

博士論文

A Ceiling Damage Detection System Using Deep

Learning Approach (Convolutional Neural Networks)

（深層学習（畳み込みニューラルネットワーク）

による天井被害検出システム）

王 璞瑾

I

Contents

1. Introduction ... 1

1.1 Backgrounds of ceiling damage detection ... 1

1.1.1 Ceilings and damages in ceilings .. 1

1.1.2 Damage detection of ceilings .. 7

1.1.3 Damage detection to structures and the positioning of this thesis 9

1.2 Image processing algorithms and machine learning 12

1.2.1 Image processing algorithms .. 13

1.2.2 Machine learning .. 16

1.3 Applying machine learning to ceiling damage detection 19

1.3.1 Requirements to the deep learning model ... 19

1.3.2 Solutions to the requirements.. 22

1.3.3 New proposals ... 23

1.4 Objectives of this thesis ... 25

1.5 Overview of this thesis... 26

2. Deep Learning and Convolutional Neural Networks 29

2.1 Deep learning history ... 29

2.2 Deep neural networks .. 32

2.2.1 Perceptron ... 32

2.2.2 Multilayer perceptrons .. 36

2.2.3 Feedforward, error function and backpropagation 39

II

2.3 Convolutional neural networks .. 43

2.3.1 Shared weights .. 43

2.3.2 Filters, stride and padding ... 44

2.3.3 Convolutional layers ... 48

2.3.4 Understanding the abstractions in ConvNets 49

2.4 Conclusion ... 50

3. Building and Training a Convolutional Neural Networks Model 51

3.1 Generating a database of ceilings images using ceilings damage evaluation

criteria .. 51

3.1.1 Database of ceiling images ... 51

3.1.2 Labeling criteria .. 53

3.1.3 Labeled database description .. 56

3.2 Building the convolutional neural networks model 56

3.2.1 Pooling layers, dense layers and fully connected layers 56

3.2.2 The architecture of the convolutional neural networks for ceiling

damage evaluation ... 59

3.3 Training the convolutional neural networks model 60

3.3.1 Gradient descent and stochastic gradient descent 61

3.3.2 Learning rate and testing ... 62

3.3.3 Overfitting and underfitting .. 63

3.3.4 Techniques in training neural networks .. 64

3.3.5 Training the convolutional neural networks model 73

III

3.4 Performances of the trained convolutional neural networks 77

3.5 Conclusion ... 79

4. Interpretations to the CNN Model by Visualization and a Ceiling

Damage Detection System with User-CNN Interactive Process 81

4.1 Visualizing the layers and the patterns that maximize the activation feature

maps ... 81

4.1.1 Visualizing the convolutional layers in the trained neural networks .. 81

4.1.2 Visualizing the patterns that most activate the hidden layers in the

convolutional neural networks ... 86

4.2 Damage detection... 94

4.2.1 Saliency maps ... 94

4.2.2 Gradient-weighted class activation mapping (Grad-CAM) 105

4.3 Building a ceiling damage detection system .. 119

4.3.1 The workflow of a ceiling damage detection system 119

4.3.2 Showcases to the ceiling damage detection system 122

4.4 Conclusion ... 136

5. Transfer Learning for Ceiling Damage Detection ... 139

5.1 Introduction to transfer learning .. 139

5.1.1 A brief theory of transfer learning ... 139

5.1.2 Transfer learning for image classification ... 139

5.1.3 Pre-trained models: VGG16 and VGG19 [134] 142

5.2 Building and training transfer learning models for ceilings damage evaluation

IV

.. 145

5.2.1 Building and training a transfer learning model using the VGG16

weights ... 146

5.2.2 Building and training a transfer learning model using the VGG19

weights ... 148

5.3 Evaluating and visualizing the transfer learning models 150

5.3.1 The TF_VGG16 model ... 151

5.3.2 The TF_VGG19 model ... 161

5.4 Conclusion ... 172

6. Conclusions .. 173

References ... 175

Appendix A: URLs of the images from internet ... 189

Appendix B: Details of the intermediate outputs by the CNN model 191

Acknowledgements .. 205

1

1. Introduction

1.1 Backgrounds of ceiling damage detection

1.1.1 Ceilings and damages in ceilings

Structures have been resisting natural forces, like gravity, wind, moisture and outside

loads ever since they are in construction to provide shelters and living space for human.

To prevent life and property loss from structural failures, researchers and constructors

have made enormous achievements in maintaining the safety of structural components

under extreme circumstances. However, failure or falling of non-structural components

are also dangerous to vulnerable human body. Fails of structural components are not

always due to the traditional structural forces like earthquakes or winds that directly

impose on them, but usually are caused by deteriorations and corrosions in the materials.

Ceilings, one of the most widely used non-structural components, take a major role in

interior design, thermal and acoustic environment control. Failures of ceilings are

especially dangerous to human body [1-5].

Ceilings constitute the upper part of the interior space, work both aesthetically and

structurally. Ceilings perform decoration function as non-structural components and

bear load as structural components. Overhead mechanical, electrical and plumbing

components are possible to be hidden behind the ceilings to serve the apparent

requirements of interior design. Fire resistance, sound absorption / insulation, lightings,

thermal insulation and other indoor environment performances require high-level

design of ceilings. For all the requirements above, designers are prone to lower the

priority or even forget to consider the structural safety in ceilings. Fig. 1.1 shows the

system composition of suspended ceilings which are generally used in Japan and Fig.

1.2 shows the components of systematic ceilings, which are usually adopted in office

buildings.

Designers and manufacturers usually pay much attention on the seismic resistance of

ceilings [6]. However, fall of ceilings occurs not only under earthquake, but also occurs

within daily life [7-11]. Ceilings interact with surroundings such as moisture, wind,

temperature changes, rusting, leakage of rain, traffic vibration and aging in the materials.

Ceilings of large space such as stations, public baths and natatoriums especially suffer

from moisture, dew condensation and traffic vibration. In Fig. 1.3, examples of damages

and fall of ceilings are shown.

2

(a) Sectional view

(b) View from the inner of ceilings

(c) Details of inner view

Fig. 1.1 Components of suspended ceilings

Fig. 1.2 Components of systematic ceilings

hanger bolt

hanging bolt

lightings

equipment cables

T bar

T bar hanger

ceiling board
H bar

furring
runner

hanger bolt
clip

runner

furring

hanger

ceiling board

3

(a) Leaking of rain (b) Rust in ceiling frame

(c) Ceiling fall by dew condensation (d) Ceiling board fall by earthquake

Fig. 1.3 Examples of damages in ceilings

There are four main forms to the fall of ceilings shown in Fig. 1.4: 1. Shape deformation

of clips; 2. Slip off of screws; 3. Deformation of hangers; 4. Fall off of hanger bolts.

The most frequent damage in ceilings is the shape deformation of clips, which is usually

caused by earthquakes. The separation in the junctions is related to the aging of the

ceilings. Condensation, leakage of rain, rusting and aging in the connections of ceiling

boards and screws cause such kind of ceiling fall, which usually happens in spaces with

high humidity. The dangerous aspect of the separation in the junctions is that such kind

of ceilings fall occurs in a sudden, without any early warning to people under the falling

ceilings.

4

(a) Shape deformation of clips (b) Separation in the junction

(c) Deformation of hangers (d) Fall of hanger bolts

Fig. 1.4 Reasons to ceilings fall

Countermeasures to the fall of ceilings are: 1. Setting up of fall prevention net and wires,

2. Lightweight and softening ceilings, 3. Earthquake resistance enhancement, 4.

Removal of the ceilings (shown in Fig. 1.5). These countermeasures have their own

merits and demerits suited for different situations. They are possible to be in

combination with each other to meet requirements of ceilings design.

5

The prevention of ceilings from falling consists both “Life protection (solutions to

prevent injuries and deaths due to ceilings fall)” and “Function maintenance (solutions

to maintain the functions of ceilings like acoustic performance, heat insulation,

aesthetic value and etc.)” [12]. The latter one is based on the realization of the former

one. The most dangerous situations for falling ceilings are: 1. Many people gathering

together, 2. Ceilings hung in high place, 3. Large area covered with ceilings. Buildings

or architecture spaces with these three characters need special attention and safety

evaluation regularly.

Fall of ceilings and other non-structural components causes problems:

1. Lives of people who are in the building are exposed to danger.

2. Long term impairment to spatial function of the building.

3. Occurrence not only under circumstance of earthquake but also at ordinary time.

4. The damages in ceilings are severer than those in structural components under the

(a) Fall prevention net and wires (b) Lightweight and softening ceilings

(c) Earthquake resistance enhancement (d) Removal of ceilings

Fig. 1.5 Countermeasures to the fall of ceilings

6

same seismic degree.

The impediments among the solutions to these concerns include:

1. The deficiency of proper evaluation methods to the safety or danger degree of the

ceilings installed on high place.

2. The lack of countermeasure methods to existing ceilings that may have been

damaged.

3. The installation positions, forms and materials of the ceilings are determined by the

appearance designers who are lack of education to the safety in ceilings.

4. The tendency of reinforcing the ceilings (non-structural components) in the same

way to reinforce structural components that makes the ceilings much more heavier

and much more damages if the ceilings fall.

5. The restoration of the ceilings to the state before accident happens also causes

problems. It results in the recurrence of the same damages to the ceilings if another

likely accident happens.

6. The absence of service life limit to the ceilings results in long-term service of the

ceilings. This results in the fall of ceilings due to the deterioration of ceiling

materials.

From the holistic perspective, safety and function preservation of ceilings are related to

the height the ceilings installed and the materials of the ceilings. Appropriate danger

degree evaluation to these aspects prevents fall of ceilings from happening and realizes

the protection of lives. In the case of assumption that fall of ceiling occurs, a possible

danger degree evaluation perspective is to evaluate the contact process between the

ceilings and human body. Evaluation between the intensity of the contact and human

body tolerance is possible to be converted to danger degree evaluations of ceilings [13-

19]. Based on a series of tests that evaluates striking forces by different materials ceiling

boards those fall from different heights on a simulated human head, relationships

among the ceiling installation height, the ceiling materials and the final striking forces

are established. Human body tolerance to these striking forces are compared to evaluate

the danger degree of falling ceilings.

However, the fall of ceilings may happen under many different circumstances. The

danger evaluation criteria that are based on the final impact force on human body may

neglect the development of little damages in the ceilings. The little damages may

7

develop into big ones if there is no regular examination. Reliable solutions to detect

damages in ceilings can prevent the problem of possible injuries to human from

happening at the very beginning.

1.1.2 Damage detection of ceilings

Large span structures, like indoor stadiums in school, public buildings and hospitals

have a potential to be shelters for residents when disasters like earthquakes and

aftershocks occur in Japan[20]. These structures are designed to resist disasters without

severe structural damages in columns or beams. Ceilings (including suspended ceilings,

lighting equipment, inner / exterior finishing materials, etc.) are reported damaged

during the Great East Japan Earthquake on 11th March 2011 even if they were

constructed under the latest Japanese construction technical advice issued by the

Ministry of Land, Infrastructure, Transport and Tourism of Japan (MLIT) [21]. In the

guidebooks by Ministry of Education, Culture, Sports, Science and Technology –

Japan (MEXT), non-structural components failures, ceilings for the most part,

especially those that happen during aftershocks when people in the shelters, are reported

to cause losses of lives and properties [22-24]. These guidebooks suggest inspection

approach of nonstructural members in school facilities, especially ceilings. It is

important to find any trace of abnormality to apply countermeasures at early stage

before disaster happens.

In a Notification by the Ministry of Land, Infrastructure, Transport and Tourism of

Japan (MLIT) [25], the inspection items of ceilings include both the outside part that

directly faces to the room and the inner side where hangers are hidden. The inspection

method is mainly on-site-inspection by human naked eye to find out if there is any

damage, like floating in the boards, deflection, spalling, corrosion, loose,

disengagement or deficiency. Binoculars telescope is to aid the inspection if necessary.

The inspection of ceilings begins with the collection of information of ceiling status in

the purpose of protecting human lives. Then the function maintenance of ceilings

requires the information of damages in ceilings [12]. The information relatives to not

only the ceiling and ceiling foundation materials, but also to the type of the building,

the location of the ceilings, suspended units, hanging facilities, columns and walls at

the edges of ceilings. Table 1.1 shows the investigation items of ceilings when detecting

damages to general utilized lightweight steel frame ceilings [12].

8

Table 1.1 An example of investigation items of ceilings

Investigation

item

Contents Details of investigation

1. Structural type

and form

Steel framed structure, steel framed

reinforced concrete structure,

reinforcement structure and other

structural forms

Confirm the influence extent

to ceilings by earthquake,

wind and other external force.

2. Ceilings

structural

information

Height from ceilings to floor, ceilings

and its foundation material, density

of the materials, total area of the

ceilings, shape of the ceilings,

purpose of the room where the

ceilings are

Damage evaluation if ceilings

fall does occur

3. Ceilings

working status

Moisture, water stains, wind

pressure, structural shake

Influence on the live

protection and functional

maintenance

4. Earthquake

resistance

The completeness of earthquake

resistance components, performances

of braces

Confirmation to the safety of

the ceilings structure in

earthquake condition

5. Facilities

installed in

ceilings

Equipment machines, inspection

scaffold, audio equipment

Confirmation of the influence

to the ceilings foundation and

the existence of fall-

prevention

6. Surroundings

of ceilings

Walls, columns and other structures

connected or next to ceilings

Evaluation the impact if

earthquake occurs

Non-destructive ceiling examination systems to existing historical buildings applying

methods like ultrasonic echo technique, ground radar and measurement by

reinforcement scanner are also reported [26]. Different tasks of examination need

different methods. A combination of these methods would reach better results. These

methods require that the testing personnel have tremendous practices and experiences

because ceilings are constructed by diverse materials and forms. In the inspection and

diagnosis for gypsum plasters ceilings, an expert system was developed [27]. This

system includes a defect classification and probable causes of these defects, which is

also based on on-site inspection of human naked eyes. It provides an easy method to

analysis possible causes to the defect and to find proper solutions to that.

There are also attempts to free professionals or people who follow the long inspection

list from on-site inspections. Smart sensor board and inspection robots are exploited to

evaluate the ceiling condition, detect the location and condition of the damage in

another report [28]. This method can detect more details of the ceilings on the inside

9

part where even professionals cannot see only by on-site-inspection. However, this

method is only suit for specific ceilings. Another solution using a series of algorithms

named Simultaneous localization and mapping (SLAM) consists of the construction of

a model of the surrounding environment and a robot moving in it has made astonishing

progress in the last thirty years [29]. The robot understands the topology of the

environment and builds information model (map) to perform actions. Solutions to

estimate the pose of the robot is to build a ceiling-feature map by using an upward

looking monocular camera [30, 31]. Ceiling feature extraction methods in these

solutions are heuristic algorithms to detecting damages in the ceilings.

All the algorithms and solutions of recognizing damaged ceilings mentioned above

have common defects: either they need considerable experiences and work by the

observer (human) or they are not suitable to the complex working conditions when

complex algorithms are applied. A robust, reliable and diversity-adapted solution of

damage detection is in need.

1.1.3 Damage detection to structures and the positioning of this thesis

In structural engineering and civil engineering, the damage detection to the target

structures overlaps with the structural health monitoring (SHM) [32-34]. The damage

detection uses many information monitored from the structure such as the vibration [35,

36], the frequency [37], the temperature [38], the acoustic performance [39, 40], the

damping [41] and etc. The damage detection and SHM usually contain two main parts:

1. the collection of the data by sensors and 2. algorithms processing the data to make

judgement. Researchers have been developing new sensors to detect different physical

signals generated or reflected from the objective structures, and more algorithms to

process these signals to extract more information about the target structure. Algorithms

such as principal components analysis (PCA) [42-44], genetic algorithm (GA) [45, 46],

support vector machine (SVM) [47] are applied in structural damage detection.

Among the algorithms for structural damage detection, an early research using neural

networks for structural damage detection is developed in 1992 [48]. In this article, a

neural network for recognizing the behavior of undamaged structures and damaged

structures is trained using the self-organization and learning capabilities of neural

networks. The input to the neural network is the frequency respond of a structure, which

is the computed acceleration time histories of the structure using Fourier spectra of the

acceleration time histories. The output is a number ranging from 0 to 1, indicating the

damage state of the input. Even though there are only 42 inputs, the whole process and

the idea behind this research contains all the necessary elements in neural network

application. Other researches using neural networks for structural damage detection

10

follow the same process as data processing, model building and training, model

validation [49-52]. However, these researches all use the vibration data for input, but

fail to attempt using other monitoring data.

Although monitor images or videos are easy to acquire, damage detection and SHM

algorithms using images or videos of the target structures are still few until recent years.

Two possible reasons are that the analysis of images and videos will consume a big

amount of calculation resource and the algorithms for image and video processing are

still under research. There are algorithms to detect cracks in concrete which are possible

to be modified to detect cracks in ceiling panels. Edge detection techniques find edges

among pixels in gray level where contrast is over the threshold [53]. Four edge detection

techniques are compared to finding crack in bridges [54]. Edge detection techniques

need much parameter adjustment to reach the best results. Another image processing

method for detecting concrete surface cracks is multiple sequential image filtering [55].

This method can accurately detect cracks in images recorded in various conditions and

even quantify the widths of the detected cracks from the spatial derivatives of brightness

patterns. A semi-automatic, texture analysis approach to detect and classify ageing

infrastructural elements, using enhanced texture segmentation can fit the variations in

different damage forms, lighting conditions, viewing angles, and image resolutions [56].

There is also an attempt to detect defects in reinforced concretes using the method

named random neural architectures [57]. It is a machine learning method that train a

model using data collected from real world. However, the complexness of the model is

weak. A common defect of these image-based algorithms is that they can only detect

simple damages such as cracks on the surface of concrete and rust on the surface of

steels. More divers and robust algorithms for structural damage detection are still in

need.

Deep learning connects the neural networks with the image analysis [58]. With the

development of computer hardware and deep learning software infrastructures, there

are many applications using deep learning for structural damage detection. Defect

detection of reinforced concrete using random neural architectures provides a non-

invasive technique to the structures [57]. Another concrete crack detection using deep

learning and convolutional networks can detect and extract cracks on the surface of

concrete [59]. In the field of steel structure surface detection, convolutional neural

networks is also applicable [60]. Computer aided solutions to detect cracks or damages

in structures using deep learning methods [61, 62]. Although they claim that they have

reached very satisfying accuracies, the detectable damages are usually limited to cracks

on the surface of concrete or corrosions on the steel, which have very common features

that are easy for non-deep-learning algorithms to grasp. The real power of deep learning

is far from being exerted in structural engineering. Furthermore, there have been no

research in structural engineering or civil engineering on the mechanisms of the

11

artificial models for structural damage detection. Almost all the researches follow the

same route: 1. Generate a database; 2. Train a neural network model until to a high

accuracy; 3. Test the model with other data; 4. Claim that the model has good

performance. In Table 1.2, a brief description to structural damage detection approaches

using neural networks or deep learning is displayed. The most common defect is that

none of them researched on the inner mechanisms of the neural network models.

Table 1.2 Structural damage detection approaches using neural networks or deep learning

Researcher

Deep

learning

method

Year
Detectable

damages
Advantage Disadvantage

X. Wu, J.

Ghaboussi,

and J.

Garrett Jr.

[48]

Neural

network
1992

Overall

damage

evaluation

Early application

of neural network

in structural

damage detection

Too simple

P. Pandey

and S. Barai.

[49]

Neural

network
1995

Damage in

bridges

Attempts to apply

neural network in

bridge monitoring

Too simple /

limitation in

bridge form

variations

C. Zang and

M. Imregun.

[50]

Neural

network

& PCA

2001

Frequency

response

functions

Evaluation to the

structural status

Cannot locate the

damage position

X. Fang, H.

Luo, and J.

Tang. [52]

Neural

network
2005

Frequency

response

functions

Tune the model

with learning rate

improvement

Too simple

algorithm

adjustment

J.B. Butcher,

et al. [57]

Random

Neural

Networks

2018
Concrete

surface defects

Reduction of data

collection time

Cannot locate

damage region

Y.-J. Cha,

W. Choi,

and O.

Büyüköztürk

[59]

CNN 2017
Concrete

cracks
High accuracy

The detectable

damage is only

concrete cracks

D. Soukup

and R.

Huber-

Mork. [60]

CNN 2014
Steel surface

damage
Vision-based

Too small images

and too few

detectable damage

forms

Y.z. Lin,

Z.h. Nie,

and H.w.

Ma. [61]

CNN 2017

Frequency

response

functions

(FRFs) and

vibration

modes

Considering the

visualizations to

the hidden layers

Limited to beam

components

Y.J. Cha, et

al. [62]

Faster R-

CNN
2017

Concrete

crack, steel

corrosion with

two levels,

bolt corrosion,

and steel

delamination

Detecting the

damages in one-

run

The detectable

damages are still

strong in

characteristics

12

In this thesis, building and training a convolutional neural network model for ceiling

damage evaluation is the first step. In fact, the intact forms and damaged forms in

ceilings are much more various than cracks in the concrete, deep learning can exert its

strengths in these complicated situations. Secondly, investigations to the model are the

core in this thesis. Investigations are mainly performed by visualizations of the model

to human interpretable images. Through the visualizations of the model, the ultimate

objective of this thesis: the ceiling damage detection function is accomplished as well.

Thirdly, a ceiling damage detection system involving in the user for interactivities is

devised and tested. Finally, transfer learning is introduced to build more powerful CNN

models.

1.2 Image processing algorithms and machine learning

Image processing refers to the mathematical alternations to a digital image. The

simplest digital image may be defined as a function f(x, y) , where x and y are the

coordinates of a spatial plane (two-dimension), numerical value of f(x, y) is the intensity

/ brightness / gray level of the pixel at the point (x, y) (usually ranges from 0 to 255).

The pixels containing both spatial and intensity information constitute a whole digital

image. One digital image is regarded as a series of numbers, or a matrix, to the computer

[63]. Fig. 1.6 shows an image of the number nine (28 by 28 pixels of one channel) and

its details in matrix. RGB channels of an image are shown in Fig. 1.7. Different channels

are emphasizing different features of the original picture. Applying image processing

algorithms to an image is altering the matrix in the image.

Original image

Image interpreted by computer

Fig. 1.6 View of an image in detail (one channel)

13

Original image

(“Badminton Theater Rehearsal Room”,

by Fvonglower, is licensed under CC-BY-SA-3.0, resolution: 640×427×3)

RGB channels to the original picture

Fig. 1.7 RGB channels constitute one color picture

1.2.1 Image processing algorithms

Generally, any alternations applied to the original digital image can be named under

image processing algorithms. Changes of shape, distortion, brightness, color are basic

alternation algorithms (show in Fig. 1.8). These adjustments are easy to apply and

understand, but they are too primitive to accomplish complex tasks in image processing.

14

Fig. 1.8 Adjustments to an image

In the domain of image processing to ceiling images, there are too many varieties of

ceiling shapes and materials, which are hard to interpret by the computer. The goal of

Canny Edge Detection is to identify the boundaries of an object in an image [64]. Firstly,

transfer the image into a grayscale image. Secondly, calculate the gradients in the image.

The gradient is defined by how different the values are in adjacent pixels in the image.

Each pixel in the gradient image corresponds to the strength of the gradient at this point.

The edges of an object can be traced out by following the strongest gradients. There are

three parameters to adjust in Canny Edge Detection, the low threshold, the high

threshold and kernel size, which are adapted to detect edges of different objects (Fig.

1.9). The disadvantages of Canny Edge Detection are: 1. the adjustments to the

parameters require experienced human; 2. Shadows by complicated light environment

invalidate the edge detection process.

Brightness up

Shape and direction alternation

Original

Black-and-white

15

Original (grayscale)

k=3, l=10, h=50

k=9, l=10, h=50

k=3, l=50, h=200

k=5, l=50, h=200

k=9, l=50, h=200

k: kernel size, l: low threshold, h: high threshold

Fig. 1.9 Canny Edge Detection for ceilings

Hough transform, devised by Paul Hough, can perform transformations of one line in a

two-dimension image (image space) into one point in a Hough space, and a line in a

Hough space back to one point in the image space [65]. To find specified lines (length

and tilt) in the image space, the intersection point among intersecting lines in the Hough

space can be calculated to determine the specified lines in the image space. To detect

ceilings in an image, shapes of ceilings can be set by adjusting parameters of Hough

transform. Fig. 1.10 shows the input and output by Hough transform.

16

The algorithms above can be applied to find out the most important lines and shapes

that compromise the ceilings and other components. There are also many algorithms

that are good at processing colors, shapes, even recognize human faces. However, these

algorithms are too specialized in their own fields and are hard to composite to meet the

requirements of a complex mission in detecting and evaluating ceiling damages.

1.2.2 Machine learning

Computers are designed to calculate, not for perception of the world around them. They

need to be programmed to finish tasks designated by human. Algorithms are developed

to solve one task or a series of tasks which can be divided into small ones using explicit

(a finite amount of space and time) specifications. In other words, computers are passive

to the outside world and need to be programmed to do tasks. However, machine learning

makes computers learn from experiences and weakens boundaries between humans and

computers [66-68] . Machine learning has been applied in many fields in which only

human was capable of before, like image recognition, voice translation, fraud detection

in bank systems, spam detection, playing GO and driving cars. Past experiences need

to be translated into digitalized information as input for computers, which also can be

called “data”. Machine learning does not specify every line of code to solve a problem

but builds a model which takes in data (past experiences) as input to optimize the

performance of the model using pre-defined metrics. The “learning” process occurs in

the optimizing the parameters in the model. A “trained” model is generated when the

metrics reveal optimization and the model is ready to make predictions to new data.

Due to the properties that the models / algorithms of machine learning “learn” from

data, machine learning also overlaps with artificial intelligence (AI) [68]. Machine

learning models / algorithms are composed with different architectures but have

something in common: they optimize millions or hundreds of millions of parameters in

Input

Output (red lines are recognized by Hough

Transform)

Fig. 1.10 Hough Transform to Detect Ceilings

17

them in the train phase, namely the learning process. Machine learning is especially

good at judgement, which is also named classification. For example, machine learning

can predict if a student can be admitted into a school base on the student status like

grades and social activities. Machine learning can also segment customer groups based

only on their consumption patterns. Table 1.3 introduces different kinds of machine

learning and their properties. Machine learning is a series of algorithms with versatile

capacities to be applied in our real life. The deep learning, a branch of machine learning,

is reaching one and another the best state of art results in recent years. Almost all kinds

of digital information can be processed and learnt by deep learning and some of them

have already beaten human level results.

Table 1.3 Machine learning categories

Field of machine

learning
Characteristics and application

1. Supervised

learning

Given a series of input X variables and their output Y variables, build

and train a model that reflects Y = f(X), the model is good enough

when given a new input x, it can precisely predict the output by

calculating y=f(x). “Supervised” refers to the existence of both input

X variables and output Y variables when training the model. The Y

variables supervise how the model learns like a teacher. The learning

process stops when the performance of the model prediction is

acceptable.

Supervised learning is widely used in building judgement systems

such as finding spam mails, voice recognition and recommendation

products.

2. Unsupervised

learning

When only input X variables are given, investigating and finding

underlying structures of the X variables is unsupervised learning.

Building a model that segments the whole input X variables into

interpretable clusters is the goal of unsupervised learning. There is no

correct answer (output Y variables) or no teacher to the input data, so

such machine learning is called unsupervised learning.

Unsupervised learning is useful in market segmentation of customers

whose consumption customs are acquired by sellers. It is useful in

dividing a series of experimental results to find out what condition

affects the results most.

3. Semi-Supervised

learning

When abundant input X variables but only a few output Y variables

are acquired, such machine learning is semi-supervised learning. It is

very common in real world machine learning problems because the

output Y variables are labeled by human, especially by experts. The

18

labeled data of output Y variables are expensive to acquire while the

input data of input X variables are easily to acquire.

A very common example of semi-supervised learning is diagnosis to

a specified and relatively rare disease. There are many inputs

(symptoms of illness) but very few outputs (confirmation to the

specified disease).

4. Reinforcement

learning

Reinforcement learning is different from finding a model that best

suits the input X variables and output Y variables or segmenting a

bunch of input X variables into clusters. Reinforcement learning

makes an agent (a player controlled by the algorithm) who learns by

itself in a given environment (a world defined by a series of rules).

For example, a reinforcement learning algorithm controls a mouse in

a defined maze to find a piece of cheese by learning the structure of

the maze. Reinforcement learning can learn by itself to find the

shortest way to the cheese by exploring the maze. Reinforcement

learning is so powerful that it is possible to apply in all tasks in the

real world.

5. Deep learning

Deep learning is also in the supervised learning frame. It learns with

the optimization process which each of multiple processing layers

calculates input from its previous layer and pass its output to its latter

layer. Each layer abstracts the information gradually until the whole

model best fits the problem.

Deep learning could be applied in any field that input can be

digitalized. In speech recognition, visual object recognition, semantic

analysis and many other domains, deep learning is making astonishing

achievements.

