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要予測に関する研究) 

Abstract 

Compared with another sector, irrigation pointed as the highest water demand, with 70 % of 

global fresh water consumption is dominated for irrigation purpose. This sector also counted as 

the biggest contributor to global water loss problem, where 44% water in irrigation sector 

wasted. Irrigation Water Demand (IWD) defines as the amount of water needed for the crop to 

achieve optimal growth. As basis data information of water use in agriculture sector, improving 

the estimation of global water demand in agriculture sector can improve the irrigation water 

efficiency estimation, which is an important factor to achieve SDGs targets, especially goal no. 

2: to double food production, goal no.6: to give drinking water access for the rapidly growing 

population and goal no.12: to achieve the sustainable management and efficient use of natural 

resources. Five main parameters to calculate IWD are Potential evapotranspiration (PET), 

precipitation, cropping intensity (CI), crop calendar - sowing date and cropping pattern. 

Monitoring accurately the long-term dynamic of global cropping intensity crop calendar, and 

rice non-rice cropping pattern is important to support global food security especially to estimate 

accurately water demand in agriculture sector. In this study our objective is to estimate long-

term IWD from 2001 to 2015 at a spatial resolution of 1 km in the global scale. To achieve the 

main goal, we divide the main goal into three specific goals. The first goal is to harmonize and 

integrate cropland classes of current global land cover (GLC) datasets into cropland agreement 

level product. Second, to estimate long-term global cropping intensity, sowing month and 

dominant cropping pattern of rice and non-rice by integrating MODIS NDVI (optic) and AMSR 

LSWC (microwave). The last goal is to produce global Irrigation water demand (IWD) and its 

change by combining remote sensing of climate and dynamic crop coefficient with CROPWAT 

empirical model. 

For developing long-term global Irrigation water demand, first, we estimate cropping intensity, 

sowing month, and dominant cropping pattern based on combination MODIS and AMSR-E/2. 

We investigate time series of satellite-sensed normalized difference vegetation index (NDVI) 
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from 16-Day MODIS (MOD13A2) composite from 2001 to 2015 and divide these 15 years 

archived data into three group of year (2001-2005, 2006-2010, 2011-2015). For estimating 

specific rice paddy cropping pattern and flooding session as well, we used Land Surface Water 

Coverage (LSWC) from daily AMSR-E/2 in three group of year (2003 – 2005, 2008 – 2010, 

and 2013 – 2015). Second, we develop Crop Coefficient (KC) by combining Cropland 

Agreement level, MODIS Cropping intensity, MODIS-AMSR Sowing month and MODIS-

AMSR Cropping Dominant products. The final analysis is applying Doll and Siebert approach 

by multiplying MODIS potential evapotranspiration product (MOD16A2) with the developed 

KC. We include GSMaP precipitation, IIASA crop fraction, FAO-GMIA irrigated and HYDE 

rice paddy fraction to produce final product of long-term global IWD. 

The results of cropland agreement level (CAL) analysis proposed four agreement levels, and 

the correlation factor obtained from the CAL product and IIASA crop fraction comparison had 

successfully estimated the percentage of cropland area from four agreement levels. The 

cropland estimate results from the CAL analysis were observed along with FAO data statistics 

and showed the highest accuracy, with a 0.70 and 0.71 regression value for 2005 and 2010 

respectively. The presented MODIS-AMSR sowing month and cropping pattern products, to 

our knowledge are the first satellite-based products which derived from integration of 

vegetation and water index phenology from optic and microwave satellite sensor, that can 

analyze dynamic change of crop activities as one of essential input for estimating irrigation 

water demand. The advantages of the MODIS-AMSR sowing month product are capable to 

detect short period crop cultivation, distinguish rice and non-rice crop type and analyze trend 

of sowing month change from 15 years’ data monitoring.  

The final result of global irrigation water demand (IWD) products are the first satellite-based 

products that can analyze 15 years’ dynamic change of water demand in cropland area. The 

total water use by irrigated and rainfed are 6,137 km3/ year in 2001-2005, 5,834 km3/ year in 

2006-2010, and 7,491 km3/ year in 2006-2010. This calculation derived from three water use 

estimation categories: 1) total blue water (irrigation) used by irrigated crop, 2) total green water 

(precipitation) used by irrigated crop and 3). Green water used by rainfed crops. The long-term 

global IWD products are projected to simulate global surface water cycle in agriculture area in 

more realistic way by considering climate and crop activities which derived from actual, 

consistent and latest remote sensing datasets. This high resolution IWD product will support to 

achieve SDGs target in regional and country level analysis. 
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1 Chapter 1 INTRODUCTION 
 

1.1 Background 

 

1.1.1. Global Burden in Food Security 

The year 2015 was the United Nations Millennium Development Goals (UN-MDGs) 

evaluation of achievement, where one of the important target issues was to eradicate hunger 

that faced by around 800 million people. As a result, the share of undernourished had decreased 

significantly in the last 15 years, especially in the developing countries (figure 1-1). 

Undernourishment means that a person is not able to acquire enough food to meet the daily 

minimum dietary energy requirements, over a period of one year. FAO defines hunger as being 

synonymous with chronic undernourishment [FAO, 2015]. 

Stability in economic growth which has been supported by the massive development of 

irrigation infrastructure becoming one of the important factors that cause an escalation in 

agricultural extensification and intensification. This condition made a great contribution in 

increasing the global food production that leads to the decrease in hunger problem [See et al., 

2015; Ramankutty et al., 2008]. 

However, in some region such as in Southern Asia, Oceania, the Caribbean, Southern 

and Eastern Africa, the decrease was slow [FAO, 2015]. The reasons behind this slow progress 

are the escalation of food demand due to a rapidly growing population that exceeds the rate of 

food production. With growth value of more than four times during the 20th century, the global 

population have been exceeding from 1.6 billion in 1900 to 7.4 billion in 2015 and are expected 

to reach 8.5 billion of people in 2030 according to FAO report [2007]. Consequently, the food 

production has to increase by 60 percent to feed an additional 1 billion people by 2030 [Doxsey-

Whitfield et al., 2015; Davis et al., 2015]. This condition is getting worse by the unpredictable 

climate change impacts such as drought, flood, tropical storms and extreme weather changes 

[Ramankutty et al., 2018; Heino et al., 2018].  

From eighteen countries were still facing high and very high hunger level based on 

FAO report (i.e: 1. Afghanistan, 2. Central African Republic, 3. Chad, 4. Congo, 5. Ethiopia, 

6. Haiti 7. Liberia, 8. Madagascar, 9. Malawi, 10. Mozambique, 11. Namibia, 12. North Korea, 

13. Rwanda, 14. Tajikistan, 15. Uganda, 16. Yemen, 17. Zambia, and 18. Zimbabwe), where 

15 countries are located in Africa regional (Figure 1-2). 
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Figure 1-1. MDGs report on hunger and undernourished [Image Source: FAO., 2016] 

 

Figure 1-2. Distribution of 18 countries target that is still facing very high and high hunger 

levels [Data Source: FAO., 2016] 

 

Increasing crop production in Africa is needed to meet future food demand. Africa 

population is projected to reach 1,634 million by 2030 (+ 500 million) [NEPAC, 2003]. 

Undernourished population increases by 35 million over the last 20 years. Crops represent 89% 
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of the diet in Sub-Sahara Africa (SSA). Human food commodity to increase by 15% in the next 

40 years. Crop production growth in SAA is mainly due to the extension of cultivated area and 

cropping intensities while crop yield improvement is low. Whit this condition showed 

optimizing groundwater irrigation can play a significant role in increasing food production in 

Africa, although the development of area equipped for irrigation is slow (+ 6.2 million hectare 

over 45 years) [Villholth, 2013]. 

 

1.1.2. Dynamic Change of Crop Activity 

The trend of widespread abandonment agricultural land and shrinking cropland area 

due to urbanization, makes extensification strategy become not preferred to mitigate the 

unavoidable increase of agricultural production [D’amour et al., 2016; Wue et al., 2018]. 

Where a limitation of the suitable land area and high environmental cost become major reasons 

for this extend agriculture land difficulty in the current situation. With the climate change 

pressure, global cropland area is facing the uncertainty not only in the number of crop intensity 

but also shifting for planting date. Since some crop influenced by weather and climate condition, 

which impress the farmer to changing the timing of sowing. This farmer decision making is an 

effort for adaptation strategies [Tubiello et al., 2000] (figure 1-3).  

 

Figure 1-3. Dynamics of Rice Intensification System in Nepal  

(Source; Rajendra Uprety -Wageningen University) 
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As the response of this condition, several countries tried to intensify land-use on already 

cultivated lands, since it provides promising opportunity to boost global crop production more 

effectively instead expand agricultural land [Rufin, 2018]. However, this strategy facing high 

risk, since high crop water demand will follow high cropping intensity and estimated produce 

more GHG emissions which will be centered in specific area.  

 

1.1.3. Important for Monitoring Water Use in Agriculture Sector for Support SDGs 

Compared with another sector, irrigation pointed as the highest water demand, with 

70% of global water consumption is for Irrigation purpose [UNEP, 2000; Oki et al, 2006] 

(Figure1-4) (Figure1-5). This sector also counted as the biggest contributor to global water loss 

problem, where 44% water in irrigation sector wasted [FAO, 2012], mainly caused by three 

dominant factors that are extreme evaporation, infrastructure problem, and low water 

management [Vanham et al., 2018] (Figure1-6).  

As next generation of global pledge -development, Sustainable Development Goals 

(SDGs) are targeting not only to achieve zero hunger in 2030 but also to ensure sustainable 

food production systems [FAO, 2016].  Learn how to deal with tradeoffs between global food 

security and water demand are needed, to boosting food production in more sustainable 

approaches to achieve the goal.  

 

Figure1-4. Percent distribution of water use among domestic use, industrial use, and 

agricultural use in the world, in high‐income countries and in low‐ and middle‐income 

countries. (source; [World Water Development report, 2005]) 
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Figure 1-5. Estimated annual world water use (source; FAO Aqua stat 2010) 

 

Figure 1-6. Irrigation infrastructure and water management issues on water loss problem 

Irrigation water demand (IWD) means the amount of water that must be applied to the 

crop to achieve optimal growth [Doell, 2002; Rockstrom, 2006]. Increasing accuracy of IWD 

product can contribute to improve the analysis of several issues. There are include; A. To 

reduce water demand in irrigation [FAO, 2012; Nelson, 2015; Davis et al., 2017], B. To 

Improve Hydraulic Cycle Estimation [Oki and Kanae, 2006; Dalin et al., 2012; Wada, 2016; 

Biigs, 2015], C. To find new water Source for Irrigation [Altchenko et al., 2015], D. To 

improve crop emission estimation [Han et al., 2016; Carlson et al., 2016], E. Climate Change 

– Impact and Projection [Heino et al., 2018; Mehran et al., 2017] (figure 1-7). 

Improving water irrigation efficiency can possible to reduce water loss problem by 

Improvement in irrigation infrastructure in intensively cultivated area. Such Improvement for 
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water management strategies such as agricultural drainage water (ADW) also has great near-

term potential to reduce the GHG emissions intensity of global agriculture, without 

compromise with reduction in food production [Russ, 2016]. This contribution, can be one of 

the important factors to achieve SDGs targets, especially Goal no. 2: to double food production, 

Goal no.6: to give drinking water access for the rapidly growing population and Goal no.12: to 

achieve the sustainable management and efficient use of natural resources. This efficiency 

reflects to volume of water evapotranspirated by the crop as a ratio of the water volume diverted 

from reservoirs/ground water. Water use efficiency has improved during the 22-y period 

(globally averaged VWC of all five crops has decreased and yields have increased) [Dalin et 

al., 2011]. 

 

Figure 1-7. Contributions of Irrigation Water Demand estimation in SDGs in target number  

2, 6, 7, 12, 13 and 17 

One of contribution of IWD is for finding a new source of water especially ground 

water recharge [Altchenko, 2015]. Since extreme hunger occurs predominantly in remote areas 

with minimum irrigation infrastructure, groundwater becomes an alternative source of water 

for irrigation development. Groundwater can play a significant role to help both extensification 

and intensification since there is large groundwater potential storage [Margat et al., 2013]. To 

date, however, a complex array of factors has impeded its widespread introduction.  
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Development of areas equipped with groundwater irrigation is relatively low and 

unevenly distributed in a relatively small share of cultivated land, with only limited space 

available for abstraction [Foster and Perry, 2010]. Presently, groundwater covers around 2,106-

ha area in Africa, equivalent to 1% of the developed land [Siebert et al., 2013]. In Asia, it 

covers about 38,106 ha or 14% of cultivated land [Siebert et al., 2013]. Groundwater has been 

most intensively developed in South Asia and North America - where it provides all irrigation 

water for about 57% and 54% respectively [Doll and Fiedler., 2008].  

Groundwater recharge is one of the groundwater types that can provide an essential 

buffer to climate variability. The groundwater recharge is defined as the amount of water that 

infiltrates from precipitation through the unsaturated zone of the water table and reaches the 

aquifer. Groundwater recharge is estimated to provide 43% of all water used for irrigation. It 

is relatively affordable, safe and reliable, compared with non-renewable (fossil) groundwater 

[Altchenko, 2015].  

Irrigation water demand also important input for emission estimation especially in rice 

paddy area [Han et al., 2016]. The food system, including crop production, is responsible for 

up to 1/3 of total anthropogenic GHG emissions. This emission is come from: 1.CH4 emissions 

from paddy (flooded) rice cultivation, 2. CO2, N2O and CH4 flux from agricultural peatland 

draining, 3. Direct and indirect N2O emissions from synthetic N fertilizer and manure 

application [Carlson et al., 2016]. International agreements now focus on reducing emissions 

from such agricultural extensification and intensification up to 2% per year [UNFCCC, 2015]. 

In 2010, agricultural production emissions were greater than land change emissions. GHG 

reduction strategies targeted to crop management practices are essential to address agriculture's 

contribution to climate change. (Improving yields on existing croplands supports future food 

demand). 

Another contribution of Irrigation water demand estimation is to calculate Virtual 

Water Trade. It is defined as volume of water that an exporting nation consumes to produce 

the commodities that it trades abroad [Hanasaki et al., 2010]. Food trade may help save water 

by exchanges of virtual water. This activity can solve inequalities in global water use. The 

virtual water trade not only generates water savings for importing countries but also represents 

water ‘‘losses’’ for the exporting countries. [Chapagain et al. 2006].  Temporal analysis of the 

global VWT network would allow for an assessment of key impacts of policy, economic, and 

biophysical factors. Dalin et al, [2011] found that international food trade is leading to global 

water savings (from a relatively more efficient country (with lower VWC) to a relatively less 

efficient country) Represented 18% of the global VWT volume in 1986 and 42% in 2007. 
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1.1.4. Rice Paddy mapping for increasing accuracy for Water Use estimation 

 Rice is one of the most consumed grains in the world and produced more than 114 

countries, that is why it become an important factor in view of food security [USDA, 2015]. 

Long year rice field distribution monitoring in global scale will become an important method 

in order to evaluate the accomplishment of SDGs in decreasing hunger and also to assess the 

impact of environmental changing espesially for water use monitoring in agriculture sector 

[Xiao et al., 2005; Mosleh et al., 2015].  

 Rice is very important crop with specific planting characteristic and has highest water 

demand. Based on CROPWAT crop coefficient [FAO, 2009] shows rice has higher crop 

coefficient compare with non-rice crop type. Where compare with non-rice of major crops, rice 

consumed the greatest water especially blue water. Hence, understanding rice paddy phenology 

to separate rice and non-rice crop type can improve the accuracy of sowing month estimation 

and irrigation water demand as well. The result of analysis that conducted from this method 

can be used to construct a strategy for achieving Sustainable Development Goals (SDGs) target 

in food security 15 years later.  

 

Figure 1-8. Understanding rice paddy phenology can improve the accuracy of 

Irrigation Water Demand. 

 

1.1.5. Source of Global Crop Water Demand: Blue and Green Water 

Monitoring Croplands have resulted in changes in land use and cover through land 

clearing, deriving redistribution of evapotranspiration and increasing it in many irrigated areas 

with associated impacts on microclimate and regional climate impacts [Gordon et al., 2008]. 
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Continued increase in demand for water and recent water shortages have intensified the need 

for better utilization of our water resources; its has also forced us to think more innovatively 

about different components of water available in the hydrological cycle [Sevenije, 2004; Jewit 

et al., 2006]. The source of water for irrigation can be classified into two groups: the green and 

blue water resorces.  

 

Figure 1-9. Conceptualization of a widened green-blue approach to water-resource planning 

and management. (Source: [Falkenmark and Rockstrom, 2006]) 

Green water resources: Precipitation as undifferentiated freshwater resource, is 

partitioned in a Green-water resource as moisture in the unsaturated zone [Falkenmark and 

Rockstrom, 2006]. In other word, Green water (productive green water) can describe as water 

that located in the soil moisture that transpirates through crops and vegetation since this water 

is available for crop productivity and vegetation [Foster and Perry, 2009]. This water is in the 

unsaturated zone and readily available for consumptive use by crops.  

