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Abstract 
 

Nowadays more and more high-tech applications need the specific 3D models and 

information. Traditional photogrammetric methods may meet the demand of accuracy, 

but the computational efficiency and outputs are hardly accepted. In many 

applications, such as autonomous driving, evacuation planning and so on, can be 

taking more use of the 3D model containing the object label attribute, which defines it 

as a digital object model (DOM) in this paper. In that case, the purpose of this study is 

to propose new methods to solve some key technologies for automatically generating 

such kind of 3D models. In detail, the following three issues have be mainly focused 

on:  

(1) How to automatically find the seed points in poor texture remote sensing images? 

(2) How to fast generate pixel-wised 3D dense point clouds? 

(3) How to precisely annotate the 3D point clouds? 

In order to efficiently solve these bottleneck problems mentioned above, a graph 

theory based seed point matching method for texture-poor images is firstly proposed. 

The high ordered graph matching algorithm is utilized to solve the correspondence 

point identification. It concerned both the radiometric and geometric constraint to 

make the final result denser and evenly distributed. Second, an aerial image dense 

matching method based on optical flow field is proposed. The optical flow field is 

calculated by using some seed points, so as to determine the similar region between 

images to reduce the redundant computation. A coarse to fine matching strategy is 

utilized to refine the generated 3D point clouds. The experimental results have shown 

that the proposed image dense matching method can achieve the matching accuracy of 

a sub-pixel level. Compared with the widely used dense matching methods, such as 

PMVS, the efficiency is higher, and fully meets the 3D object reconstruction and 

automatic generation of DSM requirements, etc. At last a multi-constraints fully 

convolutional network for the annotation of 3D point clouds is proposed. The images 

https://www.baidu.com/link?url=wi1s4r3t1HyoytbtxAXzsZvvQNGZDqhbWTbNzfUMDYdUDzeI5LzPqFHnI7FUlOqqNAObBmsmhhWViwVf7O-2GNKOz7HakuO-s544d4IoElFV3qZwyfPuEG95O7V9DtPd&wd=&eqid=ebeac17d0001f05a000000065b943b0d
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and DSM are utilized as input to extract features to make the point cloud classification 

more accurate. The comparison of different deep neutral networks has demonstrated 

that the proposed residual fully convolutional network (Res-FCN) can achieve higher 

accuracy for 3D point cloud annotation. The conditional random field is utilized as the 

post-processing to make the object edges smoother and clearer. 

In general, the digital object model (DOM) is automatically generated by seed 

correspondence searching, dense image matching and 3D point cloud annotation. The 

annotated labels are inserted into the DSM as the 4th attribute of each point. In that 

case the interested objects can be easily extracted through the label information 

searching instead of point cloud segmentation procedures. The proposed methods in 

this paper can efficiently solve the technical bottleneck problems in each step 

mentioned above. In practical applications, the 3D object reconstruction can be 

quickly completed based on the DOM. 
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Chapter 1 
Introduction 
 

This doctoral dissertation is focusing on the 3D information acquire approach by the 

aerial sequence images. We use graph theory based image matching method to find 

the tie point in image sequence, and propose a new approach of dense image matching 

to get the density point clouds from the aerial images. In particularly, we provide a 

new strategy of matching method and experiment it on the dataset of different land 

surface to test its robustness and reliability.  

The following sections in this chapter is organized as follows: Section 1.1 introduces 

the background of this research, Section 1.2 briefly introduce our based idea and 

matching strategy, Section 1.3 summarizes the contribution of our research, At last, 

Section 1.4 outlines this dissertation. 

1.1 Research background 

On the research aspects, objective 3D reconstruction is a procedure that restoration 

the objects’ 3 dimensional surface structure form 2 dimensional images. It has been a 

hot research topic in digital photogrammetry and computer vision field for many years 

(Yuan and Ming, 2009). It is mainly involved with dense matching approaches and 

three-dimensional reconstruction methods. Currently, many matured methods for 

reconstructions the objects’ three-dimensional surface structure has been utilized in 

different kinds of applications. The key to improve all the art of work is to figure out 

how to acquire the 3D point clouds in a fast, reliable and effective way. 

On the application aspects, nowadays more and more applications such as Google 

earth, car navigation system, 3D city maps, and DEM producing work, need the high 

density and high accurate 3D information. Compared with 2D information, 3D 

information is easier for people to identify and more familiar to the reality world. By 

using all kind of 3D maps just like Google map, people can easily find the destination 
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and understand the real location of their own, which brings a lot of convenience to 

people’s ordinary life. 

      

(a)                                     (b) 

Figure 1.1 Applications of 3D information. (a) 3D city map, (b) DEM (picture from 

www.baidu.com) 

Meanwhile, 3D maps are more familiar with the real world (see Figure 1.1(a)). For 

normal people they do not need to understand the symbols in the old traditional maps. 

By using the 3D map they can easily find what they want in the searching area. On the 

other hand, DEM (see Figure 1.1(b)) shows a lot of land heigh informations to those 

who need this inforamtions. For example, in the management of recovery from the 

disaster and some urban planing field. They can use DEM to manage their budget and 

guide their constructions. Accurate 3D inforamtion is playing a important role in the 

real world. Confronting those demands, an effective 3D information acquire approach 

should be provided. And this is the motivation of our research. 

1.2 Our approach 

The approach in this doctoral dissertation aims at getting the 3D point clouds in a 

robust and effective way and identify it, meanwhile the economical consumption is 

also under our consideration. As we all know, traditional extraction methods of 3D 

point clouds are mainly devied in two kinds of approaches. The first one is using laser 

scanner to get the LiDAR point clouds, it is fast and accurate. But the device is 

expensive. Nowadays images are more and more easier to collected. And the price of 

http://www.baidu.com/
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an camera is cheaper than a laser scanner. We can easily get a large area covered 

sequence images from one aerial photography. Which means the operation fee is 

lower. So we want to provide an effective and reliable matching approach to get the 

3D information from the images. This is our based idea. 

Traditional mataching approaches are mainly divied by two types, area based 

matching methods and feature based matching methods. Those kind of matching 

methods present a low efficiency and unreliable when dealing with the mission of 

per-pixel matching. Especially, when dealing with the aerial image the mismaching 

rate is very high. It is hardly utilized in the real applications (Stefano et al, 2004). 

Consider this situation, we provide a new strategy of matching approach. To meet the 

demand of per-pixel matching and the acuracy, the whole matching strategy is shown 

as Figuare 1.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 The matching straregy of our approach 

Per-pixel rough matching based on optical flow field 

Define the control lattice 
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Using continuous relative orientation based on RANSAC algorithm eliminate 
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Per-pixel matching based on normalized correlation coefficient 
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Firstly, we use graph theory based matching method to match the raw stereo image 

pairs. Then using continuous relative orientation based on RANSAC to eliminate the 

mismaching points. Secondly we use the former result as the seed points to caculate 

the seed texure based optical flow field (OFF). Then using multi-level B-spline to 

simulation each pixel’s relationship in the overlap area. Then build up the epipolar 

image between the image pairs, using correlation coefficients and texure coefficients 

to fine maching point pairs. In the end we will using continuous relative orientation 

based on RANSAC to eliminate the mismatching point pairs. After that we use the 

dense point clouds to generate the DSM for the classification step. The important 

algorithms and theories we will explain in chapters 3, 4 and 5. 

1.3 Contributions 

In this doctoral dissertation we provide 3 new approaches for solving the bottleneck 

problems of digital object model generation. Our main contributions can be 

summarized as follows. 

 

 How to get the uniformed and accurate seed points in poor texture image area? 

We provide a graph theory based image matching method. It can use the structure 

information as a similarity measurement from different feature extractors. 

Therefore we can get a uniformed and accurate sparse matching result. 

 How to get the 3D information from the real-world in a priority way? We provide 

an effective dense matching method to get the 3D point clouds from the aerial 

stereo image pairs. Therefore we can get the 3D information in a low 

consumption and fulfill the demand of applications. 

 How to achieve an accurate point cloud identification results? We provide a new 

deep neural network, using both images and DSM as input to extract the features 

to segment the images. And using the segmentation results to label the generated 

3D point clouds. 
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1.4 Outline 

The following chapters are organized as follows: 

 Chapter 2 gives a detailed introduction on the state of art researches on matching 

methods and annotation methods. In this chapter we focus on introducing the 

existed methods’ advantages and shortages, and our research motivation. 

 Chapter 3 describes the basic concepts and techniques using in extracting the 

image tie points. We will describe the theory and processing methods, and 

experimental results. 

 Chapter 4 describes the basic concepts and techniques using in dense image 

matching. We will describe the theory and processing methods, and experimental 

results. 

 Chapter 5 describes the basic concepts and algorithm using in 3D point clouds’ 

annotation. And we describe the experimental result and analysis. Comparison 

experiments between our approach and some exist methods are taken to show 

advantages and disadvantages. 

 Chapter 6 concludes this doctoral dissertation by highlight contributions and 

pointed out the shortage of our algorithm. Also future work will be described in 

this chapter. 
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Chapter 2 
Literature review 
 

The essence of image matching is an essential searching problem. So as to searching, 

a searching target library should be established first. Secondly the key characters and 

features of the target should be expressed in a priority issue. Then a searching 

procedure can be operated as the guidance by a searching strategy which obeyed by 

the certain similarity rules. If the searching target has some kind of relationship with 

the library established, we can define the similarity measures to find out the result. 

For image matching, the interest point should be feature extraction firstly. It is the 

same procedure as establish the searching target library. Then we can search the 

matched point pairs in interest points by calculating the similarities among those 

interest points. Currently, the widely used matching methods are divided into two kind 

of types. One is area-based iamge matching method, the other is feature-based image 

matching method.  

For point cloud annotation, traditional methods are always based on machine learning 

technology. In recent years, a lot of deep learning methods have shown great results in 

image classification competitions, which give us a motivation to utilize the new 

technology in our own research. 

In this chapter we will introduce two types of matching methods and make a 

comparison to describe our motivation for providing the new approach. Also we will 

briefly introduce the widely used machine learning and deep learning methods for 3D 

point cloud annotation. 

2.1 Image seed point extraction 

2.1.1 Area-based image matching 

Area-based iamge matching algorithms are highly developed in the last decades. They 
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are the most theoretically sophisticated matching methods. Area-based iamge 

matching methods are always select the corresponding searching area between the 

stereo image pairs, then using relevant metrics to determine the similarity of the tow 

image block to locate the center of the image blocks as the matched point pairs. There 

are lots of matured measurements. For example, cross-correlation (Welch, 1974), sum 

of absolute differences, sum of squared difference (Barnea and Silverman, 1972) and 

Fourier correlation (Bracewell, 1965), those methods are widely used for image 

matching. In this section, we are focusing on introduce the cross-correlation method 

and least squares image method. These two methods are most essential and widely 

used algorithms in digital image processing. 

 

2.1.1.1 Cross-correlation matching 

Cross-correlation measurement is a widely used similarity measurement. By 

calculating the correlation index between the template window and target image and 

comparing the correlation index to the threshold to determine the center of the two 

image blocks are corresponding point pairs (Gonzalez, 2004), which shows in Figure 

2.1. 

 
 

(a)                     (b)                          (c) 

Figure 2.1 The correlation between the template and the searching image. (a) searching image, 

(b) template, (c) the coefficient shows in image 
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The correlation index between the 𝑚𝑚 × 𝑛𝑛 template 𝑏𝑏 and the searching image 𝑎𝑎 

can be described as follows.  

∑∑ ++=
i j

jyixajibyxc ),(),(),(                    (2.1) 

where ),( yxc  is the correlation index; ),( jib  is gray of the pixel ),( ji  in template 

𝑏𝑏; ),( jia  is gray of the pixel ),( ji  in the searching image 𝑎𝑎. 

Because the template 𝑏𝑏 and image 𝑎𝑎 have always brightness changes and scale 

changes, normalized cross-correlation index are utilized to reduce the influence by 

those factors.  

ba

abyx
σσ

σσ =),(                               (2.2) 

where ),( yxσ  is the normalized cross correlation index; 𝜎𝜎𝑎𝑎𝑎𝑎 is the covariance of 

image patches; 𝜎𝜎𝑎𝑎 is the standard deviation of searching window; 𝜎𝜎𝑏𝑏 is the standard 

deviation of template.  

So we can determine the normalized correlation as follows: 

22 ]-),([]-),([

]-),(][-),([
),(

∑∑∑∑

∑∑
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++
=

i ji j

i j

ajyixabjib

ajyixabjib
yxσ            (2.3) 

where 𝑎𝑎� and 𝑏𝑏� are stand for the average gray of the searching window and the 

template window, respectively. 

When dealing with the aerial images, the image size are large. In order to reduce the 

calculation, we often use the under formula to calculate the correlation index. 

[ ]
22 ]-),([]-),([

),(),(1-),(),(
),(

∑∑∑∑

∑∑ ∑∑∑∑

++

++++
=

i ji j

i j i ji j

ajyixabjib

jyixajib
mn

jyixajib
yxσ      (2.4) 

It is easy to find out that the normalized correlation index is invariant to the image 

template and the searching window’s linear gray transformation. However, it is 

sensitive to the rotation and scaling. If the large rotation and scaling exits, correlation 

methods cannot acquire the accurate result. On the other hand, correlation coefficient 
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is related to the SNR of the image. It shows a great impact with the image noise, 

especially when the template and searching window has small gray contrast. The 

correlation coefficient is more susceptible to the noise. In order to acquire the better 

matching result, normally the interest points with large gray contrast should firstly be 

extracted. Then image de-nosing and distortion correction procedures should be 

applied. When all those image preprocessing has been done, the result quality will be 

improved. 

 

2.1.1.2 Least square matching 

Least square matching method is the most classic method in area-based image 

matching. It uses all aspect of information in the searching window and template. It 

also concerns about the geometric distortion, radiation distortion, and random error 

between the stereo image pairs, which makes the matched results achieve sub-pixel or 

even super-pixel accuracy. Consider about the cross correlation matching method, we 

can find it uses the similarity measurement to find the most similarity image blocks, 

and determines the center of the blocks as the corresponding point pairs. So its 

accuracy just achieves the pixel level. This is why we always use least square 

matching method to improve the matched result accuracy. 

In this section, the basic theory of least square matching method will be introduced. 

One point least square matching method only consider about geometric distortion and 

radiation on the image coordinates. As the photographing position and the ground 

evaluation changes, the geometric distortion and the radiation distortion always exist 

between the template and the searching windows. Therefore the geometric distortion 

and radiation distortion correction should be taken before the correlation coefficient 

calculation. Equation (2.5) shows the basic equation of the least square image 

matching method. 

1 1 0 1 2 0 1 2 0 1 2 2( , ) ( , ) ( , ) ( , )g x y n x y h h g a a x a y b b x b y n x y+ = + + + + + +        (2.5) 
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Where 1 2,g g  are the pixel gray of left and right image, respectively; 1 2,n n  are the 

noise of the left and right images, respectively; 0 1,h h  are the radiation distortion 

correction parameters; 0 1 2 0 1 2, , , , ,a a a b b b  are the geometric distortion correction 

parameters. We linearization Equation (2.5) by Taylor’s series expansion with the 

condition shown as follows: 

1,0,0,1,0,0,0,0 21021010 ======== bbbaaahh  

The error equation of the least square matching method can be written as follows: 

gdb
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Where g∆ is the corresponding pixels gray difference between the left image and 

the right image. In image processing each pixel gray is a discrete grid array. So we 

can use differential index instead of the partial derivative in Equation (2.6). 
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Then we can build the matrix form of each pixel error equation as follows: 

lCxV −=                              (2.8) 

where 

[ ]T21021010 dbdbdbdadadadhdh=x ; 
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g∆=l . 

We can determine this equation with least square adjustment principle as follows: 

lCC)Cx T1T( −=                         (2.9) 

We put the initial value into Equation (2.6), we can ultimately derive the distortion 

correction parameters by doing several iterations. The whole strategy of least square 

matching method is shown as Figure 2.2. 
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Figure 2.2 The strategy of least square matching method 

2.1.2 Feature-based iamge matching 

Feature-based matching always involves with feature extraction and feature matching. 

Different from area-based matching methods, feature-based matching methods 

concern about the local gray structure from one image, then extract the feature area or 

points presented by a group of parameters or rules. In the end, by comparing the 

feature parameters to determine the corresponding point pairs.  
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In this section, the feature-based matching methods will be introduced by two steps, 

first is feature point extraction, second is feature point matching. After that the widely 

used SIFT algorithm will be described. 

 

2.1.2.1 Feature extraction 

Feature extraction is a procedure to find out the interest point and area in one image. 

On image processing and digital photogrammetry field a good feature extraction 

operator may have those abilities: certainty, robustness, invariance, uniqueness and 

comprehensibility. Meanwhile, the good feature’s distribution should not be too much 

concentrated.  

Here we introduce some widely used point feature detectors, such as Moravec, Harris, 

and Förstner. 

Moravec detector’s basic assumption is each feature point has a great gray contrast on 

all directions. By calculating the searching window’s gray gradient on vertical 

direction, horizontal direction and diagonal direction, determine the maximum and 

minimum gray variance points as the feature points. The feature detecting time is 

short, algorithm is simple. But it has low robustness when dealing with the image 

noise, rotation and contrast change (Moravec, 1977). 

Harris detector is the improvement of Moravec detector, it calculate the local image 

block’s differential by Gaussian template. The eigenvalues of the self-correlation 

matrix is the first order curvature of the self-correlation function. If one pixel’s 

eigenvalues are large, then it determined to be the feature point. The advantage of the 

Harris detector is simple calculation and the distribution of the features is uniform. So 

engineers can extract the feature points in accordance with their need (Harris and 

Stephens, 1988). 

Förstner detector is determined by calculating the 5×5 window’s gray covariance 

matrix and each pixel’s Robert gradient, the center pixel is (x, y), searching the nearly 

circular error ellipse in the image and select the minimum point as the feature point 
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(Förstner and Gülch, 1987). It has high self-adaptability and accuracy. When selecting the 

candidate points, the threshold is determined by calculating the mean weight of all the 

pixels. That means we cannot operate these two steps at the same time. This will 

influence the computation efficiency. Meanwhile, in practical applications we can 

hardly set the threshold based on empirical functions. 

 

2.1.2.2 Feature matching 

After the feature extraction, we may acquire a lot of feature points to be matched. 

Usually we extract features in both images on a stereo image pair. Then compare all 

the features to determine the corresponding point pairs. To reduce the pairing time, 

some data structure techniques are used like KD-tree (Moore, 1991). 

