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1. Introduction 

1.1 Backgrounds of ceiling damage detection 

1.1.1 Ceilings and damages in ceilings 

Structures have been resisting natural forces, like gravity, wind, moisture and outside 

loads ever since they are in construction to provide shelters and living space for human. 

To prevent life and property loss from structural failures, researchers and constructors 

have made enormous achievements in maintaining the safety of structural components 

under extreme circumstances. However, failure or falling of non-structural components 

are also dangerous to vulnerable human body. Fails of structural components are not 

always due to the traditional structural forces like earthquakes or winds that directly 

impose on them, but usually are caused by deteriorations and corrosions in the materials. 

Ceilings, one of the most widely used non-structural components, take a major role in 

interior design, thermal and acoustic environment control. Failures of ceilings are 

especially dangerous to human body [1-5]. 

Ceilings constitute the upper part of the interior space, work both aesthetically and 

structurally. Ceilings perform decoration function as non-structural components and 

bear load as structural components. Overhead mechanical, electrical and plumbing 

components are possible to be hidden behind the ceilings to serve the apparent 

requirements of interior design. Fire resistance, sound absorption / insulation, lightings, 

thermal insulation and other indoor environment performances require high-level 

design of ceilings. For all the requirements above, designers are prone to lower the 

priority or even forget to consider the structural safety in ceilings. Fig. 1.1 shows the 

system composition of suspended ceilings which are generally used in Japan and Fig. 

1.2 shows the components of systematic ceilings, which are usually adopted in office 

buildings.  

Designers and manufacturers usually pay much attention on the seismic resistance of 

ceilings [6]. However, fall of ceilings occurs not only under earthquake, but also occurs 

within daily life [7-11]. Ceilings interact with surroundings such as moisture, wind, 

temperature changes, rusting, leakage of rain, traffic vibration and aging in the materials. 

Ceilings of large space such as stations, public baths and natatoriums especially suffer 

from moisture, dew condensation and traffic vibration. In Fig. 1.3, examples of damages 

and fall of ceilings are shown. 
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(a) Sectional view 

 

(b) View from the inner of ceilings 

 

(c) Details of inner view 

Fig. 1.1 Components of suspended ceilings 

 

 
Fig. 1.2 Components of systematic ceilings 

 

hanger bolt 

hanging bolt 

lightings 

equipment cables 

T bar 

T bar hanger 

ceiling board 
H bar 

furring 
runner 

hanger bolt 
clip 

runner 

furring 

hanger 

ceiling board 



 

3 

 

  

(a) Leaking of rain (b) Rust in ceiling frame 

  

(c) Ceiling fall by dew condensation (d) Ceiling board fall by earthquake 

Fig. 1.3 Examples of damages in ceilings 

There are four main forms to the fall of ceilings shown in Fig. 1.4: 1. Shape deformation 

of clips; 2. Slip off of screws; 3. Deformation of hangers; 4. Fall off of hanger bolts. 

The most frequent damage in ceilings is the shape deformation of clips, which is usually 

caused by earthquakes. The separation in the junctions is related to the aging of the 

ceilings. Condensation, leakage of rain, rusting and aging in the connections of ceiling 

boards and screws cause such kind of ceiling fall, which usually happens in spaces with 

high humidity. The dangerous aspect of the separation in the junctions is that such kind 

of ceilings fall occurs in a sudden, without any early warning to people under the falling 

ceilings. 
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(a) Shape deformation of clips (b) Separation in the junction 

  

(c) Deformation of hangers (d) Fall of hanger bolts 

Fig. 1.4 Reasons to ceilings fall 

Countermeasures to the fall of ceilings are: 1. Setting up of fall prevention net and wires, 

2. Lightweight and softening ceilings, 3. Earthquake resistance enhancement, 4. 

Removal of the ceilings (shown in Fig. 1.5). These countermeasures have their own 

merits and demerits suited for different situations. They are possible to be in 

combination with each other to meet requirements of ceilings design. 
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The prevention of ceilings from falling consists both “Life protection (solutions to 

prevent injuries and deaths due to ceilings fall)” and “Function maintenance (solutions 

to maintain the functions of ceilings like acoustic performance, heat insulation, 

aesthetic value and etc.)” [12]. The latter one is based on the realization of the former 

one. The most dangerous situations for falling ceilings are: 1. Many people gathering 

together, 2. Ceilings hung in high place, 3. Large area covered with ceilings. Buildings 

or architecture spaces with these three characters need special attention and safety 

evaluation regularly. 

Fall of ceilings and other non-structural components causes problems: 

1. Lives of people who are in the building are exposed to danger. 

2. Long term impairment to spatial function of the building. 

3. Occurrence not only under circumstance of earthquake but also at ordinary time. 

4. The damages in ceilings are severer than those in structural components under the 

  

(a) Fall prevention net and wires (b) Lightweight and softening ceilings 

  

(c) Earthquake resistance enhancement (d) Removal of ceilings 

Fig. 1.5 Countermeasures to the fall of ceilings 
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same seismic degree. 

The impediments among the solutions to these concerns include: 

1. The deficiency of proper evaluation methods to the safety or danger degree of the 

ceilings installed on high place.  

2. The lack of countermeasure methods to existing ceilings that may have been 

damaged. 

3. The installation positions, forms and materials of the ceilings are determined by the 

appearance designers who are lack of education to the safety in ceilings. 

4. The tendency of reinforcing the ceilings (non-structural components) in the same 

way to reinforce structural components that makes the ceilings much more heavier 

and much more damages if the ceilings fall. 

5. The restoration of the ceilings to the state before accident happens also causes 

problems. It results in the recurrence of the same damages to the ceilings if another 

likely accident happens. 

6. The absence of service life limit to the ceilings results in long-term service of the 

ceilings. This results in the fall of ceilings due to the deterioration of ceiling 

materials. 

From the holistic perspective, safety and function preservation of ceilings are related to 

the height the ceilings installed and the materials of the ceilings. Appropriate danger 

degree evaluation to these aspects prevents fall of ceilings from happening and realizes 

the protection of lives. In the case of assumption that fall of ceiling occurs, a possible 

danger degree evaluation perspective is to evaluate the contact process between the 

ceilings and human body. Evaluation between the intensity of the contact and human 

body tolerance is possible to be converted to danger degree evaluations of ceilings [13-

19]. Based on a series of tests that evaluates striking forces by different materials ceiling 

boards those fall from different heights on a simulated human head, relationships 

among the ceiling installation height, the ceiling materials and the final striking forces 

are established. Human body tolerance to these striking forces are compared to evaluate 

the danger degree of falling ceilings. 

However, the fall of ceilings may happen under many different circumstances. The 

danger evaluation criteria that are based on the final impact force on human body may 

neglect the development of little damages in the ceilings. The little damages may 
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develop into big ones if there is no regular examination. Reliable solutions to detect 

damages in ceilings can prevent the problem of possible injuries to human from 

happening at the very beginning. 

1.1.2 Damage detection of ceilings 

Large span structures, like indoor stadiums in school, public buildings and hospitals 

have a potential to be shelters for residents when disasters like earthquakes and 

aftershocks occur in Japan[20]. These structures are designed to resist disasters without 

severe structural damages in columns or beams. Ceilings (including suspended ceilings, 

lighting equipment, inner / exterior finishing materials, etc.) are reported damaged 

during the Great East Japan Earthquake on 11th March 2011 even if they were 

constructed under the latest Japanese construction technical advice issued by the 

Ministry of Land, Infrastructure, Transport and Tourism of Japan (MLIT) [21]. In the 

guidebooks by Ministry of Education, Culture, Sports, Science and Technology – 

Japan (MEXT), non-structural components failures, ceilings for the most part, 

especially those that happen during aftershocks when people in the shelters, are reported 

to cause losses of lives and properties [22-24]. These guidebooks suggest inspection 

approach of nonstructural members in school facilities, especially ceilings. It is 

important to find any trace of abnormality to apply countermeasures at early stage 

before disaster happens. 

In a Notification by the Ministry of Land, Infrastructure, Transport and Tourism of 

Japan (MLIT) [25], the inspection items of ceilings include both the outside part that 

directly faces to the room and the inner side where hangers are hidden. The inspection 

method is mainly on-site-inspection by human naked eye to find out if there is any 

damage, like floating in the boards, deflection, spalling, corrosion, loose, 

disengagement or deficiency. Binoculars telescope is to aid the inspection if necessary.  

The inspection of ceilings begins with the collection of information of ceiling status in 

the purpose of protecting human lives. Then the function maintenance of ceilings 

requires the information of damages in ceilings [12]. The information relatives to not 

only the ceiling and ceiling foundation materials, but also to the type of the building, 

the location of the ceilings, suspended units, hanging facilities, columns and walls at 

the edges of ceilings. Table 1.1 shows the investigation items of ceilings when detecting 

damages to general utilized lightweight steel frame ceilings [12]. 
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Table 1.1 An example of investigation items of ceilings 

Investigation 

item 

Contents Details of investigation 

1. Structural type 

and form 

Steel framed structure, steel framed 

reinforced concrete structure, 

reinforcement structure and other 

structural forms 

Confirm the influence extent 

to ceilings by earthquake, 

wind and other external force.  

2. Ceilings 

structural 

information 

Height from ceilings to floor, ceilings 

and its foundation material, density 

of the materials, total area of the 

ceilings, shape of the ceilings, 

purpose of the room where the 

ceilings are 

Damage evaluation if ceilings 

fall does occur 

3. Ceilings 

working status 

Moisture, water stains, wind 

pressure, structural shake 

Influence on the live 

protection and functional 

maintenance 

4. Earthquake 

resistance 

The completeness of earthquake 

resistance components, performances 

of braces 

Confirmation to the safety of 

the ceilings structure in 

earthquake condition 

5. Facilities 

installed in 

ceilings 

Equipment machines, inspection 

scaffold, audio equipment 

Confirmation of the influence 

to the ceilings foundation and 

the existence of fall-

prevention 

6. Surroundings 

of ceilings 

Walls, columns and other structures 

connected or next to ceilings 

Evaluation the impact if 

earthquake occurs 

Non-destructive ceiling examination systems to existing historical buildings applying 

methods like ultrasonic echo technique, ground radar and measurement by 

reinforcement scanner are also reported [26]. Different tasks of examination need 

different methods. A combination of these methods would reach better results. These 

methods require that the testing personnel have tremendous practices and experiences 

because ceilings are constructed by diverse materials and forms. In the inspection and 

diagnosis for gypsum plasters ceilings, an expert system was developed [27]. This 

system includes a defect classification and probable causes of these defects, which is 

also based on on-site inspection of human naked eyes. It provides an easy method to 

analysis possible causes to the defect and to find proper solutions to that. 

There are also attempts to free professionals or people who follow the long inspection 

list from on-site inspections. Smart sensor board and inspection robots are exploited to 

evaluate the ceiling condition, detect the location and condition of the damage in 

another report [28]. This method can detect more details of the ceilings on the inside 
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part where even professionals cannot see only by on-site-inspection. However, this 

method is only suit for specific ceilings. Another solution using a series of algorithms 

named Simultaneous localization and mapping (SLAM) consists of the construction of 

a model of the surrounding environment and a robot moving in it has made astonishing 

progress in the last thirty years [29]. The robot understands the topology of the 

environment and builds information model (map) to perform actions. Solutions to 

estimate the pose of the robot is to build a ceiling-feature map by using an upward 

looking monocular camera [30, 31]. Ceiling feature extraction methods in these 

solutions are heuristic algorithms to detecting damages in the ceilings. 

All the algorithms and solutions of recognizing damaged ceilings mentioned above 

have common defects: either they need considerable experiences and work by the 

observer (human) or they are not suitable to the complex working conditions when 

complex algorithms are applied. A robust, reliable and diversity-adapted solution of 

damage detection is in need. 

1.1.3 Damage detection to structures and the positioning of this thesis 

In structural engineering and civil engineering, the damage detection to the target 

structures overlaps with the structural health monitoring (SHM) [32-34]. The damage 

detection uses many information monitored from the structure such as the vibration [35, 

36], the frequency [37], the temperature [38], the acoustic performance [39, 40], the 

damping [41] and etc. The damage detection and SHM usually contain two main parts: 

1. the collection of the data by sensors and 2. algorithms processing the data to make 

judgement. Researchers have been developing new sensors to detect different physical 

signals generated or reflected from the objective structures, and more algorithms to 

process these signals to extract more information about the target structure. Algorithms 

such as principal components analysis (PCA) [42-44], genetic algorithm (GA) [45, 46], 

support vector machine (SVM) [47] are applied in structural damage detection. 

Among the algorithms for structural damage detection, an early research using neural 

networks for structural damage detection is developed in 1992 [48]. In this article, a 

neural network for recognizing the behavior of undamaged structures and damaged 

structures is trained using the self-organization and learning capabilities of neural 

networks. The input to the neural network is the frequency respond of a structure, which 

is the computed acceleration time histories of the structure using Fourier spectra of the 

acceleration time histories. The output is a number ranging from 0 to 1, indicating the 

damage state of the input. Even though there are only 42 inputs, the whole process and 

the idea behind this research contains all the necessary elements in neural network 

application. Other researches using neural networks for structural damage detection 



 

10 

 

follow the same process as data processing, model building and training, model 

validation [49-52]. However, these researches all use the vibration data for input, but 

fail to attempt using other monitoring data. 

Although monitor images or videos are easy to acquire, damage detection and SHM 

algorithms using images or videos of the target structures are still few until recent years. 

Two possible reasons are that the analysis of images and videos will consume a big 

amount of calculation resource and the algorithms for image and video processing are 

still under research. There are algorithms to detect cracks in concrete which are possible 

to be modified to detect cracks in ceiling panels. Edge detection techniques find edges 

among pixels in gray level where contrast is over the threshold [53]. Four edge detection 

techniques are compared to finding crack in bridges [54]. Edge detection techniques 

need much parameter adjustment to reach the best results. Another image processing 

method for detecting concrete surface cracks is multiple sequential image filtering [55]. 

This method can accurately detect cracks in images recorded in various conditions and 

even quantify the widths of the detected cracks from the spatial derivatives of brightness 

patterns. A semi-automatic, texture analysis approach to detect and classify ageing 

infrastructural elements, using enhanced texture segmentation can fit the variations in 

different damage forms, lighting conditions, viewing angles, and image resolutions [56]. 

There is also an attempt to detect defects in reinforced concretes using the method 

named random neural architectures [57]. It is a machine learning method that train a 

model using data collected from real world. However, the complexness of the model is 

weak. A common defect of these image-based algorithms is that they can only detect 

simple damages such as cracks on the surface of concrete and rust on the surface of 

steels. More divers and robust algorithms for structural damage detection are still in 

need. 

Deep learning connects the neural networks with the image analysis [58]. With the 

development of computer hardware and deep learning software infrastructures, there 

are many applications using deep learning for structural damage detection. Defect 

detection of reinforced concrete using random neural architectures provides a non-

invasive technique to the structures [57]. Another concrete crack detection using deep 

learning and convolutional networks can detect and extract cracks on the surface of 

concrete [59]. In the field of steel structure surface detection, convolutional neural 

networks is also applicable [60]. Computer aided solutions to detect cracks or damages 

in structures using deep learning methods [61, 62]. Although they claim that they have 

reached very satisfying accuracies, the detectable damages are usually limited to cracks 

on the surface of concrete or corrosions on the steel, which have very common features 

that are easy for non-deep-learning algorithms to grasp. The real power of deep learning 

is far from being exerted in structural engineering. Furthermore, there have been no 

research in structural engineering or civil engineering on the mechanisms of the 
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artificial models for structural damage detection. Almost all the researches follow the 

same route: 1. Generate a database; 2. Train a neural network model until to a high 

accuracy; 3. Test the model with other data; 4. Claim that the model has good 

performance. In Table 1.2, a brief description to structural damage detection approaches 

using neural networks or deep learning is displayed. The most common defect is that 

none of them researched on the inner mechanisms of the neural network models. 

Table 1.2 Structural damage detection approaches using neural networks or deep learning 

Researcher 

Deep 

learning 

method 

Year 
Detectable 

damages 
Advantage Disadvantage 

X. Wu, J. 

Ghaboussi, 

and J. 

Garrett Jr. 

[48] 

Neural 

network 
1992 

Overall 

damage 

evaluation 

Early application 

of neural network 

in structural 

damage detection 

Too simple 

P. Pandey 

and S. Barai. 

[49] 

Neural 

network 
1995 

Damage in 

bridges 

Attempts to apply 

neural network in 

bridge monitoring 

Too simple / 

limitation in 

bridge form 

variations 

C. Zang and 

M. Imregun. 

[50] 

Neural 

network 

& PCA 

2001 

Frequency 

response 

functions 

Evaluation to the 

structural status 

Cannot locate the 

damage position 

X. Fang, H. 

Luo, and J. 

Tang. [52] 

Neural 

network 
2005 

Frequency 

response 

functions 

Tune the model 

with learning rate 

improvement 

Too simple 

algorithm 

adjustment 

J.B. Butcher, 

et al. [57] 

Random 

Neural 

Networks 

2018 
Concrete 

surface defects 

Reduction of data 

collection time 

Cannot locate 

damage region 

Y.-J. Cha, 

W. Choi, 

and O. 

Büyüköztürk 

[59] 

CNN 2017 
Concrete 

cracks 
High accuracy 

The detectable 

damage is only 

concrete cracks 

D. Soukup 

and R. 

Huber-

Mork. [60] 

CNN 2014 
Steel surface 

damage 
Vision-based 

Too small images 

and too few 

detectable damage 

forms 

Y.z. Lin, 

Z.h. Nie, 

and H.w. 

Ma. [61] 

CNN 2017 

Frequency 

response 

functions 

(FRFs) and 

vibration 

modes 

Considering the 

visualizations to 

the hidden layers 

Limited to beam 

components 

Y.J. Cha, et 

al. [62] 

Faster R-

CNN 
2017 

Concrete 

crack, steel 

corrosion with 

two levels, 

bolt corrosion, 

and steel 

delamination 

Detecting the 

damages in one-

run 

The detectable 

damages are still 

strong in 

characteristics 



 

12 

 

In this thesis, building and training a convolutional neural network model for ceiling 

damage evaluation is the first step. In fact, the intact forms and damaged forms in 

ceilings are much more various than cracks in the concrete, deep learning can exert its 

strengths in these complicated situations. Secondly, investigations to the model are the 

core in this thesis. Investigations are mainly performed by visualizations of the model 

to human interpretable images. Through the visualizations of the model, the ultimate 

objective of this thesis: the ceiling damage detection function is accomplished as well. 

Thirdly, a ceiling damage detection system involving in the user for interactivities is 

devised and tested. Finally, transfer learning is introduced to build more powerful CNN 

models. 

1.2 Image processing algorithms and machine learning 

Image processing refers to the mathematical alternations to a digital image. The 

simplest digital image may be defined as a function f(x, y) , where x and y are the 

coordinates of a spatial plane (two-dimension), numerical value of f(x, y) is the intensity 

/ brightness / gray level of the pixel at the point (x, y) (usually ranges from 0 to 255). 

The pixels containing both spatial and intensity information constitute a whole digital 

image. One digital image is regarded as a series of numbers, or a matrix, to the computer 

[63]. Fig. 1.6 shows an image of the number nine (28 by 28 pixels of one channel) and 

its details in matrix. RGB channels of an image are shown in Fig. 1.7. Different channels 

are emphasizing different features of the original picture. Applying image processing 

algorithms to an image is altering the matrix in the image. 

 

Original image 

 

Image interpreted by computer  

Fig. 1.6 View of an image in detail (one channel) 
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Original image 

(“Badminton Theater Rehearsal Room”, 

by Fvonglower, is licensed under CC-BY-SA-3.0, resolution: 640×427×3) 

 

 

RGB channels to the original picture 

Fig. 1.7 RGB channels constitute one color picture 

1.2.1 Image processing algorithms 

Generally, any alternations applied to the original digital image can be named under 

image processing algorithms. Changes of shape, distortion, brightness, color are basic 

alternation algorithms (show in Fig. 1.8). These adjustments are easy to apply and 

understand, but they are too primitive to accomplish complex tasks in image processing. 
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Fig. 1.8 Adjustments to an image 

In the domain of image processing to ceiling images, there are too many varieties of 

ceiling shapes and materials, which are hard to interpret by the computer. The goal of 

Canny Edge Detection is to identify the boundaries of an object in an image [64]. Firstly, 

transfer the image into a grayscale image. Secondly, calculate the gradients in the image. 

The gradient is defined by how different the values are in adjacent pixels in the image. 

Each pixel in the gradient image corresponds to the strength of the gradient at this point. 

The edges of an object can be traced out by following the strongest gradients. There are 

three parameters to adjust in Canny Edge Detection, the low threshold, the high 

threshold and kernel size, which are adapted to detect edges of different objects (Fig. 

1.9). The disadvantages of Canny Edge Detection are: 1. the adjustments to the 

parameters require experienced human; 2. Shadows by complicated light environment 

invalidate the edge detection process. 

 

 

Brightness up

Shape and direction alternation

Original

Black-and-white
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Original (grayscale) 

 

k=3, l=10, h=50 

 

k=9, l=10, h=50 

 

k=3, l=50, h=200 

 

k=5, l=50, h=200 

 

k=9, l=50, h=200 

k: kernel size, l: low threshold, h: high threshold 

Fig. 1.9 Canny Edge Detection for ceilings 

Hough transform, devised by Paul Hough, can perform transformations of one line in a 

two-dimension image (image space) into one point in a Hough space, and a line in a 

Hough space back to one point in the image space [65]. To find specified lines (length 

and tilt) in the image space, the intersection point among intersecting lines in the Hough 

space can be calculated to determine the specified lines in the image space. To detect 

ceilings in an image, shapes of ceilings can be set by adjusting parameters of Hough 

transform. Fig. 1.10 shows the input and output by Hough transform. 
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The algorithms above can be applied to find out the most important lines and shapes 

that compromise the ceilings and other components. There are also many algorithms 

that are good at processing colors, shapes, even recognize human faces. However, these 

algorithms are too specialized in their own fields and are hard to composite to meet the 

requirements of a complex mission in detecting and evaluating ceiling damages. 

