 4) [ | sunny/ until morning / rain and wind / but
Y3 /0 /-around 10 am/ (rain and wind) stopped/
sunny (after that)
3 AT/ LTS 170 13th I 74170 fine / southerly wind / blown / at night /
rain / fall

As this is an online assimilation system, it is computationally costly and challenging to
include daily variables in the state vector. Hence the instantaneous values are either assumed
as daily averages or calculated empirically from the daily average. In TCC assimilation, it is
assumed that instantaneous value at 3 pm is equal to the daily average. This adds extra
uncertainty to the observations. For the SR accumulated 6hourly SR was calculated empirically
using the daily solar radiation values. A satisfactory relationship could be achieved between
the daily average of SR and 3 pm SR. Following empirical equation was found using trial and
error method. Here TOA is used to get the proper sub-annual variation. Fig. 4.1 shows the daily
SR and SR at 3 pm.

hrSR = DSR><3-2%X Eg. 4-1

.236
Tx = (ﬂ] 1.1
TOAS

Where;
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hrSR - SR at 3 pm
DSR - Daily SR
TOA — Top atmosphere Download solar radiation

TOAS- Annual sum of TOA

800
—®—From JMA daily SR —@—JMA SR at 3pm
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=< 400
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Fig. 4.1: 6hour accumulated SR at 3 pm from January to March 2006 calculated using daily
values vs 3 pm JMA SR data

To check the influence of the data assimilation time, separate experiments were done.
Assimilation of TCC was done instead of SR to remove strong impact from the diurnal cycle.
TCC data from the weather class data were assimilated at 9.00 am and 3.00pm local time

Fig. 4.2 show the influence of assimilation time on the Cloud assimilation. Assimilating
weather information in the evening (i.e. 3 pm) has a slightly higher performance than the
morning (i.e. 9 am). Both simulations have a similar TCC RMSE values 19.4% and 19.2%
respectively. However, Correlation coefficient in afternoon assimilation is higher by 0.1.
Similar improvement could be seen in SR. However, correlation is slightly decreased in the
precipitation even though the RMSE value is decreased. Assimilation at a particular time may
shift the precipitation time causing mismatches in the model behavior. For instance, if the
precipitation was in the afternoon, it may be assimilated in the morning because diary data do

not always have occurrence time. This may be one reason the change performance in the
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precipitation. However, proper time of assimilation may differ from season to season, and more
investigation can be done for further investigation. As there is no other alternative at the
moment due to the lack of details in diaries assimilation was done at 3.00 pm where more

variables get improved.
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Fig. 4.2: Model performance in 1995 spring over Choshi observation station with the

assimilation of TCC at two different times using three weather classes data.

4.2. Impact of assimilating weather classes

In Chapter 3, experiments were done using NCEP data. However, dairy data are local
observations and has different character it is to the grid wise NCEP results. Hence. JMA point
observations were used to analyze model performance with the assimilation of uncertain
weather data further. In the diaries, variations are not linear instead consists with only weather
classes such as ‘sunny’ and ‘cloudy’ as explained in Chapter 2. Hence in this section
assimilation results of weather classes and exact values are compared using below two

experiments.

a- Using exact JIMA TCC values
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b- Using TC weather classes made according to (Toride et al., 2017)

According to the Fig. 4.3 when only weather classes are given due to the higher uncertainty
model produce lower estimations even though it could still capture the temporal variation well.
Model miss the precipitation event on February 27 due to underestimation of TCC and in both
two major precipitation events on 15" January and 2" February the precipitation amount
decreases. The accuracy of precipitation reduced considerably. The correlation coefficient
reduced to 0.01 from 0.37. All the station average statistics in Table 4-2 shows the reduction
in all the stations averages as well. Hence it is clear that when the observations are limited to
weather classes information, the accuracy reduced. However most importantly still it improves

correlation and RMSE values than no assimilation simulation,
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Table 4-2: Summary of the model performance statistics for simulations with JMA

observations and simplified weather classes.

Observations TCC

RMSE % R

Average of all stations

No observation 30.9 0.21
Weather classes ass. | 20.7 0.58
Direct ass. 16.9 0.62
At Choshi station

No observation 51.0 0.21
Weather classes ass. | 37.4 0.47
Direct ass. 32.63 0.57

4.3. Boundary conditions

Model performance over monthly SST and weekly NCEP OI SST is shown in Fig 4.4. The
blue line shows Control simulation without data assimilation, and the red line shows the
assimilation simulation. The assimilated weather classes are shown on the top (i.e. blue square-
Rainy, Pink Triangle —Cloudy, Green star — Sunny). The impact from different SST would be
discussed in this section. There are several weather events in this period. Assimilation system’s
skill capturing those events are discussed below the change in the RMSE difference in an
assimilated variable (i.e. SR) in Fig 4.4 is smaller (3.5 W/m? increase), and R change is
negligible (0.03), and in Temperature, RMSE is worsened by 0.7 K, and R improved by 0.12.
In TCC RMSE improved by 2% and R improve by 0.11. However, in precipitation, there is a
considerable reduction in correlation (reduced from 0.55 to 0.08). This is visible in the
precipitation graph. The blue line has an inferior skill compared to the red (with accurate SST

and Sea-Ice fraction).

Idealize experiments with JMA TCC observations was also done. The correlation
coefficient was increased to 0.6 from 0.2 at Choshi station, and daily RMSE was decreased
from 51 TCC to 33 TCC. The remaining large RMSE was due to the bias of the model.

Precipitation degradation is apparent in average of all the station.
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Table 4-3 as well. This may be due to change in the weather pattern due to poor quality SST.
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Fig 4.4: Influence of SST temporal resolution on model performance. The red and blue lines
indicate the simulations results using SST from NCEP-OI SST (weekly SST & Sea-Ice
fraction) and Franke et al. (2017) (monthly SST & Sea-Ice fraction) respectively at Choshi
station from April 1995 to May 1995.