Green water is typically associated with crop production under rainfed conditions and 

constitutes bulk of the water used by croplands. Siebert and Döll [2009] used an “Effective 

Precipitation (Peff)” to compute green water use of crops, where effective rainfall refers to that 

portion of rainfall that can effectively be used by plants, that generate flows, as green-water 
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flow from terrestrial biomass producing systems in cropland area. In other words, Effective 

Precipitation is the fraction of the total precipitation as rainfall and snowmelt that is available 

to the crop and does not run off. Without detailed site-specific information, Effective 

Precipitation is very difficult to determine. Siebert and Döll [2002] use a simple approximation 

of Effective Precipitation which developed by U.S. Department of Agriculture Soil 

Conservation Method Smith [1992]. 

Blue water resources: Water in lakes, reservoirs, rivers, ice caps, and ground-water 

(saturated zone) are called “blue water”. Blue water is typically associated with crop production 

under irrigated conditions. Blue-water flow in rivers, through wetlands, and through base flow 

from groundwater [Falkenmark and Rockstrom, 2006] (figure 1-9). 

The distinction between blue and white water has many implications for water 

management for food security. For instance, the lesser the blue water used for producing food 

the greater will be the water productivity and water use efficiency; however, the implications 

for the environment may not always be straightforward. The blue and green water metaphor 

has enhanced policy discussion regarding water scarcity and food security. In green water as 

most sustainable water resources, strategies that improve green water management offer 

potential to enhance food production even in places with serious water scarcity issues 

[Rockstrom et al., 2009].  

However, in Blue water resources has the level of sustainability which derived from each 

type of blue water (figure 1-10). The one of blue water resource that had become global issues 

is groundwater. Groundwater is water source for irrigation without any conjunctive use and is 

usable, accessible, and locally available. This condition would overestimate groundwater use 

in several areas. There are some areas are the ones that had confirmed by Postel et al. [1999] 

where there has been excessive use of groundwater in areas such as the high plain aquifer in 

the US, Punjab in PAKISTAN-INDIA, and North China pain in China. 

Excessive use of groundwater can disrupt the sustainability of the water balance in soils. 

World Resource Institute [2015] estimate that 54% of Indian territory faces high and extremely 

high water stress followed by decreasing groundwater levels. The use of glaciers to irrigate 

agriculture fields such as in the Punjab region of Pakistan [Piracha and Majeed, 2011] can also 

be one of the regional issues in the South Asia region, and if the use is inappropriate, that can 

lead to regional disasters in the region. 
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Figure 1-10. Source of Global Cropland Water Demand: Blue and Green.  

(Source: [Falkenmark and Rockstrom, 2004]) 
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1.2 Statement of the problem 

 

Based on current issues, the year of MDGs period (2001-2015) is the year that has 

significant reduction in hunger because of the increase of food production. However, a distinct 

effect of climate change that leads to the decrease in food production also happened in this 

period. Crop activity that resembles the food productivity was facing a dynamic change during 

this MDGs period. Understanding the cause of dynamic change in cropping activity in the 

MDGs period become important as it will give the lesson to the future food security. 

Based on the above explanation, there are four big problems that elaborated in this study. The 

four big problems are: 

1. The high discrepancy between global land cover (GLC) product in cropland class. 

Moreover, there is no previous GLC dataset comparison that considered data collection 

time and used similar two-year term GLC datasets (year 2005 and 2010). 

2. There are no such datasets that describe the distribution of rice paddy globally in the last 

fifteen years. Moreover, there is limited information in cropping pattern change 

phenomena of rice paddy, especially in multi-cropping intensity area. 

3. There is no information regarding cropping calendar and cropping intensity that can explain 

the phenomena of cropping intensity change and sowing month change in the last fifteen 

years 

4. There is no available product of irrigation water demand estimation that uses high 

resolution, consistent, and latest data input. 
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1.3 Objective of the study 

 

In this study our objective is to estimate long-term IWD from 2001 to 2015 at a spatial 

resolution of 1 km in the global scale. Figure 1-11 show overall study. To achieve the 

main goal, we divide the main goal into four specific goals:   

1. To integrate the combined cropland classes from current GLC datasets to produce a 1 

km cropland agreement level (CAL) analysis through two main processes of dataset 

harmonization and pixel comparison. 

2. To develop dominant cropping pattern (CP) of rice and non-rice by combination of 

MODIS NDVI (optic) and AMSR LSWC (microwave). 

3. To develop long-term sowing month from 2001 to 2015 at a spatial resolution of 1 km 

in the global scale.  

4. To develop crop coefficient based on the integration of cropland agreement level, 

cropping intensity, sowing month and cropping pattern with CROPWAT empirical 

model. 

5. To Produce 1 km high resolution of 15-year global Irrigation water demand by 

integrating various remote sensing datasets. 

 

Figure 1-11.Overall studies of four objective for developing global irrigation water demand  

based on long-term remote sensing data integration 
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1.4 Originality of study 

 

 The presented cropland agreement level (CAL) analysis, to our knowledge is the first 

study to compare the four current versions of GLC datasets (ESA CCI-LC, GlobCover, 

GLCMNO and MODIS LC) that were focused on worldwide cropland classes while 

taking into consideration data collection time.  

 The presented MODIS-AMSR sowing month and dominant cropping pattern of rice 

and non-rice, to our knowledge are the first satellite-based products which derived from 

integration of vegetation and water index phenology that can analyze dynamic change 

of global sowing month and cropping pattern in multi cropping intensity area. 

 The presented 1 km global irrigation water demand product are the first satellite-based 

products which derived from climate and crop remote sensing datasets that can analyze 

15 years’ dynamic change of water demand in agriculture sector, which developed by 

integrating consistent and latest remote sensing data input. 

Figure 1-12 shows the summarize of detail flowchart for three original products in this 

study.1. Cropland agreement level development, 2. Sowing month and cropping pattern 

development and 3. Irrigation water demand development. 

 

Figure 1-12. Shows overall flowchart from three original products in this study. 
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2 Chapter 2 REVIEW LITERATURE 
 

2.1 Global Land Cover Datasets 

 

Over the last two decades, many institutions have published different global land cover 

(GLC) datasets that provide cropland class information. Since the first one released in 1993, 

the trend in the improvement of the production of GLC datasets has been in an increase of 

spatial resolution and accuracy [Grekousis, et al., 2015]. However, each GLC dataset has a 

different production year, data input method, classification technique, class definition and 

accuracy distribution value [Fritz et al.,2008; Ran et al., 2010]. These datasets are released as 

independent datasets, which make them incomparable, especially for a multitemporal analysis 

[Bai et al., 2004]. 

To evaluate the differences between each GLC dataset, researchers have tried to analyze 

land cover class agreement using a relative pixel comparison approach. The results of this kind 

of analysis produce a spatial agreement analysis that is effective for determining regions with 

levels of high confidence as a reference [Giri et al., 2005; Trsendbazar et al., 2015]. Previous 

pixel comparison analyses were carried out by comparing GLC datasets, which does not take 

into consideration when the data was collected. This condition makes the differences that result 

from a comparison analysis ambiguous as the differences may be a result of real physical 

changes to the cropland area during that period of time (not because of the different 

characteristics or classification system of the dataset). Therefore, the method for selecting GLC 

datasets for a comparison analysis must be reliable and consider time. 

 

2.2 Irrigation Water Demand 

 

Irrigation water demand (IWD) defined as the amount of water that must be applied to 

the crop to achieve the optimal growth [Doell and Siebert, 2002]. To estimate the IWD, 

previous studies are dominantly using global hydrological model. This model is using two main 

input, climate and crop coefficient. For the climate input, there are two data category which are 

evapotranspiration and precipitation. For the crop coefficient, there are three data category 

which are crop intensity (CI), crop calendar (CC), and crop type. 

Previous studies are using this kind of model. However, different study using different 
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source of datasets for the input. This condition gives different result of estimation that cause 

discrepancy. Besides, the data input also using the old datasets. Hence, those studies produce 

low resolution products of 50 km. The low resolution product leads to the difficulties in country 

level analysis. Figure 2-2 summarize the input data used in previous studies.  

 

 Figure 2-2. General concept of previous Irrigation water demand estimation 

Table 2-1. Previous studies of irrigation water demand products 

 

There are various approaches used to estimate and stimulate the global CC and CI. 

MIRCA2000 [Portmann et al., 2010] collected the census-based information of global CC 

using in 2000-year baseline. Other CC product, WAHA12 [Waha et al., 2012], simulated the 

growing period of dominant crop using H08 model simulation. SACRA product [Kotsuki et al., 

2015] estimated weeks of crop sowing and harvesting by combining satellite drive SPOT NDVI 

product and census based datasets. The problems that were faced in all previous studies are 

only represent one-year data product, produced in coarse pixel resolution and high discrepancy 

among CC data products. CC product derived from simulation model by Zabel et al. [2014], 

can analyze its changes in 100 years’ long-term, otherwise the product was based on crop 

suitability model and not based on real ground condition. 

Reference Year baseline

Blue Water use by 

Irrigated Crop 

km3/yr

Green water use 

by Irrigated crop 

km
3
/yr

Green water use 

by rainfed crops 

km
3
/yr

Total water use by 

Irrigated-rainfed 

crop km
3
/yr

Spatial 

resolution

Postel [1998] 1995 7,500

Doll and Siebert [2002] Avg. 1961–1990 0.5◦

Hanasaki et al. [2006] Avg. 1987–1988 0.5◦

Falkenmark  [2006] 1950-2000 1,800 5,000 6,800 0.5◦

Rost et al. (2008) Avg. 1971–2000 0.5◦

Siebert and Doll [2009] Avg. 1998–2002 1,180 919 4,586 6,685 0.0083◦

Hanasaki et al. [2010] Avg. 1985–1999 0.5◦

2000

2025

2050

Wada et al. [2011] Avg. 1958–2001 0.5◦

1983–2007 0.5◦

2000 1◦

2,057

Pokhrel et al. [2012]
2,158

2,462

2,452

2,254

2,555

1,530

Sulser et al. [2010]

3,128

4,060

4,396
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Table 2-2. Previous input data products which used for global irrigation water demand 

estimation 

 

3  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable input Exsisting input data products

1. Evapotranspiration 

2. Precipitation 

3. Crop Type

1. Rice and non-Rice FAO [Döll and Siebert, 2002], 2. 18 crops [Leff et al., 2004], 3. 20 

crops [You et al., 2006], 4. Multiple crop type [Monfreda et al., 2008] , 5. MIRCA 26 crops 

[Portmann et al. 2010].

4. Crop Intensity 

5. Crop calendar

1. Optimal growth, 2. FAO stat Regional level [FAO,1995], 3. SWIM model [Krysanova et 

al.,1998], 4. Assumption: Temperature and Precipitation [Doell Siebert, 2002], 5. Simulate a 

cropping calendar by H08 [Hanasaki et al.,2008], 6. MIRCA [Portmann et al. 2010], 7. 

Zabel Crop Suitablity [Zabel et al., 2014], 8. SACRA product [Kotsuki et al., 2015] 

1. SLSCP [Meeson et al., 1995], 2. CRU TS 1.0 [New et al., 2000], 3. CRU TS 2.1 [Mitchel, 

2005],  4. JRA-25 [Kim et al., 2009] , 5. MIROC-ESM-CHEM [Weedon et al., 2011]
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Chapter 3  

DEVELOPMENT OF GLOBAL CROPLAND AGREMEENT LEVEL 
 

3.1 Background 

 

Global trends of the last 25 years show that for the developing world as a whole, the share 

of undernourished people among the total population has decreased significantly. Some 

important factors that have affected this reduction have been stability in economic growth and 

the massive development of irrigation systems, which have caused an escalation in agricultural 

productivity [FAO, 2015]. Sustainable development goals (SDGs), as part of the development 

of a global pledge, are targeting to eradicate hunger by 2030 and ensure sustainable food 

production systems [FAO, 2016]. To achieve this target, the availability of accurate 

information about global and regional cropland distribution that can be monitored periodically 

is becoming important for the construction of strategies for achieving food sustainability targets 

[See et al., 2015]. Satellite-derived cropland dataset can be one alternative source of 

information since it directly correlates with food resource distribution [Leff et al., 2004] and 

water requirements [Doll and Siebert, 2002].  

The goal of this research was to integrate the combined cropland classes from current 

GLC datasets to produce a 1 km cropland agreement level (CAL) analysis and its changes (year 

2005 and 2010) through two main processes of dataset harmonization and pixel comparison. 

This study also focused on analyzing the potential use of a cropland agreement level for 

cropland area estimate and cropland change phenomena. 

The presented model of cropland agreement was, to our knowledge, the first study to 

compare the four current versions of GLC datasets (GlobCover, MODIS LC, GLCNMO and 

ESA CCI LC) that were focused on worldwide cropland classes while taking into consideration 

data collection time. There was no previous GLC dataset comparison [McCallum et al., 2006] 

[Nakaegawa, 2011] that considered data collection time and used similar two-year term GLC 

datasets. It was the first study to estimate total cropland area on a national level by converting 

the levels of agreement into percentage values using a correlation model between the CAL 

analysis and an IIASA cropland fraction map. 
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3.2 Material 

 

3.2.1 Global Land Cover (GLC) datasets 

 

During this study, we explored all existing GLC datasets in the low spatial resolution 

category (300–1,000 m) and distributed those GLC datasets according to data collection time. 

After distributing the GLC datasets on a timeline, we grouped the data based on the proximity 

of data collection time and got five groups of GLC datasets. Figure 3-1 shows the five groups 

of data in the timeline of GLC datasets. This grouping strategy made those datasets more 

comparable for pixel comparison and integration analysis. Within each group, the maximum 

difference in data collection time was two years. The reason for setting two years as the 

maximum time difference was to minimize any extreme changes that could occur in cropland 

fields over long periods.   

To create this CAL analysis, the GLC datasets were put through two processes, which were 

a harmonization and pixel comparison. In the harmonization process, we standardized the 

analysis depth for all GLC datasets within five groups. Those five groups consisted of 14 GLC 

datasets from the seven GLC dataset versions listed below: 

(1) IGBP GLCC v 2.0 (1993 dataset) using the International Geosphere-Biosphere 

Programme (IGBP) classification system produced by the United States Geological Survey 

(USGS) [Loveland et al., 2000]; 

(2) UMd (1993 dataset) using the simplified IGBP classification system developed by the 

University of Maryland [Hansen et al, 2000]; 

(3) GLC2000 (2000 dataset) using the Land Cover Classification System (LCCS) of Food and 

Agricultural Organizations (FAO) generated by the European Commission’s Joint 

Research Center (EC-JRC) [Bartholomé et al., 2005]; 

(4) GlobCover V 2.2 and V 2.3 (2005 and 2009 datasets) using the FAO LCCS created by the 

European Space Agency (ESA) [Bontemps et al., 2009]; 

(5) MODIS LC MCD12Q1 collection 5.1 (2001, 2005, 2010 and 2013 datasets) using the 

IGBP classification system produced by Boston University [Friedl et al., 2010]; 

(6) GLCMNO V.1 and V.2 (2003 and 2008 datasets) using the FAO LCCS created by Chiba 

University [Tateishi et al., 2011; Tateishi et al., 2014]; 

(7) ESA CCI-LC v 2.5 (2000, 2005 and 2010 datasets) using the FAO LCCS generated by the 

ESA [ESA, 2014], in 2017 ESA CCI have published maps from 1993 -2015 that can be 



26 

 

useful for long year monitoring of land cover change. 

For the pixel comparison process, we used datasets from the 2005 and 2010 groups from 

the same GLC dataset versions. These GLC datasets were the ESA CCI LC, GlobCover, 

MODIS LC and GLCMNO datasets. The same GLC datasets from each group were paired to 

produce two CAL analyses for further analysis of cropland change. Table 3-1 shows the 

characteristics of each of the GLC datasets in the 2005 and 2010 groups that were used in the 

pixel comparison process. 

 

 

Figure 3-1. Timeline of the GLC datasets in five groups of data  

Table 3-1. Characteristics of the four GLC datasets used in the pixel comparison analysis. 
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This study used a relative accuracy assessment, which was the use as a reference of 

another dataset that was considered to use accurate datasets. We explored the reference data in 

order to convert agreement levels into percentage values. As reference data, a 1 km global 

IIASA-IFPRI cropland percentage map with a 2005 baseline year [Fritz et al., 2015] was 

developed by integrating a number of individual global and regional cropland maps. This 

IIASA-IFPRI cropland percentage map was validated by high-resolution satellite imagery via 

Geo-Wiki (http://www.geo-wiki.org) [Fritz et al., 2009] with an overall accuracy result of 

82.4%. The reason for choosing the IIASA data was because this dataset was a recent one that 

gave a highly accurate overview of cropland area distribution in percentage values. 