1.2.2 Machine learning 

Computers are designed to calculate, not for perception of the world around them. They 

need to be programmed to finish tasks designated by human. Algorithms are developed 

to solve one task or a series of tasks which can be divided into small ones using explicit 

(a finite amount of space and time) specifications. In other words, computers are passive 

to the outside world and need to be programmed to do tasks. However, machine learning 

makes computers learn from experiences and weakens boundaries between humans and 

computers [66-68] . Machine learning has been applied in many fields in which only 

human was capable of before, like image recognition, voice translation, fraud detection 

in bank systems, spam detection, playing GO and driving cars. Past experiences need 

to be translated into digitalized information as input for computers, which also can be 

called “data”. Machine learning does not specify every line of code to solve a problem 

but builds a model which takes in data (past experiences) as input to optimize the 

performance of the model using pre-defined metrics. The “learning” process occurs in 

the optimizing the parameters in the model. A “trained” model is generated when the 

metrics reveal optimization and the model is ready to make predictions to new data. 

Due to the properties that the models / algorithms of machine learning “learn” from 

data, machine learning also overlaps with artificial intelligence (AI) [68]. Machine 

learning models / algorithms are composed with different architectures but have 

something in common: they optimize millions or hundreds of millions of parameters in 

 

Input 

 

Output (red lines are recognized by Hough 

Transform) 

Fig. 1.10 Hough Transform to Detect Ceilings 
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them in the train phase, namely the learning process. Machine learning is especially 

good at judgement, which is also named classification. For example, machine learning 

can predict if a student can be admitted into a school base on the student status like 

grades and social activities. Machine learning can also segment customer groups based 

only on their consumption patterns. Table 1.3 introduces different kinds of machine 

learning and their properties. Machine learning is a series of algorithms with versatile 

capacities to be applied in our real life. The deep learning, a branch of machine learning, 

is reaching one and another the best state of art results in recent years. Almost all kinds 

of digital information can be processed and learnt by deep learning and some of them 

have already beaten human level results. 

Table 1.3 Machine learning categories 

Field of machine 

learning 
Characteristics and application 

1. Supervised 

learning 

Given a series of input X variables and their output Y variables, build 

and train a model that reflects Y = f(X), the model is good enough 

when given a new input x, it can precisely predict the output by 

calculating y=f(x). “Supervised” refers to the existence of both input 

X variables and output Y variables when training the model. The Y 

variables supervise how the model learns like a teacher. The learning 

process stops when the performance of the model prediction is 

acceptable. 

Supervised learning is widely used in building judgement systems 

such as finding spam mails, voice recognition and recommendation 

products. 

2. Unsupervised 

learning 

When only input X variables are given, investigating and finding 

underlying structures of the X variables is unsupervised learning. 

Building a model that segments the whole input X variables into 

interpretable clusters is the goal of unsupervised learning. There is no 

correct answer (output Y variables) or no teacher to the input data, so 

such machine learning is called unsupervised learning. 

Unsupervised learning is useful in market segmentation of customers 

whose consumption customs are acquired by sellers. It is useful in 

dividing a series of experimental results to find out what condition 

affects the results most. 

3. Semi-Supervised 

learning 

When abundant input X variables but only a few output Y variables 

are acquired, such machine learning is semi-supervised learning. It is 

very common in real world machine learning problems because the 

output Y variables are labeled by human, especially by experts. The 
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labeled data of output Y variables are expensive to acquire while the 

input data of input X variables are easily to acquire. 

A very common example of semi-supervised learning is diagnosis to 

a specified and relatively rare disease. There are many inputs 

(symptoms of illness) but very few outputs (confirmation to the 

specified disease). 

4. Reinforcement 

learning 

Reinforcement learning is different from finding a model that best 

suits the input X variables and output Y variables or segmenting a 

bunch of input X variables into clusters. Reinforcement learning 

makes an agent (a player controlled by the algorithm) who learns by 

itself in a given environment (a world defined by a series of rules). 

For example, a reinforcement learning algorithm controls a mouse in 

a defined maze to find a piece of cheese by learning the structure of 

the maze. Reinforcement learning can learn by itself to find the 

shortest way to the cheese by exploring the maze. Reinforcement 

learning is so powerful that it is possible to apply in all tasks in the 

real world. 

5. Deep learning 

Deep learning is also in the supervised learning frame. It learns with 

the optimization process which each of multiple processing layers 

calculates input from its previous layer and pass its output to its latter 

layer. Each layer abstracts the information gradually until the whole 

model best fits the problem. 

Deep learning could be applied in any field that input can be 

digitalized. In speech recognition, visual object recognition, semantic 

analysis and many other domains, deep learning is making astonishing 

achievements. 

There are no absolute boundaries among algorithms of machine learning. By 

combination and reasonable arrangement of these algorithms, many problems can be 

solved elegantly by AI. For example, AlphaGo Zero and AlphaGo [69, 70] using deep 

reinforcement learning and other machine learning algorithms have beaten human in 

Go competitions which was considered impossible in classical algorithms. In recent 

years, people are pushing the boundaries of machine learning more and more further 

than before. Imagination and practice make machine learning shine in the future. 
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1.3 Applying machine learning to ceiling damage detection 

1.3.1 Requirements to the deep learning model 

The machine learning algorithms have their merits in analyzing problems that were very 

difficult for computers before. Classification of objects were very hard for computer to 

handle with because there are too many features in even only one object. However, the 

emergence of the machine learning, especially the deep learning, broadens the frontiers 

of artificial intelligence. The deep learning method can do multilayer abstractions to the 

inputs and their labels by optimizing weights in the deep learning model. The 

optimizing process can be deemed as the process of learning, although the real 

mechanism of human learning process is still under research. Fig. 1.11 shows the flow 

chart of how to generate a qualified CNN model for ceiling damage evaluation. 

 

Fig. 1.11 Flow chart of building and training a CNN model 
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Noticing the metrics to decide if a CNN model has learnt enough in Fig. 1.11, these 

metrics are the requirements to the CNN model as well. To apply deep learning in 

ceiling damage detection, the deep learning model should meet the following 

requirements: 

(1) Accuracy: The predictions made by the deep learning model are digital numbers 

that represent the possibility of the ceilings to be damaged. The predictions are required 

to be accurate enough to provide strong guidance to human. Deep learning (especially 

the CNN architecture) is good at classification. It can classify the images of different 

objects to a very high accuracy [71]. The ceiling damage detection task is different from 

the traditional classification task. The features in the images of ceilings are various and 

hard to directly classify. Moreover, a damaged ceiling image and an intact one may 

contain the same features that cover over 80% area in the image (shown in Fig. 1.12). 

The deep learning model are required to grasp the most important intact and damaged 

features that may only take a very small proportion to the whole image in area. 

 

(a) Intact 

 

(b) Damaged 

Fig. 1.12 Images sharing common features with different labels 

(2) High-resolution image processing oriented: There are many possible damaged 

and intact forms in ceilings, the model must learn enough from the dataset. The model 

should be able to process relatively high-resolution images that contain more details in 

the ceilings. Any possible signs of damages in the ceilings should be noticed, even if 

they are tiny. Fig. 1.13 shows different resolutions to the same ceiling image.  
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(a) 32x32 

 

 
(b) 256x256 

 

 
(c) 600x600 

Fig. 1.13 Different resolutions to the same image 

(3) Ability to learn from scarce data: Most deep learning models are trained on 

massive data (thousands or millions of images for classification task). However, when 

applying deep learning methods to ceiling damage evaluation and detection, the images 

that well representing the features of the ceilings, especially the damaged ones, are quite 

few (2,000 ceiling images in total). The deep learning model should be modified to 

learn enough from the training data even if the training data is in scarcity. 

(4) Interpretability: The accuracy of the predictions is important, but not everything. 

People used to pursue the accuracies by aggressively increasing the complexity of the 

deep learning models with the sacrifice of interpretability of the models. Interpretability 

refers to the understandings and faith of human to the deep learning model (shown in 

Fig. 1.14). Although there are many emerging new methods and architectures to improve 

the prediction accuracies in deep learning, there is not much research on the 

interpretations of the deep learning models. To some extent, the deep learning is still a 

black box to human [72]. The deep learning algorithms work, but we do not know why 

they work. The mechanisms in the deep learning model should be understandable or at 

least evaluable. 
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Fig. 1.14 Interpretability 

(5) Damage detection function: The damage detection is the ultimate objective in this 

research, it is also a challenge to the deep learning model as well. The damage detection 

system using deep learning should provide possible damaged regions in the image to 

the user. 

1.3.2 Solutions to the requirements 

To meet the requirements above, the knowledge of deep learning and ceiling damage 

detection should be deeply intertwined to build and train the deep learning model. 

Solutions that modify the deep learning models to meet the requirements in the ceiling 

damage detection task are: 

(1) Realizing the high accuracy in the predictions: 

There are many knobs to tune in deep learning, the most widely accepted evaluation 

standard to a deep learning model is its prediction accuracy. Researchers have been 

struggling to improve their final prediction accuracy since the first day of deep learning. 

In this thesis, many attempts and trials like tuning the architecture of the CNN model, 

data pre-process and training process are performed to get a final relatively satisfactory 

prediction accuracy. 

(2) High-resolution image recognition solution: 

The resolution of 400×600×3 is chosen for the images in training data, which is a 

balance of large information capacity in one image and the computing resource 

consumption. The architecture of the CNN model is also adjusted to perform gradual 

abstractions in the high-resolution images. 

Interpretability includes:

• What has happened to the CNN 

model in the training process?

• How does the final prediction to an 

image come out?

• Does a correct prediction come 

from irrelevant features?

• Why does the CNN model fail in 

some circumstances?

• Can we trust the prediction results?

• ...

To experts in ceiling structure/ 

deep learning model builders:

Insights to the capabilities and 

limitations of the CNN model

To common users of the deep 

learning model:

Providing trustworthy predictions and 

damage detection function
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(3) Data augmentation to generate more data for training: 

The lack of data leads to overfitting, which means that the model mechanically 

remembers irrelevant features in the training data and make predictions by recognizing 

these irrelevant features. According to the unique property of convolutional neural 

networks, translation invariance, alternations to the original images will not change the 

contents in them and will generate more data for training and testing. Data 

augmentation algorithms are adopted to alleviate data scarcity. 

(4) Visualizing the trained CNN model to make it interpretable: 

Different levels of visualizations to the trained CNN models are used: (1) Visualizing 

the middle convolutional layers to find what regions in the input image most activate 

the filters in the convolutional layers; (2) Visualizing the patterns that most activate a 

specific filter in a convolutional layer to investigate the different degrees of abstractions 

in the convolutional layers and visualize what the CNN model has learnt; (3) 

Highlighting the pixels that contribute most to the final predictions using saliency map 

in the calculation of backpropagation, which is a relatively aggressively coarse 

visualization method; (4) Visualizing the attention maps in the trained CNN model 

using gradient-weighted Class Activation Mapping (Grad-CAM) method, which is a 

more exquisite and precise visualization method. By using these visualizing methods, 

a CNN model is interpretable to human. 

(5) Visualizing the attention maps to accomplish the damage detection function: 

Object detection is another popular deep learning research field that attracts lots of 

clever brains, many methods are also developed for the object detection task. In this 

thesis, visualizations of the attention maps to the trained CNN model provide the 

solution to the damage detection task since the trained CNN model has been properly 

trained and interpreted. 

1.3.3 New proposals 

Although the history of deep learning dates back to a few decades ago, the real rise of 

deep learning occurs in the recent no more than ten years, within which the most fruitful 

achievements are in recent five years. The tentacles of deep learning have touched 

almost every field in which the data can be normalized. Fig. 1.15 shows the new 

proposals to fulfill the requirements for the ultimate objective and the significances of 

the research. 



 

24 

 

 

Fig. 1.15 Significance, objective and new proposals 

In this thesis, the new proposals are: 

(1) Visualizations to the inner mechanisms of the deep learning model for 

interpretations: 

The deep learning method yields amazing results in accuracy. However, the 

mechanisms in deep learning are still in research to investigate the intelligence-like 

performances of the deep learning. In this research, the visualizations of the deep 

learning model provide interpretations of the model to understand how the model works, 

which is applied in structural engineering for the first time. Furthermore, these 

visualizations provide ceiling damage detection function, which is also used for the first 

time in structural engineering. 

This part is the core of the thesis. The following visualizations are performed: 

a. Intermediate convolutional layer output visualization; b. Activation map: Generating 

images that most activate the learning units (filters in the convolutional layers or 

classification nodes); c. Saliency map and Grad-CAM: Highlighting the most 

contributing pixels in the input image to the final prediction.  

Significance Objective New proposals

Developing a reliable 

ceiling damage detection 

system

3. Transfer learning 

models for ceiling 

damage detection

1. For experts in 

structures:

Providing a solution to 

structural health 

monitoring

2. For experts in deep 

learning:

Broadening the scope of 

deep learning application 

and making the deep 

learning model more 

transparent

3. For ceiling 

maintenance personnel:

Alleviating the workload 

as an aid

4. For residents/ 

amateur:

Providing ceiling damage 

detection and alerting 

service

1. Visualizations to the 

inner mechanisms of the 

deep learning model for 

interpretations

2. A ceiling damage 

detection system
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(2) A ceiling damage detection system: 

Based on the CNN model and the visualizations to it, a ceiling damage detection system 

is raised with the user involved in. The user can be a ceiling inspection specialist or a 

refugee under possible falling ceilings in large-span buildings. This ceiling damage 

detection system helps the user in the large-span building ceiling damage detection task. 

(3) Transfer learning models for ceiling damage detection: 

Transfer learning is used in this thesis to obtain more powerful deep learning models in 

ceiling damage detection for the first time in structural engineering. 

1.4 Objectives of this thesis 

The ultimate objective of this thesis is to develop a reliable ceiling damage detection 

system that anyone can use to receive aids from (an expert in ceiling maintenance or a 

layman / refugee who wants to know if the ceilings are safe). 

The ceiling damage detection task is possible to be converted into ceiling image 

processing task. Nowadays it is very easy to take high resolution images even using 

mobile phones. However, there are obstacles for ceiling damage detection using image 

processing: 

In the first place, there are many forms of ceilings and many construction methods in 

the ceiling industry. The reasons that cause damages in ceilings are various as well. The 

damaged forms in ceilings are numerous. It is difficult to generate reliable evaluations 

from only one ceiling image. 

Secondly, although taking ceiling images is easy for anyone using mobile phones, it is 

difficult to judge the existence of damage region in the ceiling, especially in a large-

span structure. 

Thirdly, neither the user or the AI are 100% correct, opportunities to correct mistakes 

should be provided to both the user and the AI. 

In summary, it is very difficult to come to the correct conclusions from only one ceiling 

image. A ceiling damage detection system with user-CNN interactive process 

(Interactive-AI) is devised in this thesis that can provide higher precision results by 

using gradually complementing process (zoom-in the original image / taking new 

photos). At the same time, the Interactive-AI is required that the user can grasp the 
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process of information analysis in the CNN model to the extent that even a layman can 

understand roughly whether it is a correct or an incorrect prediction. Furthermore, when 

the prediction is incorrect, the input image should be preserved as future training dataset 

for the improvement to the CNN model. 

Fig. 1.16 shows the objective of this thesis: 

 

Fig. 1.16 The objective of this thesis 

1.5 Overview of this thesis 

Chapter 1 introduces the background of ceiling damage detection and machine learning. 

The requirements for the machine learning / deep learning model are raised to 

successfully fulfill the ceiling damage detection function before the model is really built 

and trained. Chapter 1 introduces the application of deep learning in structural 

engineering and civil engineering and the positioning of this thesis in damage detection 

using deep learning. The research objectives and the outline of this thesis are also 

proposed. 

Chapter 2 explained the deep learning and convolutional neural networks in theory. The 

The ultimate objective:

A ceiling damage detection system that

• Provides aids to a layman to detect 

damages in ceilings under disaster 

circumstances even if there are no 

structural experts to inquire

• Provides aids to ceiling health 

maintenance personnel in their 

inspection routine

1. A ceiling damage detection system with user-CNN 

interactive process (Interactive-AI)

2. The user can grasp the process of information analysis in the 

CNN model

3. The system is updatable (When the prediction is incorrect, 

the input image should be preserved as future training dataset 

for the improvement to the CNN model).
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mathematical calculations and mechanisms are introduced to build the calculation 

foundation to this thesis. 

Chapter 3 describes the generation of a CNN model for ceiling damage evaluation. In 

this chapter, the datasets under the label criteria specialized for deep learning are labeled 

by human firstly. Then a CNN model is built and trained from scratch using 

countermeasures to overfit. Finally, the trained CNN model is tested and reaches a 

relatively high accuracy in prediction. 

Chapter 4 investigates the trained CNN model to reveal the mechanisms of the 

prediction process. In this chapter, the trained CNN model is demonstrated from many 

visualization perspectives: Firstly, the outputs of the intermediate convolutional layers 

are visualized to grasp basic perceptive interpretations of the notions the model has 

learnt; Secondly, the activation maps to the filters are visualized to show what the CNN 

model has learnt through the gradual abstractions among the convolutional layers; 

Thirdly, the saliency maps and the Grad-CAM methods are used to visualize the pixels 

those contribute most to the final prediction to a given image. The visualization to these 

pixels does not only confirm that the CNN model has learnt the ‘intact’ and ‘damaged’ 

notions, but also provide the solutions to ceiling damage detection. Finally, a ceiling 

damage detection system using the blocks of CNN mode generation and visualization 

is raised to provide aid to both professionals of ceiling structures and common users. 

Chapter 5 provides the implementations of pretrained CNN models for ceiling damage 

detection. Firstly, two new CNN models (transfer learning models) using the trunks of 

VGG16 and VGG19 are built and trained for ceiling damage detection to relatively high 

accuracies. Secondly, the visualization for the final two prediction nodes are visualized 

to confirm that the transfer learning models have learnt the most important features of 

intact and damaged ceilings. Thirdly, the saliency map and Grad-CAM of these two 

models are visualized to confirm that the transfer learning models can learn faster and 

better than the CNN model built from scratch. The transfer learning is an improvement 

to the previous model. Finally, a ceiling damage detection system using transfer 

learning is raised. 

Chapter 6 concludes the main conclusions in this thesis and looks into future research 

on applying deep learning in ceiling damage detection. 
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2. Deep Learning and Convolutional Neural Networks 

In this thesis, deep learning and convolutional neural networks are adopted to build a 

ceiling damage detection system. Understanding capacities and limitations of deep 

learning and convolutional neural networks is the foundation of building a reliable and 

robust deep learning model. It is also the first step for further investigating and 

improving the whole system [73]. 

2.1 Deep learning history 

The expression “deep learning” is relatively new to what it really stands for. In fact, 

deep learning dates back to the 1940s [73], since when there have been ups and downs 

in the field of machine learning and deep learning. Before deep learning gets its fancy 

name in today, it was named “cybernetics” in the decade of 1940s for investigating how 

learning occurs in the brain [74, 75]. It built simple functions to reflect inputs to outputs. 

The second resurgence of neural networks happened in the 1980s for ten years with the 

name of “connectionism” in the contest of cognitive science. Connectionism believes 

that a network of a large amount of simple computational units can reveal intelligence 

if activated [76, 77]. In this period, some fundamental concepts were established and 

remain significant concepts in today’s deep learning. One of them is “distributed 

representation” [78], which means an input can be represented by many features and 

each feature can be extracted from the input. Features can be expressed in many ways, 

abstractly or intuitively. For example, an image of red bird has features of redness, 

shapes combination of a bird, a beak and an eye next to the beak. There are almost 

countless features even in a very simple image. An artificial intelligence system can do 

a lot of things even if it only learns quite few abstraction and combinations of these 

features. The second significant concept is how to make the artificial intelligence 

system really “learn”. The answer is back-propagation, which transfer the error of 

prediction to real label back to the start of the neural networks during which process 

the weights in the neural networks are updated. This second resurgence of neural 

networks lasted to the middle of 1990s till neural network researchers could not fulfill 

unreasonable expectations raised by ventures and some AI technologies. Furthermore, 

other machine learning fields like kernel machines and graphical models made 

achievements in many important fields [79-82]. These two factors both declined the 

popularity in neural networks till the year of 2006. During this period, the Canadian 

Institute for Advanced Research (CIFAR) launched the Neural Computation and 

Adaptive Perception (NCAP) research program, which kept the neural networks 
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research alive and united research groups led by Geoffrey Hinton, Yoshua Bengio and 

Yann LeCun respectively. 

In 2006, a breakthrough in the research of neural networks brought the third wave of 

deep learning till the time of today. Geoffrey Hinton reduced high-dimensional input 

into low-dimensional codes by training a multilayer neural network called a deep belief 

network using greedy layer-wise pretraining [83]. Soon researchers found that this 

strategy could be transferred to train many other kinds of neural networks [84, 85]. 

These researches propagated the term of “deep learning” widely to declare to both the 

researchers and the public that now neural networks were able to train deeper and more 

complicated neural networks than before. Researchers could focus on the architecture 

design and theoretical exploration of neural networks [86-88]. In the third wave of deep 

learning, the deep neural networks have outperformed many other AI systems in 

machine learning. Looking for the combination of deep learning with elder machine 

learning algorithms to expand application of AI technology is pushing the border of AI 

much more further [89, 90]. Increasing dataset sizes play a key role in the development 

of deep learning because training the learning algorithms requires sufficient data which 

were hard to obtained before the “big data age”. Learning with small size of data is also 

an important research area when researchers have already designed algorithms reaching 

human performance. Another important role is the increasing models size that 

accelerates the development of deep learning. Computational resources were very 

expensive in the 1980s, which restricted the scale of the neural networks. With cheaper 

and faster CPUs are available, the model size of the neural networks could be larger 

and more powerful in tasks. Later researchers found that GPUs were more suitable for 

the calculation of network and introduced GPUs into deep learning. Faster network of 

deep learning and more robust software infrastructures of distribution computing 

provide general tools for people who owns only a good graphics card if he / she is 

interested in deep learning. Here came the boom of deep learning research. 