 

2.1.2.3 SIFT matching 

Scale invariant feature transform (SIFT) is first proposed by Lowe in 1999, then he 

developed it in 2004. The basic concept of SIFT is Lindeberg’s space scale theory 

(Lindeberg, 1993). SIFT feature has several advantage, it shows a great robustness when 

dealing with image rotation, scaling, brightness change. Also show less affection with 

noise and affine distortion. 

The completed SIFT feature matching approach involved with 5 steps: scale extreme 

detection, key point selection, generate the primary direction, feature describe and 

feature matching. 

In this subsection, those five steps will be briefly introduced. 

 

1. Scale extreme detection 

Scale extreme detection involves with 3 steps, first one is Gauss pyramid images 

generate; second one is DOG (Difference of Gauss) producing; the last one is 

judgment of the extreme value of the neighborhoods. 
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As Lindeberg proved, scale normalized Gauss-Laplace kernel is the unique 

scale-invariant kernel. In order to reduce the calculation, he used the differential 

Gauss function to approximate the Gauss-Laplace function. It can be described as 

Equation (2.10). 

2 ( , , ) ( , , )G G x y k G x yG
k
σ σσ

σ σ σ
∂ −

∇ = ≈
∂ −

                        (2.10) 

where k is the constant variable, when k equal to 1 we can change the approximate to 

equation. Normally 1/32k = ; σ  is the scale coefficient. It represents the window 

size of the Gaussian convolution. Meanwhile the window size of Gaussian 

convolution and the interest points’ numbers are in positive correlation, which 

contrasts with the computation time. In Lowe’s experiments he suggests to set the 

σ  value to 1.6; G  is the gray function of the image; 2∇  is Laplace function. By 

deriving Equation (2.10) we can get Equation (2.11). 

2 2( 1) ( , , ) ( , , )k G G x y k G x yσ σ σ− ∇ ≈ −                        (2.11) 

This is why Lindeberg used the differential Gauss function to approximate the 

Gauss-Laplace function. So we can obtain one image’s represents by calculating its 

DOG in the adjacent scales (see Figure 2.3). 

In theory, the numbers of the space scale are infinity, which means the number of the 

DoG is unlimited. Through a large number of experiments, Lowe proved that the 

small scaled image is the fine expression of the related large scaled image. But the 

number of the features is certainty. When scale change to a certain level, the feature 

number won’t show a significant increase. Meanwhile σ  value also affect to the 

features number. When σ  equal to 1.6 the feature number will present in a stable 

level. Because of these, Lowe suggests to set the scale value as 3 and σ  value as 

1.6. 

After DoG generating, we can easily detect the interest points as Figure 2.4 shows. By 

selecting the extreme value points between adjacent scales, the interest points are 

determined. 
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(a) 

 

 

(b) 

Figure 2.3 The DoG generation. (a) the strategy of DoG producing, (b) how to generate 

DoG (Lowe et al, 2004) 

 

Original Images 

 Gaussian convolution  Gaussian convolution 

Gaussian image 1 Gaussian image 2 

Calculate the Difference 

DoG 
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Figure 2.4 Interest point detection. 

 

2. Key point selection 

Key point selection is the procedure to reduce the unstable interest points. When the 

interest point detection are finished, a lot of interest points will be detected near the 

edges and line features in the image. Because of Gauss-Laplace function shows a 

strong line and edge response, most of these interest points are unstable. In order to 

improve the matching quality, those points should be removed. 

Firstly, the accurate location of the interest points should be determined. By Taylor 

expansion the scale functions as follows: 

X
x
DX

x
DyxDyxD 2

2
T

T

2
1),,(),,(

∂
∂

+
∂
∂

+= σσ                 (2.12) 

By deriving the partial derivative of Equation (2.12) and calculating the extreme value 

on the condition (2.12) equal to 0, we can get the accurate location as x̂ : 

x
D

x
Dx

∂
∂

∂
∂

−=
−

2

12

ˆ                            (2.13) 

By inserting Equation (2.13) to Equation (2.12) and only remain the first 2 sections, 

we can obtain Equation (2.14). 

1ˆ ˆ( )
2

TDD X D X
X

∂
= +

∂
                      (2.14) 

Equation (2.14) is very important. It represents the one point gray in the DoG. As 

Gaussian convolution has a strong response to the gray changes in the image. If image 

area has a large gray contrast, ˆ( )D X  will be a large absolute value. Lowe suggest to 
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set a threshold that ˆ( )D X  larger than 0.3 to obtain the stable feature points. 

Obviously, when the image area has low gray contrast and the texture are similar, we 

cannot obtain more stable feature points. 

Otherwise, the line area and edge area are always the high gray contrast area in an 

image. They are sensitive to the image noise. So we should also remove these interest 

points. 

As we all know Hessian matrix is an efficient method to detect the edge. The elements 

in Hessian matrix are the pixel gray in DoG image. It is easy to obtain. Hessian matrix 

described as follows: 









=

yyyx

xyxx

DD
DD

H                                (2.15) 

Assume the α  is the maximum eigenvalue of Hessian matrix, β is the minimum 

one then we can calculate as follows: 
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Assume that γβα =  then 

γ
γ

αβ
βα 22 )1(

)(Det
)(Tr +

=
+

=
H

H
                   (2.17) 

We determine the edge points when the ratio of Hessian matrix’s maximum 

eigenvalue and minimum value is larger than a threshold. Normally, if 

γ
γ 2)1(ratio +

>  then we remove this point. Lowe suggests the threshold is 10.  

After removing gray contrast and edge extreme value, the selected interest points will 

be the final candidates of feature points. 

 

3. Primary direction calculation 

After step 2, we can acquire a lot of feature points. In order to make each feature has 

the rotational invariance. Every point’s primary direction should be calculated. 

Each pixel’s gradient can be calculated as follows: 



Automatic Digital Object Model Reconstruction from Optical Flow Field Based Dense Image Matching                    Doctoral Dissertation 

18 
 









∂
∂

∂
∂

=
y
I

x
IyxIrad ,)),((g                     (2.18) 

The gradient magnitude can be calculated as follows: 

22 ))1,()1,(()),1(),1((),( −−++−−+= yxLyxLyxLyxLyxm       (2.19) 

The gradient direction can be calculated as follows: 

),1(),1(
)1,()1,(arctan),(

yxLyxL
yxLyxLyx
−−+
−−+

=θ                 (2.20) 

Where L is the Gaussian image which has the same scale as the feature points; (x, y) is 

the feature point’s pixel coordinates in Gaussian images. 

The localized gray gradient histogram in Gaussian image has 36 columns. Each 

column covered 10° of 360°. As the contribution of the gradient to feature point is 

decrease by the distance. We should weight each gradient by Gaussian function. And 

avoid the gradient histogram mutation.  

 

4. Feature describe 

Feature describe is the procedure to describe the feature points by unique parameter 

sequence. Described features can easily be identified, also it is unique. Which means 

the feature descriptor is the identification of each feature.  

After each feature’s primary direction has been calculated, we rotate the localized 

pixel to the primary direction to recalculate the feature descriptor. In this way we can 

ensure the invariance of the feature. 

Firstly we select a window of 16×16 pixels as to calculate the feature descriptor. 

Secondly it is divided into 4 sub-rectangle, every sub-rectangle has 4×4 pixels. After 

that we calculate each pixel’s gray gradient and direction in sub-rectangle, weighted 

by Gaussian distance. Then we uniform the gradient direction in 8 directions, each 

direction covered 45° area. In the end, we accumulate the gradient magnitude to the 

correction direction to obtain an 8 dimensional vector. According to this we can get 

the final SIFT feature descriptor as a 128 dimensional vector (see Figure 2.5). 
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Figure 2.5 SIFT feature descriptor 

 

We can easily find out that the SIFT feature descriptor by a close relation with the 

local area’s texture. If the local texture has strong repeatability, the descriptor’s 

distinguishability is poor. It may cause large numbers of mismatching. We should use 

some effective error detection methods to remove these mismatching points. 

 

5. Feature matching 

The feature matching procedure is very simple as I have mentioned in section 2.1.2.2. 

SIFT feature matching is to find out the corresponding feature point pairs which has 

the smallest Euclidean distances between the stereo iamge pairs. Normally KD-tree 

is used to find the corresponding points. Figure 2.6 shows the SIFT feature and 

matching result.  

   

(a) 
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(b) 

Figure 2.6 The SIFT matching. (a) SIFT features between stereo image pairs, (b) The SIFT 

matching result 

 

From Figure 2.6 we can obviously find out that SIFT features are concentrate at the 

rich texture region. At poor texture region, SIFT features are less. This is the shortage 

of SIFT matching. 

2.1.3 Comprison of the widely used matching methods 

In this sub-section, we make a simple comparison of the widely used matching 

methods on their ability of computation efficiency, rotation invariance, scale 

invariance, descriptor uniqueness. 

 

1. Cross-correlation method 

Obviously, correlation methods cannot deal with image rotation and scaling. Assume 

the template and the searching window is perfect matched. The correlation coefficient 

of the two image blocks is 1. When rotate the searching window in 45°, the coefficient 
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will be less than 1. As we introduced in section 2.1.1.1, the cross-correlation methods 

are sensitive to the image noise. When dealing with the lack of texture region, the 

correlation coefficient is inaccurate. 

 

2. Least square matching method 

Least square matching methods concerns about the geometric distortion, radiation 

distortion, and random error between the stereo image pairs, so different from 

correlation methods, the result of least square matching methods is in high accuracy. 

But it needs to give good initial values, which means the initial result’s accuracy 

determine the least square adjustment convergence.  

 

3. SIFT matching method 

As we described in section 2.1.2.3, SIFT matching method shows a great robustness 

when dealing with image rotation, scaling, brightness change. However, SIFT features 

are concentrate at the texture-rich region. At texture-poor region, SIFT features are 

less. 

We conclude our comparison in Table 2.1. 

 

Table 2.1 Comparison of image matching methods 

 
Rotation 

invariance 
Scaling 

invariance 
Initial 

parameters 
Descriptor 
uniqueness 

Computation 
efficiency 

Cross-correlation × × × × √ 

Least square matching √ √ ○ × ○ 

SIFT √ √ × √ × 

Ps: × stands for have not; √ stands for have and quality is high; ○ stands for have but quality is 

bare. 
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2.2 Three-dimensional point cloud extraction 

2.2.1 LiDAR 

Light detection and ranging (LiDAR) is a widely used 3D point clouds generation 

system in recent decades (Wehr et al, 1999). It can be divided into two categories: 

airborne and ground. The airborne laser radar is an airborne laser detection and 

ranging system installed on an aircraft, which can measure the 3D coordinates of 

ground objects. Airborne LiDAR is an active earth observation system. It integrates 

laser ranging technology, computer technology, inertial measurement unit 

(IMU)/DGPS differential positioning technology, which has made a major 

breakthrough in real-time acquisition of 3D spatial information. Compared with 

traditional photogrammetry measurements, it has the advistage of high automation, 

small weather impact, short data production cycle and high accuracy. However, using 

LiDAR system to generate 3D point clouds is much more expensive than traditional 

aerial photogrammetry system. In practical application and production, people usually 

select to use images for 3D point cloud generation. 

2.2.2 Dense image matching 

In past decades, dense image matching has drawn extensive attention from the fields 

of photogrammetry and computer vision, and has undergone substantial development 

(Rothermel et al, 2011; Remondino et al, 2014). Dense image matching algorithms 

can be divided into two kind of types, binocular-stereo matching and multi-view 

image matching. The binocular-stereo matching strategy is mostly used in the field of 

photogrammetry, in which the correspondences are determined by taking the 

geometric and radiometric constraints between stereo image pairs into consideration 

(Torresani et al, 2013). Binocular-stereo dense matching usually includes four steps 

(Scharstein et al, 2001): matching cost computation, cost aggregation, disparity 

optimization and disparity refinement. Based on the different cost aggregation 
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methods employed, dense image matching can also be divided into two categories, 

specifically: local algorithms (Ke et al, 2004) and global algorithms (Tran et al, 2006; 

Issac et al, 2014). The local algorithms, determine the correspondences by calculating 

the matching costs between the selected point and its surrounding local 

neighborhoods, and then use the winner takes all (WTA) strategy to select the point 

with the minimum matching cost as the final corresponding point (Tola et al, 2008). 

Since the local algorithms only use a part of the local neighbors for calculation, this 

leads to a low computational complexity and redundancy. However, they can easily 

become stuck in local optima, so that the matching result does not match the true 

topography. The global algorithms use pixel-based or object-based cost functions 

optimized by the energy function using graph cuts or Markov random field (MRF) 

methods in order to make the final matching result reach a global optimum 

(Hirschmuller et al, 2008). As these kinds of method take the whole image into 

consideration, the matching precision is higher than that of local algorithms, but it 

suffered from substantial numbers of redundant computations, resulting in low 

matching efficiency. Hirschmüller (2008) proposed a Semi-Global Matching (SGM) 

algorithm that improves the computational efficiency through multi-directional 

dynamic programming; compared with traditional global algorithms and local 

algorithms, only the non-occluded points are considered during the image matching 

process, and both the matching accuracy and efficiency are further improved 

(Hirschmüller et al, 2009). Although the binocular-stereo dense matching method has 

the advantages listed above, it only takes account of the information contained in two 

images, so its matching results display poor robustness to occlusion and noise 

(Remondino et al, 2008). 

In the field of computer vision, multi-view matching method has always been a hot 

issue (Seitz et al, 2006). As the geometrical relationship and redundant information 

are considered during the matching process, the robustness of the matching result to 

occlusion and noise is obviously higher than that of binocular-stereo matching 

algorithms. Multi-view image matching methods can be categorized as: voxel-based 

matching algorithms, polygonal-mesh based matching algorithms, depth map based 
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matching algorithms and patch-based matching algorithms. For the voxel-based 

matching algorithms, as the grid size of the voxel should be considered in the 

matching process, the matching results are poor for large-scale scene images, which 

makes these algorithms inapplicable in photogrammetric applications (Seitz et al, 

1997; Sinha et al, 2007). The polygonal-mesh based algorithms depend greatly on the 

prior input, which leads to inflexibility (Yoon et al, 2006). Although depth map based 

approaches are more flexible than others, when the obtained depth map are noisy and 

redundant, a series of post-processing measurements, such as fusion, de-noising and 

filtering of the depth map are needed so that the redundant computation of the whole 

algorithm will be greatly improved (Hirschmüller, 2008; Bradley et al, 2008; Geiger 

A et al, 2010). By finding sparse feature points in the image, patch-based matching 

method constructs several small feature patch sets and reaches dense image matching 

effects through matching propagation (Habbecke et al, 2006; Shan Q et al, 2014; 

Schönberger et al, 2016). The PMVS method proposed by Furukawa and Ponce 

(2010) is widely used among state-of-the-art algorithms. As PMVS does not require 

any prior knowledge or initial value and it is applicable to 3D reconstruction of 

large-scale images, it has been extensively applied to UAV-based low-altitude 

photogrammetric 3D measurements (Furukawa et al, 2010). Ai et al. (2015) fed the 

high-precision sparse matching points into PMVS software as seed points to obtain 

dense point clouds, which greatly improved the matching efficiency of PMVS (Ai et 

al, 2015). Shao et al. (2016) took the matching result of PMVS as initial values for 

constructing expanded patch sets, and the correspondences are adjusted using the least 

squares refinement and patch-based MPGC (Shao et al, 2016) methods; as a result, 

the obtained point clouds are much denser and more robust to occlusion (Baltsavias 

et al, 1996). 

In the recent five years, a lot of researcher utilized deep learning method for image 

dense matching. Some of them represent the pixel-wised correspondence searching 

problem into a classification problem and train the deep neural network to find the 

optimized disparity map for the stereo image pairs (Zbontar and Yan, 2015; Luo et al, 

2016; Tulyakov et al, 2017). It extremely improves the matching efficiency. But the 
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output result is just used as an initial input for real SGM method. Others trained deep 

neural network for initial parameter optimization for traditional dense matching 

method, such as cost function and cost aggregation directions (Seki et al, 2017; Zhong 

et al, 2017). It makes traditional methods have better performance with the train 

datasets. The deep learning based method shows a better matching efficiency and 

accuracy, but its results are quite depend on the train datasets. When the test dataset 

and training dataset have  big difference, the results were poor. Which means they 

cannot used for practical applications. 

 

2.3 Three dimensional point cloud annotation 

2.3.1 Machine learning based annotation methods 

In recent decades, machine learning methods are widely used in image segmentation 

and classification applications (Kotsiantis, 2007). And it has shown a great performance 

in many cases. In this section we will introduce some widely used machine learning 

methods which can be used for point cloud annotation. 

2.3.1.1 K-means method 

The theoretical basis of the K-means clustering algorithm is the error square sum 

criterion, assuming that 𝑚𝑚𝑖𝑖 represents the sample mean, and its expression is: 

𝑚𝑚𝑖𝑖 = 1
𝑁𝑁𝑖𝑖
∑ 𝑦𝑦𝑦𝑦∈𝑇𝑇𝑖𝑖                          (2.21) 

Where 𝑁𝑁𝑖𝑖 represents the number of samples in the 𝑖𝑖-th cluster 𝑇𝑇𝑖𝑖 and 𝑦𝑦 represents 

the sample. Then the error square sum criterion can be expressed by 𝐽𝐽𝑒𝑒 as follows: 

𝐽𝐽𝑒𝑒 = ∑ ∑ ‖𝑦𝑦 −𝑚𝑚𝑖𝑖‖2𝑦𝑦∈𝑇𝑇𝑖𝑖
𝑐𝑐
𝑖𝑖=1                  (2.22) 

The goal of the K-means clustering algorithm is to find the clustering combination 

that minimizes 𝐽𝐽𝑒𝑒. The main steps of the algorithm are summarized as follows: 

(1) Randomly select k samples or select the first k samples of the sample set as 
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the initial cluster centers, respectively 𝑧𝑧1(𝑚𝑚), 𝑧𝑧2(𝑚𝑚),⋯ , 𝑧𝑧𝑘𝑘(𝑚𝑚), where m is 

the number of iterations, the initial value is 1. 

