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Abstract  

Transportation networks are subjected to significant delays and caused operational 

irregularities due to both natural or man-made extremes. Natural extremes could either 

be unexpected like earthquake, fire, landslide or expected like heavy rainfall, flood, 

snowfall. Respectively, man-made events also either could be unexpected such as 

explosion, terrorist attack, vehicular collision or expected such as end of a famous game 

(e.g. world cup final), protesting rally, famous festival and so forth. Even though the 

severity of these events are different to each other, occurrence of such events often 

disturbed the normal travel plans of the people and are forced to make in-situ decisions 

on their route choices. Identifying the altering travelers’ decision-making dynamics and 

degree of network cognition together with their travel behavior under these circumstances 

has a paramount importance in saving lives of disaster victims, saving travel time and 

fuel of travelers, and reducing environmental pollution which could create due to a 

congested network. 

With the vast development in the field of computer technology, solving complex 

mathematical problems become easier. Correspondingly, number of modeling tools have 

been developed to appropriately assess and mitigate the prevailing issues in transport 

planning. But when it comes to address the transportation problems in unexpected or 

disastrous situations, such tools are limited in the literature. Hence, this study is focused 

the evaluate the sensitivity, stability, performance and applicability in real disaster 

situations of such a modeling tool, 𝛽 − scaled recursive logit (𝛽 −SRL) model, which 

could describe the travelers route choice behavior in such conditions. The model falls to 

the category of Markovian route choice models and the route choice behavior is described 

through the sequential time discount rate (𝛽) which is recognized as a generalization of 

drivers’ decision-making dynamics and a representation of the degree of spatial cognition 

of networks. 

Chapter 3 presents the model framework of the 𝛽 −SRL and the sensitivity analysis. The 

model corresponds to a dynamic discrete choice model and the path choice is formulated 

as a sequence of link choices under the umbrella of Markovian route choice models. At 

each node in the network, the individual is expected to choose the utility-maximizing link, 
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where the utility is the sum of the instantaneous link cost, the maximum expected utility 

to the destination and iid extreme value type I error terms. The sensitivity of the 

sequential time discount rate in describing the route choices was tested by using a 

hypothetical network with changing link costs at different locations of the network. 

Parameter stability is essential for drawing conclusions or making inference on 

estimation results. Hence, chapter 4 is designed to test the stability of the sequential time 

discount rate under different network conditions. It was initially tested under moving time 

and random sampling under different sampling rates as 10 trips, 20 trips and 30 trips per 

sample. Then the same random sampling technique was applied under the criteria, in 

different time zones considering morning peak, day peak and evening peak, in unsteady 

state by considering the cumulative link delay time of trips under the categories less than 

5 minutes, between 5 – 10 minutes and over 10 minutes and in different areas (networks) 

such as Toyosu where some events of the 2020 Olympic games will be conducted, city 

center of Tokyo basically in an area inside of ring road 8, and in suburbs or considering 

an area outside of the ring 8 road. Overall results showed that 𝛽 – SRL model estimate 

better results under all 03 categories while 20 trips and 30 trips samples always provide 

stable and reliable results compare to the 10 trips samples. Further, the improvements of 

the results from 10 trips samples to 20 trips samples was larger in comparison with the 

improvements from the 20 trips samples to 30 trips samples. 

Understanding mathematical characteristics and model performances are paramount 

importance in explaining model estimations under different network conditions. Hence 

chapter 5 was designed to scrutinize the matrix formations in intermediate steps of 

solving 𝛽 −SRL model. In addition, the model performances were discussed under four 

different scenarios. The value functions with respect to each link of the considered 

network can be determined by solving the system of non-liner equations with the 

sequential time discount rate. Hence, such a system of non-liner equations was 

determined based on a hypothetical network and their elementary basis changes under 

the key solving steps were discussed in detail. Thereafter the model performances were 

discussed based on normalized network, scaled network, extended network and number 

of links per trip. Results under the normalized network showed assigning similar 

probabilities for choosing the links under the lower values of sequential time discount 

rate while the route choice probabilities also normalized when the sequential time 

discount rate gets higher values. Further sequential time discount rate produces lower 

values at normalized networks. The analysis based on scaled network showed that the 

results are holding the equivalent differences property between the alternatives. Lower 

sequential time discount rates were observed in the extended networks as it kept the 

original route choices unchanged. The results based on the influence of the number of 

links per trip showed that the model performance become more consistent and the 

estimations become more stable when estimating the samples having trips with their 

number of links per trip is more than 50 links.  

Chapter 6 includes a comparative analysis of network behavior under two distinct and 

divergent disasters, the great east Japan earthquake and a torrential downpour. Probe taxi 

data collected under the aforementioned disaster conditions and normal days as one week 

after each disaster were used for the analysis. Route choice characteristics were visualized 
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by making a cross sectional analysis and travel behavior under each disastrous conditions 

were compared with a normal day variations. During both disasters that altered the 

normal city life, drivers had to change their original travel plans and choose alternatives. 

The sequential time discount rate was estimated together with two other parameters, 

travel time and right turn dummy variable in both circumstances. The estimated values 

of sequential time discount rate indicated the transition of drivers’ decision-making 

process from global decisions to myopic decisions. In addition, the estimated values of 

travel time parameter under both events indicated the difficulty for drivers to evaluate 

travel time properly, under the congestions. The estimations of right turn dummy variable 

showed an increasing difficulty of making right-turns under both disaster scenarios. 
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1 Introduction 

1.1 Background 

Exploring the governing formula of “how people make choices” has been an eager topic 

among the researchers in the arena of economics, transportation and urban planning, 

psychology, and so forth. With vast improvements in the field of computer technology 

(software, modeling and programming), numerical computations have become speedy 

and effortless. Correspondingly, many mathematical tools and analytical frameworks 

have been developed and used more frequently for solving people’s choice problems. 

Travel behavior has neither different as it is a sub-topic in human behavior and follows 

the similar characteristics.  

Traveling is one of the leading day-to-day activity of people which constantly maintained 

its significance since early in the history of discipline, with diverse improvements. People 

travels for various purposes, using different modes in complex networks for fulfilling 

their daily requirements. Increasing population together with excessive automobile usage, 

demanded by the growing travel needs, create congestions in traffic networks and cost 

man hours, fuel. This has become a serious environmental problem in both terms of noise 

and emissions of chemical substances, and a safety concern in many large cities in the 

world. Correspondingly, Intergovernmental Panel on Climate Change (IPCC) too has 

recommended for procuring low-emission vehicles in government purchases (IPCC, 

2015). 

Scope of the travel behavior analysis is expanded over individuals and households’ 

movements and discussed through the sub-topics mode choice, destination choice, route 

choice, and beyond. These discussions have been generated challenging headaches on 

researchers working in transportation researches, due to the massive number of selfish 

travelers making their own decisions for personal satisfaction in highly correlated large 

choice sets. Accordingly, a host of models and frameworks have been developed for 

understanding these complexities.  

This thesis is organized for scrutinizing route choice characteristics and understanding 

abnormal travel behaviors under differential disastrous conditions in densified networks. 

Road networks are frequently subjected to natural and man-made disasters such as 

earthquakes, extreme weather events (hurricanes, tornadoes, floods, snowfall etc.), 

crashes, terrorist incidents and so forth. All these disturbances cause significant delays 

and operational irregularities in traffic networks. Further, occurrence of such events 

disturbed the normal travel plans of people and more often they are forced to make in-

situ decisions on their route choice. Under these circumstances, identifying the altering 

travelers’ decision-making dynamics and degree of network cognition is very important, 

and this research investigate them. 

Japan is geographically located in the Ring of Fire and lies at the confluence of four plates 

namely, Eurasian plate and North American plate from the north, Pacific plate from the 

east and Philippine sea plate from the south, causes the island vulnerable to natural 
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disasters. Together with, the increasing trend of days having precipitation over 100 and 

200 mm per year (Hashida, 2016) and frequent earthquakes highlighted the necessity of 

disaster preparedness in transport systems. Given the fact that future weather will become 

more extreme, it is vital for transport planners and policy-makers to understand how they 

influence on travel behavior, to achieve a sustainable transport system (Liu, Susilo, & 

Karlstrom, 2017). 

 

1.2 Research objectives 

Understanding unsteady travel behavior in disastrous networks has a paramount 

importance in saving lives of disaster victims, saving travel time and fuel of travelers, 

and reducing environmental pollution which could create due to the congested network, 

through minimizing the network delays and operational irregularities caused by the 

disaster and its impacts. In the literature, studies have been done based on the disastrous 

networks, but many of such are steady state analysis (Giuliano & Golob, 1998; Iida, 

Kurauchi, & Shimada, 2000; Minhans, 2008; Helton, Kemp, & Walton, 2013; Lee, Zheng, 

Kashfi, Chia, & Yi, 2013). Further, it was highlighted the problems such the data 

limitations and their accuracy. Specially in the case of using questionnaire survey data of 

a disaster travel behavior, they could be affected by the memory decay and the emotional 

trauma of the event. As a solution, probe data can be presented as a good reliable data 

where it gives the Global Positioning System (GPS) trajectories of the travel paths. Probe 

data has been an emerging and encouraging data source among the transportation 

researchers (Miwa, Sakai, & Morikawa, 2004; Sun & Fu, 2007; Uno, Karauchi, Tamura, 

& Iida, 2009; Hunter, Herring, Abbeel, & Bayen, 2009; Shafique, Hato, & Yaginuma, 

2014) but they were very less used in the case of understanding travel behavior in disaster 

conditions. With that background, this research is set up to make a comparative analysis 

on differential disastrous networks by using probe taxi data based on sequential time 

discount rate which was estimated as a parameter in an unsteady travel behavior model 

called 𝛽−Scaled recursive logit model (Oyama, Chikamatsu, Shoji, Hato, & Koga, 2016). 

In order to succeed the aforementioned purposes, the following objectives were set up for 

the study; 

1. Illustrate the behavior of sequential time discount rate through a sample sensitivity 

analysis 

2. Accomplish a comparative study on stability of sequential time discount rate 

subjected to;  

 Moving time  

 Sampling rate 

 Peak hour periods 

 Unsteady state 

 Different networks 

and find out the answers to the questions; 
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a) How many trips are needed for stable estimations under recursive logit 

framework? 

b) Does it stable under different traffic conditions? 

c) What are the characteristics of sequential time discount rate? 

 

3. Estimation results of sequential time discount rate is strongly related with the link 

usage. Hence, identify the mathematical characteristics of value function of 𝛽 −SRL 

model and carryout model performance analyses through normalized network, scaled 

network, extended network and based on the number of links per trip.   

 

4. Carrying out a comparative study on two differential distinct disasters focusing on; 

 Exploring link speed characteristics in time-space 

 Scrutinizing trajectory patterns and their behavior 

 Analyzing travel behavior through parameter estimation  
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1.3 Thesis structure 

 

Figure 1.1 Thesis organization   
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2 Literature review 

2.1 Overview of route choice modeling 

Travel behavior analyses are basically focused on answering the questions; 

 Why people travel (purposes)? 

 Where do they go? 

 When was the trip made? 

 Which transportation mode was used? 

 Which route was taken? 

First two questions address the demand factors and their effected areas respectively. The 

rest of three questions are related to understanding infrastructure usage and visualize 

transportation network at different instances. A better overview on this topic can be found 

in Bovy and Stern (Bovy & Stern, 1990) which is considered as the first book that entirely 

devoted for this subject.  

This thesis is basically focused on the last of the aforementioned questions, i.e. 

investigate the route choice behavior especially under the disastrous conditions in 

damaged networks. A route choice model predicts the selection probability of any given 

path connecting an origin and a destination, based on travelers’ characteristics and routes’ 

specifications. This is often confused with the route find problem where the shortest or 

the most reliable route is found based on the given origin and destination. This is used in 

many mobile applications such as google maps, best route finder, route planner and 

beyond. Whereas route choice models identify the route that a given traveler would take 

under the associated circumstances.  

Disastrous networks are expected to cause significant delays and operational 

irregularities in traffic networks and cost human lives, in addition to, consume time, fuel 

and increase environmental pollution. Further, understanding the mechanism and 

identifying the anomalous driving behavior have become essential for smoothing the 

traffic flow and securing the road capacity for emergency and evacuation vehicles. Even 

though it is very important to carry out this sort of researches, they are very limited and 

slapped due to the lack of proper data. Under the normal circumstances, it is not given 

the immediate priority to collect accurate real time data within the disaster period and 

consecutive few hours (Iida, Karauchi, & Shimada, 2000). But such data becomes very 

crucial for comprehensive studies.  

In addition to the aforementioned reasons specially under the disastrous conditions, 

modeling route choice behavior becomes essential in order to assess drivers’ 

consciousness of route characteristics, to predict future traffic conditions on 

transportation networks, to predict drivers’ behavior under different policy measures, to 

delineate the effect of traffic information, and to enhance the route choice part of traffic 

assignment methods. However, modeling route choice behavior is problematic due to 

massive number of selfish travelers making their own decisions for fulfillment of their 
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personal requirements in complex networks.  Technically, given the complexity of 

representing human behavior, the lack of drivers’ knowledge about the network 

composition, the uncertainty about drivers’ perceptions of route characteristics and the 

unavailability of exact information about drivers’ preferences cause problems in 

modeling route choice behavior (Prato, 2009).  

 

2.2 Modeling concepts 

2.2.1 Shortest path problem 

Finding the shortest path in a transport network that a traveler can achieve his destination 

from a given origin with a minimum travel time or travel cost is considered as the simplest 

form of the route choice model. The problem is formulated as; 

                                                               𝑟 = 𝑎𝑟𝑔 min
𝑟

{𝑐𝑟}                                                (2.1) 

where 𝑟 represents a route in the network and can be detailed as a sequence of links. 

                                                  𝑟 = (𝑎1, … , 𝑎𝑗 , … , 𝑎𝐽)                                                       (2.2) 

𝑐𝑟  is the cost of route 𝑟  and 𝑎𝑗  are sequence of links. Now, considering a directed 

connected graph, 𝐺 = (𝑁, 𝐴) as a transportation network where 𝑁 and 𝐴 denotes the set 

of nodes and set of links respectively, the number of paths is |𝐴| × |𝐴| × … × |𝐴| = |𝐴|𝐽. 

This is often uncountable. Dijkstra’s algorithm (Dijkstra, 1959) is used for solving the 

single-source shortest path issues having positive link costs. Since travelers hardly get 

the perfect information of the traveling network and are heterogeneous, it is problematic 

to hypothesize that the shortest path issue reflects their route choice decisions. Hence, the 

discrete choice framework is often used for analyzing the route choice problem in order 

to describe the individual traveler’s decision-making mechanisms.   

 

2.2.2 Multinomial logit model 

The multinomial logit (MNL) model is one of the most commonly used models in 

practice due to its simplicity. However, it is kept within bounds due the assumption that 

the error terms are identically and independently distributed (i.i.d.) which doesn’t satisfy 

in the case of route choice scenario as the paths are naturally overlapping. The model has 

a long history since Prof. R. Duncan Luce proposed it as a theory of psychological choice 

behavior in 1959. Moving in to the mathematical formulations, discrete choice analysis 

which is built on the principle of random utility maximization (RUM) [ (McFadden D. , 

1978), (Ben-Akiva & Lerman, 1985)] is used as the framework for probabilistic route 

choice models. The argument when an individual 𝑛 chooses a route 𝑟 where 𝑢̃𝑛𝑟 is the 

utility can be represented as; 

                                                         𝑟 = 𝑎𝑟𝑔 max
𝑟∈𝐶𝑛

{𝑢̃𝑛𝑟}                                                   (2.3) 
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𝐶𝑛 is the choice set for individual 𝑛 and it is defined by the researcher. 𝑢̃𝑛𝑟 includes the 

unobserved characteristics to the researcher and it is considered as a stochastic variable. 

The utility component of route 𝑟 is supposed to be consist with deterministic component 

𝑢𝑛𝑟 and the error component 𝜀𝑛𝑟; 

                                                      𝑢̃𝑛𝑟 = 𝑢𝑛𝑟 + 𝜀𝑛𝑟                                                            (2.4)    

The deterministic component comprises the route attributes such as distance, travel time, 

number of right/left turns and beyond while the error component covers the model 

uncertainty.   

Based on the random utility approach proposed by Manski (Manski, 1977) in the concept 

of consumer theory and as visualized the Eq. (2.3), subjects are expected to maximize 

their random utilities when choosing their routes. Accordingly, the route choice models 

determine the probability of the routes that contained in the choice set. Hence, the 

probability that subject 𝑛 chooses route 𝑟 can be expressed as; 

                                   𝑃(𝑟|𝐶𝑛) = ℙ[𝑢𝑛𝑟 > 𝑢𝑛𝑠; 𝑟 ≠ 𝑠, ∀𝑠 ∈ 𝐶𝑛]                                  (2.5) 

Separating the deterministic and error terms; 

                        𝑃(𝑟|𝐶𝑛) = ℙ[𝑢𝑛𝑟 + 𝜀𝑛𝑟 > 𝑢𝑛𝑠 + 𝜀𝑛𝑠; 𝑟 ≠ 𝑠, ∀𝑠 ∈ 𝐶𝑛]                      (2.6) 

Then, rearranging with the error terms; 

                        𝑃(𝑟|𝐶𝑛) = ℙ[𝜀𝑛𝑟 > 𝑢𝑛𝑠 − 𝑢𝑛𝑟 + 𝜀𝑛𝑠; 𝑟 ≠ 𝑠, ∀𝑠 ∈ 𝐶𝑛]                      (2.7) 

Based on the specific assumptions on the joint distribution of the disturbances, any 

particular multinomial choice model can be derived by using Eq. (2.7) [Refer (Ben-Akiva 

& Lerman, 1985) for more details]. Considering the joint probability distribution of all 

error terms, 𝑓(𝜀𝑛𝑟; 𝑟 ∈ 𝐶𝑛), Eq. (2.7) can be re-arrange as; 

𝑃(𝑟|𝐶𝑛) = ∫ ∫ … ∫ 𝑓(𝜀𝑛𝑟; 𝑟 ∈ 𝐶𝑛)𝑑𝜀𝑛|𝐶𝑛| … 𝑑𝜀𝑛2𝑑𝜀𝑛1 (2.8)
𝑢𝑛1−𝑢𝑛|𝐶𝑛|+𝜀𝑛1

𝜀𝑛|𝐶𝑛|=−∞

𝑢𝑛1−𝑢𝑛2+𝜀𝑛1

𝜀𝑛2=−∞

∞

𝜀𝑛1=−∞

 

By taking the partial derivative of Eq. (2.8) with respect to 𝜀𝑛𝑟; 

                                   𝐹𝑟(𝜀𝑛𝑟; 𝑟 ∈ 𝐶𝑛) =
𝜕𝐹(𝜀𝑛𝑟; 𝑟 ∈ 𝐶𝑛)

𝜕𝜀𝑛𝑟
                                             (2.9) 

where 𝐹(𝜀𝑛𝑟; 𝑟 ∈ 𝐶𝑛) is the joint distribution function of errors. 

The MNL follows specific assumptions as the error components are extreme-value (or 

Gumbel) distributed, the error components are i.i.d. distributed across alternatives and 

observations/individuals. Accordingly, the cumulative distribution function (CDF) and 

the probability density function (PDF) are formulated as follows respectively; 

                                 𝐹(𝜀𝑛𝑟) = 𝑒𝑥𝑝[−𝑒𝑥𝑝−𝜇(𝜀𝑛𝑟−𝜂)] ,                 𝜇 > 0,                      (2.10) 

                     𝑓(𝜀𝑛𝑟) = 𝜇𝑒𝑥𝑝−𝜇(𝜀𝑛𝑟−𝜂). 𝑒𝑥𝑝[−𝑒𝑥𝑝−𝜇(𝜀𝑛𝑟−𝜂)]                                    (2.11) 



8 

 

where 𝜂 is the location parameter, that is the mode of the distribution. 𝜇 is a positive scale 

parameter which implies the degree of variation of 𝜀𝑛𝑟. The mean is 𝜂 + 𝛾 𝜇⁄  , where 𝛾 

is the Euler constant (~ 0.577) and the variance is 𝜋2/6𝜇2. Then the MNL model is 

derived by substituting Eq. (2.10) and Eq. (2.11) on Eq. (2.8). 

                                    𝑃(𝑟|𝐶𝑛) =
𝑒𝑥𝑝(𝜇𝑢𝑛𝑟)

∑ 𝑒𝑥𝑝(𝜇𝑢𝑛𝑠)𝑠∈𝐶𝑛

                                                    (2.12) 

MNL is largely been discussed among the researchers due to its independence from 

irrelevant alternatives property (IIA). The property states that for any individual, the ratio 

of the probabilities of choosing two alternatives is independent of the presence of any 

other alternative. Even though it looks like a simple property, it has some important 

consequences. In some occasions, it could generate some odd or erroneous predictions. 

Red bus/blue bus paradox is one of the famous examples. 

 

2.2.3 Other related models 

As stated, because of the i.i.d. assumption on the error component, biases could exist in 

parameters that estimated through the MNL model when the routes are overlapped 

between alternatives in transportation networks (Jin, Yao, Zhang, & Liu, 2017). As a 

result, a host of revised models were proposed to minimize the problems generated by 

the path overlapping in route choice. A deterministic correction, named Commonality 

Factor (CF), was first proposed by the Cascetta et al. in 1996 (Cascetta, Nuzzolo, Russo, 

& Vitetta, 1996). It is an attribute, which includes in the deterministic part of the utility 

and derived the C-Logit model. The value of CF for a particular path was proportional to 

its overlapping with remaining paths in the choice set. 

Three years later, a model called Path Size Logit (PSL) (Ben-Akiva & Bierlaire, 1999) 

was proposed with a similar concept to the C-Logit model. In PSL model, correction for 

the path overlapping was obtained by adding Path Size (PS) attribute to the deterministic 

part of the utility.  An important discovery was made and started a new chapter in the 

field by McFadden in 1978 with the introduction of General Extreme Value (GEV) 

models which allowed various flexible modeling structures. Models such as Nested Logit 

(NL) model (Ben-Akiva & Lerman, 1985), Cross Nested Logit (CNL) model (Vovsha & 

Bekhor, 1998), Paired-Combinatorial Logit (PCL) model (Koppelman & Wen, 2000), 

and the Generalized Nested Logit (GNL) model (Bekhor & Prashker, 2001) were 

introduced. Further improvements were being made with the proposals of Multinomial 

Probit (MNP) model (Bolduc & Ben-Akiva, 1991), and it’s modified applications such 

as (Yai, Iwakura, & Morichi, 1997), correlation structure (Frejinger & Bierlaire, 2007), 

and Logit Kernel (LK) model (Bekhor, Ben-Akiva, & Ramming, 2002). 
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2.2.4 Maximum likelihood estimation 

Maximum likelihood estimation (MLE) is the process that many route choice models 

mainly adopted for estimating their parameters. MIE strives to determine parameter 

values that maximize the likelihood function defined in each model based on given 

observations. Under the scenario that an individual 𝑛 chooses a route 𝑟 from the choice 

set 𝐶𝑛 can be mathematically formulated as; 

max
𝜃

𝐿𝐿(𝜃) = log (∏ ∏ 𝑃𝑛(𝑟|𝐶𝑛; 𝜃)𝛿𝑟
𝑛

𝑟𝜖𝐶𝑛

𝑁

𝑛=1

) 

     = ∑ ∑ 𝛿𝑟
𝑛 log 𝑃𝑛

𝑟𝜖𝐶𝑛

𝑁

𝑛=1

(𝑟|𝐶𝑛; 𝜃)                              (2.13) 

where 𝛿𝑟
𝑛  is equal to one if the individual 𝑛 chooses the route 𝑟 and zero otherwise. 

Travelers route choice preferences can be determined by solving the above formulation 

defined in Eq. (2.13). 

 

2.2.5 Markovian route choice models 

A Markov process is a memoryless process which is capable of being in multiple states. 

Further, it can make transitions between those states, where the respective state variable 

and transition probabilities rely only upon the current state of the system. This property 

is named as Markov property in probability theory and statistics, and the name was given 

on honor to the Russian mathematician Andrei Andreyevich Markov. Markovian models 

follow the Markov property and it is a very crucial stochastic process in the contest of 

route choice modeling. Markov property for a stochastic process, say {𝑋𝑛; 𝑛 = 0,1,2, … } 

in a discrete state space 𝑆, can be formulated as follows; 

  ℙ(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋0 = 𝑖0) = ℙ(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖)            (2.14) 

where 𝑗, 𝑖, 𝑖𝑛−1, … , 𝑖0 ∈ 𝑆 are state variables. As the Eq. (2.14) implies, the states 𝑋𝑛−1 =

𝑖𝑛−1, … , 𝑋0 = 𝑖0 are not going to make any impact on the future state of the process as it 

is only depend on the current state,  𝑋𝑛 = 𝑖. When the stochastic process is stationary or 

homogenous, it can be explained through the transition probability matrix 𝐏(|𝑆| × |𝑆|). 

Accordingly, Eq. (2.14) reduces to transition probability or becomes an entry; 

                                  ℙ(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) = 𝑝(𝑗|𝑖)            ∀𝑛                                    (2.15) 

And the transition probability satisfies; 
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                                       𝑝(𝑗|𝑖) ≥ 0,       ∑ 𝑝(𝑗|𝑖) = 1
𝑗∈𝑆

                                           (2.15) 

Now, by adopting the Chapman-Kolmogorov principle, and 𝑝𝑚(𝑗|𝑖)  is the 𝑚 th step 

transition probability; 

                                     𝑝𝑚+𝑛(𝑗|𝑖) = ∑ 𝑝𝑚(𝑘|𝑖)

𝑘∈𝑆

𝑝𝑛(𝑗|𝑘)                                           (2.16) 

Accordingly, the below relationship can be derived. 

                                           𝑝𝑛(𝑗|𝑖) = (𝑝(𝑗|𝑖))
𝑛

                                                              (2.17) 

Hence, once the transition probability matrix 𝐏 is derived, it is possible to calculate the 

transition probability of any step. 

When it comes to solving the route choice problem in transportation networks, it is 

possible to consider a path as a set of continuous nodes (links) and the route choice 

probability can be explained as the state transition probabilities by considering states as 

nodes (links). Markovian route choice models follow this concept in their modeling. 

Consider the below example showed in Figure 2.1, 

 
Figure 2.1 Transition probabilities in a sample network 

 

Figure 2.1 illustrates the transition probabilities and respective traffic flows for a sample 

traffic flow 𝑄 departing from node “a”. It is hypothesized that the flow patterns follow 

the Markov property and accordingly, it is notable that the principle of flow conservation 

has achieved at every node. Hence, the flow conservation can be formulated as: 
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𝑄𝑜𝑟𝑖𝑔𝑖𝑛 − 𝑄𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 0 for all nodes. 

Accordingly, it is possible to formulate the interrelationship between the link flows and 

their transition probability as below; 

𝑝(𝑗/𝑖) =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗′
′

𝑗′
                                                                     (2.18) 

where 𝑥𝑖𝑗 represents the link flows. 

Then the path probability can be determined as a product of the transition probabilities 

by using Eq. (2.17); 

ℙ(𝑟 = [𝑖0, … , 𝑖𝐽]) = ∏ 𝑝(𝑖𝐽+1|𝑖𝐽)

𝐽−1

𝑗=0

                                                     (2.19) 

Some of the key development stages of Markovian models for solving the route choice 

problem are shown in Figure 2.2 

 

Figure 2.2 Key development stages of Markovian models for solving route choice 

problem 

 

2.2.6 Sequential time discount rate 

Link choice decisions occurring at different times (at different nodes) when completing 

a path in a road network are plausible to consider as intertemporal choices, given the fact 

that choices at one time influence the links availability at other nodes in time. 

Intertemporal choices are being discussed by the economists from a long history and 

milestoned with the introduction of discounted utility (DU) model (Samuelson, 1937). 

DU model is a generalized model of intertemporal choice where Samuelson compressed 

all the psychological concerns discussed over the previous century into a single parameter 

and called the discount rate. Per se person’s intertemporal utility function 𝑈𝑡(𝑐𝑡, … … , 𝑐𝑇) 

is represented as the following functional form: 
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𝑈𝑡(𝑐𝑡, … … , 𝑐𝑇) = ∑ 𝐷(𝑘)𝑢(𝑐𝑡+𝑘)

𝑇−𝑡

𝑘=0

                                                         (2.18) 

where 𝐷(𝑘) = (
1

1+𝜌
)

𝑘

. 