Object recognition using deep models back to the date of 1980s, a neural network using 

back-propagation learns with the weights updating [77]. For the development of more 

than twenty years, modern object recognition neural networks become more complex 

and robust, greater size and resolution images are inputs to deep learning networks [91-

93]. A large contest of object recognition held each year is the ImageNet Large-Scale 

Visual Recognition Challenge (ILSVRC). A convolutional network solution of neural 

network dominated the winning position in 2012, this was also the time GPUs became 

shine in deep learning field [94]. Since then, the top positions of image recognition 

were taken by convolutional networks. Since object recognition is reaching or even 

outperforming human level, image segmentation became popular in deep learning. 

Object detection and semantic segmentation can solve so many problems that it would 

be a breakthrough in many fields like robotics, self-driving and almost any visual 
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algorithms that were thought impossible before [95-102]. 

Tasks that deep networks can solve become more complex with the size and accuracy 

of the deep networks increase. A team from google showed that neural networks was 

able to learn the whole sequence of numbers or characters in an image which was 

believed such kind of learning only can be realized by labeling digits or characters one 

by one [103]. Deep learning is also getting achievements in speech recognition [104]. 

The introduction of deep learning into speech recognition drop the error rates rapidly. 

Another achievement of deep learning is the combination to reinforcement learning. 

Reinforcement learning is characterized as an unsupervised agent exploring the 

environment defined by program, learning how to best fit the environment by getting 

reward or punishment when different event occurs. DeepMind project launched by 

google has astonished the world in 2017 with AlphaGo and AlphaGo Zero. 

Deep learning now is almost used by all top technology companies and other worldwide 

leading companies. The prospect of deep learning and machine learning propels 

resources and attention infuse in the research and application of AI field. Progresses in 

deep learning also depend on the perfection of infrastructures in software. TensorFlow 

[105], Theano [105, 106], Torch [107], Caffe [108], Keras [109] are all using in research 

and software development. Deep learning also makes the GPU producer NVIDIA profit 

grown rapidly in recent years since GPUs are found much more faster in deep learning 

than CPUs. 

Deep learning also inspires other sciences and makes contributions to them. 

Convolutional neural networks and transfer learning provide diagnose accuracy better 

than experts in skin cancer [110]. Deep learning also provides tools for preprocessing 

data, building a deep model to grasp the characters of the data and make predictions to 

new data. It can predict how molecules interact with each other to help companies in 

designing new drugs [111]. 

In summary, as a branch of machine learning, deep learning has been using large 

amounts of human knowledge of brain research and has gain fruity results in applying 

in many fields for the past decades. With more data, more strong calculation power and 

more dedicates of researchers and programmers, the future of deep learning is full of 

challenges and opportunities to push the border of AI further to new frontiers. 
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2.2 Deep neural networks 

2.2.1 Perceptron 

The term perceptron dates back to the year of 1958 in the brain science [112]. One 

perception is a mathematical function mapping some set of inputs to output value. It is 

used as a binary classifier in supervised learning, meaning the output to one specific 

perceptron is either 1 or 0 (yes or no). A perception can be expressed as: 
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Where: wi is weight of the perceptron, xi is one of inputs to the perceptron (n total inputs), 

b is the bias. 
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+   in Eq. 2.1 is an n-dimensional linear function. Fig. 2.1 shows 

perceptron of dimension two and three when calculating 
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three dimensions is hard to visualize but shares the same measures in optimizing w and 

b to function as a binary classifier. Fig. 2.2 shows the outputs of a perceptron, in this 

process, decisions are made to identify the inputs label: 0 or 1 using Heaviside step 

function. Fig. 2.3 shows the whole process when a perceptron calculates inputs to output 

(0 or 1). During this process, a perceptron can determine the label of the inputs by fixed 

weights (wi) and bias (b). 

Determining proper weights (wi) and bias (b) is the key to validate a perceptron. This 

is also when “learn” happens in a perceptron. Tuning the weights (wi) and bias (b) to 

proper values using data is called “train”. Trained weights and bias are ready to make 

prediction to new inputs. 

The processing that a perception does is straight forward and only suitable for a quite 

narrow range of problems. In the real world, inputs of a specific problem are usually 

too complex to be interpreted by linear function and inner data structures in the inputs 
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are implicit to be discovered by only one perceptron. From the perspective of biological 

neural scientists, a perceptron can be interpreted as a mathematic model of a neuron in 

the real world (Fig. 2.4). By connecting perceptrons, it is mimicking the structural of a 

brain. The system connected by perceptrons is named neural networks. 

 

2-dimension (x1 and x2) 

 

3-dimension (x1, x2 and x3) 

Fig. 2.1 Perceptron of dimension of two and three 

 

 

Fig. 2.2 Perceptron outputs (Heaviside step function) 
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Fig. 2.3 A perception processing inputs 

 

 

(a) A perceptron 

 

(b) A neuron 

Fig. 2.4 From perceptron to neural networks 

Fig. 2.5 shows an example of perceptron algorithm calculating parameters (weights (w1 

and w2) and bias (b)) of a perceptron in a two-dimension space. Suppose we have known 

a bunch of points with coordinates (x1, x2), each point is labeled as y (y=0 if blue, y=1 

if orange). The task is to find a perceptron with proper parameters that best separates 

these two kinds of points. This is a classical classification problem. We can tell that the 

line best separates these points is the red line from our human instinct. A computer 

concludes the right answer by perceptron algorithm, which is also the process that a 

perceptron learns from data. 
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Fig. 2.5 Perceptron algorithm 

The perceptron algorithm can be expressed as the pseudocode below: 

1. Start with the definition of the perceptron: 

 1 2 1 1 2 2( , ) ( )y f x x STEP w x w x b= = + +  , where STEP stands for Heaviside step 

function in Fig. 2.2; w1, w2 and b are randomly initialized. 

2. For every point in the train dataset, (xtrain1, xtrain2) and ytrain are already known 

(ytrain=0 if blue, ytrain=1 if orange), calculate the label to the point: 

1 2 1 1 2 2( , ) ( )train train train traintrain
y f x x STEP w x w x b= = + + , 

( train
y  is the prediction to the train point by the perceptron); 

if train train
y y= , the point is correctly labeled, do nothing;  

else, the point misclassified: 

3. For every misclassified point i (n1 … nn): 

3.1. If 1 1 1 2 2 2_
0 :    ,  ,  i ii train

y w w x w w x b b  =  +  +  + ; 
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3.2. If 1 1 1 2 2 2_
1:    ,  ,  i ii train

y w w x w w x b b  =  −  −  − . 

Where: α is the learning rate, meaning how fast the perceptron learns. 

The pseudocode above shows the process a perceptron learns. It uses the idea of 

gradient descent to the final perceptron parameters. It also implicitly requires enough 

points for learning are required, which is also a crucial premise in deep learning. 

The function of Eq. 2.1 is an activation function in deep learning. Activation functions 

have different properties in processing digits transferred into the nodes and different 

backpropagation derivatives for different problems. 

2.2.2 Multilayer perceptrons 

One perceptron is only capable of labeling inputs as 0 or 1, which is too simple to solve 

real world problems. Fig. 2.5 shows a series of points easily separated by a straight line. 

What if the points are like that shown in Fig. 2.6? They are not separated by only one 

line. Now it is possible to combine two perceptrons represented with two lines (the red 

and green lines) to separate these points as show in Fig. 2.6. Points both to the right of 

the red line and to the upper part of the green line are labeled as orange, otherwise are 

labeled as blue. In fact, this is a logical operator “AND”, which can be represented by 

Table 2.1. The architecture of these two perceptrons are shown in Fig. 2.7. From this 

perspective, other logical operators such as “OR”, “NOT”, “XOR” are all possible to 

be represented by multilayer perceptrons, which is also named neural networks. Layers 

between the input layer and output layer are called hidden layers. There could be as 

many as possible hidden layer in a neural network to output the final results. 

Now it is possible to build more complex multilayer neural networks with perceprons. 

When there are more than two classes to divide in a series of data, the architecture 

shown in Fig. 2.8 is a general solution. The S-shape perceptron is a perceptron using the 

perceptron function of Sigmoid. A sigmoid function is: 

 
1

( )
1 x

f x
e−

=
+

  2.2 

The shape of sigmoid function is shown in Fig. 2.9. There are two reasons sigmoid 

function is used wider than Heaviside step function in neural networks: (1) sigmoid 

function is more easily calculated in differential calculus, which is important in the 

backpropagation. (2) the output of a sigmoid function is between 0 and 1, which can be 
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interpreted as a probability. 

 

Fig. 2.6 Points unable separated by only one straight line 

 

Table 2.1 “AND” logical operator represented by two perceptrons 

Perceptron RED line 

label 

Perceptron GREEN 

line label 
Final label 

1 1 1 

1 0 0 

0 1 0 

0 0 0 

 

 

Fig. 2.7 Architecture of “AND” logical operator by two perceptrons 
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Fig. 2.8 Multi classes classification 

 

 

Fig. 2.9 Sigmoid function 

A simplest neural network can be expressed as inputs passed out to an activation 

function, f(h), which can be step function or sigmoid function: 

 ( ) ( )i iy f h f w x b= =  +   2.3 

By adding layers and nodes to a neural network, it becomes powerful in processing and 

analyzing data. 
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Hidden layers Outputs
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2.2.3 Feedforward, error function and backpropagation 

Feedforward is the process that a neural network turns inputs into an output. The last 

section has introduced the basic intuition of how the data flows from input to output. 

The mathematical calculations of a neural network shown in Fig. 2.10 can be expressed 

as: 

 

(2) (1) (1)

11 11 12 1

(2) (1) (1)

21 21 22 2

(2) (1) (1)

31 31 32

,  () is the sigmoid function

1

W W W x

y W W W x

W W W

  

     
     

=      
    
    

  2.4 

Sigmoid function in this neural network is called “activation function”. There are many 

other kinds of activation functions in the neural network. 

 

Fig. 2.10 Feedforward of a neural network 

Error function is to evaluate the difference between prediction and the labeled value. 

Error function is also named loss function. The learning process is also the process that 

minimizing the error function by adjusting weight parameters W. The error function to 

the perceptron in Fig. 2.10 can be expressed as (cross-entropy formula): 

 
1

1
( ) ln( ) (1 ) ln(1 )

m

i ii i

i

E W y y y y
m =

 = − + − −
   2.5 

The error function in Eq. 2.5 suits for only problems of two classes (like labeling class 

A = 1, class B = 0). When there are multi-classes in one neural network (for example, 

Fig. 2.8 has three classes), the error function is (cross-entropy formula): 

 
1 1

( ) ln( )
n m

ij ij

i j

E W y y
= =

= −   2.6 

Backpropagation is the process that really makes the whole neural network learn [90, 
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113]. It uses the idea of gradient descent. In general, backpropagation consists of: 

1. Pass the input x through the neural network to outputs y   by feedforward 

operation. 

2. Compare the outputs y  from step 1 with the input label y, which is the desired 

output. 

3. Calculate the error ( , , )E W x y  , which can be represented in many kinds of error 

functions. 

4. Run another feedforward operation from backwards (backpropagation) to spread 

the error to the weights (including the biases). Thus, update the weights to get a 

better model. 

5. Repeat step 1 to step 4 using more labeled data until the model is good enough. 

The purpose of the backpropagation is to figure out the partial derivatives of the error 

function respect to each individual weight in the neural network. In math, 

backpropagation to the neural network in Fig. 2.10 and Eq. 2.4 and be expressed as: 

 (2) (1) ( )y W W x =   2.7 

Eq. 2.7 is equivalent to Eq. 2.4, where: 

 

(1) (1) (2)

11 12 11

(1) (1) (1) (2) (2)

21 22 21

(1) (1) (2)

31 32 31

(1) (1) (2)

11 12 11

(1) (1) (2)

21 22 21

(1) (1) (2)

31 32 31

,  ,  

weight matrix of the whole neural network: 

W W W

W W W W W

W W W

W W W

W W W W

W W W

   
   

= =   
   
   

 
 

=  
 
 

  2.8 

Error function: 
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(1) (1) (2)

11 12 31

1

1
( ) ( , , , ) ln( ) (1 ) ln(1 )

m

i ii i

i

E W E W W W y y y y
m =

 = = − + − −
   2.9 
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  2.10 

Update the whole weight matrix by adding E  , αis the learning rate. 

Recall the chain rule in calculus: 
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Eq. 2.11 shows how a small change Δx causes change in y. Eq. 2.10 can be transferred 

as Eq. 2.12: 
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Then update the whole weight matrix: 

 W W E +    2.13 

The whole process (feedforward and backpropagation) of neural network in Fig. 2.10 is: 
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W W E +   

Fig. 2.11 Feedforward and backpropagation 

By feeding with the neural networks enough training data and running the feedforward 

and backpropagation, the whole neural network learns from the training data till an 

acceptable prediction accuracy to new input data.  

A more general demonstration of neural networks with more layers, nodes and outputs 

is shown in Fig. 2.12. It has two hidden layers and two output nodes. Adding or removing 

layers and nodes, alternating functions of nodes are all adjustments to the architecture 

of the neural network. With the increase of data and computing power of computers, 

making the neural network is possible and practical. Deep learning means the neural 

network has many layers with different functions to fulfill the requirements of the 

analysis. 
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Fig. 2.12 Multilayer neural network feedforward and backpropagation 

 

2.3 Convolutional neural networks 

2.3.1 Shared weights 

In mathematics, convolution refers to an operation that convolves two functions into a 

third one, which contains both properties of the former two functions. For example, a 

sound wave containing both music and human voice can be convolved with another 

wave that is developed to extract only human voice. The output of this convolution is 

only human voice. Convolution has applications in many fields that include 

mathematics (probability, statistics and differential equations), computer vision (image 

and signal processing) and natural language processing. 

Convolutional neural networks (CNNs) have reached a series of state-of-art results in a 

variety fields including voice user interfaces, natural language processing (NLP) and 

computer vision. Google recently released WaveNet model using CNNs [114, 115]. The 

WaveNet takes in a piece of text as input and outputs an audio with a human voice 

reading it given other pieces of audio this human has ever read. In another way, 

WaveNet mimics a person’s voice to an extremely similar extent. In deep learning, 

convolutional neural networks are especially good at recognizing objects in images and 

have reached state-of-art results [58, 73, 90, 116-118]. Convolutional neural networks 

are also called ConvNets, which are good at processing data in the form of multiple 

arrays. For example, 1-demensional data is signals, 2-demensional data is a grayscale 

image, and 3-demensinal data is a color image of RGB channels. 

The main idea of convolutional neural networks is shared weights, which process inputs 
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variate across space. In object recognition tasks, the same class of objects usually 

appear in different colors, illuminations, distortions and positions in images (shown in 

Fig. 2.13). Objects of the same class do not change on average across time, space or 

other capacities but do share the same label. Building algorithms to identify classes of 

objects that may appear in any possible varieties is too costly or even impossible. One 

solution to these varieties in the same class of objects is to use shared weights. Shared 

weights can extract the same kind of information in different expressions if inputs’ 

labels are the same. 

 

Fig. 2.13 Translation invariance and statistical invariance 

2.3.2 Filters, stride and padding 

As shown in Fig. 1.6 and Fig. 1.7, an image is composed by one or multiple matrices 

(gray channel or color channels). The channel shape is also the shape of the image. Each 

pixel in one channel is valued from 0 to 255. The matrix of one channel is a 2-

demensional space, composed by columns and rows showing the objects by clusters of 

pixels. A filter is also a 2-demensional matrix, scanning over the matrix of the image 

and convolve with it [116]. The output of the filter convolved with the input is also a 

matrix. Examples of filter, stride and padding are shown in Fig. 2.14. 

Label: “cat”
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(a) Stride: 1, padding: 0 

 

(b) Stride: 2, padding: 0 

 
(c) Stride: 1, padding: 1 

Fig. 2.14 A filter convolves with a grayscale image 

More generally, the calculation of the output matrix when a filter matrix scans over an 

input matrix is: 
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CONVOLVE WITH
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2.15 

Eq. 2.14 and Eq. 2.15 show the convolution of the filter and the input. The output to the 

input is also called the feature map or the activation map of the input. The shape of the 

output is determined by the input shape, the filter shape, the stride and the padding. The 

stride is how fast the filter scans over the input. The padding is to provide extra input 

columns and rows to the input to prevent from omitting information in the input. 

Choosing reasonable shape of filter, length of stride and padding helps with the 

extraction of required information in the image. 

Why are the filters adopted in the convolutional neural networks? Because the filters 

and how they scan over the input are the shared weights. These shared weights scan all 

over the input and output feature map due to the same criteria. The criteria are the 

properties of the filters, who focus on the locally connected subsets of the input in the 

same shape to the filters. Fig. 2.15 shows that different filters have different 

characteristic focus properties. From the features maps to the input, perceptually it can 

be noticed that filter 1 and filter 2 focus on vertical edges and filter 3 and filter 4 focus 

on horizontal edges. Moreover, filter 1 focuses on the right part edges of the image 
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while filter 2 focuses on the left part edges. While filter 3 and filter 4 focus on the 

underneath and upper edges in the image. It is also possible to build filters that focus 

on diagonal edges or circular edges. However, it is too complex to designate specific 

filters to reach the purpose of object classification. Introducing the filters into neural 

networks is a good idea to optimize the filters by themselves. 

 
(a) Four 4x4 filters 

 
(b) Ceiling image (grayscale) 

 

 
(c) Feature maps by filters 

Fig. 2.15 Convolutional outputs by different filters 
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A filter convolving with the grayscale image in 2-dimensional operations is shown in 

Fig. 2.15. When the input image is 3-dimensional, the filters are also required in the 

form of 3-dimension. The convolutional operations and outputs are show in Fig. 2.16. 

The sub-filters combining into one filter are also shared weights over the inputs. 

 
Fig. 2.16 A 3-dimensional filter convolves with a color image 

2.3.3 Convolutional layers 

By introducing the convolutional operation into deep neural networks, building a 

generally convolutional function layer with trainable parameters is the basic block, 

namely the convolutional layer. In image processing, the input is an image with three 

color channels of RGB. The filters are shared weights to the inputs. A convolutional 

layer consists the number of filters, who have the same shape and strides. Different 

filters have different biases. Fig. 2.17 shows the details of feedforward from input to the 

feature maps through a convolutional layer. 

 

Fig. 2.17 Feedforward in one convolutional layer 

Shape of input to the convolutional layer is W*H*3. The convolutional layer has n 

filters in it. Each filter has the same number of sub-filters to the input depth. The feature 

maps have the shape of wo*ho*n. Compare the shape of the input and the output, they 
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are all 3-dimensional matrices. The output of one convolutional layer can be another 

input to the next convolutional layer. Recall the deep neural network in Fig. 2.12, 

replacing the hidden layers with convolutional layers gets a convolutional neural 

network. A simple convolutional neural network is shown in Fig. 2.18. The input (shape 

as an image) is feedforwarded to three convolutional layers, objects in the image is 

recognized in multi abstraction. The results generated from the convolutional layers are 

then fed into a few fully connected layers to execute dimensionality reduction from 3-

dimension to lower dimensions. Finally, the results processed by the fully connected 

layers are fed into the classifier to generate predictions to the input. The predictions are 

compared with the label to the image to form error functions for the following 

backpropagation. Notice the weights are the filters in the convolutional layers, 

randomly initialized when the convolutional neural network was built. These weights 

are updated through backpropagations that are the same to that in the deep neural 

networks. 

 

Fig. 2.18 The architecture of a simple convolutional neural network 

 

2.3.4 Understanding the abstractions in ConvNets 

Understanding how the convolutional layers do abstraction to the input is crucial in 

building and adjusting the whole convolutional neural networks. It is still hard to prove 

the process of optimization of ConvNets in mathematics. But there are many attempts 

to investigate what really happen in the training process and trained deep convolutional 

neural networks [119, 120]. The results show that the ConvNets do abstractions 

gradually in the convolutional layers. As is shown in Fig. 2.19, the ConvNets recognize 

simple shapes of objects in the first few layers, then these shapes are connected into 

small objects, which are parts of bigger objects. The final output is the combination of 

the important small object recognized by the convolutional layers. 
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Fig. 2.19 An example of how convolutional layers recognize an image of a stadium 

2.4 Conclusion 

In this chapter, a brief history and the basic blocks of deep learning are introduced and 

explained. A deep learning model composed by many hidden layers with different 

functions can perform multilayer abstractions to the input, gradually reach the most 

characteristic feature of the input. A deep learning model is trained through many 

feedforward and backpropagation cycles. An important functional layer, the 

convolutional layer is introduced in this chapter. Convolutional layers composed by 

multiple filters scanning over the input to perform spatial convolutional operations are 

especially suitable for processing images. With the knowledge of deep learning and the 

convolutional layers, it is possible to build and train a CNN model for image processing 

task. 

Final layer

Label: Stadium

Layer 2 objects

Layer 1 objects
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3. Building and Training a Convolutional Neural Networks 

Model 

3.1 Generating a database of ceilings images using ceilings 

damage evaluation criteria 

3.1.1 Database of ceiling images 

For machine learning and deep learning, enough data are required to make the deep 

learning model really “learn”: to optimize parameters in all the layers. The data consists 

of input data and labels to each of the input data unit. The input data is a series of data 

flow with space and time sequences which can be processed by deep neural networks. 

The labels of the input data are labeled by human. The labeling process is when human 

injects their intelligence into the data. Different people would label different labels to 

the same data. The deep neural networks would learn these labeled data to mimic the 

criteria that the person who labels the data obeys. 

In this thesis, labeling ceiling images with commensurate dangerous degree is crucial 

for the following deep learning model to learn and optimize. The Kawaguchi Lab crew 

has been investigating and analyzing the ceiling fall accidents in Japan since the Great 

Hanshin-Awaji Earthquake in 1995. Thousands of ceiling images (intact and damaged) 

have been collected for research since then. These ceiling images are of indoor stadiums, 

indoor pools, bath centers, lecture halls, factories and other structures with large span. 

The collection of well-functional ceilings images is relatively easy, while the collection 

of damaged ceilings images needs efforts. Images of intact ceilings in different 

structural spaces are shown in Fig. 3.1. And damaged ceilings are shown in Fig. 3.2.  