 

3.3 Methods 

 

3.3.1 Pixel Comparison Using CRISPS Approach 

 

To achieve the study’s first goal, there were two main methods for producing the CAL 

analysis, which were the harmonization and pixel comparison processes. The different 

characteristics and classification systems for each dataset made these two processes important 

for getting reliable CAL analysis results. During the harmonization process, we standardized 

all GLC datasets to produce comparable cropland classes for the pixel comparison process. The 

result of the cropland harmonization process was evaluated by comparing the result to each 

group. A balanced distribution verified that the data was standardized and comparable. Finally, 

datasets within the same group were overlaid using the CRISPS approach for a pixel 

comparison processes to produce the CAL analysis. As the fourteen GLC datasets from each 

group had different mapping standards, we applied the following cross-walking methods to get 

comparable products: 

 

3.3.2 Re-projection 

 

To facilitate different projections, these data sets were co-registered and re-projected to a 

geographic (latitude-longitude) image with map datum WGS 84, which is a pseudocylindrical 

equal-area map projection [See et al., 2015]. This projection has been used in many GLC 

datasets. ESA CCI-LC, GlobCover and GLCNMO are GLCs that have used this projection. Its 
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use was also supported by the use of this projection system in similar studies of GLC datasets 

comparisons [Jung et al, 2006].  

3.3.3 Rescaling Analysis 

 

The resampling process had an important role in standardizing the different pixel 

resolutions of the GLC datasets because during the comparison process the GLC datasets 

needed to have the same pixel size. Different rescaling processes were a special concern in this 

study as a mistake in the resampling process could have caused changes in the class area. When 

considering the goals of this study, which was to resample all GLC datasets to a 1 km resample 

target, this study attempted to adopt and combine some important parts of the resampling 

process from another study with an aim of minimizing errors from the resampling process. 

For the cropland rescaling process, we used two resampling processes, which were the 

nearest neighbor and maximum area methods. We used these two techniques because both 

would not change the value of cells. For datasets that have coarser resolutions, direct 

resampling using the nearest neighbor method might have caused a non-ignorable disagreement 

between the original and the rescaled dataset [Bai et al., 2014]. This is based on the fact that 

the footprint of the sensor is not at the same location during each revisit [Tchuenté, 2011].  The 

maximum area method, however, has been proven a more powerful approach for aggregating 

discrete land cover data [ Zhang et al., 2013]. Furthermore, it also tends to give a smoother 

result than the nearest neighbor method because the new value resulting from this approach is 

obtained based on the most common values around the pixel. The GLC datasets that already 

have a 1 km resolution did not need a rescaling process, which minimized the changes from 

resampling the results data [Tchuenté, 2011]. 

Taking into consideration the facts from this previous explanation, the steps that were taken 

in the rescalling process during this study were as follows: (i) Global land cover datasets that 

have a large resolution, such as the GlobCover and ESA CC-LC (300 m), MODIS LC (500 m), 

and GLMNO 2008 V.2 (500 m) datasets, were resampled on a grid with a 250 m resolution 

using the nearest neighbor method. (ii) After that, the entire GLC 250 m grid was aggregated 

using a majority area method to 1 km for all datasets. (iii) For GLMNO 2003 v1 since they 

were already in a 1 km spatial resolution, the datasets were kept in their original resolution 

without a rescaling process. 
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3.3.4 Legend Harmonization 

 

For this study, legend harmonization played a crucial role because the focus of this study 

was on analyzing cropland classes among several GLC datasets. Differences in the definitions 

and characteristics of each class correlating with the cropland in each individual GLC would 

produce ambiguities among the comparisons of the GLC datasets. To overcome this problem, 

we evaluated all the classes used by the different GLC datasets and then analyzed those classes 

to determine how they correlated with a standardized cropland classification system, which 

was the Land Cover Classification System (LCCS). The rationale for choosing LCCS rather 

than IGBP was: (i) LCCS was developed after an analysis of existing relevant FAO 

nomenclature documents [26] that can explain some categories of cropland classes in detail. 

(ii) MODIS LC v 6, one of the GLC products that use IGBP, would soon change to LCCS with 

their next dataset  [Friedl et al., 2010].   

One step in the legend harmonization process was to convert the original class numbers to 

LCCS-labels. Table 3-2 shows the conversion results for some of the original class numbers to 

cropland LCCS-labels. The class definition followed the LCCS hierarchy based on the 

dichotomous phase and the modular-hierarchical phase [ Di Gregorio, 2016]. As in Table 3-2, 

the cropland class of the MODIS LC, LCCS-label is “A11-A3". A11 is the dichotomous phase 

of “Cultivated and Managed Land” and A3 is the modular-hierarchical phase of “Herbaceous 

Crop”. The fact that the original class descriptions from the GLC datasets had a great impact 

on choosing the type of dichotomous phase and modular-hierarchical phase, we adopted the 

descriptions of the original classes from the GLC datasets from a previous study [Herold et al., 

2006;  Pflugmacher et al., 2011]. For this conversion, we grouped all classes that correlate with 

cropland into a new cropland class, including mosaic vegetation cropland that had a smaller 

cropland percentage when compared to vegetation. Since all the GLC datasets in the five year 

groups would be harmonized for comparison proposes, Table 3-2 shows information about the 

type of class that was categorized as “cropland” based on the LCCS-label conversion status of 

seven GLC datasets. 
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Table 3-2. The conversion results for the original cropland classes converted to LCCS-labels 

for all GLC 

 

 

3.4 Result and Discussion 

 

3.4.1 Thematic Similarity 

 

Following the M. C. Hansen and B. Reed [Hansen et al, 2000] strategy, we evaluated the 

harmonization results for the cropland classes by analyzing cropland pixel similarity in each 

dataset group. A successful result in the harmonization process would produce a balanced 
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proportion among the GLC datasets in the same groups of GLC data. Figure 3-2 shows the 

proportion of the cropland classes from the harmonization results and figure 3-3 shows the 

spatial distribution of harmonized cropland area.  

In general, four out of five groups showed a balanced proportion of cropland classes. The 

subtraction value of the highest from the lowest percentage in each group were 7 %, 6 %, 6%, 

8 %, 8 % for 2000, 2005, 2010 and 2013 group respectively. However, in the 1992 group, there 

was a large difference in cropland classes between UMd and GLCC of 38 %. The absence of 

mosaic agricultural classes in the UMd datasets was the cause of this difference [Hansen et al., 

2000]. This shows that the differences in the goals and focus of an analysis caused conspicuous 

differences between cropland and vegetation by classifying more area as a vegetation class. 

This explanation shows that the harmonization result was acceptable especially for the 2005 

and 2010 groups. So, both were eligible to be analyzed in the next step. 

 

Figure 3-2 Proportion value of cropland analyses as the result of the harmonization of the five 

groups. 
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Figure 3-3. Spatial distribution of harmonized cropland area from four selected GLC datasets 

in the two year-groups of 2005 and 2010. Only groups of GLC datasets that are located 

within these two year-groups are used for the cropland class comparison process. 

 

3.4.2 Cropland Level Agreement (CAL) Analysis 

 

After assigning the harmonized dataset target and proving the balance proportion value, 

we compared and observed for pixel similarity within the four GLC datasets in the two year-

groups by overlaying the datasets using the CRISPS approach, which is based upon cross-

walking between classes [Bai et al., 2014]. Since we only focused on one cropland class (not 

analyzing multiple classes), utilizing a CRISPS approach that matches using one-to-one 
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mapping was sufficient [McCallum et al.,2006; See, et al.,2006]. Another technique is the 

Fuzzy approach, which can allow an overlap between legend definitions to be taken into 

consideration. It requires expert knowledge to quantify uncertainty in the classification and 

transition zones of boundaries [See, et al.,2006; Fritz, et al.,2005]. In the previous study 

explained by McCallum et.al [2006], the result of this pixel comparison technique could 

indicate an agreement level among these datasets.  

The comparison result of these cropland classes produced four agreement levels, which in 

this study were also referred to as the Cropland Agreement Level (CAL) analysis. The four 

levels that were obtained from the CAL analysis in this study were as follows (Figure 3-4): 

Level 1; No agreement for pixels with a unique aggregated class in each data set 

Level 2; Low agreement for pixels where only two of the four data sets were in agreement 

Level 3; Medium agreement for pixels where three of the four data sets were in agreement. 

Level 4; Full agreement for pixels where all the five data sets within a pixel were in 

agreement. 

Since we focused on analyzing cropland class similarity within four GLC datasets in two 

groups of data from 2005 and 2010, we produced two CAL analyses from those years. 

 

Figure 3-4. Cropland Agreement Level (CAL) analysis from 2005, based on pixel 

comparison analysis between four selected recent GLC datasets. 
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To study this CAL analysis more deeply, we divided the study area into seven test sites 

according to size. Those study areas were South America, North America, Europe, Africa, 

Australia, Russia and Asia. Table 3-3 shows the percentage calculation result for four CAL 

analysis levels for seven test sites. Four GLC datasets were used and the underlined value 

shows the highest percentage value whereas the bolded value shows the lowest percentage for 

the site area. 

 Comparison results for the seven sites in the two years of analysis showed that Europe was 

indicated as the area with highest full agreement level whereas Australia, Russia and Africa 

had the three highest no agreement level areas. A short time period for cultivation and a small 

cropland area combined with a large area of vegetation were the causes of a mix in cropland 

classes (Figure 3-5). This triggered different classification results in each GLC dataset. Besides 

this, there were also random changes in levels two and three of the 2005 and 2010 CAL 

analyses. 

Figure 3-5. Comparison two different CAL model in 2005 and 2010 term,  

in Africa and Asia Continental. 

 

Table 3-3. Agreement percentage of the CAL analysis across the seven test sites in 2005 and 

2010 
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3.4.3 Correlation Factor between CAL and Existing IIASA Cropland Fraction 

 

To obtain a correlation model between the CAL analysis and cropland percentage, first we 

analyze the trend correlation between the CAL analysis with the original cropland classes from 

the four selected GLC datasets (Table 3-4). The dominant distribution of “cropland” classes 

(class numbers 10 and 20 for ESA CCI-LC, numbers 11 and 14 for GlobCover, numbers 11 

and 12 for GLCNMO and number 12 for MODIS LC) is in level 4, compared with the “mosaic 

cropland” that is dominant in level 1 and level 2, indicating that the four levels in the CAL 

analysis correlate with the amount of actual cropland area in one pixel.  

 

Table 3-4. The conversion results for the original cropland classes converted to LCCS-label 

for all GLC datasets 

 

To investigate the meaning of each CAL analysis level in percentage values, we analyze 

the pixel correlation between the CAL analysis and the IIASA-IFPRI cropland percentage map 

by using a 2D Scatter Plot (Figure 3-5). Results show that level 4 of the CAL analysis mainly 

corresponds with 80% of cropland fraction and with the same approach, the following 

correlations were also obtained: level 3 with 40%, level 2 with 20% and level 1 with 10% 

(Table 3-6). Figure 3-6 shows a comparison between the CAL model and IIASA-IFPRI map 

using a 2D Scatter Plot. To estimate cropland area from the CAL analysis, the pixel area from 

each agreement level is multiplied by the correlation percentage. 
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Table 3-5. Correlation factor (percent) between CAL analysis and IIASA cropland fraction. 

 

 

Figure 3-6. Comparison between the CAL analysis and IIASA cropland fraction  

using scatter plot 
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3.4.4 Comparison of Cropland Area Estimates from the CAL with the FAO Data 

 

To evaluate cropland estimation results on the national level, cropland areas derived from the 

CAL analysis are compared to the cropland area estimates from FAO-stat 2005 as a statistical 

data reference. Based on the definition from FAO statistics, cropland is defined as “arable land 

and permanent crops” [Vancutsem et al., 2013]. Overall correlation also is observed for 2005 

and 2010 respectively and shows some proximity between the CAL analysis and the FAO with 

a 0.70 and 0.71 regression value (Figure 3-7).  

 We also analyze the accuracy of the four selected GLC datasets to FAO statistics. We 

divide countries into two groups based on the subtraction value of the cropland area. The groups 

are (i) small, which have a cropland area from 5,000 to 140,000 km2, and (ii) medium to large, 

which have cropland area from 180,000 to 1,700,000 km2 (Figure 3-8). In this framework, the 

regression value and relative error to the FAO (%) have been observed as 0.574; 42.2 for small 

cropland area countries and 0.858; 29.8 for medium to large cropland area countries between 

FAO-stat and the CAL analysis (Table 3-6). Those values promote the CAL analysis as the 

most accurate dataset compared to FAO-stat within all datasets in estimating cropland area. 

Good correlation of the results to FAO statistics is still not enough for quality assessment of 

the product. To provide accurate validation it is worth to compare the product with some more 

precise country level cropland map which have higher resolution. Globland30 [Chen et al., 

2014] and Unified Cropland layer [Waldner et al., 2016] as one of the alternative for the 

analysis in next study. 
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Figure 3-7. Regression of cropland area estimates derived from two years of the CAL 

analysis with FAO cropland area statistics 

Table 3-6. Regression value and relative error of the CAL analysis and the four GLC datasets  

to FAO-stat data 
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Figure 3-8. Comparison on the national level between the CAL analysis and the four original 

GLC datasets with cropland area estimates from the FAO in (a) small cropland area countries 

and (b) medium to large cropland area countries. 

 

 



40 

 

3.4.5 Cropland Agreement Level (CAL) Change Analysis 

 

The CAL analysis is used to study the potentiality of cropland area changes monitored 

between 2005 and 2010. Figure 3-9 shows global cropland Agreement Level change. Almost 

all of the CAL analysis and the four GLC datasets are not able to produce similar cropland area 

change data comparable to the cropland change statistical data from the FAO. However, the 

CAL analysis has the highest proximity of cropland change compared to the other GLC datasets.  

 

Figure 3-9. Global CAL change analysis from 2005 to 2010 

 

 

Figure 3-10. Cropland agreement level change of Bali Island, Indonesia 
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Moreover, the development of three new reservoirs in Bali and East Java built within the 

2005-2010 time period expanded the cropland area around the reservoirs [Suputra et al., 2012]. 

Figure 3-10 shows that in ESA CCI LC and GlobCover, almost all of the cropland area in 2005 

and 2010 had no change, whereas in the MODIS data, there is a decline in cropland change. In 

contrast, GLCMNO shows an expansion in cropland area. Cropland change results from the 

CAL analysis can accommodate the results from the four GLC datasets, and it also 

accommodates an area with an extreme level of changes. 

 

3.5 Conclusion 

 

This study shows that integrating recent GLC datasets can be considered for estimating 

cropland area with the highest accuracy among original datasets. The CRISPS approach is also 

used to analyze per pixel comparisons between cropland map datasets and produce a Crop 

Agreement Level (CAL) analysis by integrating four GLC datasets in the two year-groups 

(2005 and 2010). To calculate cropland area from the CAL analysis, an IIASA-IFPRI cropland 

percentage map is used. The correlation model obtained from the CAL analysis and IIASA 

comparison successfully estimated the percentage value of four agreement levels. When the 

correlation between the CAL analysis and cropland percentage is studied, the result shows a 

good correlation where level 1 correlates with 10%, level 2 with 20%, level 3 with 40% and 

level 4 with 80% cropland area. The regression value for the CAL analysis is 0.70-0.71, this 

value was the highest compared to other datasets, which are ESA CCI-LC (0.47-0.49), 

GlobCover (0.41-0.43), GLCMNO (0.43-0.59) and MODIS LC (0.63-0.65). Cropland area 

estimates for each country in 2005 and 2010 show that the CAL analysis is more 

accommodating for cropland change calculation based on FAO cropland change statistical data 
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4  

Chapter 4 

DEVELOPMENT OF CROP CALENDAR, INTENSITY AND CROPPING 

PATTERN BY INTEGRATING MODIS AND AMSR DATASETS 
 

 

4.1 Background 

 

The trend of shrinking cropland area due to urbanization, makes extensification strategy 

become not preferred to achieve sustainable food production [D’amour et al., 2016; Wu, 2018]. 

The rising demand of food that is accompanied by GDP growth, increases the agriculture 

production by improving irrigation infrastructure. Several countries tried to intensify land-use 

on existing cultivated lands to boost global crop production [Rufin, 2018]. In the other hand, 

this massive improvement has been facing challenging problem in negative climate change 

impact such as drought and extreme weather changes [Ramankutty et al., 2018]. With this 

climate change pressure, global cropland area is facing the uncertainty the number of crop 

intensity and crop calendar as well especially in the beginning of 21st century. [Heino et al., 

2018]. Issues like global monitoring of emission and water demand change in cropland are 

becoming important to understand the present and future challenges in food sustainability trade 

off [Wua et al., 2018]. Here, the information about the cropping intensity and crop calendar 

parameters are essential inputs for estimating the food production, water demand and GHG 

emissions [Takeuchi, 2009; See, 2013]. CC defines as the date or month when farmers are 

sowing crops whereas CI is the number of cropping cycle per year. Monitoring accurately the 

long-term dynamic of global Crop intensity and crop calendar is important to support global 

food security. Rice is very important crop type with specific planting characteristic, with 

highest water demand and produce methane emission. Understanding rice paddy phenology 

can improve the accuracy of global crop calendar. 