Table 4-3: SST impact on the average of all the observation stations

RMSE
TCC (%) Radiation(w/m?) | Temperature K | Precipitation (mm/day)
SST weekly | 19.58 55.03 2.52 511
SST monthly | 19.15 53.27 3.12 6.61
R- correlation coefficient
TCC Radiation Temperature Precipitation
SST weekly | 0.67 0.79 0.62 0.58
SST monthly | 0.65 0.81 0.77 0.32

In conclusion low-quality SST in 19" century significantly reduces the precipitation forecast.
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4.4. Conclusion

Assimilating daily weather information at a particular time add further uncertainty and it
was found that assimilating in the afternoon has slightly higher performance (i.e. the correlation
coefficient increased to 0.75 from 0.65). Assimilating weather classed gave minor
improvement as expected but still provide higher accuracy than no assimilation simulation.
Their assimilation increased by 4.2% and correlation decreased by 0.04. It was found that poor
SST and Sea-Ice fraction data lead to reduce the model performance especially in precipitation
(average R reduce from 0.6 to 0.3). This gives the message that when the SST and SI products

improve the future, historical reconstruction results would be improved further.

The simplified weather classes data too added some improvement even with the 30% error.
TCC RMSE% average of all the stations was decreased to 33% from 51%. The correlation was
improved by 0.26, and there was no improvement in temperature and correlation reduced than
the control simulation. In precipitation there RMSE was improved by only 1.1 TCC % even
though correlation was improved by 0.2. In conclusion assimilation of uncertain weather
information (i.e. TCC classes) can improve the assimilating variable while and correlation of
few other variables even though improvement is less than assimilating exact values. In the
absence of accurate observation, these document data would be an excellent source of

information to climate models.

This chapter has overcome the barriers against assimilating real weather description data
for the first time in weather diary assimilation field. Those findings would be utilized for the

weather description data assimilation in Chapter 5.
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Chapter 5

Application of Proposed Data
Assimilation System and Validation

Abstract:

This chapter evaluates the skill of the model in assimilating document weather data. The
main limitation was the lack of instrumental data in the past. Hence an alternative approach
was followed by assimilating weather classes data derived from recent description data. All
these experiments were carried out with real data keeping the consistency with 19th Century
data quality. This is the first study to carry out such realistic experiments to investigate the
performance of assimilating weather class data into a climate model. Several simulations were
done in the recent period where observations data available for validation. Twentieth-century
weather classes, data derived from JMA descriptions was utilized. SR assimilation could
improve the correlation of TCC average in all the stations from 0.19 to 0.68 in spring while
reducing RMSE by 8 %. Improvements in other seasons and fields such as precipitation could
be achieved as well. Further, we investigated opportunities to improve the accuracy of the
model by incorporating other information such as the absence of precipitation and found the
correlation of precipitation in all the station average could be improved to 0.67 from 0.45 in
spring. Monthly anomaly values over 1995-1999 showed good correlation in precipitation,
TCC, and SR. By analyzing pressure fields, it could be shown that the model could capture the
synoptic scale weather patterns such as extratropical cyclones. Bootstrap experiments were
done using only half observations to check model performance when some diaries are absence.
Even though the model performance was reduced to some extent, satisfying correlation could
be achieved. Correlation of all the stations average in TCC was 0.57, in SR was 0.72 and in
precipitation was 0.45.
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5.1. Experiments in 1995

5.1.1. Solar Radiation Assimilation

The Fig. 5.1 shows the regional average in TCC, SR, Precipitation, and Temperature. Here
spring period is shown as it has a subtle variation in weather with several precipitation days
and sunny days. The blue line shows Control simulation without data assimilation, and the red
line shows the assimilation simulation. The assimilated weather classes are shown on the top
(i.e. blue square- rainy, Pink Triangle — cloudy, Green star — Sunny) There are several weather

events in this period. Assimilation system’s skill capturing those events are discussed below.

There are two longer cloudy periods (three days of weather class 3) from 28" April to 4"
May and 11" May to 18" May (three days with weather class 3 and two days with weather
class 2) which are shown by purple dotted rectangles. The observed SR and TCC clearly show
low SR and high TCC in this period. The model could nicely capture both these events. In both
of these periods, precipitation present in the observations, the model was able to produce the
precipitation in the first period. However, the model could not capture the precipitation peak
in the second period as the SR and TCC on 1% May was not constrain well by the data

assimilation.

There is a longer sunny period from 5" May to 11" May (continues weather class 1). The
observation shows very low cloudiness and very high radiation during this period without any
precipitation events. The control run could not capture this variation and in the Model
simulation with data assimilation could undoubtedly produce high solar radiation and lower

cloudiness with negligible precipitation events.

Other than in above weather events there are nine precipitation events in this period which
has more than 10 mm/day precipitation (04/09, 04/12, 04/14, 04/19, 04/22, 04/23, 05/21, 05/25,
05/29, shown by purple downward arrows). During all these days the weather class is three
except April 12" which has weather class 2. The model could not capture only three
precipitation events including the event on April 12" (04/09, 04/12, 04/19).

In overall weather class assimilation could constrain the SR of the model throughout the
period capturing all the local events. The RMSE value was decreased to 58.2 W/m? from 102.0
W/m? which is almost half of the control run. The control simulation without assimilating SR
has a marginal correlation value of 0.06 which is very low compared to the 0.83 correlation in

the simulation with data assimilation. Non-assimilated variables also improved. In TCC, the
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model’s correlation improved from 0.19 to 0.68 and RMSE reduced to 20% from 28%.
However, the model has underestimation in all the cloud peaks which may be due to the large
size of the grid compared to single observations sites. In precipitation model capture many
precipitation events but few unrealistic precipitation events occurred as in event near April 17
Overestimation in precipitation in most of the precipitation events occurred which may be due
to the impact of lowering the radiation and increasing the TCC than the model’s usual range
caused from assimilating from point observations which may have a bias between the large
grid of the model and the observations or shift in synoptic scale event location. This is further
investigated in section 5.1.3. Due to the overestimation, the RMSE value was only slightly
improved even though the correlation coefficient increased to 0.45 from negligible correlation
in the control run. On the other hand, in temperature even though several changes in daily
temperature could be captured (green arrows) some variations could not be captured (orange
arrows). The control simulation does not have a noticeable daily variation. Hence the RMSE
is less as it lies along the mean of the observations. Both simulations have a good long-term
seasonal correlation as the model has the skill to produce seasonal variations without data

assimilation.

In summary, the simulation could capture most of the observed incidents. The missed

event may be due to the observation uncertainty and poor boundary data.
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Fig. 5.1: Model performance in 1995 spring over all the station average with the assimilation
of 3 classes (i.e. Rainy- Class 3, Cloudy- Class 2, Sunny Class -1) of weather data.
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5.1.2. Performance in local observation stations

Model performance is evaluated over several observation stations. Fig. 5.2 shows the
weather class assimilation results in Choshi station during the same period as in the previous
section. The data assimilation simulation could capture the temporal variation quite well by
decreasing the RMSE from 111 w/m? to 76 w/m? relative to the control run without data
assimilation. On the other hand, the control simulation has a very low correlation compared to
the correlation of 0.57 in the SR. Similarly, the other variables too have a similar performance

as in the average results.
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Fig. 5.2: Model performance in 1995 spring over Choshi observation station with the

assimilation of 3 classes of weather data.