There are no absolute boundaries among algorithms of machine learning. By

combination and reasonable arrangement of these algorithms, many problems can be

solved elegantly by AI. For example, AlphaGo Zero and AlphaGo [69, 70] using deep

reinforcement learning and other machine learning algorithms have beaten human in

Go competitions which was considered impossible in classical algorithms. In recent

years, people are pushing the boundaries of machine learning more and more further

than before. Imagination and practice make machine learning shine in the future.

19

1.3 Applying machine learning to ceiling damage detection

1.3.1 Requirements to the deep learning model

The machine learning algorithms have their merits in analyzing problems that were very

difficult for computers before. Classification of objects were very hard for computer to

handle with because there are too many features in even only one object. However, the

emergence of the machine learning, especially the deep learning, broadens the frontiers

of artificial intelligence. The deep learning method can do multilayer abstractions to the

inputs and their labels by optimizing weights in the deep learning model. The

optimizing process can be deemed as the process of learning, although the real

mechanism of human learning process is still under research. Fig. 1.11 shows the flow

chart of how to generate a qualified CNN model for ceiling damage evaluation.

Fig. 1.11 Flow chart of building and training a CNN model

20

Noticing the metrics to decide if a CNN model has learnt enough in Fig. 1.11, these

metrics are the requirements to the CNN model as well. To apply deep learning in

ceiling damage detection, the deep learning model should meet the following

requirements:

(1) Accuracy: The predictions made by the deep learning model are digital numbers

that represent the possibility of the ceilings to be damaged. The predictions are required

to be accurate enough to provide strong guidance to human. Deep learning (especially

the CNN architecture) is good at classification. It can classify the images of different

objects to a very high accuracy [71]. The ceiling damage detection task is different from

the traditional classification task. The features in the images of ceilings are various and

hard to directly classify. Moreover, a damaged ceiling image and an intact one may

contain the same features that cover over 80% area in the image (shown in Fig. 1.12).

The deep learning model are required to grasp the most important intact and damaged

features that may only take a very small proportion to the whole image in area.

(a) Intact

(b) Damaged

Fig. 1.12 Images sharing common features with different labels

(2) High-resolution image processing oriented: There are many possible damaged

and intact forms in ceilings, the model must learn enough from the dataset. The model

should be able to process relatively high-resolution images that contain more details in

the ceilings. Any possible signs of damages in the ceilings should be noticed, even if

they are tiny. Fig. 1.13 shows different resolutions to the same ceiling image.

21

(a) 32x32

(b) 256x256

(c) 600x600

Fig. 1.13 Different resolutions to the same image

(3) Ability to learn from scarce data: Most deep learning models are trained on

massive data (thousands or millions of images for classification task). However, when

applying deep learning methods to ceiling damage evaluation and detection, the images

that well representing the features of the ceilings, especially the damaged ones, are quite

few (2,000 ceiling images in total). The deep learning model should be modified to

learn enough from the training data even if the training data is in scarcity.

(4) Interpretability: The accuracy of the predictions is important, but not everything.

People used to pursue the accuracies by aggressively increasing the complexity of the

deep learning models with the sacrifice of interpretability of the models. Interpretability

refers to the understandings and faith of human to the deep learning model (shown in

Fig. 1.14). Although there are many emerging new methods and architectures to improve

the prediction accuracies in deep learning, there is not much research on the

interpretations of the deep learning models. To some extent, the deep learning is still a

black box to human [72]. The deep learning algorithms work, but we do not know why

they work. The mechanisms in the deep learning model should be understandable or at

least evaluable.

22

Fig. 1.14 Interpretability

(5) Damage detection function: The damage detection is the ultimate objective in this

research, it is also a challenge to the deep learning model as well. The damage detection

system using deep learning should provide possible damaged regions in the image to

the user.

1.3.2 Solutions to the requirements

To meet the requirements above, the knowledge of deep learning and ceiling damage

detection should be deeply intertwined to build and train the deep learning model.

Solutions that modify the deep learning models to meet the requirements in the ceiling

damage detection task are:

(1) Realizing the high accuracy in the predictions:

There are many knobs to tune in deep learning, the most widely accepted evaluation

standard to a deep learning model is its prediction accuracy. Researchers have been

struggling to improve their final prediction accuracy since the first day of deep learning.

In this thesis, many attempts and trials like tuning the architecture of the CNN model,

data pre-process and training process are performed to get a final relatively satisfactory

prediction accuracy.

(2) High-resolution image recognition solution:

The resolution of 400×600×3 is chosen for the images in training data, which is a

balance of large information capacity in one image and the computing resource

consumption. The architecture of the CNN model is also adjusted to perform gradual

abstractions in the high-resolution images.

Interpretability includes:

• What has happened to the CNN

model in the training process?

• How does the final prediction to an

image come out?

• Does a correct prediction come

from irrelevant features?

• Why does the CNN model fail in

some circumstances?

• Can we trust the prediction results?

• ...

To experts in ceiling structure/

deep learning model builders:

Insights to the capabilities and

limitations of the CNN model

To common users of the deep

learning model:

Providing trustworthy predictions and

damage detection function

23

(3) Data augmentation to generate more data for training:

The lack of data leads to overfitting, which means that the model mechanically

remembers irrelevant features in the training data and make predictions by recognizing

these irrelevant features. According to the unique property of convolutional neural

networks, translation invariance, alternations to the original images will not change the

contents in them and will generate more data for training and testing. Data

augmentation algorithms are adopted to alleviate data scarcity.

(4) Visualizing the trained CNN model to make it interpretable:

Different levels of visualizations to the trained CNN models are used: (1) Visualizing

the middle convolutional layers to find what regions in the input image most activate

the filters in the convolutional layers; (2) Visualizing the patterns that most activate a

specific filter in a convolutional layer to investigate the different degrees of abstractions

in the convolutional layers and visualize what the CNN model has learnt; (3)

Highlighting the pixels that contribute most to the final predictions using saliency map

in the calculation of backpropagation, which is a relatively aggressively coarse

visualization method; (4) Visualizing the attention maps in the trained CNN model

using gradient-weighted Class Activation Mapping (Grad-CAM) method, which is a

more exquisite and precise visualization method. By using these visualizing methods,

a CNN model is interpretable to human.

(5) Visualizing the attention maps to accomplish the damage detection function:

Object detection is another popular deep learning research field that attracts lots of

clever brains, many methods are also developed for the object detection task. In this

thesis, visualizations of the attention maps to the trained CNN model provide the

solution to the damage detection task since the trained CNN model has been properly

trained and interpreted.

1.3.3 New proposals

Although the history of deep learning dates back to a few decades ago, the real rise of

deep learning occurs in the recent no more than ten years, within which the most fruitful

achievements are in recent five years. The tentacles of deep learning have touched

almost every field in which the data can be normalized. Fig. 1.15 shows the new

proposals to fulfill the requirements for the ultimate objective and the significances of

the research.

24

Fig. 1.15 Significance, objective and new proposals

In this thesis, the new proposals are:

(1) Visualizations to the inner mechanisms of the deep learning model for

interpretations:

The deep learning method yields amazing results in accuracy. However, the

mechanisms in deep learning are still in research to investigate the intelligence-like

performances of the deep learning. In this research, the visualizations of the deep

learning model provide interpretations of the model to understand how the model works,

which is applied in structural engineering for the first time. Furthermore, these

visualizations provide ceiling damage detection function, which is also used for the first

time in structural engineering.

This part is the core of the thesis. The following visualizations are performed:

a. Intermediate convolutional layer output visualization; b. Activation map: Generating

images that most activate the learning units (filters in the convolutional layers or

classification nodes); c. Saliency map and Grad-CAM: Highlighting the most

contributing pixels in the input image to the final prediction.

Significance Objective New proposals

Developing a reliable

ceiling damage detection

system

3. Transfer learning

models for ceiling

damage detection

1. For experts in

structures:

Providing a solution to

structural health

monitoring

2. For experts in deep

learning:

Broadening the scope of

deep learning application

and making the deep

learning model more

transparent

3. For ceiling

maintenance personnel:

Alleviating the workload

as an aid

4. For residents/

amateur:

Providing ceiling damage

detection and alerting

service

1. Visualizations to the

inner mechanisms of the

deep learning model for

interpretations

2. A ceiling damage

detection system

25

(2) A ceiling damage detection system:

Based on the CNN model and the visualizations to it, a ceiling damage detection system

is raised with the user involved in. The user can be a ceiling inspection specialist or a

refugee under possible falling ceilings in large-span buildings. This ceiling damage

detection system helps the user in the large-span building ceiling damage detection task.

(3) Transfer learning models for ceiling damage detection:

Transfer learning is used in this thesis to obtain more powerful deep learning models in

ceiling damage detection for the first time in structural engineering.

1.4 Objectives of this thesis

The ultimate objective of this thesis is to develop a reliable ceiling damage detection

system that anyone can use to receive aids from (an expert in ceiling maintenance or a

layman / refugee who wants to know if the ceilings are safe).

The ceiling damage detection task is possible to be converted into ceiling image

processing task. Nowadays it is very easy to take high resolution images even using

mobile phones. However, there are obstacles for ceiling damage detection using image

processing:

In the first place, there are many forms of ceilings and many construction methods in

the ceiling industry. The reasons that cause damages in ceilings are various as well. The

damaged forms in ceilings are numerous. It is difficult to generate reliable evaluations

from only one ceiling image.

Secondly, although taking ceiling images is easy for anyone using mobile phones, it is

difficult to judge the existence of damage region in the ceiling, especially in a large-

span structure.

Thirdly, neither the user or the AI are 100% correct, opportunities to correct mistakes

should be provided to both the user and the AI.

In summary, it is very difficult to come to the correct conclusions from only one ceiling

image. A ceiling damage detection system with user-CNN interactive process

(Interactive-AI) is devised in this thesis that can provide higher precision results by

using gradually complementing process (zoom-in the original image / taking new

photos). At the same time, the Interactive-AI is required that the user can grasp the

26

process of information analysis in the CNN model to the extent that even a layman can

understand roughly whether it is a correct or an incorrect prediction. Furthermore, when

the prediction is incorrect, the input image should be preserved as future training dataset

for the improvement to the CNN model.

Fig. 1.16 shows the objective of this thesis:

Fig. 1.16 The objective of this thesis

1.5 Overview of this thesis

Chapter 1 introduces the background of ceiling damage detection and machine learning.

The requirements for the machine learning / deep learning model are raised to

successfully fulfill the ceiling damage detection function before the model is really built

and trained. Chapter 1 introduces the application of deep learning in structural

engineering and civil engineering and the positioning of this thesis in damage detection

using deep learning. The research objectives and the outline of this thesis are also

proposed.

Chapter 2 explained the deep learning and convolutional neural networks in theory. The

The ultimate objective:

A ceiling damage detection system that

• Provides aids to a layman to detect

damages in ceilings under disaster

circumstances even if there are no

structural experts to inquire

• Provides aids to ceiling health

maintenance personnel in their

inspection routine

1. A ceiling damage detection system with user-CNN

interactive process (Interactive-AI)

2. The user can grasp the process of information analysis in the

CNN model

3. The system is updatable (When the prediction is incorrect,

the input image should be preserved as future training dataset

for the improvement to the CNN model).

27

mathematical calculations and mechanisms are introduced to build the calculation

foundation to this thesis.

Chapter 3 describes the generation of a CNN model for ceiling damage evaluation. In

this chapter, the datasets under the label criteria specialized for deep learning are labeled

by human firstly. Then a CNN model is built and trained from scratch using

countermeasures to overfit. Finally, the trained CNN model is tested and reaches a

relatively high accuracy in prediction.

Chapter 4 investigates the trained CNN model to reveal the mechanisms of the

prediction process. In this chapter, the trained CNN model is demonstrated from many

visualization perspectives: Firstly, the outputs of the intermediate convolutional layers

are visualized to grasp basic perceptive interpretations of the notions the model has

learnt; Secondly, the activation maps to the filters are visualized to show what the CNN

model has learnt through the gradual abstractions among the convolutional layers;

Thirdly, the saliency maps and the Grad-CAM methods are used to visualize the pixels

those contribute most to the final prediction to a given image. The visualization to these

pixels does not only confirm that the CNN model has learnt the ‘intact’ and ‘damaged’

notions, but also provide the solutions to ceiling damage detection. Finally, a ceiling

damage detection system using the blocks of CNN mode generation and visualization

is raised to provide aid to both professionals of ceiling structures and common users.

Chapter 5 provides the implementations of pretrained CNN models for ceiling damage

detection. Firstly, two new CNN models (transfer learning models) using the trunks of

VGG16 and VGG19 are built and trained for ceiling damage detection to relatively high

accuracies. Secondly, the visualization for the final two prediction nodes are visualized

to confirm that the transfer learning models have learnt the most important features of

intact and damaged ceilings. Thirdly, the saliency map and Grad-CAM of these two

models are visualized to confirm that the transfer learning models can learn faster and

better than the CNN model built from scratch. The transfer learning is an improvement

to the previous model. Finally, a ceiling damage detection system using transfer

learning is raised.

Chapter 6 concludes the main conclusions in this thesis and looks into future research

on applying deep learning in ceiling damage detection.

28

29

2. Deep Learning and Convolutional Neural Networks

In this thesis, deep learning and convolutional neural networks are adopted to build a

ceiling damage detection system. Understanding capacities and limitations of deep

learning and convolutional neural networks is the foundation of building a reliable and

robust deep learning model. It is also the first step for further investigating and

improving the whole system [73].

2.1 Deep learning history

The expression “deep learning” is relatively new to what it really stands for. In fact,

deep learning dates back to the 1940s [73], since when there have been ups and downs

in the field of machine learning and deep learning. Before deep learning gets its fancy

name in today, it was named “cybernetics” in the decade of 1940s for investigating how

learning occurs in the brain [74, 75]. It built simple functions to reflect inputs to outputs.

The second resurgence of neural networks happened in the 1980s for ten years with the

name of “connectionism” in the contest of cognitive science. Connectionism believes

that a network of a large amount of simple computational units can reveal intelligence

if activated [76, 77]. In this period, some fundamental concepts were established and

remain significant concepts in today’s deep learning. One of them is “distributed

representation” [78], which means an input can be represented by many features and

each feature can be extracted from the input. Features can be expressed in many ways,

abstractly or intuitively. For example, an image of red bird has features of redness,

shapes combination of a bird, a beak and an eye next to the beak. There are almost

countless features even in a very simple image. An artificial intelligence system can do

a lot of things even if it only learns quite few abstraction and combinations of these

features. The second significant concept is how to make the artificial intelligence

system really “learn”. The answer is back-propagation, which transfer the error of

prediction to real label back to the start of the neural networks during which process

the weights in the neural networks are updated. This second resurgence of neural

networks lasted to the middle of 1990s till neural network researchers could not fulfill

unreasonable expectations raised by ventures and some AI technologies. Furthermore,

other machine learning fields like kernel machines and graphical models made

achievements in many important fields [79-82]. These two factors both declined the

popularity in neural networks till the year of 2006. During this period, the Canadian

Institute for Advanced Research (CIFAR) launched the Neural Computation and

Adaptive Perception (NCAP) research program, which kept the neural networks

30

research alive and united research groups led by Geoffrey Hinton, Yoshua Bengio and

Yann LeCun respectively.

In 2006, a breakthrough in the research of neural networks brought the third wave of

deep learning till the time of today. Geoffrey Hinton reduced high-dimensional input

into low-dimensional codes by training a multilayer neural network called a deep belief

network using greedy layer-wise pretraining [83]. Soon researchers found that this

strategy could be transferred to train many other kinds of neural networks [84, 85].

These researches propagated the term of “deep learning” widely to declare to both the

researchers and the public that now neural networks were able to train deeper and more

complicated neural networks than before. Researchers could focus on the architecture

design and theoretical exploration of neural networks [86-88]. In the third wave of deep

learning, the deep neural networks have outperformed many other AI systems in

machine learning. Looking for the combination of deep learning with elder machine

learning algorithms to expand application of AI technology is pushing the border of AI

much more further [89, 90]. Increasing dataset sizes play a key role in the development

of deep learning because training the learning algorithms requires sufficient data which

were hard to obtained before the “big data age”. Learning with small size of data is also

an important research area when researchers have already designed algorithms reaching

human performance. Another important role is the increasing models size that

accelerates the development of deep learning. Computational resources were very

expensive in the 1980s, which restricted the scale of the neural networks. With cheaper

and faster CPUs are available, the model size of the neural networks could be larger

and more powerful in tasks. Later researchers found that GPUs were more suitable for

the calculation of network and introduced GPUs into deep learning. Faster network of

deep learning and more robust software infrastructures of distribution computing

provide general tools for people who owns only a good graphics card if he / she is

interested in deep learning. Here came the boom of deep learning research.

Object recognition using deep models back to the date of 1980s, a neural network using

back-propagation learns with the weights updating [77]. For the development of more

than twenty years, modern object recognition neural networks become more complex

and robust, greater size and resolution images are inputs to deep learning networks [91-

93]. A large contest of object recognition held each year is the ImageNet Large-Scale

Visual Recognition Challenge (ILSVRC). A convolutional network solution of neural

network dominated the winning position in 2012, this was also the time GPUs became

shine in deep learning field [94]. Since then, the top positions of image recognition

were taken by convolutional networks. Since object recognition is reaching or even

outperforming human level, image segmentation became popular in deep learning.

Object detection and semantic segmentation can solve so many problems that it would

be a breakthrough in many fields like robotics, self-driving and almost any visual

31

algorithms that were thought impossible before [95-102].

Tasks that deep networks can solve become more complex with the size and accuracy

of the deep networks increase. A team from google showed that neural networks was

able to learn the whole sequence of numbers or characters in an image which was

believed such kind of learning only can be realized by labeling digits or characters one

by one [103]. Deep learning is also getting achievements in speech recognition [104].

The introduction of deep learning into speech recognition drop the error rates rapidly.

Another achievement of deep learning is the combination to reinforcement learning.

Reinforcement learning is characterized as an unsupervised agent exploring the

environment defined by program, learning how to best fit the environment by getting

reward or punishment when different event occurs. DeepMind project launched by

google has astonished the world in 2017 with AlphaGo and AlphaGo Zero.

Deep learning now is almost used by all top technology companies and other worldwide

leading companies. The prospect of deep learning and machine learning propels

resources and attention infuse in the research and application of AI field. Progresses in

deep learning also depend on the perfection of infrastructures in software. TensorFlow

[105], Theano [105, 106], Torch [107], Caffe [108], Keras [109] are all using in research

and software development. Deep learning also makes the GPU producer NVIDIA profit

grown rapidly in recent years since GPUs are found much more faster in deep learning

than CPUs.

Deep learning also inspires other sciences and makes contributions to them.

Convolutional neural networks and transfer learning provide diagnose accuracy better

than experts in skin cancer [110]. Deep learning also provides tools for preprocessing

data, building a deep model to grasp the characters of the data and make predictions to

new data. It can predict how molecules interact with each other to help companies in

designing new drugs [111].

In summary, as a branch of machine learning, deep learning has been using large

amounts of human knowledge of brain research and has gain fruity results in applying

in many fields for the past decades. With more data, more strong calculation power and

more dedicates of researchers and programmers, the future of deep learning is full of

challenges and opportunities to push the border of AI further to new frontiers.

32

2.2 Deep neural networks

2.2.1 Perceptron

The term perceptron dates back to the year of 1958 in the brain science [112]. One

perception is a mathematical function mapping some set of inputs to output value. It is

used as a binary classifier in supervised learning, meaning the output to one specific

perceptron is either 1 or 0 (yes or no). A perception can be expressed as:

 1

1, if 0
()

0, ohterwise

n

i i

i

w x b
f x =


+ 

= 




 2.1

Where: wi is weight of the perceptron, xi is one of inputs to the perceptron (n total inputs),

b is the bias.

Notice
1

n

i i

i

w x b
=

+ in Eq. 2.1 is an n-dimensional linear function. Fig. 2.1 shows

perceptron of dimension two and three when calculating
1

n

i i

i

w x b
=

+ . A perceptron over

three dimensions is hard to visualize but shares the same measures in optimizing w and

b to function as a binary classifier. Fig. 2.2 shows the outputs of a perceptron, in this

process, decisions are made to identify the inputs label: 0 or 1 using Heaviside step

function. Fig. 2.3 shows the whole process when a perceptron calculates inputs to output

(0 or 1). During this process, a perceptron can determine the label of the inputs by fixed

weights (wi) and bias (b).

Determining proper weights (wi) and bias (b) is the key to validate a perceptron. This

is also when “learn” happens in a perceptron. Tuning the weights (wi) and bias (b) to

proper values using data is called “train”. Trained weights and bias are ready to make

prediction to new inputs.

The processing that a perception does is straight forward and only suitable for a quite

narrow range of problems. In the real world, inputs of a specific problem are usually

too complex to be interpreted by linear function and inner data structures in the inputs

33

are implicit to be discovered by only one perceptron. From the perspective of biological

neural scientists, a perceptron can be interpreted as a mathematic model of a neuron in

the real world (Fig. 2.4). By connecting perceptrons, it is mimicking the structural of a

brain. The system connected by perceptrons is named neural networks.

2-dimension (x1 and x2)

3-dimension (x1, x2 and x3)

Fig. 2.1 Perceptron of dimension of two and three

Fig. 2.2 Perceptron outputs (Heaviside step function)

34

Fig. 2.3 A perception processing inputs

(a) A perceptron

(b) A neuron

Fig. 2.4 From perceptron to neural networks

Fig. 2.5 shows an example of perceptron algorithm calculating parameters (weights (w1

and w2) and bias (b)) of a perceptron in a two-dimension space. Suppose we have known

a bunch of points with coordinates (x1, x2), each point is labeled as y (y=0 if blue, y=1

if orange). The task is to find a perceptron with proper parameters that best separates

these two kinds of points. This is a classical classification problem. We can tell that the

line best separates these points is the red line from our human instinct. A computer

concludes the right answer by perceptron algorithm, which is also the process that a

perceptron learns from data.

x1

x2

xn

1

…

w1

w2

wn

b

Σwixi + b

Linear function

Inputs

Step function

0

1
YES

NO

Output

x1

x2

xn

1

…

f(Σwixi+b)

w1

w2

wn

b

Linear function

Inputs

YES

NO

Output

35

Fig. 2.5 Perceptron algorithm

The perceptron algorithm can be expressed as the pseudocode below:

1. Start with the definition of the perceptron:

 1 2 1 1 2 2(,) ()y f x x STEP w x w x b= = + + , where STEP stands for Heaviside step

function in Fig. 2.2; w1, w2 and b are randomly initialized.

2. For every point in the train dataset, (xtrain1, xtrain2) and ytrain are already known

(ytrain=0 if blue, ytrain=1 if orange), calculate the label to the point:

1 2 1 1 2 2(,) ()train train train traintrain
y f x x STEP w x w x b= = + + ,

(train
y is the prediction to the train point by the perceptron);

if train train
y y= , the point is correctly labeled, do nothing;

else, the point misclassified:

3. For every misclassified point i (n1 … nn):

3.1. If 1 1 1 2 2 2_
0 : , , i ii train

y w w x w w x b b  =  +  +  + ;

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

x 2

x1

36

3.2. If 1 1 1 2 2 2_
1: , , i ii train

y w w x w w x b b  =  −  −  − .

Where: α is the learning rate, meaning how fast the perceptron learns.

The pseudocode above shows the process a perceptron learns. It uses the idea of

gradient descent to the final perceptron parameters. It also implicitly requires enough

points for learning are required, which is also a crucial premise in deep learning.

The function of Eq. 2.1 is an activation function in deep learning. Activation functions

have different properties in processing digits transferred into the nodes and different

backpropagation derivatives for different problems.

2.2.2 Multilayer perceptrons

One perceptron is only capable of labeling inputs as 0 or 1, which is too simple to solve

real world problems. Fig. 2.5 shows a series of points easily separated by a straight line.

What if the points are like that shown in Fig. 2.6? They are not separated by only one

line. Now it is possible to combine two perceptrons represented with two lines (the red

and green lines) to separate these points as show in Fig. 2.6. Points both to the right of

the red line and to the upper part of the green line are labeled as orange, otherwise are

labeled as blue. In fact, this is a logical operator “AND”, which can be represented by

Table 2.1. The architecture of these two perceptrons are shown in Fig. 2.7. From this

perspective, other logical operators such as “OR”, “NOT”, “XOR” are all possible to

be represented by multilayer perceptrons, which is also named neural networks. Layers

between the input layer and output layer are called hidden layers. There could be as

many as possible hidden layer in a neural network to output the final results.

Now it is possible to build more complex multilayer neural networks with perceprons.

When there are more than two classes to divide in a series of data, the architecture

shown in Fig. 2.8 is a general solution. The S-shape perceptron is a perceptron using the

perceptron function of Sigmoid. A sigmoid function is:

1

()
1 x

f x
e−

=
+

 2.2

The shape of sigmoid function is shown in Fig. 2.9. There are two reasons sigmoid

function is used wider than Heaviside step function in neural networks: (1) sigmoid

function is more easily calculated in differential calculus, which is important in the

backpropagation. (2) the output of a sigmoid function is between 0 and 1, which can be

37

interpreted as a probability.

Fig. 2.6 Points unable separated by only one straight line

Table 2.1 “AND” logical operator represented by two perceptrons

Perceptron RED line

label

Perceptron GREEN

line label
Final label

1 1 1

1 0 0

0 1 0

0 0 0

Fig. 2.7 Architecture of “AND” logical operator by two perceptrons

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

x 2

x1

P

P

0/1

Perceptrons

(0,1)

(1,0)

(1,1)

(0,0)

“AND” operator

Output

x1

x2

Inputs

38

Fig. 2.8 Multi classes classification

Fig. 2.9 Sigmoid function

A simplest neural network can be expressed as inputs passed out to an activation

function, f(h), which can be step function or sigmoid function:

 () ()i iy f h f w x b= =  + 2.3

By adding layers and nodes to a neural network, it becomes powerful in processing and

analyzing data.

x1

x2

xn

1

…

Inputs

1 1

A

B

C

Hidden layers Outputs
(probabilities of each class)

39

2.2.3 Feedforward, error function and backpropagation

Feedforward is the process that a neural network turns inputs into an output. The last

section has introduced the basic intuition of how the data flows from input to output.

The mathematical calculations of a neural network shown in Fig. 2.10 can be expressed

as:

(2) (1) (1)

11 11 12 1

(2) (1) (1)

21 21 22 2

(2) (1) (1)

31 31 32

, () is the sigmoid function

1

W W W x

y W W W x

W W W

  

     
     

=      
    
    

 2.4

Sigmoid function in this neural network is called “activation function”. There are many

other kinds of activation functions in the neural network.

Fig. 2.10 Feedforward of a neural network

Error function is to evaluate the difference between prediction and the labeled value.

Error function is also named loss function. The learning process is also the process that

minimizing the error function by adjusting weight parameters W. The error function to

the perceptron in Fig. 2.10 can be expressed as (cross-entropy formula):

1

1
() ln() (1) ln(1)

m

i ii i

i

E W y y y y
m =

 = − + − −
  2.5

The error function in Eq. 2.5 suits for only problems of two classes (like labeling class

A = 1, class B = 0). When there are multi-classes in one neural network (for example,

Fig. 2.8 has three classes), the error function is (cross-entropy formula):

1 1

() ln()
n m

ij ij

i j

E W y y
= =

= − 2.6

Backpropagation is the process that really makes the whole neural network learn [90,

x1

x2

1 1

(1)

11W

(1)

12W

(1)

21W
(1)

22W
(1)

31W (1)

32W

(2)

11W

(2)

21W

(2)

31W

40

113]. It uses the idea of gradient descent. In general, backpropagation consists of:

1. Pass the input x through the neural network to outputs y by feedforward

operation.

2. Compare the outputs y from step 1 with the input label y, which is the desired

output.

3. Calculate the error (, ,)E W x y , which can be represented in many kinds of error

functions.

4. Run another feedforward operation from backwards (backpropagation) to spread

the error to the weights (including the biases). Thus, update the weights to get a

better model.

5. Repeat step 1 to step 4 using more labeled data until the model is good enough.

The purpose of the backpropagation is to figure out the partial derivatives of the error

function respect to each individual weight in the neural network. In math,

backpropagation to the neural network in Fig. 2.10 and Eq. 2.4 and be expressed as:

 (2) (1) ()y W W x = 2.7

Eq. 2.7 is equivalent to Eq. 2.4, where:

(1) (1) (2)

11 12 11

(1) (1) (1) (2) (2)

21 22 21

(1) (1) (2)

31 32 31

(1) (1) (2)

11 12 11

(1) (1) (2)

21 22 21

(1) (1) (2)

31 32 31

, ,

weight matrix of the whole neural network:

W W W

W W W W W

W W W

W W W

W W W W

W W W

   
   

= =   
   
   

 
 

=  
 
 

 2.8

Error function:

41

(1) (1) (2)

11 12 31

1

1
() (, , ,) ln() (1) ln(1)

m

i ii i

i

E W E W W W y y y y
m =

 = = − + − −
  2.9

(1) (1) (2)

11 12 11

(1) (1) (2)

21 22 21

(1) (1) (2)

31 32 31

E E E

W W W

E E E
E

W W W

E E E

W W W

   
 

   
   

 =  
   

   
 

   

 2.10

Update the whole weight matrix by adding E  , αis the learning rate.