(2) Calculating the distance between the sample to be classified and the cluster 

center one by one, and assigning the sample to be classified to the cluster 

center of the minimum distance to obtain K clusters; 

(3) Calculate the cluster center of each cluster obtained in the previous step: 

𝑧𝑧𝑗𝑗(𝑚𝑚 + 1) = 1
𝑁𝑁𝑗𝑗
∑ 𝑦𝑦𝑦𝑦∈𝑠𝑠𝑗𝑗(𝑚𝑚)                    (2.23) 

Where 𝑁𝑁𝑗𝑗 represents the number of samples in the 𝑗𝑗-th cluster domain 𝑠𝑠𝑗𝑗, 

1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. Repeat step (2) to reassign the sample to the new cluster center; 

(4) Calculate the difference between the cluster centers obtained in steps (2) and 

(3). If the difference is less than the given threshold, the iteration is stopped. 

Otherwise, return to step (2). 

K-means algorithms can get the results with the smallest squared error. When 

processing large datasets, it is relatively scalable and efficient, and the computational 

complexity is O(NKt). Where N represents the observation number of the dataset, and 

t represents the iteration numbers. 

2.3.1.2 Maximum likelihood estimation method 

The maximum likelihood method is also called Bayesian classification. It is a 

statistically based supervised classification method and a classical method for remote 

sensing image classification. It is based on the Bayes criterion and assumes sample 

data of various types of features. The attribution probability follows the Gaussian 

distribution and is then classified according to the Gaussian distribution law to obtain 

the final result. 

When using the maximum likelihood method for classification, firstly, a suitable 

discriminant function is established according to the selected sample features, and 

then the data to be classified is input into the discriminant function to calculate the 

probability of the belonging category. Suppose the feature category is 𝐾𝐾, the pixel to 

be classified is 𝑋𝑋; 𝑃𝑃(𝐾𝐾) represents the prior probability of the category 𝐾𝐾, usually 
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given according to prior knowledge or assumed that the classes are equal; 𝑃𝑃(𝑋𝑋| 𝐾𝐾) 

represents the likelihood probability. The probability that pixel 𝑋𝑋 appears in class 𝐾𝐾; 

𝑃𝑃(𝐾𝐾| 𝑋𝑋) represents posterior probability, that is, the probability that pixel 𝑋𝑋 belongs 

to feature 𝐾𝐾 ; 𝑃𝑃(𝐾𝐾)  represents the probability of occurrence of class 𝑋𝑋 , then 

𝑃𝑃(𝐾𝐾| 𝑋𝑋) can be expressed as: 

𝑃𝑃(𝐾𝐾|𝑋𝑋) = 𝑃𝑃�𝑋𝑋�𝐾𝐾�𝑃𝑃(𝐾𝐾)
𝑃𝑃(𝑋𝑋)

                         (2.24) 

In the formula, 𝑃𝑃(𝑋𝑋) is a constant and therefore can be ignored, so the expression of 

the discriminant function can be expressed as follows: 

g(𝑥𝑥) = ln{𝑃𝑃(𝑥𝑥|𝑘𝑘)𝑃𝑃(𝑘𝑘)} = ln𝑃𝑃(𝑥𝑥|𝑘𝑘) + ln𝑃𝑃(𝑘𝑘)              (2.25) 

The advantage of this method is the model is simple, and the overall distribution of 

the dataset is unnecessary. 

 

2.3.1.3 Support vector machine method 

The Support Vector Machine (SVM) classification algorithm is currently the most 

popular supervised classification method. The main goal of the SVM algorithm is to 

find the optimal hyper plane that divides the feature space, so that the classification 

boundary is maximized. The basis of the algorithm is nonlinear mapping, in which the 

nonlinear mapping kernel function in high-dimensional space is replaced. Support 

vector machines can be generally divided into linear separable support vector 

machines, linear non-separable support vector machines and multi-class support 

vector machines: 

(1) Linear separable support vector machine  

The support vector machine classification algorithm is based on the principle 

of VC dimension theory and structural risk minimization, and based on this, 

finds an optimal hyper plane, so that the distance between the sample points to 

be classified is as far as possible from the hyper plane, so that this The 

classification plane optimally distinguishes the two types of training samples 

(2) Linear inseparable support vector machine 
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In practical applications, linearly separable support vector machines are 

difficult to satisfy most classification requirements. Therefore, the nonlinear 

mapping φ(x) is used to transform x into high-dimensional sample space to 

establish the optimal classification hyper plane. 
(3) Multi-classification support vector machine 

Support vector machine multi-classification methods usually include 

one-to-one, one-to-many and two-way acyclic graphs. Among them, in the 

two-way acyclic graph classification, for the classification problems of n 

categories, it is first necessary to obtain training through training. n(n-1)/2 

classifier models, then train the left or right child nodes based on the binary 

tree structure, and finally the leaf nodes determine the final class. 

 
Fig 2.7 Binary tree structure training diagram (Breiman, 2017) 

 

2.3.2 Deep learning based annotation methods 

Deep learning has gradually played an important role in many research fields, 

including computer vision, natural language processing, handwritten character 

recognition, target detection, target tracking, information retrieval, pose estimation, 

image annotation, image classification, image generation, and features extraction and 
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coding, etc (Lecun et al, 2015). For example, in the field of image classification, the 

classification accuracy of convolutional neural networks introduced in the previous 

public datasets such as ImageNet and Cifar10 is increasing (Krizhevsky et al, 2012); in 

the field of target detection, R-CNN and Fast R-CNN (Ren et al, 2015) and many deep 

learning algorithms such as YOLO (Redmon et al, 2016) and SSD (Liu et al, 2016), the 

detection speed is become faster and faster. Until now the accuracy and speed of the 

SSD is 23 frames / sec and the accuracy achieved 75.1%. In the field of image 

segmentation, deep learning algorithm has been rapidly improved, the average 

accuracy of the original FCN (Long et al, 2015) model was 62.6%, and the average 

accuracy of DeepLab (Chen et al, 2014) increased to 72.7%. The accuracy of 

CRF-RNN (Zheng et al, 2015) is now 74.7%.  

However, deep learning for point cloud annotation has been researched since 2015. 

Science the dataset is hardly acquired (Hackel et al, 2017).Considering point cloud only 

contained with 3D coordinates, most deep learning based methods represent the point 

cloud to 2D images for training and validation (Hu et al, 2016; Gevaert et al, 2017).There 

is still much room for development in this field. At this moment we describe the most 

widely used deep networks in image classification field. 

 

2.3.2.1 AlexNet 

Alex's AlexNet network structure won the 2012 ImageNet Image Recognition 

Competition and is a milestone in the field of computer vision. It proves the validity 

of convolutional neural networks in image classification and becomes the core 

algorithm for image classification. Breakthrough progress has been made in the field 

of image classification, which in turn promotes the development of subsequent deep 

learning. AlexNet consists of 5 convolutional layers, 3 maximum pooling layers and 3 

fully connected layers. It takes the lead in using the ReLU function as an activation 

function, which solves the problem of gradient disappearance during training, and 

reduces the use of Dropout operations and data enhancement techniques. The network 
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was over-fitting and was first trained using 2 GPUs. Figure 2.8 shows the network 

structure of AlexNet: 

 
Fig 2.8 The structure of AlexNet (Krizhevsky et al, 2012) 

 

Although AlexNet is really good at dealing with object recognition, it has shown a 

poor performance than other networks when deals with multiple label classification 

problem. 

 

2.3.2.2 GoogleNet 

GoogLeNet won the 2014 ImageNet Image Recognition Competition with a top-5 

error rate of 6.67%. Its main feature is to increase the depth and width of the neural 

network and improve the classification effect on the basis of ensuring the constant 

computing resources. The most important improvement is the use of the Inception 

structure. The Inception structure uses dense components to approximate the optimal 

local sparse structure, expands the depth of the convolutional neural network to 22 

layers and increases the width of the network while reducing the number of 

parameters. Figure 2.9 is a schematic diagram of the network structure of GoogLeNet. 
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Fig 2.9 The structure of GoogLeNet (Szegedy et al, 2015) 

GoogleNet shows a great performance on multiple label classification tasks, but the 

max pooling layer may cause the spatial information loss.  

2.3.2.3 ResNet 

ResNet, proposed by He Kaiming et al., is the champion of the 2015 ImageNet Image 

Recognition Competition. The 152-layer ResNet model solves the problem of the 

accuracy of the training set caused by the increase of the number of network layers by 

using the deep residual structure, and breaks the bottleneck that the number of 

network layers of the convolutional neural network cannot continue to be effectively 

deepened after reaching a certain number. Its network structure is shown in Figure 

2.10. 

 

Fig 2.10 The structure of ResNet (He et al, 2015) 
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The residual network has a simple structure and solves the problem of degraded 

performance of deep convolutional neural networks under extremely deep conditions. 

It has great performance on small datasets and easy implementation on other 

networks. 
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Chapter 3 
Seed point extraction in poor texture 
remote sensing images 
 

In this chapter, I will introduce the basic concept and algorithms used in our poor 

texture tie point matching approach. In the former chapter, I have introduced some 

widely used matching methods. They all have some advantages and limitations. In 

order to extract accurate and uniformed seed points in poor texture images, we 

proposed a graph theory based image matching approach. And I will detailed describe 

our approach by 4 sections. 

3.1 Methodology 

This section proposes an EW-HOGM method to address the poor textural image 

matching problem. Section 3.1.1 presents the concepts of HOGM. Section 3.1.2 

introduces the proposed EW-HOGM. Section 3.1.3 describes the experimental results 

of the synthetic data. Section 3.1.4 provides a theatrical analysis of the computational 

complexity. 

3.1.1 HOGM 

Image tie point matching finds correspondences between two sets of features. This 

process can be defined as a graph matching problem. As shown in Figure 3.1, five 

pairs of image feature points are extracted from the source and target images. Image 

feature points can be regarded as the nodes of graphs, and feature characters, such as 

locations and gray levels, are the attributes of the nodes. The relationship between two 

feature points, such as angles and distances, can be considered the edges of graphs. 

The matching problem of two image feature sets is a node matching problem of the 

two graphs. Hence, the tie point matching problem is transformed into a graph 



Automatic Digital Object Model Reconstruction from Optical Flow Field Based Dense Image Matching                    Doctoral Dissertation 

34 
 

matching problem. 

       

(a)                                 (b) 

Figure 3.1 Two complete graphs constructed with image features. (a) Image features and (b) two 

graphs with their nodes representing image features. 

 

Given two image feature sets P and Q, and their corresponding graphs GP and GQ. If 

nodes Pi GV ∈  and Qi GV ∈'  are assignments, then Pfi ∈  and Qfi ∈'  are tie 

points, and vice versa. The graph matching problem can be formulated as 

{ } { } ),min(,),( 1'1' QP
n

ii
n

ii nnnVVcC ≤=∆               (3.1) 

where C is an assignment set; nP and nQ are the feature numbers of two feature sets; i 

and i’ are the labels of nodes iV  and 'iV , which represent the node indices in this 

paper; and 'iic  is an assignment element of C , and it indicates iV corresponds to 'iV . 

The relationship (i.e., correspondences) of the graph nodes can also be depicted by 

assignment matrix QP nn ×∈ }1,0{*Z , where 1*
' =iiz  implies that iV  corresponds to 'iV  

and 0*
' =iiz implies that iV is not matched to any node in GQ. As shown in Figure 3.2, 

the graph matching problem can be divided into three types based on their constraint 

forms: first-order, second-order, and high-order (third or higher) graph matching 

problems. 

The first-order graph matching problem is established on a unitary affinity matrix 

QP nnIR ×∈A  with 

))(1exp()( 2
2'2'1' iiiiii ca ff −−=Ω=

ε
                 (3.2) 
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where 'iia  is the point-wise similarity of nodes iV  and 'iV ; (.)1Ω  denotes the 

point-wise similarity measure (e.g., Euclidean distances of SIFT descriptors); 
2

.  

represents the length of a vector; if  and 'if  are the attributes of nodes iV  and 'iV , 

respectively, i.e., they are the radiometric descriptors of if  and 'if . 

 

 
Figure 3.2 Multi-order graph matching problem (the yellow dots denote outliers) 

 

The first-order graph matching problem finds the optimal solution for the following 

objective function: 

１１１１ ≤≤

∈= ×

T

T

,..

}1,0{)(maxarg

ZZ

azz
z

*

ts

QP nn

                     (3.3) 

where QPnnIR∈a  is the row-wise vectorization of matrix A, 1 denotes a vector that 

all elements are one; Z is a soft assignment matrix located in the continuous vector 

space, and QP nn ×∈ }1,0{*Z  is a hard assignment matrix. Thus, an additional process is 

required to discretize Z into a binary matrix, and the commonly selected method for 

discretization is the greedy algorithm (shown in Algorithm 1, Leordeanu and Hebert, 

2005). 

In Equation (3.3), １１１１ ≤≤ T, ZZ  imposes restrictions on the matching 

correspondences. Every node of GP has a maximum of one corresponding node in GQ, 

and every node of GQ has a maximum of one corresponding node in GP. Equation (3.3) 
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can be solved using the Hungary algorithm (Edmonds, 1965) or approximated via 

dynamic programming (Belongie et al., 2002). 

 

Algorithm 1: Greedy algorithm for discretization 

Input: Soft assignment matrix nm×Z  

Output: Hard assignment matrix nm×*Z  

1 begin 

2   for  mi ...0=  do 

3      find max( ',iiz ) in row i of nm×Z  

4      if ∑ =
n

i
iiz

'

*
', 0 , set 1*

', =iiz  and )''(0*
', jiz ji ≠=  

5      else continue 

6   end 

7 end 

 

The unitary similarity used in the first-order graph matching is only invariant to 

radiometric variation (e.g., image feature descriptors such as SIFT and SURF). 

As shown in Figure 3.2, two edges Pij GE ∈  and Qji GE ∈'' , as well as two node pairs 

ijji EVV ∈,  and '''' , jiji EVV ∈ , are given. Similar to the point-wise similarity measure, 

the pair-wise similarity measure can be denoted by ),( ''22 jjii ccΩ=Ω . The affinity 

matrix defined under pair-wise constraints is given by 

))(1exp(),( 2
2''2''2'' jiijjjiijjii cca ff −−=Ω=

ε
          (3.4) 

where ijf  and i'j'f  are the descriptors of edges ijE  and '' jiE , respectively. 

The objective function of second-order graph matching problems is defined as 

follows: 

１１１１ ≤≤

∈= ×

T

T

,..

}1,0{)(maxarg

ZZ

AZZZ
z

*

ts

QP nn

                  (3.5) 

where QPQP nnnnIR ×∈A  is the affinity matrix of the two graphs. The elements of A are 
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constructed using Equation (3.4). 

Equation (3.4) shows that the affinity matrix QPQP nnnnIR ×∈A  is non-negative and 

symmetric. The most effective means to solve Equation (3.5) is the relaxed spectral 

method (Leordeanu and Hebert, 2005):  

)(maxarg T

T

ww
Awww

w

* = ,                     (3.6) 

where w* is the leading eigenvector of matrix A, and the final solution can be 

achieved using Algorithm 1.  

Notably, the point-wise constraint is compatible with the pair-wise constraint. In 

Equation (3.4), the edge similarity ),( ''2 jjii ccΩ  is equal to )( '1 iicΩ , given that i=j and 

i’=j’. Thus, point-wise similarity can be integrated into edge similarity in 

second-order graph matching. Apart from being invariant to radiometric variation, 

edge similarity is also invariant to rotation. 

However, neither first-order nor second-order graph matching is invariant to scaling 

and small affine transformation. Thus, second-order graph matching should be 

extended to higher-order (third order or higher). For simplicity, third-order graph 

matching is presented as an example. Similar to point-wise and pair-wise similarities, 

triplet (triangle) similarity can be defined as 

))(1exp(),,( 2
2'''2'''3''' kjiijkkkjjiikkjjii ccca ff −−=Ω=

ε
           (3.7) 

where ''' kkjjiia  is the triplet similarity of triangles ijkT  and kjiT ′′′ ; and ijkf , ''' kjif  are 

the descriptors of the two triangles. As shown in Figure 3.3, the two descriptors can be 

represented as )cos,cos,(cos kjiijk θθθ=f  and )cos,cos,(cos '''''' kjikji θθθ=f . Because 

the matched triangles are approximately similar, thus, triangle descriptors are 

invariant to scaling and rotation. The third-order graph matching is sufficient for 

remote sensing image matching, because the elevation variations of the Earth’s 

surface is small compared with the altitudes of satellites. Thus, the ground can be 

regarded as flat and two conjugated regions can be approximated with similarity 

transform. The similarity transform accords with the triangle constraints. 
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Figure 3.3 Diagram of triangle descriptors 

 

The objective function of third-order graph matching is defined on an affinity tensor 

built using Equation (3.7): 

１１１１ ≤≤

∈⊗⊗⊗= ×

T

123

,..

}1,0{)(maxarg

ZZ

zzzAz
z

*

ts

QP nn

                    (3.8) 

where QPQPQP nnnnnnIR ××∈A  is a third-order tensor; and t⊗  denotes the tensor product 

symbol. For the affinity tensor A, ''' kkjjiia  is a tensor element with a coordinate of (i×

n+i’, j×n+j’,k×n+k’) in the third-order tensor cube (shown in Figure 3.4). Equation 

(3.8) can be solved via tensor power iteration (Duchenne et al., 2011; Lyzinski et al., 

2016). 

 

Figure 3.4 Illustration of ''' kkjjiia  in the third-order tensor cube 

 

Higher-order graph matching can be directly extended using objective function (3.8). 

However, such matching can lead to an exponential growth of computational 
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complexity. Point-wise and pair-wise similarities can also be integrated into triangle 

similarities. In Equation (3.7), if ''', kjikji ==== , then triangle similarities degrade 

into point-wise similarities. Similarly, if ''', kjikji ≠=≠= ; ''', kjikji =≠=≠ ; or 

''', kijkij =≠=≠ ; then Equation (3.7) degrades into Equation (3.4). Thus, the 

third-order affinity tensor is the general form of the affinity matrix, and geometric and 

radiometric information can be easily integrated into the affinity tensor. 

Given that ''', kjikji ==== , Equation (3.7) can be rewritten into the following 

form: 

))(1exp( 2
2'2''' iikkjjiia ff −−=

ε
.                     (3.9) 

Equation (3.9) integrates radiometric information into the third-order affinity tensor; 

thus, Equation (3.8) is globally optimal in geometry and radiometry. 

However, point-wise similarities are related to the radiometric feature descriptor (e.g., 

128 dimensions (D) SIFT descriptor or 36D SURF descriptor), whereas triplet 

similarities are related to geometric information (i.e., 3D triangle descriptor). Thus, 

these two similarity measures have different physical dimensions and should be 

normalized into a uniform measurement framework: 

2

~
f
ff =                                   (3.10) 

where f~  denotes the normalized feature descriptor. 