5.1.2.1. Performance in different regions

Japan was divided into four areas as shown in below figure.
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Fig. 5.3: Regions

Table 5-1: Stations covered in each region and improvement to the correlation coefficient.

Region Station and improvement in Correlation coefficient

A Sapporo (0.22), Obihiro (NA), Aomori (0.33), Morioka
(0.17)

B Yonago (0.5), Maizuru (0.25), Wajima (0.27), Takada
(0.11)

C

F Kagoshima (0.57), Nagasaki (0.2), Oita (0.23)

Below sections show the results in region wise. Considering the figures Fig. 5.4- Fig. 5.7
and table 1, the region A has less intense precipitation events, which is due to less frequency
of extratropical cyclones (EXT cyclones) in region A during this period. This area has a lower
correlation which may be due to the weather in this area is not governed by synoptic scale
events like other regions and has fewer observation stations relative to the west. In region B

too, stations in the east side have a lesser correlation.

Region C and D have a higher correlation which is due to the higher influence of synoptic

scale events such as ExT cyclones over that area and a higher number of observation stations.
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5.1.3. Precipitation estimation skill of the assimilation system.

To investigate the skill of the GSM forecast, GSM’s guess (forecast before data
assimilation) and the analysis (after data assimilation) were compared. The Fig. 5.8 shows the
6 hourly results of the guess simulation and the analysis simulation in the Hamada station from
1%t April to 16™ April. During this period there were two days with class 3 weather on April
09" and April 14", Both days SR was decreased after the assimilation and 9" reduction is
higher than 14", In both days reduction in observed daily SR and presence of precipitation
events were observed. Both days model TCC increased. However, both days model guess does
not forecast a precipitation event, but the analysis could capture observed precipitation event
on April 9. Less reduction of Solar radiation on 14" might be a reason. During the sunny
days, analysis tends to increase the guess solar radiation slightly while reducing TCC. Even
though there is no significant change to the solar radiation during sunny days considerable
variation in observed TCC can be seen. There is an unrealistic precipitation event on 6™ April
in the analysis. Diary indicated sunny during this day. However, SR was reduced and TCC was
very high even though there is no precipitation event in observations. Artificial change to TCC
and solar radiation may be the reason for the unrealistic precipitin event. Also, the guess has
several unrealistic precipitation events, and it is complicated to find a reason. A probable reason

may be due to poor SST quality.

There is an increasing trend in the temperature up to 9" April. The guess run could capture
this up to 7™ April and then it starts to decrease, but the assimilation run could capture the

increasing temperature up to 9" April and the sudden drop on 10™ April.
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5.1.3.1. Unrealistic heavy precipitation

Two events with higher estimation of precipitation during weather class one and three are
analyzed further.

Table 5-2: Events with heavy precipitation

Weather Class TCC (JMA) Precipitation Model

Precipitation

May 25t 1 -Sunny >70% 0 Very high

May 29t 3- Rainy 100% 10 mm/day

These two events are identified from the times series variation of precipitation in the
following figure as indicated by the red arrows. The Solar radiation and TCC variation on these
days is typical. By checking the pressure map plots on May 25" and May 29" high TCC can
be observed over Japan in reanalysis data and in the model simulations as well. The reanalysis
data has the ExT cyclone towards north-west Japan and a small low-pressure area over east
Japan. The assimilation introduces an excessively low pressure around the Kanto area, an EXT
cyclone over Kanto region causing heavy precipitation while the observed precipitation is

smaller.
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Fig. 5.9: Times series variation of model performance at Choshi station
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Fig. 5.11: Pressure, Precipitation and TCC variation on 29" May

In Conclusion, due to the data assimilation, the guess run has an improved skill, the

analysis further improves the performances. However, some unrealistic precipitation events are

occurring in the guess and in the assimilation, which may be due to the influence due to

inaccurate weather class, influence due to resolution, a shift in the produced synoptic scale

event and lack of observations to reproduce the exact event.

5.14.

TCC assimilation

In this experiment performance of the model was checked in two aspects. Firstly, the

influence of assimilation time (as explained in section 4.5.3) is investigated and then the

performance of TCC assimilation was compared with SR assimilation as explained in Chapter

4. The results are shown in Fig. 4.2. The blue line is the cloud cover assimilation at 9 am. and

the red line is the cloud cover assimilation at 3 pm.
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By comparing RMSE and correlation coefficient values between the SR assimilation at 3
pm and TCC assimilation at 3 pm in Table 5-3. SR assimilation has a better performance in
correlation coefficient in all the variables except temperature, in temperature correlation
coefficients differ only by 0.01. However, TCC assimilation does not produce overestimation
of precipitation as in SR assimilation. Control simulation has the lowest RMSE as it does not
have a matching temporal variation. In the data assimilation when the model is constrained to
produce lower SR and higher TCC similar to observed values, the precipitation tends to
overestimate. As the SR assimilation has a higher constraint on these fields, it causes a higher
RMSE than TCC assimilation. In summary, TCC assimilation has a lower skill than the SR

assimilation to capture the observed trend.

Table 5-3: Summary of model performance for the three experiments

Variable RMSE/R SR TCC3pm TCC9am Noobs
TCC RMSE (%) 16.02 15.62 15.71 27.49
R 0.72 0.69 0.67 0.30
SR RMSE(W/m?) 34.34 39.82 43.69 71.56
R 0.89 0.79 0.73 0.65
Temp RMSE(K) 2.48 2.26 2.27 1.96
R 0.95 0.96 0.96 0.97

RMSE
Precipitation (mm/day) 12.30 8.60 8.97 6.03
R 0.33 0.23 0.32 0.12

5.1.5. Precipitation information assimilation

The weather data has several other information in addition to weather type

(sunny<>cloudy) such as;

e Rain and snow information (rain, fog, snow etc.)
e About Temperature (warm<>cold)
e Special info (Thunder, Typhoon, saium, storm)
e Wind (weak<>strong) and wind direction
The uncertainty of the model can be further reduced if this information can be utilized.
However, it is a challenge to develop a sufficient relationship to be used in the model. For

example, the temperature can be related to precipitation events as in (Mikami, 2008). However,
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5 Application of Proposed Data Assimilation System and Validation

these relationships depend on the region and season which require individual examination. In
this study, we utilized the information about dry days by assimilating minimal random
precipitation amount when precipitation is zero. 1 mm precipitation was assimilated with

specified observation error of 2 mm/day.