Recall the chain rule in calculus:

z
z y

y

y
y x

x

z y
z x

y x

z z y

x y x


 = 




 = 



 
 = 

 

  
=

  

2.11

Eq. 2.11 shows how a small change Δx causes change in y. Eq. 2.10 can be transferred

as Eq. 2.12:

1 2

(1) (1)
(1) (1) (2)

1 11 2 12
11 12 11

1

(1) (1) (2) (1)

21 22 21 1 21

1
(1) (1) (2)

(1)
31 32 31

1 31

, ,

,

,

h hE y h E y hE E E
h h W h h Wy yW W W

hE E E E y h
E

W W W h h Wy

E E E hE y h
W W W h h Wy

         
           
        

 = = 
      

       
      

(2)

11

2

(1) (2)

2 2 21

2

(1) (2)

2 32 31

,

,

E y h

h Wy

hE y h E y h

h h W h Wy y

hE y h E y h

h h W h Wy y

   
 

  
 

     
      
 
      
 

      

2.12

x

(1)

11W

(1)

12W

y z

z

y





y

x





z
z y

y

y
y x

x

z y
z x

y x

z z y

x y x


 = 




 = 



 
 = 

 

  
=

  

42

Then update the whole weight matrix:

 W W E +  2.13

The whole process (feedforward and backpropagation) of neural network in Fig. 2.10 is:

(1) (1) (2)

11 12 11

(1) (1) (2)

21 22 21

(1) (1) (2)

31 32 31

W W W

E W W W

W W W

   
 

 =    
    

W W E + 

Fig. 2.11 Feedforward and backpropagation

By feeding with the neural networks enough training data and running the feedforward

and backpropagation, the whole neural network learns from the training data till an

acceptable prediction accuracy to new input data.

A more general demonstration of neural networks with more layers, nodes and outputs

is shown in Fig. 2.12. It has two hidden layers and two output nodes. Adding or removing

layers and nodes, alternating functions of nodes are all adjustments to the architecture

of the neural network. With the increase of data and computing power of computers,

making the neural network is possible and practical. Deep learning means the neural

network has many layers with different functions to fulfill the requirements of the

analysis.

x1

x2

1

h1

h2

1

h

(1)

11W

(1)

12W

(1)

21W
(1)

22W
(1)

31W
(1)

32W

(2)

11W

(2)

21W

(2)

31W

x1

x2

1

h1

h2

1

h

(1)

11W

(1)

12W

(1)

21W
(1)

22W
(1)

31W
(1)

32W

(2)

11W

(2)

21W

(2)

31W

E(W)

43

Fig. 2.12 Multilayer neural network feedforward and backpropagation

2.3 Convolutional neural networks

2.3.1 Shared weights

In mathematics, convolution refers to an operation that convolves two functions into a

third one, which contains both properties of the former two functions. For example, a

sound wave containing both music and human voice can be convolved with another

wave that is developed to extract only human voice. The output of this convolution is

only human voice. Convolution has applications in many fields that include

mathematics (probability, statistics and differential equations), computer vision (image

and signal processing) and natural language processing.

Convolutional neural networks (CNNs) have reached a series of state-of-art results in a

variety fields including voice user interfaces, natural language processing (NLP) and

computer vision. Google recently released WaveNet model using CNNs [114, 115]. The

WaveNet takes in a piece of text as input and outputs an audio with a human voice

reading it given other pieces of audio this human has ever read. In another way,

WaveNet mimics a person’s voice to an extremely similar extent. In deep learning,

convolutional neural networks are especially good at recognizing objects in images and

have reached state-of-art results [58, 73, 90, 116-118]. Convolutional neural networks

are also called ConvNets, which are good at processing data in the form of multiple

arrays. For example, 1-demensional data is signals, 2-demensional data is a grayscale

image, and 3-demensinal data is a color image of RGB channels.

The main idea of convolutional neural networks is shared weights, which process inputs

Input layer

: inputsix

l

i

j

kwij wjk
wkl E

()Hidden layer H1

()j j

j ij i

y f z

z w x

=

= 

()

(

Hidden layer H2

: H1

)k k

k jk j

j

y f z

z w y

y

=

= 

wij
wjkwkl

l

k

j

i

Output layer

()

: H2

l l

l kl k

k

y f z

z w y

y

=

= 

()l

l l

l

l l l

f yE

y y

yE E

z y z


=

 

 
=

  

Error function

()

: outputs

l

l

E f y

y

=

:

kl

l outk l

k

k k k

E E
w

y z

yE E

z y z

 
=

 

 
=

  



: 2

jk

k Hj k

j

j j j

E E
w

y z

yE E

z y z

 
=

 

 
=

  



feedforward backpropagation

44

variate across space. In object recognition tasks, the same class of objects usually

appear in different colors, illuminations, distortions and positions in images (shown in

Fig. 2.13). Objects of the same class do not change on average across time, space or

other capacities but do share the same label. Building algorithms to identify classes of

objects that may appear in any possible varieties is too costly or even impossible. One

solution to these varieties in the same class of objects is to use shared weights. Shared

weights can extract the same kind of information in different expressions if inputs’

labels are the same.

Fig. 2.13 Translation invariance and statistical invariance

2.3.2 Filters, stride and padding

As shown in Fig. 1.6 and Fig. 1.7, an image is composed by one or multiple matrices

(gray channel or color channels). The channel shape is also the shape of the image. Each

pixel in one channel is valued from 0 to 255. The matrix of one channel is a 2-

demensional space, composed by columns and rows showing the objects by clusters of

pixels. A filter is also a 2-demensional matrix, scanning over the matrix of the image

and convolve with it [116]. The output of the filter convolved with the input is also a

matrix. Examples of filter, stride and padding are shown in Fig. 2.14.

Label: “cat”

45

(a) Stride: 1, padding: 0

(b) Stride: 2, padding: 0

(c) Stride: 1, padding: 1

Fig. 2.14 A filter convolves with a grayscale image

More generally, the calculation of the output matrix when a filter matrix scans over an

input matrix is:

1 1

2 0

0 1

2 0

0 1

1 2

2 2

1 0

0 1

0 1

1

2

0 0

2 1

1

1

0 1

1 2

0 1

1 1

2 1 2 0

1 0

1 0

1

2

1 0 1

0 0 1

1 -1

0 1

0

-1

Input (7x7, no padding)

Output (5x5)
Stride: 1

S
tr

id
e:

 1
1 -1

2 0

2 2

1 1

4 1

-2 4

-1

2

1 -1

1 2

1

0

-2 4 0 1 1

Filter (3x3)

1 1

2 0

0 1

2 0

0 1

1 2

2 2

1 0

0 1

0 1

1

2

0 0

2 1

1

1

0 1

1 2

0 1

1 1

2 1 2 0

1 0

1 0

1

2

1 0 1

0 0 1

1 -1

0 1

0

-1

Input (7x7, no padding)

Output (3x3)
Stride: 2

S
tr

id
e:

 2

1

2

4 -1

1 1

-2 0 1

Filter (3x3)

1 1

2 0

0 1

2 0

0 1

1 2

2 2

1 0

0 1

0 1

1

2

0 0

2 1

1

1

0 1

1 2

0 1

1 1

2 1 2 0

1 0

1 0

1

2

1 0 1

0 0 1

1 -1

0 1

0

-1

Input (7x7, padding:1)

Output (7x7)
Stride: 1

S
tr

id
e:

 1

1 -1

2 0

2 2

1 1

4 1

-2 4

-1

2

1 -1

1 2

1

0

-2 4 0 1 1

Filter (3x3)0

0

0

0

0

0

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0 0 0 0 0 0 0

00

00

0

0

1

1

-1

2 0 3 -1 3 -1

0

0

0

0

0

0

-2 3 -1 0 -2 21

46

CONVOLVE WITH

P: padding
S: stride
h: height
w: width

FilterInput

1,1 1, _1,1 1, _

_ ,1 _ , __ ,1 _ , _

Output

1,1 1, _

_ ,1 _ , _

F FI I w Fw I

F FI I h F h F w Fh I h I w I

O O
w O

o O
h O h O w O

 
 
 
 
 
 
 

 







  ⎯⎯⎯⎯⎯⎯⎯→⎯⎯⎯⎯⎯⎯⎯ 
 
 



where:

_ (_ _ 2)/ 1

_ (_ _ 2) / 1

h O h I h F P S

w O w I w F P S








= − + +

= − + +

2.14

, 1,1 , _ 1 1, _

_ 1, _ ,1 _ 1, _ 1 _ ,

, 1,1, _ 1 1, _

_ ,1_ 1, _ 1, _ 1 _ , _

i j i j w F h F

i h F j w F i h F j w F w F

F FI Ii j i j w F h F

Oij
I I F F

w Fi h F j i h F j w F w F h F

sum

sum

I F I F

I F I F

 
   
   
   
   
   
   

    

+ −

+ − + − + −

+ −

=

+ − + − + −

=

 

  _h F

 
 
 
 
 

2.15

Eq. 2.14 and Eq. 2.15 show the convolution of the filter and the input. The output to the

input is also called the feature map or the activation map of the input. The shape of the

output is determined by the input shape, the filter shape, the stride and the padding. The

stride is how fast the filter scans over the input. The padding is to provide extra input

columns and rows to the input to prevent from omitting information in the input.

Choosing reasonable shape of filter, length of stride and padding helps with the

extraction of required information in the image.

Why are the filters adopted in the convolutional neural networks? Because the filters

and how they scan over the input are the shared weights. These shared weights scan all

over the input and output feature map due to the same criteria. The criteria are the

properties of the filters, who focus on the locally connected subsets of the input in the

same shape to the filters. Fig. 2.15 shows that different filters have different

characteristic focus properties. From the features maps to the input, perceptually it can

be noticed that filter 1 and filter 2 focus on vertical edges and filter 3 and filter 4 focus

on horizontal edges. Moreover, filter 1 focuses on the right part edges of the image

47

while filter 2 focuses on the left part edges. While filter 3 and filter 4 focus on the

underneath and upper edges in the image. It is also possible to build filters that focus

on diagonal edges or circular edges. However, it is too complex to designate specific

filters to reach the purpose of object classification. Introducing the filters into neural

networks is a good idea to optimize the filters by themselves.

(a) Four 4x4 filters

(b) Ceiling image (grayscale)

(c) Feature maps by filters

Fig. 2.15 Convolutional outputs by different filters

48

A filter convolving with the grayscale image in 2-dimensional operations is shown in

Fig. 2.15. When the input image is 3-dimensional, the filters are also required in the

form of 3-dimension. The convolutional operations and outputs are show in Fig. 2.16.

The sub-filters combining into one filter are also shared weights over the inputs.

Fig. 2.16 A 3-dimensional filter convolves with a color image

2.3.3 Convolutional layers

By introducing the convolutional operation into deep neural networks, building a

generally convolutional function layer with trainable parameters is the basic block,

namely the convolutional layer. In image processing, the input is an image with three

color channels of RGB. The filters are shared weights to the inputs. A convolutional

layer consists the number of filters, who have the same shape and strides. Different

filters have different biases. Fig. 2.17 shows the details of feedforward from input to the

feature maps through a convolutional layer.

Fig. 2.17 Feedforward in one convolutional layer

Shape of input to the convolutional layer is W*H*3. The convolutional layer has n

filters in it. Each filter has the same number of sub-filters to the input depth. The feature

maps have the shape of wo*ho*n. Compare the shape of the input and the output, they

sum

 
 
 
 
 
 
 
 
 
 
 

H
ei

g
h

t

Filter

(w*h*3)

Input

(W*H*D, D=3) Output

(wo*ho*1)

H
ei

g
h

t

Convolutional layer

(shape of one filter:

w*h*3, n filters)

Input

(shape: W*H*3)

Output

(shape: wo*ho*n)

Filter 1 Filter 3Filter 2 Filter n

sum

 
 
 
 
 
 
 
 
 
 
 

sum

 
 
 
 
 
 
 
 
 
 
 

sum

 
 
 
 
 
 
 
 
 
 
 

sum

 
 
 
 
 
 
 
 
 
 
 

49

are all 3-dimensional matrices. The output of one convolutional layer can be another

input to the next convolutional layer. Recall the deep neural network in Fig. 2.12,

replacing the hidden layers with convolutional layers gets a convolutional neural

network. A simple convolutional neural network is shown in Fig. 2.18. The input (shape

as an image) is feedforwarded to three convolutional layers, objects in the image is

recognized in multi abstraction. The results generated from the convolutional layers are

then fed into a few fully connected layers to execute dimensionality reduction from 3-

dimension to lower dimensions. Finally, the results processed by the fully connected

layers are fed into the classifier to generate predictions to the input. The predictions are

compared with the label to the image to form error functions for the following

backpropagation. Notice the weights are the filters in the convolutional layers,

randomly initialized when the convolutional neural network was built. These weights

are updated through backpropagations that are the same to that in the deep neural

networks.

Fig. 2.18 The architecture of a simple convolutional neural network

2.3.4 Understanding the abstractions in ConvNets

Understanding how the convolutional layers do abstraction to the input is crucial in

building and adjusting the whole convolutional neural networks. It is still hard to prove

the process of optimization of ConvNets in mathematics. But there are many attempts

to investigate what really happen in the training process and trained deep convolutional

neural networks [119, 120]. The results show that the ConvNets do abstractions

gradually in the convolutional layers. As is shown in Fig. 2.19, the ConvNets recognize

simple shapes of objects in the first few layers, then these shapes are connected into

small objects, which are parts of bigger objects. The final output is the combination of

the important small object recognized by the convolutional layers.

50

Fig. 2.19 An example of how convolutional layers recognize an image of a stadium

2.4 Conclusion

In this chapter, a brief history and the basic blocks of deep learning are introduced and

explained. A deep learning model composed by many hidden layers with different

functions can perform multilayer abstractions to the input, gradually reach the most

characteristic feature of the input. A deep learning model is trained through many

feedforward and backpropagation cycles. An important functional layer, the

convolutional layer is introduced in this chapter. Convolutional layers composed by

multiple filters scanning over the input to perform spatial convolutional operations are

especially suitable for processing images. With the knowledge of deep learning and the

convolutional layers, it is possible to build and train a CNN model for image processing

task.

Final layer

Label: Stadium

Layer 2 objects

Layer 1 objects

51

3. Building and Training a Convolutional Neural Networks

Model

3.1 Generating a database of ceilings images using ceilings

damage evaluation criteria

3.1.1 Database of ceiling images

For machine learning and deep learning, enough data are required to make the deep

learning model really “learn”: to optimize parameters in all the layers. The data consists

of input data and labels to each of the input data unit. The input data is a series of data

flow with space and time sequences which can be processed by deep neural networks.

The labels of the input data are labeled by human. The labeling process is when human

injects their intelligence into the data. Different people would label different labels to

the same data. The deep neural networks would learn these labeled data to mimic the

criteria that the person who labels the data obeys.

In this thesis, labeling ceiling images with commensurate dangerous degree is crucial

for the following deep learning model to learn and optimize. The Kawaguchi Lab crew

has been investigating and analyzing the ceiling fall accidents in Japan since the Great

Hanshin-Awaji Earthquake in 1995. Thousands of ceiling images (intact and damaged)

have been collected for research since then. These ceiling images are of indoor stadiums,

indoor pools, bath centers, lecture halls, factories and other structures with large span.

The collection of well-functional ceilings images is relatively easy, while the collection

of damaged ceilings images needs efforts. Images of intact ceilings in different

structural spaces are shown in Fig. 3.1. And damaged ceilings are shown in Fig. 3.2.

What is needed to point out is that the images in the collection of the damaged ceilings

are usually severely damaged or destroyed. Because ceilings that contain very few tiny

damages are hard to detect. Tiny damages are usually neglected by people until they

develop into great danger to human body. The imperfection of the data is very common

in real-world problems in machine learning. However, in the recognition of intact and

damaged ceilings, the deep neural networks can grasp the notions of good and bad for

classification.

52

(a) a stadium

(b) an indoor swimming pool

(c) an indoor basketball hall

(d) a lecture hall

(e) an exhibition center

(f) a corridor

Fig. 3.1 Intact ceilings in different structual spaces

53

(a) an indoor swimming pool

(b) an indoor stadium

(c) an office

(d) a theater

Fig. 3.2 Damaged ceilings in different structures

3.1.2 Labeling criteria

Building a reasonable labeled database for the deep learning model is the foundation of

the whole research. Labeling the images is to apply the ceilings damage evaluation

criteria into the images. The ceilings damage evaluation criteria are combination of

ceilings knowledge and deep learning knowledge. The criteria are required to be

suitable for both damage evaluation by human and learning process by deep neural

networks. For simplicity, the damaged ceilings and the intact ones are basically two

types of ceilings labels, which can be labeled as 1 and 0. However, the differences

between damaged and intact ceilings are not as significant as that between a dog and a

cat. Intact ceilings would become damaged ones due to deterioration gradually and

earthquakes suddenly. Between the labels of 0 (intact ceilings) and 1 (very dangerous

ceilings), there are other damage degrees that gradually increase (shown in Fig. 3.3).

54

(a) intact (b) exfoliation

(c) water stains (d) local damage

(e) severe damage

(f) destroyed

Fig. 3.3 Varying degrees of damages (from intact to destroyed)

To label all the ceiling images with damage degree, there is a tendency to label them as

precise as possible. It is easy to label danger degree of Fig. 3.3(a) as 0 and Fig. 3.3(f) as

1. However, labeling other images in Fig. 3.3 to an exact danger degree is relatively hard.

Considering the practical applications and objectives of this research, precaution to

possible accidents and detecting possible damaged parts of ceilings are the highest

priorities to prevent accident. The number of classification labels for the ceiling images

is set as two, the label of intact ceilings (0) and the label of damaged ceilings (1), for

three reasons: 1. The final objective of the research is to keep the safety of human lives

and properties from damaged ceilings, even tiny damages that are possible to cause

huge loss are defined ‘dangerous’, labeled as 1; 2. The number of ceiling image in the

database, which is approximately 2,000 images, does not support the training for too

55

many labels, which will result in overfit; 3. It is difficult to quantify the extent of

damages, there exist many damage forms with many different damage degrees.

The criteria for labeling are as follows:

(1) For simplicity to both human and the deep learning model, the labels are

distinguished as 0 and 1, which resembling intact and damaged images respectively.

(2) Label as 0 if there are no obvious damaged parts in the image or the damaged parts

are not severe and less than 5% of the whole image in proportion.

(3) Label as 1 if there are clearly damaged parts that would spread to other part in the

ceilings or the whole damaged parts are more than 5% of the whole image in

proportion.

Reasons for the labeling criteria are:

(1) The main objective of this search is to develop a ceiling damage detection system

for both routine checks of the ceilings by the managers of a building and danger

evaluation of the ceilings when residents take refuge under these ceilings in out

bursting disasters. Forewarnings are crucial under these circumstances.

(2) Detecting ceilings damages and forewarning possible dangers from images only

taken under the ceilings (the viewpoint of the observer) has its intrinsic defects:

what is happening on the other side of the ceilings are intangible. However, status

of the ceilings on the visible side does reflect important characters of the ceilings

health, which are easy to obtain. In other words, inspecting the inner side of the

ceilings is too expensive while the outside of the ceilings can provide abundant

information to the safety of the ceilings.

(3) In statistical hypothesis testing, statistical significance refers to the fact that a result

is unlikely to have occurred for the given null hypothesis. The significance level is

typically set as 5% or lower, which means that if a fact that has very low probability

(5% or lower) to occur really occurs, the null hypothesis is rejected. The null

hypothesis is usually that the system is working properly. In this research, five

percent is a benchmark to affirm if an incident really has occurred. In image

recognition of deep neural networks, when the damaged part in an image exceeds

five percent to the whole area, it is prominent enough to be noticed by the neural

networks from noisy points. Thus, the ratio of five percent is chosen as the

benchmark for labeling.

56

3.1.3 Labeled database description

Ceiling images are selected for labeling from Kawaguchi Lab ceilings image collection.

The labeled database contains 1147 intact ceiling images (labeled 0) and 805 damaged

ceiling images (labeled 1). In the ceiling database, the intact ceiling images are mostly

taken from the global perspective that reflecting the whole status of the ceilings; the

damaged ceiling images usually focus on the zoomed in damaged regions. The damage

forms include: cracks in the ceiling boards and junctions, disengagement and void in

the ceiling boards. Examples of these images are shown in Fig. 3.4.

(a) Intact Ceilings

(1147 images labeled 0)

(b) Damaged Ceilings

(805 images labeled 1)

Fig. 3.4 Ceilings Images

3.2 Building the convolutional neural networks model

The architecture of a deep neural network refers to the arrangement layouts of the

multiple layers in the whole model. The arrangement is also called hyperparameters

which include the function of each layer, the parameters in the layers themselves.

Hyperparameters are set before the learning process of the deep learning. A proper

arranged architecture of the neural network can cost less calculation and data sources

and performance better.

3.2.1 Pooling layers, dense layers and fully connected layers

As is shown in Fig. 2.18, the multi convolutional layers extract information from an

image (down sampling). The convolutional layers use strides to shrink the height and

width of the input layers, which is an aggressive way to down sample. Using large

strides in the convolutional layers causes a great loss of information. The pooling layer

57

[58, 116] down samples the feature maps in the locally neighborhood with only little

information loss. The pooling layer outputs the combinations of locally selected

characteristic nodes. There are a few pooling layers, the most common one in which is

max pooling (Eq. 3.1).

, ,

,

, ,

max

, 1

where: for input, for output, for kernel (filter) size, for stride.

i j i k j

a b

i k j i k j k

i i

o

i i

i k
a b

s

i o k s

+

+ + +

 
 

=  
 
 

−
= +

3.1

An example of max pooling is shown in

Fig. 3.5 An example of max pooing

The advantages of pooling layers are:

(1) Pooling layers do not increase any parameters.

(2) Deep neural networks with pooling layers often perform better than those without.

The disadvantages of pooling layers are:

(1) Pooing layers make the whole neural network more complex to train.

(2) More hyperparameters like the size of filter and stride of the pooling layer to choose

by human.

A typical convolutional neural network[121] has the architecture shown in Fig. 3.6. The

dense layer reduces a 3-dimensional matrix into a 1-dimentional matrix that neglects

the inherent spatial information in the previous 3-dimensional matrix. It has no

additional parameters. The fully connected layers are simply 2-dimensional matrices

3 5 4

2 3

1 2

2

3

input (4x4)

3

0

2

5 9 2 3

Filter (2x2)

Stride: 2

output (2x2)

5 4

9 3

58

with biases. They down sample the previous 1-dimentional matrix into a shorter matrix

(shown in Fig. 3.7).

Fig. 3.6 A typical convolutional neural network architecture

(a) A dense layer

1 1 1

11 1 1 1 1

1

where: for input; , for fully connected layer parameters

k n n n k

n

k kn n n k

a a i b o

a a i b o

i a b

   

       
       

+ =       
       
       

(b) A fully connected layer

Fig. 3.7 A dense layer and a fully connected layer

input (2x2x3)

Dense layer

output (1x12)

5 4

9 3

1 2

3 4

2 0

1 8

5 4 9 3 1 2 3 4 2 0 1 8

59

3.2.2 The architecture of the convolutional neural networks for ceiling

damage evaluation

With the blocks above, it is possible to build and train a convolutional neural network

for ceiling damage evaluation. The main idea is to build functional convolutional neural

networks that could be trained by the labeled ceiling images. The networks are required

build in the balance of the training cost and prediction preciseness. The architecture of

the CNN model is adapted from a self-driving car research by NVIDIA [122], in which

the inputs are camera images of the traffic information and the outputs are steering

wheel operations. The architecture of the convolutional neural networks for ceilings

damage recognition follows this idea as the input is the ceiling image and the output is

the digitized damage evaluation, the middle layers perform gradual abstractions

through processing the input image. The architecture of the CNN model is built as

shown in Fig. 3.8. This is the final architecture based on various of combinations by trial

and error.

The tunable hyperparameters in the CNN model include: 1. The function determination

of the layers, such as the convolutional layer, the activation and pooling layer following

up with the convolutional layer; 2. The sequence of the functional layers that guarantees

the information abstraction; 3. The parameters in one middle layer itself, for example

in a convolutional layer, the number, the shape and stride of the filters will perform

differently in training and prediction. All the items above affect the learning ability and

performance of the CNN model, which is measured by the factor of accuracy in

predictions. To determine the final architecture of the CNN model for ceiling damage

evaluation, reasonable training process (shown in Chapter 3.3) is decisive as well. It is

hard or impossible to find the most reasonable training process for a specified model.

The determination of the architecture of the CNN model mixes with the determination

of the training process, in which there are many parameters and tricks to play with. The

fundamental principle is: make sure that the CNN model learns as much as possible,

but do not over-learn, which is also named overfitting.

60

Fig. 3.8 The architecture of convolutional neural networks for ceilings damages evaluation

In the input layer, the ceilings images are resized into the resolution of 400x600x3

pixels to fit the layer. Reasons for this selection are that it can both contain enough

information of the images and control the training time to some extent. The inputs are

down sampled through the following layers to reach the final output of one digital node.

The hyperparameters in these layers are changeable due to human judgements. Now the

whole convolutional neural networks are ready to train.

3.3 Training the convolutional neural networks model

The training process is when the learning really happens in the convolutional neural

61

networks. There are many parameters and solutions to choose and there are many

hinders in the training process that can fail the whole neural networks. Understanding

and tuning hyperparameters in the train process are crucial in deep learning.

3.3.1 Gradient descent and stochastic gradient descent

In Chapter 2, the idea of gradient descent has been introduced when updating weights

in backpropagation to minimize the error function E(W). The process of minimizing the

error function by gradient descent can be explained in Fig. 3.9. The minimization of

error happens with updates of the weight and bias in a series of steps. A step is also

called an epoch that using all the data (inputs and their labels) to update weights and

bias that approaching to the minimum error. The direction of updating is the negative

direction of the gradient of the error function. The number of epochs is determined by

confirming if the error has reached the minimum point. If it has, the minimization is

terminated. In each epoch, all the inputs run through the model to calculate the error

that are used to update weights and bias in backpropagation. Repeat the epochs until

the error reaches the minimum.

1

()

()

1
() ln() (1) ln(1)

()

1
()

1

Update and at each step:

1
(-)

1
(-)

m

i ii i

i

i

i

x

i

i i i i

i i

E W y y y y
m

y Wx b

x
e

W b

W W y y x
m

b b y y
m









=

−

 = − + − −
 

= +

=
+

 +

 +



Fig. 3.9 Gradient descent

However, in practice one whole epoch in updating parameters of a complex deep

learning model costs too much memories and calculation resources of the hardware. It

is not practical to minimize the error function using the gradient descent in complex

models. To solve such problem, stochastic gradient descent is invented.

Stochastic gradient descent just takes one step further than the gradient descent to

successfully prevent the calculation from overflow. It requires that the data is well

distributed that could be randomly equally divided into batches. A batch is a subset of

the whole data. For example, a whole dataset containing one million inputs could be

E
rr

o
r

(E
(W

))

Weights (W)

Start point

End point

Epochs (steps)

62

randomly divided into 1000 batches that each batch only contains 1000 inputs to make

each update by one batch practical on a common computer. Run the 1000 batches

through the machine learning model to gradually update the weights costs much less

resources. The key of stochastic gradient descent is the randomly divided batches that

contain well divided patches of information in the previous whole dataset. Using these

batches, the updates to the weights and bias are possible to run on the common

computers.

3.3.2 Learning rate and testing

In Fig. 3.9, α is the learning rate that controls how much the model learns in each epoch.

Either a too high or a too small learning rate is not economical for the minimization. If

the learning rate is too high, the steps would be too big to reach the minimum and

wanders around the valley bottom. If the learning rate is too low, each step is very short

that would cost very long time to reach the local minimum (Fig. 3.10). Tricks of tuning

the learning rate at different training stages can improve the efficiency of the training.

Fig. 3.10 Learning rate

Testing is the verification to the trained model to investigate if the model is good enough

to make reliable predictions to new inputs. Before training the model, the labeled inputs

are usually randomly divided into two sets: the training set and the testing set. The ratio

of training set to testing set is usually 0.8 / 0.2, which composite the whole labeled

inputs. The training set are used to update the weights in the model while the testing set

is hidden from the model until the training process ends. Fig. 3.11 shows the

complexities in building a model and testing it: Firstly, divide the data into training set

and testing set. The models are built to classify the red and blue points. Secondly, train

the models only using the training set. The trained models are the green line and the

yellow curve. The green line is a relatively simpler classifying model than the yellow

curve does. It can be noticed that the green line misclassifies four points in the training

E
rr

o
r

(E
(W

))

Weights (W)

Start point

End point

High learning rate

E
rr

o
r

(E
(W

))

Weights (W)

Start point

End point

Low learning rate

63

set while the yellow curve classifies the points in the training set all correctly. However,

when predicting to the points in the testing set, the green line has two mis-classified

points while the yellow curve has three mis-classified points. The yellow curve is so

complex that it remembers all the points in the training set. When training the model,

there are tendencies that we want to keep the model that has the lowest error in the

training set. However, a too complex model usually mechanically remembers the

training data and makes unreliable predictions to new inputs. Dividing the labeled data

in the first place is necessary for credible testing results.