𝑢(𝑐𝑡+𝑘) is the person’s cardinal instantaneous utility function, 𝑡 + 𝑘  is well-being in 

period and 𝐷(𝑘) is the person’s discount function, the relative weight she attaches in 

period 𝑡, to well-being in period 𝑡 + 𝑘. 𝜌 is the discount rate (Frederick, Loewenstein, & 

O'Donoghue, 2002). 

Since then, discount rate is being a popular topic in the field of economics based on 

various monetary aspects in different time frames such as positive time preference 

(positive discount rate) (Olson & Bailey, 1981), constant discount rate (Kirby & 

Marakovic, 1995), uniform or differential discounting (Severens & Milne, 2004), 

preference reversals (Green, Fristoe, & Myerson, 1994) and so forth. Meanwhile, 

researchers in other fields also have attempted to understand the discounting of non-

monetary and mixed-outcomes.  Temporal discounting for health and money (Chapman 

& Elstein, 1995), delayed discounting for additive substances (Bickel & Johnson, 2003) 

are some of the such examples. 

Drivers discount the travel time when making link choice decisions at each node and 

hence, the aforementioned concept can be adopted in solving route choice problems. 

Since route choice is a link by link (node by node) process over the time frame, discount 

rate becomes sequential time discount rate. Oyama et al. (Oyama, Chikamatsu, Shoji, 

Hato, & Koga, 2016) generalized the recursive logit (RL) model (Fosgerau, Frejinger, & 

Karlstrom, 2013) by incorporating the sequential time discount rate and referred as β – 

scaled recursive logit model (β – SRL). β – SRL model follows the Markovian approach, 

which assess the path choice probabilities as the products of link transition probabilities 

and avoids the necessity to enumerate path set. The approach has initially been applied 

for traffic assignment and recently been highlighted due to its consistency with logit type 

route choice modeling without path enumeration. 

 

2.3 Travel behavior in disrupted networks 

Steady travel behavior of a transportation network could disturb and become unsteady 

due to natural or man-made extremes. Natural extremes could either be unexpected like 

earthquakes, fire, landslides or expected like heavy rainfalls, floods, snowfalls. As same 

as, man-made events also either could be unexpected such as explosions, terrorist attacks, 

vehicular collisions or expected such as end of famous games (e.g. world cup final), 

protesting rallies, famous festivals and so forth. Even though the severity of these events 

are different to each other, the effectiveness of transportation systems can be remarkably 

enhanced through sufficient planning and training, capacity and demand management 
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processes such as signal coordination retiming, elimination of conflict points, route 

closures, contraflow, evacuation phasing and forced movements (Matherly, et al., 2013).  

Once a disaster is being occurred on a traffic network, it is important to investigate the 

system capacity to bounce back or the system resilience [e.g. (Barker, Ramirez-Marquez, 

& Rocco, 2013; Nogal, O'Connor, Caulfield, & Martinez-Pastor, 2016; Faturechi & 

Hooks, 2014)]. But enhancing resilience is highly depending on the budget availability 

and implementation activities (Liao, Hu, & Ko, 2018). Hence, scrutinized travel behavior 

analysis on distinct divergent disastrous networks are needed for avoiding unnecessary 

disadvantages for road users and minimizing the system recovery periods.  

Travel behavior in a normal network is influenced by the network familiarity (Young, 

Mackenzie, Davies, & Crundall, 2017), attitudes (Mohamed & Bromfield, 2017), beliefs 

(Hamilton, Peden, Keech, & Hagger, 2018), location (Stanojevic, Lajunen, Jovanovic, 

Sarbescu, & Kostadinov, 2018) and driving professionalism (Maslac, Antic, Pesic, & 

Milutinovic, 2017). But in a disastrous network, these factors could be less benefited as 

the traveler’s decision-making mechanism alters from global decisions to myopic 

decisions due to the congestion and less information about forth links. In the literature, 

studies have been carried out based on various network disrupted conditions including 

both hypothetical and real disruptions, and some are listed in Table 2.1. 
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Table 2.1 List of studies that have carried out based on disrupted network conditions 

Event Main focus  Analysis/Model Data/ Data source Respective literature 

Hyogoken-Nanbu (Kobe) 

earthquake 1995 

Post-disaster system 

performance 

Develop post-disaster 

system performance 

measures 

Detector counts 
(Chang & Nojima, 

2001) 

Hurricane Katrina, Gulf Coast, 

United States 2005 

Evacuation planning and 

management 
Data analysis Traffic detector data 

(Wolshon, Catarella-

Michel, & Lambert, 

2006) 

The Beijing 2008 Summer 

Olympic Games 

Travel characteristics of local 

Beijing residents and 

spectators in game time 

Beijing Olympic 

transport model 

(BOTM) 

Questionnaire survey 
(Yan, Yang, & Fu, 

2010) 

Collapse of I-35W bridge over 

Mississippi river 

Investigate aggregate traffic 

patterns and underlying 

travelers preference 

Regression analysis 

Loop detector, bus 

ridership and survey 

data 

(Zhu, Levinson, Liu, 

& Harder, 2010) 

Incident data from December 

2007 to September 2008 at 

motorway A13, Delft in the 

Netherlands 

Travel behavior under 

exceptional conditions 
Data analysis 

Loop detectors data, 

Questionnaire and 

simulator set-up 

(Knoop, 

Hoogendoorn, & 

Zuylen, 2010) 

Researcher defined network 

conditions 

Vulnerability of road network 

under disruptions 
Grid-based analysis 

Swedish national travel 

demand model system 

(Jenelius & Mattsson, 

2012) 

Road maintenance, City of 

York, England 2000 – 2001  

Check the forecasting ability 

of equilibrium model due to 

systematic change in network 

Graphical methods and 

maximum likelihood 

estimation 

License plate survey 
(Watling, Milne, & 

Clark, 2012) 
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Event Main focus  Analysis/Model Data/ Data source Respective literature 

Construction of the West LRT 

line in Calgary, Alberta, 

Canada 2010 – 2012  

Investigate ravel behavioral 

effects of the reduction in 

traffic capacity 

Statistical analysis, 

MNL and SPSS 
Questionnaire survey 

(Kattan, De Barros, & 

Saleemi, 2013) 

Floods at Jalan P. Ramlee road 

in Malaysia in 2013 

Generating route choice 

alternative maps during floods 
GIS based analysis 

Manually taken traffic 

volume data 

(Othman & Hamid, 

2014) 

Hurricane Irene (2011) and 

Sandy (2012) 

Quantitative analysis of traffic 

patterns and highway 

disruptions 

Traffic pattern analysis 

and evacuation 

response models 

Multiple traffic and 

event data  

(Li, Ozbay, & Bartin, 

2015) 

Based on prevailing weather 

condition and it’s forecast at 

mass rapid transit stations, 

Singapore 

Effect of weather conditions 

and weather forecast on 

cycling travel behavior 

Logistic regression 

model and analysis 
Questionnaire survey 

(Meng, Zhang, Wong, 

& Au, 2016) 

Middle East Respiratory 

Syndrome (MERS) outbreak in 

South Korea in 2015 

Influence of public fear of a 

pandemic disease on travel 

behavior 

Data analysis 

Smart card transaction 

data, land values and 

MERS hotspots data 

(Kim, Cheon, Choi, 

Joh, & Lee, 2017) 

Based on the past flood 

experiences of individual 

households in Bangladesh 

Interrelationship between 

changes in travel behavior and 

job and residential location 

under flood disasters 

Structural equation 

modeling (AMOS), 

SPSS software 

Stated preference survey 

data 

(Lu, Zhang, & 

Rahman, 2017) 

MacArthur Maze collapse 

2007 

Evaluate the impacts of closure 

on Bay Area Rapid Transit and 

remaining freeway system 

Analyze the effect on 

BART and toll bridges 
Empirical data 

(Oh, Chung, Park, 

Kim, & Kang, 2017) 
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Most of the above studies have conducted based on steady state analysis and focusing 

towards evacuation or post disaster evaluations. But, in order to have a proper 

understanding on travel behavior within the disaster phase and immediately after the 

disaster, an unsteady modeling approach is needed and this research provides it. Marsden 

et al. suggested based on the evidence on behavioral responses under disrupted transport 

networks that travelers are supposed to take a decision on whether to continue to do the 

activity or change the destination for that activity, use the same mode or change it, 

continue the journey or not, re-organize the activity or postpone, cancel the activity when 

they dealing with a damaged network (Marsden, Anable, Shires, & Docherty, 2016).  All 

these decisions are individual based and taken according to the situation where each 

individual face in. Along with, in order to assess travelers’ consciousness of route 

characteristics, to predict future traffic conditions on transportation networks, to predict 

travelers’ behavior under different policy measures, and to delineate the effect of traffic 

information, to enhance the route choice part of traffic assignment methods, modeling 

travelers’ route choice behavior becomes mandatory. 

 

2.4 Data scarcity and probe data 

Having an accurate completed data set is key for conducting a comprehensive research. 

Traffic conditions are extremely transient specially surrounding the affected structures 

after natural or manmade disasters. Hence, collecting real time data become more 

difficult though they are very important for inclusive studies. On the other hand, it is not 

given the immediate priority to collect data just after the occurrence of a disaster (Iida, 

Kurauchi, & Shimada, 2000), sharing and coordinating of information during disasters 

(Bharosa, Lee, & Janssen, 2010; Steenbruggen, Nijkamp, Smits, & Mohabir, 2012). 

Hence, those data limitations frustrate inclusive studies (Giuliano & Golob, 1998).  

The data collected through questionnaire surveys (Helton, Kemp, & Walton, 2013) and 

travel surveys (Giuliano & Golob, 1998) might have accuracy problems due to memory 

decay and emotional trauma of the disaster. Hence collecting accurate data under 

disastrous conditions becomes bit worried and difficult. Meanwhile, data collection 

techniques have been improved over the past six decades from face-to-face interviews or 

paper-and-pencil interviews to collecting from social media (Hara, 2015; Maghrebi, 

Abbasi, Rashidi, & Waller, 2015), open street map (Bono & Gutierrez, 2011) and probe 

technology (Shafique & Hato, 2016).  

Probe person technologies are defined as “integrated technologies designed for recording 

people’s awareness and behaviors in real urban space” in Japan society of traffic 

engineers probe research group website (Hato, 2007). Coming in to the contest of probe 

taxi data which this study use, it comprises global positioning system (GPS) trajectories 

of taxi trips. Probe data provides highly accurate and detailed data for comprehensive 

researches and hence, it is being widely used in transportation studies around the world. 

Route identification and travel time prediction using probe car data (Miwa, Sakai, & 

Morikawa, 2004), predicting bus arrival time (Sun & Fu, 2007) and evaluating road 

network from the viewpoint of travel time stability and reliability (Uno, Karauchi, 
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Tamura, & Iida, 2009) using probe bus data, path and travel time inference from probe 

taxi data (Hunter, Herring, Abbeel, & Bayen, 2009) are some of the examples. But 

comparative studies on describing unsteady travel behavior under differential disastrous 

networks based on probe data are very limited in the literature for the best of my 

knowledge and that is one of the gap which this thesis is filled on. Khan et al. have made 

a traffic congestion analysis by using probe taxi data (Khan, Wisetjindawat, Fujita, & 

Suzuki, 2013) but that is very different from our research. 
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3 Model framework and sensitivity analysis 

Sequential time discount rate is estimated through the β – scaled recursive logit model 

(Oyama, Chikamatsu, Shoji, Hato, & Koga, 2016) as a generalization of drivers’ 

decision-making dynamics and a representation of degree of spatial cognition of networks. 

β – SRL model is a generalized version of recursive logit model (Fosgerau, Frejinger, & 

Karlstrom, 2013). Mathematical formulation of RL model and β – SRL model are 

described in detail under this chapter. 

 

3.1 Recursive logit model 

The RL corresponds to a dynamic discrete choice model and the path choice is formulated 

as a sequence of link choices. At each node in the network, the individual chooses the 

utility-maximizing link, where the utility is the sum of the instantaneous link cost, the 

maximum expected utility to the destination and i.i.d. extreme value type I error terms. 

Therefore, attributes of the RL model are attributes of the links in the network and they 

are specified to be link-additive, such that the utility of a path is the sum of the utility of 

each link in the path (Zimmermann, Mai, & Frejinger, 2017). The formulation of the 

model is described below in detail. 

The road network is considered as a directed connected graph, 𝐺 = (𝐴, 𝑁) where 𝐴 and 

𝑁 denote the set of links and the set of nodes respectively. More precisely, a set of 

absorbing links without successors, corresponding to the observed destinations, is added 

to 𝐴. Network nodes are junctions, interchanges, origins and destinations of trips. Links 

are denoted as 𝑎𝑗+1, 𝑎𝑗 ∈ 𝐴.  Each link pair (𝑎𝑗 , 𝑎𝑗+1) where 𝑎𝑗+1 ∈ 𝐴(𝑎𝑗), has a 

deterministic utility component 𝑣(𝑎𝑗+1|𝑎𝑗), based on the attributes 𝑥(𝑎𝑗+1|𝑎𝑗) of the link 

pair. Hence, considering an individual 𝑛, traveling in the aforementioned network, the 

instantaneous random utility of a link 𝑎𝑗+1  conditionally on being in state 𝑎𝑗 can be 

defined as; 

                                𝑢𝑛(𝑎𝑗+1|𝑎𝑗) = 𝑣𝑛(𝑎𝑗+1|𝑎𝑗) + 𝜇𝜀𝑛(𝑎𝑗+1)                                         (3.1) 

where  𝜀𝑛(𝑎𝑗+1) are independent and identically distributed (i.i.d.) extreme value type I 

error terms with zero mean and  𝜇 is a fixed scale parameter. The full utility of link 𝑎𝑗+1 

conditionally on being in state 𝑎𝑗  is determined by sum of the instantaneous utility 

𝑢𝑛(𝑎𝑗+1|𝑎𝑗) associated with each link pair and maximum expected downstream utility to 

the destination link 𝑑, denoted as a value function 𝑉𝑛
𝑑(𝑎𝑗) and defined by the Bellman 

equation (Bellman, 1957). 

𝑉𝑛
𝑑(𝑎𝑗) = E [ max

𝑎𝑗+1∈𝐴(𝑎𝑗)
{𝑣𝑛(𝑎𝑗+1|𝑎𝑗) + 𝑉𝑛

𝑑(𝑎𝑗+1) + 𝜇𝜀𝑛(𝑎𝑗+1)}]      ∀𝑎𝑗𝜖𝐴            (3.2) 
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Hence, upon observing the random term 𝜀𝑛(𝑎𝑗+1), the individual chooses in 𝐴(𝑎𝑗) the 

link 𝑎𝑗+1 which maximizes 𝑢𝑛(𝑎𝑗+1|𝑎𝑗) + 𝑉𝑛
𝑑(𝑎𝑗+1).    

The probability of choosing a link 𝑎𝑗+1 given state 𝑎𝑗  conditionally on going to 

destination 𝑑 is determined by the multinomial logit model and is shown in equation 3.3 

               𝑃𝑛
𝑑(𝑎𝑗+1|𝑎𝑗) =

𝑒
1
𝜇

{𝑣𝑛(𝑎𝑗+1|𝑎𝑗)+𝑉𝑛
𝑑(𝑎𝑗+1)}

∑ 𝑒
1
𝜇

{𝑣𝑛(𝑎𝑗+1
′ |𝑎𝑗)+𝑉𝑛

𝑑(𝑎𝑗+1
′ )}

𝑎𝑗+1
′ ∈𝐴(𝑎𝑗)

                                      (3.3) 

In this case the value function is the logsum; 

𝑉𝑛
𝑑(𝑎𝑗) = {

𝜇 𝑙𝑜𝑔 ∑ 𝛿(𝑎𝑗+1|𝑎𝑗)𝑒
1
𝜇

{𝑣𝑛(𝑎𝑗+1|𝑎𝑗)+𝑉𝑛
𝑑(𝑎𝑗+1)}

,        𝑎𝑗 ∈ 𝐴
𝑎𝑗+1∈𝐴

                                                 0,                                              𝑎𝑗 = 𝑑 

               (3.4) 

where 𝛿(𝑎𝑗+1|𝑎𝑗) is an indicator that equals one if 𝑎𝑗+1 ∈ 𝐴(𝑎𝑗) and zero otherwise. 

𝑉𝑛
𝑑(𝑑) is set to zero as the destination link 𝑑 has no outgoing link. 

The Bellman equation have to be solved in order to calculate the link choice probabilities. 

Hence, equation 3.4 is transformed by taking the exponential, 

𝑒
𝑉𝑛

𝑑(𝑎𝑗)

𝜇 = {
∑ 𝛿(𝑎𝑗+1|𝑎𝑗)𝑒

1
𝜇

{𝑣𝑛(𝑎𝑗+1|𝑎𝑗)+𝑉𝑛
𝑑(𝑎𝑗+1)}

,        𝑎𝑗 ∈ 𝐴
𝑎𝑗+1∈𝐴

                                            1,                                              𝑎𝑗 = 𝑑

                     (3.5) 

Further, the matrix z(|𝐴̃| × 1) and M(|𝐴̃| × |𝐴̃|) are defined as entries, 

                        𝑧𝑎𝑗
= 𝑒

𝑉𝑛
𝑑(𝑎𝑗)

𝜇  , 𝑀𝑎𝑗𝑎𝑗+1
= 𝛿(𝑎𝑗+1|𝑎𝑗)𝑒

𝑣𝑛(𝑎𝑗+1|𝑎𝑗)

𝜇                                       (3.6) 

The value functions are the solutions to the following equation; 

𝐳 = 𝐌𝐳 + 𝐛                                                                                (3.7) 

where 𝐛(|𝐴̃| × 1) is a vector with zero value for all steps except for the destination, 

which is equal to one (Fosgerau, Frejinger, & Karlstrom, 2013).  

The equation 3.7 can be reformulated as below; 

(𝑰 − 𝑴)𝐳 = 𝐛                                                                                (3.8) 
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Where an identity matrix is denoted by 𝑰. Correspondingly, if (𝑰 − 𝑴) is invertible, the 

system has a solution. If so, the value function for each destination can be determined by 

solving a system of linear equations. 

 

3.2 β – scaled recursive logit model 

Oyama et al. (Oyama, Chikamatsu, Shoji, Hato, & Koga, 2016) included the concept of 

sequential time discount rate (β), as a generalization of drivers’ decision-making 

dynamics and a representation of the degree of spatial cognition of networks, as a 

parameter in RL model. Accordingly, the equation 3.2 was re-formulated; 

𝑉𝑛
𝑑(𝑎𝑗) = E [ max

𝑎𝑗+1∈𝐴(𝑎𝑗)
{𝑣𝑛(𝑎𝑗+1|𝑎𝑗) + 𝛽𝑉𝑛

𝑑(𝑎𝑗+1) + 𝜇𝜀𝑛(𝑎𝑗+1)}]      ∀𝑎𝑗𝜖𝐴           (3.9) 

𝛽 is the sequential time discount rate of the value function, and it is assumed to be vary 

between zero and one. 

Accordingly, the probability of choosing a link 𝑎𝑗+1 given state 𝑎𝑗 conditionally on going 

to destination 𝑑 is determined by the multinomial logit model and the equation 3.3 was 

re-formulated as shown in equation 3.10 

𝑃𝑛
𝑑(𝑎𝑗+1|𝑎𝑗) =

𝑒
1
𝜇

{𝑣𝑛(𝑎𝑗+1|𝑎𝑗)+𝛽𝑉𝑛
𝑑(𝑎𝑗+1)}

∑ 𝑒
1
𝜇

{𝑣𝑛(𝑎𝑗+1
′ |𝑎𝑗)+𝛽𝑉𝑛

𝑑(𝑎𝑗+1
′ )}

𝑎𝑗+1
′ ∈𝐴(𝑎𝑗)

                            (3.10) 

The decision-making dynamic of a driver is expected to be illustrated through the 

variation of sequential time discount rate and is graphically represented in Figure 3.1 

 

Figure 3.1 Graphical representation of different states of sequential time discount rate 

When 𝛽  equals to one, it is assumed that drivers are fully knowledgeable about the 

downstream conditions and hence they are able to evaluate the expected utility of forward 
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space 𝑉 and the instanteneous utility of the next link 𝑣, with equal weights. Accordingly, 

the route choice behaviour depends on global decision over the network. In the case of 𝛽 

equals to zero as shown in Figure 3.1 (b), drivers are expected to unaware about the 

downstream link and their conditions. Hence, they are supposed to myopically choose 

the next link based only on instantaneous utility 𝑣.  

In the intermediate state, which displayed in Figure 3.1 (c), drivers could evaluate the 

expected utility of forward space 𝑉 up to a certain extent. In most of the normal traveling 

conditions, drivers don’t have the perfect information on the downstream links but they 

are knowledgeable up to a certain percentage. Therefore, variability of the sequential time 

discount rate become crucial. Further, when it becomes a disastrous condition, the 

information which could drivers get become lesser and hence the sequential time discount 

rate is expected to be have a lower value. 

For solving the Bellman equation, closer steps are carried out as stated in the solving 

process of RL model. Accordingly, the equation 3.9 is transformed by taking the logsum, 

𝑒
𝑉𝑛

𝑑(𝑎𝑗)

𝜇 = {
∑ 𝛿(𝑎𝑗+1|𝑎𝑗)𝑒

1
𝜇

{𝑣𝑛(𝑎𝑗+1|𝑎𝑗)+𝛽𝑉𝑛
𝑑(𝑎𝑗+1)}

,        𝑎𝑗 ∈ 𝐴
𝑎𝑗+1∈𝐴

                                            1,                                              𝑎𝑗 = 𝑑

                    (3.11) 

Further, based on the RL model, defined the matrix z(|𝐴̃| × 1) and M(|𝐴̃| × |𝐴̃|) with 

the entries in equation 3.6. Consequently, the value functions are the solutions to the 

following system of non-linear equations with the sequential time discount rate, 

𝑧𝑎𝑗
= {

∑ 𝑀𝑎𝑗𝑎𝑗+1
(𝑧𝑎𝑗+1

)
𝛽

 ,         𝑎𝑗 ∈ 𝐴
𝑎𝑗+1∈𝐴

                          1 ,                              𝑎𝑗 = 𝑑 

                                  (3.12) 

This can be written in matrix notations, 

𝐳 = 𝐌𝐗(𝐳) + 𝐛                                                                                (3.13) 

where X(𝐳)(|𝐴̃| × |𝐴̃|) is the matrix with entries 𝑋(𝑧)𝑎𝑗
= (𝑧𝑎𝑗

)
𝛽

. The equation 3.13 is 

solved by iterative process until the value function reaches a fixed point (same method is 

found in Mai et al., 2015 (Mai, Fosgerau, & Frejinger, 2015)). First initialize the vector 

𝐳(0) and then update as 𝐳(1) = 𝐌𝐗(𝐳(𝟎)) + 𝐛  . When 𝐳  converges, i.e., if it satisfies 

|𝐳(𝒏+𝟏) − 𝐳(𝒏)| < 𝛾, where 𝛾 is the convergence tolerance, finish the iteration, otherwise 

update 𝐳  in equation 3.12. It is known that, when 𝛽 < 1,  equation 3.13 reaches a 

contraction mapping (Rust, 1994) and the problem has a unique fixed-point solution. 

When 𝛽 = 1, as stated in Fosgerau et al. (2013), it depends on the balance between the 

network structure and the size of the instantaneous utilities 𝑣(𝑎𝑗+1|𝑎𝑗). 
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3.3 Sensitivity analysis of sequential time discount rate 

As indicated in the previous section, sequential time discount ratio is changing based on 

the network condition. Hence, this property can be utilized to determine the network 

assignment in disastrous conditions. Therefore, in this section, it is expected to illustrate 

the sensitivity of sequential time discount rate based on a sample network under different 

scenarios. The considered sample network and its features are shown in Figure 3.2.  

 

Figure 3.2 Original status of the considered sample network 

In the Figure 3.2, the links are numbered from 𝑙1 to 𝑙14 respectively from origin link to 

destination link. The cost of each link is indicated within the parenthesis. Only the 

distance was considered for the link utility and distance parameter was assumed as -1. 

Five scenarios as the original network conditions shown in Figure 3.2, introducing low 

cost links at the downstream, introducing high cost links at the downstream, introducing 

low cost links near the origin and introducing high cost links near the origin are examined 

in order to analyse the influence of sequential time discount rate on traveller’s route 

choice decisions. Flow generation at the origin was hypothesised as 1000 vehicles for 

each case. All together six routes are available to reach the destination from the origin as 

route 1 (𝑙1, 𝑙2, 𝑙3, 𝑙6, 𝑙11, 𝑙14), route 2 (𝑙1, 𝑙2, 𝑙5, 𝑙8, 𝑙11, 𝑙14), route 3 (𝑙1, 𝑙2, 𝑙5, 𝑙10, 𝑙13, 𝑙14), 

route 4 (𝑙1, 𝑙4, 𝑙7, 𝑙8, 𝑙11, 𝑙14) , route 5 (𝑙1, 𝑙4, 𝑙7, 𝑙10, 𝑙13, 𝑙14)  and route 6 

(𝑙1, 𝑙4, 𝑙9, 𝑙12, 𝑙13, 𝑙14).  

 

3.3.1 Analysis of the original network condition 

The sample network shown in Figure 3.2 was used to determine the assignment results 

based on three status of sequential time discount rate as, 𝛽 = 0, 𝛽 = 0.5, 𝛽 = 1 under 
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the recursive logit framework. The results are shown in Figure 3.3. Arrow thicknesses 

were drawn proportional to the flow in each link.   

 

Figure 3.3 Assignment results for the original network condition 

Under the prevailing network conditions, the total route costs and the route choice 

probabilities were calculated by using the link choice probabilities as explained in 

equation 2.19 in chapter 2 and tabulated in Table 3.1 

Table 3.1 Route choice probabilities under different scenarios of sequential time discount 

rate for the hypothetical network 

Route 

No. 
Link connectivity Route cost 𝛽 = 0 𝛽 = 0.5 𝛽 = 1 

1 𝑙1, 𝑙2, 𝑙3, 𝑙6, 𝑙11, 𝑙14 8 0.250 0.144 0.074 

2 𝑙1, 𝑙2, 𝑙5, 𝑙8, 𝑙11, 𝑙14 7 0.183 0.204 0.201 

3 𝑙1, 𝑙2, 𝑙5, 𝑙10, 𝑙13, 𝑙14 8 0.067 0.075 0.074 

4 𝑙1, 𝑙4, 𝑙7, 𝑙8, 𝑙11, 𝑙14 6 0.267 0.354 0.433 

5 𝑙1, 𝑙4, 𝑙7, 𝑙10, 𝑙13, 𝑙14 7 0.098 0.130 0.159 

6 𝑙1, 𝑙4, 𝑙9, 𝑙12, 𝑙13, 𝑙14 8 0.134 0.092 0.059 

 

Hence, when travellers choose routes based on their cost, they should select route 4 since 

it is least costed. Correspondingly, when the sequential time discount rate equals to one, 

its probability become highest and accordingly, a major flow can be observed along the 

links connecting route 4. Meanwhile, travellers are supposed to made their route choices 

based on the myopic decisions when the sequential time discount rate is equal to zero. 

Accordingly, the assignment results under 𝛽 = 0, indicates that travellers have chosen 

the next link based on the instantaneous utility without concerning the downstream link 

features. Further, the probability of choosing the least costed route has dropped 

considerably, while high cost route like route 1, has increased its choosing probability. 

In addition, the assignment results along with the route choosing probabilities under the 
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condition 𝛽 = 0.5, show the intermediate status of route choosing and the low-cost links 

𝑙7, 𝑙8 seems to be good links.  

 

3.3.2 Analysis by introducing low cost links at downstream 

Under this scenario, two low cost links were introduced at the downstream. Precisely, the 

cost of each links, link 𝑙6 and 𝑙11 were set to 0.5. The revised network is shown in Figure 

3.4.  