In addition, normalized descriptors are more distinctive than triangle descriptors 

because they have more dimensions. Thus, a balanced factor is required among the 

descriptors as follows: 

∑

∑

=

==
2

1

1

3
1

1

1
2

n

i
i

n

i
i

f

dofn

dofn
w                                   (3.11) 

where 1
idof  is the point-wise similarity; 3

idof  is the triplet similarity; and fw  is 

the balanced weighted factor; 1
idof  and 3

idof  can be estimated using a triangular 
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irregular network (TIN), which is constructed using two matched image feature point 

sets; n1 and n2 are the numbers of matched points and triangles, respectively, in TIN. 

Through normalization and balancing, geometric and radiometric information works 

in the same measurement framework and plays the same role in matching. 

3.1.2 EW high-order affinity tensor 

Real matching tasks arise from images captured by different sensors in various views 

or at different moments, thereby leading to the appearance of new features and the 

disappearance of old ones. These appearing and disappearing features constitute 

outliers. For example, in an image pair that consists of considerably high buildings, if 

one feature is detected in the source image, then its corresponding feature in the target 

image may be occluded by high buildings. Hence, the detected feature in the source 

image is an outlier. For a formal description, two graphs GP and GQ built using two 

feature sets are given. If VP∈GP, VQ∈GQ and ∑∑ j jqi pi zz *
,

*
,  (that is, Vp and Vq 

have no corresponding node), then Vp and Vq are outliers; otherwise, they are inliers. 

A major challenge in real-world graph matching problems is how to tolerate numerous 

outliers arising in typical visual tasks, such as image matching and object recognition. 

Generally, outliers are more than inliers, which results in difficulties in distinguishing 

inliers from outliers because of clustering. Outliers can also lead graph matching 

toward the local optima, and thus, produce erroneous image matching results. An 

EW-HOGM algorithm is proposed to address real-world image matching tasks. 

As shown in Equations. (3.2), (3.4) and (3.7), if outliers are present in either feature 

point set, then the third-order affinity tensor may contain irrelevant information 

produced by outliers. Thus, the third-order affinity tensor A is equal to the correct 

affinity tensor A~ , which is produced by point sets without outliers and with a turbulent 

tensor AΔ  created by the point sets without inlier and noise: 

AAA Δ~
+=                                    (3.12) 

Noise is neglected because its effect on graph matching is less than that of outliers. 
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The main idea of reining outliers is increasing A~  while decreasing AΔ . 

The solution for Equation (3.8) is the following power iteration: 

∑←∀ +
KJ

n
K

n
J

n
I ZZKJIΩZI

,
)()(

3
)1( ),,(,                 (3.13) 

where KJI ,,  are the shorthand of index pairs )',(),',(),',( kkjjii , and n is the nth 

iteration.  

Equation (3.13) is one step of tensor power iteration and is illustrated in Figure 3.5. 
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Figure 3.5 Depiction of node correspondences (the pink dots are outliers) 

 

As shown in Figure 3.5, the relationship of 1V  and '1V  is determined by triangles 

that contain vertices 1V  and '1V . For example, the value of the soft assignment matrix 

element )1(
'1,1
+nZ  is determined by the sum of the weighted similarities of triangles 

3,2,1T  and ,3',2'1'T , 1,4,5T  and ,5',4'1'T , 1,3,7T  and ,3'7'1'T , and so on. That is, node 

similarity is determined by the edges of the triangles. Equation (3.13) can also be 

modified into another form as follows: 

∑Ω←∀ ++

K

n
K

nn
J

n
I ZKJIZZJI )()(

3
)1()1( ),,(,, ,                (3.14) 

where )1()1( ++ n
J

n
I ZZ  implicitly contains the edge assignment information. Equation 

(3.14) is illustrated in Figure 3.6. 
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Figure 3.6 Depiction of edge correspondences (the pink dots are outliers). 

 

Similar to that of node correspondences, the relationship of 1,2E  and ,2'1'E  is 

determined by the triangles that contain edges 1,2E and ,2'1'E . For example, )1()1( ++ n
J

n
I ZZ  

is determined by the sum of the weighted similarities of 3,2,1T and ,3',2'1'T , 4,2,1T and

'4,'2,'1T , 5,2,1T and '5,'2,'1T , and so on. Thus, the edge assignment probability can be 

defined as 
)()(

3
)1( ),,( n

K
K

KJI
nn

IJ Zcccs ∑Ω=+                    (3.15) 

As shown in Equation (3.15), for the triangle pair ijkT  and kjiT ′′′ , if edges jiE ,  and 

', ji'E  are markedly different, then the probability that kjiT ,,  and ',',' kjiT  are matching 

triangles is significantly low. By contrast, if kjiT ,,  and ',',' kjiT  are matching triangles, 

then edges jiE ,  and ', ji'E  have a high matching probability. Thus, the edge 

assignment probability can be regarded as a weighted factor in constructing 

third-order tensors: 

))5.0(-exp(),( 2NsJIw IJe −= ,                 (3.16) 

where N is equal to )2()2( −×− QP nn . 

Substitute Equations (3.9), (3.11), and (3.16) into Equation (3.7), the EW tensor 

element can be written as 
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       (3.17) 

For four nodes ijji EVV ∈, and '''' , jiji EVV ∈ , if any of these nodes is an outlier, then the 

weighted factor computed using Equation (3.16) will be small, thereby leading to a 

smaller tensor element ''' kkjjiia . By contrast, if the four nodes are all inliers, then the 

tensor element ''' kkjjiia  will be augmented by a high weighted factor. In this manner, 

A~  is indirectly increased although AΔ  is nearly unchanged, and thus, robust to 

outliers.  

 

3.2 Data descriptions and implementation details 

Experimental data descriptions and implementation details are provided in this section. 

Section 3.2.1 presents the experiment design and data details. Section 3.2.2 provides 

the assessment criteria for comparing four tie point matching algorithms, namely, 

SIFT, SURF, FAST, and EW-HOGM. Section 3.2.3 describes the experiment results 

and discussions. 

 

3.2.1. Experiment design 

Four pairs of remote sensing images captured by different satellites are used to verify 

the effectiveness of the proposed algorithm. The details of the experimental data are 

presented in Table 3.1. 

The first pair of images is captured by the camera of the Pléiades satellite with 

different angles in Beijing. The image content is composed of high buildings and bare 

lands. Large geometric and radiometric distortions occur between overlapping regions 

because of different camera angles and high buildings. The second pair of images is 
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from WorldView. These images mainly contain forests, which cause repetitive 

textures. In addition, considerable textural changes are found because acquisition time 

interval spans approximately 3 years. The third image pair comprises two SPOT 5 

images of Baoji, which is located on the Loess Plateau in China. Massive 

homogeneous textures caused by deserts are present, as well as image distortions 

caused by topographic relief. The fourth pair of images covers low buildings and bare 

lands taken by SPOT 5. Substantial geometric distortions are observed because the 

images are captured by forward and backward cameras. All four pairs of images 

exhibit a considerable amount of poor texture, including occlusion, discontinuity, 

homogeneity, and repetitiveness. Geometric distortions are also found because of 

different camera angles and remarkable topographic relief. 

 

Table 3.1 Details of experimental stereo image pairs 

Pair 
No. Satellite Main 

contents 
Image size 
(pixels) 

GSD 
(m) 

Acquisition 
time Location 

Check 
point 
number 

1 Pléiades 

High 
buildings 
and bare 
lands 

9152 × 9720 
9585 × 9793 

0.5 
2015 
2015 

China–
Beijing 

40 

2 WorldView Forests 
10197 × 12011 
10205 × 11545 

0.5 
2012 
2015 

China–
Wuhan 

45 

3 SPOT 5 Deserts 
8340 × 7960 
7803 × 7803 

2.5 
2014 
2014 

China–
Baoji 

34 

4 QuickBird 

Low 
buildings 
and bare 
lands 

9775 × 8903 
10077 × 8935 

0.61 
2003 
2003 

USA–
Spokane 

32 

 

The construction of a tensor on the complete images is nearly impossible because the 

experimental image sizes are large; therefore, a coarse-to-fine strategy is adopted. 

First, the source and target images are downsampled to 1/16 of their original size. 

Then, SIFT is applied to extract several tie points and estimate the homography 

matrix between image pairs. The source image is then divided into regular grid cells. 

Each grid cell is 400 × 400 pixels and marked by IA. The cell center of IA is projected 
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onto the target image via homography transformation. The corresponding region 

(marked by IB) of IA with 500 × 500 pixels is located at the center of the projected 

points. Lastly, the tie points of IA and IB are obtained using EW-HOGM, and the 

gross error detection procedure is applied using RANdom SAmple Consensus 

(RANSAC, Fischler and Bolles, 1981) with a projective model. The detailed 

procedure of EW-HOGM is shown in Figure 3.8. 

 

IA IB

Feature set P constructed via UR-SIFT Feature set Q constructed via SIFT and ANN

GP GQ

Three-order affinity tensor A

Soft assignment matrix Z obtained via EW-HOGM

Hard assignment matrix Z* obtained via greedy algorithm

Point correspondences of the two feature point sets

Figure 3.8 Workflow of tie point matching based on EW-HOGM 

 

As shown in Figure 3.8, uniform robust SIFT (UR_SIFT, Sedaghat et al., 2011) is 

applied to obtain a uniformly distributed feature point set (donated by AS  with 

element size An ). Moreover, to ensure the repetitiveness of features, SIFT with a low 

contrast threshold, which is set to 0.005 for normalized images, is used to extract the 

feature point set (donated by BS′ ) from BI . For each feature point in AS , the 

approximate nearest neighbor (ANN) algorithm (David and Sunil, 2010) is applied to 

search k (k is 5 in these experiments) potential matches in BS′ . Then, feature set BS  

with an element size Bn  is constructed using all potential matches that correspond to

AS . Finally, AG  and BG  are built using AS  and BS , respectively. The initial tensor 

A of AG  and BG  can be established using Equation (3.17) with ew  = 1.0 and
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01.0=fw . To make the third-order tensor against minor local deformation, ε  is set 

to 15/π . 

As indicated in Section 3.2.4, the most time-consuming part of EW-HOGM is power 

iteration. Three strategies are adopted to make the tensor spare and thus, speed up 

iteration. First, a threshold is provided for triangle similarity. For two triangles ijkT  

and kjiT ′′′ , if their similarity is larger than 5/π , then ''' kkjjiia  will be set to 0. Second, a 

sampling strategy is applied to build affinity A because forcing all triangles to be 

matched will be highly redundant. Thus, t (t is set to 27/)1)(2( AAA nnn −−  in these 

experiments) triangles in GA are selected to compute tensor elements. Tensor elements 

related to the unselected triangles will be set to 0. Third, ANN-based searching is used 

to build the tensor. For triangle ijkT  in GA, the matched triangle in GB is most likely 

in its p (p is set to 20 in these experiments) nearest neighbors; thus, p nearest triangles 

are used to compute tensor elements related to ijkT , and the other tensor elements 

related to ijkT  are set to 0. Hence, only t×p nonzero elements remain, thereby 

making power iteration considerably faster. Besides, for a tradeoff between efficiency 

and accuracy, the number of power iteration is set to 5. 

From the perspective of a probabilistic graph (Egozi et al., 2013), the elements of the 

soft assignment matrix Z express the assignment probabilities of graph nodes. For 

example, 'iiz  denotes the matching probability of nodes iV  and 'iV . Thus, the 

elements of Z can be ranked in descending order, and the first Pnn <ˆ  elements can 

be selected as the final solution prior to discretization. This process can improve the 

robustness of the matching algorithms. Therefore a modified version of a greedy 

algorithm is used in the discretization process. One-to-one constraints are discarded 

(Step #4 in Algorithm 1) and the elements of Z are arranged in descending order. In 

addition, the first 2/An  elements are selected to construct set }{ *
'iiz  and disregard 

others. Thus, the image feature pair set )},{( 'ii ff  is the final matched feature set.  
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In the comparison experiments, three state-of-the-art radiometry-based tie point 

matching algorithms, namely, SIFT, SURF, and FAST, are used for matching. The 

matching process also applies the previously mentioned coarse-to-fine strategy. These 

three algorithms are matched through ANN with an NNDR threshold of 0.8. 

 

3.2.2 Quality assessment criteria 

Recall, dispersion, and positional accuracy are estimated in the comparison 

experiments to evaluate the feasibility of the proposed algorithm. Matching recall is 

estimated in a sub-image pair, whereas dispersion and positional accuracy are 

estimated in a complete image pair, as shown in Figure 3.9. 

1. Recall 

Four pairs of sub-images are artificially selected from the complete image pairs listed 

in Table 3.1. These sub-images are 400 × 400 pixels and have different types of poor 

textures (Figure 3.9(b)). A sub-image pair is regarded as AI  and BI , which are 

matched with the workflow illustrated in Figure 3.8. The matching recall is defined as  

C
CMrecall =                                 (3.19) 

where CM (correct matches) is the correct matched tie points, and C  

(correspondences) is the total number of corresponding features between AI  and BI . 

C and CM are determined as follows. First, a skilled operator selects 8–10 evenly 

distributed tie points. Then, an accurate projective transformation model is computed 

using the selected tie points. Finally, the computed projective model with a threshold 

of 3.0 pixels is used to determine C and CM. 

2. Dispersion  

The dispersion of the tie points is calculated via TIN analysis because all the tie points 

can be regarded as a network, and triangles of TIN contain the dispersion information 

of tie points. The dispersion is estimated as follows. First, a TIN is constructed using 

Delaunay’s algorithm (Delaunay, 1934). Subsequently, dispersion is estimated based 
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on Equation (18), which was first introduced by Zhu (Zhu et al., 2006): 

∑∑ −−×−−=×=
n

i
i

n

i

i
AS nSn

A
ADDD )1/())1(()1/())1(( 22          (3.18) 

where DA and DS indicate the area and shape variations of triangles respectively; n  

denotes the number of triangles in TIN; iA  represents the area of triangle i; 

∑= i i nAA /  indicates the average area of all the triangles; π)/max(3 ii JS ×= , 

where )max( iJ  represents the maximum angles in triangle i. If both DA and DS are 

small, then D should be also small. The smaller D is, the better the distribution of tie 

points is.  

3. Positional accuracy 

TIN integrated with piece-wise linear (PL) transform is reported to be a competitive 

method for image registrations (Ye and Shan, 2014); thus, TIN analysis and PL 

transform are applied in this study to estimate positional accuracy. TIN is constructed 

using the tie points of the complete image pair, and checkpoints are fed to the 

Delaunay triangulation. An affine transformation model is then fitted by the matched 

triangles. Lastly, positional accuracy is estimated via the root mean square error, 

which is computed through the affine transformation of checkpoints. The numbers of 

checkpoints in different image pairs are listed in Table 3.1. 

However, different TIN construction algorithms may lead to various TIN structures, 

which generate varying dispersions and positional accuracy. By contrast, if tie points 

have a good distribution and abundant correct matches, then the variations of these 

values are negligible. 

3.3 Experiment results and discussions 

The experiment results of the tie point distributions are illustrated in Figure 3.9. 
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(a) (b) 

Figure 3.9 Matching results based on EW-HOGM, and matching details of sub-image pairs. (a) 

Matching results of complete image pairs, (b) Matching details of sub-image pairs 

 

As shown in Figure 3.9, the proposed EW-HOGM algorithm can obtain evenly 

distributed tie points in all four image pairs because of the adopted grid-matching 

strategy and the improved recall (Figure 3.10(a)). Moreover, the tie points in image 

pairs 1 and 3 are clustered (Figures. 3.9(a) and 3.9(c)). By contrast, the tie points in 
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image pairs 2 and 4 have more even distributions (Figures. 3.9(b) and 3.9(d)). This 

phenomenon is determined by both the underlying principle (i.e., matched triangles 

are similar) and the landscapes covered by the images. Many high buildings are seen 

in image pair 1, and a large topographic relief is evident in image pair 3. Thus, the 

matched triangles mostly have small areas. The smaller the areas of the matched 

triangles are, the more similar the triangles are. The topographic relief in image pairs 

2 and 4 is relatively small; thus, the tie points are evenly distributed. The matching 

results of sub-image pairs intuitively show that EW-HOGM can obtain numerous tie 

points in poor textural images (Fig. 3.9, right column). These results are attributed to 

EW-HOGM seeking point correspondences that are similar in geometric structures 

and radiometric appearances, and the EW tensor makes the matching robust to 

outliers. 

Numerous high buildings are found in sub-image pair 1. These buildings cause 

occlusions as well as discontinuous and shaded textures. The EW-HOGM algorithm 

obtains abundant tie points because the geometric similarities compensates for the 

radiometric distortions in the shaded regions. Moreover, the tie points in sub-image 

pair 1 are mostly located on the ground, which is also a reaction of the underlying 

principle that matched triangles are approximately similar. The satellite altitude is 

higher relative to the elevation variation of the Earth’s surface. Thus, the ground 

surface can be regarded as a flat surface in small areas. Consequently, the local 

distortions in two conjugate patches are small and can be approximated via similarity 

transformation. However, the similarity transformation model cannot be used in the 

local images covering high buildings, and thus the tie points locate on the ground.  

The image contents of sub-image pair 2 are forests. The self-similarities of trees 

causes repetitive textures in the images. Moreover, the two images are acquired at 

different moments. Thus, significant radiometric differences are observed. However, 

EW-HOGM obtains a certain number of tie points. The algorithm simultaneously uses 

geometric and radiometric constraints, and the geometric constraints play a role 

similar to that of radiometry when radiometric changes are relatively large. 

Sub-image pair 3 suffers from homogeneous textures caused by the desert, as well as 
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geometric distortions caused by a large topographic relief. EW-HOGM still works 

effectively. The similar result is obtained in sub-image pair 4, in which both 

homogeneous textures and large distortions exist.  

The quantitative experiment results are shown in Figure 3.10. 