Fig. 3.11 Testing to two models of the same inputs

3.3.3 Overfitting and underfitting

It is very hard or even impossible to really find a perfect model for a problem. Usually

the model is either too simple or too complex that would result in poor performances.

When the model is too complex, the model remembers all the data (both the details and

the noises) to learn everything reflects by the data. The learned noises and fluctuations

in the data that would result poor performances to new data are overfitting. While on

the contrary, when the model is too simple to really learns the data, the trained model

does not even understand the inputs. Such simple models are underfitting. In Fig. 3.12,

underfitting, appropriate and overfitting are shown. In deep learning, it is very hard to

find the right architecture in practice. There are too many gains and losses to balance

in choosing the architectures. Good news is that overfitting is sometimes acceptable if

there are strains to it. The overfitting does learn the noisy and irrelevant data to the

model. However, these problematic data are also from real world and do reflect the real

world. Building a deep learning model that can solve complex problems are better than

just doing binary linear regression.

Train Set

Test Set

64

Fig. 3.12 Underfitting, appropriate and overfitting

3.3.4 Techniques in training neural networks

1. Early stopping:

It is common to build more complex deep neural networks than the problem really

needs. In fact, it is a paradox to tell if the architecture of the neural networks fits the

problem: the neural networks need to be trained before judging the complexity. Assume

the neural networks that more complex than the problem needs are built. Fig. 3.13 shows

the changes in the errors of the same neural networks in different training epochs in a

points classification task.

Fig. 3.13 Training epochs and errors

In Fig. 3.13, the training begins with random weights in epoch 1, in which both the

training error and the testing error are high. The neural networks in epoch 1 are clearly

underfitting that too simple to understand the problem. When the training process goes

to epoch 20, both the training error and the testing error decrease and the neural

networks are well trained for the classification problem. But with the training going on

to epoch 100, the training error continuously goes down while the testing error begins

to increase. Now the neural networks try to remember everything in the input data even

there are noisy and fluctuations in them. The neural networks begin to make more

AppropriateUnderfitting Overfitting

Epochs: 500

Training error: very low

Testing error: high

AppropriateUnderfitting Overfitting Overfitting

E
rr

o
r

Epochs

Epochs: 1

Training error: high

Testing error: high

Epochs: 20

Training error: low

Testing error: low

Epochs: 100

Training error: very low

Testing error: medium

Test error

Training error

65

mistakes in the testing phase but still acceptable. When the training goes on to the epoch

500, there is vast differences between the training error and the testing error. The neural

networks remember the inputs too clearly to do predictions flexibly. This is the training

process that epochs effect the performances of the same model.

More generally, the relationships of training epochs and errors can be drawn as the

figure shown in Fig. 3.14. The horizontal axis refers to the complexity of the model. In

this case, the complexity is the number of epochs. The more the model is trained, the

more the model learns and the more complex it becomes. The training error deceases

with the increase of the epochs, which means that the model is learning more of the

inputs through each epoch. While the testing error deceases to a minimum then rises

again, which means that the model is functioning from underfitting to overfitting. The

best performance of the model occurs at the lowest error point in the testing error. The

epoch at this point is when the training should stop. There are methods to make sure the

training process stops at this point and keep the best performance of the neural network,

which is called early stopping.

Fig. 3.14 Model complexity graph

2. Regularization:

Recall the linear prediction to one point (x1, x2) in 2.1:

1 1 2 2()

: sigmoid function

y x x b  



= + +

When the point (x1, x2) is (1,1), but the weights (ω1, ω2) are (1, 1) and (10, 10)

respectively (b =0), the predictions to the same point are:

Testing error

Training error

Number of epochs

(model complexity)

E
rr

o
r

Early stopping

66

(1 1) 0.88

(10 10) 0.9999999979





+ =

+ =

The conclusion is: larger weights result in the tendency of overfitting. The predictions

are closer to 1 if the weights are large even if the points are the same. This leads to a

lower error but steeper active function which is harder to do gradient descent (shown

in Fig. 3.15). The derivatives are nearly to 0 a little far from the central but very large

near the central of the curve. It is better to generate a model with smaller weights like

the curve on the left. The curve on the right is too certain to provide flexibility to apply

gradient descent. The curve on the right would generate great fluctuates of errors

because the predictions are closer to 1 or 0.

Fig. 3.15 Weights affecting the prediction

The solutions to the problem of overfitting induced by too large weights are to tune the

error functions. The basic concept is to punish high weighs. By adding the old error

function to the penalty of weights, the adjusted error functions can be expressed as:

1 2

1

2 2 2

1 2

1

L1 Error Function:

1
() ln() (1) ln(1) ()

or L2 Error Function:

1
() ln() (1) ln(1) ()

m

i i ni i

i

m

i i ni i

i

E W y y y y
m

E W y y y y
m

   

   

=

=

 = − + − − + + + +
 

 = − + − − + + + +
 





 3.2

The parameter λ is to determine how much the penalties to large weights are to adopt.

The L1 error function takes the absolute of the weights to prevent from too small errors

if the weights are too large and the L2 error function takes the squares of the weights

respectively. Either of them is suitable for different models.

Predictions:

0

1

0

1

(ω1, ω2): (1,1) (ω1, ω2): (10,10)

67

3. Dropout:

Another solution to prevent overfitting is dropout [123]. The training of neural networks

begins with randomly assigned weights. There are tendencies that the larger the node is

initialized, the larger it would become in the following epochs, and vice versa. The

results to such phenomenon are that there will be “dead” nodes in the neural networks

that were never well trained. The dropout method prevents these crippled nodes from

occurring using the randomly “killing” method. As shown in Fig. 3.16, each node in one

layer is multiplied by an independent Bernoulli random variable with the probability p

of being 0, otherwise the variable is 1, before propagates into the next layer. The method

of dropout may seem too radical for training, but the results show that it improves the

accuracy. Using dropout can balance the nodes trained evenly. Dropout is also getting

better results in neural networks than those not used.

Fig. 3.16 Dropout

4. Vanishing gradient and other activation functions

In the backpropagation to the sigmoid function, when the input is far away from the

zero point, the derivative is very small, almost to zero. The derivative is the opposite

direction that the minimization occurs. When the derivative is too small it is slower or

even never for the error function reaches its minimum. Things get even worse in the

multilayer neural networks. For example, in the neural network shown in Fig. 2.10, the

derivative of
(1)

11

E

W




 is calculated using the chain rule by multiplying several

derivatives of sigmoid functions which are small. The final result of
(1)

11

E

W




 is tiny if

there are many layers with the activation function as sigmoid function (shown in Fig.

3.17). This is the vanishing gradient that would impede the learning process of the

+1

x1

z

1p

xn
np

x2
2p

Wi

y
f

68

neural networks.

(a) Derivative to sigmoid function far from

zero point

1

(1) (1)

11 1 11

hE E y h

W h h Wy

   
=

   

(b) Tiny derivative

Fig. 3.17 Vanishing gradient

Changing the activation function can solve the problem of vanishing gradient. Bigger

gradients of the activation functions are needed to prevent vanishing gradient in deep

learning. Two popular activation functions that generate bigger derivatives are shown

in Fig. 3.18. The ReLU function is used widely because it can improve the training

significantly without sacrificing much accuracy because the derivative is 1 if the input

is positive.

tanh()
x x

x x

e e
x

e e

−

−

−
=

+

(a) Hyperbolic tangent function

 if 0
ReLU()

0 if 0

x x
x

x


= 



(b) Rectified linear unit (ReLU)

Fig. 3.18 Hyperbolic tangent function and ReLU function

5. Local minimum, random restart and momentum

Recalling the error function shown in Fig. 3.9, the minimization usually faces with much

more complex conditions that the error function is in an n-dimensional space. There are

many local peaks and local minimums in the error function that would trap the

minimization by gradient descent in the local minimums (Fig. 3.19). Gradient descent

0

1

1
()

1 x
x

e
 =

+

x1

x2

1

h1

h2

1

h

(1)

11W

(1)

12W

(1)

21W
(1)

22W
(1)

31W
(1)

32W

(2)

11W

(2)

21W

(2)

31W

x

y

69

is in a failure in such conditions.

Fig. 3.19 Local minimum

One solution to the failure of gradient descent to local minimum is random restart (Fig.

3.20). The gradient descents are started from a few different random points that the

number of these points conforms with the complexity of the error function. This method

increases the probability of reaching the global minimum and at least to an acceptable

local minimum. But this method costs longer time to compute and it is difficult to

estimate a proper number of start points for the complexity of the error function.

Fig. 3.20 Random restart

Another solution to local minimum is named momentum with the idea of introducing

kinetic energy into steps in the gradient descent. The gradient descent gets power from

a few previous steps and rushes over the local minimum to find a lower minimum (Fig.

3.21). Even though the step would rush over the global minimum for a few more steps,

it will fall back to the global minimum because of not enough momentum. The

coefficient of momentum is β, which is between 0 and 1. Each step is determined by

the i steps previous to it. Although it is hard to prove its advantages in math, this

E
rr

o
r

(E
(W

))

Weights (W)

Local peak

Local minimum
Global minimum

E
rr

o
r

(E
(W

))

Weights (W)

Start point A

Global minimum

Start point C

Start point B

70

algorithm works well in practice.

2() (1) (2) (3) (1)iSTEP n STEP n STEP n STEP n STEP n i  = − + − + − + + − −

Fig. 3.21 Momentum

6. Image augmentation

In machine learning, data is a valuable property to well training a model. Without

enough well distributed data reflecting the real world, the model would not learn

enough to make reliable predictions. However, data that reflecting the real-world

problem are usually hard to collect, especially in highly specialized fields. There are

two kinds of solutions to the lack of data: a more intelligent model that can learn from

very few data and the data augmentation. In this thesis, the data are labeled ceilings

images. Considering the characteristics of convolutional neural networks, adjusting the

images will not undermine the translation invariance and representations in the images.

For example, the size or the angle of the object will not affect the contents in the images.

Moreover, augmenting the number of images by adjusting the images would make the

convolutional neural networks more robust and better trained.

There are many ways in adjusting the image to generate more data (Fig. 3.22). All the

generated images with the same label to the original images consist a much larger

dataset for the neural network to learn.

Momentum: β

E
rr

o
r

(E
(W

))

Weights (W)

Global minimum

1

β

β3

β2

71

Fig. 3.22 Data augmentation

7. Cross validation: the training, validation and testing datasets

There should be dataset reserved for the performance verification of the trained CNN

model. The simplest idea of splitting data is to divide the data into two sets: the training

data and the testing data, which usually have the portion of 8 to 2 or 7 to 3. The train

data is used in the training process and should never be used to evaluate the performance

of the model. The test data is used to evaluate the model after trained. For more complex

problems, it would be problematic if the data is only split into two sets because the

training process also needs partial evaluations during the training process. When such

evaluations are not the final evaluation to the model, it is the start of overfitting. That

is because when adjusting the model parameters due to the results from the training

process evaluations, the directions that parameters should change are directed by the

validation data in an inexplicit way. In other words, the validation data is also involved

in the training process that makes the final evaluation to the model is unreliable.

The solution to such problem is to divide the data into three sets: the training data, the

validation data and the test data. The test data is hidden from the model until the final

evaluation to the model. The validation involves in the training process of the model.

The ratio to these data sets are alterable which is usually 6: 2: 2. The most defect of

splitting data set into three subsets is that it reduces available data for training.

8. Sensitivity and specificity

Translation

Rotation

Flip

Brightness

Original image

Random combinations

72

The accuracy is usually calculated as the percentage of correctly predicted inputs

divided by the whole inputs:
True

Accuracy
True False

=
+

 . The terms of sensitivity and

specificity are usually used to evaluate a clinical test, which is a typically binary

classification test [124]. In the case of evaluating the accuracy of deep learning models

for binary classification tasks such as ceiling damage evaluation, the sensitivity and

specificity are introduced to better analysis the deep learning model from the

perspective of accuracy. Two classes of ceiling images exist with the contents of intact

and damaged ceilings, and two kinds of predictions to one input image: intact and

damaged. Therefore, there are four combinations to the contents and the predictions:

1. True positive: the ceilings in the image are ‘damaged’ and the prediction is ‘damaged’.

2. False positive: the ceilings in the image are ‘damaged’ but the prediction is ‘intact’.

3. True negative: the ceilings in the image are ‘intact’ and the prediction is ‘intact’

4. False negative: the ceilings in the image are ‘intact’ but the prediction is ‘damaged’.

Wrong predictions (false positive and false negative) are not welcome in most cases

and they are where efforts spent on to prevent. In these two kinds of wrong predictions,

the most unfavorable condition is when the input itself is problematic but the prediction

to it fails to detect it. In the case of ceiling damage evaluation and detection, the most

dangerous situation is that the ceilings are damaged while the ceiling damage detection

approach fails to recognize and reports no alarm. Based on the four terms above, factors

evaluating the predictions are:

1. Sensitivity measures the proportion of true positives to those who are really in the

positive situation by

True positivities
Sensitivity

True positivities False negativities
=

+
;

2. Specificity measures the proportion of true negatives to those who are really in the

negative situation by

True negativities
Specificity

True negativities False positivities
=

+
.

Both the sensitivity and the specificity are the higher the better.

73

3.3.5 Training the convolutional neural networks model

There are many adjustable parameters and hyperparameters in the training process. The

architecture of the CNN must be determined before training. It includes the overall

arrangement of layers in the model, the details of each layer. The architecture also

should consider the complexity of the problem it deals with, like the input

characteristics, the output requirements and the possible variations of the problem and

dataset in the future. By combining and attempting the techniques above, a relatively

good-performance convolutional neural networks model is obtained. The convolutional

neural networks are built based on the architecture shown in Fig. 3.8. The details of the

convolutional neural networks are shown in Table 3.1. There are 22 layers and 697,025

trainable parameters in the convolutional neural networks. All the images are

preprocessed to the dimension of 400x600x3 before sent into the input layer. The whole

data set (1953 images) is divided into train, validation and test sets with the ratio of 6:

2: 2 (shown in Table 3.2).

Table 3.1 Details of the convolutional neural networks

Layer Input Shape Output Shape Parameters

1

Convolutional Layer

(32 filters of (2, 2) size,

stride: (1, 1))

(Batch size, 400, 600,

3)

(Batch size, 399, 599,

32)

416

2
ReLU Activation

Layer

(Batch size, 399, 599,

32)

(Batch size, 399, 599,

32)

0

3

Max Pooling Layer

(pool size: (2, 2),

stride: (2,2))

(Batch size, 399, 599,

32)

(Batch size, 199, 299,

32)

0

4

Convolutional Layer

(32 filters of (2, 2) size,

stride: (1, 1))

(Batch size, 199, 299,

32)

(Batch size, 192, 298,

32)

4128

5
ReLU Activation

Layer

(Batch size, 192, 298,

32)

(Batch size, 192, 298,

32)

0

6

Max Pooling Layer

(pool size: (2, 2),

stride: (2,2))

(Batch size, 192, 298,

32)

(Batch size, 99, 149,

32)

0

7

Convolutional Layer

(32 filters of (3, 3) size,

stride: (1, 1))

(Batch size, 99, 149,

32)

(Batch size, 97, 147,

32)

9248

8
ReLU Activation

Layer

(Batch size, 97, 147,

32)

(Batch size, 97, 147,

32)

0

74

9

Max Pooling Layer

(pool size: (2, 2),

stride: (2,2))

(Batch size, 97, 147,

32)

(Batch size, 48, 73,

32)

0

10

Convolutional Layer

(32 filters of (3, 3) size,

stride: (1, 1))

(Batch size, 48, 73, 32) (Batch size, 46, 71,

32)

9248

11
ReLU Activation

Layer

(Batch size, 46, 71, 32) (Batch size, 46, 71,

32)

0

12

Max Pooling

(pool size: (2, 2),

stride: (2,2))

(Batch size, 46, 71, 32) (Batch size, 23, 35,

32)

0

13

Convolutional Layer

(64 filters of (3, 3) size,

stride: (1, 1))

(Batch size, 23, 35, 32) (Batch size, 21, 33,

64)

18496

14
ReLU Activation

Layer

(Batch size, 21, 33, 64) (Batch size, 21, 33,

64)

0

15

Max Pooling Layer

(pool size: (2, 2),

stride: (2,2))

(Batch size, 21, 33, 64) (Batch size, 10, 16,

64)

0

16 Dropout Layer (0.5)
(Batch size, 10, 16, 64) (Batch size, 10, 16,

64)

0

17 Flatten Layer (Batch size, 10, 16, 64) (Batch size, 10240) 0

18 Dense Layer (Batch size, 10240) (Batch size, 64) 655424

19
ReLU Activation

Layer

(Batch size, 64) (Batch size, 64) 0

20 Dropout Layer (0.5) (Batch size, 64) (Batch size, 64) 0

21 Dense Layer (Batch size, 64) (Batch size, 64) 65

22
Sigmoid Activation

Layer

(Batch size, 1) (Batch size, 1) 0

Total trainable parameters: 697,025

Batch size: the number of images as input in each step

75

Table 3.2 Image numbers in datasets split

for the CNN model

Dataset
Label

Total
0 1

Train 687 483 1170

Validation 230 161 391

Test 230 162 392

Total 1147 806 1953

The training runs on the hardware of GPU: Nvidia GeForce GTX1080Ti. In each epoch,

the number of training step is 125, within which each step computing the batch size of

16 and the validation step is 50 with the batch size of 16. The batch size refers to the

number of images used for training in one iteration. There are 30 epochs in the training

process. It takes about four hours to train the neural networks. Images in both the train

set and validation set are augmented randomly. The details of the randomness of the

augmentation are shown in Table 3.3. The randomness of alternations to the training

data is severer than that to the validation data. The weights that has the lowest validation

loss are preserved as the final CNN model weights. The accuracy and loss curves of the

training and testing in each epoch are shown in Fig. 3.23. The tendency of the accuracy

is that it increases with the epoch increases and the tendency of the loss is that it

deceases with the epoch increases. The fluctuations in the curves are due to the

randomness of the generated images by data augmentation. In the accuracy-epoch curve,

the reason for the accuracy of the model to the training data is usually lower than that

of the validation data is that the alternations in the training dataset is severer than that

of the validation dataset, which indicates that the trained model is robust to the

translation invariance. In the loss-epoch curve, the phenomenon that the loss of the

validation dataset is usually lower than the training dataset is also due to different

extents of alternations to the images. The weights are saved as the final model weights

when lowest validation loss occurs at the 19th epoch (validation accuracy 85.9%).

The final saved weights composite the final trained model. By using the final trained

model to predict the test dataset (never shown to the model during the training process

and no data augmentation), the accuracy is 86.2%. To better investigate the accuracy,

the true positive (both the image and the prediction are damaged); the true negative

(both the image and the prediction are intact); the false positive (the image is intact

while the prediction is damaged) and the false negative (the image is damaged while

the prediction is intact) are shown in Table 3.4 with the whole test dataset of 392 images.

76

Table 3.3 Randomness of data augmentation to the datasets

 Training data Validation data Test data

Horizontal Flip Yes Yes No

Shear radians – 0.2 ~ 0.2 – 0.1 ~ 0.1 0

Zoom in / out range – 0.2 ~ 0.2 – 0.1 ~ 0.1 0

Rotation range (degree) – 15 ~ 15 – 10 ~ 10 0

Width shift – 0.2 ~ 0.2 – 0.1 ~ 0.1 0

Height shift – 0.2 ~ 0.2 – 0.1 ~ 0.1 0

Brightness multiplier

(HSV color)
0.5 ~ 1.5 0.5 ~ 1.5 1

Fig. 3.23 Curves of training

Table 3.4 Sensitivity and specificity

 Negative (0) Positive (1) Total

True TN: 201 TP: 137 338

False FN: 29 FP: 25 54

Total 230 162 392

Accuracy = (TP+TN) / SUM = 0.862

Sensitivity = TP / (TP+FN) = 0.825

Specificity = TN / (TN+FP) = 0.889

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 5 9 13 17 21 25 29

ac
cu

ra
cy

epoch

train validation

0.25

0.35

0.45

0.55

0.65

0.75

1 5 9 13 17 21 25 29

lo
ss

epoch

train validation

77

3.4 Performances of the trained convolutional neural

networks

To testify the trained CNN model, other ceiling images (both intact and damaged ones)

are collected from the internet as the external ceiling image database. The basic

requirements to the ceiling image collection are: (1) The main objects in an image are

the ceilings. (2) The design of the ceilings is plain and not bizarre because the training

dataset mainly contains regular ceilings. (3) Higher resolution images of ceilings are

favorable.

All the collected ceiling images are resized to the resolution of 400x600x3 before

evaluated by the trained CNN model. The ceiling images and predictions to them are

shown in Fig. 3.24 (sources of the images are shown in Appendix A). Assume the

boundary to the predictions between intact and damaged labels is at 0.5, which means

that if the prediction to an image is over 0.5, the contents in the image are prone to show

features of damaged ones with the label of damaged and vice versa. The larger the

prediction is, the more dangerous the ceilings in the image are. Red subtitles indicate

wrong predictions to the real contents in the images. The accuracy of the predictions is

about 88.9% to the ceiling images from internet.

(1) 0.999

(2) 0.716

(3) 0.502

(4) 0.006

(5) 0.737

(6) 0.458

(7) 0.067

(8) 0.022

(9) 0.059

(10) 0.951

(11) 0.245

(12) 0.590

78

(13) 0.409 (14) 0.628 (15) 0.574 (16) 0.002

(17) 0.316

(18) 0.002

(19) 0.597

(20) 0.747

(21) 0.068

(22) 0.174

(23) 0.000

(24) 0.000

(25) 0.000

(26) 0.338

(27) 0.032

(28) 0.088

(29) 0.087

(30) 0.359

(31) 0.371

(32) 0.207

(33) 0.232

(34) 0.067

(35) 0.010

(36) 0.020

(37) 0.009

(38) 0.275

(39) 0.246

(40) 0.691

(41) 0.620

(42) 0.563

(43) 0.038

(44) 0.000

(45) 0.001

Fig. 3.24 Predictions to ceiling images from the internet

79

Although the accuracy to the images from internet is relatively high, there is

improvement potential to the model. The dataset from internet collection is relatively

small and only generates digital predictions from 0 to 1. It is hard to interpret the

predictions and understand the trained CNN model only through the comparisons of

original contents in the images and the predictions to them.

3.5 Conclusion

In this chapter, the main contribution is to apply convolutional neural networks in

ceiling damage evaluation to fulfill the requirements for the deep learning model

proposed in Chapter 1. A series measures are adopted to make sure that the CNN model

really learns from the training dataset. The conclusions of this chapter are as follows:

1. The architecture of the CNN model for ceiling damage detection (shown in Fig. 3.25)

is proposed to perform 3-2-1-dimensional reduction to the input image. The architecture

is validated by the accuracy of 86.2% using testing dataset. Moreover, it is also

confirmed that the CNN model can make acceptable prediction accuracy to the ceiling

images collected from the internet (88.9%).

2. It is elucidated that the deep learning (convolutional neural networks) method is

possible to be applied in ceiling damage evaluation even if: a. only two classes

representing ‘intact’ and ‘damaged’ (images labeled by the same label can be totally

different in manifestation), b. lack of training data (approximately only 1000 images

for each class); c. high resolution of training data (400×600×3, to keep enough

information).

3. Using high resolution images and scarce training data leads to overfitting. To

overcome it, countermeasures such as data augmentation, cross validation and

stochastic gradient descent are necessary to make the CNN models predict higher

accuracies.

80

Fig. 3.25 The architecture of the CNN model for ceiling damage evaluation

81

4. Interpretations to the CNN Model by Visualization and a

Ceiling Damage Detection System with User-CNN

Interactive Process

This chapter is the core of the whole thesis. Through the visualizations to the trained

CNN model, the CNN model is more understandable to human and no longer a black

box. Furthermore, the visualizations of the saliency map and the Grad-CAM make

ceiling damage detection possible. At the end of this chapter, a ceiling damage detection

system is raised with the user involved in to perform ceiling damage detection both in

the routine ceiling inspection by the maintenance personnel and safety confirmation to

refugee under disaster circumstance.

4.1 Visualizing the layers and the patterns that maximize the

activation feature maps

4.1.1 Visualizing the convolutional layers in the trained neural

networks

As shown in Fig. 3.8 and Table 3.1, there are five convolutional layers in the CNN model.

Each convolutional layer has its own filter parameters (filter numbers, sizes and strides).

The parameters of the filters are optimized through the training process. The accuracy-

epoch curve and the loss-epoch curve indicate the performance of the whole CNN

model by mathematical calculations. Visualizing the convolutional layers has provided

abundant understandings to the CNN architecture of deep learning [120, 125].The

convolutional layers perform gradual abstractions to the information in the images.

Each convolutional layer has its own structure that determines the qualities and sizes of

filters. However, it is hard for human to interpret the CNN model only through the

matrices in the layers of the final trained model. For example, the weight matrix of

Convolutional Layer 1 is the combination of a four-dimensional matrix (2x2x2x32) and

a one-dimensional bias matrix (1x32). These matrices are meaningless to human before

they get applied to an image as filters. These matrices of filters can be considered as

tools. It is hard to figure out how a tool really works only by looking at its appearance.

82

By visualizing the outputs from the input scanned over by each filter in a convolutional

layer, it provides intuitions to see what parts in the image most activate the

convolutional layer. If the CNN model is well trained, the intermediate outputs would

gradually focus on the parts that are most likely to be damaged. There have been

research on visualizing the objects that weights most to the final outputs to perform

some kind of object detection [126].

In the CNN model built and trained in this thesis, the output of the Convolutional Layer

1 is in the shape of (399x599x32), which indicates that there are 32 output images in

the shape of (399x599x1). If the damaged parts are paid special attention to by the

convolutional layers, it both indicates that the CNN model is in proper function and the

activated parts are in high possibility of damage. The architecture of the CNN model in

this research has five convolutional layers with 192 filters in total. Each filter scans

over the three-dimensional input to it and outputs another three-dimensional output. All

filters in one convolutional layer constitute the final three-dimensional output of the

layer. Table 4.1 is extracted from Table 3.1 to indicate the details of convolutional layers

(CL stands for convolutional layer).

Table 4.1 Convolutional Layers in the CNN model

Layer Input Shape Output Shape
Filter Number

and Shape
Parameters Stride

CL 1 (400, 600, 3) (399, 599, 32) 32 x (2, 2, 3) 416 (1, 1)

CL 4 (199, 299, 32) (198, 298, 32) 32 x (2, 2, 32) 4128 (1, 1)

CL 7 (99, 149, 32) (97, 147, 32) 32 x (3, 3, 32) 9248 (1, 1)

CL 10 (48, 73, 32) (46, 71, 32) 32 x (3, 3, 32) 9248 (1, 1)

CL 13 (23, 35, 32) (21, 33, 64) 64 x (3, 3, 32) 18496 (1, 1)

To inspect the outputs by the filters in the convolutional layers, eight images are

chosen as inputs. Two of them are from the test data (never shown to the CNN model

in the training). The other six are chosen from Fig. 3.24 (four of them are predicted

correctly, two of them are predicted incorrectly). All the outputs (feature maps) to the

192 filters are shown in Appendix B. Fig. 4.1 shows some excerpts of feature maps in

the intermediate convolutional layers. The name of “Fig. 4.1(a1) CL1_14” represents

the feature map of the 14th filter in the CL1 layer.

83

(a) An intact image from test data

Prediction: 0.006

(b) A damaged image from test data

Prediction: 0.673

(a1) CL1_14

(a2) CL4_19

(b1) CL1_5

(b2) CL4_18

(a3) CL7_11

(a4) CL11_9

(b3) CL7_13

(b4) CL11_19

(c) Fig. 3.24(43)

Prediction: 0.039

(d) Fig. 3.24(5)

Prediction: 0.737

(c1) CL1_12

(c2) CL4_9

(d1) CL1_9

(d2) CL4_13

(c3) CL7_11

(c4) CL10_30

(d3) CL7_30

(d4) CL10_8

84

(e) Fig. 3.24(39)

Prediction: 0.246

(f) Fig. 3.24(41)

Prediction: 0.620

(e1) CL1_28

(e2) CL4_19

(f1) CL1_9

(f2) CL4_19

(e3) CL7_30

(e4) CL11_21

(f3) CL7_29

(f4) CL11_21

(g) Fig. 3.24(3)

Prediction: 0.502

(h) Fig. 3.24(38)

Prediction: 0.275

(g1) CL1_9

(g2) CL4_1

(h1) CL1_9

(h2) CL4_14

(g3) CL7_11

(g4) CL11_32

(h3) CL7_11

(h4) CL11_6

Fig. 4.1 Excerpts of the feature maps from eight images

The first two images in Fig. 4.1 are from the test data, in which the images are collected

by the staff of the Kawaguchi Lab. Fig. 4.1(a) is a representative image of ceilings in a

85

stadium with large span. The feature maps can focus on the non-ceiling part and the

ceiling part through (a1) CL1_14 and (a2) CL4_19. In the feature maps of (a3) CL7_11

and (a4) CL11_9, the filters focus on the interior without and with lightings. There are

no obvious damages in Fig. 4.1(a), the CNN model does not pay special attention to

anywhere that is suspected to be damaged. In Fig. 4.1(b), the damages are due to the

earthquake. The earthquake shakes and squeezes the suspending system in the ceilings

and results in the bending damage to the furring strips next to the wall. The bending

and squeezing also makes the ceiling boards fall. The main damage form is the lack of

ceiling boards. The feature map of (b1) CL1_5 indicates that the filter to the feature

map distinguishes the wall and the ceilings, the feature map focuses on the ceilings.