 

Figure 3.4 Revised network after introducing low cost links at downstream 

Then the route costs, route choice probabilities and the network flows were determined 

under the aforementioned three stages of sequential time discount rate. The route costs, 

route choice probabilities are tabulated in Table 3.2 while the respective assignment 

results are shown in Figure 3.5 

Table 3.2 Route choice probabilities under different scenarios of sequential time discount 

rate for the hypothetical network after adding low cost links at the downstream 

Route 

No. 
Link connectivity Route cost 𝛽 = 0 𝛽 = 0.5 𝛽 = 1 

1 𝑙1, 𝑙2, 𝑙3, 𝑙6, 𝑙11, 𝑙14 5.0 0.250 0.221 0.191 

2 𝑙1, 𝑙2, 𝑙5, 𝑙8, 𝑙11, 𝑙14 5.5 0.183 0.172 0.147 

3 𝑙1, 𝑙2, 𝑙5, 𝑙10, 𝑙13, 𝑙14 8.0 0.067 0.030 0.012 

4 𝑙1, 𝑙4, 𝑙7, 𝑙8, 𝑙11, 𝑙14 4.5 0.267 0.413 0.547 

5 𝑙1, 𝑙4, 𝑙7, 𝑙10, 𝑙13, 𝑙14 7.0 0.098 0.072 0.045 

6 𝑙1, 𝑙4, 𝑙9, 𝑙12, 𝑙13, 𝑙14 8.0 0.134 0.092 0.059 
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Figure 3.5 Assignment results after introducing low cost links at downstream 

As stated in the previous section also, travelers choose the links based on separated link 

costs when the sequential time discount rate is equal to zero. Correspondingly, 

introducing low cost links at the downstream has made no influence to the route choice 

probabilities and assignment results under the condition 𝛽 = 0. On the other hand, when 

they select the links based on route-based cost from origin to destination when the 𝛽 = 1, 

high probability is being assigned and a major flow can be seen through the lowest cost 

route, which is route 4.  

 

3.3.3 Analysis by introducing high cost links at downstream 

Two high cost links were introduced at downstream, in order to examine the route choice 

probabilities and link flow variability under the different status of sequential time 

discount rate. Accordingly, the cost of each link 𝑙12 and 𝑙13 were doubled as their usual 

cost. The revised network is shown in Figure 3.6 

 

Figure 3.6 Revised network after introducing high cost links at downstream 
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Then the route costs, route choice probabilities and the network flows were determined 

under the aforementioned three stages of sequential time discount rate. The revised route 

costs and route choice probabilities are calculated and included in Table 3.3 while the 

respective assignment results are shown in Figure 3.7 

Table 3.3 Route choice probabilities under different scenarios of sequential time discount 

rate for the hypothetical network after adding high cost links at the downstream 

Route 

No. 
Link connectivity Route cost 𝛽 = 0 𝛽 = 0.5 𝛽 = 1 

1 𝑙1, 𝑙2, 𝑙3, 𝑙6, 𝑙11, 𝑙14 8 0.250 0.144 0.074 

2 𝑙1, 𝑙2, 𝑙5, 𝑙8, 𝑙11, 𝑙14 7 0.183 0.245 0.263 

3 𝑙1, 𝑙2, 𝑙5, 𝑙10, 𝑙13, 𝑙14 10 0.067 0.033 0.013 

4 𝑙1, 𝑙4, 𝑙7, 𝑙8, 𝑙11, 𝑙14 6 0.267 0.475 0.611 

5 𝑙1, 𝑙4, 𝑙7, 𝑙10, 𝑙13, 𝑙14 9 0.098 0.064 0.030 

6 𝑙1, 𝑙4, 𝑙9, 𝑙12, 𝑙13, 𝑙14 12 0.134 0.038 0.009 

 

 

Figure 3.7 Assignment results after introducing high cost links at downstream 

As seen in the previous condition, here also we cannot observe any difference in the route 

choice probabilities and assignment results under the condition of 𝛽 = 0. But, it can be 

observed that a larger flow has being assigned to a high cost link. Precisely, the cost of 

𝑙13 is largest under the condition but it has assigned a flow of 299. Hence, this indicated 

that myopic decisions can lead to a wrong route selection and the congestion of the high 

cost link could be further increased. Meanwhile, with the condition of 𝛽 = 1, it can be 

seen that the link flow through the high cost links have kept under lower values and the 

lowest cost route has given the highest chosen probability.  
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3.3.4 Analysis by introducing low cost links near the origin 

Having understand the influence on changes in downstream, here it is introduced two low 

cost links near the origin. Accordingly, the link cost of each link 𝑙4 and 𝑙9 were reduced 

to half of its original cost. The revised network is shown in Figure 3.8 

 

Figure 3.8 Revised network after introducing low cost links near the origin 

Based on the new network, route costs and choice probabilities are included in Table 3.4 

while calculated link flows under different conditions of sequential time discount rate are 

visualized in Figure 3.9 

Table 3.4 Route choice probabilities under different scenarios of sequential time discount 

rate for the hypothetical network after adding low cost links near the origin 

Route 

No. 
Link connectivity Route cost 𝛽 = 0 𝛽 = 0.5 𝛽 = 1 

1 𝑙1, 𝑙2, 𝑙3, 𝑙6, 𝑙11, 𝑙14 8.0 0.091 0.036 0.012 

2 𝑙1, 𝑙2, 𝑙5, 𝑙8, 𝑙11, 𝑙14 7.0 0.067 0.051 0.034 

3 𝑙1, 𝑙2, 𝑙5, 𝑙10, 𝑙13, 𝑙14 8.0 0.025 0.019 0.012 

4 𝑙1, 𝑙4, 𝑙7, 𝑙8, 𝑙11, 𝑙14 4.5 0.226 0.353 0.477 

5 𝑙1, 𝑙4, 𝑙7, 𝑙10, 𝑙13, 𝑙14 5.5 0.083 0.130 0.175 

6 𝑙1, 𝑙4, 𝑙9, 𝑙12, 𝑙13, 𝑙14 5.0 0.509 0.412 0.289 
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Figure 3.9 Assignment results after introducing low cost links near the origin 

As per the Table 3.4 and Figure 3.9 indicates, travelers have unexploited the lowest cost 

route with myopic decisions under the condition of 𝛽 = 0 . Meanwhile, under the 

condition of 𝛽 = 1 , where the global decision is given the priority, travellers have 

avoided the high cost routes (route 1, 2 and 3) by giving them lesser probabilities. Further, 

a larger flow has assigned to the lowest link near the origin and it has captured the lowest 

cost route later. 

 

3.3.5 Analysis by introducing high cost links near the origin 

Under this section, two high cost links were introduced near the origin. Correspondingly, 

the cost of each link, 𝑙2 and 𝑙3 were revised as twice their original values. The amended 

network is shown in Figure 3.10 

 

Figure 3.10 Revised network after introducing high cost links near the origin 
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As per the new network shown in Figure 3.10, route 1 becomes the highest cost route 

with a cost of 12 while route 4 is the lowest with a cost of 6 which is half of the longest 

route. The route costs and recursive logit link probabilities are shown in Table 3.5. 

Table 3.5 Route choice probabilities under different scenarios of sequential time discount 

rate for the hypothetical network after adding high cost links near the origin 

Route 

No. 
Link connectivity Route cost 𝛽 = 0 𝛽 = 0.5 𝛽 = 1 

1 𝑙1, 𝑙2, 𝑙3, 𝑙6, 𝑙11, 𝑙14 12 0.014 0.005 0.001 

2 𝑙1, 𝑙2, 𝑙5, 𝑙8, 𝑙11, 𝑙14 9 0.077 0.048 0.028 

3 𝑙1, 𝑙2, 𝑙5, 𝑙10, 𝑙13, 𝑙14 10 0.028 0.017 0.010 

4 𝑙1, 𝑙4, 𝑙7, 𝑙8, 𝑙11, 𝑙14 6 0.471 0.571 0.639 

5 𝑙1, 𝑙4, 𝑙7, 𝑙10, 𝑙13, 𝑙14 7 0.173 0.210 0.235 

6 𝑙1, 𝑙4, 𝑙9, 𝑙12, 𝑙13, 𝑙14 8 0.237 0.149 0.086 

 

Then the assignment flows were calculated in recursive logit framework and illustrated 

in Figure 3.11 

 

Figure 3.11 Assignment results after introducing high cost links near the origin 

As seen in the previous scenarios, here also it is visualized that major flow has taken 

place through the lowest cost route under the route-based decision-making process, where 

𝛽 = 1 by assigning a higher route selection probability. Meanwhile, comparatively larger 

flows have assigned to high cost links under the myopic decisions with lesser 𝛽.  

Having made a sensitivity analysis by incorporating different status of sequential time 

discount rate and various link cost combinations, it was visualized the importance or the 

impact of sequential time discount rate in determining network assignments. Hence, this 

feature can be utilized to predict network assignments in real networks in real time. 

Therefore, testing the stability (chapter 4), performance (chapter 5) of the sequential time 

discount rate under different network conditions and determine sequential time discount 

rate in disastrous networks (chapter 6) are essential. 
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3.4 Conclusions and discussions 

In this chapter, theoretical framework of recursive logit model (Fosgerau, Frejinger, & 

Karlstrom, 2013) and 𝛽 − scaled recursive logit model (Oyama, Chikamatsu, Shoji, Hato, 

& Koga, 2016) were explained in detail. Then a sensitivity analysis was carried out over 

the 𝛽 − scaled recursive logit model. Three status of sequential time discount rate were 

used as 𝛽 = 0, 𝛽 = 0.5 𝑎𝑛𝑑 𝛽 = 1 for understanding the link assignments under each 

condition. A sample network with changing link costs were utilized to succeed the 

aforementioned purpose.  

A directed connected hypothetical network having six routes to reach the destination from 

the origin was considered for the analysis. Five scenarios as the original network 

conditions (Figure 3.2), introducing low cost links at the downstream, introducing high 

cost links at the downstream, introducing low cost links near the origin and introducing 

high cost links near the origin were used for the analysis. Route choice probabilities and 

link assignments under the recursive logit framework indicated that myopic decisions 

become crucial when the 𝛽 = 0 and link choices being made based on the separated link 

costs. Further it clearly visualized the worst impacts of myopic decisions for route 

choosing by assigning larger flows to high costs links. This could lead to make heavy 

congestions in congested links. In addition, its further showed that making changes at 

downstream has no impact on the network assignments under the myopic decisions.  

Meanwhile, higher values of sequential time discount rate always made the route choice 

decisions considering route-based decisions from origin to destination. Hence, it was 

clearly visualized that under the condition of  𝛽 = 1, larger flows being assigned to low 

cost routes as they were given higher probabilities. As a conclusion, the analysis clearly 

showed the impact of sequential time discount rate on predicting link assignments under 

different circumstances. Therefore, having estimate sequential time discount rate for real 

networks become very important.   
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4 Comparison and stability analysis of sequential time 

discount rate 

4.1 Introduction 

Parameter stability is essential for drawing conclusions or making inference on 

estimation results. Basically, an econometric random utility model is described by its 

parameters and hence, model stability is equivalent to the parameter stability. Making 

predictions based on a stable model is indispensable especially in disastrous networks as 

they are expected to cause significant delays in traffic networks and cost human lives, in 

addition to, consume time, fuel and increase environmental pollution. 

Model stability has been discussed in the literature based on various models e.g. (Lee, 

Heydecker, Kim, & Park, 2017; Huang, Liu, & H, 2010; Gao, Zhang, & Lou, 2016; 

Cantarella & Watling, 2016; Zhang & Nagurney, 1996) and model parameters (Zhuang, 

Fukuda, & Yai, 2007) as it is an essential criterion for practical usage of the model. Hence 

this chapter is basically focused on testing the stability of sequential time discount rate 

along with travel time and right turn dummy variable parameters of the 𝛽 −SRL model, 

which has not done in the past. Then propose model limitations and stability for usage 

under different circumstances involve in route choice problems especially in unsteady 

travel conditions. Further, it is expected to identify the characteristics of sequential time 

discount rate under the different network conditions.   

Parameter stability was initially tested under moving time and random sampling under 

different sampling rates. Then the random sampling technique was applied under the 

following criteria; 

 In different time zones considering morning peak, day peak and evening peak 

 In unsteady state by considering the cumulative link delay time of trips under the 

categories less than 5 minutes, between 5 – 10 minutes and over 10 minutes 

 In different areas (networks) such as Toyosu where some events of the 2020 

Olympic games will be conducted, city center of Tokyo basically in an area inside 

of ring road 8, and in suburbs or considering an area outside of the ring 8 road. 

Set up of the stability analysis is shown in Figure 4.1 as a schematic diagram.   
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Figure 4.1 Set up of the stability analysis 

4.2 Comparing and testing criteria 

Initially, t-statistics and parameter signs of estimations are checked as a usual practice. 

Then distributions under each category shown in Figure 4.1 (10 trips, 20 trips and 30 

trips) are visually compared by using graphs. Basically, the difference between minimum 

and maximum estimations and the mean were compared at this stage. Thereafter, the 

distributions are compared by using statistical parameters such as variance (VAR), 

standard deviation (SD), relative standard deviation (RSD), coefficient of variation (CV), 

standard error of the mean (SEM) and true value ( 𝜇 ) by using below mentioned 

relationships.   

𝑉𝐴𝑅 =
∑(𝑥𝑖−𝑥̅)2

𝑛−1
 ,                 𝑆𝐷 = √

∑(𝑥𝑖−𝑥̅)2

𝑛−1
 ,           𝑅𝑆𝐷 =

𝑆𝐷

𝑥̅
 ,                  𝐶𝑉 =

𝑆𝐷

𝑥̅
×

100% ,  

 𝑆𝐸𝑀 =
𝑆𝐷

√𝑛
  ,                          𝜇 = 𝑥̅ ± 𝑡

𝑆𝐷

√𝑛
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where 𝑥̅ is the mean of the sample, 𝑛 is the number of samples and 𝑡 is the critical value 

which equals to 2.26 for 95% confidence (degree of freedom is 9 and two sided) (van 

Reeuwijk & Houba, 1998). 

In addition, the asymptotic 𝑡 test, which is usually carry out for checking the equality of 

individual coefficients between two market segments (Ben-Akiva & Lerman, 1985), was 

performed for examining the parameter equality within each sample. Market 

segmentation is basically used in the field of economics where they segment the 

consumers based on key demographics such as age, gender, income level, marital status 

and beyond to identify who share similar needs and wants. Since here we have segmented 

the samples, the technique can be adopted for comparison. Asymptotic 𝑡 values were 

calculated based on equation 4.1 (Ben-Akiva & Lerman, 1985).      

                                                    𝑡 =
𝛽1 − 𝛽2

√𝑣𝑎𝑟(𝛽1) + 𝑣𝑎𝑟(𝛽2)
                                                  (4.1) 

where 𝛽𝑖  is an estimated parameter. It is possible that all the 𝑡  values become 

insignificant indicating that there are no significant differences between the estimated 

parameters and it is the hypothesis too.  

 

4.3 Comparison and stability analysis 

4.3.1 Stability analysis by moving time 

Sequential time discount rate together with travel time and right turn dummy variable 

parameter were estimated through the 𝛽 −SRL model by using the probe taxi data 

collected in Tokyo on 11th March 2011 (an extended explanation on data is given in 

chapter 6 under the section 6.2 Data). The estimated area belongs to the regional mesh 

code 533946 which consisted 3653 nodes and 4776 links. The parameters are varying 

over the time as the network behavior is changed. Hence the objective here is to scrutinize 

the variability of model parameters over the shorter periods of time and test the parameter 

stability along with the model performance. In usual practice, we estimate model 

parameters on hourly basis and Figure 4.2 visualized the variation of sequential time 

discount rate for the period from 12:00 to 15:00 hours in JST. 
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Figure 4.2 Variation of sequential time discount rate in each hour 

Based on the Figure 4.2, it can be explained that sequential time discount rate has 

decreased from 13:00 to 14:00 indicating some congestion and released by next hour. 

Instead of this analysis, we could have a better explanation by estimating over moving 

time. Hence, the analysis with moving time is performed by slicing one-hour periods, 

shifting with 10 minute intervals between the consecutive samples for a continuous 

period of 03 hours. Precisely, 13 samples were simulated from 12:00 to 15:00 hrs., as 

starting first sample from 12:00 to 13:00, second sample from 12:10 to 13:10 etc. and 

finishing with 13th sample from 14:00 to 15:00 JST on 11th March 2011. Each sample 

consisted number of trips 15, 18, 19, 18, 19, 19, 20, 14, 17, 17, 15, 14, and 24 respectively. 

The resulted estimations are shown in Table 4.1 
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Table 4.1 Estimation results of  𝛽 for different time periods 

Sample No. Sampling period 𝛽 t-value 𝜌2 

1 12:00 – 13:00 0.410 -2.236 0.19 

2 12:10 – 13:10 0.424 -2.208 0.26 

3 12:20 – 13:20 0.493 -1.831 0.39 

4 12:30 – 13:30 0.502 -1.410 0.39 

5 12:40 – 13:40 0.413 -1.825 0.24 

6 12:50 – 13:50 0.433 -2.178 0.30 

7 13:00 – 14:00 0.275 -2.509 0.15 

8 13:10 – 14:10 0.400 -2.276 0.24 

9 13:20 – 14:20 0.378 -2.676 0.25 

10 13:30 – 14:30 0.276 -2.864 0.18 

11 13:40 – 14:40 0.408 -2.381 0.29 

12 13:50 – 14:50 0.409 -2.370 0.29 

13 14:00 – 15:00 0.500 -2.348 0.53 

 

The t-statistics are significant and likelihood ratio indices (𝜌2) are above 0.15 in most of 

the simulations. 𝜌2 is an index which measure the goodness-of-fit informally as a fraction 

of an initial log likelihood value explained by the model. More precisely, it measures how 

well the model performs with its estimated parameters when compared with the model in 

which all the parameters are zero (Train, 2003). 𝜌2 is calculated as; 

                                                    𝜌2 = 1 −
𝐿𝐿(𝛽̂)

𝐿𝐿(0)
                                                                   (4.2) 

where 𝐿𝐿(0) is the value of the log likelihood function when all the parameters are zero 

and 𝐿𝐿(𝛽̂) is the value of the log likelihood function when its maximum. 𝜌2 is somewhat 

analogous to 𝑅2 used in regression analysis but they are not same. Normally 𝜌2 produces 

smaller values compare to the 𝑅2 and values over 0.15 are considered as satisfactory. 

This is also known as the McFadden's pseudo-R squared (McFadden D. , 1974). Values 

will depend on the model which used for estimations and has more usage when it 

compared the estimations that used the exact same set of data. The variation of the 

respective estimations is plotted and showed in the Figure 4.3 
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Figure 4.3 Variation of sequential time discount rate over the moving time 

In comparison with Figure 4.2, the Figure 4.3 clearly visualized the variation of 

sequential time discount rate over the tiny periods of time. Precisely, it indicates 

increasing tendencies during the periods from 12:20 to 13:30 and 14:00 to 15:00. Further, 

it shows decreasing tendencies during the periods from 13:00 to 14:00 and 13:30 to 14:30. 

In addition, simulation results proved the model consistency of producing better 

estimations for sequential time discount rate over the moving time. The results indicate 

the variation of drivers’ decision-making dynamics over the time.  

More importantly, the stability of the sequential time discount rate was tested through the 

asymptotic 𝑡  test. 𝑡  values were calculated based on equation 4.1 and the respective 

results are tabulated in Table 4.2 
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Table 4.2 𝑡 values of asymptotic 𝑡 test between estimations  

Sample 1 2 3 4 5 6 7 8 9 10 11 12 

1             

2 -0.02            

3 -0.10 -0.08           

4 -0.10 -0.08 -0.01          

5 0.00 0.01 0.09 0.09         

6 -0.03 -0.01 0.07 0.08 -0.02        

7 0.14 0.15 0.23 0.22 0.13 0.16       

8 0.01 0.03 0.11 0.11 0.01 0.04 -0.13      

9 0.04 0.06 0.15 0.14 0.04 0.07 -0.11 0.03     

10 0.15 0.16 0.24 0.23 0.14 0.17 0.00 0.13 0.12    

11 0.00 0.02 0.11 0.10 0.01 0.03 -0.14 -0.01 -0.04 -0.15   

12 0.00 0.02 0.10 0.10 0.00 0.03 -0.14 -0.01 -0.04 -0.15 0.00  

13 -0.12 -0.10 -0.01 0.00 -0.10 -0.09 -0.25 -0.13 -0.17 -0.28 -0.13 -0.13 

 

Magnitudes of all the 𝑡 values tabulated on Table 4.2 are less than 1.65 and hence, they 

all are insignificant. This indicates that there are no significant differences between the 

estimated sequential time discount rates in each sample. Precisely, the model estimations 

are stable.  

Along with sequential time discount rate, two other parameters, travel time and right turn 

dummy variable were also estimated. The respective estimations are shown in Table 4.3 

  



38 

 

Table 4.3 Estimation results of travel time (TT) and right turn dummy (RT) parameter 

for different time periods 

Sample 

No. 

Sampling 

period 

Travel time Right turn dummy 
𝜌2 

Estimate t value Estimate t value 

1 12:00 – 13:00 -0.087 -1.836 -0.770 -3.407 0.19 

2 12:10 – 13:10 -0.223 -3.374 -0.827 -3.244 0.26 

3 12:20 – 13:20 -0.229 -3.123 -1.061 -3.753 0.39 

4 12:30 – 13:30 -0.179 -2.497 -0.936 -2.957 0.39 

5 12:40 – 13:40 -0.166 -2.564 -0.823 -2.861 0.24 

6 12:50 – 13:50 -0.245 -3.624 -0.868 -3.432 0.30 

7 13:00 – 14:00 -0.202 -3.552 -0.770 -3.261 0.15 

8 13:10 – 14:10 -0.193 -3.554 -0.746 -3.146 0.24 

9 13:20 – 14:20 -0.260 -4.483 -0.966 -3.977 0.25 

10 13:30 – 14:30 -0.262 -4.466 -1.092 -4.240 0.18 

11 13:40 – 14:40 -0.239 -3.946 -1.209 -4.221 0.29 

12 13:50 – 14:50 -0.241 -3.929 -1.184 -4.126 0.29 

13 14:00 – 15:00 -0.407 -4.903 -1.656 -4.988 0.53 

 

As Table 4.3 indicates, both parameters, travel time and right turn dummy variable have 

achieved the expected sign which is minus. This indicates the peoples dislikeness to 

increase of travel time or make right turns. The t statistic values are significant for all the 

samples. All the 𝜌2 values are equal or greater than 0.15 which indicates the goodness of 

fit of the data to the model. Then the temporal changes of the parameters were visualized 

as parameter ratios, travel time ratio [ 𝜃𝑇𝑇/(𝜃𝑇𝑇 + 𝜃𝑅𝑇) ] and right-turn ratio 

[𝜃𝑅𝑇/(𝜃𝑇𝑇 + 𝜃𝑅𝑇)]. Since the utility function was formed including these two parameters 

or in other words, the link utility was calculated based on the link travel time and the right 

turns, it is not justifiable to compare them individually or independently. Hence the 

respective ratios were used for the comparison purpose and is shown in Figure 4.4 
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Figure 4.4 Variation of parameter ratios with moving time 

As Figure 4.4 illustrates, there is no any significant fluctuation movement in both 

parameter ratio curves during the considered period of time. Along with, the results prove 

the model consistency of producing better estimations with the moving time. More 

importantly, they all are stable throughout the considered period. In summary, by using 

this analysis under moving time, it can be concluded that the results are able to figure out 

the tiny variations of each parameters and they all are stable throughout the considered 

period. 

 

4.3.2 Stability analysis by sampling rate 

Number of trips in a sample has a huge impact on the estimation time of sequential time 

discount rate. In general, with a personnel computer having 32 GB RAM, 3.60 GHz 

processor with Windows 10 operating system, randomly sampled 30 trips sample take 

about 25 – 35 hours for completing a simulation. This reduces to 15 – 25 and 10 – 15 for 

20 trips and 10 trips samples respectively. Therefore, finding the minimum number of 

trips for a stable estimation is very important for saving the time and obtaining a better 

result. Hence, sampling rate is crucial and made under 03 categories as 10 trips, 20 trips 

and 30 trips. Randomly sampled 10 trips were included in each of the 10 samples under 

all three categories and estimated through 𝛽 – SRL model. The sample formulation is 

visualized in Figure 4.5.  
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Figure 4.5 Formations of samples for simulating under sampling rate 

The probe taxi data collected in Tokyo on 11th March 2011 from 15:00 to 17:00 hrs. JST 

was used for the analysis. The period was selected based on the availability of taxi trips 

and there were 49 trips in the main sample. Maximization of the log-likelihood function, 

within the estimation process, consume more time when the number of links in the 

network are high. Hence, network reduction is necessary in order to achieve a smooth 

estimation process. Accordingly, a reduced area which includes 2616 nodes and 3438 

links was used for parameter estimation. Estimated results of sequential time discount 

rate for each of above categories are displayed respectively in Table 4.4. 𝜌2 indicates the 

likelihood ratio index for each sample and is above 0.15 in most of the cases. 
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Table 4.4 Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.177 -2.401 0.16 0.337 -3.452 0.25 0.326 -4.951 0.22 

2 0.249 -3.558 0.24 0.256 -3.540 0.19 0.159 -5.186 0.16 

3 0.182 -2.770 0.20 0.249 -3.502 0.19 0.233 -4.857 0.16 

4 0.106 -2.865 0.31 0.144 -3.516 0.17 0.187 -4.340 0.14 

5 0.423 -1.809 0.28 0.258 -4.327 0.25 0.256 -4.412 0.19 

6 0.186 -4.590 0.34 0.249 -3.999 0.22 0.122 -3.831 0.13 

7 0.144 -4.106 0.29 0.111 -2.345 0.12 0.150 -5.052 0.18 

8 0.345 -2.765 0.30 0.095 -3.405 0.22 0.223 -5.593 0.18 

9 0.192 -3.021 0.18 0.177 -4.134 0.22 0.219 -5.937 0.18 

10 0.178 -1.714 0.12 0.271 -3.959 0.19 0.133 -4.017 0.15 

The t-statistics for all estimations are significant. Since all these samples are randomly 

sampled and independent from each other, for the easiness of visual observation, the 

estimated values of sequential time discount rate are sorted and plotted as shown in Figure 

4.6. Hence the horizontal axis of the Figure 4.6 contains the sorted sample number for 

each category and it is not equal to the sample number appeared in the Table 4.4 
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Figure 4.6 Variation of sequential time discount rate with random sampling 

Sequential time discount rate varies between zero to one and hence, the vertical axis of 

the Figure 5.6 is kept under that limitations to illustrate the ranges where it varies. As 

data referred to a congested time after the occurrence of great east Japan earthquake, 

sequential time discount rate varies in a lower range where means for all three categories 

lies between 0.201 to 0.218. Therefore, drivers’ decision-making behavior during the 

period is more rely on myopic decisions. The distance between the minimum and 

maximum estimations of each category is visualized in same scale for all three categories. 

As Figure 4.6 shows, the gap between the minimum and maximum estimations is 

comparatively high in the 10 trips samples and it indicates the possibility of larger 

deviation from the mean.   

Then, the statistical parameters stated in section 4.2 were calculated and the resulted 

values are presented in Table 4.5 

Table 4.5 Statistical parameters of the samples  

Parameter 10 trips 20 trips 30 trips 

Variance 0.009 0.006 0.004 

Standard deviation 0.096 0.079 0.063 

Relative standard deviation 0.441 0.366 0.315 

Coefficient of variation (%) 44 37 31 

Standard error of the mean 0.030 0.025 0.020 

True value 0.218 ± 0.069 0.215 ± 0.056 0.201 ± 0.045 
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All the considered statistical parameters have decreased when the number of trips in a 

sample is increased from 10 to 20. From 20 to 30, they either decreased or remains same. 

The uncertainty of the estimations or possible fluctuations is expressed by the true value 

and its range get shortened when the number of trips in a sample is increased. All these 

indicates the lessening of the spread of estimations with the increase of number of trips 

within respective samples.  