The information from the dry days intends to minimize the unrealistic precipitation events
occur in the solar radiation assimilation. Fig. 5.12 shows the improvement in precipitation by
incorporating dry day’s information. From Fig. 5.12 (a) it is evident that information of dry
days minimized the unrealistic precipitation incidents. The correlation coefficient increased to
0.67 from 0.45. RMSE decreased to 12 mm/day from 17 mm/day. The precipitation events on

12" April and 14" April could be captured after introducing the zero-precipitation information.

Fig. 5.12 (b) shows the simulation results at Choshi station and Fig. 5.12 (c) shows the
simulation results at Wajima station. These two stations are located opposite sides of Japan. In
both stations, correlation is improved considerably. However, it leads to further overestimation
of the Precipitation in the two local stations even though average RMSE of all stations

decreased.
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5.1.6. Summary of model performance

Summary of the RMSE and R for different seasons are given in Fig. 5.13 and Fig. 5.14.
According to seasonal results in summer, RMSE precipitation is higher due to frequent tropical
cyclones and lack of the skill of the model to reproduce them. The model has a negative
correlation in both with and without data assimilation simulation in temperature during the

winter period.

TCC Solar Radiation (W/m2)

35 120
30 100
2 80
20
15 60
10 40
5 20
0 0

Winter Spring Rainy Summer Winter Spring Rainy Summer

Precpitation(mm/day) Temperature (K)
25 3.5
20 3
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'l |
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Winter Spring Rainy Summer Winter Spring Rainy Summer

m Assimilation mNo Assimilation = with Precipitation info

Fig. 5.13: RMSE values of Solar radiation assimilation, No assimilation and Solar radiation

assimilation with precipitation information assimilation experiments in different seasons
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Fig. 5.14: RMSE values of Solar radiation assimilation, No assimilation and Solar radiation

assimilation with precipitation information assimilation experiments in different seasons

Statistically significant was checked by caring out t-test to observation mean, and the
results have higher significance levels as shown in Table 5-4. For instance, precipitation after
data assimilation is significant at p <.05 in most of the season and least value is 5.8E-02 which

also indicates it is near to p < .05.
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Table 5-4: Statistical significance

TCC (%)
Radiation(w/m”2)
Temperature (K)
Precipitation(mm/day)

TCC (%)
Radiation(w/m”2)
Temperature (K)
Precipitation(mm/day)

TCC (%)
Radiation(w/m”2)
Temperature (K)
Precipitation(mm/day)

TCC (%)
Radiation(w/m”2)
Temperature (K)
Precipitation(mm/day)

5.1.7. Spatial climatology

Data No
Assam.  Assam.
Winter (January -March)
1.3E-04 1.4E-24
4.3E-01 2.9E-11
3.5E-76 3.7E-94
9.9E-06 3.9E-01
Spring (April-June)
2.7E-04 1.8E-09
6.2E-04 2.3E-12
8.2E-55 2.9E-58
5.8E-02 7.7E-01
Rainy season (June-Aug)
5.6E-09 6.4E-18
1.5E-03 6.2E-18
2.9E-64 8.4E-64
2.1E-04 4.2E-01
Summer (August- October)
6.3E-11 1.9E-25
4.6E-01 1.3E-07
2.6E-68 1.5E-70
1.2E-05 4.2E-02

Data Assam.

4.0E+00
-7.9E-01
4.6E+01
-4.6E+00

3.8E+00
-3.5E+00
2.8E+01
-1.9E+00

6.3E+00
-3.3E+00
3.5E+01
-3.8E+00

7.2E+00
-7.3E-01
3.8E+01
-4.6E+00

No
Assam.

1.3E+01
-7.4E+00
6.6E+01
8.6E-01

6.5E+00
-7.8E+00
3.0E+01
-3.0E-01

1.0E+01
-1.0E+01
3.4E+01
-8.1E-01

1.3E+01
-5.6E+00
3.9E+01
-2.1E+00

Fig. 5.15 compare the model climatology with the observations. GSM has the skill to

produce the seasonal climatology without data assimilation. The figure shows the spatial

variation in 4 different seasons Winter (Jan-March), Spring (April-June), Rainy season (June-

August), Summer (August - October). Even though the seasonal trend is captured in the no

assimilation simulation, it has a bias which could be reduced with data assimilation. This is

clear in winter where no assimilation run has mostly TCC less than 50% (red) while the

assimilation run has TCC more than 50% in the China Sea side becoming closer to the

observations.
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Fig. 5.15: Spatial variation of TCC in different seasons (%)

5.1.8. Long-term simulation results (1995-1999)

Experiments were carried out for several years to evaluate the model performance on
different years and to compare the relative or the anomaly performance of the model. Fig. 5.16
shows the April anomaly variation during this period. Even the model has a bias model could

follow the annual trend well with data assimilation except in temperature in 1996.
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Fig. 5.16: March Anomaly variation from 1995 -1999

5.2. Patterns of consecutive daily values of weather classes

Occurrence of Each weather class in January is calculated for a 5-year period (1995-2000).
From a similar analysis to all the months, it is possible to identify long-term impacts such as
droughts. A lesser number of rainy days can indicate drought conditions and a higher number

of rainy days can indicate the wet condition.

From the line graph in Fig. 5.17, 1998 has higher number rainy days (lower number of
sunny days), and this was captured by model which produced higher rainfall in 1998 May.
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Table 5-5: Different types of weather in Japan

Year TCC Radiation Temperature Precipitation/
(%) (w/m2) (K) (mm/day)

Model | Obs. | Model | Obs. Model | Obs. | Model | Obs.
1995 6 45 46.7 46.0 | 134.6 129.6 | 281.2 2795 | 7.7 1.2
1996 4 46 46.3 48.8 | 132.0 1249 | 281.2 278.8 | 7.3 1.3
1997 7 46 43.1 41.3 | 139.9 137.3 | 281.2 280.2 | 6.1 2.1
1998 | 18 6 34 44.9 57.7 | 127.5 105.3 | 281.9 280.0 | 8.4 4.4
1999 |9 4 46 43.2 40.2 | 133.1 132.9 | 282.0 280.0 | 6.2 2.0
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Fig. 5.17: Number of rainy days vs. observed precipitation and model precipitation.