What is needed to point out is that the images in the collection of the damaged ceilings 

are usually severely damaged or destroyed. Because ceilings that contain very few tiny 

damages are hard to detect. Tiny damages are usually neglected by people until they 

develop into great danger to human body. The imperfection of the data is very common 

in real-world problems in machine learning. However, in the recognition of intact and 

damaged ceilings, the deep neural networks can grasp the notions of good and bad for 

classification. 
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(a) a stadium  

 

(b) an indoor swimming pool 

 

(c) an indoor basketball hall 

 

(d) a lecture hall 

 

(e) an exhibition center 

 

(f) a corridor 

Fig. 3.1 Intact ceilings in different structual spaces 
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(a) an indoor swimming pool 

 

(b) an indoor stadium 

 

(c) an office 

 

(d) a theater 

Fig. 3.2 Damaged ceilings in different structures 

3.1.2 Labeling criteria 

Building a reasonable labeled database for the deep learning model is the foundation of 

the whole research. Labeling the images is to apply the ceilings damage evaluation 

criteria into the images. The ceilings damage evaluation criteria are combination of 

ceilings knowledge and deep learning knowledge. The criteria are required to be 

suitable for both damage evaluation by human and learning process by deep neural 

networks. For simplicity, the damaged ceilings and the intact ones are basically two 

types of ceilings labels, which can be labeled as 1 and 0. However, the differences 

between damaged and intact ceilings are not as significant as that between a dog and a 

cat. Intact ceilings would become damaged ones due to deterioration gradually and 

earthquakes suddenly. Between the labels of 0 (intact ceilings) and 1 (very dangerous 

ceilings), there are other damage degrees that gradually increase (shown in Fig. 3.3). 
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(a) intact (b) exfoliation 

(c) water stains (d) local damage 

 
(e) severe damage 

 
(f) destroyed 

Fig. 3.3 Varying degrees of damages (from intact to destroyed) 

To label all the ceiling images with damage degree, there is a tendency to label them as 

precise as possible. It is easy to label danger degree of Fig. 3.3(a) as 0 and Fig. 3.3(f) as 

1. However, labeling other images in Fig. 3.3 to an exact danger degree is relatively hard. 

Considering the practical applications and objectives of this research, precaution to 

possible accidents and detecting possible damaged parts of ceilings are the highest 

priorities to prevent accident. The number of classification labels for the ceiling images 

is set as two, the label of intact ceilings (0) and the label of damaged ceilings (1), for 

three reasons: 1. The final objective of the research is to keep the safety of human lives 

and properties from damaged ceilings, even tiny damages that are possible to cause 

huge loss are defined ‘dangerous’, labeled as 1; 2. The number of ceiling image in the 

database, which is approximately 2,000 images, does not support the training for too 
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many labels, which will result in overfit; 3. It is difficult to quantify the extent of 

damages, there exist many damage forms with many different damage degrees. 

The criteria for labeling are as follows: 

(1) For simplicity to both human and the deep learning model, the labels are 

distinguished as 0 and 1, which resembling intact and damaged images respectively. 

(2) Label as 0 if there are no obvious damaged parts in the image or the damaged parts 

are not severe and less than 5% of the whole image in proportion. 

(3) Label as 1 if there are clearly damaged parts that would spread to other part in the 

ceilings or the whole damaged parts are more than 5% of the whole image in 

proportion. 

Reasons for the labeling criteria are: 

(1) The main objective of this search is to develop a ceiling damage detection system 

for both routine checks of the ceilings by the managers of a building and danger 

evaluation of the ceilings when residents take refuge under these ceilings in out 

bursting disasters. Forewarnings are crucial under these circumstances. 

(2) Detecting ceilings damages and forewarning possible dangers from images only 

taken under the ceilings (the viewpoint of the observer) has its intrinsic defects: 

what is happening on the other side of the ceilings are intangible. However, status 

of the ceilings on the visible side does reflect important characters of the ceilings 

health, which are easy to obtain. In other words, inspecting the inner side of the 

ceilings is too expensive while the outside of the ceilings can provide abundant 

information to the safety of the ceilings. 

(3) In statistical hypothesis testing, statistical significance refers to the fact that a result 

is unlikely to have occurred for the given null hypothesis. The significance level is 

typically set as 5% or lower, which means that if a fact that has very low probability 

(5% or lower) to occur really occurs, the null hypothesis is rejected. The null 

hypothesis is usually that the system is working properly. In this research, five 

percent is a benchmark to affirm if an incident really has occurred. In image 

recognition of deep neural networks, when the damaged part in an image exceeds 

five percent to the whole area, it is prominent enough to be noticed by the neural 

networks from noisy points. Thus, the ratio of five percent is chosen as the 

benchmark for labeling. 
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3.1.3 Labeled database description 

Ceiling images are selected for labeling from Kawaguchi Lab ceilings image collection. 

The labeled database contains 1147 intact ceiling images (labeled 0) and 805 damaged 

ceiling images (labeled 1). In the ceiling database, the intact ceiling images are mostly 

taken from the global perspective that reflecting the whole status of the ceilings; the 

damaged ceiling images usually focus on the zoomed in damaged regions. The damage 

forms include: cracks in the ceiling boards and junctions, disengagement and void in 

the ceiling boards. Examples of these images are shown in Fig. 3.4. 

    

    

(a) Intact Ceilings 

(1147 images labeled 0) 

(b) Damaged Ceilings 

(805 images labeled 1) 

Fig. 3.4 Ceilings Images 

3.2 Building the convolutional neural networks model 

The architecture of a deep neural network refers to the arrangement layouts of the 

multiple layers in the whole model. The arrangement is also called hyperparameters 

which include the function of each layer, the parameters in the layers themselves. 

Hyperparameters are set before the learning process of the deep learning. A proper 

arranged architecture of the neural network can cost less calculation and data sources 

and performance better. 

3.2.1 Pooling layers, dense layers and fully connected layers 

As is shown in Fig. 2.18, the multi convolutional layers extract information from an 

image (down sampling). The convolutional layers use strides to shrink the height and 

width of the input layers, which is an aggressive way to down sample. Using large 

strides in the convolutional layers causes a great loss of information. The pooling layer 
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[58, 116] down samples the feature maps in the locally neighborhood with only little 

information loss. The pooling layer outputs the combinations of locally selected 

characteristic nodes. There are a few pooling layers, the most common one in which is 

max pooling (Eq. 3.1).  
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An example of max pooling is shown in  

 

Fig. 3.5 An example of max pooing 

The advantages of pooling layers are: 

(1) Pooling layers do not increase any parameters. 

(2) Deep neural networks with pooling layers often perform better than those without. 

The disadvantages of pooling layers are: 

(1) Pooing layers make the whole neural network more complex to train. 

(2) More hyperparameters like the size of filter and stride of the pooling layer to choose 

by human. 

A typical convolutional neural network[121] has the architecture shown in Fig. 3.6. The 

dense layer reduces a 3-dimensional matrix into a 1-dimentional matrix that neglects 

the inherent spatial information in the previous 3-dimensional matrix. It has no 

additional parameters. The fully connected layers are simply 2-dimensional matrices 

3 5 4

2 3

1 2

2

3

input (4x4)

3

0

2

5 9 2 3

Filter (2x2)

Stride: 2

output (2x2)

5 4

9 3



 

58 

 

with biases. They down sample the previous 1-dimentional matrix into a shorter matrix 

(shown in Fig. 3.7). 

 

Fig. 3.6 A typical convolutional neural network architecture 

 

 

(a) A dense layer 
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(b) A fully connected layer 

Fig. 3.7 A dense layer and a fully connected layer 
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3.2.2 The architecture of the convolutional neural networks for ceiling 

damage evaluation 

With the blocks above, it is possible to build and train a convolutional neural network 

for ceiling damage evaluation. The main idea is to build functional convolutional neural 

networks that could be trained by the labeled ceiling images. The networks are required 

build in the balance of the training cost and prediction preciseness. The architecture of 

the CNN model is adapted from a self-driving car research by NVIDIA [122], in which 

the inputs are camera images of the traffic information and the outputs are steering 

wheel operations. The architecture of the convolutional neural networks for ceilings 

damage recognition follows this idea as the input is the ceiling image and the output is 

the digitized damage evaluation, the middle layers perform gradual abstractions 

through processing the input image. The architecture of the CNN model is built as 

shown in Fig. 3.8. This is the final architecture based on various of combinations by trial 

and error. 

The tunable hyperparameters in the CNN model include: 1. The function determination 

of the layers, such as the convolutional layer, the activation and pooling layer following 

up with the convolutional layer; 2. The sequence of the functional layers that guarantees 

the information abstraction; 3. The parameters in one middle layer itself, for example 

in a convolutional layer, the number, the shape and stride of the filters will perform 

differently in training and prediction. All the items above affect the learning ability and 

performance of the CNN model, which is measured by the factor of accuracy in 

predictions. To determine the final architecture of the CNN model for ceiling damage 

evaluation, reasonable training process (shown in Chapter 3.3) is decisive as well. It is 

hard or impossible to find the most reasonable training process for a specified model. 

The determination of the architecture of the CNN model mixes with the determination 

of the training process, in which there are many parameters and tricks to play with. The 

fundamental principle is: make sure that the CNN model learns as much as possible, 

but do not over-learn, which is also named overfitting. 
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Fig. 3.8 The architecture of convolutional neural networks for ceilings damages evaluation 

In the input layer, the ceilings images are resized into the resolution of 400x600x3 

pixels to fit the layer. Reasons for this selection are that it can both contain enough 

information of the images and control the training time to some extent. The inputs are 

down sampled through the following layers to reach the final output of one digital node. 

The hyperparameters in these layers are changeable due to human judgements. Now the 

whole convolutional neural networks are ready to train. 

 

3.3 Training the convolutional neural networks model 

The training process is when the learning really happens in the convolutional neural 
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networks. There are many parameters and solutions to choose and there are many 

hinders in the training process that can fail the whole neural networks. Understanding 

and tuning hyperparameters in the train process are crucial in deep learning. 

3.3.1 Gradient descent and stochastic gradient descent 

In Chapter 2, the idea of gradient descent has been introduced when updating weights 

in backpropagation to minimize the error function E(W). The process of minimizing the 

error function by gradient descent can be explained in Fig. 3.9. The minimization of 

error happens with updates of the weight and bias in a series of steps. A step is also 

called an epoch that using all the data (inputs and their labels) to update weights and 

bias that approaching to the minimum error. The direction of updating is the negative 

direction of the gradient of the error function. The number of epochs is determined by 

confirming if the error has reached the minimum point. If it has, the minimization is 

terminated. In each epoch, all the inputs run through the model to calculate the error 

that are used to update weights and bias in backpropagation. Repeat the epochs until 

the error reaches the minimum. 
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Fig. 3.9 Gradient descent 

However, in practice one whole epoch in updating parameters of a complex deep 

learning model costs too much memories and calculation resources of the hardware. It 

is not practical to minimize the error function using the gradient descent in complex 

models. To solve such problem, stochastic gradient descent is invented. 

Stochastic gradient descent just takes one step further than the gradient descent to 

successfully prevent the calculation from overflow. It requires that the data is well 

distributed that could be randomly equally divided into batches. A batch is a subset of 

the whole data. For example, a whole dataset containing one million inputs could be 
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randomly divided into 1000 batches that each batch only contains 1000 inputs to make 

each update by one batch practical on a common computer. Run the 1000 batches 

through the machine learning model to gradually update the weights costs much less 

resources. The key of stochastic gradient descent is the randomly divided batches that 

contain well divided patches of information in the previous whole dataset. Using these 

batches, the updates to the weights and bias are possible to run on the common 

computers. 

3.3.2 Learning rate and testing 

In Fig. 3.9, α is the learning rate that controls how much the model learns in each epoch. 

Either a too high or a too small learning rate is not economical for the minimization. If 

the learning rate is too high, the steps would be too big to reach the minimum and 

wanders around the valley bottom. If the learning rate is too low, each step is very short 

that would cost very long time to reach the local minimum (Fig. 3.10). Tricks of tuning 

the learning rate at different training stages can improve the efficiency of the training. 

 

Fig. 3.10 Learning rate 

Testing is the verification to the trained model to investigate if the model is good enough 

to make reliable predictions to new inputs. Before training the model, the labeled inputs 

are usually randomly divided into two sets: the training set and the testing set. The ratio 

of training set to testing set is usually 0.8 / 0.2, which composite the whole labeled 

inputs. The training set are used to update the weights in the model while the testing set 

is hidden from the model until the training process ends. Fig. 3.11 shows the 

complexities in building a model and testing it: Firstly, divide the data into training set 

and testing set. The models are built to classify the red and blue points. Secondly, train 

the models only using the training set. The trained models are the green line and the 

yellow curve. The green line is a relatively simpler classifying model than the yellow 

curve does. It can be noticed that the green line misclassifies four points in the training 
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set while the yellow curve classifies the points in the training set all correctly. However, 

when predicting to the points in the testing set, the green line has two mis-classified 

points while the yellow curve has three mis-classified points. The yellow curve is so 

complex that it remembers all the points in the training set. When training the model, 

there are tendencies that we want to keep the model that has the lowest error in the 

training set. However, a too complex model usually mechanically remembers the 

training data and makes unreliable predictions to new inputs. Dividing the labeled data 

in the first place is necessary for credible testing results. 

 

Fig. 3.11 Testing to two models of the same inputs 

3.3.3 Overfitting and underfitting 

It is very hard or even impossible to really find a perfect model for a problem. Usually 

the model is either too simple or too complex that would result in poor performances. 

When the model is too complex, the model remembers all the data (both the details and 

the noises) to learn everything reflects by the data. The learned noises and fluctuations 

in the data that would result poor performances to new data are overfitting. While on 

the contrary, when the model is too simple to really learns the data, the trained model 

does not even understand the inputs. Such simple models are underfitting. In Fig. 3.12, 

underfitting, appropriate and overfitting are shown. In deep learning, it is very hard to 

find the right architecture in practice. There are too many gains and losses to balance 

in choosing the architectures. Good news is that overfitting is sometimes acceptable if 

there are strains to it. The overfitting does learn the noisy and irrelevant data to the 

model. However, these problematic data are also from real world and do reflect the real 

world. Building a deep learning model that can solve complex problems are better than 

just doing binary linear regression. 

Train Set

Test Set
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Fig. 3.12 Underfitting, appropriate and overfitting 

3.3.4 Techniques in training neural networks 

1. Early stopping: 

It is common to build more complex deep neural networks than the problem really 

needs. In fact, it is a paradox to tell if the architecture of the neural networks fits the 

problem: the neural networks need to be trained before judging the complexity. Assume 

the neural networks that more complex than the problem needs are built. Fig. 3.13 shows 

the changes in the errors of the same neural networks in different training epochs in a 

points classification task. 

 

Fig. 3.13 Training epochs and errors 

In Fig. 3.13, the training begins with random weights in epoch 1, in which both the 

training error and the testing error are high. The neural networks in epoch 1 are clearly 

underfitting that too simple to understand the problem. When the training process goes 

to epoch 20, both the training error and the testing error decrease and the neural 

networks are well trained for the classification problem. But with the training going on 

to epoch 100, the training error continuously goes down while the testing error begins 

to increase. Now the neural networks try to remember everything in the input data even 

there are noisy and fluctuations in them. The neural networks begin to make more 
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mistakes in the testing phase but still acceptable. When the training goes on to the epoch 

500, there is vast differences between the training error and the testing error. The neural 

networks remember the inputs too clearly to do predictions flexibly. This is the training 

process that epochs effect the performances of the same model. 

More generally, the relationships of training epochs and errors can be drawn as the 

figure shown in Fig. 3.14. The horizontal axis refers to the complexity of the model. In 

this case, the complexity is the number of epochs. The more the model is trained, the 

more the model learns and the more complex it becomes. The training error deceases 

with the increase of the epochs, which means that the model is learning more of the 

inputs through each epoch. While the testing error deceases to a minimum then rises 

again, which means that the model is functioning from underfitting to overfitting. The 

best performance of the model occurs at the lowest error point in the testing error. The 

epoch at this point is when the training should stop. There are methods to make sure the 

training process stops at this point and keep the best performance of the neural network, 

which is called early stopping. 

 

Fig. 3.14 Model complexity graph 

2. Regularization: 

Recall the linear prediction to one point (x1, x2) in 2.1: 
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The conclusion is: larger weights result in the tendency of overfitting. The predictions 

are closer to 1 if the weights are large even if the points are the same. This leads to a 

lower error but steeper active function which is harder to do gradient descent (shown 

in Fig. 3.15). The derivatives are nearly to 0 a little far from the central but very large 

near the central of the curve. It is better to generate a model with smaller weights like 

the curve on the left. The curve on the right is too certain to provide flexibility to apply 

gradient descent. The curve on the right would generate great fluctuates of errors 

because the predictions are closer to 1 or 0. 

 

Fig. 3.15 Weights affecting the prediction 

The solutions to the problem of overfitting induced by too large weights are to tune the 

error functions. The basic concept is to punish high weighs. By adding the old error 

function to the penalty of weights, the adjusted error functions can be expressed as: 
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  3.2 

The parameter λ is to determine how much the penalties to large weights are to adopt. 

The L1 error function takes the absolute of the weights to prevent from too small errors 

if the weights are too large and the L2 error function takes the squares of the weights 

respectively. Either of them is suitable for different models.  
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3. Dropout: 

Another solution to prevent overfitting is dropout [123]. The training of neural networks 

begins with randomly assigned weights. There are tendencies that the larger the node is 

initialized, the larger it would become in the following epochs, and vice versa. The 

results to such phenomenon are that there will be “dead” nodes in the neural networks 

that were never well trained. The dropout method prevents these crippled nodes from 

occurring using the randomly “killing” method. As shown in Fig. 3.16, each node in one 

layer is multiplied by an independent Bernoulli random variable with the probability p 

of being 0, otherwise the variable is 1, before propagates into the next layer. The method 

of dropout may seem too radical for training, but the results show that it improves the 

accuracy. Using dropout can balance the nodes trained evenly. Dropout is also getting 

better results in neural networks than those not used. 

 

Fig. 3.16 Dropout 

4. Vanishing gradient and other activation functions 

In the backpropagation to the sigmoid function, when the input is far away from the 

zero point, the derivative is very small, almost to zero. The derivative is the opposite 

direction that the minimization occurs. When the derivative is too small it is slower or 

even never for the error function reaches its minimum. Things get even worse in the 

multilayer neural networks. For example, in the neural network shown in Fig. 2.10, the 

derivative of 
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  is calculated using the chain rule by multiplying several 

derivatives of sigmoid functions which are small. The final result of 
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
 is tiny if 

there are many layers with the activation function as sigmoid function (shown in Fig. 

3.17). This is the vanishing gradient that would impede the learning process of the 
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neural networks. 

 

(a) Derivative to sigmoid function far from 

zero point 
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(b) Tiny derivative 

Fig. 3.17 Vanishing gradient 

Changing the activation function can solve the problem of vanishing gradient. Bigger 

gradients of the activation functions are needed to prevent vanishing gradient in deep 

learning. Two popular activation functions that generate bigger derivatives are shown 

in Fig. 3.18. The ReLU function is used widely because it can improve the training 

significantly without sacrificing much accuracy because the derivative is 1 if the input 

is positive. 
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(b) Rectified linear unit (ReLU) 

Fig. 3.18 Hyperbolic tangent function and ReLU function 

5. Local minimum, random restart and momentum 

Recalling the error function shown in Fig. 3.9, the minimization usually faces with much 

more complex conditions that the error function is in an n-dimensional space. There are 

many local peaks and local minimums in the error function that would trap the 

minimization by gradient descent in the local minimums (Fig. 3.19). Gradient descent 
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is in a failure in such conditions. 

 

Fig. 3.19 Local minimum 

One solution to the failure of gradient descent to local minimum is random restart (Fig. 

3.20). The gradient descents are started from a few different random points that the 

number of these points conforms with the complexity of the error function. This method 

increases the probability of reaching the global minimum and at least to an acceptable 

local minimum. But this method costs longer time to compute and it is difficult to 

estimate a proper number of start points for the complexity of the error function. 

 

Fig. 3.20 Random restart 

Another solution to local minimum is named momentum with the idea of introducing 

kinetic energy into steps in the gradient descent. The gradient descent gets power from 

a few previous steps and rushes over the local minimum to find a lower minimum (Fig. 

3.21). Even though the step would rush over the global minimum for a few more steps, 

it will fall back to the global minimum because of not enough momentum. The 

coefficient of momentum is β, which is between 0 and 1. Each step is determined by 

the i steps previous to it. Although it is hard to prove its advantages in math, this 
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algorithm works well in practice. 

 

2( ) ( 1) ( 2) ( 3) ( 1 )iSTEP n STEP n STEP n STEP n STEP n i  = − + − + − + + − −   

Fig. 3.21 Momentum 

6. Image augmentation 

In machine learning, data is a valuable property to well training a model. Without 

enough well distributed data reflecting the real world, the model would not learn 

enough to make reliable predictions. However, data that reflecting the real-world 

problem are usually hard to collect, especially in highly specialized fields. There are 

two kinds of solutions to the lack of data: a more intelligent model that can learn from 

very few data and the data augmentation. In this thesis, the data are labeled ceilings 

images. Considering the characteristics of convolutional neural networks, adjusting the 

images will not undermine the translation invariance and representations in the images. 

For example, the size or the angle of the object will not affect the contents in the images. 

Moreover, augmenting the number of images by adjusting the images would make the 

convolutional neural networks more robust and better trained. 

There are many ways in adjusting the image to generate more data (Fig. 3.22). All the 

generated images with the same label to the original images consist a much larger 

dataset for the neural network to learn. 
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Fig. 3.22 Data augmentation 

7. Cross validation: the training, validation and testing datasets 

There should be dataset reserved for the performance verification of the trained CNN 

model. The simplest idea of splitting data is to divide the data into two sets: the training 

data and the testing data, which usually have the portion of 8 to 2 or 7 to 3. The train 

data is used in the training process and should never be used to evaluate the performance 

of the model. The test data is used to evaluate the model after trained. For more complex 

problems, it would be problematic if the data is only split into two sets because the 

training process also needs partial evaluations during the training process. When such 

evaluations are not the final evaluation to the model, it is the start of overfitting. That 

is because when adjusting the model parameters due to the results from the training 

process evaluations, the directions that parameters should change are directed by the 

validation data in an inexplicit way. In other words, the validation data is also involved 

in the training process that makes the final evaluation to the model is unreliable. 

The solution to such problem is to divide the data into three sets: the training data, the 

validation data and the test data. The test data is hidden from the model until the final 

evaluation to the model. The validation involves in the training process of the model. 