In addition, the asymptotic 𝑡 test was also carried out based on equation 4.1 and the 

respective 𝑡 values are included in Table 4.6, Table 4.7 and Table 4.8 respectively for 

samples with 10 trips, 20 trips and 30 trips. 

Table 4.6 𝑡 values of asymptotic 𝑡 test between estimations of 10 trips per sample 

Sample 1 2 3 4 5 6 7 8 9 

1          

2 -0.06         

3 0.00 0.06        

4 0.05 0.12 0.05       

5 -0.19 -0.19 -0.21 -0.24      

6 -0.01 0.08 0.00 -0.07 0.26     

7 0.03 0.12 0.03 -0.03 0.28 0.05    

8 -0.14 -0.11 -0.15 -0.19 0.08 -0.20 -0.22   

9 -0.01 0.06 -0.01 -0.06 0.21 -0.01 -0.05 0.15  

10 0.00 0.04 0.00 -0.04 0.15 0.01 -0.02 0.11 0.01 

 

Table 4.7  𝑡 values of asymptotic 𝑡 test between estimations of 20 trips per sample 

Sample 1 2 3 4 5 6 7 8 9 

1          

2 0.11         

3 0.11 0.01        

4 0.21 0.12 0.11       

5 0.12 0.00 -0.01 -0.12      

6 0.12 0.01 0.00 -0.11 0.01     

7 0.16 0.10 0.10 0.02 0.11 0.10    

8 0.23 0.14 0.14 0.04 0.15 0.14 0.01   

9 0.20 0.09 0.08 -0.03 0.10 0.09 -0.05 -0.07  

10 0.09 -0.02 -0.03 -0.14 -0.02 -0.03 -0.11 -0.16 -0.12 
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Table 4.8  𝑡 values of asymptotic 𝑡 test between estimations of 30 trips per sample 

Sample 1 2 3 4 5 6 7 8 9 

1          

2 0.27         

3 0.16 -0.11        

4 0.21 -0.04 0.06       

5 0.12 -0.14 -0.04 -0.09      

6 0.24 0.04 0.12 0.07 0.15     

7 0.27 0.01 0.12 0.05 0.15 -0.03    

8 0.19 -0.10 0.02 -0.05 0.05 -0.12 -0.11   

9 0.21 -0.09 0.02 -0.05 0.06 -0.11 -0.10 0.01  

10 0.24 0.03 0.12 0.06 0.14 -0.01 0.02 0.11 0.11 

 

All the 𝑡 values tabulated on Table 4.6, Table 4.7 and Table 4.8 are insignificant. This 

indicates that there are no significant differences between the estimated sequential time 

discount rates in each category. Precisely, the model estimations are stable. Accordingly, 

considering the visual observations of Figure 4.6, statistical parameters in Table 4.5 and 

asymptotic 𝑡 values, it can be concluded that the 20 trips and 30 trips samples have shown 

more stability compare to the 10 trips samples, while 10 trips samples also have produced 

stable results consistently.  

In addition to the sequential time discount rate, the parameters, travel time and right turn 

dummy variable were also estimated. The resulted estimations are shown in Table 4.9, 

Table 4.10 and Table 4.11 respectively for 10 trips, 20 trips and 30 trips samples. 
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Table 4.9 Estimation results of travel time (TT) and right turn dummy (RT) parameter 

for 10 trips random sampling samples 

Sample 

No. 

Travel time Right turn dummy 
𝜌2 

Estimate t value Estimate t value 

1 -0.151 -3.156 -1.545 -4.018 0.16 

2 -0.190 -4.028 -1.925 -4.976 0.24 

3 -0.132 -2.985 -1.994 -4.468 0.20 

4 -0.281 -3.989 -3.113 -4.844 0.31 

5 -0.105 -2.256 -1.133 -3.116 0.28 

6 -0.281 -4.751 -3.031 -5.334 0.34 

7 -0.237 -4.721 -3.090 -5.543 0.29 

8 -0.227 -3.456 -1.623 -4.083 0.30 

9 -0.145 -3.424 -2.001 -4.899 0.18 

10 -0.096 -2.535 -1.217 -3.235 0.13 

 

Table 4.10  Estimation results of travel time (TT) and right turn dummy (RT) parameter 

for 20 trips random sampling samples 

Sample 

No. 

Travel time Right turn dummy 
𝜌2 

Estimate t value Estimate t value 

1 -0.120 -4.290 -1.766 -6.154 0.25 

2 -0.109 -3.975 -1.933 -6.495 0.19 

3 -0.138 -4.542 -1.773 -6.090 0.19 

4 -0.152 -4.927 -1.837 -6.193 0.17 

5 -0.190 -5.280 -2.134 -6.667 0.25 

6 -0.135 -4.734 -2.244 -7.166 0.22 

7 -0.098 -3.701 -1.459 -5.522 0.12 

8 -0.178 -5.687 -2.473 -7.728 0.22 

9 -0.170 -5.605 -2.280 -7.283 0.22 

10 -0.104 -4.108 -1.728 -6.341 0.19 
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Table 4.11  Estimation results of travel time (TT) and right turn dummy (RT) parameter 

for 30 trips random sampling samples 

Sample 

No. 

Travel time Right turn dummy 
𝜌2 

Estimate t value Estimate t value 

1 -0.110 -5.802 -1.747 -8.742 0.22 

2 -0.144 -7.307 -1.816 -9.809 0.16 

3 -0.106 -5.866 -1.713 -8.726 0.16 

4 -0.106 -5.679 -1.601 -8.208 0.14 

5 -0.104 -5.110 -1.832 -7.896 0.19 

6 -0.097 -5.567 -1.727 -8.734 0.13 

7 -0.148 -6.985 -2.031 -9.744 0.18 

8 -0.138 -7.057 -1.806 -9.697 0.18 

9 -0.156 -7.759 -1.764 -9.918 0.18 

10 -0.099 -5.312 -1.891 -8.650 0.15 

 

The t-statistics under all three categories are significant. The sign of the all estimated 

parameters are minus which is the expected sign. As under the case of sequential time 

discount rate, since all these are randomly sampled, and for the sake of painless 

understanding, the estimated values of parameters are sorted and plotted. The individual 

variations for travel time parameter ratio [𝜃𝑇𝑇/(𝜃𝑇𝑇 + 𝜃𝑅𝑇) ] and right-turn dummy 

parameter ratio [𝜃𝑅𝑇/(𝜃𝑇𝑇 + 𝜃𝑅𝑇) are shown in Figure 4.7 and Figure 4.8 respectively. 

The horizontal axis of the Figure 4.7 and Figure 4.8 contains the sorted sample numbers 

which are not equal to the sample numbers in Table 4.9, Table 4.10 and Table 4.11 
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Figure 4.7 Variation of travel time parameter ratio under random sampling 

Given the congestion of the network when about 2-3 hours after the occurrence of great 

east Japan earthquake, the estimation results show very lower values under the all three 

categories. Precisely, the means of the ratios are 0.082, 0.066 and 0.063 for the categories 

10 trips, 20 trips and 30 trips respectively. This illustrates the difficulty for travelers to 

evaluate the travel time under the so called congested circumstances. Conclusions under 

the explanations of sequential time discount rate are further being supported by these 

variations as 20 trips and 30 trips samples shown much consistency where the variation 

under the 10 trips showed marginal deviation from others. But in overall, the model has 

produced good estimations under all three categories as the variances of those results are 

very small as 0.0003, 0.0001 and 0.0001 respectively for 10 trips, 20 trips and 30 trips 

samples. 
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Figure 4.8 Variation of right turn dummy parameter ratio under random sampling 

As discussed under the Figure 4.7, because of the congestion occurred by the time of 

which the estimations or the data are referred, values of right turn dummy parameter ratio 

stays in high values under the all three sampling techniques. The means are 0.918, 0.934 

and 0.937 for 10 trips, 20 trips and 30 trips samples respectively. This illustrates the 

difficulty of making right turns in a congested environment. Further, Figure 4.8 also 

support the fact that 20 trips and 30 trips samples have made better estimations than the 

10 trips samples as 10 trips estimations contain some deviating results. When it comes to 

the sample variances, they show a much similar pattern the previous parameter ratio. 

Precisely, 0.0003, 0.0001 and 0.0001 for 10 trips, 20 trips and 30 trips samples 

respectively, which indicate the overall quality of the model estimations. Hence, based 

on the variations of all three parameters under the described categories, it can be 

recommended to use 20 trips per sample as a threshold value in order to achieve better 

estimations through the 𝛽 −SRL model. 

 

4.3.3 Stability analysis during the peak time periods 

Peak hour traffic congestion has been identified as a key problem for transport planners 

in many populated cities around the world e.g. (Holyoak & Taylor, 2006; Zhu & Long, 

2016; Noordegraaf & Annema, 2012). Transport infrastructure struggles to handling 

continuously rising demands and hence it is important to carryout studies on behavior 

analysis during these periods. The situation can be further worse when a disaster also 

occurred. Therefore, in this section, it is expected to illustrate the travel behavior analysis 

by using sequential time discount rate along with travel time and right turn dummy 
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parameter through 𝛽 −SRL model at Tokyo based on the probe taxi data collected on 

11th March 2011. The selected area belongs to the secondary mesh code 533946 of the 

region mesh. The average link speed of the selected area was plotted and showed in 

Figure 4.9 

 

Figure 4.9 Variability of average link speed 

The peak times are selected as 7:00 to 9:00 hrs. the morning peak, 10:00 to 11:00 hrs. the 

day peak and 17:00 to 19:00 hrs. the evening peak as highlighted in the Figure 5.9 in light 

blue, orange and green colors respectively. It is a common practice to use a plot of number 

of departures during each hour when analyzing peak hours but since here in this study 

I’m using probe taxi data, it is more suitable for presenting an average link speed plot. 

Because, congestion might have occurred due to all the vehicles running in the network 

including taxies but taxi percentage may less compare to all the vehicles present in the 

network in respective times. 

As per the Figure 4.9 shows, link speed decreases during the morning peak. Then it is 

little stable from 9:00 to 10:00 but again a marginal decreasing is observed during the 

day peak. In the afternoon, the great east Japan earthquake was occurred and link speed 

was continuously decreasing due to the occurred congestion. Evening peak is the time 

where the average link speed is lowest for the day where it drops less than 10 km/h. The 

stability analysis is carried out based on three categories as 10 trips, 20 trips and 30 trips 

samples where 10 randomly sampled trips are included in each sample. A schematic 

diagram of sampling is shown in Figure 4.10 
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Figure 4.10 Schematic diagram of sampling under time zone analysis 

 

4.3.3.1 Stability analysis during morning peak 

Parameter estimations were done based on above sampling at a reduced network in 

aforementioned area where it contains 4556 links and 2967 nodes. The respective results 

for sequential time discount rate under the categories of 10 trips, 20 trips and 30 trips per 

sample are tabulated in Table 4.12. 𝜌2 indicates the likelihood ratio index for each sample. 
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Table 4.12  Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips during 

the morning peak time 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.362 -2.80 0.33 0.320 -4.00 0.28 0.478 -2.75 0.47 

2 0.357 -2.19 0.28 0.284 -4.30 0.28 0.400 -3.91 0.36 

3 0.478 -2.10 0.49 0.299 -3.76 0.29 0.511 -2.80 0.57 

4 0.362 -2.95 0.33 0.475 -2.80 0.49 0.377 -4.09 0.35 

5 0.442 -1.87 0.39 0.376 -3.43 0.29 0.295 -4.52 0.27 

6 0.342 -2.77 0.29 0.338 -3.43 0.30 0.406 -3.92 0.38 

7 0.399 -2.66 0.35 0.355 -3.25 0.32 0.315 -4.24 0.30 

8 0.520 -1.85 0.55 0.313 -3.87 0.28 0.412 -3.56 0.39 

9 0.351 -2.88 0.28 0.353 -3.36 0.30 0.407 -3.83 0.36 

10 0.189 -2.72 0.27 0.445 -2.83 0.45 0.379 -4.28 0.34 

 

As the Table 4.12 shows, the t-statistics are significant for all estimations. 𝜌2 is greater 

than 0.25 in all samples. Since all these are randomly sampled, and for the easiness of 

visual observation, the estimated values of sequential time discount rate are sorted and 

plotted as shown in Figure 4.12. Hence the horizontal axis of the Figure 4.12 contains the 

sorted sample which is not equal to the sample number appeared in the Table 4.12 
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Figure 4.11 Variation of sequential time discount rate with random sampling during 

morning peak 

Morning peak is the time where many trips are started and accordingly the network get 

congested. As the Figure 4.9 indicates, average link speed is dropping from twenties to 

fifteen range and correspondingly the estimations of sequential time discount rate vary in 

a lower range. Precisely, the means are 0.380, 0.356 and 0.398 for 10 trips, 20 trips and 

30 trips samples respectively. Therefore, drivers’ decision-making behavior during the 

period is more rely on myopic decisions than the global decisions. The estimations in 

each category have varied in similar fashion except one 10 trips samples, which showed 

relatively a lower value. The difference between maximum and minimum estimations is 

comparatively higher in 10 trips sample while 20 and 30 trips categories showed a much 

closer and stable variability. Then, the statistical parameters stated in section 4.2 were 

calculated and the resulted values are presented in Table 4.13 

Table 4.13  Statistical parameters of estimated 𝛽 for samples during morning peak time 

Parameter 10 trips 20 trips 30 trips 

Variance 0.008 0.004 0.004 

Standard deviation 0.09 0.06 0.06 

Relative standard deviation 0.24 0.17 0.16 

Coefficient of variation (%) 24 17 16 

Standard error of the mean 0.029 0.020 0.020 

True value 0.380 ± 0.065 0.356 ± 0.044 0.398 ± 0.046 
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Considering the statistical parameters tabulated in Table 4.13, it is clear that 20 trips and 

30 trips samples have produced better results compare to the 10 trips samples. In addition 

to these parameters, asymptotic 𝑡 test also carried out for testing the similarity of the 

estimations. The values indicate that there are no significant differences between the 

estimated sequential time discount rates in each category and hence, the model 

estimations are stable. The resulted 𝑡 values are included in the appendix A.  

 

4.3.3.2 Stability analysis during day peak 

Day peak time was considered as from 10:00 to 12:00 hours and it is the period where 

the lowest average link speed shown in the Figure 4.9 for the first half of the day. 

Sequential time discount rate was estimated based on the same area considered under the 

morning peak analysis and same sampling technique were applied. The respective results 

are inserted in Table 4.14 

Table 4.14 Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips during 

the day peak time 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.175 -2.26 0.15 0.251 -4.03 0.17 0.201 -4.31 0.18 

2 0.108 -1.77 0.15 0.255 -3.52 0.21 0.256 -4.44 0.21 

3 0.511 -1.72 0.57 0.134 -3.29 0.16 0.341 -4.34 0.30 

4 0.165 -2.60 0.25 0.239 -3.57 0.18 0.325 -4.55 0.26 

5 0.051 -1.22 0.16 0.376 -3.80 0.32 0.388 -3.92 0.32 

6 0.151 -2.35 0.22 0.298 -3.97 0.23 0.393 -4.00 0.32 

7 0.286 -2.78 0.21 0.320 -3.57 0.25 0.272 -4.50 0.21 

8 0.229 -2.48 0.19 0.378 -3.21 0.34 0.270 -4.74 0.21 

9 0.318 -2.29 0.21 0.243 -3.81 0.21 0.254 -4.13 0.21 

10 0.150 -2.17 0.18 0.312 -3.71 0.22 0.210 -4.61 0.21 

According to the results shown in Table 4.14, all the t statistics are significant except one 

sample under the 10 trips category. Likelihood ratio indices shown by 𝜌2 are greater than 

or equal to 0.15 for all the samples. The respective variations are then plotted as column 

chart by sorting the estimated values in each category for the convenience of visual 

observation and shown in Figure 4.12. As the samples are sorted, the sample numbers in 

the Figure 4.12 are not exactly same to the sample number appearing in the Table 4.14 
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Figure 4.12 Variation of sequential time discount rate with random sampling during day 

peak 

Day peak time is basically congested due to the work-related trips, shopping trips, 

recreational trips and beyond. As Figure 4.12 illustrates 20 trips and 30 trips samples 

have produced better estimations in comparison with 10 trips samples. Estimations of 10 

trips samples showed higher variability in comparison with 20 and 30 trips samples. Since, 

it is a congested time and accordingly sequential time discount rate showed lower values 

and drivers more rely on their myopic decisions. For further analyzing of the estimations, 

statistical parameters were checked as in the case of the morning peak and the respective 

results are indicated in Table 4.15 

Table 4.15 Statistical parameters of the samples during the day peak time 

Parameter 10 trips 20 trips 30 trips 

Variance 0.017 0.005 0.005 

Standard deviation 0.13 0.07 0.07 

Relative standard deviation 0.61 0.26 0.23 

Coefficient of variation (%) 61 26 23 

Standard error of the mean 0.041 0.023 0.021 

True value 0.214 ± 0.094 0.281 ± 0.052 0.291 ± 0.049 
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As per values of statistical parameters tabulated in Table 4.15, it is certain that 20 trips 

and 30 trips samples have produced more stable results compare to the 10 trips samples. 

Further, asymptotic 𝑡 test also carried out for testing the similarity of the estimations. The 

resulted t values are insignificant and it indicates that there are no significant differences 

between the estimated sequential time discount rates in each category. Precisely, the 

model estimations are stable during the period. The resulted 𝑡 values are included in the 

appendix B. 

 

4.3.3.3 Stability analysis during evening peak 

In comparison with both morning peak and day peak, evening peak is the most congested 

period. It is the case for normal traffic network is concerned, but here even has worst due 

to the occurrence of the great east Japan earthquake. Due to the highly congested network, 

link flows are unsteady and it is very important to analyze the travel behavior. The same 

sampling technique was applied and the same area as in the morning peak and the day 

peak was used. The respective estimations for sequential time discount rate are shown in 

Table 4.16 

Table 4.16 Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips during the 

evening peak time 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.038 -0.93 0.09 0.111 -2.40 0.07 0.146 -3.44 0.12 

2 0.450 -1.73 0.42 0.161 -3.66 0.16 0.407 -3.74 0.31 

3 0.141 -2.39 0.09 0.133 -2.85 0.09 0.168 -3.95 0.14 

4 0.281 -2.24 0.18 0.367 -2.85 0.20 0.100 -2.73 0.06 

5 0.247 -2.70 0.17 0.340 -3.40 0.22 0.205 -3.99 0.14 

6 0.229 -2.31 0.20 0.025 -0.89 0.07 0.108 -4.32 0.18 

7 0.439 -2.16 0.44 0.275 -2.51 0.15 0.279 -4.32 0.20 

8 0.343 -2.73 0.35 0.182 -3.14 0.09 0.032 -1.30 0.06 

9 0.456 -1.81 0.38 0.107 -2.35 0.06 0.317 -4.39 0.22 

10 0.100 -1.95 0.15 0.220 -3.17 0.13 0.167 -3.34 0.10 

According to the results shown in Table 4.16, the t statistics are significant in most of the 

samples under all three categories, precisely one sample has become insignificant in each 

category. Since it is highly congested, the values are expected to be lower than the 

aforementioned two cases, morning peak and day peak. The respective variations are then 

plotted as column charts by sorting the values in each category for the easiness of visual 

observation and shown in Figure 4.13 
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Figure 4.13 Variation of sequential time discount rate with random sampling during 

evening peak time 

As expected, the estimations of sequential time discount rate vary in lesser values, with 

respect to the occurred congestion. Corresponding to the Figure 4.13, 20 trips and 30 trips 

samples have produced quite similar results for all randomly sampled ten samples. 

Meanwhile 10 trips samples have predicted little bit higher values comparatively. Here 

also, it is clear that drivers’ decision-making behavior is more rely on the myopic 

decisions. In addition to visual observations, spreads of the estimations were tested 

through the statistical parameters and the respective results are indicated in Table 4.17 

Table 4.17 Statistical parameters of the samples during the evening peak time 

Parameter 10 trips 20 trips 30 trips 

Variance 0.023 0.012 0.013 

Standard deviation 0.15 0.11 0.11 

Relative standard deviation 0.55 0.57 0.58 

Coefficient of variation (%) 55 57 58 

Standard error of the mean 0.047 0.034 0.036 

True value 0.272 ± 0.107 0.192 ± 0.078 0.193 ± 0.080 

According to the visual observations of Figure 4.13 and the statistical parameters of Table 

4.17, it can be concluded that 20 trips and 30 trips samples have produced more reliable 

and stable results. Moreover, the asymptotic 𝑡  test also carried out for testing the 
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similarity of the estimations. The resulted t values are insignificant and it indicates that 

there are no significant differences between the estimated sequential time discount rates 

in each category. Precisely, the model estimations are stable during the period. The 

resulted 𝑡 values are included in the appendix C. 

In addition, the estimation results of sequential time discount rate under the all three peak 

times, satisfies the congestions at each time visualized in the average link speed diagram 

(Figure 4.9). Precisely, the mean sequential time discount rates for 20 trips and 30 trips 

samples are 0.356 and 0.398, 0.281 and 0.291, 0.192 and 0.193 respectively for morning 

peak, day peak and evening peak. Hence, it indicates that the drivers’ decision-making 

behavior movement towards the myopic decisions as the network congestion get severed.  

 

4.3.4 Stability analysis in unsteady state 

Taxi trips play an important role in urban public transportation to meet the demands of 

people who travel from door to door, and high percentage of them become short distance 

trips (Si, Weng, Chen, & Wang, 2014). Hence, link delay time become a critical factor 

when people make route choices in congested networks. More importantly from the 

travelers’ perspective, the summation of each link’s delay time of entire trip which gives 

the total trip delay time with respect to the free flow condition is more vital. The traffic 

network around Tokyo was heavily congested after the occurrence of great east Japan 

earthquake (explained in detail at chapter 6) and it is sensible to hypothesize that taxi 

passengers are in hurry to reach their destinations. Correspondingly, in the area which 

belongs to the secondary mesh code 533946 of the region mesh that considered for this 

analysis, most of the taxi trips are shorter distance trips. Majority of them are less than 5 

km and hence trip delay time about 10 minutes, 5 minutes or even less become very 

crucial as it could save some lives given the havoc condition. Variation of the taxi trip 

distances is illustrated by plotting number of trips against their distances and shown in 

Figure 4.14 below. 
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Figure 4.14 Variation of number of trips against their trip distances 

Figure 4.14 is drawn based on the probe taxi data belongs to the area of secondary mesh 

code 533946 of the regional mesh collected on 11th March 2011. The period is from 16:00 

to 17:00 hours. As it shows, majority of the taxi trips are shorter distance trips. Precisely, 

for this period and sample, 70% of the trips are less than 5 km. Therefore, delay in 5 or 

10 minutes is become a huge hold back. For a simple example, if a traveler travels at a 

30 km/h speed, he/she will reach 5 km by 10 minutes. If his/her trip is delayed by 10 

minutes, it will cost him twice as the normal time. Hence, understanding travel behavior 

in such a situation where the flow is unsteady and testing the parameter stability is very 

important.  

For this purpose, link delay time was calculated as the difference between the time taken 

under free flow speed and the time taken under the congested speed.  

𝐿𝑖𝑛𝑘 𝑑𝑒𝑙𝑎𝑦 𝑡𝑖𝑚𝑒 = (
𝐿𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑
) − (

𝐿𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ

𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑
)                                  (4.3)          

Since here I’m using taxi data and, respective trips use many types of road sections such 

as expressways, highways, local roads, prefectural roads etc. in the Tokyo network, it is 

necessary to define a common free flow speed. As a solution, 85th percentile of the 

cumulative frequency of link’s speed under the undisturbed condition (data of exactly 

one week after the occurrence of great east Japan earthquake) was used as the free flow 

speed. 85th percentile of the observed speed distributions is more frequently used as 

measure of the operating speed which vehicles are observed operating under free flow 
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conditions (Donnell, Hines, Mahoney, & Porter, 2009; Hou, Sun, & Edara, 2012; Rawson, 

2015; Dinh & Kubota, 2013; Hashim, 2011).   

A reduced area within the aforementioned grid which consisted of 4556 links and 2967 

nodes was selected for the parameter estimation. Link delay time was calculated as above 

equation 4.3 and total delay time was plotted against the number of trips available in the 

sample. Resulted plot is shown in Figure 4.15 

 

Figure 4.15 Distribution of number of trips against their delay time 

As marked in Figure 4.15, three zones were identified based on trip delay time as less 

than 5 minutes, between 5 to 10 minutes and more than 10 minutes, in order to estimate 

the parameters through 𝛽 −SRL model. The sampling was made randomly under the 

three categories as 10 trips, 20 trips and 30 trips per sample. A schematic flow of sampling 

is shown in Figure 4.16 
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Figure 4.16 Schematic diagram of sampling under unsteady state analysis 

 

4.3.4.1 Stability analysis for trips with delay time less than five minutes 

As mentioned early, the trip delay time was calculated as a cumulative value of each 

individual link’s delay time. Hence, obviously, lesser delay time trips are shorter trips. 

The average number of links per trip is about 20 links under all three categories 10 trips, 

20 trips and 30 trips. The model estimations were done by using the 𝛽 −SRL model and 

the respective estimations for sequential time discount rate are shown in Table 4.16   
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Table 4.18 Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips for the 

trips having delay time less than 5 minutes 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.199 -1.60 0.15 0.311 -3.03 0.25 0.239 -3.17 0.16 

2 0.314 -2.17 0.27 0.365 -2.90 0.37 0.293 -3.35 0.23 

3 0.226 -2.12 0.19 0.539 -2.89 0.17 0.221 -3.11 0.15 

4 0.342 -1.58 0.25 0.519 -3.04 0.21 0.278 -3.46 0.22 

5 0.332 -1.84 0.22 0.274 -2.85 0.33 0.416 -3.14 0.43 

6 0.281 -1.84 0.20 0.268 -2.60 0.40 0.336 -3.34 0.25 

7 0.278 -1.78 0.19 0.316 -2.33 0.36 0.385 -2.87 0.31 

8 0.049 -0.91 0.11 0.403 -2.48 0.26 0.309 -3.45 0.22 

9 0.241 -2.07 0.22 0.522 -3.01 0.20 0.322 -3.41 0.28 

10 0.355 -1.67 0.27 0.502 -2.87 0.20 0.366 -3.32 0.33 

As per the results tabulated in Table 4.18, the t statistics are significant in all the samples 

under 20 trips and 30 trips categories while 10 trips category contains some insignificant 

samples. Likelihood ratio index also higher than 0.15 in most of the samples. In order to 

see the variability of sequential time discount rate graphically, column charts were made 

by sorting the values in each category for the easiness of visual observation and shown 

in Figure 4.17 
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Figure 4.17 Variation of sequential time discount rate with random sampling for the trips 

having delay time less than 5 minutes 

As visualized in the previous analysis, here also the difference between minimum and 

maximum estimations are comparatively lower in 20 trips and 30 trips samples. Variation 

also have lesser values when the number of trips in the sample are increased. Further the 

estimated values of sequential time discount rates under 20 trips and 30 trips samples 

have produced much similar results. In addition, spreads of the estimations were tested 

through the statistical parameters and the respective results are indicated in Table 4.19 

Table 4.19 Statistical parameters of the samples with total trip delay time less than 5 

minutes 

Parameter 10 trips 20 trips 30 trips 

Variance 0.008 0.006 0.004 

Standard deviation 0.09 0.08 0.06 

Relative standard deviation 0.35 0.23 0.20 

Coefficient of variation (%) 35 23 20 

Standard error of the mean 0.029 0.024 0.020 

True value 0.262 ± 0.065 0.323 ± 0.053 0.317 ± 0.044 

Statistical parameters in Table 4.19 and visual observations of Figure 4.17 indicate that 

20 trips and 30 trips samples have produced much similar results. 10 trips samples also 

have produced some better results, except one sample which has produced a lower value 
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for sequential time discount rate. In addition, the asymptotic 𝑡 test also carried out for 

testing the similarity of the estimation results. The resulted t values are insignificant for 

all categories and all samples which indicates that there are no significant differences 

between the estimated sequential time discount rates in each category. Precisely, the 

model estimations are stable during the period. The resulted 𝑡 values are included in the 

appendix D. 