5.3. Impact on different weather types

Japanese climate depends on different sources during various periods (Hiroyuki Kusu,

2013), (Kurashima, 2002), (Kodama, 1992). A summary of weather is given in below table.
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Table 5-6: Different types of weather in Japan

Weather type Period

Winter (continental high pressure and low Winter- December, Jan, Feb
oceanic pressure)

EXT Cyclone Mostly in Spring, sometimes in Winter

Moving high pressure (Antic cyclones) from = Spring/Autumn - March, April may,

west to east October, November December

Summer type August September

Typhoon Late summer — mostly in September and
sometimes August

Baiu system Early summer- June, July

The scale of these weather systems is different, the extratropical cyclones (EXT cyclones)
occur in synoptic scale with slow moment while typhoon occurs in a smaller scale with rapid
movement. The Baiu system produce local weather. Due to the model resolution and low
assimilation interval, skill of the assimilation system capturing small-scale rapidly changing
events such as typhoons and Baiu would be lower. On the other hand, assimilation system
would be able to capture synoptic scale weather events more accurately. Following section

would discuss the model performance during EXT cyclones and Typhoons.
5.3.1. The impact from ExT Cyclones
Fig. 5.18 shows the precipitation during May-June 1995. There are several precipitation

events and found to be mostly due to the Ext Cyclones. EXT cyclones occurred during
following data

e May3™-4" - away from the mainland in the northward of Hokkaido
e May 78" _ Anticyclone — strong over Onahama, Morioka area

e May 14"-16™ - from west Japan to east Japan through mainland

e May 17-19- Anticyclone- from East Japan up to Kanto area

e May 21%-23" from west Japan to east Japan through mainland

e May 23-25 Anticyclone- from East Japan

e May 25" Over Hokkaido

e May 29" Over Aomori
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The pressure reduced to mean sea level and wind vectors of the key events are shown in
Fig. 5.18. During May 7' there is a high-pressure zone over Japan, and several diaries catch
this by indicating sunny weather. In reanalysis data pressure center is more towards eastern
side however in the data assimilation simulation this was simulated shifted to little bit west
Japan. There is a movement of an ExT cyclone from 14 to 16" May. The data assimilation
simulation could capture this well while no assimilation simulation could not capture that
event. A shift in the time and path of ExXT cyclone can be observed which may be due to long
assimilation interval, lack of observations outside and Japan and low model resolution. Again,
during May 15-18, a large high-pressure zone moved over Japan and could be captured in the
data assimilation simulation. During May 22 another EXT cyclone was occurred and could be
captured. During May 25" there is an EXT in the northern side of Japan, data assimilation
simulation could capture an EXT, but it was shifted towards central Japan creating unrealistic

precipitation over that area.
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No Data assimilation

mm Pressure_msl [Pa] rmse=440.926 MAY/07

Data Assimilation

SMDA Pressure_ms| [Po] rmse=418.102 MAY/07

[‘

10ra0

w010

101m0

1om120

1= 109840

16160

101640

(b) May 15

WDA Pressure_ms| [Pa] rmse=498,389 MAY/17

00400

101193

o082
10053
I 100
10000
= sarm
10
oy
sea70

(c) May 17

50"l)ll Pressure_msl [Po] rmse=387.472 NAY/22

101050
1caseo
100720
1eszo
& \como
16030
o
s

374

st

19CE

(d) May 22

SONDA Pressure_ms| [Po] rmse=701.482 MAY/25

4//////
B 25 4 ik
1306

I
| IR ¢

!
1406

(e) May_25

Reanalysis data

Reanalysis Pressure_msl [Pa] MAY/07

150€

Reanclysis Pressure_msl [Pa] MAY/17

1206

Fig. 5.18: Pressure distribution of EXT Cyclones and Anticyclones in May
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Fig. 5.19 shows the precipitation during May and June period. Precipitation during EXT
cyclones is visible in at least few stations that affected by the EXT cyclone. The May 15" ExT
cyclone had strong pressure deference, and it caused the heaviest precipitation during May.
The model also could capture this precipitation event. During other EXT cyclone model tend to
overestimate than observations. Even though on May 25" ExT cyclone did not travel over
central Japan, model simulate the EXT cyclones as traveling over central Japan causing a
significant precipitation event over that region even though in reality there was no precipitation.
The shift in the location of EXT cyclone is the reason for unrealistic precipitation and
sometimes heavy precipitation forecast. In comparison, no assimilation simulation could not
capture most of the weather events. The capability to produce EXT cyclones using uncertain

description data would be an exciting result to future studies.

Fig. 5.20 shows the progression of ExT cyclone from 14" May to 17" May of the
simulations with data assimilation and without data assimilation in comparison to the reanalysis
data in detail. The low-pressure zone enters from south-west direction and move to central
Japan on 15" May and then move to North-East direction. Thus, EXT cyclone impact on whole
of Japan during this period. In the background, there is a high-pressure zone in East-South side
and low pressure in West-North Direction. Without data assimilation, it could not capture the
movement of the EXT cyclone at all. However, it could capture the generous low pressure and
high-pressure zone in East-South side and in West-North Direction. On the other hand, with
the data assimilation, we could see the passage of high pressure over Japan on 14" May and
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movement of ExT cyclone from 15" to 17" but there is a shift in the time in the movement.
This may be because the weather data is assimilated only at a particular time step of the day
(i.e., at 3.00 pm).

No Data assimilation Data Assimilation Reanalysis data

Pressure Wnsi [Po] rmse=314.443 MAY/14 mDA Pressure_msl [Pa) e=302.874 MAY/14
— - e

?_[{ ///’(/-

SO
e
g
3

.........