The ratio to these data sets are alterable which is usually 6: 2: 2. The most defect of 

splitting data set into three subsets is that it reduces available data for training. 

8. Sensitivity and specificity 
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The accuracy is usually calculated as the percentage of correctly predicted inputs 

divided by the whole inputs:
True

Accuracy
True False

=
+

 . The terms of sensitivity and 

specificity are usually used to evaluate a clinical test, which is a typically binary 

classification test [124]. In the case of evaluating the accuracy of deep learning models 

for binary classification tasks such as ceiling damage evaluation, the sensitivity and 

specificity are introduced to better analysis the deep learning model from the 

perspective of accuracy. Two classes of ceiling images exist with the contents of intact 

and damaged ceilings, and two kinds of predictions to one input image: intact and 

damaged. Therefore, there are four combinations to the contents and the predictions: 

1. True positive: the ceilings in the image are ‘damaged’ and the prediction is ‘damaged’. 

2. False positive: the ceilings in the image are ‘damaged’ but the prediction is ‘intact’. 

3. True negative: the ceilings in the image are ‘intact’ and the prediction is ‘intact’ 

4. False negative: the ceilings in the image are ‘intact’ but the prediction is ‘damaged’. 

Wrong predictions (false positive and false negative) are not welcome in most cases 

and they are where efforts spent on to prevent. In these two kinds of wrong predictions, 

the most unfavorable condition is when the input itself is problematic but the prediction 

to it fails to detect it. In the case of ceiling damage evaluation and detection, the most 

dangerous situation is that the ceilings are damaged while the ceiling damage detection 

approach fails to recognize and reports no alarm. Based on the four terms above, factors 

evaluating the predictions are: 

1. Sensitivity measures the proportion of true positives to those who are really in the 

positive situation by 
 

  

True positivities
Sensitivity

True positivities False negativities
=

+
; 

2. Specificity measures the proportion of true negatives to those who are really in the 

negative situation by 
 

  

True negativities
Specificity

True negativities False positivities
=

+
. 

Both the sensitivity and the specificity are the higher the better. 
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3.3.5 Training the convolutional neural networks model 

There are many adjustable parameters and hyperparameters in the training process. The 

architecture of the CNN must be determined before training. It includes the overall 

arrangement of layers in the model, the details of each layer. The architecture also 

should consider the complexity of the problem it deals with, like the input 

characteristics, the output requirements and the possible variations of the problem and 

dataset in the future. By combining and attempting the techniques above, a relatively 

good-performance convolutional neural networks model is obtained. The convolutional 

neural networks are built based on the architecture shown in Fig. 3.8. The details of the 

convolutional neural networks are shown in Table 3.1. There are 22 layers and 697,025 

trainable parameters in the convolutional neural networks. All the images are 

preprocessed to the dimension of 400x600x3 before sent into the input layer. The whole 

data set (1953 images) is divided into train, validation and test sets with the ratio of 6: 

2: 2 (shown in Table 3.2).  

Table 3.1 Details of the convolutional neural networks 

Layer Input Shape Output Shape Parameters 

1 

Convolutional Layer 

(32 filters of (2, 2) size, 

stride: (1, 1)) 

(Batch size, 400, 600, 

3) 

(Batch size, 399, 599, 

32) 

416 

2 
ReLU  Activation 

Layer 

(Batch size, 399, 599, 

32) 

(Batch size, 399, 599, 

32) 

0 

3 

Max Pooling Layer 

(pool size: (2, 2), 

stride: (2,2)) 

(Batch size, 399, 599, 

32) 

(Batch size, 199, 299, 

32) 

0 

4 

Convolutional Layer 

(32 filters of (2, 2) size, 

stride: (1, 1)) 

(Batch size, 199, 299, 

32) 

(Batch size, 192, 298, 

32) 

4128 

5 
ReLU Activation 

Layer 

(Batch size, 192, 298, 

32) 

(Batch size, 192, 298, 

32) 

0 

6 

Max Pooling Layer 

(pool size: (2, 2), 

stride: (2,2)) 

(Batch size, 192, 298, 

32) 

(Batch size, 99, 149, 

32) 

0 

7 

Convolutional Layer 

(32 filters of (3, 3) size, 

stride: (1, 1)) 

(Batch size, 99, 149, 

32) 

(Batch size, 97, 147, 

32) 

9248 

8 
ReLU Activation 

Layer 

(Batch size, 97, 147, 

32) 

(Batch size, 97, 147, 

32) 

0 
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9 

Max Pooling Layer 

(pool size: (2, 2), 

stride: (2,2)) 

(Batch size, 97, 147, 

32) 

(Batch size, 48, 73, 

32) 

0 

10 

Convolutional Layer 

(32 filters of (3, 3) size, 

stride: (1, 1)) 

(Batch size, 48, 73, 32) (Batch size, 46, 71, 

32) 

9248 

11 
ReLU Activation 

Layer 

(Batch size, 46, 71, 32) (Batch size, 46, 71, 

32) 

0 

12 

Max Pooling 

(pool size: (2, 2), 

stride: (2,2)) 

(Batch size, 46, 71, 32) (Batch size, 23, 35, 

32) 

0 

13 

Convolutional Layer 

(64 filters of (3, 3) size, 

stride: (1, 1)) 

(Batch size, 23, 35, 32) (Batch size, 21, 33, 

64) 

18496 

14 
ReLU Activation 

Layer 

(Batch size, 21, 33, 64) (Batch size, 21, 33, 

64) 

0 

15 

Max Pooling Layer 

(pool size: (2, 2), 

stride: (2,2)) 

(Batch size, 21, 33, 64) (Batch size, 10, 16, 

64) 

0 

16 Dropout Layer (0.5) 
(Batch size, 10, 16, 64) (Batch size, 10, 16, 

64) 

0 

17 Flatten Layer (Batch size, 10, 16, 64) (Batch size, 10240) 0 

18 Dense Layer (Batch size, 10240) (Batch size, 64) 655424 

19 
ReLU Activation 

Layer 

(Batch size, 64) (Batch size, 64) 0 

20 Dropout Layer (0.5) (Batch size, 64) (Batch size, 64) 0 

21 Dense Layer (Batch size, 64) (Batch size, 64) 65 

22 
Sigmoid Activation 

Layer 

(Batch size, 1) (Batch size, 1) 0 

Total trainable parameters: 697,025 

Batch size: the number of images as input in each step 
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Table 3.2 Image numbers in datasets split 

for the CNN model 

Dataset 
Label 

Total 
0 1 

Train 687 483 1170 

Validation 230 161 391 

Test 230 162 392 

Total 1147 806 1953 

The training runs on the hardware of GPU: Nvidia GeForce GTX1080Ti. In each epoch, 

the number of training step is 125, within which each step computing the batch size of 

16 and the validation step is 50 with the batch size of 16. The batch size refers to the 

number of images used for training in one iteration. There are 30 epochs in the training 

process. It takes about four hours to train the neural networks. Images in both the train 

set and validation set are augmented randomly. The details of the randomness of the 

augmentation are shown in Table 3.3. The randomness of alternations to the training 

data is severer than that to the validation data. The weights that has the lowest validation 

loss are preserved as the final CNN model weights. The accuracy and loss curves of the 

training and testing in each epoch are shown in Fig. 3.23. The tendency of the accuracy 

is that it increases with the epoch increases and the tendency of the loss is that it 

deceases with the epoch increases. The fluctuations in the curves are due to the 

randomness of the generated images by data augmentation. In the accuracy-epoch curve, 

the reason for the accuracy of the model to the training data is usually lower than that 

of the validation data is that the alternations in the training dataset is severer than that 

of the validation dataset, which indicates that the trained model is robust to the 

translation invariance. In the loss-epoch curve, the phenomenon that the loss of the 

validation dataset is usually lower than the training dataset is also due to different 

extents of alternations to the images. The weights are saved as the final model weights 

when lowest validation loss occurs at the 19th epoch (validation accuracy 85.9%). 

The final saved weights composite the final trained model. By using the final trained 

model to predict the test dataset (never shown to the model during the training process 

and no data augmentation), the accuracy is 86.2%. To better investigate the accuracy, 

the true positive (both the image and the prediction are damaged); the true negative 

(both the image and the prediction are intact); the false positive (the image is intact 

while the prediction is damaged) and the false negative (the image is damaged while 

the prediction is intact) are shown in Table 3.4 with the whole test dataset of 392 images. 
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Table 3.3 Randomness of data augmentation to the datasets 

 Training data Validation data Test data 

Horizontal Flip Yes Yes No 

Shear radians – 0.2 ~ 0.2 – 0.1 ~ 0.1 0 

Zoom in / out range – 0.2 ~ 0.2 – 0.1 ~ 0.1 0 

Rotation range (degree) – 15 ~ 15 – 10 ~ 10 0 

Width shift – 0.2 ~ 0.2 – 0.1 ~ 0.1 0 

Height shift – 0.2 ~ 0.2 – 0.1 ~ 0.1 0 

Brightness multiplier 

(HSV color) 
0.5 ~ 1.5 0.5 ~ 1.5 1 

 

  
Fig. 3.23 Curves of training 

 

Table 3.4 Sensitivity and specificity 

 Negative (0) Positive (1) Total 

True TN: 201 TP: 137 338 

False FN: 29 FP: 25 54 

Total 230 162 392 

Accuracy = (TP+TN) / SUM = 0.862 

Sensitivity = TP / (TP+FN) = 0.825 

Specificity = TN / (TN+FP) = 0.889 
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3.4 Performances of the trained convolutional neural 

networks 

To testify the trained CNN model, other ceiling images (both intact and damaged ones) 

are collected from the internet as the external ceiling image database. The basic 

requirements to the ceiling image collection are: (1) The main objects in an image are 

the ceilings. (2) The design of the ceilings is plain and not bizarre because the training 

dataset mainly contains regular ceilings. (3) Higher resolution images of ceilings are 

favorable. 

All the collected ceiling images are resized to the resolution of 400x600x3 before 

evaluated by the trained CNN model. The ceiling images and predictions to them are 

shown in Fig. 3.24 (sources of the images are shown in Appendix A). Assume the 

boundary to the predictions between intact and damaged labels is at 0.5, which means 

that if the prediction to an image is over 0.5, the contents in the image are prone to show 

features of damaged ones with the label of damaged and vice versa. The larger the 

prediction is, the more dangerous the ceilings in the image are. Red subtitles indicate 

wrong predictions to the real contents in the images. The accuracy of the predictions is 

about 88.9% to the ceiling images from internet.  
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Fig. 3.24 Predictions to ceiling images from the internet 
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Although the accuracy to the images from internet is relatively high, there is 

improvement potential to the model. The dataset from internet collection is relatively 

small and only generates digital predictions from 0 to 1. It is hard to interpret the 

predictions and understand the trained CNN model only through the comparisons of 

original contents in the images and the predictions to them. 

 

3.5 Conclusion 

In this chapter, the main contribution is to apply convolutional neural networks in 

ceiling damage evaluation to fulfill the requirements for the deep learning model 

proposed in Chapter 1. A series measures are adopted to make sure that the CNN model 

really learns from the training dataset. The conclusions of this chapter are as follows: 

1. The architecture of the CNN model for ceiling damage detection (shown in Fig. 3.25) 

is proposed to perform 3-2-1-dimensional reduction to the input image. The architecture 

is validated by the accuracy of 86.2% using testing dataset. Moreover, it is also 

confirmed that the CNN model can make acceptable prediction accuracy to the ceiling 

images collected from the internet (88.9%). 

2. It is elucidated that the deep learning (convolutional neural networks) method is 

possible to be applied in ceiling damage evaluation even if: a. only two classes 

representing ‘intact’ and ‘damaged’ (images labeled by the same label can be totally 

different in manifestation), b. lack of training data (approximately only 1000 images 

for each class); c. high resolution of training data (400×600×3, to keep enough 

information). 

3. Using high resolution images and scarce training data leads to overfitting. To 

overcome it, countermeasures such as data augmentation, cross validation and 

stochastic gradient descent are necessary to make the CNN models predict higher 

accuracies. 
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Fig. 3.25 The architecture of the CNN model for ceiling damage evaluation 
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4. Interpretations to the CNN Model by Visualization and a 

Ceiling Damage Detection System with User-CNN 

Interactive Process 

This chapter is the core of the whole thesis. Through the visualizations to the trained 

CNN model, the CNN model is more understandable to human and no longer a black 

box. Furthermore, the visualizations of the saliency map and the Grad-CAM make 

ceiling damage detection possible. At the end of this chapter, a ceiling damage detection 

system is raised with the user involved in to perform ceiling damage detection both in 

the routine ceiling inspection by the maintenance personnel and safety confirmation to 

refugee under disaster circumstance. 

4.1 Visualizing the layers and the patterns that maximize the 

activation feature maps 

4.1.1 Visualizing the convolutional layers in the trained neural 

networks 

As shown in Fig. 3.8 and Table 3.1, there are five convolutional layers in the CNN model. 

Each convolutional layer has its own filter parameters (filter numbers, sizes and strides). 

The parameters of the filters are optimized through the training process. The accuracy-

epoch curve and the loss-epoch curve indicate the performance of the whole CNN 

model by mathematical calculations. Visualizing the convolutional layers has provided 

abundant understandings to the CNN architecture of deep learning [120, 125].The 

convolutional layers perform gradual abstractions to the information in the images. 

Each convolutional layer has its own structure that determines the qualities and sizes of 

filters. However, it is hard for human to interpret the CNN model only through the 

matrices in the layers of the final trained model. For example, the weight matrix of 

Convolutional Layer 1 is the combination of a four-dimensional matrix (2x2x2x32) and 

a one-dimensional bias matrix (1x32). These matrices are meaningless to human before 

they get applied to an image as filters. These matrices of filters can be considered as 

tools. It is hard to figure out how a tool really works only by looking at its appearance. 
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By visualizing the outputs from the input scanned over by each filter in a convolutional 

layer, it provides intuitions to see what parts in the image most activate the 

convolutional layer. If the CNN model is well trained, the intermediate outputs would 

gradually focus on the parts that are most likely to be damaged. There have been 

research on visualizing the objects that weights most to the final outputs to perform 

some kind of object detection [126]. 

In the CNN model built and trained in this thesis, the output of the Convolutional Layer 

1 is in the shape of (399x599x32), which indicates that there are 32 output images in 

the shape of (399x599x1). If the damaged parts are paid special attention to by the 

convolutional layers, it both indicates that the CNN model is in proper function and the 

activated parts are in high possibility of damage. The architecture of the CNN model in 

this research has five convolutional layers with 192 filters in total. Each filter scans 

over the three-dimensional input to it and outputs another three-dimensional output. All 

filters in one convolutional layer constitute the final three-dimensional output of the 

layer. Table 4.1 is extracted from Table 3.1 to indicate the details of convolutional layers 

(CL stands for convolutional layer).  

Table 4.1 Convolutional Layers in the CNN model 

Layer Input Shape Output Shape 
Filter Number 

and Shape 
Parameters Stride 

CL 1 (400, 600, 3) (399, 599, 32) 32 x (2, 2, 3) 416 (1, 1) 

CL 4 (199, 299, 32) (198, 298, 32) 32 x (2, 2, 32) 4128 (1, 1) 

CL 7 (99, 149, 32) (97, 147, 32) 32 x (3, 3, 32) 9248 (1, 1) 

CL 10 (48, 73, 32) (46, 71, 32) 32 x (3, 3, 32) 9248 (1, 1) 

CL 13 (23, 35, 32) (21, 33, 64) 64 x (3, 3, 32) 18496 (1, 1) 

To inspect the outputs by the filters in the convolutional layers, eight images are 

chosen as inputs. Two of them are from the test data (never shown to the CNN model 

in the training). The other six are chosen from Fig. 3.24 (four of them are predicted 

correctly, two of them are predicted incorrectly). All the outputs (feature maps) to the 

192 filters are shown in Appendix B. Fig. 4.1 shows some excerpts of feature maps in 

the intermediate convolutional layers. The name of “Fig. 4.1(a1) CL1_14” represents 

the feature map of the 14th filter in the CL1 layer. 
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(a) An intact image from test data 

Prediction: 0.006 

 
(b) A damaged image from test data 

Prediction: 0.673 

 
(a1) CL1_14 

 
(a2) CL4_19 

 
(b1) CL1_5 

 
(b2) CL4_18 

 
(a3) CL7_11 

 
(a4) CL11_9 

 
(b3) CL7_13 

 
(b4) CL11_19 

 
(c) Fig. 3.24(43) 

Prediction: 0.039 

 
(d) Fig. 3.24(5) 

Prediction: 0.737 

 
(c1) CL1_12 

  
(c2) CL4_9 

 
(d1) CL1_9 

 
(d2) CL4_13 

 
(c3) CL7_11 

 
(c4) CL10_30 

 
(d3) CL7_30 

 
(d4) CL10_8 
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(e) Fig. 3.24(39) 

Prediction: 0.246 

 
(f) Fig. 3.24(41) 

Prediction: 0.620 

 
(e1) CL1_28 

 
(e2) CL4_19 

 
(f1) CL1_9 

 
(f2) CL4_19 

 
(e3) CL7_30 

 
(e4) CL11_21 

 
(f3) CL7_29 

 
(f4) CL11_21 

 
(g) Fig. 3.24(3) 

Prediction: 0.502 

 
(h) Fig. 3.24(38) 

Prediction: 0.275 

 
(g1) CL1_9 

 
(g2) CL4_1 

 
(h1) CL1_9 

 
(h2) CL4_14 

 
(g3) CL7_11 

 
(g4) CL11_32 

 
(h3) CL7_11 

 
(h4) CL11_6 

Fig. 4.1 Excerpts of the feature maps from eight images 

The first two images in Fig. 4.1 are from the test data, in which the images are collected 

by the staff of the Kawaguchi Lab. Fig. 4.1(a) is a representative image of ceilings in a 
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stadium with large span. The feature maps can focus on the non-ceiling part and the 

ceiling part through (a1) CL1_14 and (a2) CL4_19. In the feature maps of (a3) CL7_11 

and (a4) CL11_9, the filters focus on the interior without and with lightings. There are 

no obvious damages in Fig. 4.1(a), the CNN model does not pay special attention to 

anywhere that is suspected to be damaged. In Fig. 4.1(b), the damages are due to the 

earthquake. The earthquake shakes and squeezes the suspending system in the ceilings 

and results in the bending damage to the furring strips next to the wall. The bending 

and squeezing also makes the ceiling boards fall. The main damage form is the lack of 

ceiling boards. The feature map of (b1) CL1_5 indicates that the filter to the feature 

map distinguishes the wall and the ceilings, the feature map focuses on the ceilings. 

The feature maps of (b2) CL4_18, (b3) CL7_13 and (b4) CL11_19 focus on the 

damages in the zone of the missing ceiling borads. 

The remaining six images in Fig. 4.1 are collected from the internet. Images of Fig. 

4.1(c~f) are predicted correctly and those of Fig. 4.1(g, h) are predicted incorrectly by 

the trained CNN model. The feature map in (c1) CL1_12 shows that it focuses on the 

ceilings and floors while it ignores the crowd and the lightings in the ceilings. While 

(c2) CL4_9 focuses on the lights, the windows and the crowd in the contrast to those in 

(c1) CL1_12. (c3) CL7_11 focuses on the ceilings and the floors more that (c1) CL1_12 

does. The final prediction to Fig. 4.1(c) is low that means the contents in it are intact. 

The damage form of the ceilings in Fig. 4.1(d) is the missing of ceiling boards and 

peeling offs of the ceiling board surfaces. The feature maps of Fig. 4.1(d) provides 

interprets of the final prediction of damaged ceilings. (d1) CL1_9 is most activated by 

the peeling off boards while (d2) CL4_13 is most activated by the missing ceiling 

boards, both of which are related to the damage label. (d3) CL7_30 is most activated 

by the lights in the ceilings, it also notices the dividing lines among the ceiling boards 

in the upper part of the image. (d4) CL10_8 is activated by both the missing boards and 

the lights, noticing that the contrast of these two items are the strongest in the image.  

Fig. 4.1(e) shows the membrane ceilings with its inherent curved surfaces. There are no 

membrane ceiling images in the training or in the validation data sets. In fact, the shape 

of the curved ceilings was never shown to the CNN model before. The image of the 

membrane ceilings is chosen to investigate if the trained CNN model can make correct 

predictions to new forms of ceilings that it was never trained for. (e1) CL1_28 indicates 

that the model still can tell the differences between the celings and the floor (although 

the window zone is also activated with the ceiling zone). (e2) CL4_19 indicates that the 

curve shape (gaps between the membranes) of the menbrane ceilings is most activated. 

(e3) CL7_30 and (e4) CL11_21 focus on the surfaces of the membrane. The final 

prediction to Fig. 4.1(e) agrees with the contents. Fig. 4.1(f) shows the damages in the 

ceiling boards that surrounding the columns in an earthquake. (f1) CL1_9 highlights 

the half-fallen parts at the rims of the falling boards. (f2) CL4_19 and (f3) CL7_29 
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foucus on the edges of the missing parts in the ceilings, even if the vents of the air 

conditioning. (f4) CL11_21 extract the contours of the void boards and areas with 

strong contrast. 

Predictions to Fig. 4.1(g) and Fig. 4.1(h) are where the CNN model fail. The ceiling 

image of Fig. 4.1(g) shows a wood board ceiling with patterns of spots, which look like 

rust or water stains. Maybe this is the reason why the CNN model predicts to the ceiling 

image incorrectly (the prediction is 0.502, which is hard to really judge if the prediction 

is correct). (g1) CL1_9 and (g2) CL4_1 notice the celing and other parts except the 

ceiling respectively. Notice that (g1) CL1_9 is more activated by the textures in the 

wood which look like water stains. (g3) CL7_11 and (g4) CL11_32 both focus on the 

ceiling part with different extents. It can be still redeemed as a success because the 

result that the CNN model predicts alarms the user to perform more careful examination. 

The damage in Fig. 4.1(h) is hard to find for human even at the first glance. The uplift 

between the ceiling boards is tiny. There is no such damage form in the training data 

set either. (h1) CL1_9, (h2) CL4_14 and (h3) CL7_11 do focus on the ceiling part of 

the image, but they fail to detect the uplift part in the ceilings. (h4) CL11_6 just sees 

the ceilings as a whole, an intact whole. It also fails to detect any damage traces in the 

image. The final prediction to this image is 0.275, which is relatively low. 