The feature maps of (b2) CL4_18, (b3) CL7_13 and (b4) CL11_19 focus on the

damages in the zone of the missing ceiling borads.

The remaining six images in Fig. 4.1 are collected from the internet. Images of Fig.

4.1(c~f) are predicted correctly and those of Fig. 4.1(g, h) are predicted incorrectly by

the trained CNN model. The feature map in (c1) CL1_12 shows that it focuses on the

ceilings and floors while it ignores the crowd and the lightings in the ceilings. While

(c2) CL4_9 focuses on the lights, the windows and the crowd in the contrast to those in

(c1) CL1_12. (c3) CL7_11 focuses on the ceilings and the floors more that (c1) CL1_12

does. The final prediction to Fig. 4.1(c) is low that means the contents in it are intact.

The damage form of the ceilings in Fig. 4.1(d) is the missing of ceiling boards and

peeling offs of the ceiling board surfaces. The feature maps of Fig. 4.1(d) provides

interprets of the final prediction of damaged ceilings. (d1) CL1_9 is most activated by

the peeling off boards while (d2) CL4_13 is most activated by the missing ceiling

boards, both of which are related to the damage label. (d3) CL7_30 is most activated

by the lights in the ceilings, it also notices the dividing lines among the ceiling boards

in the upper part of the image. (d4) CL10_8 is activated by both the missing boards and

the lights, noticing that the contrast of these two items are the strongest in the image.

Fig. 4.1(e) shows the membrane ceilings with its inherent curved surfaces. There are no

membrane ceiling images in the training or in the validation data sets. In fact, the shape

of the curved ceilings was never shown to the CNN model before. The image of the

membrane ceilings is chosen to investigate if the trained CNN model can make correct

predictions to new forms of ceilings that it was never trained for. (e1) CL1_28 indicates

that the model still can tell the differences between the celings and the floor (although

the window zone is also activated with the ceiling zone). (e2) CL4_19 indicates that the

curve shape (gaps between the membranes) of the menbrane ceilings is most activated.

(e3) CL7_30 and (e4) CL11_21 focus on the surfaces of the membrane. The final

prediction to Fig. 4.1(e) agrees with the contents. Fig. 4.1(f) shows the damages in the

ceiling boards that surrounding the columns in an earthquake. (f1) CL1_9 highlights

the half-fallen parts at the rims of the falling boards. (f2) CL4_19 and (f3) CL7_29

86

foucus on the edges of the missing parts in the ceilings, even if the vents of the air

conditioning. (f4) CL11_21 extract the contours of the void boards and areas with

strong contrast.

Predictions to Fig. 4.1(g) and Fig. 4.1(h) are where the CNN model fail. The ceiling

image of Fig. 4.1(g) shows a wood board ceiling with patterns of spots, which look like

rust or water stains. Maybe this is the reason why the CNN model predicts to the ceiling

image incorrectly (the prediction is 0.502, which is hard to really judge if the prediction

is correct). (g1) CL1_9 and (g2) CL4_1 notice the celing and other parts except the

ceiling respectively. Notice that (g1) CL1_9 is more activated by the textures in the

wood which look like water stains. (g3) CL7_11 and (g4) CL11_32 both focus on the

ceiling part with different extents. It can be still redeemed as a success because the

result that the CNN model predicts alarms the user to perform more careful examination.

The damage in Fig. 4.1(h) is hard to find for human even at the first glance. The uplift

between the ceiling boards is tiny. There is no such damage form in the training data

set either. (h1) CL1_9, (h2) CL4_14 and (h3) CL7_11 do focus on the ceiling part of

the image, but they fail to detect the uplift part in the ceilings. (h4) CL11_6 just sees

the ceilings as a whole, an intact whole. It also fails to detect any damage traces in the

image. The final prediction to this image is 0.275, which is relatively low.

By visualizing the outputs of the intermediate layers, it is possible to understand what

the CNN model does in the convolutional layers and what countermeasures should be

taken. It also aids to find out if the CNN model does learn from the training data or it

just predicts by luck. The visualizations above show that the trained CNN model does

learn from the training data and the accuracy can be improved by collecting more

versatile ceiling images.

4.1.2 Visualizing the patterns that most activate the hidden layers in

the convolutional neural networks

Visualizing the outputs of the intermediate convolutional layers by showing them

different images helps to interpret the trained CNN model. However, these

interpretations are from the intuitional point of view and not unified guiding

significance. They still leave the questions of choosing how many and what kind of

images to the CNN model. It is good for the understandings if the images have

something in common. But there are too many possible influence factors in the images.

Note that we confined ourselves in the test data and internet ceiling data sets for looking

for general input patterns. It is possible to take a further look at the trained CNN model.

87

Visualizing the matrices of the filters in the convolutional layers is no use, but how

about generating an image that maximize the activations to the filters? In other words,

how about taking the generating images task as an optimization problem?

The idea of generating an image that maximizes the activations to the filters dates back

to the year of 2006. Hinton et al. [127] built a generative model that gives better digit

classification than the best discriminative learning algorithms. The generated images

form the deep hidden layers make the interpretations to the nonlinear, distributed

representations possible. Erhan et al. [128] used activation maximization to visualize

unsupervised deep learning models by gradient ascent in the images. Their results

confirm that the higher layers in the deep learning model represent features more

complicated than that the lower layers do. This method was employed to visualize the

features learnt by an unsupervised auto-encoder [129]. The application of this method

in the visualizing the features of classes [130] in the deep image classification CNN

model trained on the ImageNet challenge dataset [71]. The deep dream project launched

by Google also used the visualization of the features in the filters to create arts [131] as

shown in Fig. 4.2. This idea of generating images from the features that the CNN model

learned also revives the art historical research in iconography and formalism [132]. The

visualization of intermediate layers and regularized optimization are introduced in

helping to interpret the trained CNN models [133].

Fig. 4.2 Examples of Google’s deep dream works [131]

This is the inverse problem to the training of CNN models. The training process is to

generate the weights that minimize the loss function using data (images) that we have

already obtained by gradient descent method. While when visualizing the patterns that

most activate the hidden layers, the objective is to generate an image using the trained-

already weights that most activate the filters. Corresponding to the gradient descent

method, the gradient ascend method is adopted to fulfill the purpose of generating the

88

pattern images (Eq. 4.1).

()
Gradient descent (minimizing an objective function ()) :

()
Gradient ascent (maximizing an objective function ()) :

where is the weights, () is the objective function,

i i

i

i i

i

J
J

J
J

J


   




   



 


 −




 +



 is the learning rate

4.1

The idea of finding an image that maximizes the activations in the intermediate layers

can be viewed as

* arg max((,))ij

X

X h X= 4.2

where:  is the weights and biases in the trained neural networks model (constant);

 *X is the image that maximizes the activation;

 X is the input;

 (,)ijh X is the activation of a given unit i in a given layer j .

This is an optimization problem that can be done by performing gradient ascent in the

input space X . In other word, this problem is to move X in the direction of the

gradient
(,)ijh X

X




 until the local maximization *X that maximizes (,)ijh X . This

optimization strategy is applicable to any neural networks as long as the activation

function (,)ijh X can be computed. The optimization also involves the choice of

learning rate and stop criteria like the gradient descent.

In the case of finding an image that most activates the filters in our trained CNN model

for ceilings, the function can be specified as

* arg max((,) ())ij

X

X a X R X= − 4.3

where:  is the weights and biases in the trained neural networks model (constant);

89

 * H W DX   is the image that maximizes the activation, H=400, W=600,

D=3;

 X is the input image;

 (,)ija X is the activation for a given filter i in a given layer j when the

image is presented to the trained CNN model;

 ()R X is a regularization function that penalizes the (,)ija X function.

Just like the cycles we did in the gradient descent, the search for *X starts from a

random 0X , which is a random noised image. The step number and the learning rate

are pre-fixed. Eq. 4.4 is a single step in the updating process:

 ((,) ())ijX X a X R X
X

 


 + −


 4.4

The maximized activations to the filters in the trained CNN model for ceilings are

shown in Fig. 4.3. As shown in Table 4.1, the numbers of filters in the convolutional

layers correspond to the maximized activations. For more clarity, two or more of the

maximized activations in each convolutional layer are chosen to display. Notice that all

the maximized activation images are in the shape of 400x600x3.

(a) CL1 (32 filters)

90

(a1) Filter 3

(a2) Filter 30

(b) CL4 (32 filters)

(b1) Filter 17

(b2) Filter 28

(c) CL7 (32 filters)

91

(c1) Filter 2

(c2) Filter 17

(d) CL10 (32 filters)

(d1) Filter 2

(d2) Filter 9

(d3) Filter 17

(d4) Filter 20

92

(e) CL13 (64 filters)

(e1) Filter 2

(e2) Filter 9

(e3) Filter 57

(e4) Filter 63

Fig. 4.3 Visualizations to the images that most activate the filters in the trained CNN model

From Fig. 4.3, the interpretations to the maximized activation images are:

93

(1) In CL1 and CL4, the filters do abstractions on randomly dispersed spots, in which

there are no regular patterns among them.

(2) In CL7, some filters in it begin to be more activated by patterns looks like tissues

(Fig. 4.3c1) or mesh connections (Fig. 4.3c2) from an organism.

(3) In CL10, the filters step further away that they are more activated by some regularly

distributed shapes like evenly distributed points (Fig. 4.3d2) and Labyrinth-like grids

(Fig. 4.3d3 and Fig. 4.3d4). Noticing the four edges in the maximized activation images

in Fig. 4.3d, the pixels at the edges become different from the corner ones. That is due

to the image augmentation in the training dataset: an original ceiling image was moved

and rotated to generate more ceiling images which made the edges in the generated

images meaningless (as shown in Fig. 3.22). The filters in CL10 noticed the meaningless

zones and learnt to distinguish them.

(4) The abstraction in the final convolutional layer CL13 is stronger. The filters in CL13

combine the simple patterns into complex ones. Remember the final output to the CNN

model is one node (from 0 to 1), which means the extent the contents in the input image

is damaged to. Intuitively speaking, there are more common features in the intact ceiling

images than those in the damaged ones. The filters in the CL13 are more activated by

the images that have regular patterns. This indicates that the trained CNN model does

learn the distinguishing methods by recognizing regular patterns.

(5) The abstraction is gradually stronger from the lower convolutional layers to the

higher ones.

This section introduced a very powerful and useful method for visualizing the filters in

the CNN model by finding an image that most activates a filter in a convolutional layer.

It confirms the suspect that convolutional layers do gradual abstraction from the lower

layers to the higher ones. It also provides direct inspections method to the filters in a

convolutional layer to see if the trained model has really learnt something. Moreover,

it helps with the determination to the architecture of the deep learning model that

accuracy is not the only evaluation standard any more. People can find if or how much

the deep learning model has learnt by visualizing the maximized activation images. It

does open to black box of CNN models to some extent.

94

4.2 Damage detection

4.2.1 Saliency maps

Visualizing the middle convolutional layers outputs and visualizing the activation

feature maps provide interpretations to the trained CNN model from the activation

perspective. The expression of “activation” also connects to the phase “attention”,

which is more suitable to describe the artificial intelligence algorithms, especially the

deep learning. However, visualizing the middle convolutional layers outputs and

visualizing the activation features to the filters are not strong enough to provide strong

guidance to human, in other words, we still do not know what regions in an image

contribute most to the final predictions. This elicits the reflection of looking back into

the trained deep learning models themselves. The first idea is simple: since the

prediction accuracies to the contents in the image have been to very high levels by the

deep learning models in classification task, why not investigate the prediction process

to find out what parts in the image leads to the final prediction? The parts in an image

that contribute most to the final prediction have the highest probability of being the

target object. In other words, the object detection task is transferred into the task that

given a trained classification model, the label to the target object and an image, we want

to use them to perform localization to the given image for the given target object.

The visualization of image-specific class saliency maps was first introduced in 2014

[130], it is another powerful auxiliary means to investigate the trained deep learning

model and can be modified for object detection. In the case of ceiling damage

evaluation task in this thesis, it is important to confirm what parts in the ceiling image

most activate the CNN model. Remember the final output is a float number from 0 to

1, which is impossible to interpret if the CNN is using ceiling-related pixels or using

irrelevant pixels with ceilings like the windows or the crowd. The saliency maps

solution kills two birds with one stone: 1. It confirms if the trained CNN model really

learns the representative features of the objects; 2. If the trained CNN model really

learns the representative features of the objects, it can do localization task to new

images.

For example, a pretrained CNN model proposed in 2014 with the name VGG16 [134],

whose team won the first and the second places in the localization and classification

tracks respectively in ImageNet Challenge 2014 [71] with the database over 14million

images to 1000 classes, achieved the accuracy of 93.2% in the top-5 test. The prediction

to one image in classification is a 1000x1 vector with each row represents one class.

We choose the 671st label in the classification index, which represents “mountain bike”

95

for the demonstration for saliency map method. Three images are downloaded from

https://www.pexels.com under the CC0 license (https://www.pexels.com/photo-

license/), in which one is a “mountain bike”, one is a “scooter” and one is a “car”. The

original images and the saliency maps to them are shown in Fig. 4.4. It can be found

that the saliency map to the “mountain bike” image is the strongest, the saliency map

to the “scooter” is less strong and the saliency map to the “car” is null. The saliency

maps confirm that the VGG16 does learn the features in the mountain bike and the

saliency maps can be used for object detection.

Fig. 4.4 Saliency map examples for VGG16

For a given image I0 (H×W×D), a class with the index of c (n classes in total, the index

is also the label to the object), and a trained CNN model, the final prediction to the

image I0 is a vector:

  1 0 2 0 0 0(), (), , (), , ()c nS I S I S I S I 4.5

0()iS I represents the probability that the image I0 belongs to the i-th class, so the sum

of them equals to 1:

Label: “mountain bike”

+ ++

VGG16

https://www.pexels.com/
https://www.pexels.com/photo-license/
https://www.pexels.com/photo-license/

96

 0() 1i

i

S I = 4.6

By the way, the top-1 accuracy is the accuracy that the image label happens to be the

highest probability prediction label; the top-5 accuracy is the accuracy that the image

label happens to be one of the five highest probability prediction labels.

The goal is to identify which pixels in the image I0 contribute most to the final

prediction 0()cS I that represents the class index c. The required output (the saliency

map) is an image with the same shape to the given image I0, which means that the input

and the output are pixel-wise one-to-one correspondence. The relationship between the

input I0 and the saliency map to it can be represented as:

 0 0() T

c c cS I I b= + 4.7

where c is the saliency map to the image I0.

In the case of CNN model, the final prediction corresponding to the class c is:

 0 1 2 0() ()c nS I f f f I= 4.8

where fi is the i-th layer in the trained CNN model.

Unluckily, 0()cS I is a multilayer non-linear function with respect to I0, we cannot

simply apply Eq. 4.8 to Eq. 4.7. Recall the first-order Taylor expansion:

0 1 2 0 0() () T

c n c cS I f f f I I b=  + 4.9

Now we can calculate the c , both the saliency map to image I0 and the derivative of

()cS I with respect to the input I at the point I0:

0

c
c

I

S

I



=


 4.10

97

Recall the backpropagation of deep learning, c can be quickly computed by a single

backpropagation. For the CNN model for ceiling damage evaluation in this thesis, the

final output is only one class that represents the probability that the contents in the

image are damaged. Applying the saliency map method to some images from the test

dataset (shown in Fig. 4.5) and images from internet (from Fig. 3.24, shown in Fig. 4.6)

with the final class index and the trained CNN model in Fig. 3.8. Three sub-images are

shown for each ceiling image in columns, with the order of original-saliency map-

overlaying the saliency map to the original image.

(1) P: 0.019 (2) P: 0.018 (3) P: 0 (4) P: 0.266

(5) P: 0.002 (6) P: 0 (7) P: 0.001 (8) P: 0.010

98

(9) P: 0.747 (10) P: 0.850 (11) P: 0.673 (12) P: 0.915

(13) P: 0.572 (14) P: 0.810 (15) P: 0.731 (16) P: 0.708

Fig. 4.5 Saliency maps to some ceiling images from the test dataset

From Fig. 4.5, the conclusions to the saliency maps to the ceiling images from the test

dataset are:

1. In the intact ceiling images, whose final predictions are very low, the most activated

pixels are not ceiling-relevant while relating to lights and crowds. Noticing that the

lights are usually well ordered and the crowds are extremely random. Although all of

them are noticed by the CNN model, the contributions by these pixels to the final

predictions are very low. It can be inferred that the model learns that the lights and the

crowds are irrelevant to the predictions.

99

2. Results are different for the damaged ceilings. Firstly, the predictions to the damaged

ceiling images are correct to the contents, indicating that the activated pixels in the

saliency maps have strong weights to the final predictions. The shapes of the activated

pixels are different from those in the intact ceiling images. Secondly, the saliency maps

for the damaged ceilings do reflect most of the damage zones which are very hard for

traditional algorithms to detect.

3. The images in the test dataset are randomly chosen from the ceiling image collection

by the Kawaguchi Lab, within which there are implied similarities among the images,

like the building types, the proportion of ceiling area to the whole image area and the

photographer’s habits, etc. All of these will strongly affect the representations in the

ceiling images. Ceiling images from outsider are necessary to validate the saliency map

method.

(1) P: 0.999 (2) P: 0.716 (3) P: 0.502 (4) P: 0.006

(5) P: 0.737 (6) P: 0.458 (7) P: 0.067 (8) P: 0.022

100

(9) P: 0.059 (10) P: 0.951 (11) P: 0.245 (12) P: 0.590

(13) P: 0.409 (14) P: 0.628 (15) P: 0.574 (16) P: 0.002

(17) P: 0.316 (18) P: 0.002 (19) P: 0.597 (20) P: 0.747

101

(21) P: 0.068 (22) P: 0.174 (23) P: 0 (24) P: 0

(25) P: 0 (26) P: 0.338 (27) P: 0.032 (28) P: 0.088

102

(29) P: 0.087 (30) P: 0.359 (31) P: 0.371 (32) P: 0.207

(33) P: 0.232 (34) P: 0.067 (35) P: 0.010 (36) P: 0.020

(37) P: 0.009 (38) P: 0.275 (39) P: 0.246 (40) P: 0.691

103

(41) P: 0.620 (42) P: 0.563 (43) P: 0.038 (44) P: 0

(45) P: 0.001

104

Fig. 4.6 Saliency maps to ceiling images from internet (Fig. 3.24)

The saliency maps in Fig. 4.6 are interpreted as follows:

1. For those correctly predicted intact ceiling images, the most activated pixels are still

the well-ordered lights. The crowds are also noticed in them.

2. For those correctly predicted damaged ceiling images, the saliency maps to them can

reflect most the damaged parts in the ceilings. However, there are still exceptions that

even if the image is correctly predicted, the saliency map to it fails to detect the damage

such as the stains and peeling off in the ceilings. That is because there are too few

images of such damage forms in the training data (only three images or less are about

such damages). But the correct predictions still provide warnings to further notice the

ceilings.

3. The incorrectly predicted damaged images are dangerous in practice, because the

damages are ignored and evaluated as safe. Some of the damages are voids of ceiling

boards with neat cut edges, which are easily confused with vents by the CNN model.

Some of the damages are of too much proportion to the whole image that the CNN

model would confuse with crowds. There are also damage shapes that have never been

shown in the training data within which the CNN model fails to learn.

4. There is only one incorrectly predicted intact image with spotty ceilings. But the

saliency map to it also fails to focus on the spots in the ceilings but on irrelevant objects.

But notice the prediction to it is 0.502, the noticed objects have low weights to the final

prediction.

The saliency maps to the ceiling images from internet prove that they are possible

solutions to highlighting the damages in the ceilings with the corresponding to the

predictions to them. By highlighting the damages, it also performs damage detection

task.

105

4.2.2 Gradient-weighted class activation mapping (Grad-CAM)

The saliency map method visualizes the attention that the CNN model pays to an image

when the image is shown to it, for the first time in convolutional neural networks.

Visualization the attention map of a CNN model has at least three merits: (1) It visualize

if the CNN model has really learnt corresponding features from the training data; (2) If

the CNN model has learnt enough, the attention map can be used as object detection

without ever having been explicitly taught by the training data; (3) It connects the

research on computer algorithms with the research on human minds. Since then, there

are more researches on the attention maps made by the CNN model. The most recent

winners in the classification and object detection tasks introduced the attention-aided

models to reach state-of-art performances [135, 136]. There is also primitive research

on the comparison between human attention and VQA (Visual Question Answering)

models attention [137].

For the ceiling damage detection task in this thesis, the saliency map method provides

a solution to it. However, the saliency map method aggressively simplifies the complex

non-liner convolutional neural networks into a linear function (using the first-order

Taylor expansion). The results of saliency map are satisfying, but there are still

improvements could be done. In this section, a more precise method, Gradient-weighted

Class Activation Mapping (Grad-CAM), is introduced to visualize better attention maps.

Before that, prerequisite knowledge is:

1. Deconvolutional networks

Researchers are trying to open the black box of deep learning from different aspects,

the deconvolutional perspective is one of them [120, 125]. Contrary to the down-

sampling convolutional operation, the deconvolutional layers performs up-sampling

operation. To a deconvolutional networks model, the output is a reconstructed image

the same size to the input image, emphasizing the pixels that most activate the neurons

in the convolutional layers. Generally, the deconvolutional networks are inverse neural

networks to the convolutional neural networks. To realize the inverse operations to a

CNN model, the unpooling operation and deconvolutional (also named transposed

convolutional) operation are used to aid the output of the final reconstructed image

(shown in Fig. 4.7). The purpose of deconvolutional networks is to visualize the most

activated pixels in a trained CNN model by the reconstructed input.

106

(a) Unpooling

(b) Deconvolutional operation [116]

(c) From input to reconstructed input

Fig. 4.7 Deconvolutional Networks

The research of deconvolutional networks provides profound understandings of

0.46 0

-0.20 0

0.12 0

0 0.55

0 0.66

-0.01 0

-0.33 0

0.43 0.23

0.16 0.08

0 -0.88

0 0.19

0 -0.31

0 0.03

-0.57 0

0 0.3

0.54 0.46

k=1 k=2

Feature maps

-0.88 0.55

0.66 0.54

Pooled feature maps

(max absolute value)

2,2,2 2,2,1

1,2,1 2,1,2

Switches

(location: x, y, k)

Max pooling

0 0

0 0

0 0

0 0.55

0 0.66

0 0

0 0

0 0

0 0

0 -0.88

0 0

0 0

0 0

0 0

0 0

0.54 0

k=1 k=2

Unpooled feature maps

Unpooling

Input (2x2)

1

2

4

3

0 0 1

1 -1

0 1

0

-1

Filter (3x3)

0 0

1 3

1 4

-2 3

2 2

0 2

0 -4

1 -3

Stride: 1

S
tr

id
e:

 1

Output (4x4)

Deconvolution

Convolutional Layer 1

Input

Pooling Layer 1

Convolutional Layer 2

Pooling Layer 2

Dense Layer

Fully Connected Layer 1

Fully Connected Layer 2

Output

Deconvolutional Layer 1

Reconstructed Input

Unooling Layer 1

Deconvolutional Layer 2

Unpooling Layer 2

Inversed Dense Layer

Transposed Fully

Connected Layer 1

Transposed Fully

Connected Layer 2

Output

Transposed

Weight Matrix

Transposed

Weight Matrix

Vector → Matrix

Inverse Pooling

Inverse Convolution

Inverse Pooling

Inverse Convolution

Deconvolution Networks

107

convolutional neural networks with visualizing the gradually abstraction in the

convolutional layers. Fig. 4.7(c) shows the data flow in deconvolutional networks: given

an input to a trained CNN model, the details (switches in the pooling layers and

deconvolutional matrices) of gradually abstractions in the forward propagation process

are recorded to provide traces in the deconvolutional process (red dots represent data

node). More generalized schematic visualizations to the deconvolutional networks and

details are shown in Fig. 4.8 (corresponding data nodes are picked from forward pass

and backpropagation [138]).

(a) Given an input image, reconstruct the image for layer l

(b) Different methods of backpropagation

Fig. 4.8 Details of Deconvolutional Networks

Input Image: f 0 f 1 f l-1…

Forward pass
0 0 1

1 -1

0 1

0

-1

Feature maps

3 2 1

-2 -1

2 -1

1

1

1 3 1

4 -1

1 1

2

-1

k=1 k=2 k=3

Reconstructed

Image: R0
R1 Rl-1…

Backward pass
0 0 0

0 0

0 0

0

0

Feature maps for reconstruction

3 2 1

-2 -1

2 -1

1

1

0 0 0

0 0

0 0

0

0

k=1 k=2 k=3

f l

Rl

Feature map k=2

is chosen for reconstruction

1 1

backpropagation ('guided'):

(0) (0)l l l l

i i i iR f R R+ +=  

1 -1 4

3 -3

0 -5

2

-1

1 0 4

3 0

0 0

2

0

-1 0 -2

5 0

2 0

1

0

-1 3 -2

5 -2

2 3

1

-2

0 3 0

5 0

2 3

1

0

-1 3 -2

5 -2

2 3

1

-2

0 0 0

5 0

2 0

1

0

-1 3 -2

5 -2

2 3

1

-2

1 1

backpropagation ('deconvnet'):

(0)l l l

i i iR R R+ += 

1 1

1

backpropagation:

(0) , where:
out

l l l l

i i i i l

i

f
R f R R

f

+ +

+


=  =



1

forward pass activation (ReLu):

() max(,0)l l l

i i if relu f f+ = =

108

2. Class activation mapping (CAM)

In 2015, a new architecture of CNN named “the all convolutional networks” that

consists solely of convolutional layers yields competitive or state-of-art performance

on several object recognition datasets [138]. It uses the global averaging pooling layer

(GAP) as the penultimate layer to perform more extreme dimensionality reduction than

the max pooling layer (the last layer is softmax layer for object categorization). The

global averaging pooling layer reduces a three-dimensional matrix (h × w × d) into a

tensor (1 × 1 × d) [139] (shown in Fig. 4.9).

Fig. 4.9 Global averaging pooling (GAP)

In mid-2016, a new architecture of CNN named Class Activation Mapping (CAM)

using the all convolutional neural networks with the GAP layer as classifier is

demonstrated that such architecture of CNN model can be used for not only object

classification but also for object recognition at the same time [140]. This means that a

CNN model with the CAM architecture is able to tell what an object in an image is and

where it is within only one forward pass. The main idea of CAM is that each class

activation map compressed by the GAP layer acts as an object detector and an object

classifier at the same time. Fig. 4.10 shows how the CAM architecture performs object

classification and object detection function.

1 6 5

3 1 2

output (1×1×3)

GAP

5 3

9 3

1 2

1 4

2 0

1 8

4

2

1 2 6

2

7

0

1

3.9

2.7

2.6

input (3×3×3)

109

Fig. 4.10 Class Activation Mapping (CAM)

The last layer shown in Fig. 4.10 is possible to be modified as a softmax layer, a

regression layer or other kinds of losses. In the case of a softmax layer as the final layer,

the description to a CAM model is as:

For a trained CAM model, an input image is down-sampled gradually when transferring

through convolutional layers. For the last convolutional layer, fk represents the k-th

feature map with n feature maps in total. fk is a two-dimensional matrix with spatial

information of the input image. In fact, fk is the visualization map of the pattern k. After

fk is fed into the GAP layer, the result is Fk, where
i

k
k

f
F

Z


= (Z is the total number of

digits in fk). For a given class c, the score c

c k k kS F=  , where c

k is the weight of

class c for the k-th feature map. The probability of the image of being class c Pc is

calculated through the softmax function:
exp()

exp()

c
c

c c

S
P

S
=


 .

Recall the score for class c:

i i
c c ck k

c k k k k

k k k

f f
S F

Z Z
  


= = =   4.11

Define Mc as the class activation map for class c, where:

CONV CONV CONV CONV CONV

GAP

f1 f2 fn

… …

W1

W2

Wn

Ceilings

W1 × + W2 × + … + Wn × =

Class

Activation

Map

(Ceilings)

f1 f2 fn

110

i
c k

c k

k

f
M

Z
=  4.12

Then,
c cS M=  . Mc indicates the importance of the activation as the image classified

to class c.