 

 

(a) 

 

 

(b) 
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(c) 

 

(d) 

Figure 3.10 Comparison results of the four matching algorithms. (a) recall, (b) correct matches, (c) 

dispersion, (d) positional accuracy 

 

As shown in Figure 10(a), traditional tie point matching algorithms, such as SIFT, 

FAST, and SURF, demonstrate different recall performances in poor textural image 

matching and the overall recall is lower than 35%. In general, tie points obtained 
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using radiometry-based algorithms are determined via the NNDR of radiometric 

descriptors. NNDR has two drawbacks in matching poor textural images. First, the 

descriptor distance of two matched features is insufficiently small when encountered 

with shaded, discontinuous or changed textures. The first and second sub-image pairs 

are the sample cases. The sub-image pair 1 consists of shaded and discontinuous 

textures caused by high buildings, as well as textural changes caused by different 

shooting times. The second sub-image pair suffers from repetitive and 

radiometry-changed textures. Thus the matching recall of the radiometry-based 

algorithms is unstable and varies from 0 to 35%. Second, descriptors are insufficiently 

distinctive to distinguish true matches from false ones in matching homogeneous and 

repetitive textures. The representative cases are last three image pairs, especially in 

sub-image pair 2, where all the radiometry-based algorithms are failed. NNDR-based 

matching algorithms, such as SIFT, SURF, and FAST, cannot overcome these two 

defects in matching poor textures, thereby leading to a low matching recall. However, 

the recall results of EW-HOGM are stable and are all higher than 50% although these 

four image pairs consist of different poor textural types. The higher matching recall 

benefits from the third-order affinity tensor and the EW strategy, the tensor encodes 

with geometric and radiometric information. Geometry describes the intrinsic 

relations of feature points, meanwhile radiometry represents local appearances, and 

the EW strategy makes matches robust to outliers. EW-HOGM avoids the NNDR rule 

and tends to find the best matches in geometry and radiometry, thereby leading to a 

high matching recall, particularly in the second and third sub-image pair, where SIFT, 

SURF, and FAST are almost all failed. 

Moreover, EW-HOGM outperforms the other algorithms in correct matches because 

of high matching recall, especially in the third image pair (shown in Figure 3.10(b)). 

The third image pair consists of numerous homogenous textures caused by deserts, as 

well as considerable geometric distortions caused by different camera angles. 

Therefore, these poor textures result in less correct matches for SIFT, SURF, and 

FAST. However, homogeneity and distortions have fewer effects on EW-HOGM. The 

dispersion of EW-HOGM is stable and remains at approximately 0.001 (Figure 
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3.10(c)). The other three algorithms have various dispersions that are determined 

through image textures. The positional accuracy of EW-HOGM is more stable and 

higher compared with those of the others because of the improved distribution and the 

higher number of correct matches (Figure 3.10(d)). In addition, two instructive results 

are presented in Figure 3.10. First, matching homogeneous textural images (image 

pair 3) is the most challenging task among the four pairs of poor textural images. The 

matching recall, correct matches, dispersion, and positional accuracy of image pair 3 

are relatively lower than those of the other image pairs. The essence of these results is 

the low signal-to-noise ratio of homogeneous textures, which causes a low repetitive 

rate of image features. Second, positional accuracy mainly depends on the number of 

correct matches and the dispersion of tie points. As shown in Figure 3.10, EW-HOGM 

obtains the most correct matches and the best dispersion in image pair 2, thereby 

leading to the highest positional accuracy among these image pairs. By contrast, SIFT 

obtains the least correct matches and the worst dispersion in image pair 3, thereby 

leading to a relatively lower positional accuracy among these image pairs. 

3.4 Summary of this chapter 

Image matching is a fundamental step in remote sensing image registration, aerial 

triangulation, and object detection. Although it has been well-addressed in rich 

textural images, it is remains a challenge in matching poor textural images because of 

homogeneous, repetitive, occluded, and discontinuous textures. Conventional 

algorithms are prone to failure because they use only radiometric information. This 

study presents a novel matching algorithm that integrates geometric and radiometric 

information into an affinity tensor and utilizes the EW strategy to address outliers. 

The proposed method involves four steps: feature detection, graph building, tensor 

construction, and high-order graph matching. In feature detection, UR_SIFT, SIFT, 

and ANN are applied, and the extracted image features are regarded as graph nodes. 

Then, the affinity tensor is built with its elements representing similarities of nodes 

and triangles. The EW strategy is embedded into power iteration to make matching 
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robust to outliers. The proposed method has been evaluated using four pairs of remote 

sensing images covered with four different poor texture types: high buildings, forests, 

deserts, and bare lands. Compared with traditionally used feature matching algorithms, 

such as SIFT, SURF, and FAST, the proposed EW-HOGM can achieve reliable 

matching results in terms of matching recall, correct matches, dispersion, and 

positional accuracy of the experimental data.  

When the tolerance to outliers of EW-HOGM is considered, the algorithm can also be 

used in shape matching and 3D cloud registration, where the amount of outliers is 

massive. Moreover, EW-HOGM can also be applied to gross error detection if it is 

appropriately modified. However, a few problems should be further addressed. The 

computational complexity of EW-HOGM is high because the huge size of the affinity 

tensor increases computing operation in power iteration. Further research can 

introduce new strategies to make the tensor sparser and reduce computational 

complexity in power iteration. In addition, power iteration can also be implemented in 

a GPU-based parallel computing framework (Silva, et al., 2016) which can immensely 

speed up power iteration. 
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Chapter 4 
Dense image matching 
 

In this chapter, I will introduce the basic concept and algorithms used in our dense 

matching approach. In the first chapter, I have already introduced our matching 

strategy. In this chapter, I will detailed describe our approach by 4 sections, first one is 

preprocessing; second one is optical flow field based coarse matching; then dual 

constraint based fine matching; the last one is mismatching elimination.  

 

4.1 Preprocessing 

In this sub-section, I will introduce the preprocessing techniques used in our approach. 

Generally, we use feature based matching method to obtain the seed points for the 

coarse matching step, then using Homography to find the overlap between the stereo 

image pairs. As is known to us all, the corresponding point pairs can only exists in 

overlap area. By overlap detection, we can reduce the redundant calculations, improve 

the computation efficiency. 

Homography is the corresponding relationship between the corresponding point pairs 

in different plane. In aerial image, the photography position is unstable. The simple 

affine cannot provide the reliable describe between the image pairs. We use the 

accurate Homography to calculate the rotation parameters between the aerial image 

pairs. Homography matrix can be described as follows: 
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where ),( yx and ),( yx ′′  are presented the corresponding points homogeneous 

coordinates; H is the Homography matrix. It can be described as 
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Obviously, the freedom of H is 8, which means we need at least 4 corresponding point 

pairs to solve the elements in H. After extracting image seed point, the corresponding 

point pairs are far more large than 4. We use least square adjustment method to 

improve the sloving accuracy of the Homography matrix.  

Normally we use the down sampling image to calculate the Homography matrix. The 

scaling ratio is calculated by Equation (4.3). 

𝜎𝜎 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤,𝑙𝑙)
𝑝𝑝

                             (4.3) 

Where w and l are the width and the height of the image. Max is the logic function to 

determine the large value between the 2 parameters; p is the down sampling image’s 

pixel numbers. By experiments we found that p can be set 256.  

Down sampling may cause the noise on the image. So before the down sampling we 

use Gaussian filter to smooth the image. 

4.2 Coarse matching 

In this subsection, I will introduce the key concept of our approach. The most 

important thing in dense image matching is to find each pixel’s corresponding pixel 

between the stereo image pairs. Like all the image matching methods the similarity 

measures are used to find the relationship between the features and areas. So I come 

up with an idea, why couldn’t we use some methods to simulate each pixel’s 

movement between the stereo image pairs, and use the movement field to guide the 

iamge matching. In computer vision field, optical flow is an efficient method to 

describe the pixel movement in video sequence. 

4.2.1 Optical flow 

Optical flow was first proposed by Gibson in 1950. It present the real object 

movement on the observation coordinates. It described as the instant speed of the 
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pixel movement. And the optical flow field is the gray scale movement on image 

surface. The essence of optical flow research is using the pixels’ temporal intensity 

changes and correlation degrees to describe pixel’s position change in sequence 

images. Nowadays optical flow field is widely used in super-resolution image 

reconstruction (Elsd, 1996; Baker and Kanade, 1999), image segmentation (Advi, 

1985; Galic and Loncaric, 2000) and robot navigation area (Revathi, and Hemalatha 

2012). All those works are involved with image matching.  

Here we introduce our coarse matching step. 

As introduce in subsection 4.1, we have already obtain the overlap area in the stereo 

image pairs also the high reliable seed points by preprocessing procedures. So we can 

use this information as the prior knowledge to calculate the overlap area’s optical flow 

field. 

There are 2 types of optical flow’s calculation methods. The first one is using 

feature-based matching methods to find corresponding points and calculate the 

displacements between stereo image pairs. Using the displacement to describe the 

pixel movement. Second one is based on calculating the pixel’s gray gradient find the 

searching area’s small difference then calculates the optical flow. 

In our approach, we have already obtained the corresponding feature point pairs and 

the overlap area. To each corresponding point pairs, we can calculate is optical flow 

as follows: 

][ iiiii yyxxu ′−′−=


                        (4.4) 

Where ),( ii yx , ),( ii yx ′′  are the pixel coordinates of seed points on the left image and 

the right image, respectively. 

 

4.2.2 Optical flow field based coarse matching 

In section 4.2.1 we use the seed points get some discrete optical flows. In order to 

describe each pixel’s movement the thin optical flow field is not enough. Traditional 
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optical flow measurements assume that in local region the brightness of the pixel will 

not change and the pixel’s move range is small. When dealing with the aerial images. 

Those assumptions are not existed. Because of the photography position changes the 

image will have different kind of distortion. Also the occlusion may cause by shelter 

so brightness will also changes. 

In this section, we use a Multi-level B-spline interpolation (Leeet al, 1997) to 

simulate the optical flow field. 

Assume that }0,0|),{( nymxyx <≤<≤=Ω is the xy plane of the optical field. 

),,( xyx ∆P  is the set of those discrete seed points. In order to approximate P, we can 

build a bi-cubic B-spline interpolation function f and a new interpolation grid Φ  as 

shown in Figure 4.2, Φ  is the )3()3( +×+ nm  interpolation grid overlapped with 

the image overlap area. 

 
Figure 4.2 The relation schema of interpolation grid 

 

The node value of the interpolation grid is the interpolation weight coefficient to the 

seed’s points. So we represent our interpolation problem to figure out the optimized 

interpolation gridΦ . 

As Figure 4.2 shown, the node value denote as follows: 

∑
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where, 
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),,( ccc zyx  is the seed point coordinates in set P. And the uniform bi-cubic 

B-spline basis function denote as follows: 
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We use the above formulas to and Gaussian function to weight the coefficient by the 

distance between the interpolation grid nodes and the seed points. Then f can be 

denoted as: 
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In order to reduce the interpolation error and make our result more reliable, we 

improve our model to multi-level. Assume the first interpolation grid is 0Φ , then we 

can easily calculate the interpolation function 0f  as mentioned above. Obviously, 0f  

is the approximation to interpolation P. Hence we can calculate the difference 

),(0
1

cccc yxfz −=∆ between them. Then we use the fine interpolation grid to 

approximate ),,( 1
1 ccc yxP ∆=  by calculating the interpolation function 1f . Then we 

can accumulate 10 ff +  and obtain a smaller difference to P. The difference denote as 

),(),( 10
2

cccccc yxfyxfz −−=∆ . Through iteration we can denote that ∑
=

=
h

k
kff

0

, here k 

is the iteration times. 
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After optical flow field simulations, we can obtain the coarse matching result. Because 

B-spline is very smooth, so the coarse matching results’ accuracy is ordered by the 

distance. 
 

4.3 Fine matching 

In this section I will introduce the concept and theories used in our approach. We use 

the coarse matching result as the guidance information. And use dual constraint to 

rectify the fine matching area. Reduce a lot of redundant computation to improve our 

approach’s efficiency and accuracy. 

4.3.1 Dual constraint rectify 

In this subsection, I will introduce the first step of our fine matching. The concept of 

our dual constraint rectify is based on epilolar line constraint and affine transform. In 

the preprocessing step, we using PCA-SIFT matching combined with least square 

matching obtained some high accurate and reliable corresponding point pairs. By 

using these point pairs, we can easily calculate epilolar line of each point pairs in the 

left and right images. For each pixel in the left image, if it has not matched in the 

preprocessing step we use the optical flow field to find the approximate corresponding 

point in right image. Then using the epilolar line and expand it with the neighbor 2 

pixels to build up the template and the searching window, shown as Figure 4.3 

 

 

 

 

 

Left image                          Right image 

Figure 4.3 Select the fine matching windows. 
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In Figure 4.3 the shelter area Ω1and Ω2 is the selected matching area. 𝑙𝑙1 is the 

epilolar line of point a in the left image, 𝑙𝑙2 is the corresponding epilolar line of point 

b in right image. a and b are corresponding point pairs. Normally we can use 3 kind of 

information to describe a point: position, scale and angle. We denote the 

corresponding point pairs as 𝑎𝑎(p𝑎𝑎, 𝑠𝑠𝑎𝑎, θ𝑎𝑎) and 𝑏𝑏(p𝑏𝑏, 𝑠𝑠𝑏𝑏, θ𝑏𝑏), and denote the dual 

constraint rectify matrix as Equation (4.9). 

𝐴𝐴 = �
𝑆𝑆𝑥𝑥 0
0 𝑆𝑆𝑦𝑦

� �cos𝜗𝜗 − sin𝜗𝜗
sin𝜗𝜗 cos𝜗𝜗 � = 𝑆𝑆𝑆𝑆                     (4.9) 

Where 𝑆𝑆𝑥𝑥  denotes the scaling coefficient on x direction; 𝑆𝑆𝑦𝑦  denotes the scaling 

coefficient on y direction;𝑆𝑆 = 𝑠𝑠𝑎𝑎/𝑠𝑠𝑏𝑏; 𝜗𝜗 denotes the corresponding windows relative 

rotation angle. The rectify procedure can be shown as Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Dual constraint rectify 
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In calculation we use the distance between the selected points and the seed point to 

weight the scale coefficient. The weigh function is same as MBA we described in 

section 4.2.2; Assume the number of the seed point pairs is n. The i-th seed point’s 

contribution to selected points is 𝜌𝜌𝑖𝑖, We calculate the scale coefficient as Equation 

(4.10). 

i

n

i
i ss ∑

=

=
1
ρ                    (4.10) 

We can use the dual constraint rectify matrix to affine the matching area. The final 

matching image blocks are shown as W1
and W2

 in Figure 3.4. In this way we can 

reduce a lot of redundant computation. 

 

4.3.2 Fitting position. 

After dual constraint rectify, we use NCC (Normalized cross-correlation method) to 

do the fine matching. Then we select the 3×3 area centered by the matched point. Do 

polynomial fitting according to the NCC similarity. Determine the extreme point as 

the optimized matching point. The used polynomial is as follows. 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎0𝑥𝑥2 + 𝑎𝑎1𝑦𝑦2 + 𝑎𝑎2𝑥𝑥𝑥𝑥 + 𝑎𝑎3𝑥𝑥 + 𝑎𝑎4𝑦𝑦 + 𝑎𝑎5         (4.11) 

In Equation (4.11), we denote 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 1/𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥,𝑦𝑦) and use Gaussian function to 

weigh each pixel’s contribution by distance. We obtain the result by using least square 

adjustment method. 
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4.4 Mismatching point elimination 

As is known to all, every matching method has mismatching in its result, a good 

matching approach needs to provide an efficient mismatching elimination procedure 
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to improve the result reliability. The classic mismatching elimination algorithms are 

data-snooping method and iteration method  with variable weights, besides, least 

median of squares (Massart, 1986), MLESAC (Torr and Zisserman, 2000) and 

RANSAC methods are robustness to mismatching elimination. In this section, I will 

introduce the RANSAC based mismatching elimination algorithm used in our 

approach. 

4.4.1 RANSAC. 

RANSAC (Random Sample Consensus) was first proposed by Fischer and Bolles in 

1981. The basic assumption of RANSC is the test sample involved with both inliers 

and outliers, the outliers are caused by noise, wrong assumption or miscalculations. If 

a correction test sample is given, the corresponding parameter model can be 

determined. The RANSAC theory can be described as follows: 

(1) A mathematical model is selected. Assume that the model can be determined 

by at least n parameters. An observation set P is given, contained m 

observations, m>n. Randomly select a sub set S from P. S involved with n 

observations. Obviously, S can determine a mathematical model. Denote the 

mathematical model as M. Use all the observations in P to test model M. Set 

a test threshold. Passed observations can build a new set S1. We denote S1 is 

the model M’s consistent set. 

(2) If the observation number of S1 is larger than the threshold t, we can use S1 

determine the new mathematical model M1. 

(3) If the observations number of S1 is less than the threshold t, we can use first 

step to find the S1 can meet the demands that the observations number of S1 

no less than t. When the iteration time achieves a certain number, still can’t 

meet the condition we set, then RANSAC fails.  

4.4.2 RANSAC based relative orientation 

In our approach, the test sample has a very large dataset. Using the traditional 

http://www.baidu.com/link?url=tRE2nqY3KnYLbwA7tfQydvgcLReHS61OUbLiS6kAxyCisRWmK_fq4DlgsCXAHyV5EEgHdU_pNJnepaKsZc1vTwmhy9Uwz7lzmKqVvKDH45chEYkbsEvf2JUfGmztGX7vplCSMMr-dfpKjEqd4a2appQyEWnq17vPxTl9fHnx4Du
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RANSAC may have numerous iterations. We assume the non-mismatching 

probability of our result is p, the probability of that we do k times random selection 

from our results get at least n non-mismatching point pairs is Q. Then (1 )n kp−  

denote the probability of the selected k subsets each one contained mismatching point 

pairs. We can denote k as follows: 

)1ln(
)1ln(

np
Qk

−
−

=                          (4.13) 

From Equation (4.13) we find that RANSAC iteration times are not affected by the 

number of observations according to our assumption. Normally the mismatching rate 

in PCA-SIFT is around 20%. As our image dense matching approach use the 

PCA-SIFT results as the initial input. The mismatching rate is related to PCA-SIFT. 

We assume the rate is 30%. Relative orientation needs at least 5 corresponding point 

pairs. If the correct probability is expected to reach 99%, the k value calculated by 

Equation (4.13) is 20. 

In photogrammetry, the corresponding points in a stereo image pairs fulfills the 

coplanarity condition. So we use the coplanarity condition as the mathematical model 

to operate RANSAC. Coplanarity condition is shown as follows. 

0=
′′′
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;  (𝑥𝑥,𝑦𝑦)  and (𝑥𝑥′,𝑦𝑦′)  denote the image coordinates of the 

corresponding points; f and f ’ denote the principle distance of left and image, 

respectively; R is the orthogonal transform matrix from right image to left image.  