Fig. 5.20: Developrﬁent of low-pressure area during the EXT cyclone 05/14-5/16

"

Fig. 5.21 shows the performance of other variables on 14", Data assimilation system could
capture the precipitation event, but it is overestimated and earlier than the actual event. This is
because there is a shift in the location of the EXT cyclone in the simulation. Similarly, the
pressure reduced to MSL, 10m Geopotential height at 500 level shows the zonal pressure
difference which decides the path of the EXT cyclone. In TCC model could capture spatial
distribution well. The China side has a lower TCC, and Japan seaside has higher TCC in North-
East direction. Simulation without data assimilation could also capture this variation to some
extent. Temperature and SR also has a similar variation in the two simulations in comparison
to reanalysis data.
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Fig. 5.21: Performance of other variables during the EXT cyclone 14-17 May

80



5 Application of Proposed Data Assimilation System and Validation

5.3.2. Impact from typhoons

Japan is located in the Pacific Ocean and faced by many typhoons which impact the
weather from end of spring to the beginning of winter. Some diary data has information about
the typhoons. However, as specific attention is not given to individual diaries, and only three
weather classes are considered, all the precipitation events including typhoon are categories as
class 3(rainy). However, as typhoon affects a large area, multiple diaries in different areas can
indicate heavy rain and high cloudiness. Specific attention was given to average scale typhoon
Ryan (i.e., Typhoon 199514). Table 5-7 shows the properties of Typhoon Ryan

Table 5-7: Properties of Typhoon Ryan

Minimum Pressure 940 (hPa)
Maximum Wind 85 (knots)
Largest Diameter of Storm Wind 370 (km)
Largest Diameter of Gale Wind 1000 (km)
Average Speed 23.1 (km/h)

The Typhoon entered Japan on 23 September 1995 from the southern side and crossed to
China seas side before crossing northern Japan again as shown in Fig. 5.22. As shown in Fig.
5.22 (b) the typhoon impacted on a large area and causing high cloudiness. In weather classes,

this condition would be indicated by class 3.

120°E 130°E 140°E 150°E 160°E

Pt e
@

40°N

30N g

--------
i

20°N

120°E 130°E 140°E 150°E 160°E

(a)
Fig. 5.22: (a) Track of Typhoon 199514 (RYAN), (b) Visual image of Ryan on 23rd
September 1995 (Kitamot, 2015)
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Fig. 5.23 shows precipitation during the typhoon (blue square s21% to 24" September)
Ryan at different locations. As the typhoon enter Japan from southern side around Nagasaki,
observations show very high precipitation of more than 100 mm during one day at Oita and
Nagasaki stations. According to Table 5-8, all the stations have weather class 3 at least once
during two days. Kochi, Nagasaki, Shnomaaki, Kagoshima areas show weather class 3 in the
first two days and reduce in the third day when the Typhoon move up on the other hand in the
northern stations, the first day is class 1 or 2, and then it became weather class 3 in the third
day. Many stations have precipitation (more than 20 mm/day) at least once except the stations
shown in yellow. However, the model shows higher precipitation in most of the stations

probably because all the stations have weather class 3.

Table 5-8: Weather classes at observation stations

Station Weather Class
22" 23" 24t Observed Model
Precipitation | Precipitation
>20mm/day | >40mm/day

Obihiro - - -
Sapporo
Aomori
Morioka
Onahama
Choshi
Takada
Kofu
Wajima
Maizuru
Nagoya
Yonago
Oita
Hamada
Kochi
Nagazaki
Shinomisaki
Kagoshima

Fig. 5.24 shows the TCC and SR at Nagasaki station. SR goes to the minimum value in

September during TCC peak. The model could capture this change very well.

Considering all the results. The model could capture the heavy precipitation, however as
the model has a lower resolution model could not capture the typhoon itself. By comparing
with other events, it is possible to judge manual that these results occurred due to a typhoon

and the movement if from south to north. A limitation in this study is only three weather classes
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are considered thus it is difficult to distinguish between heavy precipitation events and regular
precipitation events. If the information about typhoons can also take into consideration, better

results would be able to achieve.
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Fig. 5.23: Precipitation at different stations in September 1995
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More Typhoons are analyzed to investigate model skill further during the typhoons. The results

are shown Table 5-9. According to the results, the model could not capture the Typhoon

movement well in most of the cases. Mostly it could capture the precipitation events but not a

low-pressure center as in the Typhoon.
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Table 5-9: Typhoons in 1995 Early summer

1995
199503 During this typhoon, the low-
(F'?YE) pressure center is not well
Q7/22 captured. However, there is a
small low-pressure center
around lon 130 and lat 30
corresponding to the typhoon.
.
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n
o o
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199512 During these days, Typhoon
(OSCAR) travel in Japan sea side from
09/17 west to east away from the
mainland. Only Tokyo Chiba
area got influenced. The model
does not capture this event even
though there is a slight low-
pressure center in the south.
.
e - Bk
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5.4. No of zero precipitation days

Zero precipitation days in each month was compared between the observations and two
model simulations (i.e. with and without data assimilation). As the ensemble mean is an
average, it cannot produce precisely zero values. Hence zero precipitation days were calculated
in each ensemble and averaged. The following figure shows the results of Wajima, Choshi,
Nagasaki and Aomori stations representing four sides of Japan. Spring has the least difference
in all stations as the model could capture synoptic scale weather well during the period. In
overall data assimilation simulation produced better results at Wajima and Nagoya. At Choshi
data assimilation reduce the number of dry days especially in summer which due to less
accurate typhoon effects as discussed earlier. Annual comparison of zero precipitation days can

help to identify long-term weather events such as droughts.
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Figl: No of zero precipitation dates in each month

5.5. Bootstrap Experiment

Diary data do not cover all the regions in Japan. Sometimes a diary can be discontinuing
for a short time. Hence it is essential to investigate whether it is possible to improve an area
without diary data from available diary observations in the surrounding area. For that two kinds

of experiments were carried out in recent period with the same conditions as in Chapter 5.
e Removing one observation (BST Choshi simulation)
e Removing several observations (BST2 simulation)

o Only nine stations (Obihiro, Aomori, Onahama, Takada, Kofu, Maizuru,

Shionomisaki, Hamada, Kagoshima)

For this experiment in 1995 , three weather classes data was used. In the results, the control
simulation is the same as discussed in section 5.1.1. The results are given in Fig 5.27 (a) and
(b) respectively. In the BST Choshi experiment, it could capture the SR to some extent
however, R is lower (0.44) than the control run (0.57) and also the RMSE value increased from
81.7 W/m? from 76.71 W/m?. TCC also has a similar performance in the BST Choshi run. In

precipitation BST Choshi experiment overestimate the precipitation events causing to RMSE
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to increase to 17.84 mm/day, and BST Choshi experiment also has similar unrealistic
precipitation events as in control experiment. In BST2 experiments results of TCC and
precipitation reduce further. However, in solar radiation BST2 experiments have slightly higher
performance than BST 1 Choshi experiment. Change in temperature is small.
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Fig 5.27: BST Choshi performance at Choshi station
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Fig 5.28 and Table 5-10 shows the performance over all the stations. Removing Choshi
station has a slight impact on the average performance. Interestingly it improves the
performance in SR and TCC in both RMSE and correlation and in precipitation correlation
improves while RMSE worsen. In temperature, correlation decreases 0.03 and RMSE improve
by 0.02. This shows that impact of missing one station is minor and improvement in some
variables can be due to the mismatch between the local weather and the climate in the grid as
Choshi station stay very near to sea while most of the grid consists of land including Tokyo
area. In the BST2 experiment where half of the observation removed, noticeable decrees in all
the variables could be observed in average. For instance, SR RMSE was increased to 55 %
from 58.2 %, and correlation decreased to 0.7 from 0.83. However, still results are better than
no data assimilation. Without data assimilation, SR RMSE was high as 102 and correlation was
0.06, and in precipitation, correlation was negative while even half of the observations it is

possible to have a closer correlation in precipitation and default data assimilation
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Fig 5.28: Bootstrap simulations by neglecting half of the observations performance over all

the stations
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Table 5-10: Performance of the bootstrap simulations in all the observation stations average