This technique named Class Activation Mapping (CAM) enables a CNN model trained

for classification objective can be directly used for object localization tasks. The idea

behind CAM also aids other researchers to understand the convolutional neural

networks in their practices.

3. Gradient-weighted class activation mapping (Grad-CAM)

The Class Activation Mapping (CAM) method allows a all-convolutional model

perform object localization even if it is not purposely trained for object localization.

The biggest drawback of CAM is that it restricts the architecture of the CNN model,

which only containing convolutional layers and a global average pooling before the last

softmax prediction layer. In a few months after the CAM method announced, a more

generalized method named Gradient-weighted Class Activation Mapping (Grad-CAM) ,

using the gradients of any target class flowing into the last convolutional layer to

perform localization is issued [141]. The Grad-CAM method is shown in Fig. 4.11.

Given an image and a category (‘ceilings’) as input, the objective is to locate the ceiling

zone in the image. Firstly, the image is forward propagated through the trained CNN

model until it reaches the raw class scores before the softmax layer. Secondly, the vector

representing the desired class (‘ceilings’ in this example), with only the desired class as

1 and all other classes as 0, is backpropagated till to the last convolutional-shaped layer

(the last pooling layer in this example). Finally, a Grad-CAM localization heatmap

representing the desired class is generated by combining the weights from the pooling

layer and the vector backpropagated to the pooling layer.

111

Fig. 4.11 Grad-CAM

As shown in Fig. 4.11, the objective is to obtain the localization map to the given image

for the desired class c. The final output is an image c w h d

Grad CAML  

−  with width w,

height h and depth d (usually 3) for class c. Firstly, compute the gradient matrix

c c
k

k

S
g

f


=


 ,where cS is the score for class c before propagated to softmax, kf is the

k-th feature map in the last convolutional-shaped layer. Then the neuron importance

weights c

kW is computed by flown through a global average pooling operator (Z is the

total number of digits in c

kg):

global average pooling

,

gradients by backpropagation

1 1c c c
k k i i

k

S
W g

Z Z f


=  = 


 4.13

c

kW represents the weights of the k-th feature map kf going downstream through the

deep networks in which the layers after the last convolutional-shaped layer (the last

pooling layer in this example) for the representation of the targeted class c. The final

output of
c w h d

Grad CAML  

−  is calculated as:

 Re ()c c

Grad CAM k k

k

L Lu W f− =  4.14

From Fig. 4.10 and Fig. 4.11, we can find that the weights in the Grad-CAM method are

generated by the gradients in backpropagation process, through which the applicable

Conv
Pooling

Conv

Pooling

f1 f2 fn

…

Ceilings

W1 W2 …Wn

Backprop to conv
+

Grad-CAM

ReLu

112

range of Grad-CAM is widened into deep learning networks with convolutional layers,

which is also applicable to the CNN model we trained for ceiling damage evaluation.

4. Applying the Grad-CAM method in the CNN model for ceiling damage

evaluation

As Fig. 3.8 shows, the last convolutional-shaped layer in the CNN model is the Pooling

Layer 15. The CNN model output only one node representing the probability of the

ceilings in the image are damaged. Based on these and the Grad-CAM method, the

same images to Fig. 4.5 and Fig. 4.6 are chosen for damage region localization.

(1) P: 0.019 (2) P: 0.018 (3) P: 0 (4) P: 0.266

(5) P: 0.002 (6) P: 0 (7) P: 0.001 (8) P: 0.010

(9) P: 0.747 (10) P: 0.850 (11) P: 0.673 (12) P: 0.915

113

(13) P: 0.572 (14) P: 0.810 (15) P: 0.731 (16) P: 0.708

Fig. 4.12 Grad-CAM to some ceiling images from the test dataset

In Fig. 4.12, both intact ceiling images and damaged ones from test dataset are chosen

for Grad-CAM method to perform damage region detection. For the intact ceilings, the

final predictions are very small in digits and the most activated regions are lights in the

ceilings for most of the images. While Grad-CAM of images Fig. 4.12 (6) and (8) focus

on objects irrelevant to ceilings like floors and people, this reveals that objects like

floors and people share low weights to the final predictions. This consists with reality

that floors and people in an image indicate that the structural space is probably safe.

For the latter damaged ceiling images in Fig. 4.12, the overall damage detection

performed by Grad-CAM is very satisfying. The attention maps not only detect the

damage locations but also draw the contours of the damages, which providing strong

guidance to the user. Except for Fig. 4.12(9), the Grad-CAM fails to detect the obvious

water stains on the ceiling board. The reason for this is already discussed in the saliency

114

map section: the lack of water stain images in the training data fails to teach the CNN

model to learn such damage form.

(1) P: 0.999 (2) P: 0.716 (3) P: 0.502 (4) P: 0.006

(5) P: 0.737 (6) P: 0.458 (7) P: 0.067 (8) P: 0.022

(9) P: 0.059 (10) P: 0.951 (11) P: 0.245 (12) P: 0.590

115

(13) P: 0.409 (14) P: 0.628 (15) P: 0.574 (16) P: 0.002

(17) P: 0.316 (18) P: 0.002 (19) P: 0.597 (20) P: 0.747

(21) P: 0.068 (22) P: 0.174 (23) P: 0 (24) P: 0

116

(25) P: 0 (26) P: 0.338 (27) P: 0.032 (28) P: 0.088

(29) P: 0.087 (30) P: 0.359 (31) P: 0.371 (32) P: 0.207

117

(33) P: 0.232 (34) P: 0.067 (35) P: 0.010 (36) P: 0.020

(37) P: 0.009 (38) P: 0.275 (39) P: 0.246 (40) P: 0.691

(41) P: 0.620 (42) P: 0.563 (43) P: 0.038 (44) P: 0

118

(45) P: 0.001

Fig. 4.13 Grad-CAM to ceiling images from internet

For the ceiling images from internet (Fig. 4.13), the Grad-CAM of them are discussed

into four categories:

1. For those correctly predicted intact ceiling images, the digital predictions to them are

below 0.5. The most activated regions in the Grad-CAM are bright regions like lights

and windows. Noticing that the bright regions are usually regularly distributed in the

image, which indicating the ceilings behind them are intact in high probability. This

could be a characteristic for the CNN model to predict that the ceilings are intact.

119

2. For those correctly predicted damaged ceiling images, the Grad-CAM to them are

not as precise as those to the test dataset. However, they still provide instructive

guidelines to the user. The lights in the images may distract the CNN model to some

extent, damages in the ceilings are still noticeable. However, in Fig. 4.13(12) the stains

in the ceiling seems to be deliberately ignored, which is also a kind of damage region

detection in a negative way.

3. For those incorrectly predicted damaged images (Fig. 4.13(4), (8), (9), (38)), the Grad-

MAP to them can be interpreted in different ways. Fig. 4.13(4) has the incorrect

prediction but correct region activations. While Fig. 4.13(8) is completely incorrect both

in prediction and region activations. It fails to notice the absence of the ceiling boards

or the lights. One possible explanation is that there are no, not even very few images in

the training data like such interior like an office from the perspective in Fig. 4.13(8),

which fails the CNN model to learn such circumstance. Damages in Fig. 4.13(9) are

easily to be confused with regularized decorations at the first glance even for human.

The Grad-CAM to it also indicates that the CNN model mistakes it with an intact ceiling

image because it focuses on the lights in the ceilings. In Fig. 4.13(38), the CNN model

notices very slightly on the tilted edges in the ceiling board shown by the Grad-CAM.

4. Fig. 4.13(3) is the only incorrectly predicted intact image with the prediction 0.502.

From the Gram-CAM to it, we can find that the model dose not notice the ceilings but

notice other objects like the windows and the floors.

From the comparison between the attention maps of the Saliency Map and the Grad-

CAM, it can be confirmed that both of them reflect the attention paid by the CNN model

when given an image. The Saliency Map method uses more aggressive approximation

that omits many details in the attention map. However, sometimes the Saliency Map

method abandons irrelevant distractions and helps the user to stay focused on the most

important regions. To the contrary, the Grad-CAM method uses more exquisite

approximation to keep many details from the final predictions mapping back to the

input layer. The Grad-CAM method provides rich details of the attention paid by the

CNN model, sometimes much too rich. A good solution is to combine the merits of

these two methods and avoid the defects of them.

4.3 Building a ceiling damage detection system

4.3.1 The workflow of a ceiling damage detection system

Based on the previous work for training and interpreting the CNN model, the flow chart

120

of the ceiling damage detection system using convolutional neural networks is shown

in Fig. 4.14. The system performs attention evokes to the user by highlighting the

damaged regions. The user (an expert in ceiling structures or an amateur) is involved in

the decision-making process. This system is possible to improve the prediction

accuracy even if the CNN model makes incorrect predictions because the user is

involved in the damage detection process. The workflow is:

1. Start.

2. The user takes a ceiling image to perform ceiling damage detection. The image is

usually in high resolution (for example, an iPhone X has the 12MP cameras that can

take photos with the resolution of 3024×4032×3).

3.The image is resized into the resolution of 400×600×3 by the system.

4. Send the resized image into the trained CNN model.

5. Three kinds of outputs are generated by the CNN model: a digital prediction (ranging

from 0 to 1), a saliency map and a Grad-CAM attention map. The digital prediction is

the basic evaluation to the image. The saliency map and the Grad-CAM attention map

are two kinds of heatmap that can alert the user with regions that are possibly damaged.

6. The user will decide if it needs more investigations and details to the highlighted

regions.

7. If the ceilings need more investigations, the user has two options: a. Crop the regions

in the original high-resolution image proportional to the desired regions and send them

to the CNN model again, or b. Take more new photos to the desired regions and send

the new photos to the CNN model for more detailed damage detection.

8. The user judges if the damaged regions have been correctly detected.

9. If the answer to step 8 is yes, output the image with the damaged regions.

10. If the answer to step 8 is no, the CNN model has made false positive / negative

predictions.

11. The ceiling image is possible to be saved as future teacher dataset.

121

Fig. 4.14 The ceiling damage detection system

Based on the workflow shown in Fig. 4.14, it is possible to build a web-based ceiling

damage detection system that can be updated occasionally for multipurpose users (show

in Fig. 4.15). This web-based ceiling damage detection system contains mainly two

parts: 1. the front-end for users who upload ceiling images, receive the evaluations to

the images and make interactive performance with the CNN model (the same flow

shown in Fig. 4.14); 2. the back-end for the ceiling damage detection system

maintenance personnel who classify, label the new incoming images and re-train the

CNN model using new ceiling images added in the training dataset. This system is web-

based, meaning it can provide ceiling damage detection service where there is internet

connection.

4. Send into the

CNN model

4c. Grad-

CAM

4c. Grad-CAM

4b. Saliency

map

4b. Saliency map

2. The user takes a

ceiling photo (high

resolution)

1. Start & 2. Take a

ceiling photo

3. Resize to

400×600×3

3. Resize

4a.Predict

ion (0~1)

4a. Prediction:

0.903

5. Attention evoke to

the user

6. Does the user

need more details?

NO

9. Output the

image with the

damaged regions

5, 6, 7

YES

7. Choose the

desired inspection

regions by the

user and

zoom in

7b. Take more photos

YES

7a. Crop from the

previous image

1. Start

4. Send to the CNN

model

7a. Crop from the

previous image

Action

performed by

the USER

Action

performed by

the SYSTEM

8. Damage regions

correctly detected?

YES

10. False

positive / negative

predictions

NO

11. Save to the

future teacher

database

11. Save to the

future teacher

database

7. Choose the

desired inspection

regions

122

Fig. 4.15 A web-based ceiling damage detection system

4.3.2 Showcases to the ceiling damage detection system

It is difficult to evaluate the performances of the ceiling damage detection system in

Fig. 4.14 by using quantitative indicators such as accuracy or precision because this

system involves with the user, who is human. However, it is possible to generate

showcases of the interactivities between the user and the ceiling damage detection

system to grasp the idea and to investigate the performance of this system.

Three showcases are chosen to display (images shown in Fig. 4.16). The images have

never been shown to the CNN model during training.

Ceiling images

Updating the

ceiling image

database

Homepage

Updating the

CNN model

Save

Discard

For current ceiling damage detection

Are the images

qualified for

training?

Refugee

Ceiling routine

maintenance

General user

Outputs

(Predictions,

Saliency maps and

Grad-CAMs)

For future training

Cache hard disk

The CNN model

(Zoom in images)

123

(a) Showcase 1: damaged ceilings,

resolution: 5184×3456×3

(b-1) Showcase 2: damaged ceilings,

resolution: 2161×1316×3

(b-2) Showcase 2: damaged ceilings from a

nearer perspective,

resolution: 2592×1944×3

(c-1) Showcase 3: intact ceilings,

resolution: 2048×1536×3

(c-2) Showcase 3: intact ceilings from

another perspective,

resolution: 2048×1536×3

Fig. 4.16 Ceiling images for showcases

1. Showcase 1(Fig. 4.16(a)):

The process and the information flow in the ceiling damage detection system for the

124

images in Fig. 4.16(a) are shown below:

STEP 1&2. Start from the original ceiling image

(resolution: 5184×3456×3)

STEP 3. Resize to resolution: 600×400×3 and STEP 4. send to the CNN model

2. The user takes a

ceiling photo (high

resolution)

1. Start

4. Send into the

CNN model

3. Resize to

400×600×3

125

STEP 5. Possible damaged region highlighted to the user

STEP 6. The user makes comprehensive considerations to the outputs and decides to see

more details on the upper right region (strongly highlighted) and ignores the weaker

highlighted region on the lower left region

STEP 7a. Crop the highlighted regions by the user from the original image

(resolution: 2345×1790×3)

4a. Prediction: 0.903

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency

map

4a.Predict

ion (0~1)

5. Attention evoke to

the user

3. Resize to

400×600×3

6. Does the user

need more details?

YES

7. Choose the

desired inspection

regions by the

user and

zoom in

7a. Crop from the

previous image

126

NEW STEP 3. Resize the cropped image to resolution: 600×400×3 and

NEW STEP 4. Send to the CNN model again

NEW STEP 5. Damaged region highlighted to the user

NEW STEP 6. The user decides that the details are enough

STEP 8. The user decides that the desired damaged regions in the ceilings are correctly

detected

STEP 9. Output the results and

STEP 11. Save for future teaching dataset

Fig. 4.17 Showcase 1 for Fig. 4.16(a)

From the showcase in Fig. 4.17, it can be found that:

4. Send into the

CNN model

3. Resize to

400×600×3

7a. Crop from the

previous image

4a. Prediction: 0.963

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

5. Attention evoke to

the user

6. Does the user

need more details?

NO

9. Output the

image with the

damaged regions

8. Damage regions

correctly detected?

YES

11. Save to the

future teacher

database

127

1. The digit prediction to the original image increases from 0.903 to the prediction to

the cropped image as 0.963, which indicates that the precision increases.

2. The saliency map and the grad-CAM may show some misleading highlighted regions

(the weaker highlighted regions to the original image in this showcase STEP 5), but the

user can decide to ignore the regions obviously unrelated to the ceilings.

3. The saliency map and the grad-CAM show more detailed highlight regions to the

cropped image than those to the original image.

Through the interactivities shown above, the ceiling damage detection system aids the

user to detect damages in the ceilings.

2. Showcase 2 (Fig. 4.16(b-1) and Fig. 4.16(b-2)):

In Showcase 2, the second ceiling image (Fig. 4.16(b-2)) is taken from a much nearer

perspective than the first one (Fig. 4.16(b-1)). Firstly, it seems there are no damages

from the first image by human, but the system reports that there are damages in the first

image and revealed highlighted regions. By taking another photo to the highlighted

regions (Fig. 4.16(b-2)), the damages in the ceilings are detected. Through this process,

the ceiling damage detection system detects the damage before the user does and points

out the damaged regions for the user.

STEP 1&2. Start from the original ceiling image

(resolution: 2161×1316×3)

2. The user takes a

ceiling photo (high

resolution)

1. Start

128

STEP 3. Resize to resolution: 600×400×3 and STEP 4. send to the CNN model

STEP 5. Possible damaged region highlighted to the user

4. Send into the

CNN model

3. Resize to

400×600×3

4a. Prediction: 0.787

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency

map

4a.Predict

ion (0~1)

5. Attention evoke to

the user

129

STEP 6. Although it seems there are no damages in Fig. 4.16(b-1), the user makes

comprehensive considerations to the outputs and decides to see more details on lower left

region of Fig. 4.16(b-1) and to take another photo

STEP 7b. The user takes another photo to the lower left region of Fig. 4.16(b-1)

(resolution: 2592×1944×3)

NEW STEP 2. The user takes a new ceiling photo from a nearer standing point

NEW STEP 3. Resize the cropped image to resolution: 600×400×3 and

NEW STEP 4. Send to the CNN model again

2. The user takes a

ceiling photo (high

resolution)

6. Does the user

need more details?

YES

7. Choose the

desired inspection

regions by the

user and

zoom in

7b. Take more photos

4. Send into the

CNN model

3. Resize to

400×600×3

130

NEW STEP 5. Damaged region highlighted to the user

NEW STEP 6. The user decides that the details are enough

STEP 8. The user decides that the desired damaged regions in the ceilings are correctly

detected;

STEP 9. Output the results and

STEP 11. Save for future teaching dataset

Fig. 4.18 Showcase 2 for Fig. 4.16(b)

In Fig. 4.18, the ceiling image (Fig. 4.16(b-1)) seems intact at the first glance by the user.

While the damaged region is correctly detected by the ceiling damage detection system

through the interactive performance between the user and the system. This indicates

that the system aids the user to detect damages when they are difficult to find from the

first glance.

3. Showcase 3 (Fig. 4.16(c-1) and Fig. 4.16(c-2)):

For Fig. 4.16(c-1) and Fig. 4.16(c-2), in fact the system has made incorrect predictions

for mistaking a speaker as a damaged region. The interactive process is shown in Fig.

4.19:

4a. Prediction: 0.910

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency

map

4a.Predict

ion (0~1)

5. Attention evoke to

the user

6. Does the user

need more details?

NO

9. Output the

image with the

damaged regions

8. Damage regions

correctly detected?

YES

11. Save to the

future teacher

database

131

STEP 1&2. Start from the original ceiling image

(resolution: 2048×1536×3)

STEP 3. Resize to resolution: 600×400×3 and STEP 4. send to the CNN model

2. The user takes a

ceiling photo (high

resolution)

1. Start

4. Send into the

CNN model

3. Resize to

400×600×3

132

STEP 5. Damaged region highlighted to the user

STEP 6. The user makes comprehensive considerations to the outputs and decides to see

more details on the strongly highlighted region in the grad-CAM and ignores the weaker

highlighted regions

STEP 7a. Crop the highlighted regions by the user from the original image

(resolution: 412×275×3)

4a. Prediction: 0.580

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency

map

4a.Predict

ion (0~1)

5. Attention evoke to

the user

3. Resize to

400×600×3

6. Does the user

need more details?

YES

7. Choose the

desired inspection

regions by the

user and

zoom in

7a. Crop from the

previous image

133

NEW STEP 3. Resize the cropped image to resolution: 600×400×3 and

NEW STEP 4. Send to the CNN model again

NEW STEP 5. Damaged region highlighted to the user

NEW STEP 6. The user finds out that the highlighted region is not damaged ceiling but

wants more information, the user decides to take another photo to the ceilings

4. Send into the

CNN model

3. Resize to

400×600×3

4a. Prediction: 0.620

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency

map

2. The user takes a

ceiling photo (high

resolution)

4a.Predict

ion (0~1)

5. Attention evoke to

the user

6. Does the user

need more details?

YES

7. Choose the

desired inspection

regions by the

user and

zoom in

7b. Take more photos

134

STEP 7b. Take a new photo to the ceilings

(resolution: 2048×1536×3)

NEW STEP 2. The user takes a new ceiling photo

STEP 3. Resize to resolution: 600×400×3 and STEP 4. send to the CNN model

2. The user takes a

ceiling photo (high

resolution)

7. Choose the

desired inspection

regions by the

user and

zoom in

7b. Take more photos

4. Send into the

CNN model

3. Resize to

400×600×3

135

STEP 5. Possible damaged region highlighted to the user

STEP 6. The user finds that this highlighted region is a special formed speaker that is

mistaken by the CNN model as damaged region.

The user decides that the details are enough.

STEP 8. The user decides that the ceilings are intact and the CNN model has made

incorrect predictions

STEP 10. The image is labeled as intact (False positive)

STEP 11. Save for future teaching dataset

Fig. 4.19 Showcase 3 for Fig. 4.16(b-1) and Fig. 4.16(b-2)

4a. Prediction: 0.684

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency

map

4a.Predict

ion (0~1)

5. Attention evoke to

the user

6. Does the user

need more details?

NO

8. Damage regions

correctly detected?

10. False

positive / negative

predictions

NO

11. Save to the

future teacher

database

136

In Fig. 4.19, the Showcase 3 clarifies the procedure when the system makes incorrect

prediction. Although incorrect predictions may reduce the user confidence for the

ceiling damage detection system, incorrect predictions occur for reasons. In Showcase

3, the special formed speaker is mistaken by the system as a damaged region for the

CNN model has not been taught by such form of object. In fact, it is difficult for human

to make correct judgement at the first glance of it: it really looks like a hole in the

ceilings.

At the end of Showcase 3, the ceiling image is saved for future training dataset.

Collecting new ceiling images, especially those that the CNN model makes incorrect

predictions to are crucial for the further development of the CNN model.

4.4 Conclusion

In this chapter, the CNN model built and trained in Chapter 3 is investigated and

interpreted by visualization methods (the intermediate convolutional layer outputs, the

activation maps to the filters, the saliency map and the Grad-CAM) and a ceiling

damage detection system with user-CNN interactive process is proposed. The

conclusions are:

1. Visualizations to the intermediate convolutional layer outputs for given ceiling

images prove that the filters in the convolutional layers do notice the ceiling and non-

ceiling regions in the images (shown in Fig. 4.1).

2. The generations of the images that most activating the filters in the convolutional

layers prove that the CNN model performs gradual abstractions through the

convolutional layers (shown in Fig. 4.3, the images become more and more complex).

3. The saliency map method and the Grad-CAM method confirm that the CNN models

have learnt to recognize the features representing the ‘intact’ and ‘damaged’ ceilings

firstly. Furthermore, they successfully support ceiling damage detection function from

the inner process perspective interpretation to the CNN model (shown in Fig. 4.5 and

Fig. 4.12).

4. A ceiling damage detection system with user-CNN interactive process (Interactive-

AI) is proposed and has been proved feasible because: a. The user can either be a well-

137

trained ceiling expert who performs routine inspection or a layman (refugee) who needs

to know the working conditions of the ceilings hanging over his / her head during a

disaster circumstance; b. the user understands what is happening and knows what the

ceiling damage detection system is doing in the damage detection process; c. the

accuracy is increased and more damages are detected through the interactive process;

d. this interactive system can minimize the bad effects of the incorrect predictions; e.

this system is designed to collect more ceiling images for further improvements (shown

in Fig. 4.20 and Fig. 4.21).

Fig. 4.20 The ceiling damage detection system

4. Send into the

CNN model

4c. Grad-

CAM

4b. Saliency

map

2. The user takes a

ceiling photo (high

resolution)

3. Resize to

400×600×3

4a.Predict

ion (0~1)

5. Attention evoke to

the user

6. Does the user

need more details?

NO

9. Output the

image with the

damaged regions

YES

7. Choose the

desired inspection

regions by the

user and

zoom in

7b. Take more photos

7a. Crop from the

previous image

1. Start

Action

performed by

the USER

Action

performed by

the SYSTEM

8. Damage regions

correctly detected?

YES

10. False

positive / negative

predictions

NO

11. Save to the

future teacher

database

138

Fig. 4.21 A web-based ceiling damage detection system

Ceiling images

Updating the

ceiling image

database

Homepage

Updating the

CNN model

Save

Discard

For current ceiling damage detection

Are the images

qualified for

training?

Refugee

Ceiling routine

maintenance

General user

Outputs

(Predictions,

Saliency maps and

Grad-CAMs)

For future training

Cache hard disk

The CNN model

(Zoom in images)

139

5. Transfer Learning for Ceiling Damage Detection

5.1 Introduction to transfer learning

5.1.1 A brief theory of transfer learning

Since deep learning is a branch of artificial intelligence, a high-performance deep

learning model revealing intelligence behaviors has very strong learning potential to

grasp a related domain that is close to what it has learnt. This is the motivation for

transfer learning. Transfer learning dates back to decades ago, with the intention to build

lifelong machine learning methods that keep and reuse previously learnt knowledge

[142]. Especially when the training data in the desired domain is very difficult or

expensive to obtain, there comes out the need to build a high-performance learning

model that can learn as much as possible even if the training data is rare [143]. This is

also the reason for introducing transfer learning into ceiling damage detection task.

With the big data age emerging, in many domains there are database storages relating

to but not the same as the database that a well-performance deep learning model was

trained on. However, these databases storages are usually not big or diverse enough to

support the training requirements to a deep learning model to be built and taught from

scratch. Moreover, these databases could be rare, expensive to collect or label. The idea

of transfer learning has provided successful solutions to many such domains such as

sentiment analysis [144], image classification [145], medical diagnosis [110].

The definition of transfer learning can be described as follows [143, 146-149]:

A domain D is defined by a feature space X and a marginal probability distribution P(X).

A task T is defined as: for a given domain D, a label space Y and a predictive function

F(·) that fits best with F(X)=Y. Then the transfer learning is: for a given source domain

Ds with a corresponding source task Ts and a target domain Dt with a corresponding

task Tt, the process of training the target predictive function Ft(·) by using Ds and Ts.

The source domain Ds can be extended to multiple source domains.

5.1.2 Transfer learning for image classification

In the domain of image classification, the transfer learning is to use the state-of-the-art

image classification models trained on the ImageNet database [71] to adept to a new

140

image database instead of from being built from scratch. Fig. 5.1 shows the basic

transfer learning idea for image classification. The convolutional layers of the pre-

trained models are frozen to perform abstractions in the inputs; the following fully

connected layer are trained based on the inputs. The specific methods adopt in transfer

learning depend on two factors: 1. the size of the new image database; 2. the similarity

of the new image database to the ImageNet database. In different combinations of the

factors, there are four cases in transfer learning for image classification:

Fig. 5.1 Basic transfer learning for image classification

1. SMALL new database, LOW similarity of the new image database to the ImageNet

database;

2. BIG new database, LOW similarity of the new image database to the ImageNet

database;

3. SMALL new database, HIGH similarity of the new image database to the ImageNet

database;

4. BIG new database, HIGH similarity of the new image database to the ImageNet

database.

The boundaries between a ‘big’ database and a ‘small’ one could be subjective. A

dataset with one million images is definitely big and a dataset with one thousand images

is really small. The boundaries between similarities are subjective as well. The front

view and the side view of the same object could be totally different. The key is to

141

prevent overfitting in the transfer learning [145, 150].

For the four cases above, different methods to generate best-performance models using

transfer learning are different:

1. SMALL new database, LOW similarity:

• Keep most of the layers directly connecting to the beginning of the pre-trained

CNN networks, remove the rest of the pre-trained networks from the latter

convolutional layers;

• Add a new fully connected layer to the remaining networks. The output of the

new fully connected layer matches the class number of the new database;

• Randomize the weights in the new fully connect layer and freeze all the weights

in the pre-trained networks;

• Train the new networks.

The slicing off the layers from the latter convolutional layer is because the new database

is very different from the pre-trained networks that they do not share the same weights

in the high level convolutional layers. The transfer learning in such circumstance only

keeps the lower level features. The reason to freeze the weights in the pre-trained

networks is to prevent overfitting due to the small new dataset.

2. BIG new database, LOW similarity:

• Remove the last fully connected layer and add a new fully connected layer

matching the class number of the new database with randomly initialized

weights;

• Train the whole networks from randomly initialized weights;/ or: Train the

whole networks with the weights initialized from the pre-trained networks.

In this case, we have enough data to train the weights in the new networks, so there is

no need to freeze any weights. Initializing the weights from the pre-trained networks

may cost less time to train the model.

3. SMALL new database, HIGH similarity:

• Remove the last fully connected layer and add a new fully connected layer

142

matching the class number of the new database with randomly initialized

weights;

• Randomize the weights in the new fully connect layer and freeze all the weights

in the pre-trained networks;

• Train the new networks.

The images in the new database are similar with those images in the pre-trained

networks. They share most of the weights in the convolutional layers except for the

number of class. To avoid overfitting, the weights in the pre-trained networks are frozen

in the training process.

4. BIG new database, HIGH similarity:

• Remove the last fully connected layer and add a new fully connected layer

matching the class number of the new database with randomly initialized

weights;

• Randomize the weights in the new fully connect layer and initialize the rest of

all the weights from the pre-trained networks;

• Train the new networks.

This is the most favorable one in these four circumstances. There is not much to worry

about overfitting because of big amount of data. The new dataset and the pre-trained

networks dataset share the same high-level features that the weights could be initialized

from the pre-trained networks.