Linearizating Equation (4.14) by Taylor’s series expansion can obtain an error 

function as follows: 
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          (4.15) 

If the observation number is larger than 5, least square adjustment method can be used 

to solve the error Equation (4.15). If one point’s residual is larger than the 3 times of 

root mean square errors, this point can be accounted as the mismatching point. 

 

4.5 Quality assessment 

Comprehensive evaluation of the quality of the image dense matching point clouds is 

carried out in this paper, mainly from two aspects: specifically the subjective visual 

effect of the point clouds and quantitative analysis of the objective indicators. 

Subjective evaluation performs 3D visualization of the dense matching point clouds 

and compares it with the presently recognized SURF and PMVS matching effect. 

Objective evaluation employs quantitative analyses of quantitative indicators, such as 

the matching success rate, point cloud accuracy and matching reliability. 

 

1. Matching success rate 

In this paper a single stereo image pairs is taken as a statistical unit, and the ratio of 

the total number of image points to the number of obtained dense matching points in 

the stereo pair overlapping region is calculated according to Equation (4.16) as a 

measure of matching success rate (msr) of dense image matching. The higher the 

matching success rate, the better the dense matching effect. 

%100
aeraoverlapinnumberpixelTotal

pointsmatchingofnumberTotal
×=msr                  (4.16) 

2. Reliability 

Vertical parallaxes of the dense matching point clouds of a stereo image pair are 

calculated one by one according to the relative orientation elements; when no 

mismatching point exists, the residual errors of the vertical parallaxes of all points 

should be in accordance with a normal distribution and almost close to 0. For one 
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point, it can be known from the reliability theory of Baarda, that, when the 

significance level =0.1% is taken, the residual error of its vertical parallax should 

not be greater than 029.3 σ . Here, 0σ  is the unit weight root mean square error in 

relative orientation. With this criterion, the dense matching point clouds are transverse, 

the statistics of the overrun points should be carried out, and the ratio of the number 

of matching points in a stereo image pair to number of overrun points is calculated 

according to Equation (4.17) as a reliability measure of the dense image matching. 

The smaller the ratio is, the higher the dense matching reliability is.  

%100
pointsmatchingofnumber Total

pointsmismatch ofNumber
×=r              (4.17) 

 

3. Accuracy in imagery 

As well known, relative orientation is an analytic calculation process that generates 

pair-to-pair intersections of corresponding image rays on a stereo pair, and the goal of 

realizing a reasonable error distribution of the observed value of the image point 

coordinates by eliminating the parallax of the stereoscopic model to the minimum 

margin. As the basis for its calculation is only the observation value of image point 

coordinates, no non-photogrammetric measurement is involved. Hence, the error 0σ , 

in relative orientation can be regarded as a measure of matching point precision in 

imagery. 

However, as the quantity of dense matching points in each stereo image pair is 

enormous, the relative orientation and gross error elimination are only conducted on 

the seed points set, through the continuous relative orientation model with variable 

weight and iteration methods. After the relative orientation elements are obtained, the 

residual errors of the vertical parallaxes of the dense matching point clouds are 

calculated one by one, all points greater than 029.3 σ are removed, and the root mean 

square errorσ of residuals of the vertical parallaxes of the other points is made. The 

smaller theσ is, the higher the dense matching accuracy is. 

∑
=

∆=
n

i
iq

n 1

21σ                              (4.18) 

Where, n is the number of dense matching points; iq∆ is the residual error of the 

vertical parallax of the i-th dense matching point. 

α
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4. Accuracy in ground 

For dense matching point clouds with the mismatching elimination, a point-wise 

calculation of their 3D ground coordinates is implemented according to the 

dual-image forward intersection principle, and discrete 3D point clouds, namely DSM 

can then be generated. Those pass points obtained by GPS-supported bundle block 

adjustment are taken as check points, and their neighborhood points in the DSM are 

searched according to their planimetry position. As OFFDIM realizes pixel-by-pixel 

dense matching effect, the nearest neighbor interpolation method is used in this paper 

to extract the elevation value of the point closest to check point in DSM, which can be 

used to obtain the elevation errors of check points. The accuracy m of the DSM can 

be calculated according to Equation (4.19) as the measure of the object accuracy of 

dense matching point clouds. The smaller the m value, the higher the dense image 

matching precision. 

∑
=

∆=
n

i
ih

n
m

1

21                              (4.19) 

Where, n is number of check points; ih∆ is height error of the i-th check point. 

 

4.6 Experiment results and discussions 

4.6.1 Experiment description 

In this paper, the experiments are conducted on a data set with true color digital aerial 

images carrying GPS navigation data and photographed by UAV. Images were taken 

in May, 2016, and relevant technical parameters are listed in Table 4.1. 

Table 4.1 Technical parameters of images in experimental projects 

Items Parameters 

Aircraft Unmanned Aerial Vehicle ( UAV) 

Aerial camera PhaseOne IXU-1000 

http://www.baidu.com/link?url=otVMjJuREd6KJt_vzLtb38HMOMiyYkQ3o7XKCDAKSlObMhUqz0H_YxPwKYQqJqHvd5bxGU8Tk2TZ2HZvXs4iOut_KQhduWWZW69Pf5-zez1zKNINWnEKFBsR4lSgVk4V
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CCD size 4.6 µm 

Ground sample distance (GSD) 7 cm 

Focus length 51.21293 mm 

Flight altitude 1290 m 

Frame 11608 × 8708 pixels 

Longitudinal overlap 60 % 

Lateral overlap 30 % 

Number of strips 8 

Number of images 88 

Ground control Point (GCP) 18 

Pass points 55701 

Block area 2.8 × 2.8 km2 

Maximum topographic relief 54 m 

GPS data update rate 1 second 

GPS offset 0.1020 m, 0.0000 m, 0.3160 m 

 

Our self-developed full-automatic digital photogrammetry system, named Imagination, 

was taken as data processing platform in the experiment in this paper. First, the 

automatic image measurement subsystem Imagination-AMS was used for the 

automatic turning point measurement of the pass points of all images, and artificial 

stereoscopic observation of image coordinates of all ground control points (GCPs) 

was carried out. Then the GNSS camera station positioning subsystem 

Imagination-GNSS was used to obtain the dynamic precise point positioning based on 

GPS carrier phase observations recorded during the aerial photography process to 

obtain the 3D coordinates of all camera stations. Next, the camera station coordinates 

were regarded as weighted observations, and the simultaneous combined adjustment 

subsystem Imagination-BBA was used to perform the GPS-supported bundle block 

adjustment. On this basis, for 4 strips (148~138, 122~132, 114~104 and 92~102), a 

total of 44 images were photographed in the west-east direction during the flying 

mission. The DEM automatic extraction subsystem Imagination-DEM was used to 
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implement the dense image matching based on optical flow field, and DSM discrete 

point clouds were automatically generated. 

Figure 4.5 shows the distribution of 18 obvious surface feature points (such as traffic 

marker lines, wall corners, road intersections, house corners, etc.) observed in the 

experimental area that were used as GCPs. The GPS net static surveying method was 

used to accurately measure their ground coordinates, coordinate accuracies of 3 

directions reached respectively ±10 cm in ground, and these points could be used as 

encrypted orientation points and check points for photogrammetric point 

determination. 

 

 
 
 

Figure 4.5 Distribution of ground control points in experimental area 
For the measured image point coordinates, after Imagination-BBA was used to 

perform relative orientation and gross error elimination through the continuous 

relative orientation method with model connection conditions, the average 0σ of 8 

strips were calculated according to the residuals errors of the vertical parallaxes of 

relative orientation points, which are listed in Table 4.2. 

orientation point      check point         perspective point 
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Table 4.2 Accuracy of relative orientation by single image pairs 

Strip no. 
Number 
of stereo 
model 

Number of 
orientation 
points in 

single stereo 
model 

Number of 
joint points 

between 
stereo 
models 

Average RMSE Maximum RMSE Minimum RMSE 

(µm) (pixel) (µm) (pixel) (µm) (pixel) 

148-138 10 99-3683 42-316 0.97 0.22 1.29 0.30 0.75 0.16 

122-132 10 135-3970 52-283 1.06 0.23 1.42 0.31 0.82 0.18 

114-104 10 203-2663 91-257 0.88 0.20 1.01 0.22 0.74 0.17 

92-102 10 205-4163 93-535 0.83 0.18 1.05 0.23 0.61 0.13 

202-212 10 262-3374 90-302 0.83 0.18 1.05 0.23 0.72 0.16 

197-187 10 224-2073 79-175 0.90 0.20 1.38 0.29 0.69 0.15 

170-180 10 161-2522 50-359 0.96 0.21 1.15 0.25 0.78 0.17 

229-219 10 266-3452 113-344 1.08 0.23 1.84 0.41 0.65 0.15 

 
It can be seen from Table 4.2 that the relative orientation accuracy of single stereo pairs 

has no significant difference, and the minimum value, maximum value and mean 

value among the 80 numbers of 0σ  is ±0.61 µm, ±1.84 µm and ±0.95 µm, 

respectively. As the vertical parallax of image point is 21 yyq −= , according to the 

error propagation law, it is assumed that the measurements of the image point 

coordinates are mutually independent. In that case, μm67.02/0 ±==σσ y , 

namely, ±0.15 pixels. That is, in the experimental images selected in this paper, and 

during the automatic process of identifying the corresponding image points, the 

measuring accuracy of the image point coordinates could reach the ±0.15 pixel level. 

In addition, as many orientation points were available in each stereo pair, the average 

redundant observation component is greater than 0.98. Hence the reliability of relative 

orientation was very favorable, which contributed to the elimination of the gross 

errors in the observations of the image point coordinates. The reserved orientation 

points are taken as seed points, and the dense image matching used in the optical flow 

field fitting was fully reliable. 

A full GCP was respectively set in each of four corners in the test block as shown in 

Figure 4.5, GPS drift systematic error compensation model was introduced in 

strip-by-strip in the GPS camera station. Imagination-BBA subsystem was used for 
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the GPS-supported bundle block adjustment on the experimental image sets (Yuan, 

2008), and the root mean square error in the unit weights of the image point 

coordinate observations is ±0.7 µm, which was in close agreement with the ±0.67 µm 

measuring accuracy of the image point coordinates derived from the relative 

orientation. Moreover, the actual accuracies of pass points calculated from the 12 full 

GCPs were ±5.4 cm in planimetry and ±6.9 cm in elevation, that is, both the 

planimetry accuracy and the elevation accuracy is respectively superior to 1.0 GSD. 

Taking 55,701 pass points as ground check points, evaluating DTM the point cloud 

accuracy fully met the applicable requirements. 

4.6.2 Dense matching effect 

As the experimental images covered large areas, the repetition rate of ground features 

is high; here, only the 123-124 stereo image pair covering multiple texture feature was 

taken as an example (the dense matching effects of other stereo image pairs are 

consistent), and a comparison of the visual effects and subjective evaluation of the 

matching point clouds between the OFFDIM and PMVS were implemented. As 

shown in Figure 4.6(a), the stereo pair overlapping region included buildings with 

complex textures, farmland and bare land with limited texture, as well as bushes, 

independent trees and roads with repeated textures. Figure 4.6(b) shows the discrete 

DTM point clouds automatically generated through the OFFDIM dense matching 

results. This DTM shows the details of all of the kinds of ground features very clearly, 

and the edges of roads, houses and independent trees are clear and complete, which is 

in accord with the dense matching point clouds generated via the OFFDIM. The dense 

matching point clouds generated by PMVS in this region are shown in Figure 4.6(d). 

It can be clearly seen from Figure 4.6(c) and 4.6(d) that the point clouds generated 

through the OFFDIM are of high completeness and basically without voids, especially 

in farmland with a texture shortage and house regions of complex texture (as shown in 

red block in the figures). It is not hard to see that the OFFDIM could match roofs 

more completely and could obtain denser matching point clouds in farmland and 
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grassland regions with limited texture through the elaborate comparison of enlarged 

portions of these local regions. Even though, for regions such as roads and bare land, 

the results of the two matching methods are quite similar. Thus, it can be seen that the 

dense image matching method based on optical flow field are more robust to image 

textures, and the generated point clouds are much more denser. 
 

      
(a) Original image                   (b) Automatic generated DSM 

 using OFFMID point clouds 
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(c) Point clouds by OFFDIM                                       (d) Point clouds by PMVS  

                                                    
 

(c) Point clouds by OFFDIM                                        (d) Point clouds by SURE 

Figure 4.6 Dense matching point clouds in single stereo image pairs 

Roof Area 

Vegetarian Area 

Building Area 

Bush Area 

Local Zoom Detail Map (Read Block) 

Roof Area 
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Local Zoom Detail Map (Read Block) 
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4.6.3 Dense matching quality 

First, for the dense matching results of 40 stereoscopic images in 4 strips, and the 

matching success rate of 3D point clouds in each stereo image pair overlapping region, 

their variation curves are shown in Figure 4.7, the overall matching success rate is 

higher than 98.5%, and the matching success rate of only 3 stereo image pairs is 

approximately 97.0%. This result indicated that the matching completeness of the 3D 

point clouds in the stereo image pair overlapping regions is very high. On the other 

hand, it can be seen from the matching reliability curves shown in Figure 4.8 that the 

overall mismatching rate of the 3D point clouds extracted via the OFFDIM is lower 

than 20%. As there are only 99 seed points in stereo image pair 140-141, and these 

seed points are concentrated in local region, the mismatching rate is as high as 65%. 

There are many buildings in the images that make up strip 148-138, and as textures 

are quite abundant in these areas, the overall mismatching rate is relatively high. The 

images in strip 114-102 covered farmlands of weak textures, and the overall 

mismatching rate is low. Thus, it could be seen that the OFFDIM method is robust. 

Figure 4.9 reveals the accuracy change rules of the image space and object space of 

the pixel-by-pixel dense matching results in the stereo image pair overlapping region. 

It can be clearly seen from the figure that the dense matching point clouds obtained 

through the OFFDIM can reach the sub-pixel accuracy level in image; the dense 

matching accuracies of 40 stereo image pairs are all better than ±1.0 pixel, and the 

optimal accuracy reached ±0.55 pixel. The elevation accuracy in the object spaces is 

better than ±0.20 m on the whole, namely 3.0 GSD, but the elevation accuracies 

between different models differed to some degree and fluctuated within 2.0 GSD~3.5 

GSD. It is not hard to find, through an elaborate comparison between the accuracy 

curves of the image space and the object space, that the variation rules of the two are 

totally consistent, which further verified the robustness of the OFFDIM method 
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Figure 4.7 Matching success rate in single stereo image pairs 

 

 
Figure 4.8 Mismatching rate in single stereo image pairs 
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Figure 4.9 Dense matching accuracy in single stereo image pairs 

 
 

 
Figure 4.10 Consumed CPU time in single stereo image pair 
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4.6.4 Dense matching efficiency 

All of the experiments in this paper were conducted on an Intel(R) Core™ i7-6700HQ 

CPU/2.6 GHz/16.0 GB RAM/x 64 portable computer running Windows10. Figure 

4.10 shows the variation curve of the CPU time consumed by the dense image 

matching of 40 stereo image pairs. From a statistical perspective, the CPU time 

consumed, in processing low-altitude aerial UAV images with pixel sizes of 11608 × 

8708 and 60% longitudinal overlap, the dense matching time of a single stereo image 

pair is within 192.593-327.246 seconds, and the efficiency is quite high. Table 3 

compares the CPU time consumed by the OFFDIM and PMVS methods using images 

from 4 strips with strip being the unit, respectively. It can be seen from Table 4.3 that 

the matching operation speed of OFFDIM is approximately 6.2 times that of PMVS. 

It can also be found through the visual inspection of the 3D point cloud effect 

sketches of PMVS and the OFFDIM in the same region that the 3D point cloud 

density generated by the OFFDIM is far higher than that of PMVS; if the efficiency is 

calculated by the CPU consumed via single point, then the OFFDIM would have 

higher matching efficiency than PMVS. 
 

Table 4.3 Consumed CPU time for dense image matching in single strip 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Strip No. Number of 
stereo model 

CUP time 
(h : min : sec) 

OFFDIM PMVS SURE 

148-138 10 0:45:06 4:38:27 23:27 

122-132 10 0:46:57 4:27:11 22:11 

114-104 10 0:47:17 4:52:30 23:30 

92-102 10 0:41:47 4:29:30 20:30 
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4.6.5 The effect of seed points on dense image matching based on 

optical flow field 

As OFFDIM is a dense image matching method which extracts 3D point clouds in an 

image overlapping region based on seed points, a quantitative analysis of the 

correlation between the number of seed points and the matching effect was carried out 

in this paper. All seed points used in this paper came from pass points, and their 

distribution in the overlapping region was taken into consideration in the automatic 

image measurement; their distributions were uniform on the whole, and measurement 

accuracy was better than ±0.15 pixel. It can be clearly seen from Figure 8 that, as the 

number of seed points increased, the accuracy of the dense matching point clouds in 

image became higher and higher, but when the number of seed points reached 1,000 

orders of magnitude, the matching accuracy tended to stablize. Figure 4.12 reveals 

that as the number of seed points increased, the dense matching success rate also 

improved, but when the number of seed points reached 1,000 orders of magnitude, the 

matching success rate almost did not change. As the estimation process that converts 

sparse optical flow fields to dense optical flow fields is a fitting and interpolation 

process, when the number of seed points increased, the estimation time of the dense 

optical flow fields increased correspondingly. It is not hard to obtain from the 

comprehensive analyses shown in Figure 4.11 and Figure 4.12 that a uniform 

distribution of 1,000 seed points in the overlapping region would be very good for the 

OFFDIM. 
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Figure 4.11 Dense matching accuracy curve with the number of seed points 

 
 

 
Figure 4.12 Dense matching reliability curve with the number of seed points 
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4.7 Summary of this chapter 

An algorithm that uses accurate seed points to generate a dense optical flow field 

algorithm within a stereo image pair overlapping region and a dual-constraints 

refinement method were improved in this chapter. The proposed OFFDIM method can 

obtain a pixel-wised dense image matching results. The experimental results indicated 

that the matching success rate of OFFDIM is higher than 97%, and the matching 

accuracy reached the sub-pixel level; thereby, the automatically generated DSM 

elevation accuracy can be better than ±3 GSD. In addition, a comparison experiments 

with PMVS demonstrated that the matching efficiency of OFFDIM is improved by 

more than 5 times relative to that of PMVS, it has a higher matching success rate in 

some regions, like those containing houses and texture-poor regions, in aerial UAV 

images, and completeness of dense point clouds expressing ground features is better. 