By visualizing the outputs of the intermediate layers, it is possible to understand what 

the CNN model does in the convolutional layers and what countermeasures should be 

taken. It also aids to find out if the CNN model does learn from the training data or it 

just predicts by luck. The visualizations above show that the trained CNN model does 

learn from the training data and the accuracy can be improved by collecting more 

versatile ceiling images. 

4.1.2 Visualizing the patterns that most activate the hidden layers in 

the convolutional neural networks 

Visualizing the outputs of the intermediate convolutional layers by showing them 

different images helps to interpret the trained CNN model. However, these 

interpretations are from the intuitional point of view and not unified guiding 

significance. They still leave the questions of choosing how many and what kind of 

images to the CNN model. It is good for the understandings if the images have 

something in common. But there are too many possible influence factors in the images. 

Note that we confined ourselves in the test data and internet ceiling data sets for looking 

for general input patterns. It is possible to take a further look at the trained CNN model. 



 

87 

 

Visualizing the matrices of the filters in the convolutional layers is no use, but how 

about generating an image that maximize the activations to the filters? In other words, 

how about taking the generating images task as an optimization problem? 

The idea of generating an image that maximizes the activations to the filters dates back 

to the year of 2006. Hinton et al. [127] built a generative model that gives better digit 

classification than the best discriminative learning algorithms. The generated images 

form the deep hidden layers make the interpretations to the nonlinear, distributed 

representations possible. Erhan et al. [128] used activation maximization to visualize 

unsupervised deep learning models by gradient ascent in the images. Their results 

confirm that the higher layers in the deep learning model represent features more 

complicated than that the lower layers do. This method was employed to visualize the 

features learnt by an unsupervised auto-encoder [129]. The application of this method 

in the visualizing the features of classes [130] in the deep image classification CNN 

model trained on the ImageNet challenge dataset [71]. The deep dream project launched 

by Google also used the visualization of the features in the filters to create arts [131] as 

shown in Fig. 4.2. This idea of generating images from the features that the CNN model 

learned also revives the art historical research in iconography and formalism [132]. The 

visualization of intermediate layers and regularized optimization are introduced in 

helping to interpret the trained CNN models [133]. 

 

Fig. 4.2 Examples of Google’s deep dream works [131] 

This is the inverse problem to the training of CNN models. The training process is to 

generate the weights that minimize the loss function using data (images) that we have 

already obtained by gradient descent method. While when visualizing the patterns that 

most activate the hidden layers, the objective is to generate an image using the trained-

already weights that most activate the filters. Corresponding to the gradient descent 

method, the gradient ascend method is adopted to fulfill the purpose of generating the 
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pattern images (Eq. 4.1). 

 

( )
Gradient descent (minimizing an objective function ( )) :  

( )
Gradient ascent (maximizing an objective function ( )) :  

where  is the weights, ( ) is the objective function,

i i

i

i i

i

J
J

J
J

J


   




   



 


 −




 +



  is the learning rate

  
4.1 

The idea of finding an image that maximizes the activations in the intermediate layers 

can be viewed as 

 
* arg max( ( , ))ij

X

X h X=   4.2 

where:    is the weights and biases in the trained neural networks model (constant);  

  *X  is the image that maximizes the activation;  

  X  is the input; 

  ( , )ijh X  is the activation of a given unit i  in a given layer j . 

This is an optimization problem that can be done by performing gradient ascent in the 

input space X  . In other word, this problem is to move X   in the direction of the 

gradient 
( , )ijh X

X




 until the local maximization *X  that maximizes ( , )ijh X . This 

optimization strategy is applicable to any neural networks as long as the activation 

function ( , )ijh X   can be computed. The optimization also involves the choice of 

learning rate and stop criteria like the gradient descent. 

In the case of finding an image that most activates the filters in our trained CNN model 

for ceilings, the function can be specified as 

 
* arg max( ( , ) ( ))ij

X

X a X R X= −   4.3 

where:   is the weights and biases in the trained neural networks model (constant);  
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  * H W DX     is the image that maximizes the activation, H=400, W=600, 

D=3;  

  X  is the input image; 

  ( , )ija X   is the activation for a given filter i   in a given layer j when the 

image is presented to the trained CNN model; 

  ( )R X  is a regularization function that penalizes the ( , )ija X  function. 

Just like the cycles we did in the gradient descent, the search for *X  starts from a 

random 0X , which is a random noised image. The step number and the learning rate 

are pre-fixed. Eq. 4.4 is a single step in the updating process: 

 ( ( , ) ( ))ijX X a X R X
X

 


 + −


  4.4 

The maximized activations to the filters in the trained CNN model for ceilings are 

shown in Fig. 4.3. As shown in Table 4.1, the numbers of filters in the convolutional 

layers correspond to the maximized activations. For more clarity, two or more of the 

maximized activations in each convolutional layer are chosen to display. Notice that all 

the maximized activation images are in the shape of 400x600x3. 

 

(a) CL1 (32 filters) 
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(a1) Filter 3 

 

(a2) Filter 30 

 

(b) CL4 (32 filters) 

 

(b1) Filter 17 

 

(b2) Filter 28 

 

(c) CL7 (32 filters) 
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(c1) Filter 2 

 

(c2) Filter 17 

 

(d) CL10 (32 filters) 

 

(d1) Filter 2 

 

(d2) Filter 9 

 

(d3) Filter 17 

 

(d4) Filter 20 
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(e) CL13 (64 filters) 

 

(e1) Filter 2 

 

(e2) Filter 9 

 

(e3) Filter 57 

 

(e4) Filter 63 

Fig. 4.3 Visualizations to the images that most activate the filters in the trained CNN model 

From Fig. 4.3, the interpretations to the maximized activation images are: 
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(1) In CL1 and CL4, the filters do abstractions on randomly dispersed spots, in which 

there are no regular patterns among them.  

(2) In CL7, some filters in it begin to be more activated by patterns looks like tissues 

(Fig. 4.3c1) or mesh connections (Fig. 4.3c2) from an organism. 

(3) In CL10, the filters step further away that they are more activated by some regularly 

distributed shapes like evenly distributed points (Fig. 4.3d2) and Labyrinth-like grids 

(Fig. 4.3d3 and Fig. 4.3d4). Noticing the four edges in the maximized activation images 

in Fig. 4.3d, the pixels at the edges become different from the corner ones. That is due 

to the image augmentation in the training dataset: an original ceiling image was moved 

and rotated to generate more ceiling images which made the edges in the generated 

images meaningless (as shown in Fig. 3.22). The filters in CL10 noticed the meaningless 

zones and learnt to distinguish them. 

(4) The abstraction in the final convolutional layer CL13 is stronger. The filters in CL13 

combine the simple patterns into complex ones. Remember the final output to the CNN 

model is one node (from 0 to 1), which means the extent the contents in the input image 

is damaged to. Intuitively speaking, there are more common features in the intact ceiling 

images than those in the damaged ones. The filters in the CL13 are more activated by 

the images that have regular patterns. This indicates that the trained CNN model does 

learn the distinguishing methods by recognizing regular patterns. 

(5) The abstraction is gradually stronger from the lower convolutional layers to the 

higher ones. 

This section introduced a very powerful and useful method for visualizing the filters in 

the CNN model by finding an image that most activates a filter in a convolutional layer. 

It confirms the suspect that convolutional layers do gradual abstraction from the lower 

layers to the higher ones. It also provides direct inspections method to the filters in a 

convolutional layer to see if the trained model has really learnt something. Moreover, 

it helps with the determination to the architecture of the deep learning model that 

accuracy is not the only evaluation standard any more. People can find if or how much 

the deep learning model has learnt by visualizing the maximized activation images. It 

does open to black box of CNN models to some extent. 
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4.2 Damage detection 

4.2.1 Saliency maps 

Visualizing the middle convolutional layers outputs and visualizing the activation 

feature maps provide interpretations to the trained CNN model from the activation 

perspective. The expression of “activation” also connects to the phase “attention”, 

which is more suitable to describe the artificial intelligence algorithms, especially the 

deep learning. However, visualizing the middle convolutional layers outputs and 

visualizing the activation features to the filters are not strong enough to provide strong 

guidance to human, in other words, we still do not know what regions in an image 

contribute most to the final predictions. This elicits the reflection of looking back into 

the trained deep learning models themselves. The first idea is simple: since the 

prediction accuracies to the contents in the image have been to very high levels by the 

deep learning models in classification task, why not investigate the prediction process 

to find out what parts in the image leads to the final prediction? The parts in an image 

that contribute most to the final prediction have the highest probability of being the 

target object. In other words, the object detection task is transferred into the task that 

given a trained classification model, the label to the target object and an image, we want 

to use them to perform localization to the given image for the given target object. 

The visualization of image-specific class saliency maps was first introduced in 2014 

[130], it is another powerful auxiliary means to investigate the trained deep learning 

model and can be modified for object detection. In the case of ceiling damage 

evaluation task in this thesis, it is important to confirm what parts in the ceiling image 

most activate the CNN model. Remember the final output is a float number from 0 to 

1, which is impossible to interpret if the CNN is using ceiling-related pixels or using 

irrelevant pixels with ceilings like the windows or the crowd. The saliency maps 

solution kills two birds with one stone: 1. It confirms if the trained CNN model really 

learns the representative features of the objects; 2. If the trained CNN model really 

learns the representative features of the objects, it can do localization task to new 

images. 

For example, a pretrained CNN model proposed in 2014 with the name VGG16 [134], 

whose team won the first and the second places in the localization and classification 

tracks respectively in ImageNet Challenge 2014 [71] with the database over 14million 

images to 1000 classes, achieved the accuracy of 93.2% in the top-5 test. The prediction 

to one image in classification is a 1000x1 vector with each row represents one class. 

We choose the 671st label in the classification index, which represents “mountain bike” 
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for the demonstration for saliency map method. Three images are downloaded from 

https://www.pexels.com under the CC0 license (https://www.pexels.com/photo-

license/), in which one is a “mountain bike”, one is a “scooter” and one is a “car”. The 

original images and the saliency maps to them are shown in Fig. 4.4. It can be found 

that the saliency map to the “mountain bike” image is the strongest, the saliency map 

to the “scooter” is less strong and the saliency map to the “car” is null. The saliency 

maps confirm that the VGG16 does learn the features in the mountain bike and the 

saliency maps can be used for object detection. 

 

Fig. 4.4 Saliency map examples for VGG16 

For a given image I0 (H×W×D), a class with the index of c (n classes in total, the index 

is also the label to the object), and a trained CNN model, the final prediction to the 

image I0 is a vector: 

  1 0 2 0 0 0( ),  ( ),  ,  ( ), ,  ( )c nS I S I S I S I   4.5 

0( )iS I  represents the probability that the image I0 belongs to the i-th class, so the sum 

of them equals to 1: 

Label: “mountain bike”

+ ++

VGG16

https://www.pexels.com/
https://www.pexels.com/photo-license/
https://www.pexels.com/photo-license/
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 0( ) 1i

i

S I =   4.6 

By the way, the top-1 accuracy is the accuracy that the image label happens to be the 

highest probability prediction label; the top-5 accuracy is the accuracy that the image 

label happens to be one of the five highest probability prediction labels.  

The goal is to identify which pixels in the image I0 contribute most to the final 

prediction 0( )cS I  that represents the class index c. The required output (the saliency 

map) is an image with the same shape to the given image I0, which means that the input 

and the output are pixel-wise one-to-one correspondence. The relationship between the 

input I0 and the saliency map to it can be represented as: 

 0 0( ) T

c c cS I I b= +   4.7 

where c  is the saliency map to the image I0. 

In the case of CNN model, the final prediction corresponding to the class c is: 

 0 1 2 0( ) ( )c nS I f f f I=   4.8 

where fi is the i-th layer in the trained CNN model. 

Unluckily, 0( )cS I   is a multilayer non-linear function with respect to I0, we cannot 

simply apply Eq. 4.8 to Eq. 4.7. Recall the first-order Taylor expansion: 

  
0 1 2 0 0( ) ( ) T

c n c cS I f f f I I b=  +   4.9 

Now we can calculate the c , both the saliency map to image I0 and the derivative of 

( )cS I  with respect to the input I at the point I0: 

 
0

c
c

I

S

I



=


 4.10 
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Recall the backpropagation of deep learning, c  can be quickly computed by a single 

backpropagation. For the CNN model for ceiling damage evaluation in this thesis, the 

final output is only one class that represents the probability that the contents in the 

image are damaged. Applying the saliency map method to some images from the test 

dataset (shown in Fig. 4.5) and images from internet (from Fig. 3.24, shown in Fig. 4.6) 

with the final class index and the trained CNN model in Fig. 3.8. Three sub-images are 

shown for each ceiling image in columns, with the order of original-saliency map- 

overlaying the saliency map to the original image. 

 

(1) P: 0.019 (2) P: 0.018 (3) P: 0 (4) P: 0.266 

 
 

(5) P: 0.002 (6) P: 0 (7) P: 0.001 (8) P: 0.010 
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(9) P: 0.747 (10) P: 0.850 (11) P: 0.673 (12) P: 0.915 

 
 

(13) P: 0.572 (14) P: 0.810 (15) P: 0.731 (16) P: 0.708 

 
Fig. 4.5 Saliency maps to some ceiling images from the test dataset 

From Fig. 4.5, the conclusions to the saliency maps to the ceiling images from the test 

dataset are: 

1. In the intact ceiling images, whose final predictions are very low, the most activated 

pixels are not ceiling-relevant while relating to lights and crowds. Noticing that the 

lights are usually well ordered and the crowds are extremely random. Although all of 

them are noticed by the CNN model, the contributions by these pixels to the final 

predictions are very low. It can be inferred that the model learns that the lights and the 

crowds are irrelevant to the predictions. 
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2. Results are different for the damaged ceilings. Firstly, the predictions to the damaged 

ceiling images are correct to the contents, indicating that the activated pixels in the 

saliency maps have strong weights to the final predictions. The shapes of the activated 

pixels are different from those in the intact ceiling images. Secondly, the saliency maps 

for the damaged ceilings do reflect most of the damage zones which are very hard for 

traditional algorithms to detect. 

3. The images in the test dataset are randomly chosen from the ceiling image collection 

by the Kawaguchi Lab, within which there are implied similarities among the images, 

like the building types, the proportion of ceiling area to the whole image area and the 

photographer’s habits, etc. All of these will strongly affect the representations in the 

ceiling images. Ceiling images from outsider are necessary to validate the saliency map 

method. 

(1) P: 0.999 (2) P: 0.716 (3) P: 0.502 (4) P: 0.006 

 

 
 

(5) P: 0.737 (6) P: 0.458 (7) P: 0.067 (8) P: 0.022 
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(9) P: 0.059 (10) P: 0.951 (11) P: 0.245 (12) P: 0.590 

 
 

(13) P: 0.409 (14) P: 0.628 (15) P: 0.574 (16) P: 0.002 

 
 

(17) P: 0.316 (18) P: 0.002 (19) P: 0.597 (20) P: 0.747 
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(21) P: 0.068 (22) P: 0.174 (23) P: 0 (24) P: 0 

 
 

(25) P: 0 (26) P: 0.338 (27) P: 0.032 (28) P: 0.088 
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(29) P: 0.087 (30) P: 0.359 (31) P: 0.371 (32) P: 0.207 

 
 

(33) P: 0.232 (34) P: 0.067 (35) P: 0.010 (36) P: 0.020 

 
 

(37) P: 0.009 (38) P: 0.275 (39) P: 0.246 (40) P: 0.691 
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(41) P: 0.620 (42) P: 0.563 (43) P: 0.038 (44) P: 0 

 
 

(45) P: 0.001    
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Fig. 4.6 Saliency maps to ceiling images from internet (Fig. 3.24) 

 

The saliency maps in Fig. 4.6 are interpreted as follows: 

1. For those correctly predicted intact ceiling images, the most activated pixels are still 

the well-ordered lights. The crowds are also noticed in them. 

2. For those correctly predicted damaged ceiling images, the saliency maps to them can 

reflect most the damaged parts in the ceilings. However, there are still exceptions that 

even if the image is correctly predicted, the saliency map to it fails to detect the damage 

such as the stains and peeling off in the ceilings. That is because there are too few 

images of such damage forms in the training data (only three images or less are about 

such damages). But the correct predictions still provide warnings to further notice the 

ceilings. 

3. The incorrectly predicted damaged images are dangerous in practice, because the 

damages are ignored and evaluated as safe. Some of the damages are voids of ceiling 

boards with neat cut edges, which are easily confused with vents by the CNN model. 

Some of the damages are of too much proportion to the whole image that the CNN 

model would confuse with crowds. There are also damage shapes that have never been 

shown in the training data within which the CNN model fails to learn. 

4. There is only one incorrectly predicted intact image with spotty ceilings. But the 

saliency map to it also fails to focus on the spots in the ceilings but on irrelevant objects. 

But notice the prediction to it is 0.502, the noticed objects have low weights to the final 

prediction. 

The saliency maps to the ceiling images from internet prove that they are possible 

solutions to highlighting the damages in the ceilings with the corresponding to the 

predictions to them. By highlighting the damages, it also performs damage detection 

task. 
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4.2.2 Gradient-weighted class activation mapping (Grad-CAM) 

The saliency map method visualizes the attention that the CNN model pays to an image 

when the image is shown to it, for the first time in convolutional neural networks. 

Visualization the attention map of a CNN model has at least three merits: (1) It visualize 

if the CNN model has really learnt corresponding features from the training data; (2) If 

the CNN model has learnt enough, the attention map can be used as object detection 

without ever having been explicitly taught by the training data; (3) It connects the 

research on computer algorithms with the research on human minds. Since then, there 

are more researches on the attention maps made by the CNN model. The most recent 

winners in the classification and object detection tasks introduced the attention-aided 

models to reach state-of-art performances [135, 136]. There is also primitive research 

on the comparison between human attention and VQA (Visual Question Answering) 

models attention [137]. 

For the ceiling damage detection task in this thesis, the saliency map method provides 

a solution to it. However, the saliency map method aggressively simplifies the complex 

non-liner convolutional neural networks into a linear function (using the first-order 

Taylor expansion). The results of saliency map are satisfying, but there are still 

improvements could be done. In this section, a more precise method, Gradient-weighted 

Class Activation Mapping (Grad-CAM), is introduced to visualize better attention maps. 

Before that, prerequisite knowledge is: 

1. Deconvolutional networks 

Researchers are trying to open the black box of deep learning from different aspects, 

the deconvolutional perspective is one of them [120, 125]. Contrary to the down-

sampling convolutional operation, the deconvolutional layers performs up-sampling 

operation. To a deconvolutional networks model, the output is a reconstructed image 

the same size to the input image, emphasizing the pixels that most activate the neurons 

in the convolutional layers. Generally, the deconvolutional networks are inverse neural 

networks to the convolutional neural networks. To realize the inverse operations to a 

CNN model, the unpooling operation and deconvolutional (also named transposed 

convolutional) operation are used to aid the output of the final reconstructed image 

(shown in Fig. 4.7). The purpose of deconvolutional networks is to visualize the most 

activated pixels in a trained CNN model by the reconstructed input. 
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(a) Unpooling 

 
(b) Deconvolutional operation [116] 

 

(c) From input to reconstructed input 

Fig. 4.7 Deconvolutional Networks 

The research of deconvolutional networks provides profound understandings of 
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convolutional neural networks with visualizing the gradually abstraction in the 

convolutional layers. Fig. 4.7(c) shows the data flow in deconvolutional networks: given 

an input to a trained CNN model, the details (switches in the pooling layers and 

deconvolutional matrices) of gradually abstractions in the forward propagation process 

are recorded to provide traces in the deconvolutional process (red dots represent data 

node). More generalized schematic visualizations to the deconvolutional networks and 

details are shown in Fig. 4.8 (corresponding data nodes are picked from forward pass 

and backpropagation [138]). 

 
(a) Given an input image, reconstruct the image for layer l 

 

(b) Different methods of backpropagation 

Fig. 4.8 Details of Deconvolutional Networks 
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2. Class activation mapping (CAM) 

In 2015, a new architecture of CNN named “the all convolutional networks” that 

consists solely of convolutional layers yields competitive or state-of-art performance 

on several object recognition datasets [138]. It uses the global averaging pooling layer 

(GAP) as the penultimate layer to perform more extreme dimensionality reduction than 

the max pooling layer (the last layer is softmax layer for object categorization). The 

global averaging pooling layer reduces a three-dimensional matrix (h × w × d) into a 

tensor (1 × 1 × d) [139] (shown in Fig. 4.9). 

 

Fig. 4.9 Global averaging pooling (GAP) 

In mid-2016, a new architecture of CNN named Class Activation Mapping (CAM) 

using the all convolutional neural networks with the GAP layer as classifier is 

demonstrated that such architecture of CNN model can be used for not only object 

classification but also for object recognition at the same time [140]. This means that a 

CNN model with the CAM architecture is able to tell what an object in an image is and 

where it is within only one forward pass. The main idea of CAM is that each class 

activation map compressed by the GAP layer acts as an object detector and an object 

classifier at the same time. Fig. 4.10 shows how the CAM architecture performs object 

classification and object detection function. 
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Fig. 4.10 Class Activation Mapping (CAM) 

The last layer shown in Fig. 4.10 is possible to be modified as a softmax layer, a 

regression layer or other kinds of losses. In the case of a softmax layer as the final layer, 

the description to a CAM model is as: 

For a trained CAM model, an input image is down-sampled gradually when transferring 

through convolutional layers. For the last convolutional layer, fk represents the k-th 

feature map with n feature maps in total. fk is a two-dimensional matrix with spatial 

information of the input image. In fact, fk is the visualization map of the pattern k. After 

fk is fed into the GAP layer, the result is Fk, where 
i

k
k

f
F

Z


=  (Z is the total number of 

digits in fk). For a given class c, the score c

c k k kS F=  , where c

k  is the weight of 

class c for the k-th feature map. The probability of the image of being class c Pc is 

calculated through the softmax function: 
exp( )

exp( )

c
c

c c

S
P

S
=


 . 