Most of the prevailing pre-trained models are trained based on the ImageNet database

which is a huge collection of daily objects with 1000 classes. Although the ImageNet

database collects so many objects, the research object in this thesis is the damage

detection in ceilings, which is very different from the ImageNet database. The transfer

learning in this thesis best conforms with the Case 1: small new dataset and low

similarity, which is also the most unfavorable condition.

5.1.3 Pre-trained models: VGG16 and VGG19 [134]

In 2014, Simonyan and Zisserman who were affiliated with Visual Geometry Group

(VGG) developed the VGGNet series using only convolutional layers, max pooling

143

layers and fully connected layers. The main feature in the VGGNet series is that the

convolutional layers use only 3×3 filters to perform down-sampling to the inputs. Table

5.1 shows the details of the configuration to the VGGNet series. There are five models

in the VGGNet series (from A to E in Table 5.1). VGG16 and VGG19 refer to the model

D and E with corresponding number of layers. With the number of convolutional layers

growing, the trainable parameters also increase (shown in Table 5.2). The architecture

of VGG16 and VGG19 are shown in Fig. 5.2.

Table 5.1 VGGNet series configuration [134]

(conv<filter size>-<number of filters>)

A A-LRN B C D (VGG16) E (VGG19)

11 weight

layers

11 weight

layers

13 weight

layers

16 weight

layers

16 weight

layers

19 weight

layers

input: 224×224×3

conv3-64 conv3-64

LRN

conv3-64

conv3-64

conv3-64

conv3-64

conv3-64

conv3-64

conv3-64

conv3-64

max pooling

conv3-128 conv3-128 conv3-128

conv3-128

conv3-128

conv3-128

conv3-128

conv3-128

conv3-128

conv3-128

max pooling

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv1-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

max pooling

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv1-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

max pooling

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv1-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

max pooling

FC-4096

FC-4096

FC-1000

soft-max

Table 5.2 Number of trainable parameters (in millions) [134]

Network A, A-LRN B C D E

Number of parameters 133 133 134 138 144

144

Fig. 5.2 The architecture of VGG16 and VGG19

The input to the VGGNet series is a fixed-size 224×224×3 image. The filters are set as

a unified receptive field of 3×3 (in model C, at each end of a convolutional block the

filter is set as 1×1). The stride of convolutional layers is 1, the stride of the max pooling

layers is 2 with a 2×2 kernel. The networks were trained on a system with four NVIDIA

Titan Black GPUs for 2-3 weeks respectively depending on the architecture of the

models. The performance of the classification task is evaluated by the top-1 and top-5

error. The VGG team trained and validated the VGGNet models in multi scales of

Input

Softmax

CL1_1 (3-64)

CL1_2 (3-64)

Max pooling

CL2_1 (3-128)

CL2_2 (3-128)

Max pooling

CL3_1 (3-256)

CL3_2 (3-256)

Max pooling

CL3_3 (3-256)

CL4_1 (3-512)

CL4_2 (3-512)

Max pooling

CL4_3 (3-512)

CL5_1 (3-512)

CL5_2 (3-512)

Max pooling

CL5_3 (3-512)

FC4096

FC4096

FC1000

224×224×3

224×224×64

224×224×64

112×112×64

112×112×128

112×112×128

56×56×128

56×56×256

56×56×256

56×56×256

28×28×256

28×28×512

28×28×512

28×28×512

14×14×512

14×14×512

14×14×512

14×14×512

7×7×512

Flatten

4096

4096

1000

25088

Input

Softmax

CL1_1 (3-64)

CL1_2 (3-64)

Max pooling

CL2_1 (3-128)

CL2_2 (3-128)

Max pooling

CL3_1 (3-256)

CL3_2 (3-256)

Max pooling

CL3_3 (3-256)

CL4_1 (3-512)

CL4_2 (3-512)

Max pooling

CL4_3 (3-512)

CL5_1 (3-512)

CL5_2 (3-512)

Max pooling

CL5_3 (3-512)

FC4096

FC4096

FC1000

CL3_4 (3-256)

CL4_4 (3-512)

CL5_4 (3-512)

Flatten

1000

224×224×3

224×224×64

224×224×64

112×112×64

112×112×128

112×112×128

56×56×128

56×56×256

56×56×256

56×56×256

28×28×256

28×28×512

28×28×512

28×28×512

14×14×512

14×14×512

14×14×512

14×14×512

7×7×512

4096

4096

1000

25088

1000

56×56×256

28×28×512

14×14×512

145

images. Table 5.3 shows the performance of the VGGNet models.

Table 5.3 VGGNet performance at multiple test scales [134]

Model (Table 5.1)
Smallest image side

Top-1 error (%) Top-5 error (%)
Train (S) Test (Q)

B 256 224, 256, 288 28.2 9.6

C

256 224, 256, 288 27.7 9.2

384 352, 384, 416 27.8 9.2

[256; 512] 256, 384, 512 26.3 8.2

D

256 224, 256, 288 26.6 8.6

384 352, 384, 416 26.5 8.6

[256; 512] 256, 384, 512 24.8 7.5

E

256 224, 256, 288 26.9 8.7

384 352, 384, 416 26.7 8.6

[256; 512] 256, 384, 512 24.8 7.5

Nowadays, VGG16 and VGG19 are widely used in many other applications in image

classification and recognition for the simplicity and easy-understandability. They are

used as a baseline for feature extraction. The defect of the VGGNet is that the weights

are very large to handle (the weight files for VGG16 is over 533MB and for VGG19 is

over 574MB).

5.2 Building and training transfer learning models for ceilings

damage evaluation

The first problem we are facing with is that the size of the training images of VGG16

and VGG19 models is 224×224×3 while the size of the training ceiling images in this

research is 400×600×3. The first possible solution is to resize the ceiling images from

400×600×3 to 224×224×3 to generate a new ceiling dataset to fit the VGG models.

However, such dramatic resize operation will lose many details in the original images.

Another solution is originated from an important characteristic of convolutional neural

networks: the filters scanning over an input matrix do not require a specific size. In

other words, the same filters are possible to generate different sizes of outputs given

different sizes of inputs.

The second problem is if the pre-trained filters are possible to perform proper

abstractions to the ceiling images that were never shown before. Since the transfer

learning of ceiling images recognition is very different from the ImageNet dataset, if

the VGG16 and VGG19 models are possible to learn the features representing ‘intact’

146

and ‘damaged’ are unknown.

The third problem is to find a proper architecture for the tail part of the transfer learning

models. The tails of VGG16 and VGG19 are fully connected layers that linearize the

matrices generated from the 224×224×3 training data which is different from the

400×600×3 ceiling images. The tails of these models need to be modified for the

specific task of ceiling image processing.

5.2.1 Building and training a transfer learning model using the VGG16

weights

According to the architecture of VGG16 and the transfer learning method, a new CNN

model using the VGG16 weights for ceiling damage evaluation was built. We kept the

convolutional blocks from the VGG16 model and added new layers like a GAP layer

and fully connected layers to the remaining convolutional blocks. This model is named

as a ‘TF_VGG16’ model with the architecture shown in Fig. 5.3. We froze the

convolutional blocks till the CL5_2 (the weights in them are inherited from the original

VGG16 weights) but left the last convolutional layer CL5_3 trainable. The reason for

this is that the last convolutional layer processes the high-level feature abstraction to

the training ceiling dataset. The training ceiling dataset was very different from the

dataset VGG16 was trained. Leaving the last convolutional layer CL5_3 trainable helps

the TF_VGG16 model dealing with the differences among the datasets. Fully connected

layers and a dropout layer were connected to the trainable CL5_3 layer to perform final

abstractions.

The training process was similar to that in Chapter 3: the input images are first

processed through data augmentation. In the training process, 50 epochs were

performed. The accuracy and loss curves to the epochs are shown in Fig. 5.4. Although

the training accuracy increases with the epochs, the validation accuracy remains around

at 0.9 since the 10th epoch, which indicates that the TF_VGG16 model begins to be

overfit after the 10th epoch. The loss-epoch curve also indicates that the TF_VGG16

model begins to be overfit after the 10th epoch since the validation loss begins to

increase with the epoch increases. The weights at the 10th epoch were saved as the final

weights of the TF_VGG16. The final prediction accuracy to the test dataset is 90.3%,

which is a significant increase to the CNN model prediction of 86.2%. The sensitivity

and the specificity are shown in Table 5.4.

147

Fig. 5.3 The architecture of TF_VGG16

Input

Softmax

CL1_1 (3-64)

CL1_2 (3-64)

Max pooling

CL2_1 (3-128)

CL2_2 (3-128)

Max pooling

CL3_1 (3-256)

CL3_2 (3-256)

Max pooling

CL3_3 (3-256)

CL4_1 (3-512)

CL4_2 (3-512)

Max pooling

CL4_3 (3-512)

CL5_1 (3-512)

CL5_2 (3-512)

Max pooling

CL5_3 (3-512)

FC

Dropout (p=0.5)

FC

400×600×3

400×600×64

400×600×64

200×300×64

200×300×128

200×300×128

100×150×128

100×150×256

100×150×256

100×150×256

50×75×256

50×75×512

50×75×512

50×75×512

25×37×512

25×37×512

25×37×512

25×37×512

12×18×512

GAP

500

500

100

512

2

FC2

Intact

[1,0]

Damaged

[0,1]
2

148

Fig. 5.4 The training accuracy and loss curves of TF_VGG16

Table 5.4 Sensitivity and specificity of TF_VGG16

 Negative (0) Positive (1) Total

True TN: 221 TP: 133 354

False FN: 9 FP: 29 38

Total 230 162 392

Accuracy = (TP+TN) / SUM = 0.903

Sensitivity = TP / (TP+FN) = 0.937

Specificity = TN / (TN+FP) = 0.884

5.2.2 Building and training a transfer learning model using the VGG19

weights

Although the architecture of VGG19 bears a close resemblance to that of VGG16, using

the same transfer learning principles of TF_VGG16 to build another CNN model would

result in poor convergence performance in the prediction accuracy. To the transfer

learning model based on the stem of VGG19, the trainable layers are only in the tail

layers without the convolutional layer. The transfer learning model is named as

TF_VGG19, with the architecture shown in Fig. 5.5. The trainable parameters are the

weights and biases in the full connected layers which can be represented by matrix

multiplications.

The training process of TF_VGG19 was alike to that in TF_VGG16 with 50 epochs in

total. The accuracy and loss curves to the epochs are shown in Fig. 5.6. The lowest

validation loss occurred at the 45th epoch and the weights at this epoch was saved as

the TF_VGG19 model. The final prediction accuracy to the testing dataset is 88.3%,

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 11 21 31 41

ac
cu

ra
cy

epoch

train validation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 11 21 31 41

lo
ss

epoch

train validation

149

which is a slightly increase to the CNN model prediction of 86.2%. Table 5.5 shows the

sensitivity and the specificity.

Fig. 5.5 The architecture of TF_VGG19

Input

Softmax

CL1_1 (3-64)

CL1_2 (3-64)

Max pooling

CL2_1 (3-128)

CL2_2 (3-128)

Max pooling

CL3_1 (3-256)

CL3_2 (3-256)

Max pooling

CL3_3 (3-256)

CL4_1 (3-512)

CL4_2 (3-512)

Max pooling

CL4_3 (3-512)

CL5_1 (3-512)

CL5_2 (3-512)

Max pooling

CL5_3 (3-512)

FC

Dropout (p=0.5)

FC

400×600×3

400×600×64

400×600×64

200×300×64

200×300×128

200×300×128

100×150×128

100×150×256

100×150×256

100×150×256

50×75×256

50×75×512

50×75×512

50×75×512

25×37×512

25×37×512

25×37×512

25×37×512

12×18×512

GAP

500

500

100

512

2

FC2

Intact

[1,0]

Damaged

[0,1]
2

CL3_4 (3-256)100×150×256

CL4_4 (3-512)50×75×512

CL5_4 (3-512)25×37×512

150

Fig. 5.6 The training accuracy and loss curves of TF_VGG19

Table 5.5 Sensitivity and specificity of TF_VGG19

 Negative (0) Positive (1) Total

True TN: 217 TP: 129 346

False FN: 13 FP: 33 46

Total 230 162 392

Accuracy = (TP+TN) / SUM = 0.883

Sensitivity = TP / (TP+FN) = 0.908

Specificity = TN / (TN+FP) = 0.868

5.3 Evaluating and visualizing the transfer learning models

Both TF_VGG16 and TF_VGG19 achieved higher accuracy to the testing dataset that

the CNN model built from scratch. If the transfer learning models did learn the

representative characters of intact and damaged ceilings, the digitalized prediction, the

saliency map and the Grad-CAM to the ceiling images that are never shown to these

two models would match each other. In this section, the evaluating and visualizing

methods like the final predictions, the notions of intact and damaged ceilings learnt by

the transfer learning models (the images that most activate the final two nodes of

prediction), the saliency maps and the Grad-CAM to the testing dataset and ceiling

images from internet, are shown to investigate the transfer learning models.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 11 21 31 41

ac
cu

ra
cy

epoch

train validation

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 11 21 31 41

lo
ss

epoch

train validation

151

5.3.1 The TF_VGG16 model

The final prediction accuracy to testing dataset is 90.8%. The images most activating

the nodes of ‘intact’ and ‘damaged’ classes in TF_VGG16 are shown in Fig. 5.7. The

images reflecting the notions of ‘intact’ and ‘damaged’ may seem a little abstract at the

first glance, but they do extract the most important features of the two classes: the ‘intact’

ceilings usually contain shining lights orderly arranged like the divergent circles in Fig.

5.7(a); the ‘damaged’ ceilings usually contain irregular jagged tearing marks shown in

Fig. 5.7(b).

The final predictions, the saliency maps and the Grad-CAM to the images selected from

the testing dataset (a) and the internet (b) are shown in Fig. 5.8. The accuracy to the

ceiling images from internet is 91.1%. The saliency maps in TF_VGG16 are much

clearer and reflect more information about the ceilings.

(a) intact

(b) damaged

Fig. 5.7 ‘Intact’ and ‘damaged’ images most activating TF_VGG16

(a)_1 (a)_2 (a)_3 (a)_4

152

(a)_5 (a)_6 (a)_7 (a)_8

(a)_9 (a)_10 (a)_11 (a)_12

153

(a)_13 (a)_14 (a)_15 (a)_16

154

(a) testing dataset

(b)_1 (b)_2 (b)_3 (b)_4

(b)_5 (b)_6 (b)_7 (b)_8

155

(b)_9 (b)_10 (b)_11 (b)_12

(b)_13 (b)_14 (b)_15 (b)_16

156

(b)_17 (b)_18 (b)_19 (b)_20

157

(b)_21 (b)_22 (b)_23 (b)_24

(b)_25 (b)_26 (b)_27 (b)_28

158

(b)_29 (b)_30 (b)_31 (b)_32

(b)_33 (b)_34 (b)_35 (b)_36

159

(b)_37 (b)_38 (b)_39 (b)_40

160

(b)_41 (b)_42 (b)_43 (b)_44

(b)_45

161

(b) ceiling images from internet

Fig. 5.8 Predictions, saliency maps and Grad-CAM to the images from the testing dataset

and internet

5.3.2 The TF_VGG19 model

The evaluation of the TF_VGG19 follows the same steps as the TF_VGG16. Firstly,

the learnt notions of ‘intact’ and ‘damaged’ are visualized in Fig. 5.9. Although they are

different from those of the TF_VGG16, the notion images still reflect the characteristic

of ‘intact’ and ‘damaged’ notions from relating perspectives: Fig. 5.9(a) reflects the

roundness of the lights and Fig. 5.9(b) reflects the scattered broken imagery. The final

predictions, the saliency maps and the Grad-CAM to the images selected from the

testing dataset (a) and the internet (b) are shown in Fig. 5.10.

The final prediction accuracy to the testing dataset is 87.5%. The accuracy to the ceiling

images from internet is 82.2%, which is lower than that of the TF_VGG16 model and

the CNN model in Chapter 3, reflecting that the TF_VGG19 did not learnt enough as

expected.

162

(a) intact

(b) damaged

Fig. 5.9 ‘Intact’ and ‘damaged’ images most activating TF_VGG19

(a)_1 (a)_2 (a)_3 (a)_4

(a)_5 (a)_6 (a)_7 (a)_8

163

(a)_9 (a)_10 (a)_11 (a)_12

164

(a)_13 (a)_14 (a)_15 (a)_16

(a) testing dataset

(b)_1 (b)_2 (b)_3 (b)_4

165

(b)_5 (b)_6 (b)_7 (b)_8

(b)_9 (b)_10 (b)_11 (b)_12

166

(b)_13 (b)_14 (b)_15 (b)_16

167

(b)_17 (b)_18 (b)_19 (b)_20

(b)_21 (b)_22 (b)_23 (b)_24

168

(b)_25 (b)_26 (b)_27 (b)_28

(b)_29 (b)_30 (b)_31 (b)_32

169

(b)_33 (b)_34 (b)_35 (b)_36

170

(b)_37 (b)_38 (b)_39 (b)_40

(b)_41 (b)_42 (b)_43 (b)_44

171

(b)_45

(b) ceiling images from internet

Fig. 5.10 Predictions, saliency maps and Grad-CAM to the images from the testing dataset

and internet

172

5.4 Conclusion

In this chapter, two pre-trained CNN models (VGG16 and VGG19) are used as trunk

layers for two transfer learning models (TF_VGG16 and TF_VGG19) to perform

ceiling damage detection. The conclusions are as follows:

1. The transfer learning models have yielded higher accuracies than that of the CNN

model in Chapter 3. The ‘Intact’ and ‘damaged’ images most activating the transfer

learning models are much more abstract but interpretable. These indicate that the

transfer learning models can recognize more shapes and can learn faster.

2. The saliency maps generated by the transfer learning models have much more details

and clarities. This also confirms that the transfer learning models are capable to learn

more details from the same training datasets than the CNN model in Chapter 3.

173

6. Conclusions

A ceiling damage detection system with user-CNN interactive process is proposed in

this thesis. Firstly, a CNN model for ceiling damage evaluation is built and trained.

Secondly, methods for interpreting and visualizing the predictions made by the CNN

model and to the CNN model itself are performed to confirm the reliability of the

trained CNN model. The ceiling damage detection function is fulfilled by the saliency

map and the Grad-CAM methods. Thirdly, a ceiling damage detection system with user-

CNN interactive process is also proposed that the user can be either an expert in ceiling

structures who performs routine inspections to the ceilings or a refugee / layman who

desperately wants to know if the ceilings over his / her head are safe. This ceiling

damage detection system use detection-zoom in-detection repeats that can generate

more and more punctual predictions through the interactive process between the user

the system. Moreover, the transfer learning method was introduced for ceiling damage

detection to build and train more powerful CNN models. The conclusions are:

1. The deep learning (convolutional neural networks) method is possible to be applied

in ceiling damage evaluation and detection even if: a. only two classes representing

‘intact’ and ‘damaged’ (images labeled as the same label can be totally different in

manifestation), b. lack of training data (approximately only 1000 images for each

class); c. high resolution of training data (400×600×3, to keep enough information).

2. The cores of this thesis are the interpretations to the trained CNN model.

Interpretations include: visualizations of the intermediate convolutional layer outputs,

visualizations to activation maps to the filters, and more importantly, visualizations to

the saliency map and the Grad-CAM to highlight the pixels contributing most to the

final predictions. These visualizations confirm that: a. The CNN model performs

gradual abstractions through the convolutional layers; b. The CNN model has learnt the

most representing features from the training data (the ‘intact’ and the ‘damaged’

features in the ceilings); c. The ceiling damage detection function can be realized by

the visualizations of the saliency map and the Grad-CAM methods.

3. A ceiling damage detection system with user-CNN interactive process is raised. The

user can either be an expert who inspects the ceilings or a layman who inquires the

ceiling working status. It is tested by characteristic damaged ceiling images and

interactive performances. The results indicate that the prediction accuracy rises with

the damaged regions zoomed in and the process of interactivities between the user and

the system. A web-based ceiling damage detection system is possible to collect new

ceiling images for further improvement to the CNN model.

174

4. Transfer learning models using pre-trained VGG16 and VGG19 models as stem

layers are proved to be suitable and more efficient in training CNN models for ceiling

damage detection. The results indicate that transfer learning models can learn better and

faster than the model built in Chapter 3, proved by: a. Transfer learning models have

higher prediction accuracies; b. The saliency maps generated by the transfer learning

models are much clearer that those generated by the CNN model built from scratch.

Future work that can build a more powerful ceiling damage detection system include:

1. There are many methods adopt to overcome the scarcity of the original ceiling images,

especially the damaged ones. Collecting more representative ceiling images is crucial

for the CNN model to be more versatile in ceiling damage evaluation and detection.

2. There are many new deep learning architectures of image recognition in recent years

and more of them will emerge in the future. Applying these new architectures to the

ceiling damage recognition models may generate more powerful deep learning models.

3. In object recognition, there are also more techniques emerging in recent years.

Applying these techniques may generate better damage recognition approaches.

4. The idea of ceiling damage detection by interpreting and visualizing the inner

mechanisms of the CNN models is possible to be applied into more domains such as

architecture damage detection, medical diagnostic imaging and class-correspondence

object detection.

175

References

1. K. Kawaguchi, et al., Safety of Interior Spaces of Large Enclosures based on

the Damage Investigation of Niigata-Chuetusu and Fukuoka-Seiho-oki

Earthquakes (in Japnanese: 新潟中越地震と福岡西方沖地震の被災調査に

みる大規模集客施設の内部空間の安全性). SEISAN KENKYU, 2005.11.

57(6): p. 39~41.

2. Y. Ogi, et al., Damage to Non-structural Components in Large Roof Buildings

Failed During the Iwate-Miyagi Nairiku Earthquake in 2008 or an Earthquake

in the North Shore of Iwate Prefecture in July 24th of 2008 (in Japanese: 平成

20 年（2008 年）岩手・宮城内陸地震または 2008 年 7 月 24 日の岩手

県沿岸北部の地震による大規模集客施設の非構造材被害). AIJ J.

Technol., 2010.6. 16(33): p. 821~826.

3. Y. Ogi, Y. Oba, and K. Kawaguchi, Damage to Non-structural Components in

Large Roof Buildings Failed during the Earthquake in Suruga-Bay of Japan in

August 11th of 2009 (in Japanese: 2009年 8月 11日駿河湾の地震による大

規模集客施設の非構造材被害). SEISAN KENKYU, 2009.10. 61(6): p.

1035~1041.

4. 国土交通省国土技術政策総合研究所, 独立行政法人建築研究所, 2003

年十勝沖地震における空港ターミナルビル等の天井の被害に関する現

地調査報告. 2003.10. p. 24.

5. K. Kawaguchi, et al., Failure of Suspended Ceilings in Large Public Spaces by

Great East Japan Earthquake (in Japanese: 東日本大震災における公共大

空間施設での天井落下被害事例). SEISAN KENKYU, 2011.11. 63(6): p.

63~70.

6. H. Tomioka, et al., Study on Seismic Performance of Conventional Type Ceiling :

Part 1~Part4 (in Japanese: 在来天井の耐震性に関する研究 その 1~その

4). Summaries of technical papers of annual meeting B-1, 2013.7: p. 1103~1101.

7. 国土交通省国土技術政策総合研究所, 独立行政法人建築研究所, 豊田

スタジアムスポーツプラザ屋内プールの天井板脱落の現地調査報告.

2008.1.

8. R. Hosomi, et al., Preliminary Investigation on the Non-seismic failure of Non

176

Structural Components occurred at Fuji-Shi on July 15, 2013 (in Japanese: 非

地震時の天井落下事例（2013 年 7 月 15 日富士市）に関する基礎的調

査研究). Summaries of technical papers of annual meeting 2015 B-1, 2014.7:

p. 909～910.

9. 国土交通省国土技術政策総合研究所, 独立行政法人建築研究所, スポ

パーク松森における天井落下事故調査報告 -大空間を有するスポーツ

等施設の天井落下-. 2005.8. p. 27.

10. T. Uchida, et al., Preliminary study of safety of non-structural components in

wide roof buildings : Part 1: Floor area and suspended height of ceiling (in

Japanese: 大規模集客施設内部の非構造材に関する基礎的調査研究 :

その 1:フロア面積と天井設置高さに関するアンケート調査). Summaries

of technical papers of Annual Meeting Architectural Institute of Japan A-1,

2008.7: p. 209~210.

11. S. Sakurai, et al., Fundamental study of non-seismic failure of suspended

ceilings of swimming pools : Pull out strength of screws in humid circumstances

(in Japanese: 非地震時における屋内プール天井の落下被害に関する基

礎的考察 : 吸水時のビスの頭抜け強度について). Summaries of technical

papers of annual meeting Architectural Institute of Japan B-1, 2009.7: p.

897~898.

12. AIJ, Guidelines for Safety Measures Against Accidental Fall of Ceilings and

Other Non-structural Components (in Japanese: 天井等の非構造材の落下

に対する安全対策指針・同解説). 2015: AIJ.

13. S. Katayama, et al., Preliminary study of safety of non-structural components in

wide roof buildings : Part 3: Impact hammer experiment with a dummy head

(in Japanese: 大規模集客施設内部の非構造材に関する基礎的調査研究 :

その 3:インパクトハンマーによる人頭模型の応答実験). Summaries of

technical papers of Annual Meeting Architectural Institute of Japan. A-1, 2008.7:

p. 213~214.

14. Y. Nakaso, et al., Fundamental Research on the Safety Criteria of Nonstructural

Components in Large Enclosures: Drop Tests Using Plaster Boards (in

Japanese: 天井材の安全性評価に関する基礎的研究：石膏ボード落下実

験). SEISAN KENKYU, 2012.11. 64(6): p. 95~100.

15. Y. Nakaso and K. Kawaguchi, Fundamental research on the safety criteria of

nonstructural components in large enclosures using human tolerance index :

177

Part 6: Estimation of the ceiling drop impact based on the transfer function (in

Japanese: 人体耐性指標を用いた天井材の安全性評価に関する基礎的研

究 その 6 伝達関数に基づく天井材落下衝撃荷重の推定). Summaries of

technical papers of annual meeting B-1, 2013.7: p. 1007~1008.

16. Y. Nakaso and K. Kawaguchi, Fundamental research on the safety criteria of

nonstructural components in large enclosures using human tolerance index :

Part 7: Identification of the optimal transfer function (in Japanese: 人体耐性

指標を用いた天井材の安全性評価に関する基礎的研究 その 7 最適伝

達関数の同定). Summaries of technical papers of annual meeting B-1, 2014.7:

p. 921~922.

17. K. Kawaguchi, Y. Oba, and Y. Nakaso, Failure of Ceilings and Estimation of Its

Impact Occurred in an Airport Building During the 2011 Off the Pacific Coast

of Tohoku Earthquake (in Japanese: 2011年東北地方太平洋沖地震による

空港ターミナルビル内天井落下及び天井落下衝撃力の推定). AIJ J.

Technol., 2012.6. 39(18): p. 789~793.

18. Y. Nakaso, Identification of Impact Load of Dropped Ceilings to a Dummy Head

by Inverse Analysis (in Japanese: 天井落下時に発生する頭部衝撃荷重の

逆問題解析による同定に関する研究), in Dept. of Architecture, School of

Engineering, The Univ. of Tokyo. 2015.2, The Univ. of Tokyo.

19. I. Maruyama, et al., CARBONATION AND FASTENING STRENGTH

DETERIORATION OF CALCIUM SILICATE BOARD:-Analysis of materials

collected from a ceiling collapse accident (in Japanese: けい酸カルシウム板

の中性化と留付け強度低下に関する研究 : －天井落下事故を生じた材

料の分析－). J. Struct. Constr. Eng., 2013.7. 78(689): p. 1203~1208.

20. K. Kawaguchi, Report on large roof structures damaged by the Great Hanshin-

Awaji earthquake. International Journal of Space Structures, 1997. 12(3-4): p.

137-147.

21. K. Kawaguchi. Damage to non-structural components in large rooms by the

Japan earthquake. in Structures Congress 2012, March 29, 2012 - March 31,

2012. 2012. Chicago, IL, United states: American Society of Civil Engineers

(ASCE).

22. Ministry of Education, Sports, Science and Technology - Japan. Guidance for

Ceiling Falling Prevention in School Facilities (In Japanese: 学校施設にお

178

ける天井等落下防止対策のための手引). 2013 Aug; Available from:

http://www.nier.go.jp/shisetsu/pdf/ceiling_all.pdf.

23. Ministry of Education, Sports, Science and Technology - Japan. Case Studies of

Countermeasures to Ceiling Falling in Indoor Sports Halls (In Japanese: 屋内

運動場等の天井等落下防止対策事例集). 2014 April; Available from:

http://www.nier.go.jp/shisetsu/pdf/anti-drop_all.pdf.

24. Ministry of Education, Sports, Science and Technology - Japan. Guidebook for

Earthquake Protection for Nonstructural Members of School Facilities (Revised

Edition) Protecting Children from Falling and Tumbling Objects due to an

Earthquake – Implementing Earthquake Resistance Inspection –. 2015 March;

Available from: http://www.nier.go.jp/shisetsu/pdf/e-gijyutsu2.pdf.