 

4.3.4.2 Stability analysis for trips with delay time between five to ten minutes 

In this section, stability of the sequential time discount rate was tested by considering 

little lengthier trips than in the previous section. Precisely, the average length of a trip 

under the previous section was about 1 km while here it is about 1.5 km, considering the 

trips in 30 trips samples. The estimated results of sequential time discount rate are shown 

in Table 4.20 

Table 4.20 Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips for the 

trips having delay time between 5 to 10 minutes 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.118 -1.78 0.13 0.224 -3.53 0.17 0.178 -3.70 0.16 

2 0.110 -1.52 0.10 0.090 -2.09 0.11 0.054 -1.97 0.11 

3 0.010 -0.31 0.14 0.107 -2.63 0.15 0.070 -2.39 0.13 

4 0.068 -1.47 0.15 0.269 -3.48 0.19 0.212 -3.92 0.14 

5 0.465 -2.25 0.47 0.256 -3.34 0.19 0.038 -1.59 0.12 

6 0.081 -1.80 0.19 0.070 -1.99 0.12 0.060 -1.99 0.09 

7 0.251 -2.51 0.17 0.328 -3.51 0.23 0.159 -3.47 0.14 

8 0.185 -2.10 0.17 0.025 -0.84 0.07 0.046 -1.79 0.12 

9 0.396 -2.29 0.30 0.047 -1.50 0.11 0.032 -1.40 0.12 

10 0.095 -1.83 0.11 0.193 -3.25 0.17 0.034 -1.45 0.13 

 

According to the results shown in Table 4.20, t statistics are significant in most of the 

samples under all three categories. Then the estimations are plotted in bar charts and are 

shown in Figure 4.18 
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Figure 4.18 Variation of sequential time discount rate with random sampling for the trips 

having delay between 5 to 10 minutes 

According to the Figure 4.18, 10 trips samples have spread through a larger range 

comparatively. Then it has reduced when it increases the number of trips in the sample. 

Variation is also lower in the 30 trips samples. Further, the aforementioned statistical 

parameters were also calculated to see the spread of estimations in detail. The results are 

indicated in Table 4.21 

Table 4.21 Statistical parameters of the samples with total trip delay time between 5 to 

10 minutes 

Parameter 10 trips 20 trips 30 trips 

Variance 0.022 0.011 0.005 

Standard deviation 0.15 0.11 0.07 

Relative standard deviation 0.84 0.66 0.76 

Coefficient of variation (%) 84 66 76 

Standard error of the mean 0.047 0.034 0.021 

True value 0.178 ± 0.107 0.161 ± 0.106 0.088 ± 0.048 

As visualized in Figure 4.18 and based on the statistical parameters tabulated in Table 

4.21, 30 trips per sample category has produced the more stable results. In addition, its 

spread also less compares to the other two categories. Further, as in the early analysis, 

the asymptotic t test also carried out to see the similarity between the estimations. All the 
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t statistics across all three sampling categories are insignificant. Hence, the model 

estimations are stable during the considered period. The resulted t values are shown in 

appendix E. 

 

4.3.4.3 Stability analysis for trips with delay time over ten minutes 

Taxi trips having cumulative delay time of the links is greater than 10 minutes were 

considered in below analysis. Correspondingly, longer trips, averagely 3 km were 

considered for the estimation of sequential time discount rate. Sampling were performed 

in similar way to the previous cases and estimated the parameters. The respective results 

for 10 trips, 20 trips and 30 trips samples are tabulated in Table 4.22 

Table 4.22 Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips for the 

trips having delay time over 10 minutes 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.068 -1.80 0.05 0.405 -3.91 0.31 0.262 -5.54 0.16 

2 0.478 -2.03 0.43 0.204 -4.46 0.12 0.326 -5.46 0.22 

3 0.421 -3.10 0.41 0.137 -3.81 0.11 0.229 -5.21 0.13 

4 0.381 -3.31 0.29 0.272 -4.75 0.16 0.238 -5.33 0.14 

5 0.367 -3.48 0.33 0.212 -4.51 0.14 0.275 -5.44 0.17 

6 0.024 -0.93 0.06 0.462 -3.37 0.41 0.200 -5.16 0.11 

7 0.494 -2.17 0.52 0.472 -3.26 0.45 0.288 -5.41 0.18 

8 0.359 -2.46 0.20 0.100 -3.03 0.08 0.259 -5.65 0.15 

9 0.478 -2.16 0.44 0.315 -4.24 0.23 0.275 -5.67 0.17 

10 0.386 -3.10 0.28 0.484 -3.38 0.49 0.370 -5.18 0.28 

According to the tabulated results in Table 4.22, all the t statistics under the categories of 

20 trips and 30 trips samples are significant. Under the 10 trips samples, t statistics are 

significant in nine out of ten samples. Then the resulted estimations are plotted in bar 

charts and illustrated in Figure 4.19. For sake of easy observation, the random samples 

are sorted in the bar charts. Hence the sample number shown in Table 4.22 is not the same 

appeared in the horizontal axis of Figure 4.19 
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Figure 4.19 Variation of sequential time discount rate with random sampling for the trips 

having delay over 10 minutes 

As shown in Figure 4.19, 10 trips samples have produced some higher results as well as 

lower results too. Also their difference is comparatively high. Meanwhile 30 trips have 

produced less fluctuated stable results. Further, the statistical parameters were also 

calculated to see the spread of estimations in detail. The results are indicated in Table 

4.23 

Table 4.23 Statistical parameters of the samples with total trip delay time over 10 minutes 

Parameter 10 trips 20 trips 30 trips 

Variance 0.027 0.021 0.002 

Standard deviation 0.17 0.14 0.05 

Relative standard deviation 0.48 0.47 0.18 

Coefficient of variation (%) 48 47 18 

Standard error of the mean 0.052 0.045 0.015 

True value 0.346 ± 0.118 0.306 ± 0.102 0.272 ± 0.035 

In comparison with the results tabulated in Table 4.23 and the visual observations on 

Figure 4.19, 30 trips per sample category has produced the better results. Its variance is 

low as well the spread of the estimations. These trips are longer trips in comparison with 

previous two analyses. Averagely a trip distance was about 3 km consisting about 60 

links per trip. Since the estimated results of sequential time discount rate has a strong 
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relationship with trip distance, results in this section hints the necessity of network 

normalization for further comparisons. Further, as in the early analysis, the asymptotic t 

test also carried out to see the similarity between the estimations. All the t statistics across 

all three sampling categories are insignificant. Hence, the model estimations are stable 

during the considered period. The resulted t values are shown in appendix F. 

 

4.3.5 Stability analysis in different networks 

Stability analysis of the sequential time discount rate was tested under different networks 

under this section. Toyosu area where some of the 2020 Tokyo Olympic games will be 

held was selected as one area. Then another area outside of the ring 8 road was considered 

as the suburbs area. The area closer to the cities Akihabara and Ryogoku was selected as 

an area in the Tokyo city center. The selected areas are shown in Figure 4.20 

  

Figure 4.20 Different areas considered for the analysis 

4.3.5.1 Stability analysis based on the taxi trips in Toyosu area 

As illustrated in chapter 3, sequential time discount rate has great influence in network 

assignment. On the other hand, knowing sequential discount rate would be benefited to 

calculate accurate flows on links under congestions. Hence, with the upcoming 2020 

Olympics, many foreigners will attract to the Toyosu area. Since, Japan is an earthquake 

prone country, knowing sequential time discount rate in the area would be an additional 

advantage. Considered area contained 4312 links and 2734 nodes. Similar sampling 

technique was applied as 10 trips, 20 trips and 30 trips per sample and sequential time 

discount rate was estimated by using 𝛽 −SRL model. The respective results are tabulated 

in Table 4.24 
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Table 4.24 Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips at the 

Toyosu area 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.265 -3.05 0.26 0.245 -3.74 0.26 0.268 -4.64 0.29 

2 0.132 -2.16 0.22 0.289 -4.09 0.30 0.359 -3.96 0.37 

3 0.475 -2.06 0.52 0.311 -4.05 0.31 0.287 -4.62 0.28 

4 0.457 -2.02 0.48 0.265 -4.52 0.29 0.316 -4.50 0.32 

5 0.318 -2.54 0.27 0.233 -4.36 0.25 0.360 -4.41 0.37 

6 0.411 -2.18 0.41 0.220 -4.67 0.29 0.292 -4.91 0.29 

7 0.582 -1.06 0.73 0.245 -4.55 0.27 0.355 -4.17 0.36 

8 0.548 -1.18 0.61 0.266 -4.28 0.26 0.275 -5.34 0.32 

9 0.296 -3.08 0.28 0.254 -4.23 0.32 0.371 -4.03 0.36 

10 0.301 -2.78 0.31 0.291 -4.19 0.29 0.330 -4.82 0.33 

Estimated results tabulated in Table 4.24 evidenced that the t statistics for all the samples 

under 10 trips and 20 trips samples are significant. In addition, many of them are 

significant under 10 trips samples too. Likelihood ratio index also shows higher values 

for all samples. Then, for the visual observation of the spread of the estimated results, 

they were plotted in bar charts and shown in Figure 4.21. For the easiness of the visual 

observation, the random samples are sorted and plotted. Hence, the sample numbers 

appeared in the Table 4.24 are not exactly same to the sorted sample numbers in the 

Figure 4.21 
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Figure 4.21 Variation of sequential time discount rate with random sampling for the trips 

at Toyosu area 

According to the Figure 4.21 illustrates, the estimation results under the 10 trips samples 

have varied over larger range. Meanwhile, 20 trips and 30 trips samples have produced 

better and stable estimations with lesser spread through the samples for sequential time 

discount rate. In addition, their variation also low. Further, the statistical parameters, 

similarly as used in the previous sections were also calculated to see the spread of 

estimations in detail. The results are indicated in Table 4.25 

Table 4.25 Statistical parameters of the estimated samples at Toyosu area 

Parameter 10 trips 20 trips 30 trips 

Variance 0.020 0.001 0.002 

Standard deviation 0.14 0.03 0.04 

Relative standard deviation 0.37 0.11 0.12 

Coefficient of variation (%) 37 11 12 

Standard error of the mean 0.044 0.009 0.012 

True value 0.379 ± 0.100 0.262 ± 0.020 0.321 ± 0.028 

According to the visual observations of Figure 4.21 and based on the statistical 

parameters tabulated in Table 4.25, 20 trips and 30 trips per sample categories have 

produced the more stable results in comparison with 10 trips samples. In addition, their 

spread also less compares to the 10 trips sample results. Further, as in the early analyses, 
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the asymptotic t test also carried out to see the similarity between the estimations. All the 

t statistics across all three sampling categories are insignificant. Hence, the model 

estimations are stable during the considered period. The resulted t values are shown in 

appendix G. 

4.3.5.2 Stability analysis based on the taxi trips in Musashino area 

Musashino area is considered as a suburb area since it is located out of the ring 8 road. It 

is hypothesized that the network behavior will be different from the Toyosu area as it is 

suburbs. The selected area for the parameter estimation consisted 3766 links and 3268 

nodes. Number of links are little less than compare to the Toyosu area while number of 

nodes are little high. Parameter estimations were conducted based on the same sampling 

technique as 10 trips, 20 trips and 30 trips samples and estimated through the 𝛽 − SRL 

model. The respective results are tabulated in Table 4.26 

Table 4.26 Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips at the 

Musashino area 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.314 -1.34 0.05 0.219 -2.01 0.05 0.195 -2.35 0.04 

2 0.150 -1.41 0.04 0.140 -1.69 0.04 0.045 -0.94 0.01 

3 0.125 -1.06 0.02 0.193 -1.83 0.03 0.175 -2.21 0.03 

4 0.131 -1.12 0.01 0.109 -1.48 0.01 0.081 -1.52 0.04 

5 0.121 -1.06 0.01 0.105 -1.37 0.02 0.184 -2.35 0.04 

6 0.180 -1.42 0.02 0.150 -1.01 0.05 0.109 -1.76 0.04 

7 0.053 -0.66 0.01 0.169 -1.78 0.03 0.070 -1.31 0.01 

8 0.455 -0.93 0.14 0.208 -1.75 0.03 0.177 -2.15 0.04 

9 0.062 -0.81 0.05 0.070 -1.02 0.03 0.050 -1.13 0.04 

10 0.065 -0.70 0.01 0.064 -1.12 0.03 0.103 -1.62 0.02 

According to the estimation results tabulated in Table 4.26, the t statistics are all 

insignificant under the 10 trips sample while only five and six samples have significant t 

statistics under the 20 trips and 30 trips categories. This could be happening due to some 

network features. Since estimated value of the sequential time discount rate has a strong 

relationship with the link length, average link length under each sample were compared 

with the Toyosu area based on the 10 trips sample. The results are plotted in a bar chart 

and shown in Figure 4.22 
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Figure 4.22 Comparison of average link size between Musashino and Toyosu areas 

As the Figure 4.22 shows, average link size is considerably low in the Musashino area. 

Precisely, average link size of Musashino area is about 40 m while it is about 65 m in 

Toyosu area. Hence, this finding highlights the necessity of the network normalization. 

(Network normalization will be discussed in detail in Chapter 5). Thereafter, for the 

purpose of pattern comparison, the estimated results are plotted and shown in Figure 4.23. 

In order to compare, the random samples are sorted and plotted. Hence, the sample 

numbers appeared in the Table 4.26 are not exactly same to the sorted sample numbers 

in the Figure 4.23  
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Figure 4.23 Variation of sequential time discount rate with random sampling for the trips 

at Musashino area 

As visualized in Figure 4.23, same pattern which observed in many of the above analyses 

continues here too. The 20 trips and 30 trips samples have produced similar results and 

their variances are also comparatively low. Meanwhile, estimated sequential time 

discount rates under the 10 trips samples vary over larger range. Additionally, the 

statistical parameters, that considered in the previous sections were also calculated to see 

the spread of estimations in detail. The results are indicated in Table 4.27 

Table 4.27 Statistical parameters of the estimated samples at Musashino area 

Parameter 10 trips 20 trips 30 trips 

Variance 0.016 0.003 0.003 

Standard deviation 0.13 0.06 0.06 

Relative standard deviation 0.77 0.39 0.49 

Coefficient of variation (%) 77 39 49 

Standard error of the mean 0.040 0.017 0.019 

True value 0.166 ± 0.091 0.143 ± 0.039 0.119 ± 0.042 

As per the visual observations of Figure 4.23 and based on the statistical parameters 

tabulated in Table 4.27, 20 trips and 30 trips per sample categories have produced the 

more stable results in comparison with 10 trips samples. In addition, their spread also less 

compares to the 10 trips sample results. Further, as in the early analyses, the asymptotic 
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t test also carried out to see the similarity between the estimations. All the t statistics 

across all three sampling categories are insignificant. Hence, the model estimations are 

stable during the considered period. The resulted t values are shown in appendix H. 

 

4.3.5.3 Stability analysis based on the taxi trips in Akihabara area 

The area covering cities like Akihabara and Ryogoku was considered as an area within 

Tokyo city center. The area is congested even under the normal circumstances as many 

people doing shopping and other recreational activities there. Hence, knowing sequential 

time discount rate on those areas are important as well as testing the parameter stability. 

The considered area is consisted with 3827 links and 2456 nodes. The parameter 

estimations were similar to the previous sections and the resulted estimations are 

tabulated in Table 4.28 

Table 4.28 Estimation results of  𝛽 for random sampling of 10, 20 and 30 trips at the 

Akihabara area 

Sample 
10 trips 20 trips 30 trips 

𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 𝛽 t-value 𝜌2 

1 0.420 -1.94 0.32 0.140 -2.79 0.07 0.365 -3.47 0.24 

2 0.376 -1.96 0.29 0.275 -3.07 0.13 0.352 -3.79 0.23 

3 0.231 -2.05 0.12 0.361 -2.99 0.24 0.242 -3.98 0.13 

4 0.507 -1.17 0.46 0.378 -3.05 0.25 0.215 -3.98 0.11 

5 0.147 -2.03 0.10 0.224 -3.13 0.12 0.207 -3.86 0.10 

6 0.381 -2.09 0.29 0.144 -2.44 0.09 0.339 -3.64 0.22 

7 0.286 -2.27 0.20 0.528 -1.80 0.52 0.351 -3.85 0.23 

8 0.132 -1.53 0.06 0.317 -3.19 0.18 0.165 -3.61 0.08 

9 0.021 -0.64 0.05 0.203 -3.27 0.09 0.238 -3.94 0.12 

10 0.343 -2.47 0.19 0.070 -1.96 0.07 0.178 -3.64 0.09 

According to the results presented in Table 4.28, all the t statistics under the 20 trips and 

30 trips samples are well significant. Meanwhile, most of the t statistics of 10 trips 

samples are also significant. The likelihood ratio indices also high in many samples. Then, 

for the visual observation of the spread of the estimated results, they were plotted in bar 

charts and presented in Figure 4.24. For the easiness of the comparison, the random 

samples are sorted and plotted. Hence, the sample numbers appeared in the Table 4.28 

are not exactly same to the sorted sample numbers in the Figure 4.24 
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Figure 4.24 Variation of sequential time discount rate with random sampling for the trips 

at Akihabara area 

As Figure 4.24 shows, 30 trips samples have produced better and stable results for the 

sequential time discount rate. Further, it visualized that 10 trips and 20 trips sample 

results are much closer. But individual value comparisons indicated that 6 of the 10 

samples of 20 trips are much closer to the estimates of 30 trips. In addition, the statistical 

parameters which considered in all other sections too, used to compare the spread of the 

results. The results are indicated in Table 4.25 

Table 4.29 Statistical parameters of the estimated samples at Akihabara area 

Parameter 10 trips 20 trips 30 trips 

Variance 0.023 0.019 0.006 

Standard deviation 0.15 0.14 0.08 

Relative standard deviation 0.53 0.52 0.30 

Coefficient of variation (%) 53 52 30 

Standard error of the mean 0.048 0.043 0.025 

True value 0.284 ± 0.107 0.264 ± 0.098 0.265 ± 0.056 

As seen in the Figure 4.24 and according to the presented results in Table 4.29, 30 trips 

samples have produced better results. Further, as in the early analyses, the asymptotic t 

test also carried out to see the similarity between the estimations. All the t statistics across 
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all three sampling categories are insignificant. Hence, the model estimations are stable 

during the considered period. The resulted t values are shown in appendix I. 

 

4.4 Conclusions and discussions 

Parameter stability is essential for drawing conclusions or making inference on 

estimation results. Hence, chapter 4 was designed focusing on testing the stability of the 

sequential time discount rate under different network conditions. As a usual practice, 

parameter estimations are done hourly basis. Therefore, network changes within an hour 

may not be captured. For an example network, if the estimations are done from 12:00 to 

13:00 and 13:00 to 14:00, the variation from 12:30 to 13:00 may not be correctly 

presented. Hence, it is important to test the model ability to estimate sequential time 

discount rate under moving time. Accordingly, the analysis with moving time is 

performed by slicing one hour periods, shifting with 10 minute intervals between the 

consecutive samples for a continuous period of 03 hours. The results showed, that the 

𝛽 −SRL model is capable of estimating stable and reliable values for sequential time 

discount rate for the entire considered period of time.   

The time consumed for parameter estimation in 𝛽 −SRL model depends on the network 

size used at the time of estimation. The size of the network depends on the spread of the 

trips, which are selected for estimation. Correspondingly, less number of trips will 

provide a small network and hence, the estimation time will reduce. Therefore, finding 

the adequate minimum number of trips for stable estimation is always important for time 

saving. Accordingly, the study was carried out under 03 categories as 10 trips, 20 trips 

and 30 trips. Randomly sampled 10 trips were included in each of the sample and 10 

samples under each category were estimated through 𝛽 – SRL model. The results were 

checked through t statistics, log likelihood ratios at the beginning before plotting them 

for the visual observation. Visual observations together with statistical parameters such 

as variance, standard deviation, true value and so forth illustrated that the 20 trips and 30 

trips samples produced more stable results comparatively to the 10 trips samples. Besides, 

the asymptotic 𝑡 test, which is usually carry out for checking the equality of individual 

coefficients between two market segments, was performed for examining the parameter 

equality within each sample. The resulted t values were insignificant for all the 

considered samples and this indicated that there are no significant differences between 

the estimated sequential time discount rates in each category. Precisely, the model 

estimations are stable. 

Having understood the results under the above sampling rate, 09 travelling conditions 

were selected based on 03 major categories for testing the stability of sequential time 

discount rate. Accordingly, different time zones as morning peak, day peak and evening 

peak, different important networks (areas) as Toyosu area (where the 2020 Olympic 

games will hold), Akihabara area (covering Tokyo city center as an area inside of the ring 

8 road) and Musashino area (as a suburb area outside of the ring 8 road), different size of 

trips considering total trip delay time less than 5 minutes, between 5 to 10 minutes and 
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over 10 minutes were used for estimating and testing the stability of sequential time 

discount rate. Overall results showed that 𝛽 – SRL model estimate better results under all 

03 categories while 20 trips and 30 trips samples always provide stable and reliable 

results compare to the 10 trips samples. Further, the improvements of the results from 10 

trips samples to 20 trips samples was larger in comparison with the improvements from 

the 20 trips samples to 30 trips samples.  
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5 Mathematical characteristics and performance analysis 

5.1 Introduction 

Mathematical formulation of the recursive logit model has briefly discussed in Fosgerau, 

Frejinger, & Karlstrom, 2013 and Zimmermann, Mai, & Frejinger, 2017 while the same 

on the 𝛽 −Scaled recursive logit model has discussed in Oyama, Chikamatsu, Shoji, Hato, 

& Koga, 2016. But in the literature, it has not discussed the mathematical formulation in 

elementary stages of the matrices. Hence, in order to have a better understanding of the 

𝛽 −SRL model and the characteristics of the sequential time discount rate in different 

network settings, it is necessary to reach the element stage of the value function matrices. 

At the beginning of this chapter, unde the section 5.2, we discussed the elementary 

changes in value function in its solving stage. 

Then the performance of the 𝛽 −SRL model and characteristics of sequential time 

discount rate were discussed under different network settings as they were not discussed 

by the previous studies. As discussed in previous chapter, sequential time discount rate 

produced lower values when the network is having shorter distance links. Hence, 

identifying the model performance under normalized networks and different settings of 

link length are important. Normalized network was created by introducing additional 

links and nodes to the existing network in such a way that all the links in the network 

becomes links with a same link cost. Variations of the route choice probabilities under 

the different scenarios of sequential time discount rate and the changes in the 

mathematical formulations of deterministic utility and the value function are discussed in 

details by using a hypothetical network under real and normalized network conditions. 

Further, the variability of sequential time discount rate, log likelihood ratio index and 

model simulation speed were described by using a case study data in real world in 

comparison with real network and normalized network conditions. 

Later part of the chapter is used to analyze model performances with different network 

settings. Scaled network was created by scaling the links length of the network and 

variability of the sequential time discount rate along with other usual entities were tested. 

The results satisfied the respective theoretical explanations. Further, the model was tested 

with the extended link length. Unlike in the scaled condition, in this case, link utility is 

changing in different percentages and the variability of model parameters were studied. 

At the end of the chapter, the influence of the number of links per path was analyzed by 

using three different categories. Randomly sampled samples were used for the analyses 

as trips having number of links less than 25 per trip, trips consisting number of links from 

25 to 50 per trip and trips having number of links over 50 per trip are estimated and 

compared. The results indicated that trips having number of links over 50 per trip 

produces better and stable estimations. Further, the model performances also become 

more stable when the number of links per trip is increased. 
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5.2 Mathematical characteristics 

Mathematical characteristics in the contest of solving value function of the 𝛽 −SRL 

model is explained in this section. The model formulation is discussed in chapter 3 under 

the sections 3.1 and 3.2. As it has stated there, the value functions with respect to each 

link of the considered network can be determined by solving the system of non-liner 

equations with the sequential time discount rate. For the sake of smooth connectivity, 

restate the equation 3.11 and equation 3.12; 

𝑧𝑎𝑗
= {

∑ 𝑀𝑎𝑗𝑎𝑗+1
(𝑧𝑎𝑗+1

)
𝛽

 ,         𝑎𝑗 ∈ 𝐴
𝑎𝑗+1∈𝐴

                          1 ,                              𝑎𝑗 = 𝑑 

                                  (3.11) 

 

This can be written in matrix notations, 

𝐳 = 𝐌𝐗(𝐳) + 𝐛                                                                                (3.12) 

Matrix 𝐳  represents the value functions while matrix 𝐌  represents the components 

related to link utility. X(𝐳)(|𝐴̃| × |𝐴̃|) is the matrix with entries 𝑋(𝑧)𝑎𝑗
= (𝑧𝑎𝑗

)
𝛽

. 𝐛 is a 

single column vector with number of rows equal to the number of links. The values of 

the elements are zero except for the destination, where it is equal to one.  

Let’s consider a hypothetical network in order to have a detail explanation about the 

aforementioned matrices. 

 

Figure 5.1 A hypothetical network 

The hypothetical network shown in Figure 5.1 consists of 9 nodes numbered from 51 to 

59.  It also have 12 node to node connecting links and two dummy links representing the 

origin (𝑙1) and the destination (𝑑). The cost for each link is shown within the parentheses. 

The all links are directed and connected. The network contains 6 different paths which 
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connect the origin and the destination. The paths and their total link costs are stated 

below; 

a) 𝑙1−> 𝑙4−> 𝑙9−> 𝑙12−> 𝑙13−> 𝑑;         𝑐𝑜𝑠𝑡 = 6.0 

b) 𝑙1−> 𝑙4−> 𝑙7−> 𝑙10−> 𝑙13−> 𝑑;         𝑐𝑜𝑠𝑡 = 8.0 

c) 𝑙1−> 𝑙4−> 𝑙7−> 𝑙8−> 𝑙11−> 𝑑;         𝑐𝑜𝑠𝑡 = 7.0 

d) 𝑙1−> 𝑙2−> 𝑙5−> 𝑙10−> 𝑙13−> 𝑑;         𝑐𝑜𝑠𝑡 = 7.5 

e) 𝑙1−> 𝑙2−> 𝑙5−> 𝑙8−> 𝑙11−> 𝑑;         𝑐𝑜𝑠𝑡 = 6.5 

f) 𝑙1−> 𝑙2−> 𝑙3−> 𝑙6−> 𝑙11−> 𝑑;         𝑐𝑜𝑠𝑡 = 5.5 

Accordingly, each path has a different total link cost while path f) having the minimum 

cost and path b) costs the maximum. Then the value functions were derived based on the 

matrices format illustrated in the equation 3.12 and shown Figure 5.2. 
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Figure 5.2 Initial step of the value function matrices  

Value functions with respect to each link is represented in the matrix appears in the left side of the equal sign. Then followed by the 

matrix with the link utilities, matrix including value functions representing downstream utilities and matrix b respectively. 𝛽 represents 

the sequential time discount rate. Denoting the link cost parameter by 𝜃 and considering the cost of each link, the elements of each 

matrices are substituted. The resulted matrices combination is shown in Figure 5.3. 
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Figure 5.3 Second step of the value function matrices  

In Figure 5.3, the value functions are expanded by introducing the parameters for the illustration purpose. Corresponding to the 

hypothetical network shown in Figure 5.1, the travelers who are coming through the links 𝑙2, 𝑙4, 𝑙5 𝑎𝑛𝑑 𝑙7 have to make a decision on 

choosing a links from the two alternative links available at their sinking nodes while other links are straight moving connections.
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Accordingly, the respective value functions have get complexed. Further, the links 𝑙2 𝑎𝑛𝑑 𝑙4 are connected to the links 𝑙5 𝑎𝑛𝑑 𝑙7 where 

they themselves again connecting to a node where they have alternative choices. Correspondingly, the value functions respective to 

the links 𝑙2 𝑎𝑛𝑑 𝑙4 have become more complicated. Therefore, in the real networks where many alternative links exist in number of 

nodes, the calculation process get more complexed and time consumed. Finally, as mentioned in the equation 3.8, the system has a 

solution if (𝑰 − 𝑴) is invertible and it is visualized in Figure 5.4. 

 

Figure 5.4 The system of matrices for solving value functions  
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5.3 Performance analysis 

Understanding the performance of 𝛽 −SRL model and characteristics of sequential time 

discount rate is very important in analyzing the existing results and generating future 

networks. Hence, this section provides a network performance analyses in a normalized 

network in comparison with a real network by including real and hypothetical networks, 

in scaled networks, in extended networks and based on the number of links in trips. 