In this study we tried to fill the information gap by estimating the long term Sowing month 

and cropping pattern of rice and non-rice by using combination MODIS NDVI and AMSR 

LSWC from 2001 to 2015 at a spatial resolution of 1 km in the global scale. These sowing 

month and cropping pattern products are the first satellite-based products which derived from 

water and vegetation index phenology that can analyze 15 years’ dynamic change of crop 

activities for crop security purpose. 
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4.2 Material 

 

4.2.1 Global MODIS NDVI Datasets 

 

We investigate time series of global satellite-sensed normalized difference vegetation index 

(NDVI) from 16-Day MODIS (MOD13A2) composite data with 1 km spatial resolution from 

2001 to 2015. We divide these 15 years archived data into three group of year (2001-2005, 

2006-2010, 2011-2015) to mitigate the effect of cloud contamination.  

Cropland Agreement Level (CAL) product [Sakti et al., 2017] used as the cropland base 

map.  This CAL product integrated four global croplands that are GlobCover, MODIS LC, 

GLCNMO and ESA CCI LC. The aims of this CAL product are to accommodate different 

global cropland and reduce the less accurate area by eliminating the lowest agreement area 

among GLC datasets.  

 

Figure 4-1. Global MODIS NDVI (MOD13A2) 1 km 16-Day composite data from 2001 – 

2015.  

315 global MODIS NDVI dataset in total (600 GB size datasets) 

 

4.2.2 Global AMSR-E/2 LSWC DatasetsAnalysis of Endmember Dataset 

 

For extract water index, we used Advanced Microwave Scanning Radiometer (AMSR)-E/2 

LSWC (land surface water coverage). The AMSR instruments are dual-polarized, conical 

scanning, passive microwave radiometers. Each is placed in a near-polar orbit which allows 

for up to twice daily sampling of a given Earth location. A key feature of these AMSR 

instruments is the ability to see through clouds, thereby providing an uninterrupted view of the 

ocean measurements.  
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AMSR-E measures geophysical parameters supporting several global change science and 

monitoring efforts, including precipitation, oceanic water vapor, cloud water, near-surface 

wind speed, sea surface temperature, soil moisture, snow cover, and sea ice parameters [Xi and 

Takeuchi, 2016]. AMSR-2 measures weak microwave emission from the surface and the 

atmosphere of the Earth. From about 700 km above the Earth, AMSR-2 provides highly 

accurate measurements of the intensity of microwave emission and scattering. This enables 

AMSR-2 to acquire a set of daytime and nighttime data with more than 99% coverage of the 

Earth every 2 days [Zabolotskikh et al., 2015; Pang et al., 2018]. 

We investigate time series of LSWC from daily AMSR-E/2 data with 10 km spatial resolution. 

We divide these 15 years archived data into three group of year (2003-2005, 2008-2010, 2013-

2015). Takeuchi and Gonzalez [2009] found that the algorithm accurately predicted daily 

LSWC of AMSR-E/2 by blending MODIS NDWI and AMSR-E. AMSR-E Daily Normalized 

Difference Frequency Index (NDFI) [Takeuchi et al., 2006] was used to map LSWC in 10 km 

which was effective to agriculture monitoring issues [Jonai and Takeuchi, 2012; Ngoc Van et 

al., 2012]. 

 

W１here TB 18.7V and TB 23.8V  are the brightness temperature of vertical (V) polarization 

at 18.7GHz and 23.8GHz. 

 

Figure 4-2. Daily global AMSR-E/2 LSWC 10 km data (2003 – 2005, 2008 – 2010, and 

2013 – 2015). 
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4.2.3 Additional Datasets 

 

4.2.3.1 HYDE V 3.2 Annual Global Irrigated Rainfed of Rice Paddy Data 

 

HYDE presents (gridded) time series of population and land use for the last 12,000 years. 

Cropland and pasture statistics are combined with satellite information, specific allocation 

algorithms, and weighting maps of the HYDE rules to create spatially explicit maps, which are 

fully consistent on a 5 longitude/ latitude grid resolution, and cover the period 10,000 bc to ad 

2000. Input data are derived from total rice area statistics per country from FAO, Rice-growing 

countries from Mitchell [2007], Reference maps for rice from MAP SPAM [You et al., 2014] 

and Literatures of ratio of physical area to harvested in China, Bangladesh, Vietnam and India. 

 

Figure 4-3. HYDE V.3.2 of rice paddy fraction for Irrigated and rainfed 

 

4.2.3.2 The GFSAD1KCD Crop Type, Irrigated, and Rainfed Dataset 

 

The GFSAD products at 1 km resolution include the Crop Dominance product and Crop 

Mask product. First, the Global Crop Extent 1 km Crop Dominance [Thenkabail et al., 2012, 

Thenkabail et al., 2011, Thenkabail et al., 2009a, 2009b] provides cropland extent, irrigated-

rainfed, and crop dominance. The GCE 1 km Crop Dominance provides spatial distribution of 

the five major global cropland types (wheat, rice, corn, barley and soybeans; which occupy 

60% of all global cropland areas) at nominal 1. The map is produced by overlying the five 
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dominant crops of the world produced by Ramankutty et al. [2008], Monfreda et al. [2008], 

and Portman et al. [2009] over the remote sensing derived global irrigated and rainfed cropland 

area map of the International Water Management Institute [IWMI; Thenkabail et al., 2009a, 

2009b] Input data used in these various products include remote sensing (e.g., AVHRR, SPOT 

vegetation, MODIS), crop type distribution, climate, reference and statistics (e.g., country 

statistics) data were used. 

 

Figure 4-4. The GFSAD1KCD Crop Type Irrigated and Rainfed 1 km dataset 

 [Thenkabail, 2016]  

 

4.2.3.3 The Previous Crop Calendar Products 

 

To verified our cropping intensity and sowing month products, we compare the estimated 

sowing date within three cropland calendar products. We also compare the product result with 

other existing census-based (MIRCA 2000) and satellite-based (SACRA) CC products.  

Original product of MIRCA2000 is point base, which each point has information about 

sowing month. This product released in two spatial resolutions that are 30 and 5 arc minute.  
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Zabel product released in three group year, here we used 1981-2010 product. Zabel product 

simulate climate model and reflected into 16 crop type dominant where each dominant crop 

has information of sowing weeks. In this research we calculate distribution of crop based of 

dominant value to produce dominant crop type and its sowing month in single information data. 

SACRA product produced by combining NDVI spot 10 days’ composite and census based, it 

released both sowing and harvest in DOY unit with aggregate 10 km pixel resolution. The 

limitations in previous studies were: (1). Only represented one-year data product, (2) Coarse 

pixel resolution and (3) High discrepancy among CC data products. Zabel product could tackle 

those limitations but it uses a simulation model (Figure 4-5). 

 

Figure 4-5. Previous studies of sowing month products: MIRCA2000, Zabel, and SACRA 

 

4.3 Methods 

 

4.3.1 Peak and Lowest Month of MODIS NDVI Extraction 

 

Discrete Fourier Transform (DFT) analysis is applied to temporal NDVI dataset to capture 

the trend of crop phenology. We assume that NDVI time series represent the phenology of one 

dominant crop in each grid, where the number of NDVI peak counted as intensity [Oyoshi et 
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al., 2013]. Figure 4-6 shows overall methods to detect peak month and lowest month from 

MODIS NDVI datasets. 

The DFT equation is expressed as: 

 

𝐹𝑛 = ∑ 𝑓𝑘𝑒−𝑗
2𝜋
𝑁

𝑘𝑛, 𝑛 = 0,1,2, . . , 𝑁 − 1
𝑁−1

𝐾=0
                      (1) 

 

where k denotes the number of 16-day MODIS NDVI, totally we used 115 samples in each 

three group year 2001-2005, 2006-2010 and 2011-2015 with total 315 global MODIS NDVI 

datasets or about 600 GB size of data. 

The highest peak (tpk) and lowest point (tlow) calculated by comparing each value within 48 

days (3 NDVI data) before and after peak and lowest candidates. The highest and lowest value 

among those range can be detected as the peak and lowest point. After that we translate the 

DOY of highest peak and lowest point to unit of month to simplify the final CC product. The 

equation of peak and lowest estimation are expressed as: 

 

NDVI (i) ≤ NDVI (tpk) (I = tpk – 1, tpk – 2, tpk - 3) 

NDVI (i) ≤ NDVI (tpk) (I = tpk + 1, tpk  + 2, tpk + 3)                            (2) 

 

NDVI (i) ≥ NDVI (tlow) (I = tlow – 1, tlow – 2, tlow - 3) and 

NDVI (i) ≥ NDVI (tlow) (I = tlow + 1, tlow  + 2, tlow + 3)                       (3) 

 

DFT result indicates the highest spectrum at the frequency of one cycle per year. Then, the 

frequency of the highest spectrum defined as cropping intensity (CI) of the pixel. These process 

were conducted all over the cropland area defined by CAL product pixel by pixel.  

DFT can normalized the unstable NDVI due to cloud contamination. The comparison result 

before and after converting proses from peak and lowest DOY to month showed in figure 4-7. 

Here, the result show by converting DOY to month, can simplify for detecting stable average 
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sowing month. After we find month of peak and lowest we produce peak month and lowest 

month by applying all flow process from DFT analysis until detecting average peak and lowest 

month in three group year pixel by pixel. 

From the interpretation of peak and valley of DFT NDVI profile phenology (figure 4-7) we 

can see how in those areas the intensity of cropping frequency seems to be changing from 

single to triple cropping frequency, in some year are sometime stable, increase and decrease. 

This phenomenon happens since during 15-year investigation start from 2001 to 2015, 

development of irrigation infrastructure can increase intensity in some cropland area, and 

unpredicted failure of harvesting due to disaster may cause reducing intensity in some year. 

However, there are other reason such as cloud contamination that cannot be investigate in this 

study. 

 

Figure 4-6. Overall MODIS data processing for classified long-term MODIS data into  

Peak and Lowest month 

 

Figure 4-7. analysis of time-series 16 days composite MODIS NDVI and reconstruct DFT 

NDVI profile during 2001 to 2015 in Vietnam (top) and Thailand (bottom). 
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4.3.2 Peak Month of AMSR-E/2 LSWC Extraction 

 

In AMSR-E/2 data processing we used same approach with MODIS data processing, the 

different is in AMSR data processing was not using Discrete Fourier Transform (DFT) for 

detecting peak. We analyses peak average in each group of year using Peak Utils a python 

library that can be used to detect peak and lowest point in some wavelength time series datasets. 

For detecting real peak that located in flooding session on rice paddy, we define windows size 

(DDL) and minimum LSWC value (VL) with 120 days for DDL and 20 for VL (Figure 4-9). 

 

Figure 4-8. Overall AMSR-E/2 data processing for classified long-term AMSR-E/2 data 

 into peak month 

 

Figure 4-9. Analysis of time-series Daily AMSR LSWC 
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4.3.3 Sowing Month Estimation 

 

Crop calendar highly depends on climatic conditions such as rainfall and temperature, 

because these factors regulate plant growth. Climatic conditions have seasonality and 

periodicity. Since temporal NDVI profile can indicate seasonal change of crops, spectral 

analysis of time-series NDVI data has been promising as one of approach to developing crop 

calendar data product [Sakamoto, 2005]. 

1). Two month before peak (CROPWAT) [FAO, 2010], 2. Lowest point combine with climate 

data (SACRA Product) [Kotsuki et al. 2015], 3). Follow 2 : 1 month approach (two month from 

plantation to peak and one month from peak to harvest [FAO, 2010]. 

In this study, we propose three approach to estimate global sowing month for both rice and 

non-rice crop types by integrating MODIS NDVI and AMRS-E/2 LSWC: 

4.3.3.1  General crop cultivates length approach 

 

For sowing month estimation, we are follow general crop cultivated length derived from 

CROPWAT model [FAO, 2009]. In this CROPWAT model, planting date in each cropping 

cycle is defined to be eight weeks or two months before the peak. 

 

4.3.3.2 Short period crop cultivation 

 

For short crop cultivated period, we identify sowing month as the lowest point before peak, 

if we find the lowest point occur in two months before peak. Figure 4-10 illustrated the strategy 

to identify sowing month candidate by combining DFT NDVI phenology and CROPWAT 

model estimation.  

 

4.3.3.3 Sowing month estimation for rice paddy 

 

Since detecting sowing month using previous approach has limitations where estimating 

sowing month using both methods such as two months before peak assumption is too simple 

and using lowest point as reference is too risky since it estimated contain cloud rather than 

peak. Here, we propose estimation sowing month of rice paddy by using daily AMSR-E/2 
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LSWC (Microwave) that can be used to identify flooding session in rice paddy. In our data 

processing we select peak of AMSR LSWC that located around two months before peak of 

MODIS NDVI. Figure 4-11 shows water and vegetation index pattern in rice paddy phenology. 

Figure 4-10 illustrate two approach that used for sowing month estimation in this study. 

 

Figure 4-10. Two conditions for detecting sowing month candidate, 

 a) two months before the peak and b) a month when lowest occur before peak. 

 

4.3.3.4 Sowing month estimation for rice paddy 

 

Since detecting sowing month using previous approach has limitations where estimating 

sowing month using both methods such as two months before peak assumption is too simple 

and using lowest point as reference is too risky since it estimated contain cloud rather than 

peak. Here, we propose estimation sowing month of rice paddy by using daily AMSR-E/2 

LSWC (Microwave) that can be used to identify flooding session in rice paddy. In our data 

processing we select peak of AMSR LSWC that located around two months before peak of 

MODIS NDVI. Figure 4-11 shows water and vegetation index pattern in rice paddy phenology. 
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Figure 4-11. Water and vegetation index pattern in rice paddy phenology 

 

4.3.4 Dominant Cropping Pattern of Rice and Non-Rice Paddy 

 

Detecting rice paddy become one important issue in this research, since rice paddy has 

specific planting characteristic, and has significant water usage compared with other crop type. 

In multi cropping intensity area, Rice paddy not fully planting in each seasons, farmers are 

usually change their crop type depet on water source, climate and needs. Detecting rice paddy 

in multi cropping intensity become important to increase the accuracy of sowing month and 

water demand estimation. The approach based on integration DFT MODIS NDVI and AMSR 

LSWC to find suitable condition for detecting flooding session of rice paddy cultivation. We 

pick up the AMSR LSWC peak month that located in MODIS NDVI peak month. We combine 

this rice paddy detection with previous research of cropping intensity [Takeuchi and Yasuoka, 

2009] for analyzing rice paddy cropping pattern in multi cropping intensity area.

 

4.4 Result and Discussion 

 

4.4.1 Long-term MODIS Cropping Intensity Product

  

Previous research related to the cropping intensity product can be found in Takeuchi and 

Yasuoka [2009], Jonai and Takeuchi [2013] and. Based on spectrum analysis, the total of 
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cropping cycle in 5 years were counted. Then we aligned total cycle to get average cropping 

per year. Figure 4-12 shows the result of average cropping intensity product in three group of 

year. The actuary of product methods already described in previous paper [Oyoshoi and 

Takeuchi, 2013].  

 

Figure 4-12. MODIS Cropping Intensity Product 2001-2015 

In order to calculate area of single, double and triple, we used HYDE 3.1 Cropland Fraction 

data product in 2005, 2006 and 2007 [Goldewijk et al., 2017] for converting single pixel based 

into fraction based, by using fraction based each pixel can contain percentage of cropland area 

from 0 to 100 %. The result of cropland area estimation are shown in figure 4-13. Overall we 

used FAO statistic of cropland area to compare with the product of cropland area in this study 

derived from combination single, double and triple product. Almost in all regions cropland area 

derived from cropping intensity product are in underestimation. The reasons of this 

underestimation because the fraction value which derived from HYDE product is originally 

compatible with 10 km square pixel resolution, however in this study we used the fraction value 

for 1 km square product.  

The change trend of cropping area in 2005, 2006 and 2007 has similar pattern with cropland 

area change of FAO-Stat. From comparison of changing single double and triple crop shows 

that how Africa is only region that increase single cropping area in 15 years. There are some 

very big gap between Asia and non-asia region regarding growing of double and triple cropping 

area. Moreover, Asia can increase two time larger of triple cropping area in 15 years, indicated 
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how Asia region successfully developed irrigation system that can increase number of 

cultivation period in one year. 

For the next analysis we directly try to compare the performance of the MODIS cropping 

intensity product with other global cropping intensity product derived by remote sensing 

(SACRA) [Kotsuki et al., 2015] and Model-based climate condition (Zabel) [Zabel et al., 2014] 

(figure 4-26). 