25. Ministry of Land, Transport and Tourism - Japan. Notification No. 282 of the

Ministry of Land, Infrastructure, Transport and Tourism (In Japanese: 建築物

の定期調査報告における調査及び定期点検における点検の項目、方法及

び結果の判定基準並びに調査結果表を定める件). 2008 March; Available

from: http://wwwkt.mlit.go.jp/notice/pdf/201703/00006549.pdf.

26. C. Sodeikat and F. Knab, Aufnahme von historischen Deckensystemen mit

verschiedenen Methoden der zerstörungsfreien Prüfung ZfP. Beton- Und

Stahlbetonbau, 2014. 109(7): p. 453-462.

27. A. Pereira, et al., Inspection and diagnosis system for gypsum plasters in

partition walls and ceilings. Construction and Building Materials, 2011. 25(4):

p. 2146-2156.

28. Y. Nitta, et al., Development of the damage assessment methodology for ceiling

elements, in Sensors and Smart Structures Technologies for Civil, Mechanical,

and Aerospace Systems 2012, Pts 1 and 2, M. Tomizuka, C.B. Yun, and J.P.

Lynch, Editors. 2012, Spie-Int Soc Optical Engineering: Bellingham.

29. C. Cadena, et al., Past, Present, and Future of Simultaneous Localization and

Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics,

2016. 32(6): p. 1309-1332.

30. S.-Y. Hwang and J.-B. Song, Clustering and probabilistic matching of

arbitrarily shaped ceiling features for monocular vision-based SLAM.

Advanced Robotics, 2013. 27(10): p. 739-747.

179

31. M. Jung and J.-B. Song, Robust mapping and localization in indoor

environments. Intelligent Service Robotics, 2016. 10(1): p. 55-66.

32. S.W. Doebling, et al., Damage identification and health monitoring of structural

and mechanical systems from changes in their vibration characteristics: a

literature review. 1996.

33. C.C. Ciang, J.-R. Lee, and H.-J. Bang, Structural health monitoring for a wind

turbine system: a review of damage detection methods. Measurement Science

and Technology, 2008. 19(12): p. 122001.

34. J. Ko and Y. Ni, Technology developments in structural health monitoring of

large-scale bridges. Engineering structures, 2005. 27(12): p. 1715-1725.

35. E.P. Carden and P. Fanning, Vibration Based Condition Monitoring: A Review.

Structural Health Monitoring, 2004. 3(4): p. 355-377.

36. Y. Zou, L. Tong, and G.P. Steven, Vibration-based model-dependent damage

(delamination) identification and health monitoring for composite structures—

a review. Journal of Sound and Vibration, 2000. 230(2): p. 357-378.

37. O. Salawu, Detection of structural damage through changes in frequency: a

review. Engineering structures, 1997. 19(9): p. 718-723.

38. Y. Lu and J.E. Michaels, A methodology for structural health monitoring with

diffuse ultrasonic waves in the presence of temperature variations. Ultrasonics,

2005. 43(9): p. 717-731.

39. S. Liang, et al., Fiber-optic intrinsic distributed acoustic emission sensor for

large structure health monitoring. Optics Letters, 2009. 34(12): p. 1858-1860.

40. D. Broda, et al., Modelling of nonlinear crack–wave interactions for damage

detection based on ultrasound—A review. Journal of Sound and Vibration, 2014.

333(4): p. 1097-1118.

41. R. Curadelli, et al., Damage detection by means of structural damping

identification. Engineering structures, 2008. 30(12): p. 3497-3504.

42. A.-M. Yan, et al., Structural damage diagnosis under varying environmental

conditions—part II: local PCA for non-linear cases. Mechanical Systems and

Signal Processing, 2005. 19(4): p. 865-880.

180

43. A.-M. Yan, et al., Structural damage diagnosis under varying environmental

conditions—part I: a linear analysis. Mechanical Systems and Signal

Processing, 2005. 19(4): p. 847-864.

44. L. Mujica, et al., Q-statistic and T2-statistic PCA-based measures for damage

assessment in structures. Structural Health Monitoring, 2011. 10(5): p. 539-553.

45. J.-H. Chou and J. Ghaboussi, Genetic algorithm in structural damage detection.

Computers & Structures, 2001. 79(14): p. 1335-1353.

46. R. Perera and R. Torres, Structural damage detection via modal data with

genetic algorithms. Journal of Structural Engineering, 2006. 132(9): p. 1491-

1501.

47. H.Z. HosseinAbadi, et al., GUW-based structural damage detection using WPT

statistical features and multiclass SVM. Applied Acoustics, 2014. 86: p. 59-70.

48. X. Wu, J. Ghaboussi, and J. Garrett Jr, Use of neural networks in detection of

structural damage. Computers & Structures, 1992. 42(4): p. 649-659.

49. P. Pandey and S. Barai, Multilayer perceptron in damage detection of bridge

structures. Computers & Structures, 1995. 54(4): p. 597-608.

50. C. Zang and M. Imregun, Structural damage detection using artificial neural

networks and measured FRF data reduced via principal component projection.

Journal of Sound and Vibration, 2001. 242(5): p. 813-827.

51. L. Yam, Y. Yan, and J. Jiang, Vibration-based damage detection for composite

structures using wavelet transform and neural network identification.

Composite Structures, 2003. 60(4): p. 403-412.

52. X. Fang, H. Luo, and J. Tang, Structural damage detection using neural network

with learning rate improvement. Computers & Structures, 2005. 83(25-26): p.

2150-2161.

53. D. Ziou and S. Tabbone, Edge detection techniques-an overview. Pattern

Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz

Izobrazhenii, 1998. 8: p. 537-559.

54. I. Abdel-Qader, O. Abudayyeh, and M.E. Kelly, Analysis of Edge-Detection

Techniques for Crack Identification in Bridges. Journal of Computing in Civil

181

Engineering, 2003. 17(4): p. 255-263.

55. T. Nishikawa, et al., Concrete Crack Detection by Multiple Sequential Image

Filtering. Computer-Aided Civil and Infrastructure Engineering, 2012. 27(1): p.

29-47.

56. M. O’Byrne, et al., Texture Analysis Based Damage Detection of Ageing

Infrastructural Elements. Computer-Aided Civil and Infrastructure Engineering,

2013. 28(3): p. 162-177.

57. J.B. Butcher, et al., Defect Detection in Reinforced Concrete Using Random

Neural Architectures. Computer-Aided Civil and Infrastructure Engineering,

2014. 29(3): p. 191-207.

58. Y. LeCun, et al., Convolutional Networks and Applications in Vision, in 2010

Ieee International Symposium on Circuits and Systems. 2010, Ieee: New York.

p. 253-256.

59. Y.-J. Cha, W. Choi, and O. Büyüköztürk, Deep Learning-Based Crack Damage

Detection Using Convolutional Neural Networks. Computer-Aided Civil and

Infrastructure Engineering, 2017. 32(5): p. 361-378.

60. D. Soukup and R. Huber-Mork, Convolutional Neural Networks for Steel

Surface Defect Detection from Photometric Stereo Images, in Advances in

Visual Computing, G. Bebis, et al., Editors. 2014, Springer-Verlag Berlin: Berlin.

p. 668-677.

61. Y.z. Lin, Z.h. Nie, and H.w. Ma, Structural Damage Detection with Automatic

Feature‐Extraction through Deep Learning. Computer‐Aided Civil and

Infrastructure Engineering, 2017. 32(12): p. 1025-1046.

62. Y.J. Cha, et al., Autonomous Structural Visual Inspection Using Region‐Based

Deep Learning for Detecting Multiple Damage Types. Computer‐Aided Civil

and Infrastructure Engineering, 2017.

63. R.C. Gonzalez and R.E. Woods, Digital Image Processing (3rd Edition). 2006:

Prentice-Hall, Inc.

64. J. Canny, A computational approach to edge detection. Ieee Transactions on

Pattern Analysis and Machine Intelligence, 1986(6): p. 679-698.

182

65. D.H. Ballard, Generalizing the Hough transform to detect arbitrary shapes.

Pattern Recognition, 1981. 13(2): p. 111-122.

66. T.M. Mitchell, Machine Learning. 1997: McGraw-Hill, Inc. 432.

67. Y.S. Abu-Mostafa, M. Magdon-Ismail, and H.T. Lin, Learning from Data: A

Short Course. 2012: AMLBook.com.

68. E. Alpaydin, Introduction to Machine Learning, 3rd Edition. Introduction to

Machine Learning, 3rd Edition. 2014, Cambridge: Mit Press. 1-613.

69. D. Silver, et al., Mastering the game of Go with deep neural networks and tree

search. Nature, 2016. 529(7587): p. 484-489.

70. D. Silver, et al., Mastering the game of go without human knowledge. Nature,

2017. 550(7676): p. 354.

71. O. Russakovsky, et al., Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 2015. 115(3): p. 211-252.

72. D. Castelvecchi, Can we open the black box of AI? Nature News, 2016.

538(7623): p. 20.

73. G. Ian, B. Yoshua, and C. Aaron, Deep Learning. 2016: MIT Press.

74. W.S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 1943. 5(4): p. 115-

133.

75. D.O. Hebb, The organization of behavior: A neuropsychological theory. 1949,

New York: Wiley.

76. Y. LeCun, Generalization and network design strategies. Connectionism in

perspective, 1989: p. 143-155.

77. D. Williams and G. Hinton, Learning representations by back-propagating

errors. Nature, 1986. 323(6088): p. 533-538.

78. G.E. Hinton. Learning distributed representations of concepts. in Proceedings

of the eighth annual conference of the cognitive science society. 1986. Amherst,

MA.

183

79. B. Schölkopf, C.J. Burges, and A.J. Smola, Advances in kernel methods:

support vector learning. 1999: MIT press.

80. M.I. Jordan, Learning in graphical models. Vol. 89. 1998: Springer Science &

Business Media.

81. C. Cortes and V. Vapnik, Support-vector networks. Machine learning, 1995.

20(3): p. 273-297.

82. B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal

margin classifiers. in Proceedings of the fifth annual workshop on

Computational learning theory. 1992. ACM.

83. G.E. Hinton and R.R. Salakhutdinov, Reducing the dimensionality of data with

neural networks. Science, 2006. 313(5786): p. 504-507.

84. C. Poultney, S. Chopra, and Y.L. Cun. Efficient learning of sparse

representations with an energy-based model. in Advances in neural information

processing systems. 2007.

85. Y. Bengio, et al. Greedy layer-wise training of deep networks. in Advances in

neural information processing systems. 2007.

86. R. Pascanu, et al., How to construct deep recurrent neural networks. arXiv

preprint arXiv:1312.6026, 2013.

87. G.F. Montufar, et al. On the number of linear regions of deep neural networks.

in Advances in neural information processing systems. 2014.

88. Y. Bengio and Y. LeCun, Scaling learning algorithms towards AI. Large-scale

kernel machines, 2007. 34(5): p. 1-41.

89. Y. Bengio, Learning Deep Architectures for AI. Foundations and Trends® in

Machine Learning, 2009. 2(1): p. 1-127.

90. Y. LeCun, Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553):

p. 436-444.

91. M. Ahmadlou and H. Adeli, Enhanced probabilistic neural network with local

decision circles: A robust classifier. Integrated Computer-Aided Engineering,

2010. 17(3): p. 197-210.

184

92. Z. Cui, et al., Deep Network Cascade for Image Super-resolution, in Computer

Vision - Eccv 2014, Pt V, D. Fleet, et al., Editors. 2014, Springer Int Publishing

Ag: Cham. p. 49-64.

93. A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny

images. 2009.

94. A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with deep

convolutional neural networks. in Advances in neural information processing

systems. 2012.

95. R. Girshick. Fast R-CNN. in Proceedings of the IEEE International Conference

on Computer Vision. 2015.

96. R. Girshick, et al., Rich feature hierarchies for accurate object detection and

semantic segmentation, in 2014 Ieee Conference on Computer Vision and

Pattern Recognition. 2014, Ieee: New York. p. 580-587.

97. K. He, et al., Mask R-CNN. arXiv preprint arXiv:1703.06870, 2017.

98. A. Karpathy and L. Fei-Fei, Deep Visual-Semantic Alignments for Generating

Image Descriptions. IEEE Trans Pattern Anal Mach Intell, 2017. 39(4): p. 664-

676.

99. T.Y. Lin, et al., Microsoft COCO: Common Objects in Context, in Computer

Vision - Eccv 2014, Pt V, D. Fleet, et al., Editors. 2014, Springer Int Publishing

Ag: Cham. p. 740-755.

100. H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic

segmentation. in Proceedings of the IEEE International Conference on

Computer Vision. 2015.

101. S. Ren, et al., Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks. IEEE Trans Pattern Anal Mach Intell, 2017. 39(6): p. 1137-

1149.

102. E. Shelhamer, J. Long, and T. Darrell, Fully Convolutional Networks for

Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell, 2017. 39(4): p.

640-651.

103. I.J. Goodfellow, et al., Multi-digit number recognition from street view imagery

185

using deep convolutional neural networks. arXiv preprint arXiv:1312.6082,

2013.

104. G. Hinton, et al., Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups. IEEE Signal Processing

Magazine, 2012. 29(6): p. 82-97.

105. M. Abadi, et al., Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467, 2016.

106. F. Bastien, et al., Theano: new features and speed improvements. arXiv preprint

arXiv:1211.5590, 2012.

107. R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like

environment for machine learning. in BigLearn, NIPS Workshop. 2011.

108. Y. Jia, et al. Caffe: Convolutional architecture for fast feature embedding. in

Proceedings of the 22nd ACM international conference on Multimedia. 2014.

ACM.

109. F. Chollet, Keras. 2015.

110. A. Esteva, et al., Dermatologist-level classification of skin cancer with deep

neural networks. Nature, 2017. 542(7639): p. 115-118.

111. G.E. Dahl, N. Jaitly, and R. Salakhutdinov, Multi-task neural networks for

QSAR predictions. arXiv preprint arXiv:1406.1231, 2014.

112. F. Rosenblatt, The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological review, 1958. 65(6): p. 386.

113. Y. LeCun, et al., Efficient backprop. Neural Networks: Tricks of the Trade, 1998.

1524: p. 9-50.

114. M. Blaauw and J. Bonada, A Neural Parametric Singing Synthesizer. arXiv

preprint arXiv:1704.03809, 2017.

115. A.v.d. Oord, et al., Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499, 2016.

116. V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning.

186

arXiv preprint arXiv:1603.07285, 2016.

117. Y. LeCun and Ieee, Deep Learning & Convolutional Networks. 2015 Ieee Hot

Chips 27 Symposium (Hcs), 2016: p. 121.

118. C. Szegedy, et al., Going Deeper with Convolutions, in 2015 Ieee Conference

on Computer Vision and Pattern Recognition. 2015, Ieee: New York. p. 1-9.

119. C. Zhang, et al., Understanding deep learning requires rethinking

generalization. arXiv preprint arXiv:1611.03530, 2016.

120. M.D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional

Networks, in Computer Vision - Eccv 2014, Pt I, D. Fleet, et al., Editors. 2014,

Springer Int Publishing Ag: Cham. p. 818-833.

121. Y. LeCun, et al., Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 1998. 86(11): p. 2278-2324.

122. M. Bojarski, et al., End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

123. N. Srivastava, et al., Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. Journal of Machine Learning Research, 2014. 15: p. 1929-1958.

124. A.G. Lalkhen and A. McCluskey, Clinical tests: sensitivity and specificity.

Continuing Education in Anaesthesia Critical Care & Pain, 2008. 8(6): p. 221-

223.

125. M.D. Zeiler, G.W. Taylor, and R. Fergus. Adaptive deconvolutional networks

for mid and high level feature learning. in 2011 International Conference on

Computer Vision. 2011.

126. B. Zhou, et al., Object detectors emerge in deep scene cnns. arXiv preprint

arXiv:1412.6856, 2014.

127. G.E. Hinton, S. Osindero, and Y.-W. Teh, A fast learning algorithm for deep

belief nets. Neural computation, 2006. 18(7): p. 1527-1554.

128. D. Erhan, et al., Visualizing higher-layer features of a deep network. University

of Montreal, 2009. 1341(3): p. 1.

187

129. Q.V. Le. Building high-level features using large scale unsupervised learning.

in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on. 2013. IEEE.

130. K. Simonyan, A. Vedaldi, and A. Zisserman, Deep inside convolutional

networks: Visualising image classification models and saliency maps. arXiv

preprint arXiv:1312.6034, 2013.

131. M. Alexander, O. Christopher, and T. Mike. Inceptionism: Going Deeper into

Neural Networks. 2015; Available from:

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-

neural.html.

132. E.L. Spratt, Dream Formulations and Deep Neural Networks: Humanistic

Themes in the Iconology of the Machine-Learned Image. arXiv preprint

arXiv:1802.01274, 2018.

133. J. Yosinski, et al., Understanding neural networks through deep visualization.

arXiv preprint arXiv:1506.06579, 2015.

134. K. Simonyan and A. Zisserman, Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

135. F. Wang, et al., Residual attention network for image classification. arXiv

preprint arXiv:1704.06904, 2017.

136. H. Zheng, et al. Learning multi-attention convolutional neural network for fine-

grained image recognition. in Int. Conf. on Computer Vision. 2017.

137. A. Das, et al., Human Attention in Visual Question Answering: Do Humans and

Deep Networks Look at the Same Regions? Computer Vision and Image

Understanding, 2017. 163: p. 90-100.

138. J.T. Springenberg, et al., Striving for simplicity: The all convolutional net. arXiv

preprint arXiv:1412.6806, 2014.

139. M. Lin, Q. Chen, and S. Yan, Network in network. arXiv preprint

arXiv:1312.4400, 2013.

140. B. Zhou, et al. Learning deep features for discriminative localization. in

Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on.

188

2016. IEEE.

141. R.R. Selvaraju, et al., Grad-CAM: Visual Explanations from Deep Networks via

Gradient-based Localization. See https://arxiv.org/abs/1610.02391 v3, 2016.

142. S. Thrun and L. Pratt, Learning to learn. 2012: Springer Science & Business

Media.

143. K. Weiss, T.M. Khoshgoftaar, and D. Wang, A survey of transfer learning.

Journal of Big Data, 2016. 3(1): p. 9.

144. P.H. Calais Guerra, et al. From bias to opinion: a transfer-learning approach to

real-time sentiment analysis. in Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining. 2011. ACM.

145. Y. Zhu, et al. Heterogeneous Transfer Learning for Image Classification. in

AAAI. 2011.

146. S.J. Pan and Q. Yang, A survey on transfer learning. IEEE Transactions on

knowledge and data engineering, 2010. 22(10): p. 1345-1359.

147. J. Blitzer, et al. Learning bounds for domain adaptation. in Advances in neural

information processing systems. 2008.

148. S. Ben-David, et al. Analysis of representations for domain adaptation. in

Advances in neural information processing systems. 2007.

149. S. Ben-David, et al., A theory of learning from different domains. Machine

learning, 2010. 79(1-2): p. 151-175.

150. J. Yosinski, et al. How transferable are features in deep neural networks? in

Advances in neural information processing systems. 2014.

189

Appendix A: URLs of the images from internet

URLs of the images from internet:

1. https://tupolecam.pl/sufity-podwieszane/konstrukcja-stelaz/

2. https://paslaugos.lt/vaidas-vv385/galerija/376749

3.http://festivalsalsacali.com/the-outrageous-real-drop-ceiling-ideas-for-basement-ideas/ideas-of-

awesome-basement-ceiling-ideas-3-most-popular-basement-ceiling-that-awesome/

4. https://usercontent2.hubstatic.com/4966769_f1024.jpg

5.http://www.servprocassstjosephcounties.com/FranchiseContent/GalleryPhotos/8714-319c7366-f021-

40c9-948e-c8d244c8ba83.JPG

6.http://crapimissedit.com/i/2018/02/best-paint-for-ceiling-tiles-how-to-paint-acoustic-ceiling-tiles-

ceiling-paint-spray-can-how-to-repair-ceiling-tiles-with-water-damage.jpg

7. http://www.troop125ny.org/eagle-nest2/JamesRyan/eg1.jpg

8.http://www.dailyastorian.com/storyimage/DA/20161018/ARTICLE/161019724/EP/1/1/EP-

161019724.jpg&MaxW=600

9. https://flaglerlive.com/wp-content/uploads/eoc-tiles.jpg

10.http://ktva.images.worldnow.com/images/14560502_G.jpg?auto=webp&disable=upscale&height=5

60&fit=bounds

11. https://cupertinopianogames.files.wordpress.com/2011/12/img_2587.jpg

12.http://peckdrywallandpainting.com/wp-content/uploads/2013/03/Water-Damaged-Skip-Trowel-

Ceiling-Melbourne.jpg

13. http://www.emono1.jp/img/kamiyar/20120422223554_img1_5.jpg

14.https://crapimissedit.com/i/2018/02/how-to-paint-acoustic-ceiling-tiles-best-paint-for-ceiling-tiles-

how-to-repair-ceiling-tiles-with-water-damage-zinsser-covers-up-ceiling-paint-970x728.jpg

15. http://www.met-s.co.jp/images/material/original_img001.jpg

16. http://www.e-lmx.com/showcase.html#

17. http://www.perle-st.co.jp/display_ceiling.html

18. http://www.leadray.com/comm/upimage/p_151025_04834.jpg

19. http://blogimg.goo.ne.jp/user_image/38/ee/1cc79efd68b2523e6463ee131e2dde98.jpg

20.http://safty.sakura.ne.jp/sblo_files/safty-

living/image/E4BD93E882B2E9A4A8E5A4A9E4BA95E890BDE4B88BE58699E79C9F001.jpg

21. http://www.schoolnews.jp/wp-content/uploads/2015/06/2df269c7fd43000e02d79d1e88188612.jpg

22. http://www.schoolnews.jp/wp-content/uploads/2015/06/8b23b0ee5d5bee38ffd161e861b30519.jpg

23. http://www.toyoda-gosei.co.jp/upload/news/436/fcec62f373571adc6f330539dcbb78d9.jpg

24. http://pyramidgroup.in/wp-content/uploads/sites/1/nggallery/industrial/pyramid-industrial6.jpg

25.https://www.osaka-c.ed.jp/blog/semboku-

y/katou/images/271109%20%E4%BD%93%E8%82%B2%E9%A4%A8%E7%85%A7%E6%98%8E%

E6%94%B9%E4%BF%AE%E3%83%BC%EF%BC%91%20IMG_2217.jpg

26.http://www.honmoku-ac-

seikosha.com/news/entry_file_display.php?Name=151ed019529321452d1ffee77c9b5743c1cd695c.jpg

&ID=c086dc97f533b829e6ac027d6d2ffd61341e1847

27. http://www.healthy-clay.com/wp/wp-content/uploads/59d58d211a8487eec3879f47e92ec00c.jpg

28. http://sports-mura.com/images_sisetsu/65_4.jpg

29. http://www.oiler.co.jp/kensou/img/000002_list_image.jpg

30. http://www.schoolnews.jp/wp-content/uploads/2015/12/8742dffddaf2dd5ae365ab7642b4f608.jpg

31. http://www.emono1.jp/img/toei-japan/20160906204043_image_9.jpg

32. http://www.kobayashi-denko.co.jp/_p/730/images/pc/9f617c30.JPG

33. http://www.sakcs.jp/wpcms/wp-content/uploads/2014/09/2bc9745e8c83d4d0dac6b74176efee03.jpg

34. http://www.kobayashi-denko.co.jp/_p/730/images/pc/1be11dbd.JPG

35. http://www.toprise.co.jp/products/img/03system/system10.jpg

36. http://www.kumamoto-ymca.or.jp/rifuresu/file/36178.jpg

37. http://livedoor.blogimg.jp/vsnpnet/imgs/e/7/e7379b3a.jpg

38. http://www.konkokyo.or.jp/kakudan/osakarescue/wp-content/uploads/2016/04/S_11288587.jpg

190

39. http://www.business-directory.jp/image/service1/3/6404.jpg

40. http://livedoor.blogimg.jp/tigerhouse/imgs/d/b/dbf97761.jpg

41. http://jyukanrisystem.com/wp-content/uploads/2017/01/075.jpg

42. https://goguiltypleasures.files.wordpress.com/2013/11/house-fail-ceiling.jpg

43.https://images.adsttc.com/media/images/5987/b9da/b22e/3883/6a00/00b9/slideshow/Bamboo_Sport

s_Hall_Panyaden_School_(7).jpg?1502067141

44. http://www.another-day.co.jp/blog/DSCF3840.JPG

45. http://www.koyou-m.co.jp/column/img/img164kd4103_1.jpg

http://www.another-day.co.jp/blog/DSCF3840.JPG
http://www.koyou-m.co.jp/column/img/img164kd4103_1.jpg

191

Appendix B: Details of the intermediate outputs by the CNN

model

Details of the intermediate outputs by the CNN model:

Table B1 Outputs of the convolutional layers

Input image (Fig. 4.1 (a)), prediction: 0.006

CL1 output: (399, 599, 32)

CL4 output: (198, 298, 32)

192

CL7 output: (97, 147, 32)

CL10 output: (46, 71, 32)

CL13 output: (21, 33, 64)

193

Input image (Fig. 4.1 (b)), prediction: 0.673

CL1 output: (399, 599, 32)

CL4 output: (198, 298, 32)

CL7 output: (97, 147, 32)

194

CL10 output: (46, 71, 32)

CL13 output: (21, 33, 64)

Input image (Fig. 4.1(c)), prediction: 0.039

195

CL1 output: (399, 599, 32)

CL4 output: (198, 298, 32)

CL7 output: (97, 147, 32)

CL10 output: (46, 71, 32)

196

CL13 output: (21, 33, 64)

Input image (Fig. 4.1(d)), prediction: 0.737

CL1 output: (399, 599, 32)

197

CL4 output: (198, 298, 32)

CL7 output: (97, 147, 32)

CL10 output: (46, 71, 32)

198

CL13 output: (21, 33, 64)

Input image (Fig. 4.1 (e)), prediction: 0.246

CL1 output: (399, 599, 32)

CL4 output: (198, 298, 32)

CL7 output: (97, 147, 32)

199

CL10 output: (46, 71, 32)

CL13 output: (21, 33, 64)

Input image (Fig. 4.1 (f)), prediction: 0.620

200

CL1 output: (399, 599, 32)

CL4 output: (198, 298, 32)

CL7 output: (97, 147, 32)

CL10 output: (46, 71, 32)

201

CL13 output: (21, 33, 64)

Input image (Fig. 4.1 (g)), prediction: 0.502

CL1 output: (399, 599, 32)

202

CL4 output: (198, 298, 32)

CL7 output: (97, 147, 32)

CL10 output: (46, 71, 32)

203

CL13 output: (21, 33, 64)

Input image (Fig. 4.1 (h)), prediction: 0.275

CL1 output: (399, 599, 32)

CL4 output: (198, 298, 32)

CL7 output: (97, 147, 32)

204

CL10 output: (46, 71, 32)

CL13 output: (21, 33, 64)

205

Acknowledgements

This thesis is the summary of my three-year doctoral research in the University of

Tokyo. I would like to give my most sincere thanks to my supervisor, Prof. Ken’ichi

Kawaguchi, who has given his wholehearted help, guidance and full trust to me both in

my research life and everyday life. His insightfulness and industriousness in research

are treasures for my research life. I feel lucky for being supervised by him.

I would like to thank my vice supervisor, A.P. Jun Iyama for his kind help and

instructions to my research and the review of this thesis. His comments and guidance

to my research summary reports at the end of each semester has provided clear research

line. I appreciate the meaningful comments and reviews by Prof. Tsuyoshi Takada, A.P.

Tsuyoshi Seike from the University of Tokyo and Prof. Akira Nishitani from Waseda

University. Their suggestions help me improve my thesis.

I also would like to give my thanks to the Technical Staff Mr. Shunji Oya who provides

hardware support and the secretaries Mrs. Yoko Kondo and Mrs. Mitsuyo Kakimoto in

Kawaguchi lab. Research Associate Dr. Yosuke Nakaso has provided me with abundant

help and suggestions in both my research and my everyday life. He is always responsive

to my inquiry questions and ready to help. Mr. Tatsuya Hiraki, my tutor, has helped me

to adapt the daily life in Japan smoothly and rapidly. Mr. Keisuke Mizutani, Mr.

Tatsuhiko Hashiba, Mr. Kei Nishizaki, Mr. Tomoki Kawai, Miss. Xitong Yan, Mr. Xuan

Yang and et. We have a very good time together.

I give my thanks to Prof. Yingying Zhang, Mr. Tianhao Zhang, Dr. Jianhui Hu and Dr.

Lichen Wang, who have spent their time with me during their stay in Kawaguchi Lab.

Their comments and advices help me with my research. Miss. Ling Wu and Mr. Hongqi

Diao help me a lot with my research and daily life.

I would give my special thanks to my wife, Yiming Xu, who has been supporting and

encouraging me for many years. I also thank our parents who have always been

supporting us. Without their support and trust I cannot complete my research work.