Default

Variable RMSE/R DA BST Choshi BST 2 Noobs
TCC RMSE (%) 19.7 19.0 22.1 28.1
R 0.68 0.74 0.57 0.19
SR RMSE(W/m?) 58.2 54 66 102
R 0.83 0.86 0.7 0.06
Temp RMSE(K) 2.38 2.36 2.0 1.84
R 0.85 0.82 0.87 0.86
Precipitation RMSE (mm/day) 6.7 7.6 8.4 6.47
R 0.45 0.58 0.45 -0.19

5.6. Conclusion

In this chapter, the proposed model was evaluated with recent instrumental data in the
1990s. By assimilating SR derived from the weather classes, improvement in Solar radiation,
TCC, Precipitation and Temperature could be observed. Assimilation of TCC also gave similar
improvement even though it is less in overall accuracy than SR assimilation. Poor SST, Sea-
Ice fraction and uncertainty of weather classes limit the accuracy of reconstruction.
Precipitation was overestimated due to shift in the synoptic scale events and limited number of
weather classes which doesn’t distinguish between heavy and light precipitation events. Those
events could be eliminated to some extent by assimilating information about sunny days (i.e.
No precipitation days). From results of 1995-1999 it could be shown that model could capture
the annual trend precipitation. In spring the model could capture synoptic scale events such as
EXT cyclones even though location and time were little bit shifted. In the bootstrap experiment
even without half of the observations the results were improved. Thus, assimilation of weather
diary information can improve the surrounding areas as well. In summary assimilation of
weather classes data enable the model to capture observed precipitation events and other

variations indicating the advantage of using weather diary data in climate reconstructions.
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Chapter 6

Weather Reconstruction Using 19th
Century Diary Data

Abstract:

This chapter assimilate weather information from weather diaries in 19th century into the
climate model for the first time in the historical data assimilation field using the settings and
parameters identified from Chapter 2 and Chapter 3 with weather classes from other studies for
1830s and weather classes directly from derived from Historical Weather Data Base for 1860s
as explained in Chapter 2. The model could capture weather types such as ‘cloudy’ and ‘sunny’
after data assimilation in 1830s similar to conditions of weather classes. Similar skill was
observed in 1860s experiments. Due to the lack of instrumental data for daily comparison,
monthly temperature from early instruments in Yokohama was used to check the model
performance. The correlation coefficient in temperature without data assimilation and with
assimilation were 0.96 and 0.94 respectively which are evenly high because the model can
capture the seasonality. The model could produce EXT cyclones similar to 1995 when several
diaries indicate rainy (weather class 3) during the spring period. By investigating precipitation
anomaly from 1861 to 1864, 1861 May shown to be wet (19.0mm/month higher) and 1864
relatively dry year (13.5 mm/month less).

6.1. Experiments in 1830

In 1830s SR assimilation using weather classes derived from diary data Ichino, (2007)
was done. Only eight diaries which have records of 1830s are available as shown in Fig 6.1(a).
Fig 6.2 shows the model performances in the winter period, here the green line shows the
weather class. As highlighted by the black box in end of January (22" January to 01% February)
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and in End of February (18" February 28" February), model variables could be well

constrained using weather classes assimilation. In the first-period weather class is continuously

2 (i.e. cloudy) and this was well represented by model’s low SR during the period. The TCC

has a higher value except on 27" January. In the second box the weather class change to 2 from

1 and again to 2 after 4 days. This was well captured by the model with data assimilation while

the control run without assimilation could only capture peak for few days. In overall, the model

with weather classes assimilation has an evident temporal variation whereas the control run

without assimilation could not capture the trend in a weather classes and has a more substantial

standard deviation in the ensembles. As there are no validation data available in this period

further investigation was done with late 19" century data (i.e. 1863) where some monthly

instrumental data is available.
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Fig 6.2: TCC (%) and SR(W/m2) variation at Choshi station in Jan-March in 1830

6.2. Experiments in the 1860s

For this experiment, weather classes converted directly from HWDB as explained in
section 2.2.2 was used. There are around 21 diary data in the 1860s as shown in Fig 6.1(b).
However, several diaries overlap in the same model grid. In such circumstances, nearest
observation to the model grid is used. The other document data can be used to evaluate
observation uncertainty. The model performance is shown in Fig 6.3- Fig 6.6. By comparing
the weather classes shown on the top of the figures and the model performance, it is clear that
assimilation ensembles have a smaller standard deviation while the no assimilation run has a
substantial uncertainty. Ensemble spread of TCC in the control run is quite high and the
ensemble mean could not capture the weather classes on the other hand simulation with data
assimilation has a narrow ensemble spread. Even though there are no direct instrumental
observations in the 1860s, there is monthly temperature, and precipitation datasets and

Comparison with those data will be discussed in the next section.
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Fig 6.3: Model performance in 1863 winter at Choshi station. The standard deviation of the
ensemble spread is indicated by the shaded color.

In winter Choshi station do not has large precipitation events. In spring there are several
precipitation events, and this is captured in the ensemble mean of assimilation run whereas the

control run without assimilation does not produce any precipitation events as experienced
in1995.
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Fig 6.4: Model performance in 1863 spring at Choshi station. The standard deviation of the

ensemble spread is indicated by the shaded color.

In the rainy season, many records indicate rain (Blue squares) model results show several

intense precipitation events.
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In the summer period, the sunny category is frequent and intense perception events could
be observed during rainy and cloudy days.
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Fig 6.6: Model performance in 1863 summer at Choshi station. The standard deviation of
the ensemble spread is indicated by the shaded color.