 

5.3.1 Performance based on normalized network 

5.3.1.1 Based on a hypothetical network 

Performance of the 𝛽 −SRL model is analyzed and compared in between a real network 

and a normalized network. A hypothetical network consisting 9 nodes and 14 links 

(including dummy links for origin and destination) was used as the original network as a 

real case. The considered network is shown in Figure 5.5 below. 

 

Figure 5.5 Network settings of the hypothetical real network 

Since the link cost of the immediate links to the origin have a considerable influence on 

the link choice probability in recursive logit approach, they were set unequally. Six routes 

are available to reach the destination link from the defined origin link. The links costs 

were set in such a way one route is having minimum cost while another one having the 

maximum cost. The other four routes having total route cost in between and two of them 

are similar to each other separately. The route choice probabilities of the hypothetical 

network under the different scenarios of sequential time discount rate were calculated 

and tabulated with total route costs in Table 5.2 below.  
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Table 5.1 Route choice probabilities under different scenarios of sequential time discount 

rate for the hypothetical network 

Route 

No. 
Link connectivity Route cost 𝛽 = 0 𝛽 = 0.5 𝛽 = 1 

1 𝑙1, 𝑙4, 𝑙9, 𝑙12, 𝑙13, 𝑑 7 0.134 0.180 0.233 

2 𝑙1, 𝑙4, 𝑙7, 𝑙10, 𝑙13, 𝑑 9 0.036 0.034 0.031 

3 𝑙1, 𝑙4, 𝑙7, 𝑙8, 𝑙11, 𝑑 8 0.098 0.093 0.086 

4 𝑙1, 𝑙2, 𝑙5, 𝑙10, 𝑙13, 𝑑 8 0.144 0.100 0.059 

5 𝑙1, 𝑙2, 𝑙5, 𝑙8, 𝑙11, 𝑑 7 0.391 0.273 0.159 

6 𝑙1, 𝑙2, 𝑙3, 𝑙6, 𝑙11, 𝑑 6 0.197 0.319 0.433 

 

As Table 5.1 indicated, under the myopic decisions when the sequential time discount 

rate is equal to zero, travelers have unable to capture the lowest costed route. On the other 

hand, when the sequential time discount rate is given values, high probabilities are 

allocated the lowest costed roads. Thereafter, in order to visualize the flow in each link, 

the network flows were generated assuming 1000 travelers traveling from same origin to 

the same destination. The respective link flows under the real network condition is shown 

in Figure 5.6.  

 

Figure 5.6 Assignment results for the hypothetical real network 

As the Figure 5.6 illustrated, lesser flow can be seen in the lowest costed route under the 

condition of 𝛽 = 0. Meanwhile, its opposite phenomena can be seen in link 8 and 10 

where they are carrying relatively a larger flow even though they are having high link 

cost. Hence this reveals that myopic decisions can cause problems in congested networks.  

When it moves to the situation where 𝛽 = 1, given the knowledge on the downstream 

links, traffic on low cost links have improved. Precisely the three low cost paths, route 1, 

route 5 and route 6 are carrying the higher traffic with higher probabilities. Meanwhile, 

the route selection probability on high cost routes have significantly reduced (route 2, 

route 3 and route 4). Having observed the link traffic variation on the real network, the 

aforementioned hypothetical network was normalized. The network is normalized in such 
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a way that the cost of each link is 1. Additional nodes and links were introduced for 

succeeding the aforementioned purpose and the network revision is visualized in Figure 

5.7 below. 

 

Figure 5.7 Conversion of the original network to the normalized network 

As shown in the Figure 5.7, the revised hypothetical network contains 24 links including 

dummy links for origin and destination. Further it has 19 nodes. As shown by the arrows, 

all the high costed links were divided in to equal costed links in order to set all the links 

to a same cost. Same routes as mentioned in Table 5.1 were considered even though 

currently they are having different link numbers. But the total route cost for each and 

every route remains same as in the original network. Then the route choice probabilities 

were calculated under the 𝛽 −scaled recursive logit framework and they are tabulated in 

Table 5.2 with the route cost with revised link combinations. 

Table 5.2 Route choice probabilities under different scenarios of sequential time discount 

rate for the normalized hypothetical network 

Route 

No. 
Link connectivity 

Route 

cost 
𝛽 = 0 𝛽 = 0.5 𝛽 = 1 

1 𝑙1, 𝑙6, 𝑙7, 𝑙8, 𝑙15, 𝑙21, 𝑙22, 𝑙23, 𝑑 7 0.250 0.207 0.167 

2 𝑙1, 𝑙6, 𝑙7, 𝑙8, 𝑙11, 𝑙16, 𝑙17, 𝑙18, 𝑙19, 𝑙23, 𝑑 9 0.125 0.146 0.167 

3 𝑙1, 𝑙6, 𝑙7, 𝑙8, 𝑙11, 𝑙12, 𝑙13, 𝑙14, 𝑙20, 𝑑 8 0.125 0.146 0.167 

4 𝑙1, 𝑙2, 𝑙3, 𝑙9, 𝑙16, 𝑙17, 𝑙18, 𝑙19, 𝑙23, 𝑑 8 0.125 0.146 0.167 

5 𝑙1, 𝑙2, 𝑙3, 𝑙9, 𝑙12, 𝑙13, 𝑙14, 𝑙20, 𝑑 7 0.125 0.146 0.167 

6 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙10, 𝑙20, 𝑑 6 0.250 0.207 0.167 
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As shown in Table 5.2, route choice probabilities have changed remarkably even though 

their total link costs were unchanged. Under the myopic decisions where sequential time 

discount rate is zero, link is chosen based on the cost of the immediate links that are 

connected to the respective source node. Since all the links are having same cost in the 

normalized network, it is allocated same probability at for each alternative link. Hence 

when two alternative links are available, the model allocated 0.5 probability for choosing 

each link. Since, route 2, 3, 4 and 5 passing through two decision making points, their 

path choice probability is multiplied by 0.5 an additional time than the route 1 and 6.  

Then the link flows were determined assuming 1000 travelers travelling from same origin 

to same destination as in the case of original network. The Figure 5.8 (a), (b) and (c) show 

the link flow variations respectively for the cases where sequential time discount rate 

equals to 0, 0.5 and 1. 

 

         (a)            (b) 
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        (c) 

Figure 5.8 Assignment results for the hypothetical normalized network under the 

different scenarios of sequential time discount rate 

As shown in part (a) of the Figure 5.8, link flow has divided to half at each decision-

making node when the sequential time discount is zero. When the sequential time 

discount rate is increased, it can be observed that the route choice probabilities are also 

normalizing among the routes. At the peak of sequential time discount rate where it is 

equal to one, it can be noticed that all the routes are given equal selection probability 

irrespective of their initial total route costs. This happens, at the normalized stage, as the 

network reduces to a smaller network where it only considered the decision making links. 

According to the above concerned network, all routes become combinations of 4 links 

(excluding origin and destination links), where total route cost become 4 for all routes. 

Hence, under the condition of route-based decisions, model allocates same probability 

for all routes. Therefore, this clearly stressed that the calculation of the sequential time 

discount rate is highly correlated with the link costs.  

In the aforementioned analysis, only the link length was the difference between the real 

network and the normalized network as the speed was kept unchanged. If the link speed 

of the normalized network was adjusted in such a way that it would produce the same 

link travel time as in the real network, the model is expected to produce the same 

sequential time discount rate.  

 

5.3.1.2 Based on an actual network 

As far as an actual network is concerned, it is extremely difficult to normalize and set up 

the network for simulation purpose. Precisely, the link length varies in a larger range and 
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accordingly, normalizing become a real headache. As an example, the lowest link length 

of the below considered network is 1 m while the maximum link length is 1079 m. Hence, 

as a reasonable approach, the normalized network is generated by adopting the average 

link length of the entire network to the all links in the network. The chosen routes are 

kept same for all the analyses while same parameters are considered in the utility function. 

Precisely, the only difference between the networks is the link length, as real network 

keeps the original link lengths while the normalized network having the network average 

link length. The analyses were done based on the probe taxi data collected in Tokyo on 

11th March 2011 from 15:00 to 17:00 hrs. JST. The used network contained 2616 nodes 

and 3438 links. Randomly sampled 20 trips were included in samples which were used 

for the analyses. The respective estimation results are shown in Table 5.3 

Table 5.3 Estimation results of real and normalized networks 

Real Network 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

𝛽 0.337 0.256 0.249 0.177 0.111 0.249 

t – value -3.45 -3.54 -4.00 -4.13 -2.34 -3.50 

𝜌2 0.24 0.19 0.22 0.22 0.12 0.19 

Lc -292.4 -280.3 -262.8 -313.2 -245.0 -317.2 

LL -220.1 -228.1 -211.9 -245.3 -216.6 -248.3 

Simulation 

time (hrs.) 12.8 10.4 10.1 10.8 15.1 9.70 

Normalized Network 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

𝛽 0.131 0.028 0.042 0.025 0.021 0.075 

t – value -3.11 -1.32 -1.68 -1.36 -0.078 -2.25 

𝜌2 0.27 0.25 0.30 0.30 0.18 0.28 

Lc -264.2 -266.7 -250.0 -303.1 -242.1 -303.0 

LL -194.0 -199.2 -180.4 -211.7 -199.6 -210.9 

Simulation 

time (hrs.) 10.1 8.9 8.5 9.5 11.4 9.3 

 

LL is the value of log-likelihood function at the estimated parameters and Lc is its value 

when all the parameters are equal to zero. Sequential time discount rate, rho-squared 

value (likelihood ratio index) and simulation time were then compared among six 

samples by using bar charts. These samples are independent samples and hence there is 

no connectivity among themselves.  
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(a) Comparison of sequential time discount rate 

As mentioned, sequential time discount rate was estimated by using six samples for a real 

network and a normalized network. The comparison of the sequential time discount rate 

is shown as bar charts in Figure 5.9. 

 

 

Figure 5.9 Comparison of sequential time discount rate between real and normalized 

network 

As per the Figure 5.5 illustrates, the estimated sequential time discount rates for 

normalized networks show smaller values in comparison with the same of the real 

network. Sequential time discount rate under the real network situation has determined 

according to the actually chosen routes. The same route choices were kept unchanged in 

the normalized situation and it reduces the usage of travelers’ knowledge on downstream 

links when they are choosing the links of normalized network. Correspondingly, the 

sequential time discount rate shows smaller values than the real network situation.   

 

(b) Comparison of rho-squared value 

Rho-squared values of the aforementioned samples are compared here. The respective 

variations are illustrated as bar chart in Figure 5.10 below. 
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Figure 5.10 Comparison of rho-squared value between real and normalized network 

According the Figure 5.10, rho-squared values have improved with the normalized 

network in all tested samples. As stated in the previous chapter (chapter 4), rho-squared 

value is calculated by deducting the ratio between the value of the log likelihood function 

when its maximum and the value of the log likelihood function when all the parameters 

are zero (no model condition), from 1.  

As a result of normalizing the network and keeping the same route choices as in the actual 

network, the magnitude value of the log-likelihood function at the estimated parameters 

and when all the parameters are equal to one, is stayed at lower values in all the samples 

(Table 5.3). Hence the ratio between the log-likelihood function at the estimated 

parameters and when all the parameters are equal to one is calculated as a lower value in 

comparison with the real network values. Therefore, the respective rho-squared values 

stay in higher for all the estimated samples. 

 

(c) Comparison of calculation speed 

When considering the model performance, calculation speed becomes a crucial factor. 

Hence calculation speed of the 𝛽 −SRL model was compared between a real network 

and a normalized network by utilizing the simulation time of the aforementioned samples. 

The respective elapsed time periods were plotted as column charts and shown in Figure 

5.11 below. 
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Figure 5.11 Comparison of simulation time between real and normalized network 

As Figure 5.9 indicates, calculation time showed a lesser value when it simulates over 

the normalized network in comparison with the real network. This means that since all 

the links are having similar length in the normalized network, computer needs lesser 

memory for the calculation and accordingly the model has reached the optimization stage 

with a lesser time. For more details, let’s consider the mathematical changes in the 

deterministic utility and value function matrices which are shown in Figure 5.12 and 

Figure 5.13 respectively. The values are respect to the hypothetical network considered 

in section 5.1 (taken as real network) and the normalized hypothetical network in section 

5.3 (taken as normalized network). 
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Figure 5.12 Element changes of the deterministic components matrices in between real 

and normalized network 

𝑝 and 𝑞 are the links of each network and the elements represent the deterministic utility 

of the forward link when moving from one link to other. Rows of the matrices represent 

the source links while columns are respected to the sinking link. As visualized by the 

valued elements in matrices of Figure 5.12, the deterministic components of the real 

network vary based on the observed link characteristics of each link. Meanwhile the 

valued elements of the matrix of normalized network contains the same value as the 

network is normalized. Both these matrices can be recognized as sparse matrices where 

most of the elements are zero. From the nonzero elements, the elements in the normalized 

matrix are similar to each other while the nonzero elements in the real network are having 

different values. This is benefited in the process of calculation and it gives a 

computational advantage. Let’s visualize the elementary changes in the value function 

matrices in Figure 5.13 below. 
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Figure 5.13 Element changes of the value function matrices in between real and 

normalized network 

The elements of the above matrices are represented the calculation relationships of 

determining the value function of each link. Origin links are represented at the top of the 

matrices while the last row represented the destination link. Hence the value function 

there is always zero by the definition. As indicated in the Figure 5.13 above, the value 

function elements with respect to the real network are always depend on each link cost 

and hence they are different from each other. In addition, they have a high complexity 

too. Meanwhile the respective elements in the normalized network, show a similar pattern 

even though they are different to each other. Since the link utility has normalized in the 

normalized network, calculation process becomes easier and can increase the computer 

efficiency. Even though the normalized network is extended with additional links, their 

decision making nodes remain unchanged as the real network. In this analysis, the number 

of links are kept same and same route choices were considered. Therefore, the calculation 

time showed a lesser value in comparison with the real network situation for the all 

considered samples.  

In addition, the calculation speed of the model thoroughly depends on the performance 

of the computer used. Hence, different computer gives different calculation time for the 

same set of samples even though it produces the same result. Sometimes, there is an 
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uncertainty that even the same computer utilizes different period of time for simulating 

based on its usage during the period of simulation. Precisely, if a considerable amount of 

computer memory has been allocated for some other program, calculation time of the 

model could be increased. This was tested by simulating some samples twice under the 

different conditions, such as using the computer for usual works while model calculation 

is in progress and without using the computer for any other works while the simulation 

is going on. The results indicated that the difference in the calculation time is limited to 

few minutes. Since the total calculation time is around 10 hours for all samples, this effect 

can be easily neglected.    

 

5.3.2 Performance based on scaled networks 

The original networks are scaled by transforming the link lengths to an its own certain 

percentage. Accordingly, the link utilities will change from the original network. In the 

analysis, two networks were considered as scaling down the network to 50% and 75% by 

its link length. Then the simulations were done by using two samples and compared with 

the original network results. Sequential time discount rate was estimated together with 

two other parameters, travel time and right turn dummy variable (these variables are 

explained in detail in chapter 6). The results are tabulated and shown in Table 5.4 below. 

  



95 

 

Table 5.4 Estimation results of original and scaled networks 

Sample 1 

Network Original Scaled to 75% Scaled to 50% 

 Estimate t-value Estimate t-value Estimate t-value 

Travel Time -0.120 -4.29 -0.160 -4.29 -0.240 -4.29 

Right turn -1.766 -6.15 -1.766 -6.15 -1.766 -6.15 

𝛽 0.337 -3.45 0.337 -3.45 0.337 -3.45 

Lc -292.4 -292.4 -292.4 

LL -220.6 -220.6 -220.6 

𝜌2 0.25 0.25 0.25 

Sample 2 

Network Original Scaled to 75% Scaled to 50% 

 Estimate t-value Estimate t-value Estimate t-value 

Travel Time -0.135 -4.73 -0.180 -4.73 -0.270 -4.73 

Right turn -2.244 -7.17 -2.244 -7.17 -2.244 -7.17 

𝛽 0.249 -4.00 0.249 -4.00 0.249 -4.00 

Lc -317.2 -317.2 -317.2 

LL -248.3 -248.3 -248.3 

𝜌2 0.22 0.22 0.22 

 

Lc is the value of the log likelihood function when all the parameters are zero and LL is 

the value of the log likelihood function at estimated parameters. As per the theory, the 

results should hold the equivalent differences property. Precisely, the choice probabilities 

of the alternatives should only depend on the differences in the systematic utilities of 

different alternatives and not their actual values. Accordingly, here, scaling of the 

network effect on the link length and hence its utility. Since the influence is affecting on 

all the links it doesn’t make problems on the differences in the systematic utilities of 

different alternatives. Hence, sequential time discount rate should produce the same value 

as original network for all the scaled networks. The tested results above satisfied this 

condition.  

In addition, since the link length was scaled the travel time has to be varied. Accordingly, 

the travel time parameter produced different values for scaled samples. Further, link 

length was decreased and simultaneously the link travel time also decreased. This 

variation has captured by the travel time parameter and accordingly, its value has 

decreased. Meanwhile, no change being done for the right turns and correspondingly, 

they are remaining same. Further, the value of the log likelihood function under the initial 
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and final conditions have not deviated from the original network. The log likelihood ratio 

also has not changed. This means, the scaling of the network has no influence on the 

model performance, except the directly affected parameters.  

 

 

5.3.3 Performance based on extended networks 

Performance of the 𝛽 − SRL model was tested with the extended networks and identified 

the characteristics of sequential time discount rate. Extended networks were created by 

adding a constant distance to each and every link in the network. Unlike in the process of 

scaling the network where link length of all links increased in same percentage, here each 

link is increased with different percentage to its own original length. Accordingly, the 

link utilities deviate from different percentage and sequential time discount rate will 

fluctuate. Under this analysis, link lengths were changed in three categories by adding 

20m, 50 m and 100 m respectively and model was simulated. The obtained results are 

tabulated in Table 5.5 below. 

Table 5.5 Estimation results of original and extended networks 

Sample 1 

Network Original Add 20 m Add 50 m Add 100 m 

𝛽 0.337 0.319 0.271 0.217 

t - value -3.45 -3.74 -3.94 -3.92 

Lc -292.4 -288.0 -278.4 -271.2 

LL -220.6 -212.9 -206.3 -201.0 

𝜌2 0.25 0.26 0.26 0.26 

Sample 2 

Network Original Add 20 m Add 50 m Add 100 m 

𝛽 0.249 0.229 0.174 0.118 

t - value -4.00 -4.31 -4.26 -3.69 

Lc -317.2 -314.5 -309.4 -305.8 

LL -248.3 -238.2 -229.0 -221.4 

𝜌2 0.22 0.24 0.26 0.28 

 

The results shown in the Table 5.5 clearly indicate that the sequential time discount rate 

has decreased with the extended network. Further, the pattern keeps decreasing while the 

expanding of the link length is increased. Extending the link length from its original value 

by some constant length, make changes in the deterministic component in different 

percentages. Obviously, this could lead to a situation where the link choosing probability 
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is changed. But in this analysis, the same routes used in the original network were kept 

without changing. Therefore, the travellers are not using the downstream conditions well 

in selecting their next link in the decision-making process. Accordingly, the sequential 

time discount rate stays in lower values. 

 

5.3.4 Performance based on number of links per trip 

𝛽 −SRL model follows a link by link approach in estimating model parameters with 

respect to the travelers’ route choice. Hence, understanding the model performance with 

different number of links per trip is important. Hence, simulations were carried out under 

three categories as trips having less than 25 links per trip, trips having links from 25 to 

50 links per trip and trips having links over 50 per trip. Randomly sampled 20 trips were 

used as a sample and five independent samples were tested under each category. The 

simulated network was consisted with 4556 links and 2967 nodes. The resulted 

estimations of sequential time discount rate are tabulated in Table 5.6 below. 
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Table 5.6 Estimation results for trips having different number links per trip 

For the trips having less than 25 links per trip 

Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

𝛽 0.203 0.114 0.050 0.315 0.455 

t - value -2.46 -1.78 -1.25 -2.97 -2.12 

Lc -272.0 -239.5 -249.8 -319.9 -360.0 

LL -230.8 -219.2 -218.9 -223.4 -205.6 

𝜌2 0.15 0.08 0.12 0.30 0.43 

Sim. time (hr.) 26.2 19.2 44.8 27.5 21.9 

For the trips having links between 25 to 50 per trip 

Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

𝛽 0.113 0.320 0.063 0.081 0.068 

t - value -2.72 -3.11 -1.83 -2.25 -1.88 

Lc -430.1 -511.9 -438.7 -493.0 -478.6 

LL -404.6 -421.7 -395.4 -433.1 -430.2 

𝜌2 0.06 0.18 0.10 0.12 0.10 

Sim. time (hr.) 12.5 15.3 20.5 23.7 14.5 

For the trips having links over 50 per trip 

Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

𝛽 0.116 0.100 0.245 0.232 0.191 

t - value -3.90 -3.43 -5.07 -5.11 -5.00 

Lc -1067.0 -982.6 -1147.3 -1160.7 -1145.6 

LL -956.0 -866.7 -958.3 -988.9 -977 

𝜌2 0.10 0.12 0.16 0.15 0.15 

Sim. time (hr.) 22.9 20.8 17.3 19.0 19.5 

 

Sequential time discount rate varies according to the selected routes in the sample and 

the network condition at that specific time. Before describing the variability of other 

entities, estimations of the sequential time discount rate are plotted in bar chart and shown 

in Figure 5.14 below. 
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Figure 5.14 Variation of sequential time discount rate for samples having different 

number of links per trip 

For the easiness of the visual observation, the estimated samples were sorted according 

to the value of the sequential time discount rate and plotted. Hence the Figure 5.14 shows 

the sorted sample number which is not equal to the sample number shown in the Table 

5.6.  As per the Figure 5.14 indicates, the estimations with respect to the trips having 

more than 50 links per trip showed more stability. The difference between the lowest and 

the largest estimation are 0.405, 0.257 and 0.145 respectively for less than 25 links, 

between 25 to 50 links and over 50 links per trip. The respective variances are 0.026, 

0.012 and 0.004. In addition, t statistic values indicate high significance in the results of 

samples having links more than 50 per trip. Obviously, the log likelihood function 

calculates higher values when the number of links or the length of the trip is increased. 

This also can be visualized with the results appeared in Table 5.14. Calculation time 

varied significantly when the number of links become less in the trips. Further, it becomes 

much stable when the number of links per trip is increased. Since the calculation time is 

not significantly increased with the increase of number of links per trip, it is 

recommended to use trips with more links for better estimations. 

 

5.4 Conclusions and discussions 

Understanding mathematical characteristics and model performances are paramount 

importance in explaining model estimations under different network conditions. Hence 

this chapter was designed to scrutinize the matrix formations in intermediate steps of 

solving 𝛽 −SRL model. In addition, the model performances were discussed under four 
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different scenarios. The value functions with respect to each link of the considered 

network can be determined by solving the system of non-liner equations with the 

sequential time discount rate. Hence, such a system of non-liner equations was 

determined based on a hypothetical network and their element basis changes under the 

key solving steps were discussed in detail.  

In the next stage, the model performances were discussed based on normalized network, 

scaled network, extended network and number of links per trip. Route choice results 

based on a hypothetical real network proved that the choice probabilities are highly 

correlated with the respective link cost. In the lower values of sequential time discount 

rate, it was observed that the myopic decisions are dominating in selecting the links at 

different nodes. Meanwhile under higher values of sequential time discount rate, travelers 

were much willing to utilize the downstream utilities. These characteristics were changed 

with the normalized network which was created by adding nodes and links to the 

aforementioned real hypothetical network in such a way that it satisfied the network 

condition that the cost of all links is similar to each other. Correspondingly, the links were 

assigned with equal probabilities at decision making nodes under the myopic conditions. 

Meanwhile, route choice probabilities also observed to be normalized under the condition 

of sequential time discount rate was equal to one. The analyses were further carried out 

by using a real-world data and sequential time discount rate was estimated under the real 

and normalized network conditions. The results showed a lowering of sequential time 

discount rate, improvements in log likelihood ratio index, and reduction of simulation 

time in normalized network conditions in comparison with the real network conditions. 

Further, the analysis based on scaled network showed that the results are holding the 

equivalent differences property between the alternatives. Precisely, the choice 

probabilities of the alternatives depended only on the differences in the systematic 

utilities of different alternatives and not their actual values. Accordingly, the model 

estimated the same value for the sequential time discount rate among all scaled networks. 

The extended networks were created by adding constant length to each link in the network. 

Unlike in the case of scaled network, here the link utilities changed by different 

percentages and accordingly, the route choice probabilities are changed. But the analysis 

was carried out by using the same route choices made during the normal network 

condition and hence a reduction of the sequential time discount was observed. Then the 

influence of the number of links per trip over the estimation of sequential time discount 

rate was tested by using three categories. Results showed that the model performance 

become more consistent and the estimations become more stable when estimating the 

samples having trips with their number of links per trip is more than 50 links.    
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6 Comparative analysis of travel behavior and sequential 

time discount rate 

6.1 Introduction 

Road networks are always vulnerable to adverse natural phenomenons such as 

earthquakes, hurricanes, tornados, floods, snowfalls and beyond. In terms of travel 

behavior is concerned, either of these hazards can be recognize in the form of a disaster, 

as they disturbed the normal travel behavior. Further, they often cause significant delays 

and operational irregularities in traffic networks. Hence, understanding network behavior 

in such abnormal conditions is important for transport planners to minimize the adverse 

impacts and regulate the traffic flows as soon as possible.  

This chapter includes a comparative analysis of network behavior under two distinct and 

divergent disasters, the great east Japan earthquake and a torrential downpour. 

Earthquake is an unexpected event where panic behavior of travelers could be 

hypothesized given the complexity of the network and the massive crowd. Meanwhile, 

torrential downpour is an extreme weather condition which is expected to predict under 

the available weather forecasting systems, especially in Tokyo, Japan. It is expected that 

the majority of Tokyo people aware of daily weather forecasts and hence, a panic 

behavior is not assumed. Cools et al. (Cools, Moons, Creemers, & Wets, 2014) confirmed 

that the type of weather is significance and the changes in travel behavior in response to 

weather conditions are highly dependent on trip purpose. 

Pacific coast of Tohoku, Japan was hit by a massive earthquake of magnitude 9.0 – 9.1 

on the Richter scale at 14:46 hrs. in JST on Friday, 11th March 2011 and is often referred 

as the great east Japan earthquake or 2011 Tohoku earthquake. Even though the 

earthquake was occurred more than 100 km s away from the Tokyo, the trains and the 

Tokyo metropolitan expressway were suspended for safety checks and more than 5 

million people were faced difficulties in returning home.  

The torrential downpour was occurred around cities Shibuya, Minato, Shinagawa and 

Setagaya in Tokyo, on 23rd July 2013. Rainfall was started around 15:15 and ended 

around 16:35 JST. High intense rainfall (100 – 150 mm/h) caused a flash runoff which 

inundated some of the underpasses and depressions within the area up to a maximum 

flood height of 0.5 m. This caused difficulties for cars and taxis to move across and such 

road users had to choose alternative routes. Some of the such underpasses are shown in 

Figure 6.1. Under the both considered disasters, travelers were supposed to search for 

alternatives. But, the influence of the great east Japan earthquake is over the entire 

network while the issue under the torrential downpour was location specific.  
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Figure 6.1 Some of the effected underpasses  

 

6.2 Data  

Data collection techniques have been improved over the past six decades from face-to-

face interviews or paper-and-pencil interviews to probe technology, which collects the 

GPS trajectories of trips (Shafique & Hato, 2016). Analysis of this chapter is made based 

on GPS observations of taxy trajectories collected on 11th and 18th March 2011 (on the 

occurrence day of the great east Japan earthquake and a day exactly one week after), and 

on 23rd and 30th July 2013 (the day that the torrential downpour was occurred and a day 

exactly one week after) in city of Tokyo, Japan. It is hypothesized that the demand was 

equilibrated to almost normal conditions after one week from the occurrence of the 

disasters and provide a better platform for comparison. Such hypothesize have made in 

the literature too (Dimitrou & Stathopoulos, 2016). 