 

Figure 4-13. Cropping intensity area for single, double and triple in six regional analysis 

 

4.4.2 Cropping Intensity Change 2001-2015 

 

In this study we try to analyze cropping intensity changing in 15 years (Figure 4-14). 

The product result of this analysis are three level product of increasing intensity and three level 

product of decreasing intensity. Increasing one level means crop can increase from single to 

double or double to triple intensity. Two level means from No cultivation to double or single 

to triple. Three level means from no intensity to triple. This description is same for decreasing 

level condition (figure 4-14). In figure 4-14. shows the product of cropping intensity change, 

with the highlight of area A, B, and C that facing high dynamic change of intensity.  

For detail information, we calculate area that facing increasing one and two level in all 

countries. Figure 4-15 Show top 20 countries that facing largest increasing in one and two level 

cropping intensity. For calculating the area, we used same approach by combined with HYDE 

Irrigated area. The reason for using Irrigated area is assumption that increasing intensity 
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phenomena are dominantly contributed by irrigation. Based on the country statistic result, 

several countries are facing high increase of intensity level in this last 15 years there are India, 

China, and Argentina (Figure 4-15).  

From comparing result of increasing one level and two level, India and china detected 

have different strategy, since limited area located in China with limited suitable climate 

condition for cultivation activities, China try to increase two level in existing cultivated land, 

where 33,324 km2 cropland area in China had increase two level. Different with India, this 

country tries to focus to increase one level intensity in large area, where 108,565 km2 were 

increased one level compare with only 7,285 km2 that increase one two level intensity. The 

different approach between India and China is reflecting their response to the increasing food 

demand in last 15 years with consider physical condition of arable land in each country. 

We investigate in some countries; the high decrease of intensity level is located near 

urban area. This condition reflect how urban area are facing pressures from urbanisation. 

Moreover, this decreasing phenomena is worsening by crop failure due to drought and floods.  

 

Figure 4-14. MODIS Cropping Intensity Change 2001-2015, derived from three group of 

year cropping intensity (2001-2005, 2005-2010, and 2011-2015).  
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Table 4-1. Top twenty countries with facing rapid increasing of CI, where India China and 

Brazil are three top countries that can increase the intensity during last 15 year 

 

 

Figure 4-15. Distribution of top twenty countries with facing rapid increasing of Cropping 

Intensity of one and two level during last 15-year 
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Based on the distribution of top 20 countries with highest increasing of single and 

double cropping intensity (Figure 4-16), Uganda is the only country from Africa region that 

facing this increasing cropping intensity. The reasons of this increasing are supply water from 

precipitation are higher compare with other country in Africa region since the location of 

Uganda in tropical region. This condition supported with contribution three big lake that 

located in Uganda which represented function of reservoir to collect water in surface area.  

The contribution of irrigated and rainfed change which calculated by integrating 

Cropping intensity change product with HYDE irrigated and rainfed product data are highlight 

to understand the water source type contribution behind this increasing phenomena. This water 

source contribution can be indicator of crop type and also cost for infrastructure development.  

In one level increased there are different water source contribution among India, Brazil 

and Argentina, where pixel with increasing one level in India has dominant contribution from 

Increasing Irrigated area, however in Brazil and Argentina cases, the pixel of one level increase 

has detected with increasing rainfed compare with irrigated. This condition is reflected in the 

crop type that facing increasing intensity. Since Brazil and Argentina are increasing production 

of Soybean, the increasing water demand are not high compare with India with dominant crop 

type that facing increase is rice paddy. However, in two level increased of two level, China has 

balance contribution between Irrigated and rainfed increasing area.  

 

4.4.3 Long-term MODIS-AMSR Sowing Month Product 

 

Three approaches that used in this study (basic approach, first adjustment and second 

adjustment) are work well to detect sowing month in three group of year. Figure 4-17 shows 

the estimation result of sowing month based on three approaches. Basic approach is the 

approach to estimate sowing month by counting two months back from the peak in discrete 

Fourier transform (DFT) analysis of MODIS NDVI. First adjustment estimates the sowing 

month by the peak and lowest point information from MODIS NDVI. The target of first 

adjustment approach is to investigate the area with short cultivation period. From this approach, 

northern Russia known to have a big area of short cultivated crop. The third approach is second 

adjustment that use the information of MODIS and AMSR LSWC. This approach can be used 

to estimate the sowing months of rice paddy area. After we developed the product of sowing 

month based on three approaches, we combine three approaches product. Figure 4-18 shows 
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the final product of MODIS-AMSR sowing month by combining the products from three 

approaches. 

 

Figure 4-16. Three approaches of sowing month estimation  

 

 

Figure 4-17. The final MODIS-AMSR Sowing month product (2001-2005) 
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4.4.4 MODIS-AMSR Sowing Month Change 2001-2015 

 

The final product of MODIS AMSR is not only can give an estimation of sowing month 

in one year, the final products are conduct in long term analysis for fifteen years as shown in 

figure 4-19. This include first, second and third sowing in each seasons. By 15 years’ long-

term analysis which represented by sowing month product in three group of year, we can 

analyze how consistent or how change the sowing month in each pixel in 15 years.  

 

 

Figure 4-18. Sowing month product in three group of year 2001-2005, 2006-2010 and 2011-

2015 

In more detail image, we highlight area around boundary of India and Bangladesh that 

can be seen in Figure 4-20. Form the figure shows how in that area has very high level of 

intensity that makes analysis of sowing month become more complex. Bangladesh has 

dominant sowing month in February whereas India has sowing month in March. The different 

sowing month between two countries are shown in country boundary between two countries. 

From the result of second and third sowing month period in three group of year, we can interpret 

how pattern of change in sowing month.  

In more detail next analysis will produce agreement product of consistency sowing 

month product among three group of year. Figure 4-21 shows the sowing month change 

between 2001-2005 and 2006-2010 also 2006-2010 and 2011-2015. After we analyse the 
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product two product of sowing month change, we develop final product the agreement level of 

sowing month consistency from 0 to 12. Value 0 show that in the pixel has very consistent 

sowing month otherwise value 12 show the most inconsistent sowing month. 

 

Figure 4-19. Fifteen year sowing month estimation in country boundary of India and 

Bangladesh 

 

Figure 4-20. Global sowing month difference from 2001 to 2015 
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The final The sowing month difference among three group of sowing month products 

was found in dynamic cropping intensity change area such as China, India and Spain. Northern 

countries like Canada and Russia are also facing different change (figure 4-21). Further 

investigation needed to describe the reason of this sowing month change and also the impact 

of this change for food security situation, and projection in future. 

4.4.5 Rice and Non-Rice Dominant Cropping Pattern 

 

With the integration of MODIS NDVI and AMSR LSWC products, we were able to 

classify the cropland types into paddy and non-rice paddy rice crops. By looking at the NDVI 

and LSWC time series patterns over the average one-year period, the MODIS-AMSR Cropping 

pattern product can not only distinguish rice paddy and non-paddy in single crop, but also in 

double and triple crops. 

The consequences on double and triple cropping area, cropping pattern of rice and non-

rice will produce in multi cropping pattern formation. Double cropping area will have four 

patterns, i.e. non-rice and non-rice, non-rice-and rice, rice and non-rice, rice and rice, while on 

triple cropping area there will be eight pattern formations from non-rice, non-rice and non-rice 

to rice, rice and rice (Triple rice) (Figure 4-22). 

Figure 4-22 shows the product of rice non-rice cropping pattern in two contrast regions: 

Northern part of South Asia and center Africa. In the Northern region of South Asia, rice and 

non-rice crops in single, double and triple cropping intensities can easily be detected, however 

in Africa, rice and non-rice crop types are found only in single crop regions. Double crop for 

non-rice to non-rice is found in small areas in the countries of Ethiopia, Kenya and Uganda. 

The difficulty to increase crop intensity in Africa region become this region are still facing 

hunger problem. From eighteen countries were still facing high and very high hunger level 

based on FAO report (i.e: 1. Afghanistan, 2. Central African Republic, 3. Chad, 4. Congo, 5. 

Ethiopia, 6. Haiti 7. Liberia, 8. Madagascar, 9. Malawi, 10. Mozambique, 11. Namibia, 12. 

North Korea, 13. Rwanda, 14. Tajikistan, 15. Uganda, 16. Yemen, 17. Zambia, and 18. 

Zimbabwe), 15 countries are located in Africa regional.  

Increasing crop production in Africa is needed to meet future food demand. Africa 

population is projected to reach 1,634 million by 2030 (+ 500 million) [NEPAC, 2003]. 

Undernourished population increases by 35 million over the last 20 years. Crops represent 89% 

of the diet in Sub-Sahara Africa (SSA). Human food commodity to increase by 15% in the next 
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40 years. Crop production growth in SAA is mainly due to the extension of cultivated area and 

cropping intensities while crop yield improvement is low. 

To analyze cropping pattern in single, double and triple area, we analyzed the 

distribution of cropping patterns in several regions. Figure 4-23 shows single crop intensity of 

rice and non-rice cropping pattern in North America, Europe and South America. Figure 4-24 

shows double crop intensity of rice and non-rice cropping pattern in Southeast Asia, China and 

Europe. Figure 4-25 shows triple crop intensity of rice and non-rice cropping pattern in 

Bangladesh, Vietnam, China, Thailand and Philippines. The area of double rice is widely found 

in the northern part of Java province Indonesia and China. For investigations in the triple 

cropping region we compiled two regions of Bangladesh and the Mekong delta Vietnam which 

has large area of triple cropping intensity area, the results shows that triple rice only can be 

widely detected in the Mekong delta Vietnam rather than in Bangladesh (Figure 4-23). 

 

Figure 4-21. Rice and non-rice cropping pattern formation in South Asia and Central Africa 

for single, double and triple cropping intensity area 
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Figure 4-22. Distribution of 18 countries target that is still facing very high and high hunger 

levels [Data Source: FAO., 2016] 

To investigate how this vegetation and water index of MODIS-AMSR integration are 

working, we used Bangladesh official data of dominant cropping pattern (figure 4-26). This 

data derived from ground survey database in 2001 year of data. From the data rice in 

Bangladesh are categorized into three rice type there are Boro, Ault and Aman. Boro which 

categorized as the highest quality and highest water demand are mainly planting in first 

cultivated session.  

 

Figure 4-23. Single crop intensity of rice and non-rice cropping pattern in North America, 

Europe and South America 
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Figure 4-24. Double crop intensity of rice and non-rice cropping pattern in Southeast Asia, 

China and Europe 

 

Figure 4-25. Triple crop intensity of rice and non-rice cropping pattern in Bangladesh, 

Vietnam, China, Thailand and Philippines. 
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Figure 4-26. Dominant cropping pattern of Bangladesh 
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Figure 4-27. Integration strategy between time-series of 16 days composite DFT MODIS 

NDVI and daily AMSR LSWC several cropping pattern formations in Bangladesh 

 

We applied the long-term time series DFT MODIS NDVI and LSWC AMSR-E/2 data 

analysis in five selected cropping pattern and simplify cropping pattern formation into rice and 
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non-rice crop type: 1. Triple: non-rice, rice, non-rice 2.) Double: rice and rice, 3) Double: non-

rice and rice, 4). Single: Rice, 5) Singe: non-rice (figure 4-27). This long-term time series data 

analysis investigated in nine years monitoring: 2003, 2004, 2005, 2008, 2009, 2010, 2013, 2014 

and 2015.  

In non-rice, rice, non-rice cropping pattern area, time series of MODIS NDVI shows 

has three peak dominants in each year and AMSR LSWC has one peak that located in the 

second peak of MODIS NDVI, this cropping pattern indicates that three cultivated sessions are 

identified where rice paddy plantation is located in second session.  

 

4.5 Comparative Analysis 

 

In this section, the developed remote sensing products in this study are compared with 

previous research data product. The difficulty to find reference data from ground measurement 

that represents the actual data become main reasons we use comparative analysis rather than 

accuracy assessment approach. Some comparative analysis of studies conducted among others 

in this study are: 1. Comparison of the MODIS cropping intensity and SACRA product, 2. 

Comparison of cropping intensity change with HYDE V.3.2 irrigated rainfed change, and 3. 

Comparison of the MODIS-AMSR sowing month product with three previous sowing month 

products. 

 

4.5.1 Comparison of Double and triple cropping area Estimates from the MODIS CI, 

SACRA and ZABEL with the Irrigated area FAO Data 

 

  To evaluate cropping intensity area estimation results on the national and sub-national 

level, double and triple cropping intensity areas derived from the MODIS CI, SACRA CI and 

ZABEL CI products are compared to the irrigated area estimates from FAO-stat 2003, 2008 

and 2010 as a statistical data reference. For national level we analyses 162 countries and for 

sub-national countries we select 51 states of U.S (Figure 4-28 and Figure 4-31). 

  Since there are no validated data of single, double and triple cropping intensity area in 

global scale, we proposed irrigated are as alternative reference data, since active cropping 

intensity area like double and triple area has tendency located in irrigated area. High amount 

source of water that located irrigated area could make cultivation period become two or three 
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time per year.  For preliminary investigation we compare product of MODIS cropping intensity 

product with irrigated area distribution.  

  Table 4-2 shows research list of mapping cropland (irrigated and rainfed) and irrigated 

cropland fraction and table 4-3 shows research list of mapping cropland (irrigated and rainfed) 

and irrigated cropland fraction change. From the list of Irrigation mapping research, we used 

HYDE v 3.2 for preliminary investigation because this data can provide irrigated distribution 

map in multiyear analysis, which developed by combination of cropland - pasture statistic data, 

satellite information, specific allocation algorithms (which change over time), and weighting 

maps of the HYDE rules to create spatially explicit maps, which are fully consistent on a 5 

longitude/ latitude grid resolution, and cover the period 10,000 bc to ad 2000. The input data 

for developing HYDE product include: Irrigated area statistic from FAO, monthly irrigated 

andrain-fed crop areas around the year 2000 (MIRCA2000), and Irrigated data from GMIA_v5 

[Siebert, 2008; Siebert et al.,2015]. 

Table 4-2. Research list of cropland (irrigated and rainfed) and irrigated cropland fraction  
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Table 4-3. Research list of cropland (irrigated and rainfed) and irrigated cropland fraction 

change 

 

 

Based on visual comparison some countries such as India, Thailand and Vietnam are 

countries with high correlation between irrigated area and active cropping intensity (double 

and triple) area (Figure 4-28), however not all country has this tendency, some countries like 

United States, China, and Japan are countries with low correlation between irrigated area and 

active cropping intensity (double and triple) area (Figure 4-29). The low correlation which 

shows in comparison between double-triple cropping and irrigated area, indicated that in some 

country, irrigated area still cannot boost food production with increasing intensity. the reasons 

behind this condition is because combination climate condition and physical land condition 

that make increasing intensity in irrigated area difficult. 
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Figure 4-28. India, Thailand and Vietnam are countries with high correlation between 

irrigated area and active cropping intensity (double and triple) area 
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Figure 4-29. United States, China, and Japan are countries with low correlation between 

irrigated area and active cropping intensity (double and triple) area 
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Figure 4-30. Comparison of modelled double and triple cropping area derived from MODIS 

CI product to FAO irrigated reported statistics [km2] per country (N = 162). 

 

Figure 4-31. Comparison of modelled double and triple cropping area derived from SACRA 

CI product to FAO irrigated reported statistics [km2] per country (N = 162). 
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Figure 4-32. Comparison of modelled double and triple cropping area derived from ZABEL 

CI product to FAO irrigated reported statistics [km2] per country (N = 162). 

 

The overall correlation is observed in global scale with total 162 countries for MODIS 

CI product of 2001-2005, 2006-2010 and 2011-2015 respectively and shows some proximity 

between the MODIS CI analysis and the FAO irrigated area with a 0.699, 0.726 and 0.692 

regression value (Figure 4-28).  We also analyze the accuracy of the two existing cropping 

intensity product SACRA and ZABEL product datasets to FAO statistics. In this framework, 

the regression value to the FAO have been observed as 0.34 for SACRA product (Figure 4-29) 

and 0.37 for ZABEL product (Figure 4-30).  The comparison between MODIS double triple 

cropland area and irrigated area shows that double and triple crop area are underestimate 

compare with irrigated FAO data. In subnational data analysis we compare double-triple 

cropping intensity area with USDA statistic of irrigated area reported statistics in 51 states of 

United states.  
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Figure 4-34. Comparison of modelled double and triple cropping area derived from MODIS 

CI product to USDA irrigated area reported statistics [km2] in 51 states of United States (US) 

(N = 162). 

 

Figure 4-35. Comparison of modelled double and triple cropping area derived from SACRA 

CI product to USDA irrigated area reported statistics [km2] in 51 states of United States (US) 

(N = 162). 
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Figure 4-36. Comparison of modelled double and triple cropping area derived from ZABEL 

CI product to USDA irrigated area reported statistics [km2] in 51 states of United States (US) 

(N = 162). 