Recall the score for class c: 

 

i i
c c ck k

c k k k k

k k k

f f
S F

Z Z
  


= = =     4.11 
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i
c k

c k

k

f
M

Z
=    4.12 

Then, 
c cS M=  . Mc indicates the importance of the activation as the image classified 

to class c. 

This technique named Class Activation Mapping (CAM) enables a CNN model trained 

for classification objective can be directly used for object localization tasks. The idea 

behind CAM also aids other researchers to understand the convolutional neural 

networks in their practices. 

3. Gradient-weighted class activation mapping (Grad-CAM) 

The Class Activation Mapping (CAM) method allows a all-convolutional model 

perform object localization even if it is not purposely trained for object localization. 

The biggest drawback of CAM is that it restricts the architecture of the CNN model, 

which only containing convolutional layers and a global average pooling before the last 

softmax prediction layer. In a few months after the CAM method announced, a more 

generalized method named Gradient-weighted Class Activation Mapping (Grad-CAM) , 

using the gradients of any target class flowing into the last convolutional layer to 

perform localization is issued [141]. The Grad-CAM method is shown in Fig. 4.11. 

Given an image and a category (‘ceilings’) as input, the objective is to locate the ceiling 

zone in the image. Firstly, the image is forward propagated through the trained CNN 

model until it reaches the raw class scores before the softmax layer. Secondly, the vector 

representing the desired class (‘ceilings’ in this example), with only the desired class as 

1 and all other classes as 0, is backpropagated till to the last convolutional-shaped layer 

(the last pooling layer in this example). Finally, a Grad-CAM localization heatmap 

representing the desired class is generated by combining the weights from the pooling 

layer and the vector backpropagated to the pooling layer. 
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Fig. 4.11 Grad-CAM 

As shown in Fig. 4.11, the objective is to obtain the localization map to the given image 

for the desired class c. The final output is an image c w h d

Grad CAML  

−   with width w, 

height h and depth d (usually 3) for class c. Firstly, compute the gradient matrix

c c
k

k

S
g

f


=


 ,where cS  is the score for class c before propagated to softmax, kf  is the 

k-th feature map in the last convolutional-shaped layer. Then the neuron importance 

weights c

kW  is computed by flown through a global average pooling operator (Z is the 

total number of digits in c

kg ): 

 

global average pooling

,

gradients by backpropagation

1 1c c c
k k i i

k

S
W g

Z Z f


=  = 


  4.13 

c

kW  represents the weights of the k-th feature map kf  going downstream through the 

deep networks in which the layers after the last convolutional-shaped layer (the last 

pooling layer in this example) for the representation of the targeted class c. The final 

output of 
c w h d

Grad CAML  

−   is calculated as: 

 Re ( )c c

Grad CAM k k

k

L Lu W f− =   4.14 

From Fig. 4.10 and Fig. 4.11, we can find that the weights in the Grad-CAM method are 

generated by the gradients in backpropagation process, through which the applicable 
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range of Grad-CAM is widened into deep learning networks with convolutional layers, 

which is also applicable to the CNN model we trained for ceiling damage evaluation. 

4. Applying the Grad-CAM method in the CNN model for ceiling damage 

evaluation 

As Fig. 3.8 shows, the last convolutional-shaped layer in the CNN model is the Pooling 

Layer 15. The CNN model output only one node representing the probability of the 

ceilings in the image are damaged. Based on these and the Grad-CAM method, the 

same images to Fig. 4.5 and Fig. 4.6 are chosen for damage region localization. 

(1) P: 0.019 (2) P: 0.018 (3) P: 0 (4) P: 0.266 

 
 

(5) P: 0.002 (6) P: 0 (7) P: 0.001 (8) P: 0.010 

 

 
 

(9) P: 0.747 (10) P: 0.850 (11) P: 0.673 (12) P: 0.915 
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(13) P: 0.572 (14) P: 0.810 (15) P: 0.731 (16) P: 0.708 

 

 
Fig. 4.12 Grad-CAM to some ceiling images from the test dataset 

In Fig. 4.12, both intact ceiling images and damaged ones from test dataset are chosen 

for Grad-CAM method to perform damage region detection. For the intact ceilings, the 

final predictions are very small in digits and the most activated regions are lights in the 

ceilings for most of the images. While Grad-CAM of images Fig. 4.12 (6) and (8) focus 

on objects irrelevant to ceilings like floors and people, this reveals that objects like 

floors and people share low weights to the final predictions. This consists with reality 

that floors and people in an image indicate that the structural space is probably safe. 

For the latter damaged ceiling images in Fig. 4.12, the overall damage detection 

performed by Grad-CAM is very satisfying. The attention maps not only detect the 

damage locations but also draw the contours of the damages, which providing strong 

guidance to the user. Except for Fig. 4.12(9), the Grad-CAM fails to detect the obvious 

water stains on the ceiling board. The reason for this is already discussed in the saliency 



 

114 

 

map section: the lack of water stain images in the training data fails to teach the CNN 

model to learn such damage form. 

 

(1) P: 0.999 (2) P: 0.716 (3) P: 0.502 (4) P: 0.006 

 
(5) P: 0.737 (6) P: 0.458 (7) P: 0.067 (8) P: 0.022 

 
 

(9) P: 0.059 (10) P: 0.951 (11) P: 0.245 (12) P: 0.590 
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(13) P: 0.409 (14) P: 0.628 (15) P: 0.574 (16) P: 0.002 

 
 

(17) P: 0.316 (18) P: 0.002 (19) P: 0.597 (20) P: 0.747 

 
 

(21) P: 0.068 (22) P: 0.174 (23) P: 0 (24) P: 0 
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(25) P: 0 (26) P: 0.338 (27) P: 0.032 (28) P: 0.088 

 
 

(29) P: 0.087 (30) P: 0.359 (31) P: 0.371 (32) P: 0.207 
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(33) P: 0.232 (34) P: 0.067 (35) P: 0.010 (36) P: 0.020 

 
 

(37) P: 0.009 (38) P: 0.275 (39) P: 0.246 (40) P: 0.691 

 
 

(41) P: 0.620 (42) P: 0.563 (43) P: 0.038 (44) P: 0 
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(45) P: 0.001    

 

 
Fig. 4.13 Grad-CAM to ceiling images from internet 

For the ceiling images from internet (Fig. 4.13), the Grad-CAM of them are discussed 

into four categories: 

1. For those correctly predicted intact ceiling images, the digital predictions to them are 

below 0.5. The most activated regions in the Grad-CAM are bright regions like lights 

and windows. Noticing that the bright regions are usually regularly distributed in the 

image, which indicating the ceilings behind them are intact in high probability. This 

could be a characteristic for the CNN model to predict that the ceilings are intact. 
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2. For those correctly predicted damaged ceiling images, the Grad-CAM to them are 

not as precise as those to the test dataset. However, they still provide instructive 

guidelines to the user. The lights in the images may distract the CNN model to some 

extent, damages in the ceilings are still noticeable. However, in Fig. 4.13(12) the stains 

in the ceiling seems to be deliberately ignored, which is also a kind of damage region 

detection in a negative way. 

3. For those incorrectly predicted damaged images (Fig. 4.13(4), (8), (9), (38)), the Grad-

MAP to them can be interpreted in different ways. Fig. 4.13(4) has the incorrect 

prediction but correct region activations. While Fig. 4.13(8) is completely incorrect both 

in prediction and region activations. It fails to notice the absence of the ceiling boards 

or the lights. One possible explanation is that there are no, not even very few images in 

the training data like such interior like an office from the perspective in Fig. 4.13(8), 

which fails the CNN model to learn such circumstance. Damages in Fig. 4.13(9) are 

easily to be confused with regularized decorations at the first glance even for human. 

The Grad-CAM to it also indicates that the CNN model mistakes it with an intact ceiling 

image because it focuses on the lights in the ceilings. In Fig. 4.13(38), the CNN model 

notices very slightly on the tilted edges in the ceiling board shown by the Grad-CAM. 

4. Fig. 4.13(3) is the only incorrectly predicted intact image with the prediction 0.502. 

From the Gram-CAM to it, we can find that the model dose not notice the ceilings but 

notice other objects like the windows and the floors. 

From the comparison between the attention maps of the Saliency Map and the Grad-

CAM, it can be confirmed that both of them reflect the attention paid by the CNN model 

when given an image. The Saliency Map method uses more aggressive approximation 

that omits many details in the attention map. However, sometimes the Saliency Map 

method abandons irrelevant distractions and helps the user to stay focused on the most 

important regions. To the contrary, the Grad-CAM method uses more exquisite 

approximation to keep many details from the final predictions mapping back to the 

input layer. The Grad-CAM method provides rich details of the attention paid by the 

CNN model, sometimes much too rich. A good solution is to combine the merits of 

these two methods and avoid the defects of them. 

4.3 Building a ceiling damage detection system 

4.3.1 The workflow of a ceiling damage detection system 

Based on the previous work for training and interpreting the CNN model, the flow chart 
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of the ceiling damage detection system using convolutional neural networks is shown 

in Fig. 4.14. The system performs attention evokes to the user by highlighting the 

damaged regions. The user (an expert in ceiling structures or an amateur) is involved in 

the decision-making process. This system is possible to improve the prediction 

accuracy even if the CNN model makes incorrect predictions because the user is 

involved in the damage detection process. The workflow is: 

1. Start. 

2. The user takes a ceiling image to perform ceiling damage detection. The image is 

usually in high resolution (for example, an iPhone X has the 12MP cameras that can 

take photos with the resolution of 3024×4032×3).  

3.The image is resized into the resolution of 400×600×3 by the system. 

4. Send the resized image into the trained CNN model.  

5. Three kinds of outputs are generated by the CNN model: a digital prediction (ranging 

from 0 to 1), a saliency map and a Grad-CAM attention map. The digital prediction is 

the basic evaluation to the image. The saliency map and the Grad-CAM attention map 

are two kinds of heatmap that can alert the user with regions that are possibly damaged. 

6. The user will decide if it needs more investigations and details to the highlighted 

regions. 

7. If the ceilings need more investigations, the user has two options: a. Crop the regions 

in the original high-resolution image proportional to the desired regions and send them 

to the CNN model again, or b. Take more new photos to the desired regions and send 

the new photos to the CNN model for more detailed damage detection. 

8. The user judges if the damaged regions have been correctly detected. 

9. If the answer to step 8 is yes, output the image with the damaged regions. 

10. If the answer to step 8 is no, the CNN model has made false positive / negative 

predictions. 

11. The ceiling image is possible to be saved as future teacher dataset. 
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Fig. 4.14 The ceiling damage detection system 

Based on the workflow shown in Fig. 4.14, it is possible to build a web-based ceiling 

damage detection system that can be updated occasionally for multipurpose users (show 

in Fig. 4.15). This web-based ceiling damage detection system contains mainly two 

parts: 1. the front-end for users who upload ceiling images, receive the evaluations to 

the images and make interactive performance with the CNN model (the same flow 

shown in Fig. 4.14); 2. the back-end for the ceiling damage detection system 

maintenance personnel who classify, label the new incoming images and re-train the 

CNN model using new ceiling images added in the training dataset. This system is web-

based, meaning it can provide ceiling damage detection service where there is internet 

connection. 
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Fig. 4.15 A web-based ceiling damage detection system 

 

4.3.2 Showcases to the ceiling damage detection system 

It is difficult to evaluate the performances of the ceiling damage detection system in 

Fig. 4.14 by using quantitative indicators such as accuracy or precision because this 

system involves with the user, who is human. However, it is possible to generate 

showcases of the interactivities between the user and the ceiling damage detection 

system to grasp the idea and to investigate the performance of this system. 

Three showcases are chosen to display (images shown in Fig. 4.16). The images have 

never been shown to the CNN model during training. 
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(a) Showcase 1: damaged ceilings, 

resolution: 5184×3456×3 

 

(b-1) Showcase 2: damaged ceilings, 

resolution: 2161×1316×3 

 

(b-2) Showcase 2: damaged ceilings from a 

nearer perspective, 

resolution: 2592×1944×3 

 

(c-1) Showcase 3: intact ceilings, 

resolution: 2048×1536×3 

 

(c-2) Showcase 3: intact ceilings from 

another perspective, 

resolution: 2048×1536×3 

 

Fig. 4.16 Ceiling images for showcases 

 

1. Showcase 1(Fig. 4.16(a)):  

The process and the information flow in the ceiling damage detection system for the 
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images in Fig. 4.16(a) are shown below: 

 

 

STEP 1&2. Start from the original ceiling image 

(resolution: 5184×3456×3) 

 

 

STEP 3. Resize to resolution: 600×400×3 and STEP 4. send to the CNN model 

2. The user takes a 

ceiling photo (high 

resolution)

1. Start

4. Send into the 

CNN model

3. Resize to 

400×600×3
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STEP 5. Possible damaged region highlighted to the user 

 

 

 

STEP 6. The user makes comprehensive considerations to the outputs and decides to see 

more details on the upper right region (strongly highlighted) and ignores the weaker 

highlighted region on the lower left region 

STEP 7a. Crop the highlighted regions by the user from the original image 

(resolution: 2345×1790×3) 

 

4a. Prediction: 0.903

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency 

map

4a.Predict

ion (0~1)
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the user

3. Resize to 

400×600×3

6. Does the user 

need more details?

YES

7. Choose the 

desired inspection 

regions by the 

user and

zoom in

7a. Crop from the 

previous image
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NEW STEP 3. Resize the cropped image to resolution: 600×400×3 and 

NEW STEP 4. Send to the CNN model again 

 

 

 

NEW STEP 5. Damaged region highlighted to the user 

NEW STEP 6. The user decides that the details are enough 

STEP 8. The user decides that the desired damaged regions in the ceilings are correctly 

detected 

STEP 9. Output the results and  

STEP 11. Save for future teaching dataset 

 

Fig. 4.17 Showcase 1 for Fig. 4.16(a) 

From the showcase in Fig. 4.17, it can be found that: 
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CNN model

3. Resize to 
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4c. The grad-CAM and overlap the grad-CAM to the ceiling image

5. Attention evoke to 

the user
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NO

9. Output the 
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YES

11. Save to the 
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1. The digit prediction to the original image increases from 0.903 to the prediction to 

the cropped image as 0.963, which indicates that the precision increases. 

2. The saliency map and the grad-CAM may show some misleading highlighted regions 

(the weaker highlighted regions to the original image in this showcase STEP 5), but the 

user can decide to ignore the regions obviously unrelated to the ceilings. 

3. The saliency map and the grad-CAM show more detailed highlight regions to the 

cropped image than those to the original image. 

Through the interactivities shown above, the ceiling damage detection system aids the 

user to detect damages in the ceilings. 

2. Showcase 2 (Fig. 4.16(b-1) and Fig. 4.16(b-2)): 

In Showcase 2, the second ceiling image (Fig. 4.16(b-2)) is taken from a much nearer 

perspective than the first one (Fig. 4.16(b-1)). Firstly, it seems there are no damages 

from the first image by human, but the system reports that there are damages in the first 

image and revealed highlighted regions. By taking another photo to the highlighted 

regions (Fig. 4.16(b-2)), the damages in the ceilings are detected. Through this process, 

the ceiling damage detection system detects the damage before the user does and points 

out the damaged regions for the user. 

 

 

STEP 1&2. Start from the original ceiling image 

(resolution: 2161×1316×3) 

2. The user takes a 

ceiling photo (high 

resolution)

1. Start



 

128 

 

 

 

STEP 3. Resize to resolution: 600×400×3 and STEP 4. send to the CNN model 

 

 

 

STEP 5. Possible damaged region highlighted to the user 
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STEP 6. Although it seems there are no damages in Fig. 4.16(b-1), the user makes 

comprehensive considerations to the outputs and decides to see more details on lower left 

region of Fig. 4.16(b-1) and to take another photo 

STEP 7b. The user takes another photo to the lower left region of Fig. 4.16(b-1) 

(resolution: 2592×1944×3) 

NEW STEP 2. The user takes a new ceiling photo from a nearer standing point 

 

 

 

NEW STEP 3. Resize the cropped image to resolution: 600×400×3 and 

NEW STEP 4. Send to the CNN model again 

 

2. The user takes a 

ceiling photo (high 

resolution)

6. Does the user 

need more details?

YES

7. Choose the 

desired inspection 

regions by the 

user and

zoom in

7b. Take more photos

4. Send into the 

CNN model

3. Resize to 

400×600×3
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NEW STEP 5. Damaged region highlighted to the user 

NEW STEP 6. The user decides that the details are enough 

 

STEP 8. The user decides that the desired damaged regions in the ceilings are correctly 

detected; 

STEP 9. Output the results and  

STEP 11. Save for future teaching dataset 

 

Fig. 4.18 Showcase 2 for Fig. 4.16(b) 

In Fig. 4.18, the ceiling image (Fig. 4.16(b-1)) seems intact at the first glance by the user. 

While the damaged region is correctly detected by the ceiling damage detection system 

through the interactive performance between the user and the system. This indicates 

that the system aids the user to detect damages when they are difficult to find from the 

first glance. 

 

3. Showcase 3 (Fig. 4.16(c-1) and Fig. 4.16(c-2)): 

For Fig. 4.16(c-1) and Fig. 4.16(c-2), in fact the system has made incorrect predictions 

for mistaking a speaker as a damaged region. The interactive process is shown in Fig. 

4.19: 
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the user

6. Does the user 

need more details?

NO

9. Output the 

image with the 

damaged regions

8. Damage regions 

correctly detected?

YES

11. Save to the 

future teacher 

database
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STEP 1&2. Start from the original ceiling image 

(resolution: 2048×1536×3) 

 

 

 

STEP 3. Resize to resolution: 600×400×3 and STEP 4. send to the CNN model 

2. The user takes a 

ceiling photo (high 

resolution)

1. Start

4. Send into the 

CNN model

3. Resize to 

400×600×3
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STEP 5. Damaged region highlighted to the user 

 

 

 

STEP 6. The user makes comprehensive considerations to the outputs and decides to see 

more details on the strongly highlighted region in the grad-CAM and ignores the weaker 

highlighted regions 

STEP 7a. Crop the highlighted regions by the user from the original image 

(resolution: 412×275×3) 

4a. Prediction: 0.580

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency 

map

4a.Predict

ion (0~1)

5. Attention evoke to 

the user

3. Resize to 

400×600×3

6. Does the user 

need more details?

YES

7. Choose the 

desired inspection 

regions by the 

user and

zoom in

7a. Crop from the 

previous image
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NEW STEP 3. Resize the cropped image to resolution: 600×400×3 and 

NEW STEP 4. Send to the CNN model again 

 

 

 

NEW STEP 5. Damaged region highlighted to the user 

NEW STEP 6. The user finds out that the highlighted region is not damaged ceiling but 

wants more information, the user decides to take another photo to the ceilings 

4. Send into the 

CNN model

3. Resize to 

400×600×3

4a. Prediction: 0.620

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency 

map

2. The user takes a 

ceiling photo (high 

resolution)

4a.Predict

ion (0~1)

5. Attention evoke to 

the user

6. Does the user 

need more details?

YES

7. Choose the 

desired inspection 

regions by the 

user and

zoom in

7b. Take more photos
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STEP 7b. Take a new photo to the ceilings 

(resolution: 2048×1536×3) 

NEW STEP 2. The user takes a new ceiling photo 

 

 

 

STEP 3. Resize to resolution: 600×400×3 and STEP 4. send to the CNN model 

2. The user takes a 

ceiling photo (high 

resolution)

7. Choose the 

desired inspection 

regions by the 

user and

zoom in

7b. Take more photos

4. Send into the 

CNN model

3. Resize to 

400×600×3
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STEP 5. Possible damaged region highlighted to the user 

 

 

 

STEP 6. The user finds that this highlighted region is a special formed speaker that is 

mistaken by the CNN model as damaged region. 

The user decides that the details are enough. 

STEP 8. The user decides that the ceilings are intact and the CNN model has made 

incorrect predictions 

STEP 10. The image is labeled as intact (False positive) 

STEP 11. Save for future teaching dataset 

 

Fig. 4.19 Showcase 3 for Fig. 4.16(b-1) and Fig. 4.16(b-2) 

4a. Prediction: 0.684

4b. The saliency map and overlap the saliency map to the ceiling image

4c. The grad-CAM and overlap the grad-CAM to the ceiling image

4c. Grad-

CAM

4b. Saliency 

map

4a.Predict

ion (0~1)

5. Attention evoke to 

the user

6. Does the user 

need more details?

NO

8. Damage regions 

correctly detected?

10. False 

positive / negative 

predictions

NO

11. Save to the 

future teacher 

database
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In Fig. 4.19, the Showcase 3 clarifies the procedure when the system makes incorrect 

prediction. Although incorrect predictions may reduce the user confidence for the 

ceiling damage detection system, incorrect predictions occur for reasons. In Showcase 

3, the special formed speaker is mistaken by the system as a damaged region for the 

CNN model has not been taught by such form of object. In fact, it is difficult for human 

to make correct judgement at the first glance of it: it really looks like a hole in the 

ceilings. 

At the end of Showcase 3, the ceiling image is saved for future training dataset. 

Collecting new ceiling images, especially those that the CNN model makes incorrect 

predictions to are crucial for the further development of the CNN model. 

 

4.4 Conclusion 

In this chapter, the CNN model built and trained in Chapter 3 is investigated and 

interpreted by visualization methods (the intermediate convolutional layer outputs, the 

activation maps to the filters, the saliency map and the Grad-CAM) and a ceiling 

damage detection system with user-CNN interactive process is proposed. The 

conclusions are: 

1. Visualizations to the intermediate convolutional layer outputs for given ceiling 

images prove that the filters in the convolutional layers do notice the ceiling and non-

ceiling regions in the images (shown in Fig. 4.1). 

2. The generations of the images that most activating the filters in the convolutional 

layers prove that the CNN model performs gradual abstractions through the 

convolutional layers (shown in Fig. 4.3, the images become more and more complex). 

3. The saliency map method and the Grad-CAM method confirm that the CNN models 

have learnt to recognize the features representing the ‘intact’ and ‘damaged’ ceilings 

firstly. Furthermore, they successfully support ceiling damage detection function from 

the inner process perspective interpretation to the CNN model (shown in Fig. 4.5 and 

Fig. 4.12). 