Site selected for the study under great east Japan earthquake is the area covered by the 

secondary mesh code 533946 (Iida K. , 2006) of the regional mesh (Statistics-Japan, 

1996), which consisted 39,642 nodes and 54,211 links. The area covered by the secondary 

mesh code 533935 of the regional mesh, which consisted 31,142 nodes and 38,180 links 

was used for the analysis under the torrential downpour. Both areas are much closer to 

each other and lies within the city of Tokyo. Further, they are highly operated traffic 

networks and it is worth to analyze the travel behavior changes under disaster conditions. 

The respective areas are shown in Figure 6.2 
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Figure 6.2 Study area under the torrential downpour (left) and the great east Japan 

earthquake (right) 

Regional mesh is a square grid which divides the whole area of Japan into small mesh 

based on latitudinal and longitudinal lines. Primary mesh consists 40 minutes’ latitude 

interval and one-degree longitude interval. The length of a side is about 80 km. The 

secondary mesh, which is used in this study consists 5 minutes in latitude interval, 7 

minutes and 30 seconds in longitude interval. The length of a side is about 10 km. 

The data set contained both occupied and non-occupied taxis for the analysis. In the 

contest of a non-occupied taxi, it can be either heading towards the customer’s place for 

pick in, or it may be returning to its waiting place after dropping a customer, or driver 

may be heading towards his own personal business. In all these circumstances, it is 

hypothesized that the respective driver has a clear vision about where he is travelling. At 

each node where, a driver needs to take a decision on the choice of the next link, it is 

assumed that he/she maximizes the sum of instantaneous utility associated with current 

and next link, and the expected downstream utility. The recursive logit model is 

formulated based on this concept, and due to the validity of the concept in either of above 

cases, all the available data were used for the analysis. 

The collected probe GPS taxi trajectories were map-matched based on the real road 

network data by using Dijkstra’s algorithm (Dijkstra, 1959) for the shortest path. The taxi 

probe data were collected and provided by the vehicle information and communication 

system center (VICS), which is an organization that collects and provides drivers’ road 

traffic information in Japan. Both events, the great east Japan earthquake and torrential 
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downpour were occurred during the afternoon session and accordingly, the analysis was 

carried out over four hours of period starting from 14:00 Japanese Standard Time (JST). 

The data set included taxi trips between 750 and 1400 in each hour and are presented in 

Table 6.1 

Table 6.1 Hourly distribution of taxi trips 

Date\Time period 14:00 – 15:00 15:00 – 16:00 16:00 – 17:00 17:00 – 18:00 

11/03/2011 (Earthquake day) 789 760 915 1083 

18/03/2011 (Normal day) 769 765 754 762 

23/07/2013 (Rainy day) 977 1041 1396 1060 

30/07/2013 (Normal day) 965 966 924 935 

 

Number of taxi trips in Table 6.1 confirms the increase of taxi usage during extreme 

weather conditions, which is common for many disastrous networks. Normal taxis are 

equipped with radio communication systems from where drivers could collect up-to-date 

information about network behaviors. But under these situations, it is necessary to be 

noted that the drivers have not get information about downstream link conditions. 

 

6.3 Trajectory behavior at damaged networks 

Comparative analysis of trajectory behavior under the aforementioned disastrous 

networks and respective normal days were carried out through visualizing time-space 

diagrams, link speed variation maps, congestion index plots and right-turn ratio 

variability graphs. 

 

6.3.1 Time space diagram 

Individual taxi movements during disaster day and non-disaster day were visualized by 

plotting some selected taxi trajectories in time space diagrams. Essential criteria for 

comparing individual taxi trajectories are, their origin and destination must be much 

closer to each other and trips must be started within similar period of time. But, such trips 

are extremely difficult to find under these types of extraordinary situations. Four taxi trips 

showed in Figure 6.3, Figure 6.4, Figure 6.5 and Figure 6.6 were selected based on their 

close proximity in origin, destination and start time. 

Figure 6.3 and Figure 6.4 show some sample time space diagrams of taxi trips occurred 

during the considered period after the earthquake and during its respective normal day 

respectively. 
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Figure 6.3 A sample taxi trajectory observed during the period of earthquake 

Considering the taxi trip shown in Figure 6.3, most of the time it’s speed is less than 20 

km/h. Further, there are some stagnated points where the time axis increases without 

changing the space. Which means, the taxi might have stuck in a queue. Only a less 

portion of the trip has a speed over 25 km/h. In addition, comparatively with Figure 6.4 

(below), the taxi has taken many number of turns. Precisely, 8 major turns where 5 out 

of that are right turns which drivers reluctant to take as Japan is a left driving country. 

The taxi has taken 38 minutes to reach its destination which is just 9.3 km s away. 
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Figure 6.4 A sample taxi trajectory observed in respective normal day 

According to the taxi trajectory shown in Figure 6.4, the taxi has maintained a speed 

above 20 km/h during most of the time of its trip while it was opposite in the Figure 6.3. 

Precisely, the average speed of the aforementioned taxi trip which was under the normal 

condition is 20.4 km/h while the average speed of the taxi trip under the disastrous 

condition is 14.7 km/h. Time axis of the both figures has kept under a same scale for the 

comparison purposes and they have taken 38 minutes and 25 minutes respectively under 

the disastrous condition and normal condition. Further, the taxi trip under the normal 

condition has taken only 4 major turns which is half of the turns in the disastrous 

condition.  

Figure 6.5 and Figure 6.6 visualize two sample time space diagrams of taxi trips occurred 

during the considered period of torrential downpour and during its respective normal day 

respectively. 
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Figure 6.5 A sample taxi trajectory observed during the period of torrential downpour 

Taxi trip visualized in the Figure 6.5 shows many stagnated points where it might have 

stuck in a queue and it illustrates the stop-move-stop behavior during the congestion. In 

addition, many portions of the trip have undergone a speed less than 20 km/h. Further it 

has taken longer time comparatively with the trip under the normal condition which is 

shown in Figure 6.6. Precisely, it has taken 70 minutes to reach just 10 km s under the 

congestion.  
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Figure 6.6 A sample taxi trajectory observed in respective normal day 

Time axis of Figure 6.6 also kept in the same scale as Figure 6.5 for the comparison 

purpose. Hence, it can be clearly visualized that the trip under the normal condition has 

taken very less time comparatively. In addition, the taxi speed is over 20 km/h in many 

portions of the trip. Further, under the congested condition, the taxi has travelled about 

10 km to reach the destination while it has taken about 7 km in the normal day. So, it is 

understanding that drivers have to go for additional miles when are choosing alternatives 

under the congestion. The other highlighting point is number of directional changes. 

Many directional changes can be visualized in Figure 6.5 under the congested condition 

while they are comparatively less in the normal day. 

 

6.3.2 Route selection in congestion 

In most of the choice models, consumers or subjects are assumed to follow the rational 

behavior. Which means, decision making process is based on making choices that result 

in the most optimal level of benefit or maximum utility for the consumer. When it comes 

to route choice, travelers are also expected to follow the same principle. Figure 6.7 and 

Figure 6.8 show some of the sample trips and respective link speed maps under the 

congestion occurred due to the great east Japan earthquake. 
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Figure 6.7 A sample trip_1 (a) and it’s respective link speed map (b) 

 

  

Figure 6.8 A sample trip_2 (a) and it’s respective link speed map (b) 

 

As both above figures (Figure 6.7 and Figure 6.8) illustrates, drivers have tried to find 

the lesser congested link in most of the times when they are supposed to make a link 

choice at each nodes. In other words, drivers have chosen the maximum utility links 

which makes the lesser travel time and supported the rational behavior. Similarly, taxi 

trips route selection characteristics under the torrential downpour also studied. Figure 6.9 

and Figure 6.10 illustrates two of them. 
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Figure 6.9 A sample taxi trip and its congestion index map on rainy day 

 

  

Figure 6.10 A sample taxi trip and its congestion index map on normal day 

The taxi trip shown in the Figure 6.9 which is under the congestion of torrential downpour 

makes a right turn towards a lesser congested link with the vicinity of an underpass and 

avoids the underpass. Doing so, further it has to take two more major turns before 

reaching the destination. In a normal day, it would have been continuing through the 

nearest under pass and turn to right between the two under passes for reaching the 

destination. Correspondingly, in the taxi trip shown in the Figure 6.10, the taxi passes 

through both under passes and reach the destination. Hence, it is clear that in the rainy 

day, the taxi driver tries to avoid the congested under passes while they go through the 

under passes in normal days.  
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6.3.3 Link speed variation 

Gathering of more than 5 million people who expected to return home as soon as possible 

after a shocking earthquake under the circumstances of trains and Tokyo metropolitan 

expressway were suspended for safety checks caused severe congestion in the road 

transport network. As a result, the link speeds are drastically dropped down. Figure 6.11 

shows the comparison of average link speed between normal day and earthquake day 

from 14:00 to 16:00 hrs. while Figure 6.12 shows the similar plots for the period from 

16:00 to 18:00 hrs.   

  

Figure 6.11 Link speed variability for the period from 14:00 to 16:00 hrs. 
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Figure 6.12 Link speed variability for the period from 16:00 to 18:00 hrs. 

Figure 6.11 and Figure 6.12 evidenced the formation of congestion after the occurrence 

of the earthquake at 14:46 hrs. in JST. During the first hour which is from 14:00 to 15:00, 

there cannot observe much differences as it is less influenced due to the disaster. But, in 

the next three hours from 15:00 to 18:00, the figures clearly show the speed reduction of 

the links so as in the entire network. Meanwhile in the normal day, there cannot visualize 

any significant changes in the link speeds, other than some isolated links here and there, 

throughout the considered period. 

In addition to the link speed maps, their frequency density distributions were plotted in 

order to understand the speed distribution during each hour and compared with normal 

day variations. Figure 3.13 showed the respective distributions from 14:00 hrs to 18:00 

hrs. 
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Figure 6.13 Frequency density of link’s speed 

As Figure 6.13 illustrates, from 14:00 to 15:00, link’s speed frequency density curves do 

not show any significant differences between them as they are not much effected by the 

earthquake. When it moves to next hour, it clearly indicate that links with lesser speeds 

have increased while the links with higher speeds have decreased. Further, it showed an 

increase of link usage compare to the normal day. During the hour from 16:00 to 17:00, 

the distribution of the 11th March has shifted towards the left side of the plot showing that 

more links were suffering with low speeds. The peak of the plot of the 11th March has 

dropped up to 8 km/h by illustrating how severely congested the network between 16:00 

to 17:00. Further speed down indicates in the next hour as well. Moreover, the analysis 

of link speed reduction patterns was supported by plotting the cumulative frequency of 

the link’s speed. The respective plots are shown in Figure 6.14 
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Figure 6.14 Cumulative frequency of link’s speed 

According to the Figure 6.14, from 14:00 to 15:00, cumulative link speed curves do not 

show any significant differences between them as they are not much effected by the 

earthquake. But, with the next hour onwards, the curves have started to separate from 

each other with the curve respected to disastrous day (red colour) moving towards the 

decreasing side of the speed. This indicates the increasement of lesser speed links 

compare to the normal conditions. The gap between the curves are continue to increase 

as the entire network got congested during the considered period.  

Under disastrous condition where the traffic network get congested, it is important to 

understand the links variability under a certain threshold value of speed. Hence, 

variability of links having a speed less than 10 km/h was plotted and compared with 

normal day variation. The respective plot is shown in Figure 6.15 
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Figure 6.15 Variability of links having speed less than 10 km/h 

Figure 6.15 clearly showed that the number of links having speed of less than 10 km/h 

starts to increase after the occurrence of earthquake, at 14:46 hrs. Then it reaches peak 

about 16:25 hrs and reduces thereafter. Meanwhile, no much fluctuations are observed in 

the normal day. Number of links with a speed less than 10 km/h become three times larger 

than the normal day after one and half hours from the occurrence of earthquake for the 

considered network and it indicates the severity of the congestion. 

 

6.3.4 Analysis of congestion index variation 

Unlike during the influence of the great east Japan earthquake, situation under the 

torrential downpour is location specific where the underpasses are presents (Figure 6.2). 

There are many evidences regarding underpass flooding around the world (Ali, 2018; 

Riva, 2017; Gerber, 2017; Wirth, 2018) but very less studies found in the literature in 

terms of travel behavior understanding, for the best of my knowledge. There are some 

studies, but their main focus was not studying the travel behavior (Patel, Patel, Patel, 

Trivedi, & Patel, 2017).  

Congestion indexes (CI) were calculated on the links that were connected to the inundated 

areas for understanding the congestion at respective locations by using the relationship 

proposed by Dias et al. (Dias, Miska, Kuwahara, & Warita, 2009).   
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𝐶𝐼 = {
(𝑉𝐹𝐹 − 𝑉) 𝑉𝐹𝐹       ; 𝑖𝑓 𝑉 ≤ 𝑉𝐹𝐹 𝑎𝑛𝑑 𝑉𝐹𝐹 > 0⁄

0       ; 𝑖𝑓 𝑉 > 𝑉𝐹𝐹
                        (6.1) 

where; 𝑉 − average link speed and 𝑉𝐹𝐹 − free flow speed. 

 

Free flow speed was calculated as the 85th percentile of all link speeds under the no 

weather influence condition. It was 40 km/h. The CI ranges are classified as; CI ≤ 0.2 is 

free flow, 0.2 < CI ≤ 0.4 is comfortable, 0.4 < CI ≤ 0.6 is medium, 0.6 < CI ≤ 0.8 is 

congested and CI > 0.8 is heavily congested. Calculated CI are plotted in the GIS platform. 

Figure 6.16 (a), (b) and (c) shows the comparison of CI of the links, for the period from 

16:00 to 17:00 on 23rd July 2013, near the inundated sections 3, 4 and 8 respectively. 

Green colour circles indicate the exact locations of underpasses. 

  

(a) Surround the under pass no. 3 

 

(b) Surround the under pass no. 4 
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(c) Surround the under pass no. 8 

Figure 6.16 Comparison of congestion indexes surround the underpasses 

Figure 6.16 (a) and (b) show that some of the links near the underpass 3 and 4 were in 

free and comfortable zones during the normal day. But they have congested in the rainy 

day.  In Figure 6.16 (c), the links through the underpass 8 were in comfortable and 

medium zones on normal day, whereas they were in congested and heavily congested 

zones in rainy day. These visual evidences prove that, congestion has formed after the 

rain, at surrounding links of the inundated locations. They are further supported with the 

route selection characteristics of drivers shown under the section 6.3.2 

 

6.3.5 Right-turn ratio 

With the inundation of the underpasses and depressions, drives were unable to use their 

normal routes. Accordingly, they had to search for alternatives that could usually cost 

more right turns. Since Japan is a left driving country, making right-turns is difficult and 

people reluctant to make right-turns. This become further headache during congestions. 

Hence, average right turn ratio per node was compared between the rainy day and the 

normal day. The respective plot is shown in the Figure 6.17 



118 

 

 

Figure 6.17 Variation of link speed with right turn ratio 

Average right turn ratio was calculated by dividing the number of right turn links by total 

links at each node and taking the average over the entire network. As the Figure 6.17 

illustrates, points refer to rainy day have higher right-turn ratio and lower speeds. While 

in normal day, the respective points have higher speeds and less right-turn ratios. This 

indicates the increase of number of right turns as a result of searching alternatives and 

hence reduction of the link speed. Along with that, it is important to consider the variation 

number of right turns per trip and it is visualized in Figure 6.18 
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Figure 6.18 Variation of right-turns per trip with time 

Unlike the great east Japan earthquake, the torrential downpour was not a sudden disaster. 

As the normal daily weather forecasts predicted, it is something known for the people. 

Correspondingly, by 15:00 hrs, it can be visualized that number of right-turns per trip is 

higher in the rainy day as the Figure 6.18 indicates. This can be hypothesized as people 

already know that, it will be a heavy rain and accordingly they tried to move quickly 

which result more taxi movements. Further, the number of right-turns per trip shows a 

little tendency of increasing with the beginning of the rainfall as people tend to move 

quickly taking different links and it decreases thereafter due to the congestion with the 

high rainfall. Later, it again increases after the rainfall as those who were waited begins 

to move. 

 

6.4 Parameter estimation through 𝜷 − SRL model and comparison  

Sequential time discount rate (𝛽) was estimated together with two other parameters, 

travel time (TT) and right turn dummy variable (RT) in 𝛽 − SRL model by using the 

probe taxi data collected in Tokyo under the aforementioned disastrous conditions. Map 

matched data includes the sequential link combination of taxi trajectories and network 

data such as link combinations, right turns. The deterministic component of the 

instantaneous utility function was formulated as, 

𝑣(𝑎𝑗+1|𝑎𝑗) = 𝜃𝑇𝑇𝑇𝑇𝑎𝑗+1
+ 𝜃𝑅𝑇𝑅𝑇𝑎𝑗+1|𝑎𝑗

                                              (6.2) 

where, 𝑇𝑇𝑎𝑗 is the travel time of link 𝑎𝑗 in minutes. 𝑅𝑇𝑎𝑗+1|𝑎𝑗
 represents the right turn 

dummy variable which equals to one if the turn from link 𝑎𝑗 to 𝑎𝑗+1 is a right turn with 
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an angle between 400 to 1770 with respect to the direction of the link 𝑎𝑗 and zero otherwise. 

𝜃 is a parameter to be estimated. Two-step iterative method which includes maximization 

of the log-likelihood function and calculation of value function was adopted in the model 

estimation process. Hence, when the number of links in the network are increased, the 

aforementioned first step consumes more time. Therefore, it is necessary to reduce the 

network, for facilitating a smooth estimation process. Accordingly, two reduced areas 

were selected for the purpose of parameter estimation. Each area consisted 4608 and 3091 

links respectively under the great east Japan earthquake and the torrential downpour. The 

estimation results are displayed in Table 6.2 and Table 6.3 for earthquake and torrential 

downpour respectively. 
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Table 6.2 Estimation results on great east Japan earthquake day and respective normal 

day 

Date 11th March 2011 (Great east Japan earthquake day) 

Time 14:00 – 15:00 15:00 – 16:00 16:00 – 17:00 17:00 – 18:00 

 Est. t-value Est. t-value Est. t-value Est. t-value 

Travel 

Time 
-0.244 -4.45 -0.238 -3.41 -0.122 -5.39 -0.016 -1.30 

Right turn -1.296 -4.89 -1.164 -3.15 -1.561 -7.24 -1.710 -7.52 

𝛽 0.536 -1.87 0.640 -0.60 0.219 -3.66 0.291 -4.20 

Sample 584 294 861 1016 

Lc -411.234 -312.245 -389.897 -515.599 

LL -201.315 -94.673 -331.011 -425.087 

𝜌2 0.510 0.697 0.151 0.175 

Date 18th March 2011 (Normal day) 

Time 14:00 – 15:00 15:00 – 16:00 16:00 – 17:00 17:00 – 18:00 

 Est. t-value Est. t-value Est. t-value Est. t-value 

Travel 

Time 
-0.384 -4.83 -0.314 -4.44 -0.216 -3.27 -0.173 -2.48 

Right turn -0.873 -3.50 -1.078 -3.73 -0.890 -3.44 -0.644 -2.32 

𝛽 0.548 -1.61 0.214 -2.76 0.555 -1.29 0.614 -0.76 

Sample 406 347 350 305 

Lc -361.780 -182.014 -314.969 -379.916 

LL -157.813 -151.536 -154.906 -126.955 

𝜌2 0.564 0.167 0.508 0.666 
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Table 6.3 Estimation results in torrential downpour day and respective normal day 

Date 23rd July 2013 (Torrential downpour day) 

Time 14:00 – 15:00 15:00 – 16:00 16:00 – 17:00 17:00 – 18:00 

 Est. t-value Est. t-value Est. t-value Est. t-value 

Travel 

Time 
-0.289 -4.65 -0.219 -4.81 -0.145 -4.87 -0.142 -4.70 

Right turn -0.598 -3.15 -0.345 -2.04 -0.529 -3.80 -0.844 -5.17 

𝛽 0.438 -2.24 0.295 -2.94 0.191 -4.01 0.326 -3.79 

Sample 820 1085 1289 1347 

Lc -364.044 -372.180 -558.948 -546.656 

LL -258.284 -321.934 -514.953 -457.989 

𝜌2 0.291 0.135 0.079 0.162 

Date 30th July 2013 (Normal day) 

Time 14:00 – 15:00 15:00 – 16:00 16:00 – 17:00 17:00 – 18:00 

 Est. t-value Est. t-value Est. t-value Est. t-value 

Travel 

Time 
-0.481 -4.99 -0.279 -3.57 -0.303 -4.26 -0.451 -4.56 

Right turn -0.651 -2.52 -0.292 -1.25 -0.927 -3.80 -0.879 -3.56 

𝛽 0.401 -2.28 0.031 -1.14 0.447 -2.22 0.685 -0.35 

Sample 577 568 666 519 

Lc -210.282 -189.425 -289.759 -887.100 

LL -152.222 -177.513 -199.160 -162.593 

𝜌2 0.276 0.063 0.313 0.817 

In order to make a direct comparison between the estimated parameters in terms of their 

magnitude and pattern, they have to be estimated based on the same network. When the 

different networks are being used for the parameter estimation, only the distribution 

pattern can to be compared.  
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Figure 6.19 Schematic diagram of parameter comparison 

 

6.4.1 Comparison of sequential time discount rate  

Oscillation of drivers’ decision-making process between myopic and global decisions is 

expected to illustrate through the variations of sequential time discount rate under the 

disastrous conditions. Since it identifies a fraction as travelers could utilize from the 

downstream utility up to the destination link, lower values indicate more myopic decision 

making behavior where the utility of the immediate links are given the priority for link 

choice while higher values more focused on global decision over the network. The 

variation of the estimated results of 𝛽 are plotted, and shown in Figure 6.20 

 

Figure 6.20 Variation of sequential time discount rate 
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It is expected that drivers would panic due to the unexpected massive earthquake, and 

unpredicted suspension of trains and Tokyo metropolitan expressway. Hence, they might 

have tried to maximize their global knowledge to choose links at the beginning and 

accordingly, the sequential time discount rate shows a higher value within the first hour 

after the earthquake. But, the heavy congestion forced them to turn in to the myopic 

decision process and as a result of that, the sequential time discount rate becomes lower 

in next hours. In the context of torrential downpour, the heavy rain would have been 

predicted under the normal weather forecasts and hence people knew that there will be a 

rain. But the intensity of the rainfall was high and the underpasses were inundated which 

could lead for the congestion. Correspondingly, the sequential time discount rate has 

gradually decreased as it was not suddenly congested. In a nutshell, under the both 

scenarios, sequential time discount rate has decreased and it reflects the changing 

tendency of drivers’ decision-making behavior towards the myopic process in congested 

networks. 

 

6.4.2 Comparison of travel time variable 

As hypothesized, the estimated parameter values for travel time variable consistently 

indicate minus sign for all periods and are significant in most of the times. Since it was 

estimated together, the travel time parameter and the right turn dummy variable parameter, 

for the purpose of comparison, parameter ratios were considered. The ratio was 

determined as 𝜃𝑇𝑇/(𝜃𝑇𝑇 + 𝜃𝑅𝑇), where 𝜃𝑇𝑇  and 𝜃𝑅𝑇 denote travel time parameter and 

right turn dummy parameter respectively. The calculated ratios are shown in Table 6.4 

Table 6.4 Temporal variation of travel time parameter ratios 

Period 

Travel time ratio 

11th March 

(earthquake day) 

23rd July 

(rainy day) 

14:00 – 15:00 0.158 0.326 

15:00 – 16:00 0.170 0.388 

16:00 – 17:00 0.072 0.215 

17:00 – 18:00 0.009 0.144 

 

The ratios are graphically presented in Figure 6.21 
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Figure 6.21 Variation of travel time parameter ratios 

As per the Figure 6.21 indicates, the travel time parameter ratios under the both disaster 

circumstances follow a similar pattern. Both curves show little tendency of increasing 

with the occurrence of each disasters. This could illustrate the travelers’ tendency for 

moving quickly to their destinations and accordingly, trying to evaluate the travel time 

properly before the congestion starts. Thereafter, both curves begin to decrease indicating 

that the difficulty of evaluating travel time properly under the congestions. The travel 

time parameter ratio under the great east Japan earthquake reaches almost zero during the 

time 17:00 to 18:00 hrs. indicate the heavy congestion occurred.  

 

6.4.3 Comparison of right turn dummy variable 

Japan is a left driving country and hence, turning right is always problematic for drivers 

and could be even worst under the disastrous conditions. Therefore, estimated parameters 

of right turn dummy variable too hypothesized to have negative signs. Precisely, 

parameters consistently indicated minus sign for all periods and are significant except 

one sample. As in the case of travel time parameter, here also, the parameter ratios were 

compared and are determined as 𝜃𝑅𝑇/(𝜃𝑇𝑇 + 𝜃𝑅𝑇) for the right turn dummy variable. 

Calculated ratios are shown in Table 6.5 
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Table 6.5 Temporal variation of right turn dummy parameter ratios 

Period 

Right turn dummy parameter ratio 

11th March 

(earthquake day) 

23rd July 

(rainy day) 

14:00 – 15:00 0.842 0.674 

15:00 – 16:00 0.830 0.612 

16:00 – 17:00 0.928 0.785 

17:00 – 18:00 0.991 0.856 

 

The graphical representation of the parameter ratios is presented in Figure 6.22 

 

 

Figure 6.22 Variation of right turn dummy parameter ratios 

As graphically visualized in Figure 6.22, right turn dummy parameter ratios follow a 

similar pattern under the both disasters. The patterns indicate marginal tendency of 

decreasing with the occurrence of the disasters and this refers to the phase where people 

trying to move quickly and it could happen more right turns. Thereafter it increases 

illustrating the difficulty of making right-turns under the congestions.  
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6.5 Conclusions and discussions 

In this chapter, a comparative analysis of travel behavior in two distinct divergent 

disastrous networks was made by using GPS trajectories of probe taxi data collected in 

Tokyo under the influence of the great east Japan earthquake and a torrential downpour. 

Analyses were made by comparing each disaster day characteristics with respective 

normal day characteristics which is exactly one week after each disaster and also between 

both disasters themselves. Graphical illustrations were made in GIS and R platforms 

while parameter estimations were made by using 𝛽 −SRL model.  

Scrutinized time-space diagrams which include four dimensions of information such as 

travel time, latitude, longitude and taxi speed showed that drivers reached their 

destinations through longer paths, and slower speeds with many directional changes 

under both disastrous situations compared to their respective normal day trips. Two 

dimensional taxi trajectory plots visualized that drivers keen on to choose the lesser 

congested links in their link choice decisions which satisfied the concept of choosing 

maximum utility and the rational behavior. 

Averaged link speed plots visualized a massive congestion after the great east Japan 

earthquake over the entire considered network. Frequency density distributions of link 

speed indicate the growth of less speed links. Precisely, the links with a lesser speed than 

20 km/h increases within one hour from the occurrence of the great east Japan earthquake 

and speed drops further to less than 10 km/h within the next two hours. This was 

additionally supported by plotting the cumulative frequency of link speed which indicate 

the link percentages that drops at each speed levels comparatively to the respective 

normal day. 

As it clearly shows a massive congestion after the occurrence of the earthquake, a 

threshold value for link speed was defined as 10 km/h and draw the variability of number 

of links having a lesser speed than the threshold value. The plot visualized that the 

respective links start to increase just after the occurrence of earthquake and reaches its 

peak about 16:25 hrs. JST and reduces thereafter. The number of links which were less 

than 10 km/h become three times larger than the normal day at its peak and it indicates 

the severity of the congestion occurred.  

The influence of the torrential downpour was not over the entire network but instead, it 

was location specific which was around the inundated underpasses. Hence, congestion 

indexes of the surrounded links at the underpasses areas were calculated and visualized 

in the GIS platform. The results clearly showed that the links have congested around the 

underpasses which were not under congestion on the respective normal day.  