 

The overall correlation is observed in global scale for USDA Irrigated area of 2001-

2005 and 2006-2010 respectively and shows some proximity between the MODIS CI analysis 

and the USDA irrigated area with a 0.158 and 0.343 regression value (Figure 4-31). We also 

analyze the accuracy of the two existing cropping intensity product SACRA and ZABEL 

product datasets to USDA statistics. The regression value to the USDA have been observed as 

0.17 for SACRA product (Figure 4-32) and 0.051 for ZABEL product (Figure 4-33).  

The statistical result for both national and sub-national values promote the MODIS CI 

product as the most accurate dataset compared to FAO-stat within another two datasets in 

estimating active cropping intensity area (double and triple crop). Also, MODIS Double and 

triple area are the only product with underestimate result compare to Irrigated area, this 

condition follow the fact that not all irrigated area producing double and triple, hence the 

irrigated area should show larger total area value rather than total double and triple area.  
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Double and triple cropping intensity was modelled with the time series MODIS NDVI. 

Irrigated reported statistics at national level was obtained from the FAO-Stat database 

(http://www.fao.org/nr/water/aquastat/main/index). Based on the definition from FAO 

statistics, irrigated cropland is defined as “Total area equipped for irrigation” [Vancutsem et 

al., 2013]. However, irrigated reported statistics at subnational level in 51 states of US was 

obtained from the USDA database. We used logarithmic scale in scatterplot analysis to 

accommodate all countries irrigated area with high range from 1 km2 to 200,000 km2. The 

dashed line represents the 1:1 slope. 

Good correlation of the results to FAO statistics is still not enough for quality 

assessment of the product, accurate validation it is worth to compare the product with some 

more precise country level cropping intensity area (Singe, double and triple) which have higher 

resolution. Globland30 [Chen et al., 2014] and Unified Cropland layer [Waldner et al., 2016] 

as one of the alternative for the analysis in next study. However, to provide more 

comprehensive analysis we develop agreement level product of cropping intensity for double 

and triple cropping intensity area.  

 

4.5.2 Agreement level analysis of the MODIS Cropping Intensity with SACRA and Zabel CI 

products 

 

 For cropping intensity analysis, we focus for comparing between MODIS and SACRA on 

double and triple cropping intensity. Figure 4-25 shows the agreement analysis result between 

MODIS, SACRA and Zabel cropping intensity product. In double cropping intensity area 

Pakistan, Egypt, Bangladesh and India are top four country which has high agreement between 

the two copping intensity data. However, if the agreement level is compare globally. Some area 

that difficult to produce double intensity due to low irrigation infrastructure and low 

precipitation are detected has double crop intensity in large area such as in Africa region.  

 Based on the statistics result, table 4-1. Shows distribution of three agreement level of 

three cropping intensity product in double and triple cropping intensity product. SACRA CI 

product is overestimating in double cropping, because 76% of SACRA CI product is in 

agreement level 1. Zabel CI product is overestimating in triple cropping, because 98.5% of 

Zabel CI product is in agreement level 1. MODIS product is dominating in agreement level 2 

and level 3: for double cropping (83.1%) and for triple cropping (64.4%). Based on the 

http://www.fao.org/nr/water/aquastat/main/index
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distribution of level 2 and level 3, shows how MODIS is the most reliable product since has 

dominant pixel that located in higher agreement level of level 2 and level 3. 

 In triple cropping area, since triple crop are located in smaller area compare with double 

and single, higher pixel resolution of 1 km MODIS cropping intensity show promising result 

for detecting triple cropping compare with 10 km SACRA product, where India, Vietnam, 

China and Bangladesh has highest cropping intensity compare other country which has triple 

cropping area (Figure 4-29). 

 

 

Figure 4-28. Agreement analysis between MODIS and SACRA cropping intensity in double (right) 

and triple cropping area (left) 

 

Figure 4-29. Country level analysis of agreement level between MODIS and SACRA Cropping 

Intensity products 

Table 4-4. Analysis of three agreement level in double and triple cropping based on three cropping 

intensity data product of MODIS, SACRA and Zabel cropping intensity 
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4.5.3 Comparison of Cropping Intensity Change with HYDE V.3.2 Annual Irrigated 

Rainfed 

 

Another strategy to analyst the quality of MODIS cropping intensity product is by 

comparing product of MODIS cropping intensity change with HYDE irrigated rainfed area 

change, the reasons is because extending irrigated area has influence to increase intensity. We 

analyze the comparison by visual interpretation.  HYDE is annual fraction of irrigated and 

rainfed product that use remote sensing product as base map and statistic approach for analysis 

the changes (figure 4-30).  

 

Figure 4-30. Comparison of MODIS cropping intensity product with HYDE Irrigated-rainfed 

area change from 2005-2015 in SEA and middle America regions 

For making two product cropping intensity change and Irrigated-rainfed change in same 

level data, we using 2005 and 2015 data product for both datasets and produce MODIS 

Cropping intensity and HYDE irrigated rainfed change between 2005 to 2015. 

The results show that intensity changes product which derived from MODIS has 

correlation with the change of irrigated and rainfed area which derived from HYDE product. 

However, the assumed dominant crop derived in 1 km MODIS cropping intensity product is 
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the major source of the difficulty to distinguish the change of rainfed and irrigated in cropping 

intensity product and source discrepancy in this analysis. 

 

4.5.4 Comparison of the MODIS-AMSR Product with other Sowing Month Products 

 

Three existing data which represented three approaches: census based, modelling and 

remote sensing base, to be used for compared with MODIS-AMSR sowing month product. 

Since, our product released in unit of sowing month with aggregate 30 arc minute resolution 

(or 1 km in center earth). All three previous sowing month products have harmonized process 

to re-produce the data in same level with MODIS-AMSR sowing month product.  

 

Figure 4-31. Three steps of harmonization process of previous sowing month product   

Figure 4-31 show three previous product in three level data: 1). original product, 2). re-

analysed and 3). final harmonized product.  Where all previous product we convert from DOY 

(SACRA) or Sowing weeks (ZABEL) into sowing month unit. Since the unit target is sowing 

month, for increasing pixel resolution from 50 km (MIRCA2000) or 10 km (SACRA) into 1 

km pixel resolution we applied upscaling without interpolation approach (figure 4-32).  

The last procedure is comparison between MODIS-SOWING month product with 

harmonized product of MIRCA, ZABEL and SACRA sowing month product. The comparison 

product has to be converter by cycling mode to simplify sowing month different analysis. 

Before cycling mode, the different between two sowing month product can be -11 to +11 



81 

 

(Planting earlier 11 month or late 11 month), after cycling mode process the sowing month 

different between two sowing month product can be 0 to 6, it is mean the different of each pixel 

can be 0 month (same month) to 6 months (Figure 4-33). Figure 4-34. Shows the visual 

comparison among four harmonized sowing month product of MODIS-AMSR, MIRCA2000, 

Sacra and Zabel, which zoom in in southern and south east part of Asia. 

 

Figure 4-32. The process of upscaling without interpolation for 50 km and 1 km pixel 

resolution to 1 km 

 

 

Figure 4-33. Cycling mode approach to simplify sowing month different analysis  

The figures compare sowing dates averaged over the pixel based units. In this 

comparison we only used single cropping grids to compute the averaged sowing date for 

MODIS-AMSR Sowing month. The result of comparison analysis between MODIS-AMSR 

sowing month 2001-2005 product with previous three sowing month products shows that 

MODIS-AMSR sowing month product has a similar pattern with SACRA product (2005-year 

baseline) however MODIS-AMSR sowing month product has a big difference with 

MIRCA2000 (2000-year baseline) (Figure 4-35).  

Figure 4-34 shows the sowing month different between MODIS-AMSR sowing month 

product and three previous sowing month MIRCA, ZABEL and SACRA. Comparison between 
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MODIS-AMSR and MIRCA are dominantly has five months different. Compare with SACRA 

and ZABEL which have dominant in one month different. In sowing month different 

distribution, by implementing 1st and 2nd adjustment in MODIS-AMSR can reduce six months 

different in comparison analysis with SACRA and ZABEL products (figure 4-35). 

 

Figure 4-34. Comparison of the MODIS-AMSR sowing month product (2001-2005) with 

three previous sowing month product of MIRCA2000, SACRA and Zabel. 

We highlight the comparison of two countries Bangladesh and Japan. Figure 4-36, shows 

the product of cropping intensity and sowing month of the two countries are compare with 

USDA crop calendar. The product crop calendar from derived from USDA shows crop 

calendar which derived from top five crop type in both countries. In Bangladesh top five crop 

dominant are Rice (Aman), Rice (Aus), Rice (Boro), Shorgum and Wheat, where dominant 

sowing month are on January, March and December.  However in Japan,the top five are Barley, 

Rice (Central-south), Rice (Nort, Hokaido), Soybeans and Wheat, where dominant sowing 

month on April, May and June. MODIS-AMSR Sowing month product in Bangladesh has 

similar result with USDA crop Calendar, however in Japan MODIS-AMSR also detecting 

December and January in some pixel. This different reflect how complexity in detecting sowing 

month in pixel based analysis. 



83 

 

 

Figure 4-35. Comparison of final MODIS-AMSR product with MIRCA, SACRA and 

ZABEL sowing month products 

 

Figure 4-36. Sowing month comparison between Bangladesh and Japan  

Based on combination of three sowing month different analysis, we produce Sowing 

month agreement product (figure 4-37). Pixel with low agreement value indicated that in that 
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pixel has high agreement among MODIS-AMSR compare with these MIRCA, SACRA and 

ZABEL products. Accuracy of MODIS-AMSR depends on the accuracy of the MODIS NDVI 

and AMSR LSWC data sets. A major discrepancy in crop calendars between MODIS-AMSR 

and other products (MIRCA, ZABEL, and SACRA) can be due to the selection of one dominant 

crop in each pixel unit. The disadvantages of the approach may be reduced with future 

improvements based on finer satellite sensors such as Landsat, Sentinel or GCOM-C to avoid 

mixture of phenology. The model-based method like Zabel can also result in a variety of sowing 

month. However, it is difficult to demonstrate that the variability is correct around the globe 

without knowledge of local sowing month information. 

 

Figure 4-37. Sowing month agreement level product and investigation result of dominant 

crop based on GFSAD product 

Figure 4-37 shows the product of sowing month agreement based on combination 

previous sowing month different. To analyze deeply the product of sowing month agreement, 

we compare it with The GFSAD Crop Dominance product, the result shows that rainfed snow-

wheat has most inconsistent sowing month among four sowing month product (figure 4-37). 

The difficulty for estimating the sowing date for snow-wheat also discussed in SACRA product 

[Kotsuki et al, 2015]. For countries with large irrigated such as India, Vietnam, US and China, 

high sowing month agreement are dominantly located in irrigated area. However, countries 

with small irrigated area such as Argentina, UK, Russia and South Africa, high and low sowing 

month agreement are randomly distributed in both irrigated and rainfed area (figure 4-38).  
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Figure 4-38. Eight countries analysis of Sowing month agreement 

 

4.5.5 Comparison of the MODIS-AMSR Rice Paddy Distribution Product with FAO-Stat in 

country level analysis 

 

One of integration product between MODIS NDVI and AMSR LSWC is to detecting 

Rice Cropping pattern in multi cropping intensity, however the ground data information of this 

cropping pattern are very limited. In previous section how Bangladesh Government can provide 

the rice paddy cropping pattern in 2001 based on census based approaches. Since the cropping 

pattern ground data are very limited in this analysis we only concern on rice paddy area in 

general. FAO-Stat rice paddy area are used for reference data. We are combine rice cropping 

pattern especially in multi crop to produce a single product rice and non-rice by combining 

cropping pattern which contain at least rice paddy cultivation in one seasons. For reflect the 
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mix problem, we used HYDE rice paddy fraction and integrate it in MODIS-AMSR rice paddy 

distribution. Figure 4-39 shows the combination of rice cropping pattern to produce rice and 

non-rice distribution, combined with rice paddy fraction of HYDE product.  

 

Figure 4-39. Integration of Rice Paddy (MODIS – AMSR) with HYDE Rice Fraction 

  

 

Figure 4-40. Comparison between Rice Paddy (MODIS – AMSR) and FAO rice Paddy area 

As the result we calculate 75 countries and divided in two group which represent 

countries with medium and large rice paddy area. The regression value in group of medium 

rice paddy area are 0.7857 however in large rice paddy area up to 0.9917 we multiplying 
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number of fraction become two time since the HYDE rice paddy fraction are developed in 10 

km pixel resolution, however the MODIS-AMSR Rice paddy has 1 km pixel resolution. 

 

4.6 Conclusion 

 

The MODIS-AMSR sowing month and Cropping pattern products are the first satellite-

based products which derived from integration of vegetation and water index phenology that 

can analyze 15 years’ dynamic change of crop activity 1 km pixel resolution. The advantage of 

the MODIS-AMSR sowing month product are the capability to detect short period crop 

cultivation and to distinguish rice and non-rice crop type. The assumed dominant crop and 

cloud contamination are the major source of discrepancy of MODIS-AMSR crop intensity and 

Sowing month product. Low agreement between MODIS-AMSR and previous sowing month 

products are dominantly located in rainfed area especially rainfed snow-wheat. 

Future study will focus on analyze the trend of intensity change and compare it to 

country level agriculture investment variables such as Development Flows to Agriculture 

(DFA) and Gross Fixed Capital Formation (GFCF) to investigate the relationship between 

country investment and food production trend. 
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5  

6 Chapter 5 DEVELOPMENT OF CROP COEFICIENT USING 

CROPWAT EMPIRICAL MODEL 
 

 

6.1 Background 

 

Crop coefficient is important for studying plant responses to available water particularly 

under nonstandard irrigation practices such as intermittent irrigation. Moreover, it is needed 

for estimating crop evapotranspiration, which represents the main route of water loss from both 

plant and soil surfaces and is a main component of water consumption in cropland. Crop 

coefficients kc depend on the growing stage of the crop [Doorenbos and Kassam, 1979]. 

Developing high accuracy crop coefficient data is vital for irrigation scheduling and water 

resource allocation, management and planning [Jensen et al., 1990]. The crop coefficient (Kc) 

takes into account the crop type and crop development to adjust the potential evapotranspiration 

(ETo) for that specific crop. Commonly, crop coefficient is derived empirically by using a 

lysimetric and is computed as the ratio of crop evapotranspiration to reference 

evapotranspiration based on weather data [Vu et al., 2005; Mohan and Arumugam, 1994; Tyagi 

et al., 2000] under Food and Agriculture Organization (FAO) standard conditions with 

continuous flooding irrigation. However, this method is time consuming and expensive, 

especially for equipment preparation. 

 There may be several crop coefficients used for a single crop throughout an irrigation 

season depending on the crop’s stage of development. Crop coefficients may also vary 

depending on how the evapotranspiration data has been calculated or obtained. In this study 

we considering the long-term dynamic of global cropping intensity, sowing month and rice 

non-rice cropping pattern as novel strategy to estimate accurately water demand in agriculture. 

Since, those imput parameters are essential inputs for estimating food production, water 

demand and emissions [Takeuchi, 2009; See, 2013]. 

The purposes of this study to develop global crop coefficient in three group of year 

where the evaluation and discussion of the agricultural water requirements will conduct under 

different cropping patterns. 
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6.2 Material 

 

To achieve the product target, we include previous crop data product such as MODIS-

Cropping intensity, MODIS-AMSR sowing month and dominant cropping pattern with 

CROPWAT empirical model to develop global crop coefficient in three group of year. Figure 

5-1 shows the four developed parameter to develop crop coefficient (Kc) 

 

Figure 5-1. Four parameters to develop Crop Coefficient (Kc) 

6.3 Methods 

 

6.3.1 CROPWAT Empirical Model 

 

The CROPWAT is empirical model that widely used to calculate crop related data in 

each decade of a month, such as: (1) crop coefficient, (2) crop leaf index, (3) crop 

evapotranspiration, (4) percolation, (5) effective rainfall, and (6) crop water requirements. In 

CROPWAT model, crop growth periods can be divided into four distinct growth stages; initial, 

crop development, mid-season and late season (Figure 5-2). CROPWAT model can define the 

length of each of these stages based on previous research of combining local observations data 

and then determine the growth stage of the crop and which Kc values to use. This Kc also 

derived from study of impact of the climate, latitude, elevation and planting date to crop 

coefficient value.  
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Figure 5-2. Kc values are based on plant growth schema 

 

6.4 Result and Discussion 

 

6.4.1 CROPWAT Crop Coefficient Product 

 

Rice is very important crop with specific planting characteristic and has highest water 

demand. Based on CROPWAT crop coefficient [FAO, 2009] shows rice has higher crop 

coefficient compare with non-rice crop type. Hence, understanding rice paddy phenology to 

separate rice and non-rice crop type can improve the accuracy of sowing month estimation and 

irrigation water demand as well.  