However, the effect of the OFFDIM is closely related to the quantity, distribution and 

precision of seed points, and the dense image matching effect would be better in seed 

point regions with sufficient quantity and uniform distributed seed points. 

At present, the proposed algorithm was only conducted on CPU, so the efficiency of 

the algorithm is expected to be further improved. How to adopt fragmental image 

processing technology, multi-threading computation or a GPU parallel algorithm will 

be the goal of future research and how to reduce the dependence of the algorithm on 

seed points and construct a practical seed point estimation model is worthy of 

concern. 
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Chapter 5 
Deep Learning based 3D point cloud 
annotation 
 

In this chapter, I will introduce the basic concept and algorithms used in our point 

cloud annotation approach. I will detailed describe our approach by 4 sections, first 

one is preprocessing; second one is modified deep neural network; then the 

experiment and analysis; the last one is the summary. 

5.1 Proposed Res-FCN 

5.1.1 U-Net 

The U-Net network structure is proposed in the 2015 ISBI competition. It is an 

improve network from fully convolutional network. The structure forms a U-shaped 

structure through a shrinking network and an expansion network to extract features 

from the image, which won the championship of the 2015 ISBI competition. 

The U-Net network consists of 23 convolutional layers. The structure is shown in 

Figure 5.1. The shrinking network is mainly responsible for the down sampling work, 

extracting high-dimensional feature information, and each down sampling contains 

two 3×3 convolution operations. A 2×2 pooling operation, with a rectified linear 

unit (ReLU) as the activation function, each time down sampling, the image size 

becomes 1/2 of the original size, and the number of features becomes twice the 

original. The expansion network is primarily responsible for the up sampling work, 

and each up sampling contains two 3×3 convolution operations by modifying the 

linear unit as the activation function. Each time up sampling, the image size becomes 

2 times the original size, and the number of features becomes 1/2 of the original. In 

the up sampling operation, each output feature is merged with the features of the 

phased contraction network to complement the missing boundary information. Finally, 
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a 1×1 convolution operation is added to map the previously acquired features to the 

associated classification. 

 
Figure 5.1 The structure of U-Net. White part is in the process of up sampling (Ronneberger et 

al, 2015). 

 

Compared with other networks, U-Net has the advantages of simple structure, short 

training time, and few training parameters. However, compared with VGG, SegNet 

and other networks, the depth of U-Net is slightly insufficient. 

 

5.1.2 Residual Network 

In convolutional neural networks, the deeper the network hierarchy, the more errors 

are generated during training and the longer the training time. The emergence of the 

residual network has solved this problem to some extent. The residual network is the 

method proposed by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun in the 

ILSVRC competition in 2015, and won the 2015 ILSVRC championship. 

The residual network proposes a method of fitting the residual identity mapping, that 
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is, the convolution result is not directly used as an output, but the residual identity 

mapping is used to calculate, which is called a "shortcut". We assume that a hidden 

layer is F(x), which satisfies the mapping relationship F(x) = H(x) −x. If multiple 

nonlinear layers are combined, we can think of them as a complex network. We can 

also assume that implicit the residual of the layer is approximated by a complex 

function, for example H(x) = F(x) + x. The structure of the residual network is shown 

in Figure 5.2. As can be seen from the figure, the residual network reduces the 

training parameters by extracting the features of the convolutional layer cascaded 

output and input. 

 
Figure 5.2 The structure of residual network 

5.1.3 Residual fully convolutional network (Res-FCN) 

The proposed Res-FCN is divided into two parts: the shrinking network and the 

expanding network. The shrinking network is similar to the shrinking network in 

U-Net. The difference is that the output of each layer is normalized first, followed by 

the activation function. Each up sampling step contains two 3×3 convolutional layers, 

a 1×1 "shortcut" and a 2×2 pooling layer. In every down sampling step, the picture 

size becomes 1/2 of the original, and the number of features acquired is doubled. The 

expansion network is similar to the expansion network in U-Net. Each up sampling 

contains two 3×3 convolutional layers, a 1×1 "shortcut" that needs to merge the 

results of the shrinking network before each up sampling. Similar to shrinking 

networks, each layer of output in an extended network requires advanced 

normalization and subsequent activation through an activation function. Finally, a 1×1 
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convolutional network is added to determine the result of the feature map. The 

network structure is shown in Figure 5.3. 

 
Figure 5.3 The structure of proposed Res-FCN 

 

After joining the residual network, the proposed network has deeper levels and more 

training parameters than U-Net. To a certain extent, it makes up for the problem that 

the U-Net is not deep enough. At the same time, due to the characteristics of the 

residual network, it solves the problem of degraded performance of deep 

convolutional neural networks. 

5.1.4 Conditional random fields 

Conditional random fields (CRFs) are a discriminative probability undirected by 

Lafferty et al. based on Hidden Markov model (HMM) and Maximum entropy model 

(MEM). The graph model was originally used for labeling and segmentation of 

one-dimensional data. In 2003, Kumar extended the CRF model to a 2-dimensional 

structure and took the lead in applying it to image classification problems. Unlike the 

Markov random felds (MRF) model, which models the likelihood function, the CRF 

directly models the posterior distribution, so there is no need to satisfy the assumption 

of conditional independence between the observed data, so that any observation data 

can be represented. Therefore, the CRF model has been widely used and has been 
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introduced into many fields such as pattern recognition, image segmentation, target 

detection and remote sensing image classification. At the same time, more and more 

CRF improvement models have emerged, such as multi-scale CRF model, layered 

CRF model and hidden condition random field (HCRF) model. 

In order to better understand the conditional random field, this section will first 

introduce the basic theory related to the probability map model, including the directed 

graph model, the undirected graph model, and the basic concepts of the generated 

model and the discriminant model, followed by the conditional random field， the 

main ideas and mathematical representations, and finally the application of 

conditional random fields in remote sensing image classification. 

If an undirected probability graph has a Markov property, the undirected probability 

graph is called a Markov random field. Furthermore, if each node (random variable) 

of a Markov random field has an observation sample, and given the set of observation 

samples, the conditional distribution of the Markov random field is obtained, then the 

Markov random field has become a conditional random field. 

The rigorous definition of the conditional random field is as follows:  

Let G(𝑉𝑉,𝐸𝐸)  denote an undirected graph, and the elements in Y = (𝑌𝑌𝑣𝑣)𝑣𝑣∈𝑉𝑉 

correspond one-to-one with the vertices in the undirected graph 𝐺𝐺. When under the 

condition, the conditional probability distribution of the random variable 𝑌𝑌𝑣𝑣 obeys 

the Markov property of the graph: p(𝑌𝑌𝑣𝑣|𝑋𝑋,𝑌𝑌𝑤𝑤,𝑤𝑤 ≠ 𝑣𝑣) = p(𝑌𝑌𝑣𝑣|𝑋𝑋,𝑌𝑌𝑤𝑤,𝑤𝑤~𝑣𝑣), where 

𝑤𝑤~𝑣𝑣 means (𝑤𝑤, 𝑣𝑣), that is, the edge of the undirected graph 𝐺𝐺. At this time we call 

(𝑋𝑋,𝑌𝑌)  a conditional random port. In the above definition, 𝑋𝑋  and 𝑌𝑌  represent 

random variables with a joint distribution, where 𝑋𝑋  represents an observation 

sequence that needs to be labeled or classified, and 𝑌𝑌 represents a marker sequence 

that marks or classifies, all 𝑌𝑌𝑖𝑖 ∈ 𝑌𝑌 is assumed to be a finite number. 
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Figure 5.4 Linear chain conditional random field 

According to the Hammersley-Clifford theorem, the posterior probability of the 

marker field x satisfies the Gibbs distribution: 

𝑝𝑝(𝑥𝑥|𝑦𝑦,𝜃𝜃) = 1
𝑍𝑍(𝑦𝑦,𝜃𝜃)

exp{∑ 𝜙𝜙𝐶𝐶(𝑥𝑥𝐶𝐶 , 𝑦𝑦,𝜃𝜃)𝑐𝑐𝑐𝑐𝑐𝑐 }                     (5.1) 

Where 𝑍𝑍(𝑦𝑦,𝜃𝜃) = ∑ exp{∑ 𝜙𝜙𝐶𝐶(𝑥𝑥𝐶𝐶 , 𝑦𝑦,𝜃𝜃)𝑐𝑐𝑐𝑐𝑐𝑐 }𝑥𝑥 is a normalization function, 𝜙𝜙𝐶𝐶 

represents a potential function, which is defined on the group 𝐶𝐶, and 𝜃𝜃 represents  

the parameters to be evaluated. In the application of the conditional random field 

model, defining a suitable potential function is a critical step. 

In the conditional random field model, the potential function is usually represented by 

a linear combination of multiple features. A conditional random field model 

containing a one-dimensional potential function and a binary potential function can be 

expressed as follows: 

p(𝑥𝑥|𝑦𝑦, 𝜃𝜃) = 1
𝑍𝑍(𝑦𝑦,𝜃𝜃)

exp�∑ ∑ 𝜃𝜃1𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖|𝑦𝑦) + ∑ ∑ ∑ 𝜃𝜃2𝑑𝑑𝑔𝑔𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝑦𝑦�𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 �     (5.2) 

In the above formula, 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖 ,𝑦𝑦)represents the k-th component of the D-dimensional 

unary eigenvector 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑦𝑦) , and 𝑔𝑔𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥,𝑦𝑦)represents the M-dimensional binary 

eigenvector 𝑔𝑔�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ,𝑦𝑦�The 𝑑𝑑 -th component of 𝜃𝜃1 = {𝜃𝜃1𝑘𝑘, 𝑘𝑘 = 1,2, … ,𝐷𝐷}  is the 

parameter set of the one-potential function, 𝜃𝜃2 = {𝜃𝜃2𝑑𝑑 ,𝑑𝑑 = 1,2, … ,𝑀𝑀} is the binary 

potential function The set of parameters, 𝑍𝑍(𝑦𝑦, 𝜃𝜃)  represents the normalization 

function. 

1. Unary potential 

The unary potential function 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖|𝑦𝑦) is a local constraint for a single node whose 

class is only related to the features of the current pixel and independent of the features 

of the surrounding nodes. The general definition is as follows: 
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(1) Logistic regression 

Logistic Regression (LR) classifiers are suitable for two-category problems, and 

their expressions can be written as: 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖|𝑦𝑦,ω) = log � 1
1+exp(−𝑥𝑥𝑖𝑖𝜔𝜔𝑇𝑇𝑦𝑦𝑖𝑖)

� = log�𝜎𝜎(𝑥𝑥𝑖𝑖𝜔𝜔𝑇𝑇𝑦𝑦𝑖𝑖)�             (5.3) 

Where σ(𝑥𝑥) = 1 (1 + 𝑒𝑒−𝑥𝑥)⁄  represents a Logistic function, and 𝑦𝑦𝑖𝑖  represents a 

pixel value or a multi-dimensional feature vector, which usually represents the 

underlying features of the image such as color, grayscale, and texture, and 𝑛𝑛 

represents Vector dimension, ω = [𝜔𝜔1,𝜔𝜔2,⋯ ,𝜔𝜔𝑛𝑛]𝑇𝑇represents the model parameter 

vector. For multi-classification problems, logistic regression can be extended to 

Multinomial Logistic Regression (MLR): 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖|𝑦𝑦,ω) = ∑ 𝛿𝛿(𝑥𝑥𝑖𝑖 = 𝑘𝑘)𝐾𝐾
𝑘𝑘=1 log𝑝𝑝(𝑥𝑥𝑖𝑖 = 𝑘𝑘|𝑦𝑦,𝜔𝜔)                (5.4) 

Where 𝑝𝑝(𝑥𝑥𝑖𝑖 = 𝑘𝑘|𝑦𝑦,𝜔𝜔) is a multiple logistic regression model whose expression is: 

𝑝𝑝(𝑥𝑥𝑖𝑖 = 𝑘𝑘|𝑦𝑦,𝜔𝜔) = �
exp�𝜔𝜔𝑘𝑘

𝑇𝑇𝑦𝑦𝑖𝑖�
1+∑ exp�𝜔𝜔𝑡𝑡

𝑇𝑇𝑦𝑦𝑖𝑖�𝐾𝐾−1
𝑡𝑡=1

,     𝑖𝑖𝑖𝑖  𝑘𝑘 < 𝐾𝐾
1

1+∑ exp�𝜔𝜔𝑡𝑡
𝑇𝑇𝑦𝑦𝑖𝑖�𝐾𝐾−1

𝑡𝑡=1
,     𝑖𝑖𝑖𝑖  𝑘𝑘 = 𝐾𝐾

                (5.5) 

Where 𝜔𝜔𝑘𝑘 is the k-th parameter vector and 𝑛𝑛 is the vector dimension. 

 

(2) Support vector machines 

For a two-category CRF model, the expression is: 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖|𝑦𝑦,ω) = log𝑂𝑂(𝑥𝑥𝑖𝑖|𝑦𝑦,ω)                              (5.6) 

In the formula,  

𝑂𝑂(𝑥𝑥𝑖𝑖 = 1|𝑦𝑦,ω) = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎×Γ(𝑦𝑦𝑖𝑖)+𝑏𝑏)

                        (5.7) 

Where, Γ(∙) is the decision function of the support vector machine, and 𝑎𝑎 and 𝑏𝑏 

are constants. For multi-class CRF models, multi-class support vector machines are 

used accordingly.  

In addition to the above two forms, the one-dimensional potential function of the CRF 

model can also be established using various functions such as a kernel function, a 

Gaussian function, a regression tree, and a neural network. 
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2. Binary potential 

The binary potential function is the core component of CRF, which enables CRF to 

describe the correlation and interaction between image pixels, and can reasonably 

model the spatial relationship between pixels, breaking the naive Bayesian classifier 

between pixels. Independent assumptions. In the MRF model, the pixel class is judged 

only by the feature vector of the pixel and the mark of its neighboring pixel. In the 

CRF model, the class judgment of the pixel also needs to consider the observation 

value of its neighboring pixel. If the pixels of the neighborhood have high image 

feature similarity, then the binary potential function 𝑓𝑓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝑦𝑦� is more likely to 

assign the same class mark to them if the pixels of the neighborhood have image 

features. The similarity is not high, then 𝑓𝑓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝑦𝑦� is more inclined to divide them 

into different categories, which will further improve the accuracy of the classification. 

In the MRF model, the potential function is generally defined by the Potts model, but 

the Potts model that does not contain observation data cannot be directly used to 

define the potential function of the CRF model, so the potential function in the CRF is 

defined by the generalized Potts model. 

For the two-category problem, the generalized Potts model has the following form: 

𝑓𝑓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝑦𝑦� = 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑣𝑣𝑇𝑇𝑔𝑔𝑖𝑖𝑖𝑖(𝑦𝑦)                                  (5.8) 

Where 𝑔𝑔𝑖𝑖𝑖𝑖(𝑦𝑦) represents the eigenvector of the observation data corresponding to the 

coordinates (𝑖𝑖, 𝑗𝑗), and 𝑣𝑣 = [𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑛𝑛]𝑇𝑇 is the model parameter vector. 

For multi-classification problems, the form is as follows: 

𝑓𝑓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝑦𝑦� = ∑ 𝑣𝑣𝑘𝑘𝑘𝑘𝑇𝑇𝑘𝑘,𝑙𝑙∈{𝑙𝑙.⋯,𝑘𝑘} 𝑔𝑔𝑖𝑖𝑖𝑖(𝑦𝑦)𝛿𝛿(𝑥𝑥𝑖𝑖 = 𝑘𝑘)𝛿𝛿�𝑥𝑥𝑗𝑗 = 𝑙𝑙�              (5.9) 

Where 𝑣𝑣𝑘𝑘𝑘𝑘 represents the 𝑛𝑛 × 𝐾𝐾2 dimensional parameter vector, 𝑔𝑔𝑖𝑖𝑖𝑖(𝑦𝑦) represents 

the binary eigenvector defined in the entire image, which describes the arbitrary 

correlation between the observed data, which is very important for the segmentation 

of the discontinuous region. 
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5.1.5 Conditional random fields in objects classification 

This paper will use the conditional random field model as a post-processing method in 

the test phase to optimize the classification results. As shown in Figure 5.5, each node 

in the undirected graph corresponds to the category label and observation value of one 

pixel in the image, and the edge connection between the node and the node constitutes 

a conditional random field. 

 
Figure 5.5 Conditional random field model 

 
As an undirected graph model consistent with the Gibbs distribution, the Gibbs 

energy function of the conditional random field is as follows: 

𝐸𝐸(𝑥𝑥) = ∑ 𝜓𝜓𝑖𝑖𝑖𝑖 (𝑥𝑥𝑖𝑖) + ∑ 𝜓𝜓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝑖𝑖𝑖𝑖                             (5.10) 

Where 𝑥𝑥𝑖𝑖、𝑥𝑥𝑗𝑗 represent the category label values of the pixels 𝑖𝑖, 𝑗𝑗, respectively, and 

𝜓𝜓𝑖𝑖(𝑥𝑥𝑖𝑖) = −log𝑃𝑃(𝑥𝑥𝑖𝑖)  represents a unitary potential number. Where 𝑃𝑃(𝑥𝑥𝑖𝑖)  is the 

probability value of the output of the Softmax classifier The one-potential function 

indicates that the class is marked according to the characteristics of the node (pixel) 

itself in the model, and is only related to the local feature of the node itself, 

𝜓𝜓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� The binary potential function, which represents the probability that the 

node is marked as a class according to the similarity relationship between the 

neighboring nodes, and is related to the relationship between the nodes (pixels), that is, 

by describing the "coordinates between pixels" The "color" constraint relationship 

increases the probability that a pixel with a high similarity is classified into the same 
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category, and its expression is: 

𝜓𝜓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 𝜇𝜇�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�∑ 𝑤𝑤𝑚𝑚𝐾𝐾
𝑚𝑚=1 ⋅ 𝑘𝑘𝑚𝑚�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗�                  (5.11) 

Where, 𝜇𝜇�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� represents the indication function. When 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗, 𝜇𝜇�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� has a 

value of 1, otherwise the value is 0, 𝑤𝑤𝑚𝑚 represents a weight parameter, and 𝑘𝑘𝑚𝑚(⋅) 

represents a characteristic f. Gaussian kernel function. The kernel function used in this 

paper is as follows: 

𝑘𝑘�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗� = 𝑤𝑤1exp�− �𝑝𝑝𝑖𝑖−𝑝𝑝𝑗𝑗�
2

2𝜎𝜎𝛼𝛼2
− �𝐼𝐼𝑖𝑖−𝐼𝐼𝑗𝑗�

2

2𝜎𝜎𝛽𝛽
2 � + 𝑤𝑤2exp�− �𝑝𝑝𝑖𝑖−𝑝𝑝𝑗𝑗�

2

2𝜎𝜎𝛾𝛾2
�        (5.12) 

Where 𝑝𝑝 represents the pixel coordinate value of the input image, 𝐼𝐼 represents the 

pixel color value, 𝜎𝜎𝛼𝛼、𝜎𝜎𝛽𝛽  and 𝜎𝜎𝛾𝛾 represent the scale of the Gaussian kernel; 

𝑤𝑤1 and 𝑤𝑤2 represent the weight parameters of the two kernel functions, respectively. 