Since Japan is a left driving country, making right turns become comparatively difficult 

under the congestions and therefore, variability of right turn ratios was compared against 

speed. As the number of right turns raise, the speed tends to decrease. Therefore, link 

speed was plotted against the average right turn ratios per node. The graph indicate that 

the right turn ratios are higher in the rainy day and correspondingly speed has reduced. 
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Making right turns are then further investigated by graphing number of right turns per 

trip against the time. The plot showed a little tendency of increasing with the beginning 

of rainfall as people used to move quickly with the bad weather. Then it drops in the next 

hour as the network get congested and increase later as the rainfall was over. Meanwhile, 

variation on the normal day shows a slight increasing trend as time moves from 14:00 to 

18:00 in the afternoon. 

Travel behavior under the aforementioned disasters were further investigated by 

estimating the parameters through the 𝛽 −SRL model. Sequential time discount rate was 

estimated with travel time parameter and right turn dummy variable. Estimated values of 

𝛽 showed slight increasing trend with the occurrence of the earthquake as drivers would 

tried to maximize their global knowledge over the network for link choosing. But it drops 

then drastically due to the heavy congestion occurred with the suspended railway and 

Tokyo metropolitan expressway. The story was little different under the torrential 

downpour as it gradually decreased with the start of the rainfall. No panic situation was 

hypothesized under this scenario as rainfall would have predicted under the normal 

weather forecasts in Tokyo. 

Variation of travel time parameter was presented as a ratio to the summation of right turn 

dummy variable parameter and travel time parameter itself. The curves follow a similar 

pattern under both disasters as it slightly increases in the immediate hour with the 

occurrence of disasters and decrease thereafter. This decreasing indicates the difficulty 

of evaluating travel time properly under the congestions. Severity under the earthquake 

was also been visualized in the graphs. Right turn dummy variable also presented as a 

ratio to the summation of travel time variable and right turn dummy parameter itself. The 

results showed closer patterns under both disasters and they were increasing with the time 

as congestion was occurred during both events. These trends illustrate the difficulty of 

making right turns under the congestions. 
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7 Conclusions and future works 

This thesis evaluates the sensitivity, stability, performance and applicability of sequential 

time discount rate in understanding route choice behavior in different traffic networks. 

Sequential time discount rate was estimated as a parameter in 𝛽 −scaled recursive logit 

model (Oyama, Chikamatsu, Shoji, Hato, & Koga, 2016). This chapter (7) provides an 

overview of the entire study discussed in aforementioned chapters.  

 

7.1 Conclusions of the thesis 

Chapter 3 explained the theoretical framework of recursive logit model (Fosgerau, 

Frejinger, & Karlstrom, 2013) and 𝛽 − scaled recursive logit model (Oyama, Chikamatsu, 

Shoji, Hato, & Koga, 2016) in detail. Then the sensitivity of the sequential time discount 

rate on route choice probabilities was tested. Three different values of sequential time 

discount rate were used as 𝛽 = 0, 𝛽 = 0.5 𝑎𝑛𝑑 𝛽 = 1 for understanding the deviations 

in link assignments under each condition by using a hypothetical network. Five scenarios 

as the original network conditions (Figure 3.2), introducing low cost links at the 

downstream, introducing high cost links at the downstream, introducing low cost links 

near the origin and introducing high cost links near the origin were used for the analysis. 

Route choice probabilities and link assignments under the recursive logit framework 

indicated that myopic decisions become crucial when the 𝛽 = 0 and link choices being 

made based on the separated link costs. Further it clearly visualized the worst impacts of 

myopic decisions for route choosing by assigning larger flows to high costs links. This 

could lead to make heavy congestions in congested links. In addition, its further showed 

that making changes on link cost at downstream has no impact on the network 

assignments under the myopic decisions. Meanwhile higher values of sequential time 

discount rate always made the route choice decisions considering route-based decisions 

from origin to destination. Hence, it was clearly visualized that under the condition of  

𝛽 = 1 , larger flows being assigned to low cost routes as they were given higher 

probabilities. As a conclusion, the analysis clearly showed the impact of sequential time 

discount rate on predicting link assignments under different circumstances. 

Chapter 4 tested the stability of sequential time discount rate under different network 

settings. In usual practice in modeling route choice behavior, parameters are estimated 

by considering hourly periods of data. Since this could miss tiny variations of the network 

behavior in between the considered periods, stability of the sequential time discount rate 

was tested with the moving time. The results showed, that the 𝛽 −SRL model is capable 

of estimating stable and reliable values for sequential time discount rate for the entire 

considered period of time. Finding the adequate minimum number of trips for stable 

estimation is always important for saving simulation time. Hence, model stability of 

estimating sequential time discount rate was evaluated under three categories as 10 trips, 

20 trips and 30 trips. Visual observations together with statistical parameters illustrated 

that the 20 trips and 30 trips samples produced more stable results comparatively to the 

10 trips samples. Besides, the asymptotic 𝑡 test was performed and the resulted t values 
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were insignificant for all the considered samples and hence, it indicated that there are no 

significant differences between the estimated sequential time discount rates in each 

category. Precisely, the model estimations are stable. With this base, same sampling 

technique was tested by estimating in distinct networks such as different time zones, 

different networks and different size of trips. The overall results showed that 𝛽 – SRL 

model estimate better results under all 03 categories while 20 trips and 30 trips samples 

always provide stable and reliable results compare to the 10 trips samples. Further, the 

improvements of the results from 10 trips samples to 20 trips samples was larger in 

comparison with the improvements from the 20 trips samples to the 30 trips samples. 

Former part of the chapter 5 is utilized for explaining the mathematical characteristics of 

solving the value function in the 𝛽 – SRL model while the latter part of the chapter 

described the model performances under different network settings. Since the value 

functions with respect to each link of the considered network can be determined by 

solving the system of non-liner equations of the sequential time discount rate, here we 

produced the element base changes of such a system of non-liner equations by using a 

hypothetical network. In the second half of the chapter 5, the model performances were 

discussed based on normalized network, scaled network, extended network and number 

of links per trip. Changes in the route choice probabilities from myopic decisions to route-

based decisions were observed by changing the sequential time discount rate in a 

hypothetical network. These characteristics were changed with the normalized network 

where it assigned the links with equal probabilities at decision making nodes under the 

myopic conditions. Meanwhile, route choice probabilities also observed to be normalized 

under the condition of sequential time discount rate was equal to one. The analyses with 

the real world data showed a lowering of sequential time discount rate, improvements in 

log likelihood ratio index, and reduction of simulation time in normalized network 

conditions in comparison with the real network conditions. The analysis based on scaled 

network showed that the results are holding the equivalent differences property between 

the alternatives. Lower sequential time discount rates were observed in the extended 

networks as it kept the original route choices unchanged. The results based on the 

influence of the number of links per trip showed that the model performance become 

more consistent and the estimations become more stable when estimating the samples 

having trips with their number of links per trip is more than 50 links. 

Comparative analysis of network behavior under two distinct and divergent disasters, the 

great east Japan earthquake and a torrential downpour was done at chapter 6 as a case 

study. Probe taxi data collected under the aforementioned disaster conditions and normal 

days as one week after each disaster were used for the analysis. Route choice 

characteristics were visualized by making a cross sectional analysis and travel behavior 

under each disastrous conditions were compared with a normal day variations. During 

both disasters that altered the normal city life, drivers had to change their original travel 

plans and choose alternatives. The sequential time discount rate was estimated together 

with two other parameters, travel time and right turn dummy variable in both 

circumstances. The estimated values of sequential time discount rate indicated the 
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transition of drivers’ decision-making process from global decisions to myopic decisions. 

In addition, the estimated values of travel time parameter under both events indicated the 

difficulty for drivers to evaluate travel time properly, under the congestions. The 

estimations of right turn dummy variable showed an increasing difficulty of making right-

turns under both disaster scenarios. 

 

7.2 Future works 

In chapter 3, network assignment results were determined by using a hypothetical 

network under the route choice probabilities of the 𝛽 −scaled recursive logit framework. 

Unidirectional flows were utilized to visualize the network assignments. This steps need 

to be further extended up to a real network conditions with multidirectional flows and 

calculate network assignment results under varying sequential time discount rates. Since 

sequential time discount rate is estimated for a specific time frame, it can be further 

extended to visualized the timely varied network conditions. Various times of the day, 

different dates such as working days, weekends, public holidays can be analyzed.  

As discussed in chapter 4 and chapter 5, calculation of sequential time discount rate is 

highly correlated with the number of trips and their links used in considered trips. In other 

words, there may be a relationship between the network density and link lengths with the 

sequential time discount rate. Therefore, it is worth to carry out a study under different 

densified networks and networks with different link lengths. Link lengths are different to 

each other always, but governing link sizes of the network can be identified by drawing 

cumulative frequency plots and model performances can be tested. 

In chapter 6, parameter comparison was made based on estimations done in hourly basis. 

Hence, in order to more scrutinizing the travel behavioral patterns, it would be interesting 

to follow moving time method (chapter 4). Further, the comparison of disaster travel 

behavior was made by using the data of exactly one week after the disaster. It would be 

nice to analyze the travel behavior of few consecutive days before and after the disaster 

including one week before and after as well. But these analyses are permitted to the 

availability of probe taxi data which currently not available. In addition, taxi drivers are 

professional drivers and their network knowledge is high as they are highly familiar with 

the route network. Further, under the normal circumstances there is a current trend that 

almost all drivers use the applications like google maps for searching the best route. 

Hence it would be great to study the variations of sequential time discount rate when the 

route choice is being done between professional and non-professional drivers, using and 

without using applications for choosing route. 
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Appendix A 

The 𝑡 values resulted from the asymptotic 𝑡 test carried out between the estimations of 

10 trips, 20 trips and 30 trips samples during the period of morning peak are presented 

here (Section 4.3.31). 

Table A.1  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 10 trips 

samples during the morning peak 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.01          

3 -0.15 -0.14         

4 0.00 -0.01 0.16        

5 -0.09 -0.09 0.04 -0.09       

6 0.02 0.02 0.17 0.03 0.11      

7 -0.05 -0.05 0.11 -0.05 0.05 -0.07     

8 -0.21 -0.19 -0.06 -0.22 -0.09 -0.23 -0.17    

9 0.01 0.01 0.17 0.01 0.11 -0.01 0.06 0.23   

10 0.16 0.15 0.28 0.17 0.23 0.14 0.20 0.32 0.15  

 

Table A.2  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 20 trips 

samples during the morning peak 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.32          

3 0.41 0.10         

4 0.23 -0.11 -0.21        

5 0.31 -0.01 -0.11 0.10       

6 -0.09 -0.39 -0.47 -0.30 -0.38      

7 -0.10 -0.40 -0.48 -0.32 -0.39 -0.01     

8 0.48 0.16 0.05 0.28 0.18 0.54 0.55    

9 0.14 -0.17 -0.26 -0.07 -0.16 0.22 0.23 -0.32   

10 -0.13 -0.45 -0.53 -0.36 -0.44 -0.03 -0.02 -0.61 -0.26  
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Table A.3  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 30 trips 

samples during the morning peak 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.12          

3 0.06 0.20         

4 0.04 0.17 -0.02        

5 -0.02 0.09 -0.09 -0.07       

6 0.12 0.25 0.06 0.07 0.14      

7 -0.04 0.07 -0.11 -0.09 -0.02 -0.16     

8 0.01 0.13 -0.06 -0.04 0.03 -0.11 0.05    

9 -0.02 0.10 -0.09 -0.07 0.00 -0.15 0.02 -0.03   

10 -0.20 0.09 -0.29 -0.26 -0.18 -0.34 -0.15 -0.22 -0.19  
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Appendix B 

The 𝑡 values resulted from the asymptotic 𝑡 test carried out between the estimations of 

10 trips, 20 trips and 30 trips samples during the period of day peak are presented here 

(Section 4.3.3.2). 

Table B.1  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 10 trips 

samples during the day peak 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.03          

3 -0.27 -0.21         

4 0.01 -0.03 0.30        

5 0.04 0.02 0.14 0.03       

6 0.01 -0.02 0.27 0.01 -0.03      

7 -0.08 -0.09 0.25 -0.10 -0.07 -0.10     

8 -0.04 -0.06 0.27 -0.05 -0.05 -0.05 0.05    

9 -0.11 -0.11 0.20 -0.12 -0.08 -0.12 -0.03 -0.08   

10 0.01 -0.02 0.26 0.01 -0.03 0.00 0.09 0.05 0.11  

 

Table B.2  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 20 trips 

samples during the day peak 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.01          

3 0.11 0.11         

4 0.02 0.02 -0.10        

5 -0.19 -0.17 -0.25 -0.19       

6 -0.07 -0.06 -0.16 -0.08 0.13      

7 -0.10 -0.08 -0.19 -0.10 0.09 -0.03     

8 -0.18 -0.16 -0.25 -0.18 0.00 -0.12 -0.09    

9 0.01 0.01 -0.10 0.00 0.19 0.07 0.10 0.18   

10 -0.09 -0.07 -0.18 -0.09 0.10 -0.02 0.01 0.10 -0.09  
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Table B.3  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 30 trips 

samples during the day peak 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.08          

3 -0.21 -0.14         

4 -0.18 -0.12 0.03        

5 -0.28 -0.22 -0.09 -0.12       

6 -0.29 -0.23 -0.10 -0.13 -0.01      

7 -0.10 -0.03 0.12 0.09 0.20 0.21     

8 -0.10 -0.02 0.13 0.10 0.21 0.22 0.00    

9 -0.07 0.00 0.14 0.11 0.21 0.23 0.03 0.02   

10 -0.01 0.07 0.21 0.18 0.29 0.30 0.09 0.09 0.06  
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Appendix C 

The 𝑡 values resulted from the asymptotic 𝑡 test carried out between the estimations of 

10 trips, 20 trips and 30 trips samples during the period of evening peak are presented 

here (Section 4.3.3.3). 

Table C.1  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 10 trips 

samples during the evening peak 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.09          

3 -0.02 0.23         

4 -0.05 0.15 -0.10        

5 -0.05 0.20 -0.08 0.03       

6 -0.04 0.19 -0.06 0.04 0.01      

7 -0.09 0.01 -0.24 -0.15 -0.20 -0.19     

8 -0.07 0.12 -0.16 -0.06 -0.10 -0.10 0.12    

9 -0.09 -0.01 -0.24 -0.16 -0.21 -0.20 -0.02 -0.13   

10 -0.01 0.20 0.02 0.10 0.08 0.07 0.20 0.14 0.21  

 

Table C.2  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 20 trips 

samples during the evening peak 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.03          

3 -0.01 0.02         

4 -0.18 -0.23 -0.21        

5 -0.17 -0.20 -0.19 0.04       

6 0.02 0.03 0.02 0.07 0.06      

7 -0.11 -0.11 -0.11 0.10 0.07 -0.05     

8 -0.05 -0.02 -0.04 0.19 0.17 -0.03 0.08    

9 0.00 0.04 0.02 0.19 0.17 -0.02 0.11 0.05   

10 -0.07 -0.06 -0.07 0.16 0.14 -0.04 0.05 -0.04 -0.08  
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Table C.3  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 30 trips 

samples during the evening peak 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.29          

3 -0.02 0.32         

4 0.03 0.24 0.05        

5 -0.06 0.29 -0.04 -0.08       

6 0.04 0.37 0.06 -0.01 0.11      

7 -0.14 0.22 -0.14 -0.14 -0.10 -0.20     

8 0.03 0.12 0.04 0.02 0.05 0.02 0.08    

9 -0.19 0.17 -0.19 -0.17 -0.16 -0.26 -0.06 -0.09   

10 -0.02 0.28 0.00 -0.05 0.04 -0.06 0.12 -0.04 0.17  
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Appendix D 

The 𝑡 values resulted from the asymptotic 𝑡 test carried out between the estimations of 

10 trips, 20 trips and 30 trips samples based on the trips with delay time less than five 

minutes are presented here (Section 4.3.4.1). 

Table D.1  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 10 trips 

samples with trip delay time less than five minutes 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.07          

3 -0.01 0.07         

4 -0.08 -0.02 -0.08        

5 -0.08 -0.01 -0.08 0.01       

6 -0.04 0.02 -0.04 0.04 0.04      

7 -0.04 0.03 -0.03 0.04 0.04 0.00     

8 0.03 0.06 0.04 0.07 0.06 0.05 0.05    

9 -0.02 0.06 -0.01 0.07 0.07 0.03 0.02 -0.04   

10 -0.09 -0.03 -0.09 -0.01 -0.02 -0.05 -0.05 -0.07 -0.08  

 

Table D.2  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 20 trips 

samples with trip delay time less than five minutes 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.07          

3 0.07 0.13         

4 0.08 0.15 0.01        

5 -0.09 -0.02 -0.15 -0.16       

6 -0.13 -0.07 -0.19 -0.20 -0.05      

7 -0.14 -0.07 -0.19 -0.21 -0.06 -0.01     

8 -0.06 0.00 -0.12 -0.13 0.02 0.06 0.07    

9 0.08 0.14 0.01 0.00 0.16 0.20 0.20 0.13   

10 0.05 0.12 -0.02 -0.03 0.13 0.17 0.18 0.10 -0.02  
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Table D.3  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 30 trips 

samples with trip delay time less than five minutes 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.06          

3 0.02 0.08         

4 -0.04 0.02 -0.06        

5 -0.22 -0.17 -0.23 -0.19       

6 -0.11 -0.06 -0.13 -0.08 0.12      

7 -0.17 -0.12 -0.18 -0.14 0.05 -0.07     

8 -0.08 -0.02 -0.10 -0.04 0.16 0.04 0.10    

9 -0.10 -0.04 -0.11 -0.06 0.14 0.02 0.09 -0.02   

10 -0.15 -0.10 -0.17 -0.12 0.08 -0.04 0.03 -0.08 -0.06  
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Appendix E 

The 𝑡 values resulted from the asymptotic 𝑡 test carried out between the estimations of 

10 trips, 20 trips and 30 trips samples based on the trips with delay time between 5 to 10 

minutes are presented here (Section 4.3.4.2). 

Table E.1  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 10 trips 

samples with trip delay time between 5 to 10 minutes 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.00          

3 0.01 0.01         

4 0.02 0.01 0.00        

5 -0.20 -0.17 -0.02 -0.16       

6 0.01 0.01 0.00 0.00 0.19      

7 -0.07 -0.06 -0.01 -0.07 0.22 -0.08     

8 -0.03 -0.03 -0.01 -0.04 0.22 -0.05 0.05    

9 -0.15 -0.13 -0.02 -0.13 0.09 -0.16 -0.14 -0.16   

10 0.01 0.01 0.00 -0.01 0.20 -0.01 0.08 0.04 0.16  

 

Table E.2  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 20 trips 

samples with trip delay time between 5 to 10 minutes 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.08          

3 0.09 -0.01         

4 -0.05 -0.11 -0.12        

5 -0.04 -0.10 -0.11 0.02       

6 0.08 0.01 0.02 0.11 0.10      

7 -0.13 -0.14 -0.17 -0.08 -0.09 -0.14     

8 0.04 0.01 0.01 0.04 0.04 0.01 0.05    

9 0.06 0.01 0.02 0.08 0.08 0.01 0.10 0.00   

10 0.03 -0.06 -0.06 0.08 0.06 -0.06 0.15 -0.03 -0.05  

 

 

 

 



150 

 

Table E.3  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 30 trips 

samples with trip delay time between 5 to 10 minutes 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.06          

3 0.07 -0.01         

4 -0.04 -0.08 -0.09        

5 0.05 0.00 0.01 0.06       

6 0.06 0.00 0.00 0.08 -0.01      

7 0.02 -0.05 -0.05 0.05 -0.04 -0.05     

8 0.06 0.00 0.01 0.07 0.00 0.00 0.05    

9 0.05 0.01 0.01 0.06 0.00 0.01 0.04 0.00   

10 0.05 0.01 0.01 0.06 0.00 0.01 0.04 0.00 0.00  
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Appendix F 

The 𝑡 values resulted from the asymptotic 𝑡 test carried out between the estimations of 

10 trips, 20 trips and 30 trips samples based on the trips with delay time greater than 10 

minutes are presented here (Section 4.3.4.3). 

Table F.1  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 10 trips 

samples with trip delay time greater than 10 minutes 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.20          

3 -0.17 0.08         

4 -0.15 0.14 0.06        

5 -0.15 0.16 0.09 0.02       

6 0.01 0.09 0.08 0.07 0.07      

7 -0.21 -0.02 -0.12 -0.17 -0.20 -0.09     

8 -0.14 0.14 0.08 0.03 0.01 -0.07 0.17    

9 -0.20 0.00 -0.09 -0.14 -0.17 -0.09 0.02 -0.15   

10 -0.15 0.13 0.06 -0.01 -0.03 -0.07 0.16 -0.03 0.13  

 

Table F.2  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 20 trips 

samples with trip delay time greater than 10 minutes 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.32          

3 0.32 0.07         

4 0.24 -0.10 -0.16        

5 0.31 -0.01 -0.08 0.09       

6 -0.12 -0.41 -0.40 -0.35 -0.41      

7 -0.14 -0.43 -0.41 -0.37 -0.42 -0.02     

8 0.27 0.09 0.03 0.15 0.10 0.33 0.34    

9 0.16 -0.16 -0.21 -0.07 -0.16 0.27 0.29 -0.19   

10 -0.22 -0.52 -0.46 -0.49 -0.52 -0.06 -0.03 -0.36 -0.39  
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Table F.3  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 30 trips 

samples with trip delay time greater than 10 minutes 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.13          

3 0.06 0.18         

4 0.04 0.17 -0.02        

5 -0.03 0.11 -0.08 -0.07       

6 0.11 0.23 0.05 0.06 0.13      

7 -0.05 0.08 -0.11 -0.09 -0.03 -0.15     

8 0.01 0.14 -0.05 -0.04 0.03 -0.10 0.06    

9 -0.03 0.11 -0.08 -0.07 0.00 -0.13 0.03 -0.03   

10 -0.23 -0.10 -0.27 -0.26 -0.20 -0.31 -0.18 -0.24 -0.21  
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Appendix G 

The 𝑡 values resulted from the asymptotic 𝑡 test carried out between the estimations of 

10 trips, 20 trips and 30 trips samples based on the trips made at Toyosu area are tabulated 

here (Section 4.3.5.1). 

Table G.1  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 10 trips 

samples based on the trips made at Toyosu area 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.09          

3 -0.25 -0.24         

4 -0.22 -0.23 0.02        

5 -0.06 -0.13 0.18 0.15       

6 -0.16 -0.19 0.08 0.05 -0.10      

7 -0.35 -0.31 -0.13 -0.15 -0.28 -0.19     

8 -0.30 -0.28 -0.08 -0.10 -0.24 -0.15 0.04    

9 -0.03 -0.11 0.22 0.19 0.02 0.13 0.33 0.28   

10 -0.04 -0.11 0.20 0.18 0.02 0.12 0.31 0.26 -0.01  

 

Table G.2  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 20 trips 

samples based on the trips made at Toyosu area 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.06          

3 -0.09 -0.03         

4 -0.03 0.04 0.07        

5 0.02 0.08 0.12 0.05       

6 0.03 0.10 0.14 0.07 0.02      

7 0.00 0.07 0.10 0.03 -0.02 -0.04     

8 -0.03 0.03 0.07 0.00 -0.05 -0.07 -0.03    

9 -0.01 0.05 0.09 0.02 -0.03 -0.05 -0.01 0.02   

10 -0.06 0.00 0.03 -0.04 -0.09 -0.11 -0.07 -0.04 -0.06  
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Table G.3  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 30 trips 

samples based on the trips made at Toyosu area 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.15          

3 -0.03 0.13         

4 -0.08 0.08 -0.05        

5 -0.16 0.00 -0.13 -0.08       

6 -0.04 0.12 -0.01 0.04 0.13      

7 -0.15 0.01 -0.12 -0.07 0.01 -0.12     

8 -0.01 0.15 0.02 0.08 0.17 0.03 0.15    

9 -0.18 -0.02 -0.15 -0.10 -0.02 -0.15 -0.03 -0.18   

10 -0.11 0.05 -0.08 -0.03 0.06 -0.07 0.05 -0.11 0.08  
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Appendix H 

The 𝑡 values resulted from the asymptotic 𝑡 test carried out between the estimations of 

10 trips, 20 trips and 30 trips samples based on the trips made at Musashino area are 

tabulated here (Section 4.3.5.2). 

Table H.1  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 10 trips 

samples based on the trips made at Musashino area 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.07          

3 0.06 0.01         

4 0.06 0.01 0.00        

5 0.06 0.01 0.00 0.00       

6 0.06 -0.01 -0.02 -0.02 -0.02      

7 0.04 0.02 0.01 0.01 0.01 0.02     

8 -0.08 -0.13 -0.11 -0.11 -0.11 -0.13 -0.07    

9 0.05 0.02 0.01 0.01 0.01 0.02 0.00 0.08   

10 0.05 0.02 0.01 0.01 0.01 0.02 0.00 0.07 0.00  

 

Table H.2  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 20 trips 

samples based on the trips made at Musashino area 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.04          

3 0.01 -0.02         

4 0.05 0.01 0.03        

5 0.04 0.01 0.03 0.00       

6 0.03 0.00 0.02 -0.02 -0.02      

7 0.03 -0.01 0.01 -0.02 -0.02 -0.01     

8 0.01 -0.03 -0.01 -0.04 -0.04 -0.03 -0.02    

9 0.04 0.02 0.03 0.01 0.01 0.02 0.03 0.04   

10 0.04 0.02 0.04 0.01 0.01 0.02 0.03 0.04 0.00  
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Table H.3  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 30 trips 

samples based on the trips made at Musashino area 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.03          

3 0.01 -0.03         

4 0.05 -0.01 0.04        

5 0.01 -0.03 -0.01 -0.04       

6 0.04 -0.01 0.03 -0.01 0.04      

7 0.04 0.00 0.04 0.00 0.04 0.01     

8 0.01 -0.03 0.00 -0.04 0.00 -0.03 -0.04    

9 0.04 0.00 0.03 0.01 0.04 0.02 0.00 0.03   

10 0.04 -0.01 0.03 -0.01 0.04 0.00 -0.01 0.03 -0.01  
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Appendix I 

The 𝑡 values resulted from the asymptotic 𝑡 test carried out between the estimations of 

10 trips, 20 trips and 30 trips samples based on the trips made at Akihabara area are 

tabulated here (Section 4.3.5.3). 

Table I.1  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 10 trips 

samples based on the trips made at Akihabara area 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.04          

3 0.15 0.11         

4 -0.08 -0.12 -0.20        

5 0.18 0.15 0.05 0.23       

6 0.04 0.00 -0.12 0.12 -0.15      

7 0.12 0.08 -0.04 0.19 -0.09 0.09     

8 0.14 0.12 0.05 0.18 0.01 0.12 0.07    

9 0.05 0.05 0.03 0.06 0.02 0.05 0.03 0.01   

10 0.08 0.03 -0.09 0.15 -0.13 0.04 -0.05 -0.11 -0.04  

 

Table I.2  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 20 trips 

samples based on the trips made at Akihabara area 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 -0.11          

3 -0.19 -0.10         

4 -0.21 -0.13 -0.02        

5 -0.07 0.05 0.15 0.18       

6 0.00 0.10 0.17 0.19 0.06      

7 -0.35 -0.31 -0.23 -0.22 -0.35 -0.31     

8 -0.15 -0.05 0.06 0.08 -0.10 -0.14 0.28    

9 -0.05 0.07 0.18 0.20 0.02 -0.04 0.37 0.12   

10 0.03 0.11 0.15 0.16 0.08 0.03 0.24 0.13 0.07  
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Table I.3  𝑡 values of asymptotic 𝑡 test carried out between the estimations of 30 trips 

samples based on the trips made at Akihabara area 

Sample 1 2 3 4 5 6 7 8 9 10 

1           

2 0.02          

3 0.18 0.16         

4 0.21 0.19 0.03        

5 0.21 0.20 0.04 0.01       

6 0.04 0.02 -0.14 -0.17 -0.17      

7 0.02 0.00 -0.16 -0.19 -0.20 -0.02     

8 0.23 0.22 0.09 0.05 0.04 0.20 0.22    

9 0.18 0.16 0.01 -0.03 -0.04 0.14 0.16 -0.08   

10 0.23 0.21 0.07 0.04 0.03 0.19 0.21 -0.01 0.07  

 

 

 