Figure 5-3. Provides a description of the sorghum and rice paddy plant growth stages 

derived from CROPWAT empirical model. These stages can be used to select an appropriate 

crop coefficient to distinguish rice and non-rice crop type. We combine four global dominant 

crop there are maize, potato, Sorghum, and wheat and calculate the average of those crop 

coefficient in each growth stage, and we compare it with rice paddy crop coefficient product 

(figure 5-4). The average values of crop coefficient for each time step are estimated by linear 

interpolation between the Kc values for each crop development stage. 
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Figure 5-3. Kc value derived by using CROPWAT empirical model 

 

Figure 5-4. Estimation Kc values of rice and non-rice derived from CROPWAT empirical 

model for standard Kc Development 
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Figure 5-5. Development of standard Kc Value derived from four dominant crop type. 

 

Since this Kc value are the key factor to convert previous crop activity od cropping 

intensity, sowing month, and rice cropping pattern, the definition of Kc estimation will reflect 

into final converting this crop activity into water demand estimation. Here, we proposed two 

kind of Kc model, first developed for standard Kc calculation where we used four Kc from four 
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dominant crop type, and the second product we developed for error estimation, where we used 

in total 15 crop type that reflect the range of KC in each level growth condition. After that we 

pick up the lowest and highest Kc value in the Kc phenology and develop Kc product based on 

lowest and highest Kc range from 15 crop type. Figure 5-5 shows the value of single cultivation 

period derived from average four dominant crop type for standard Kc development. Figure 5-

6 show the range between the lowest and highest Kc which derived from 15 crop type in single 

crop cultivation period. 

 

 

Figure 5-6. Development of lowest and highest kc Value for error estimation 

 

6.4.2 Monthly Gridded Crop Coefficient Product 

 

The CROPWAT crop coefficient (Kc) method of the Food and Agricultural 

Organization (FAO) Irrigation and Drainage is intended to improve monthly simulation of crop 

ET by considering spatial contribution of evaporation from soil. Considering the same climatic 

data for all the crops at the same region, the crop coefficient plays the essential role to determine 

the irrigation water demand (IWD).  
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Figure 5-7. Result of monthly Kc in global scale  

 

 

Figure 5-8. Crop Coefficient (kc) value in south Asia region 
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As shown in figure 5-7 for global and figure 5-8 for South Asia monthly crop coefficient. 

July, August and September has largest active and highest crop coefficient along one year it 

ranges between 0.3 to 1.15. The highest value of crop coefficient can be simulated as the end 

of development stage or the midseason. Kc values for initial, mid and late growth stages of 

annual and seasonal crops are used. In the case of perennial crops, same Kc value is used for 

the growth period. Crop coefficient are used in determining each crop`s actual 

evapotranspiration. 

 

6.5 Conclusion 

 

The average values of crop coefficient for each time step are estimated by linear interpolation 

between the Kc values for each crop development stage. The result of analysis that conducted 

from this CROPWAT empirical model approach can be used to construct a simulation of crop 

active level for achieving higher accuracy of IWD product. The advantages of CROPWAT 

empirical model is can be applied to estimate the irrigation schedule for each crop with 5 

different options: (1) each irrigation defined by irrigation manager, (2) irrigation at below or 

above critical soil depletion (% RAM), (3) irrigation at fixed interval per crop growing stage, 

(4) deficit irrigation, and (5) no irrigation. Afterwards, the CROPWAT model can simulate the 

on-farm crop water balance, including: (1) irrigation times, dates and depths, (2) soil moisture 

depletion, (3) amount of percolation, (4) actual crop evapotranspiration, and (5) crop yield.   
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7 Chapter 6  

DEVELOPMENT OF IRRIGATION WATER DEMAND 
 

 

7.1 Background 

 

Freshwater scarcity is the second most important environmental issue of the 21st 

century [UNEP, 2002]. In this context, Irrigated agriculture have to be considerably extended 

in the future in order to feed growing populations. It is not yet known whether there will be 

enough water available for the necessary extension. Hence, Necessary to model the “water 

requirement” of irrigated agriculture. The trend of widespread abandonment agricultural land 

and shrinking cropland area due to urbanization, makes extensification strategy become not 

preferred to mitigate the unavoidable increase of agricultural production demand [Wua et al., 

2018]. Several countries tried to Irrigated their own crop and intensify land-use on already 

cultivated lands. Irrigation pointed as the highest global water consumption compare with other 

sector and contribute the biggest water loss problem [FAO, 2012]. Increasing water-use 

efficiency in irrigated area is one of the important keys to achieve SDGs targets. Irrigation 

Water Demand (IWD), which defines as the amount of water that must be applied to the crop, 

is an essential input for numerical Irrigation efficiency estimations [Doll and Siebert., 2002]. 

This study aims to estimate the monthly IWD from 2001 to 2015 by dividing the analysis into 

three group of year (2001-2005, 2006-2010, 2011-2015) at a spatial resolution of 1 km in the 

global scale. 

 

7.2 Material and Methods 

 

Crop water demand for rice and non-rice are estimated by using combination crop 

coefficient product with climate datasets. Crop coefficient values (Kc) are taken from available 

previous data product. These values vary based on the four previous long-term crop activity 

products: cropland agreement level, cropping intensity, sowing month, and dominant cropping 

pattern of rice and non-rice. For climate data we used MODIS potential evapotranspiration 

product (MOD16A2) and GSMaP precipitation data.  
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7.2.1 MODIS Potential Evapotranspiration Product (MOD16A2) 

 

Evapotranspiration is the one of most important element of the hydrological cycle and 

listed as one priorities of water societal benefit area. The reasons of the importance are crucial 

for the transportation of minerals and nutrients required for plant growth also because need 

large amounts of energy during the conversion of liquid water to vapour. Accurate estimates 

of the evapotranspiration, Hence improved quantification of the catchment water balance and 

sustainable water resource management. 

One of remote sensing product of global estimates of ET is MOD16Q1 with spatial 

resolution of 1 km and is available on an eight-day, monthly and yearly basis. Developed by 

University of Montana’s Numerical Terradynamic Simulation group. In MOD16 ET product 

[Mu et al. , Cleugh et al.] used Penman-Monteith derived model: 

 

From previous studies, Cleugh et al. [2007], Mu et al. [2007], Kim et al. [2012], Jia et 

al. [2012] and Rameole et al. [2014], validated spatiotemporal MODIS ET product using 

Asiaflux stations in several studies and found inaccuracies were observed between the flux 



98 

 

tower and MOD16 ET estimates. Errors to be caused by: 1 Input data of the Penman-Monteith 

2. flux tower measurement error, 3. Fflux tower footprint vs. MODIS pixel, 3. the limitations 

of the algorithm.  

The main input data for the MODIS MOD16Q1 are MODIS land cover, Albedo, leaf 

area index (LAI), fraction of photosynthetic absorbed radiation (FPAR), meteorological data. 

The Coarse scale products, generally poorly or not validated in the semi-arid conditions of 

South Africa. Generate significant ET prediction errors. MODIS global land cover 

(MOD12Q1) (1 km) is inadequately captures savannah. MODIS based LAI or FPAR products 

have not been validated in Southern Africa. 

 

7.2.2 Crop Water Balance Approach 

 

We generate global IWD change by combining various multi-source earth observation 

data and FAO-CROPWAT model. By following Doll and Seiebert [2002] approach we 

distinguished rice and non-rice crop type, since rice has the highest water demand compared 

with another crop. After that we develop Crop Coefficient (KC) by combining the satellite-

based crop calendar and intensity products with CROPWAT model. The final analysis is 

applying Doll and Siebert approach [2009] by multiplying MODIS potential evapotranspiration 

product (MOD16A2) with the developed KC. We include GSMaP precipitation and HYDE 3.2 

Irrigated-Rainfed crop fraction in 2005, 2010 and 2015 to produce final product of long-term 

global IWD. Figure 6-1. Shows the crop water balance concept that used for water demand 

estimation in cropland area. Figure 6-2 show the overall concept derived from Doll and Siebert 

[2002] to estimate irrigation water demand.  

 

Where: 

n: number of crops grown within the grid cell 

m: the number of months of the year (12) 

Epot: potential evapotranspiration [mm/month] 

kc: crop coefficient [dimensionless] 
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Peff: Effective Precipitation [mm/month] 

 

 

Figure 6-1. Water balance of the root zone (Image source: [FAO, 2002]) 

 

 

Figure 6-2. overall data and methodology to estimate irrigation water demand  
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7.3 Result and Discussion 

 

7.3.1 Effective Precipitation (Green Water) Product 

 

Water in the soil moisture that transpirates through crops and vegetation is termed 

“green water” since this water is available for crop productivity and vegetation. Siebert and 

Döll [2009] proposed an effective precipitation to compute green water use of crops, where 

effective rainfall refers to that portion of rainfall that can effectively be used by plants. For 

estimating monthly effective precipitation data, we used two high resolution precipitation data 

product there are GSMaP 2010 (10 km pixel resolution) and WorldClim 1960-1990 (1 km data 

product) precipitation data product.  

 

Figure 6-3. Effective precipitation value from two group: Lower than 8.3 mm/day and higher 

than 8.3 mm/day (in January) 

 

Figure 6-4. Comparison of effective precipitation on January between Worldclim (left) and 

GSMaP (right) precipitation data products 

To estimate effective precipitation, we have to separate two group of precipitation that 

are area with precipitation lower 8.3 mm/day and area with precipitation higher 8.3 mm/day. 

Figure 6-3. Effective precipitation value from two group: Lower than 8.3 mm/day and higher 

than 8.3 mm/day (in January). Figure 6-4. Comparison of effective precipitation on January 
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between Worldclim (left) and GSMaP (right) precipitation data products. Figure 6-5. Total 

annual effective precipitation derived from GSMaP precipitation data product. 

 

Figure 6-5. Total annual effective precipitation derived from GSMaP precipitation data 

product 

 

7.3.2 Long-term Crop Water Demand 

 

The “Crop Kc” values are calculated as Kc * Crop Area, so if the crop covers only 50% 

of the area, the “Crop Kc” values will be half of the Kc values in the crop coefficient data sets. 

For annual crops, during the crop’s germination and establishment, most of the ET occurs as 

evaporation from the soil surface. As the foliage develops evaporation from the soil surface 

decreases and transpiration increases. For perennial crops a similar pattern may occur as the 

plant starts to leaf out, grow new shoots and develop fruit. The percentage of canopy cover will 

determine the rate of evapotranspiration (ET). Maximum ET occurs when the canopy cover is 

about 60-70% for tree crops and 70- 80% for field and row crops.  

The maximum canopy cover often coincides with the time of year that sun radiation 

and air temperature are at their greatest. The maximum ET therefore occurs during mid-season. 

During the crop development stage there are no set Kc values. If irrigating during this period, 

choose a Kc value that is between Kcini and Kcmid. A similar approach should be taken for 

the time period between Kcmid and Kcend. However, this time period may be much shorter 

and a jump directly from Kcmid to Kcend could be taken.  Figure 6-6, 6-7, 6-8 shows global 

monthly crop water demand product in mm/day unit. 
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Figure 6-6. Global Crop water demand product on January, February, March and April in 

mm/day unit 

 

 

Figure 6-7. Global Crop water demand product on May, June, July and August in mm/day 

unit 
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Figure 6-8. Global Crop water demand product on September, October, November and 

December in mm/day unit 

The final product of crop water demand is the reflection of two product crop coefficient 

which derived by combination of cropping Intensity, sowing month and rice cropping pattern 

with the product of MODIS Potential Evapotranspiration. Hence, this crop water demand is 

reflect with the limitation from input data itself. 

The limitations of the algorithm of MODQ1 product which explained by Mu et al. 

[2011] argued that physical factors (micro-climate, plant biophysics and landscape 

heterogeneity) influence the soil surface evaporation and plant transpiration. The MOD16 ET 

does not account for disturbance history or species composition and stand age hence, the 

algorithm makes the assumption that the stomata close during the night this makes 

underestimation of daily ET because of the bias imposed by night time vegetation transpiration. 

Important issues such as FPAR and LAI are also assessed and validated in the local 

context only, this help determine error propagation within the MOD16 and support integrated 

water management system. Sensitivity analyses are required to identify the variables which 

influence the potential evapotranspiration output.  
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Figure 6-9. Global crop water demand in three group of year: 2001-2005, 2006-2010, 2011-

2015 

Based on monthly CWD product we found that in tropical area, water demand still 

active in a whole year, compared with the northern area where CWR is high in March to 

September, and southern area in September to May. Some area has rapid increase of CWR 

between (2001-2005) and (2011-2015) (figure 6-10). Those areas are: Gurwana district India, 

with the escalation of up to 2212 mm/year, Deng district China, with the escalation of up to 

1828 mm/year. Some other country facing rapid decreasing, such as: Sumbas district, Turkey 

with the reduction up to -1284 mm/y and Jakobabad district, Pakistan with the reduction of up 

to -1988 mm/y. We are comparing these areas with long-term NDVI to analyze the correlation 
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between the reduction and the escalation of water consumption with vegetation index pattern 

in 15 years (figure 4-7). 

 

Figure 6-10 Global Crop Water Demand change :2001-2005 - 2006-2010 and 2006-2010 -

20101-2015. 

 

7.3.3 Irrigation Water Demand 

 

The next process is to calculate Irrigation water demand (IWD) by comparing product 

of monthly effective precipitation with crop water demand (crop potential evapotranspiration). 

In this study we are using two precipitation data for analyzing impact of different climate data 

to irrigation water demand estimation product. Figure 6-11 shows comparison of IWD product 

derived from two precipitation datasets Wordclim and GSMaP.  

We used FAO independent data of consumptive irrigation water use based on 2008-

2010 statistic data processing to compare country level IWD estimation from two precipitation 

data products. Figure 6-11 shows comparison analysis of country level IWD estimation derived 

from two precipitation datasets with FAO independent data of consumptive irrigation water 

use in large and medium irrigated area country. Since, our next target is to calculate long-term 

irrigation water demand, single data of worldclim data product cannot be used to achieve this 

purpose. Hence, GSMaP data that produce monthly in 15 years can be main precipitation data 

that can used for analyzing long-term IWD product. Figure 6-12 shows total of global net 

irrigation water demand (IWD) in 2006-2010. 



106 

 

 

Figure 6-11. Comparison of IWD product derived from two precipitation datasets: Wordclim 

and GSMaP 

 

Figure 6-12. Total of global net irrigation water demand (IWD) in 2006-2010 

We investigate also based on climate condition for supplementary analysis in since 

climate condition are reflecting level of evapotranspiration and precipitation as well. In hot arid 

and semi-arid regions, IWD value is more than 1000 mm/ year (1 m3 of water per 1 m2 of 

irrigated area). However, colder areas like in European region or in the humid tropics, values 

of less than 100 mm/ year. In dry and hot years. IWD is higher than under average climatic 

conditions. This condition shows how climate are very influence the value of IWD, hence 

climate change become issues that can give big impact into how human need to prepare water 

for cultivation activities in future. From sessional analysis we also found how climatic 
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condition are reflecting into level of cultivation activity during one-year monitoring. Figure 6-

14 shows seasonal analysis of average 2006-2010 IWD product. Precipitation, and in particular 

its effective portion, provides part of the water crops need to satisfy their transpiration 

requirements. The soil, acting as a buffer, stores part of the precipitation water and returns it to 

the crops in times of deficit. In humid climates, this mechanism is sufficient to ensure 

satisfactory growth in rainfed agriculture. In arid climates or during extended dry seasons, 

irrigation is necessary to compensate for the evapotranspiration (crop transpiration and soil 

evaporation) deficit due to insufficient or erratic precipitation. 

 

Figure 6-13. Distribution of humid and arid region  

 

Figure 6-14. Seasonal analysis of average 2006-2010 IWD product 
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Figure 6-15 shows the result of IWD product in three group of year 2001-2005, 2006-

2010, 2011-2015. The total water use by irrigated and rainfed are 6,137 km3/ year in 2001-

2005, 5,834 km3/ year in 2006-2010, and 7,491 km3/ year in 2006-2010 (figure 6-16). This 

calculation derived from three water use estimation categories: 1) total blue water use 

(irrigation) by irrigated crop, 2) total green water use (precipitation) by irrigated crop and 3). 

Green water use by rainfed crops.  

 

Figure 6-15. Result of IWD product in three group of year 2001-2005, 2006-2010, 2011-2015 

Total global water demand is increasing, mainly due to economic and population 

growth in developing countries that reflect to increasing water demand in food sector. By 

applying low and high Kc value (Figure 5-6), Based on 2005 data processing: The range of 

different value in lowest Kc it’s from 12 to 60 Km3 per month the range of different value in 

highest Kc it’s from 29 to 99 Km3 per month. we identified the error value of Total IWD per 

year by around 402 km3 for low Kc and 650 km3 for high Kc compared with from Standard Kc 

value (Figure 6-17). 
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Figure 6-16. Seasonal IWD for Blue (irrigation) and Green Water (Effective precipitation) 

Contribution in the three group of year derived with Standard, Lowest and highest Kc  

 

 

Figure 6-17. Total IWD in the three group of year derived with  

Standard, Lowest and highest Kc 

 

7.3.4 Contribution of Blue and Green for Irrigation Water Demand in Regional Analysis 

 

For detailed investigation we select eight regional for sessional analysis. Figure 6-18. 