 

5.2 Preprocessing 

The experimental data selected in this paper is from the ISPRS WG II/4 public data 

set. The experimental area is taken in Potsdam, the capital of Brandenburg, Germany, 

as shown in Figure 5.6. The area is a densely populated urban area, mainly containing 

6 kinds of land objects, such as houses, grounds, low vegetation, trees, vehicles and 

sundries. As can be seen from the figure, there are various types of houses in the 

experimental area. The houses with gray roofs are very similar to the road features, 

and it is difficult for human eyes to distinguish. The trees include green trees and dead 

trees. The dry tree canopy is intertwined with the shadows, which makes the 

classification more difficult. The vehicles include various types of cars and a small 

number of trucks, which are very similar to the shape of the temporary shacks. The 

sundries include the course. A typical object is such as garbage dumps, mounds, 

non-housing buildings and temporary shacks. 
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(a) Buildings            (b) Cars                   (c) Grounds 

   
(d) Grass                 (e) Trees                (f) Others 

Figure 5.6 The experimental data set 

 

Experimental data includes images, digital surface models, and corresponding manual 

annotations. The ground resolution of the experimental data is 0.05 m, the image size 

is 6000×6000 pixels, the image is composed of three bands of RGB, the spectral 

resolution is 8 bit, and the DSM is a 32-bit single-band grayscale image. In this paper, 

24 RGB images with category labels and corresponding DSMs were selected for 

experimentation, 22 of which were used as training and validation sets for the training 

phase, and 2 were used as test sets for the test phase. When performing model training, 

it is generally assumed that the data satisfies the independent and identical distribution, 

that is, the currently generated data can simulate the future data, so the generated data 

can be used to train the model, and then the trained model is used to fit the future data. 

However, in practical applications, the distribution of data usually changes, resulting 

in the assumption that independent and identical distribution does not hold. Moreover, 

the amount of data generated may not be sufficient to estimate the distribution of the 

entire data set, at which point the model is likely to have an over fitting. Over-fitting 

means that the output obtained by the training sample is basically the same as the 
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target output, but the output obtained by the test sample has a large difference from 

the target output, that is, the model generalization ability is too poor. In general, over 

fitting means that the model learns the training samples too thoroughly, so that the 

characteristics of the noise data are learned, which makes it impossible to correctly fit 

and classify the test samples expanding the training sample is a strategy to avoid over 

fitting often used in the data preparation stage. Since the sample size of the common 

data set is limited, it is necessary to use image processing to expand the training 

sample, that is, to translate, rotate, and change the brightness of the training data. A 

series of geometric transformations and radiation transformations are used for image 

expansion. The specific method of this paper is as follows: First, 22 images and 

corresponding DSMs are cropped into 4,950 image blocks of 400×400 pixels, of 

which 4000 are used as training sets. The rest is used as the validation set, and then 

the flip and transpose operations are simultaneously performed on the image and 

DSM of the training set, and random disturbances are added to the image contrast, 

saturation, brightness and hue, and then superimposed with the corresponding DSM to 

obtain the final training set data. The validation set and the training set data are 

obtained by directly superimposing the image and the DSM. So we use affine 

transformation and rotation to adding 1 training sample to 8 samples through data 

expansion. When remote sensing images are acquired, the uncertainty of factors such 

as weather, platform and time will cause the diversity of image brightness, color and 

sharpness. Through a series of geometric transformations and radiation 

transformations, the diversity of images can be simulated, and a large number of 

realities can be obtained. Distributed training samples, which greatly reduce the 

over-fitting problem and improve the robustness of the model. 

 

5.3 Experiments and analysis 

Figure 5.7(a) captures a typical area of 2000 × 2000 pixels in the test set image as an 

example, and Figure 5.7(b) shows the correct category of its manual labeling, Figure 
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5.7(c) is the result of classification by AlexNet. It can be seen from the figure that 

there is serious noise in the whole classification map, and the misidentification of 

houses, ground, vehicles and other places is obvious, but the overall classification 

result is good. Figure 5.7(d) shows the result by VGG16 method, the classification 

effect of the ground and the house is better than the AlexNet, but the phenomenon that 

the small area of the house edge is misclassified, and the noise is around the small 

object such as vehicles, sundries. Figure 5.7(f) shows the result by using the fully 

convolutional network (FCN) method for classification, it can be seen that the 

phenomenon of small points on the edge of the house is basically eliminated, and 

small objects such as vehicles are also very well classified. However, when only the 

image is used as the training data, the classification result of the FCN method is that 

the whole house is divided into the ground by the whole building, which greatly 

affects the overall classification effect, which is due to the difference between the 

house and an important feature of the ground. It is the elevation difference, and the 

elevation difference is difficult to reflect in the RGB image. When the image is used 

alone as the training data, there are some cases in which the FCN method is divided 

into the whole building and the large number of holes appear, which greatly affects 

the overall classification effect. This is because there are a large number of houses in 

the experimental data that are very similar to the ground features, and the elevation 

difference is an important feature that distinguishes the house from the ground. It is 

difficult to reflect in the images. For this reason, DSMs and images are used as inputs 

at the same time. The data is involved in training and classification, and the 

classification results are improved by the elevation information provided by the 

DSM.Figures 5.7(g) and (h) show the classification result of traditional ResNet and 

the proposed methods. It can be seen from the figure that the misclassified house and 

the ground are less. The noise has been significantly reduced, the edges of the objects 

are smooth and clear, and the classification result of the proposed method is very 

close to the real category. 
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(a) Original image          (b) Ground truth             (c) Case1              (d) Case2 

 

    

(e) Case3               (f) Case4              (g) Case5              (h) Case6 

 

Figure 5.7 Classification results on ISPRS WG II/4 dataset 
 

In this paper, the confusion matrix of each classification result is counted. And the 

classification results are quantitatively evaluated according to the statistical indicators 

based on the confusion matrix. The confusion matrix of the classification results is 

shown in Table 5.2. As shown in Table 5.2 to Table 5.4, the accuracy, recall rate and 

F1 measurement results of various types of features in the classification results of 

each method are respectively counted. 
 

Table 5.1 Overview of different experimental schemes on ISPRS WG II/4 dataset 

 Case1 Case2 Case3 Case4 Case5 Case6 

Input image+DSM image+DSM image+DSM image+DSM image+DSM image+DSM 

Methods AlexNet VGG16 FCN FCN+CRF ResNet Res-FCN+CRF 

Accuracy 80.56% 81.29% 84.76% 86.00% 87.25% 88.80% 

Kappa 0.7446 0.7531 0.7707 0.7762 0.8242 0.8303 

 

 

 

 

 
Building 

 
Trees 

 
Grass 

 
Car 

 
Other Ground  
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Table 5.2 Comparison of F1 score between different approaches 

Methods Building 
(%) 

Ground 
(%) 

Tree 
(%) 

Grass 
(%) 

Car 
(%) 

Other 
(%) 

Average 
(%) 

AlexNet 87.50 82.27 70.54 68.53 87.21 30.35 83.08 

VGG16 86.77 82.66 71.74 67.64 86.67 31.68 83.96 

FCN 92.03 88.31 72.21 69.26 88.46 32.99 85.66 

FCN+CRF 92.30 88.65 72.29 69.88 87.56 34.25 85.98 

ResNet 96.27 90.94 75.57 72.83 89.45 41.79 88.96 

Ours 96.38 91.35 76.67 74.73 88.80 43.71 90.31 

 

Table 5.3 Comparison of classification recall between different approaches 

Methods Building 
(%) 

Ground 
(%) 

Tree 
(%) 

Grass 
(%) 

Car 
(%) 

Other 
(%) 

Average 
(%) 

AlexNet 82.27 77.56 81.56 76.42 74.36 52.72 80.56 

VGG16 86.83 78.16 79.72 78.65 82.46 55.36 81.29 

FCN 89.17 82.86 83.06 78.49 87.68 58.70 84.76 

FCN+CRF 89.32 84.60 83.98 77.45 84.72 58.61 86.00 

ResNet 96.26 86.66 81.29 81.03 89.57 66.51 87.25 

Ours 96.38 88.35 82.27 82.38 87.41 65.99 88.80 

 

Tab.5.4 Comparison of classification accuracy between different approaches 

Methods Building 
(%) 

Ground 
(%) 

Tree 
(%) 

Grass 
(%) 

Car 
(%) 

Other 
(%) 

Average 
(%) 

AlexNet 93.83 88.65 63.37 60.67 88.29 25.12 83.22 

VGG16 95.03 87.84 62.02 60.96 86.71 21.44 84.14 

FCN 95.18 93.26 63.84 61.91 89.56 22.79 87.57 

FCN+CRF 95.25 92.99 64.03 63.00 91.77 24.18 87.85 

ResNet 96.37 95.90 70.45 66.34 89.42 30.26 90.27 

Ours 97.16 95.61 71.02 66.97 91.12 33.23 90.55 

 

The comparison of our proposed Res-FCN and traditional U-Net is shown as follows. 

We use the same dataset to training and validation the proposed Res-FCN and 

traditional U-Net. Both image and DSM are used as input and the CRF as the post 
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processing step. In Figure 5.8 and Table 5.5 we can obliviously see that our network 

get more accurate results. 
 

Table 5.5 Comparison of classification accuracy between Res-FCN and U-Net 

Methods Building 
(%) 

Ground 
(%) 

Tree 
(%) 

Grass 
(%) 

Car 
(%) 

Other 
(%) 

Average 
(%) 

U-Net 95.27 90.73 70.57 66.83 89.45 32.79 87.76 

Ours 97. 16 95.61 71.02 66.97 91.12 33.23 90.55 

 
 
 
 
 
 
 
 
 
 

(a) Original image         (b) Result by ResNet        (c) Result by Res-FCN 

Figure 5.8 The comparison of Res-FCN and U-Net 

 

5.4 Digital object model gerenation 

Digital object model (DOM) is generated by inserting the point cloud annotation 

results into the digital surface model (DSM), where every point in the DOM 

containing 2 attributes. One is the point’s 3D coordinates and the other is the object 

annotation attribute. It has been formatted into a four dimensional Numpy array for 

data storage. Compared with 3D point clouds acquired by LiDAR system, DOM has 

its advantage in many specific applications. The LiDAR point clouds only have each 

point’s 3D coordinates and the sensor’s positioning information. This makes the 

specific object reconstruction on the raw point cloud data is impossible. The 3D point 

clouds should be segmented firstly. Considered that use only the point cloud to do the 

segmentation is harder than combined with corresponding images. If an engineer 

wants to build the 3D building model on this scene, DOM is easy-handling for them 
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to produce their work. Because we can easily select the interested object’s point 

clouds in a scene for generating object directly, as shown in Figure 5.9. 

 

       
(a) Original image             (b) Original DSM                (c) Buildings 

 

       
(d) Cars                     (e) Trees                      (f) Grass 

Figure 5.9 The slected DOM 

 

We have stored the DOM as a 4 dimensional Numpy array. Its data structure is shown 

in Table 5.6. Each row data represents one point’s attributes in DOM. In practical 

applications, if an engineer wants to reconstruct buildings in this scene, only search 

the 4th attribute which equals to “Building”, then all the 3D point clouds in building 

area are automatically selected. In that case the production efficiency is improved. For 

photogrammetric production, the digital evaluation model (DEM) can be easily 

generated from DOM. Engineer only needs to search the object attribute which equals 

to “Ground” and the all ground point clouds are automatically extracted. The DEM 

can be easily generated by using interpolation of triangulated irregular network. In 

hazards loss assessment field, the collapsed buildings and damaged objects can be 

detected by setting the searching range of X, Y value and compared the Z value and 
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the object attribute value between the two DOMs before and after the hazards. For a 

building, it can be recognized as collapsed if the Z changes a lot. 

 

Table 5.6 An example of data structure in DOM 

X (°) Y (°) Z (m) Object 

116.41024449916938 39.91359571849836 102.7 Building 

116.41024449917011 39.91359571849836 102.7 Building 

116.52133315786237 39.82359567112345 95.61 Ground 

116.52133315786241 39.82359567112322 96.71 Car 

 

The proposed DOM is more useful for practical applications, such as urban planning, 

and evacuation planning, hazards loss assessment. Engineers can easily select the 

interest objects and use the 3D information to conduct their specific works. 

5.5 Summary of this chapter 

In this chapter we have described our method for points cloud annotation based on 

deep learning methods. The experimental results have demonstrated that our 

algorithm can improve the segmentation accuracy compared with some traditional 

deep learning methods and the non-modified ResNet. CRF is utilized as the 

post-processing step. It efficiently makes the results have smooth edges. However, as 

we only use one dataset to test our method. The robustness of our method cannot be 

tested. And the modified deep neural network has too much layers. The training is 

very time consuming. How to simplify the network is the future working directions.  
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Chapter 6 
Conclusions and future works 
 

6.1 Summary of the research works 

In this doctoral dissertation, three new algorithms to solve 3 bottleneck problems of 

generating digital object model were proposed. 

1. For poor textural remote sensing images, matching robustness is vulnerable to 

low contrast, repetitive patterns, occlusions and homogeneous textures. To 

address these problems, a novel feature matching algorithm is proposed in 

this paper which uses graph theory as a proxy: First, point features are 

respectively extracted in both source and target image to form feature set P 

and Q, which constructed graph GP, GQ subsequently. Then, an edge weighted 

strategy is adopted to build affinity tensor between GP and GQ. At last, the 

node correspondences between GP and GQ are acquired by using high order 

graph matching algorithm, and the feature matching process is finally 

completed by this proxy. In order to demonstrate the feasibility of our 

algorithm, several experiments are conducted, in which typical poor textural 

images that contain forest, desert, farmland and urban are used. And the 

comparison studies and experimental results proved that our algorithm has 

significantly improved on matching recall, number of correct matches and 

positional accuracy. Through this model, different feature extractors can be 

utilized to extract features and using the structure similarities to finding the 

correspondences. Compared with traditional and widely used tie point 

matching methods, our method can get more accurate and evenly distributed 

results. However, as the High ordered graph matching is very time consuming. 

The matching efficiency should be improved. 

2. We proposed a reliable, efficient, robust image dense matching approach. The 
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result accuracy achieved sub-pixel level. The proposed method utilized 

optical flow fields as the instruction to reduce the redundant searching in fine 

matching step. And a multi-constraint fine matching is utilized to improve the 

3D point cloud accuracy. The experimental results demonstrated that our 

method is 6 times faster than PMVS, and has better completeness than the 

commercial software named SURE. Image dense matching is a key 

technology in the fields of photogrammetry and computer vision that urgent 

requires solutions, and it is expected that it can be transformed from a 

research hotspot into practical utilization to accelerate automated progress of 

extracting 3D geospatial information from images for purposes including 3D 

object reconstruction, DEM extraction and oblique photogrammetry, and so 

on. An algorithm that uses accurate seed points to generate a dense optical 

flow field algorithm within the overlapping region of a stereo image pairs and 

a dual-constraints refinement method were improved in this paper. The 

proposed OFFDIM method can obtain a pixel-wised image dense matching 

results. The experimental results indicated that the matching success rate of 

OFFDIM is higher than 97%, and the matching accuracy reached the 

sub-pixel level; thereby, the automatically generated DSM accuracy can be 

better than ±2.5 GSD. In addition, a comparison experiments with PMVS 

demonstrate that the matching efficiency of OFFDIM is improved by more 

than 5 times relative to that of PMVS, it has a higher matching success rate in 

some regions, like those containing houses and texture-poor regions, in aerial 

UAV images, and completeness of dense point clouds expressing ground 

features is better. However, the effect of the OFFDIM is closely related to the 

quantity, distribution and precision of seed points, and the image dense 

matching effect would be better in seed point regions with sufficient quantity 

and uniform distributed seed points. 

3. We combine the modified fully convolutional neural network and conditional 

random field to deal with point cloud annotation problem. The advantages of 

the two techniques are fully shown through the comparison experiments with 
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four deep learning based remote sensing image classification methods such as 

AlexNet, VGG16, fully convolutional network (FCN) and Residual Network 

(ResNet). At the same time, it is found that the spatial information can 

effectively improve the accuracy of image classification. The main research 

work and achievements of this study are as follows: 

 

(1) In-depth research and summary of the development status of remote 

sensing image feature classification, we analyze the feasibility and 

advantages of deep learning methods. 

(2) In order to avoid over-fitting results, on the basis of the existing training 

samples, the image and DSM of the training set are simultaneously flipped 

and transposed, and random disturbances are added to the contrast, 

saturation, brightness and hue of the image. Then, the final training set 

data is superimposed with the corresponding DSM, so that the training set 

scale is expanded by 8 times, which reduces the model over-fitting 

problem to some extent. 

(3) The annotation results of Res-FCN, AlexNet, VGG16, FCN and 

maximum ResNet are compared, and the accuracy, recall rate, F1 measure 

and Kappa coefficient of each method are calculated. The evaluation 

index showed that the proposed residual fully convolutional neural 

network is not only superior to the other four deep learning classification  

methods in classification accuracy, and the other indicators are superior to 

the other four methods, which demonstrate its potential to practical 

applications. 

(4) Aiming at the problem of rough annotation results of the fully 

convolutional neural network method, the conditional random field model 

is used to post-process the classification results. The results show that the 

edge of the classification result after the conditional random field model is 

processed becomes smoother and the noise is eliminated. 
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6.2 Future work 

Nowadays UAV photogrammetric technologies have developed rapidly. UAV aerial 

images are not exactly the same as traditional aerial photogrammetric images. How to 

utilize our approach on UAV low attitude photogrammetry is worth researching on. 

On other aspects, it is necessary for me to improve our proposed methods to meet the 

demand of real-time applications in the next. At this moment, the generated DOM is 

stored as a Numpy array. For large-scale practical applications, how to use database to 

store and search DOM is a great challenge. Additionally, the annotated results are 

quite depended on the training dataset, how to use transfer learning methods to 

generate the annotation model is also necessary to study in the future. 
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