6.2.1. The impact from ExT Cyclones

As highlighted by the green box in Fig 6.5, May 18" has higher precipitation. Fig. 6.7
shows the weather classes during 18" May 1863. Most of the diaries indicate rainy weather
which may be mostly due to an Ext cyclone.
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6.3. Observed weather classes vs weather classes from the model.

As there are were no observations to compare in 1860s, model’s weather classes can be
compared with input weather classes to check wehather model could capture the weather
classes. When assimilating weather descriptions, weather classes were converted to Solar
radiation and assimilated to the model as explained in Chapter 2. A similar method was made
to calculate weather classes backward from model Solar radiation values using data in recent
period. Fig. 1 shows the relative solar radiation vs weather classes considering May data for
five years from 1995-2000. This relationship was made to calculate weather classes from model
simulations. As expected, solar radiation in the model has a clear correlation with observed

weather classes.
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Fig 6.9: Relative solar radiation of model vs weather classes at Wajima station

The calculated Kt values at each month at each observation site can be used to calculate
weather classes from the model. Kt values from Fig 6.9 was adjusted to maximize the equal
number of stations for five years. Fig2. Shows the weather classes derived using the above
method at Wajima station for five years. Results show assimilated solar radiation can represent

the original weather classes well.
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Fig 6.10: Weather classes in May from 1995-2000 at Wajima station

Table: Total classes from model and observations

*

Kt values 0.37 0.37- 0.5
0.5

Model 45 21 88

Observations 42 21 91

This relationship was applied to Takada station in 1863, Kt values were increased by 0.12
to match the higher monthly mean of Takada station. Fig3 shows the model weather classes vs
observed weather classes at Takada station in 1863 May. Even though the observation has
several missing values a clear match can be seen with the model weather classes. Moreover,

model indicate weather class 2 on 18" and 3 on 19" during the EXT cyclone.

1 —8a ] l |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
s Model === Observation

Fig 6.11: weather classes at Takada station in May 1863.
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In Fig. 6.8 development of low-pressure center can be seen similar to 1995 by manually
comparing pressure values at centre. It would be useful to make some method to identify EXT

cyclones automatically in further studies.

6.4. Comparison with other proxies

There are several instrumental observations in the 1860s by different observers (i.e. P.
Mourier (1865), P.A.L. Savatier (1866/12— 1868/01), J.C. Hepburn (1860, 1863—-1869)) (Zaiki
et al., 2006). However, these instrumental observations are not sometimes continuous and have
a considerable uncertainty and do not follow standards. Hence only monthly Temperature and
precipitation has been reconstructed from these early instrumental data ( Zaiki et al., (2006),
Hirano et al., (2018)). Fig 6.12 shows the assimilation and no assimilation run with the monthly
observations. From 1995 observations it was found that the model has the skill to capture the
seasonal climatology even without data assimilation. Hence here both experiments show

similar performance and underestimation in summer was common in recent experiment as well.
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Fig 6.12: Comparison with observed monthly temperature reconstructed using instrumental

observations in Yokohama (Zaiki et al., 2006)

6.5. Long-term trend

Due to the lack of instrumental data for daily comparison, monthly temperature from early
instruments in Yokohama was used to check the model performance. The correlation
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6 Weather Reconstruction Using 19th Century Diary Data

coefficient in temperature without data assimilation and with assimilation were 0.96 and 0.94
respectively which are evenly high because the model can capture the seasonality. The model
could produce EXT cyclones similar to 1995 when several diaries indicate rainy (weather class
3) during the spring period. By investigating precipitation anomaly from 1861 to 1864, 1861
May shown to be wet (19.0mm/month higher) and 1864 relatively dry year (13.5 mm/month

less).
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Fig 6.13: Annual variation of precipitation and TCC in Choshi station

6.6. Conclusion

Proposed weather reconstruction methodology could be successfully applied to 19%
century using information from real weather diaries. This is the first study to use weather
information from personal recording in a climate model. The performance of the model is was
analyzed in different seasons and annually. Monthly performance was compared with other
proxies. Weather classes calculated from model results show similar classes to observed
weather classes. Model could produce synoptic scale weather events as seen in 1995. Further,

annual trend was investigated to identify the long-term trend in monthly precipitation and TCC.
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Chapter 7

Final Conclusion and
Recommendations

Abstract:

The last chapter makes the conclusions and discusses recommendations for future studies.
In this study, weather categories from qualitative description data could be converted to
weather classes and assimilate into a general circulation model using a data assimilation
scheme. The results showed that assimilation of weather classes using solar radiation improved
the correlation of non-assimilated variables as well, and it was revealed that the resulted
atmospheric distributions could capture the actual synoptic weather events. To further expand
this research, more information from diaries such as wind direction and snow information can
be utilized. This study used only the diary data in Japan. In future, this methodology can be
applied globally when more digitized diaries are available in different regions.

7.1. Conclusion

The objective of this study is to develop a method to reconstruct weather during 18" and
19" centuries using personal diary data with a data assimilation scheme. For that GSM is used
as the climate forecasting and LETKF was used as the data assimilation. Weather classes from
HWDB were used for the past weather reconstruction and weather classes JMA description

were used for validation the procedure.

Simplification of complex weather categories in HWDB could be successfully simplified
into three simple weather classes and shown to be consistence with the weather classes from
the other studies. Furthermore, the weather classes were shown to be correlated with SR and
TCC.
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Assimilation of weather classes using SR improves the correlation of non-assimilation
variable as well. However, overestimation of precipitation events and a low correlation of

temperature in winter period was noticed.

Information such as absence of precipitation could further improve the model
performances removing the unrealistic rainfalls and improving the skill to capture more

precipitation events.

7.2. Recommendations

In this study, the importance of using weather diary data was evaluated and practically
shown with HWD in the 19" century. However the usage of weather diary data was limited to
Japan, and this can be expanded by applying the same methodology to available weather

documents found in other regions.

Information about the time of the weather events is not utilized due to the unavailability
of usable format. If the assimilation can be done at the specific time slots using the records

about the time, the results can be improved further.

Furthermore, empirical relationships between different variables can be investigated in
area wise in monthly scale. With the aid of such relationship, by offline assimilation to the
monthly averages of online assimilation may provide better results and would be an interesting

area to investigate.

Even though the 19™-century model results are obtained, proper validation could not be
done due to the unavailability of instrumental data. Other approaches such as validating with

other proxy data and anomaly comparison can be made.
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