Shows distribution of eight regional analyses in this study: 1. Southern Asia, 2. Eastern Asia, 

3. South-east Asia, 4. North America, 5. South America, 6. Europe, 7. Africa, and 8. Oceania. 

We divided Asia into three sub regions since Asia has very high value of water demand which 

distributed mainly in southern part, eastern part and southeast part of Asia. 

Figure 6-19 shows the final analysis about sseasonal value of irrigation water demand 

for blue (irrigation) and green (effective precipitation) water contribution. From statistic data 

result shows how Southern Asia region is the highest blue and green water consumption region 

for irrigation (2,865 and 1,047 Km3 respectively), followed by Eastern Asia (1,533 and 986 



110 

 

Km3 respectively) and North America (326 and 274 Km3 respectively). Interesting finding 

shows how South East Asia is the only region that has higher green water contribution compare 

with blue water contribution (272/239 km3) and also in Africa region demand of Blue wateris 

very high compare with green water consumption (135/26 km3) (Figure 6-20), this condition 

make the two regions could has significantly affected with climate change impact if there are 

not sustainable irrigation system. 

 

Figure 6-18. Distribution of eight regional analyses: 1. Southern Asia, 2. Eastern Asia, 3. 

South-east Asia, 4. North America, 5. South America, 6. Europe, 7. Africa, and 8. Oceania 

 

 

 

Figure 6-19. Seasonal Irrigation Water Demand of Blue (Irrigation) and Green Water 

(Effective Precipitation) Contribution in the three group of year 
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Figure 6-20. Contribution of Blue (irrigation) and Green (Effective precipitation) for 

estimating total irrigation water demand in irrigated area in eight regional analysis 

 

The final goal of this study is specifically estimates blue or irrigation source water contribution 

in the three group of year 2001-2005, 2006-2010 and 2011-2015 (Figure 6-21). This result is 

tried to investigate the evolution of the IWD at the eight regional in monthly based analysis. 

The growth of IWD volume takes place unevenly among the world’s regions. South 

Asia has become a major of increasing IWD in irrigated are from irrigation water source 

contribution. Some specific countries play a very important role in the global IWD. Reflection 

of the dramatic increase in the underlying food trade. This increasing in several region has 

correlation with trade activities, reflecting of American internal trade (US-Mexico) and North 

American exports to Asia t. (NA Free Trade Agreement) hat implemented in last fifteen years, 

can increased GDP per capita of mostly in all countries in south America [GDPPC multiplied 

by 5.1 from 1986 to 2000]. However, exports from NA to Europe have shrunk indicated the 

reasons behind dynamic change in several regions. Most to the trade volume increase between 

1986 and 2007 Exports from South America to Asia contributed the (30%) internal trade in 

North America (11%). Irrigation Water demand decreases in OECD countries migh be due to 

rapid changes in technology in irrigation technology. 
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Figure 6-21. Seasonal Irrigation Water Demand of Blue Water (Irrigation) Contribution 

in the three group of year 

 

7.3.5 Comparative analysis of Irrigation Water Demand product with current statistic data  

Since the high accuracy ground data of Irrigation water demand are very limited. We 

used two parameter of water use statistic data; 1). Consumptive irrigation water used or 

Irrigation water demand and 3). Irrigation water withdrawal from Aqua-stat.  

Irrigation consumptive water use or Irrigation water demand indicated the volume 

of water needed to compensate for the deficit between potential evapotranspiration on the one 

side and effective precipitation over the crop growing period and change in soil moisture 

content on the other side [FAO, 2005]. In this study, the irrigation consumptive water use is 

computed for each country on the basis of the irrigated crop calendar for a specific year (from 

1995 to 2015 depend on country report), The irrigation water requirement computed in this 

study is available by country under the variable "Irrigation water requirement" [code 4260] in 

the AQUASTAT database 

Agricultural water withdrawal indicated total water used for cultivation process, it is 

normally far exceeds the net irrigation water demand because of water lost in its distribution 

from its source to the crops. For 118 out of the 175 countries and territories information on 

http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
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water withdrawal is available from national sources (i.e. not estimated). In order to fill the data 

gaps regarding the 47 countries for which this information is not available (or only estimated), 

a ratio of the estimated irrigation water requirement to the actual irrigation water withdrawal is 

calculated for countries for which such data is available. 

For Irrigation water demand analysis, first we compare two IWD estimation products 

derived from two precipitation datasets (GSMaP and WordClim) with FAO independent data 

of consumptive irrigation water use in two groups of large irrigated area countries (from 40 to 

160 km3/year) and medium irrigated area countries (from 0.5 to 15 km3/year).  

 

Figure 6-21. Comparison of country level IWD estimation derived from two precipitation 

datasets with FAO independent data of consumptive irrigation water use 
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The regression value of comparison two group Irrigation water demand with 

consumptive irrigation water use based GSMaP precipitation data shows the regression value 

of FAO statistics data and simulated IWD is 0.47 and 0.983 for medium and large irrigated 

area respectively (Figure 6-21). Compared with WorldClim precipitation datasets The 

regression value is 0.39 and 0.975 (Figure 6-21). Indicated GSMaP precipitation data can 

estimate in more accurate for estimating Irrigation Water Demand. 

For further analysis, the product result of IWD in country level are compared with two 

water use data statists: Irrigation Water Demand and Agriculture Water Withdrawal. We used 

logarithmic scale in scatterplot analysis to accommodate high range of IWD countries values 

with range from 0.002 km3/year (Saint Kitts and Nevis) to 688 km3/year (India). The dashed 

line represents the 1:1 slope. 

 

Figure 6-22. Comparison of simulated IWD to reported IWD statistics [km3 yr−1] per 

country (N = 175). 

IWD was modelled with the MODIS Cropping Intensity, MODIS-AMSR Sowing 

Month, MODIS-AMSR rice paddy cropping pattern, and FAO-Cropwat simulated model 

respectively. IWD Reported statistics was obtained from the FAO AQUASTAT database 

(http://www.fao.org/nr/water/aquastat/main/index). The overall correlation between IWD 

product derived from remote sensing (2006-2010 data product) and the Aqua-Stat Irrigation 

http://www.fao.org/nr/water/aquastat/main/index
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Water Demand (1995-2015 data product) is observed in global scale with total 172 countries. 

The result show regression value is 0.953 (Figure 6-22) indicated the simulated and reported 

value of Irrigation water demand has good relation. 

We indicate there are more overestimate estimation value compare with Aqua-stat value.  

The reasons of overestimated are; 1. Fraction of the irrigated crops is actually grown in the 

winter, while the temperature criterion in the model leads to a summer growing season. 2. Ortiz 

[1998] noted that for the calculation, the basic plant water requirement was adjusted to actual 

good irrigation practices. 

We also analyze the accuracy of the two variable of Irrigation water demand (IWD) and 

Agriculture water withdrawal (AWW) product. In this framework, the regression value to the 

Aqua-stat have been observed as 0.941 (Figure 6-23). The comparison of IWD shows 

underestimate value compare to and AWW Aqua-stat data.  

 

Figure 6-23. Comparison of simulated IWD to reported AWW statistics [km3 yr−1] per 

country (N = 175). 

The comparison product between “Irrigation water demand” and “Agriculture water 

withdrawal” can often referred to as "water use efficiency" [FAO, 2012] in agriculture or 

"irrigation efficiency". However, the use of the expression is subject of debate [Perry and Kite, 
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2003]. The word "efficiency" implies that that water is being wasted when the efficiency is low. 

This is not necessarily so. The recoverable fraction of the non-consumed water can be used 

further down-stream in the irrigation scheme, it can flow back to the river or it can contribute 

to the recharge of aquifers. It is for this reason that in this study the term "water requirement 

ratio" is employed when referring to the ratio between irrigation water requirement and the 

amount of water withdrawn for irrigation. 

The average of the water demand ratio calculated at national level enables, in 

combination with the irrigation water demand calculated in the previous step, the estimation of 

irrigation water withdrawal for countries with missing data. In addition, it also permits to cross-

check data and thus their correction. Assessing the impact of irrigation on water resources 

requires an estimate of the water effectively withdrawn for irrigation, i.e. the volume of water 

extracted from rivers, lakes and aquifers for irrigation purposes. Irrigation water withdrawal 

The limitation of this statistics dataset are not all countries are reported the water used 

data, also not in all year there are available data for comparison, some countries reported based 

1995 data and another country report the updated data until 2015. It also appears by country 

in figure 6-23 and figure 6-24, comparing the product of IWD with reported IWD and reported 

irrigation water withdrawal (IWW). 

 

7.3.6 Comparative analysis of Irrigation Water Demand product with Previous Product of 

Irrigation water demand. 

 

In total there are sixteen product IWD estimation where three products are produce in 

this study (Table 6-1). Since all estimated product are produced using different input data, 

Direct comparisons do not make sense. This comparison can be used as Indicator the possible 

range of irrigation water demand range estimation in the 21st century. 

This studies have close to the IWD estimation of Siebert and Doll [2009] and Wada et 

al. [2011]. Discussing model feasibility is quite difficult under the current regression modelling 

framework. Changes are shown for individual IWD product in each product estimation, 

potential irrigation water demand increase globally, except for IWD product estimated by 

Sursel et al [2010] and Pokhrel et al. [2012].  

http://www.fao.org/nr/water/aquastat/water_use_agr/index4.stm#a3
http://www.fao.org/nr/water/aquastat/water_use_agr/Table4.pdf
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Increasing of total blue water use by irrigated crop, in three group of year: 1,502 km3/ 

year in 2001-2005, 1,702 km3/ year in 2006-2010 and 2,125 km3/ year in 2011-2015 that 

located in specific area indicated the increasing intensification in 15 years is happened. This 

condition is support by the increasing of total green water use by irrigated crop as well; 860 

km3/ year in 2006-2010, 926 km3/ year in 2006-2010 and 1,158 km3/ year in 2011-2015. This 

condition shows how precipitation could supply half of water demand in agriculture.  

Based on analysis of green water use by rainfed crops, decreasing green water happen 

in between 2001-2005 to 2006-2010 from 6,137 to 5,839 km3/ year, and increase again in 2011-

2015 estimation by reach 6,494 km3/ year. The decreasing of green water in rainfed area and 

increasing green water in irrigated area has hypothesis that shifting from rainfed to irrigated in 

large area globally are happen in between 2001-2010. 

 
 

Figure 6-24. Visual comparison of 50 km pixel resolution derived from model simulation 

[Doll and Siebert, 2002] and 1 km resolution derived from remote sensing data integration in 

this study 
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The issues of different input data can be a major source of the different result between 

this study and other study. The growing period of crops and water requirement during the crop 

period varied on a grid-basis. Hanasaki et al. [2010] assumed that the crop-specific growing 

period and daily water requirement are uniform globally. The advantage of the IWD product 

compare with previous studies are capability to estimate two source of water (green and blue 

water) for both irrigated and rainfed crop type. Higher pixel resolution also can improve 

country level analysis of water demand in crop sector. Figure 6-24 shows comparison 50 km 

and 1 km pixel resolution derived from model simulation and remote sensing data integration. 

In this study increasing spatial resolution might be the advantages of Global irrigation water 

demand product which derived from remote sensing datasets compare with previous study 

which derived from model simulation based approaches. The increase in spatial resolution from 

previous studies using simulation model in 50 km resolution [Doll and Siebert, 2002; Hanasaki 

et al., 2010] to 1 km in this study improves analysis at country level. This improvement can 

help to provide a more comprehensive analysis since each country has their complexity of 

problems in trying to achieve the Sustainable Development Goals (SDGs) [FAO, 2015]. 

 

 

7.4 Conclusion 

 

The final result of global irrigation water demand (IWD) products are the first satellite-

based products that can analyze 15 years’ dynamic change of water demand in cropland area. 

The total water use by irrigated and rainfed are 6,137 km3/ year in 2001-2005, 5,834 km3/ year 

in 2006-2010, and 7,491 km3/ year in 2006-2010. This calculation derived from three water use 

estimation categories: 1) total blue water (irrigation) used by irrigated crop, 2) total green water 

(precipitation) used by irrigated crop and 3). Green water used by rainfed crops. The total water 

use by irrigated are 2,362 km3/ year in 2001-2005, 2,628 km3/ year in 2006-2010, and 3,283 

km3/ year in 2010-2015.  

By applying low and high Kc value, we identified the error value of Total IWD per year 

by around 402 km2 for low Kc and 650 km3 for high Kc compared with from Standard Kc 

value. The regression value of FAO statistics data and simulated IWD is 0.47 and 0.98 for 

medium and large irrigated area respectively. The long-term global IWD products are projected 
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to simulate global surface water cycle in agriculture area in more realistic way by considering 

climate and crop activities which derived from actual, consistent and latest remote sensing 

datasets. This high resolution IWD product will support to achieve SDGs target in regional and 

country level analysis. 
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8 Chapter 7  

CONCLUTIONS AND RECOMMENDATIONS 
 

8.1 Conclusions 

 

The 1 km Global Irrigation Water demand product are the first satellite-based products 

which derived from integration of vegetation and water index phenology that can analyze 15 

years’ dynamic change of water demand. The advantage of the combination MODIS-AMSR 

products are the capability to detect short period of crop cultivation and distinguish rice and 

non-rice crop type. The Increasing pixel resolution and consistency dataset are some 

advantages in the IWD product, hence increasing time resolution will become key to improve 

IWD product and for Verification propose. The assumed dominant crop and cloud 

contamination are the major source of discrepancy of MODIS-AMSR crop intensity and 

Sowing month product.  

The results of cropland agreement level (CAL) analysis proposed four agreement levels, 

and the correlation factor obtained from the CAL product and IIASA crop fraction comparison 

had successfully estimated the percentage of cropland area from four agreement levels. The 

cropland estimate results from the CAL analysis were observed along with FAO data statistics 

and showed the highest accuracy, with a 0.70 and 0.71 regression value for 2005 and 2010 

respectively. The presented MODIS-AMSR sowing month and cropping pattern products, to 

our knowledge are the first satellite-based products which derived from integration of 

vegetation and water index phenology from optic and microwave satellite sensor, that can 

analyze dynamic change of crop activities as one of essential input for estimating irrigation 

water demand. The advantages of the MODIS-AMSR sowing month product are capable to 

detect short period crop cultivation, distinguish rice and non-rice crop type and analyze trend 

of sowing month change from 15 years’ data monitoring.  

The final result of global irrigation water demand (IWD) products are the first satellite-

based products that can analyze 15 years’ dynamic change of water demand in cropland area. 

The total water use by irrigated and rainfed are 6,137 km3/ year in 2001-2005, 5,834 km3/ year 

in 2006-2010, and 7,491 km3/ year in 2006-2010. This calculation derived from three water use 

estimation categories: 1) total blue water (irrigation) used by irrigated crop, 2) total green water 

(precipitation) used by irrigated crop and 3). Green water used by rainfed crops. The long-term 

global IWD products are projected to simulate global surface water cycle in agriculture area in 
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more realistic way by considering climate and crop activities which derived from actual, 

consistent and latest remote sensing datasets. This high resolution IWD product will support to 

achieve SDGs target in regional and country level analysis. 

 

8.2 Recommendations 

 

One of the limitation on this product is we not include yet the product of dominant 

dropping pattern of rice and non-rice and it is change in long-term analysis in multi cropping 

intensity area. Hence, based on current IWD product, some area should be facing over 

estimation especially in triple cropping rice paddy area. Since bases on cropping pattern 

product in this study, large area of triple rice only found in Mekong delta, Vietnam. Also, in 

this analysis, we do not include yet the calculation of water volume that applied in flooding 

season in the beginning of rice paddy plantation. From previous discussion we propose three 

improve ment strategy that can tackle the limitation of current product. First, the product of 15-

year dominant cropping pattern should be address in developing Crop Coefficient (Kc), Second, 

Investigate the general volume of water that applied in flooding session of rice paddy, and 

involve the value into water balance approach estimation, and third, improving the 15 year 

IWD product in higher time resolution from monthly data processing to 10 days’ data analysis.  

 

8.3 Future Works 

 

Future research will conduct the updating the developed Kc based on integration of 

three group of year the MODIS cropping intensity product, MODIS-AMSR sowing month, and 

dominant cropping pattern of rice and non-rice in higher time spatial resolution (10 days’ data 

analysis). Hence, the developed new product of monthly IWD in the three group of year 2001-

2005, 2006-2010 and 2011-2015 will conduct. The 15-year investigation impact of cropping 

intensity, sowing month and cropping pattern change impact to the long-term monthly IWD 

product also will analyze combined with existing additional data especially gridded socio-

economic dataset. Another important issues that should be tackle is pixel by pixel comparison 

analysis of IWD product with published IWD Doll Siebert product which derived from 

WaterGAP model. 
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