4. A ceiling damage detection system with user-CNN interactive process (Interactive-

AI) is proposed and has been proved feasible because: a. The user can either be a well-
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trained ceiling expert who performs routine inspection or a layman (refugee) who needs 

to know the working conditions of the ceilings hanging over his / her head during a 

disaster circumstance; b. the user understands what is happening and knows what the 

ceiling damage detection system is doing in the damage detection process; c. the 

accuracy is increased and more damages are detected through the interactive process; 

d. this interactive system can minimize the bad effects of the incorrect predictions; e. 

this system is designed to collect more ceiling images for further improvements (shown 

in Fig. 4.20 and Fig. 4.21). 

 

Fig. 4.20 The ceiling damage detection system 
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Fig. 4.21 A web-based ceiling damage detection system 
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5. Transfer Learning for Ceiling Damage Detection 

5.1 Introduction to transfer learning 

5.1.1 A brief theory of transfer learning 

Since deep learning is a branch of artificial intelligence, a high-performance deep 

learning model revealing intelligence behaviors has very strong learning potential to 

grasp a related domain that is close to what it has learnt. This is the motivation for 

transfer learning. Transfer learning dates back to decades ago, with the intention to build 

lifelong machine learning methods that keep and reuse previously learnt knowledge 

[142]. Especially when the training data in the desired domain is very difficult or 

expensive to obtain, there comes out the need to build a high-performance learning 

model that can learn as much as possible even if the training data is rare [143]. This is 

also the reason for introducing transfer learning into ceiling damage detection task. 

With the big data age emerging, in many domains there are database storages relating 

to but not the same as the database that a well-performance deep learning model was 

trained on. However, these databases storages are usually not big or diverse enough to 

support the training requirements to a deep learning model to be built and taught from 

scratch. Moreover, these databases could be rare, expensive to collect or label. The idea 

of transfer learning has provided successful solutions to many such domains such as 

sentiment analysis [144], image classification [145], medical diagnosis [110]. 

The definition of transfer learning can be described as follows [143, 146-149]: 

A domain D is defined by a feature space X and a marginal probability distribution P(X). 

A task T is defined as: for a given domain D, a label space Y and a predictive function 

F(·) that fits best with F(X)=Y. Then the transfer learning is: for a given source domain 

Ds with a corresponding source task Ts and a target domain Dt with a corresponding 

task Tt, the process of training the target predictive function Ft(·) by using Ds and Ts. 

The source domain Ds can be extended to multiple source domains. 

5.1.2 Transfer learning for image classification 

In the domain of image classification, the transfer learning is to use the state-of-the-art 

image classification models trained on the ImageNet database [71] to adept to a new 
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image database instead of from being built from scratch. Fig. 5.1 shows the basic 

transfer learning idea for image classification. The convolutional layers of the pre-

trained models are frozen to perform abstractions in the inputs; the following fully 

connected layer are trained based on the inputs. The specific methods adopt in transfer 

learning depend on two factors: 1. the size of the new image database; 2. the similarity 

of the new image database to the ImageNet database. In different combinations of the 

factors, there are four cases in transfer learning for image classification: 

 

Fig. 5.1 Basic transfer learning for image classification 

1. SMALL new database, LOW similarity of the new image database to the ImageNet 

database; 

2. BIG new database, LOW similarity of the new image database to the ImageNet 

database; 

3. SMALL new database, HIGH similarity of the new image database to the ImageNet 

database; 

4. BIG new database, HIGH similarity of the new image database to the ImageNet 

database. 

The boundaries between a ‘big’ database and a ‘small’ one could be subjective. A 

dataset with one million images is definitely big and a dataset with one thousand images 

is really small. The boundaries between similarities are subjective as well. The front 

view and the side view of the same object could be totally different. The key is to 
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prevent overfitting in the transfer learning [145, 150]. 

For the four cases above, different methods to generate best-performance models using 

transfer learning are different: 

1. SMALL new database, LOW similarity: 

• Keep most of the layers directly connecting to the beginning of the pre-trained 

CNN networks, remove the rest of the pre-trained networks from the latter 

convolutional layers; 

• Add a new fully connected layer to the remaining networks. The output of the 

new fully connected layer matches the class number of the new database; 

• Randomize the weights in the new fully connect layer and freeze all the weights 

in the pre-trained networks; 

• Train the new networks. 

The slicing off the layers from the latter convolutional layer is because the new database 

is very different from the pre-trained networks that they do not share the same weights 

in the high level convolutional layers. The transfer learning in such circumstance only 

keeps the lower level features. The reason to freeze the weights in the pre-trained 

networks is to prevent overfitting due to the small new dataset. 

2. BIG new database, LOW similarity: 

• Remove the last fully connected layer and add a new fully connected layer 

matching the class number of the new database with randomly initialized 

weights; 

• Train the whole networks from randomly initialized weights;/ or: Train the 

whole networks with the weights initialized from the pre-trained networks. 

In this case, we have enough data to train the weights in the new networks, so there is 

no need to freeze any weights. Initializing the weights from the pre-trained networks 

may cost less time to train the model. 

3. SMALL new database, HIGH similarity: 

• Remove the last fully connected layer and add a new fully connected layer 
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matching the class number of the new database with randomly initialized 

weights; 

• Randomize the weights in the new fully connect layer and freeze all the weights 

in the pre-trained networks; 

• Train the new networks. 

The images in the new database are similar with those images in the pre-trained 

networks. They share most of the weights in the convolutional layers except for the 

number of class. To avoid overfitting, the weights in the pre-trained networks are frozen 

in the training process. 

4. BIG new database, HIGH similarity: 

• Remove the last fully connected layer and add a new fully connected layer 

matching the class number of the new database with randomly initialized 

weights; 

• Randomize the weights in the new fully connect layer and initialize the rest of 

all the weights from the pre-trained networks; 

• Train the new networks. 

This is the most favorable one in these four circumstances. There is not much to worry 

about overfitting because of big amount of data. The new dataset and the pre-trained 

networks dataset share the same high-level features that the weights could be initialized 

from the pre-trained networks. 

Most of the prevailing pre-trained models are trained based on the ImageNet database 

which is a huge collection of daily objects with 1000 classes. Although the ImageNet 

database collects so many objects, the research object in this thesis is the damage 

detection in ceilings, which is very different from the ImageNet database. The transfer 

learning in this thesis best conforms with the Case 1: small new dataset and low 

similarity, which is also the most unfavorable condition.  

5.1.3 Pre-trained models: VGG16 and VGG19 [134] 

In 2014, Simonyan and Zisserman who were affiliated with Visual Geometry Group 

(VGG) developed the VGGNet series using only convolutional layers, max pooling 
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layers and fully connected layers. The main feature in the VGGNet series is that the 

convolutional layers use only 3×3 filters to perform down-sampling to the inputs. Table 

5.1 shows the details of the configuration to the VGGNet series. There are five models 

in the VGGNet series (from A to E in Table 5.1). VGG16 and VGG19 refer to the model 

D and E with corresponding number of layers. With the number of convolutional layers 

growing, the trainable parameters also increase (shown in Table 5.2). The architecture 

of VGG16 and VGG19 are shown in Fig. 5.2. 

Table 5.1 VGGNet series configuration [134] 

(conv<filter size>-<number of filters>) 

A A-LRN B C D (VGG16) E (VGG19) 

11 weight 

layers 

11 weight 

layers 

13 weight 

layers 

16 weight 

layers 

16 weight 

layers 

19 weight 

layers 

input: 224×224×3 

conv3-64 conv3-64 

LRN 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

conv3-64 

max pooling 

conv3-128 conv3-128 conv3-128 

conv3-128 

conv3-128 

conv3-128 

conv3-128 

conv3-128 

conv3-128 

conv3-128 

max pooling 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

conv1-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

conv3-256 

max pooling 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv1-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

max pooling 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv1-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

conv3-512 

max pooling 

FC-4096 

FC-4096 

FC-1000 

soft-max 

 

Table 5.2 Number of trainable parameters (in millions) [134] 

Network A, A-LRN B C D E 

Number of parameters 133 133 134 138 144 
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Fig. 5.2 The architecture of VGG16 and VGG19 

The input to the VGGNet series is a fixed-size 224×224×3 image. The filters are set as 

a unified receptive field of 3×3 (in model C, at each end of a convolutional block the 

filter is set as 1×1). The stride of convolutional layers is 1, the stride of the max pooling 

layers is 2 with a 2×2 kernel. The networks were trained on a system with four NVIDIA 

Titan Black GPUs for 2-3 weeks respectively depending on the architecture of the 

models. The performance of the classification task is evaluated by the top-1 and top-5 

error. The VGG team trained and validated the VGGNet models in multi scales of 
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images. Table 5.3 shows the performance of the VGGNet models. 

Table 5.3 VGGNet performance at multiple test scales [134] 

Model (Table 5.1) 
Smallest image side 

Top-1 error (%) Top-5 error (%) 
Train (S) Test (Q) 

B 256 224, 256, 288 28.2 9.6 

C 

256 224, 256, 288 27.7 9.2 

384 352, 384, 416 27.8 9.2 

[256; 512] 256, 384, 512 26.3 8.2 

D 

256 224, 256, 288 26.6 8.6 

384 352, 384, 416 26.5 8.6 

[256; 512] 256, 384, 512 24.8 7.5 

E 

256 224, 256, 288 26.9 8.7 

384 352, 384, 416 26.7 8.6 

[256; 512] 256, 384, 512 24.8 7.5 

Nowadays, VGG16 and VGG19 are widely used in many other applications in image 

classification and recognition for the simplicity and easy-understandability. They are 

used as a baseline for feature extraction. The defect of the VGGNet is that the weights 

are very large to handle (the weight files for VGG16 is over 533MB and for VGG19 is 

over 574MB). 

5.2 Building and training transfer learning models for ceilings 

damage evaluation 

The first problem we are facing with is that the size of the training images of VGG16 

and VGG19 models is 224×224×3 while the size of the training ceiling images in this 

research is 400×600×3. The first possible solution is to resize the ceiling images from 

400×600×3 to 224×224×3 to generate a new ceiling dataset to fit the VGG models. 

However, such dramatic resize operation will lose many details in the original images. 

Another solution is originated from an important characteristic of convolutional neural 

networks: the filters scanning over an input matrix do not require a specific size. In 

other words, the same filters are possible to generate different sizes of outputs given 

different sizes of inputs. 

The second problem is if the pre-trained filters are possible to perform proper 

abstractions to the ceiling images that were never shown before. Since the transfer 

learning of ceiling images recognition is very different from the ImageNet dataset, if 

the VGG16 and VGG19 models are possible to learn the features representing ‘intact’ 
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and ‘damaged’ are unknown. 

The third problem is to find a proper architecture for the tail part of the transfer learning 

models. The tails of VGG16 and VGG19 are fully connected layers that linearize the 

matrices generated from the 224×224×3 training data which is different from the 

400×600×3 ceiling images. The tails of these models need to be modified for the 

specific task of ceiling image processing. 

5.2.1 Building and training a transfer learning model using the VGG16 

weights 

According to the architecture of VGG16 and the transfer learning method, a new CNN 

model using the VGG16 weights for ceiling damage evaluation was built. We kept the 

convolutional blocks from the VGG16 model and added new layers like a GAP layer 

and fully connected layers to the remaining convolutional blocks. This model is named 

as a ‘TF_VGG16’ model with the architecture shown in Fig. 5.3. We froze the 

convolutional blocks till the CL5_2 (the weights in them are inherited from the original 

VGG16 weights) but left the last convolutional layer CL5_3 trainable. The reason for 

this is that the last convolutional layer processes the high-level feature abstraction to 

the training ceiling dataset. The training ceiling dataset was very different from the 

dataset VGG16 was trained. Leaving the last convolutional layer CL5_3 trainable helps 

the TF_VGG16 model dealing with the differences among the datasets. Fully connected 

layers and a dropout layer were connected to the trainable CL5_3 layer to perform final 

abstractions. 

The training process was similar to that in Chapter 3: the input images are first 

processed through data augmentation. In the training process, 50 epochs were 

performed. The accuracy and loss curves to the epochs are shown in Fig. 5.4. Although 

the training accuracy increases with the epochs, the validation accuracy remains around 

at 0.9 since the 10th epoch, which indicates that the TF_VGG16 model begins to be 

overfit after the 10th epoch. The loss-epoch curve also indicates that the TF_VGG16 

model begins to be overfit after the 10th epoch since the validation loss begins to 

increase with the epoch increases. The weights at the 10th epoch were saved as the final 

weights of the TF_VGG16. The final prediction accuracy to the test dataset is 90.3%, 

which is a significant increase to the CNN model prediction of 86.2%. The sensitivity 

and the specificity are shown in Table 5.4. 
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Fig. 5.3 The architecture of TF_VGG16 
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Fig. 5.4 The training accuracy and loss curves of TF_VGG16 

 

Table 5.4 Sensitivity and specificity of TF_VGG16 

 Negative (0) Positive (1) Total 

True TN: 221 TP: 133 354 

False FN: 9 FP: 29 38 

Total 230 162 392 

Accuracy = (TP+TN) / SUM = 0.903 

Sensitivity = TP / (TP+FN) = 0.937 

Specificity = TN / (TN+FP) = 0.884 

5.2.2 Building and training a transfer learning model using the VGG19 

weights 

Although the architecture of VGG19 bears a close resemblance to that of VGG16, using 

the same transfer learning principles of TF_VGG16 to build another CNN model would 

result in poor convergence performance in the prediction accuracy. To the transfer 

learning model based on the stem of VGG19, the trainable layers are only in the tail 

layers without the convolutional layer. The transfer learning model is named as 

TF_VGG19, with the architecture shown in Fig. 5.5. The trainable parameters are the 

weights and biases in the full connected layers which can be represented by matrix 

multiplications. 

The training process of TF_VGG19 was alike to that in TF_VGG16 with 50 epochs in 

total. The accuracy and loss curves to the epochs are shown in Fig. 5.6. The lowest 

validation loss occurred at the 45th epoch and the weights at this epoch was saved as 

the TF_VGG19 model. The final prediction accuracy to the testing dataset is 88.3%, 
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which is a slightly increase to the CNN model prediction of 86.2%. Table 5.5 shows the 

sensitivity and the specificity. 

 

Fig. 5.5 The architecture of TF_VGG19 
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Fig. 5.6 The training accuracy and loss curves of TF_VGG19 

 

Table 5.5 Sensitivity and specificity of TF_VGG19 

 Negative (0) Positive (1) Total 

True TN: 217 TP: 129 346 

False FN: 13 FP: 33 46 

Total 230 162 392 

Accuracy = (TP+TN) / SUM = 0.883 

Sensitivity = TP / (TP+FN) = 0.908 

Specificity = TN / (TN+FP) = 0.868 

 

5.3 Evaluating and visualizing the transfer learning models 

Both TF_VGG16 and TF_VGG19 achieved higher accuracy to the testing dataset that 

the CNN model built from scratch. If the transfer learning models did learn the 

representative characters of intact and damaged ceilings, the digitalized prediction, the 

saliency map and the Grad-CAM to the ceiling images that are never shown to these 

two models would match each other. In this section, the evaluating and visualizing 

methods like the final predictions, the notions of intact and damaged ceilings learnt by 

the transfer learning models (the images that most activate the final two nodes of 

prediction), the saliency maps and the Grad-CAM to the testing dataset and ceiling 

images from internet, are shown to investigate the transfer learning models. 
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5.3.1 The TF_VGG16 model 

The final prediction accuracy to testing dataset is 90.8%. The images most activating 

the nodes of ‘intact’ and ‘damaged’ classes in TF_VGG16 are shown in Fig. 5.7. The 

images reflecting the notions of ‘intact’ and ‘damaged’ may seem a little abstract at the 

first glance, but they do extract the most important features of the two classes: the ‘intact’ 

ceilings usually contain shining lights orderly arranged like the divergent circles in Fig. 

5.7(a); the ‘damaged’ ceilings usually contain irregular jagged tearing marks shown in 

Fig. 5.7(b). 

The final predictions, the saliency maps and the Grad-CAM to the images selected from 

the testing dataset (a) and the internet (b) are shown in Fig. 5.8. The accuracy to the 

ceiling images from internet is 91.1%. The saliency maps in TF_VGG16 are much 

clearer and reflect more information about the ceilings. 

 

(a) intact 

 

(b) damaged 

Fig. 5.7 ‘Intact’ and ‘damaged’ images most activating TF_VGG16 

 

(a)_1 (a)_2 (a)_3 (a)_4 
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(a) testing dataset 
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(b) ceiling images from internet 

Fig. 5.8 Predictions, saliency maps and Grad-CAM to the images from the testing dataset 

and internet 

 

5.3.2 The TF_VGG19 model 

The evaluation of the TF_VGG19 follows the same steps as the TF_VGG16. Firstly, 

the learnt notions of ‘intact’ and ‘damaged’ are visualized in Fig. 5.9. Although they are 

different from those of the TF_VGG16, the notion images still reflect the characteristic 

of ‘intact’ and ‘damaged’ notions from relating perspectives: Fig. 5.9(a) reflects the 

roundness of the lights and Fig. 5.9(b) reflects the scattered broken imagery. The final 

predictions, the saliency maps and the Grad-CAM to the images selected from the 

testing dataset (a) and the internet (b) are shown in Fig. 5.10. 

The final prediction accuracy to the testing dataset is 87.5%. The accuracy to the ceiling 

images from internet is 82.2%, which is lower than that of the TF_VGG16 model and 

the CNN model in Chapter 3, reflecting that the TF_VGG19 did not learnt enough as 

expected. 



 

162 

 

 

(a) intact 

 

(b) damaged 

Fig. 5.9 ‘Intact’ and ‘damaged’ images most activating TF_VGG19 
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(a) testing dataset 

(b)_1 (b)_2 (b)_3 (b)_4 



 

165 

 

 
(b)_5 (b)_6 (b)_7 (b)_8 

 
(b)_9 (b)_10 (b)_11 (b)_12 



 

166 

 

 
(b)_13 (b)_14 (b)_15 (b)_16 



 

167 

 

 
(b)_17 (b)_18 (b)_19 (b)_20 

 
(b)_21 (b)_22 (b)_23 (b)_24 



 

168 

 

 
(b)_25 (b)_26 (b)_27 (b)_28 

 
(b)_29 (b)_30 (b)_31 (b)_32 



 

169 

 

 
(b)_33 (b)_34 (b)_35 (b)_36 



 

170 

 

 
(b)_37 (b)_38 (b)_39 (b)_40 

 
(b)_41 (b)_42 (b)_43 (b)_44 



 

171 

 

 
(b)_45    

 

 

 
(b) ceiling images from internet 

Fig. 5.10 Predictions, saliency maps and Grad-CAM to the images from the testing dataset 

and internet 
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5.4 Conclusion 

In this chapter, two pre-trained CNN models (VGG16 and VGG19) are used as trunk 

layers for two transfer learning models (TF_VGG16 and TF_VGG19) to perform 

ceiling damage detection. The conclusions are as follows: 

1. The transfer learning models have yielded higher accuracies than that of the CNN 

model in Chapter 3. The ‘Intact’ and ‘damaged’ images most activating the transfer 

learning models are much more abstract but interpretable. These indicate that the 

transfer learning models can recognize more shapes and can learn faster. 

2. The saliency maps generated by the transfer learning models have much more details 

and clarities. This also confirms that the transfer learning models are capable to learn 

more details from the same training datasets than the CNN model in Chapter 3. 
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6. Conclusions 

A ceiling damage detection system with user-CNN interactive process is proposed in 

this thesis. Firstly, a CNN model for ceiling damage evaluation is built and trained. 

Secondly, methods for interpreting and visualizing the predictions made by the CNN 

model and to the CNN model itself are performed to confirm the reliability of the 

trained CNN model. The ceiling damage detection function is fulfilled by the saliency 

map and the Grad-CAM methods. Thirdly, a ceiling damage detection system with user-

CNN interactive process is also proposed that the user can be either an expert in ceiling 

structures who performs routine inspections to the ceilings or a refugee / layman who 

desperately wants to know if the ceilings over his / her head are safe. This ceiling 

damage detection system use detection-zoom in-detection repeats that can generate 

more and more punctual predictions through the interactive process between the user 

the system. Moreover, the transfer learning method was introduced for ceiling damage 

detection to build and train more powerful CNN models. The conclusions are: 

1. The deep learning (convolutional neural networks) method is possible to be applied 

in ceiling damage evaluation and detection even if: a. only two classes representing 

‘intact’ and ‘damaged’ (images labeled as the same label can be totally different in 

manifestation), b. lack of training data (approximately only 1000 images for each 

class); c. high resolution of training data (400×600×3, to keep enough information). 

2. The cores of this thesis are the interpretations to the trained CNN model. 

Interpretations include: visualizations of the intermediate convolutional layer outputs, 

visualizations to activation maps to the filters, and more importantly, visualizations to 

the saliency map and the Grad-CAM to highlight the pixels contributing most to the 

final predictions. These visualizations confirm that: a. The CNN model performs 

gradual abstractions through the convolutional layers; b. The CNN model has learnt the 

most representing features from the training data (the ‘intact’ and the ‘damaged’ 

features in the ceilings); c. The ceiling damage detection function can be realized by 

the visualizations of the saliency map and the Grad-CAM methods. 

3. A ceiling damage detection system with user-CNN interactive process is raised. The 

user can either be an expert who inspects the ceilings or a layman who inquires the 

ceiling working status. It is tested by characteristic damaged ceiling images and 

interactive performances. The results indicate that the prediction accuracy rises with 

the damaged regions zoomed in and the process of interactivities between the user and 

the system. A web-based ceiling damage detection system is possible to collect new 

ceiling images for further improvement to the CNN model. 
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4. Transfer learning models using pre-trained VGG16 and VGG19 models as stem 

layers are proved to be suitable and more efficient in training CNN models for ceiling 

damage detection. The results indicate that transfer learning models can learn better and 

faster than the model built in Chapter 3, proved by: a. Transfer learning models have 

higher prediction accuracies; b. The saliency maps generated by the transfer learning 

models are much clearer that those generated by the CNN model built from scratch. 

Future work that can build a more powerful ceiling damage detection system include: 

1. There are many methods adopt to overcome the scarcity of the original ceiling images, 

especially the damaged ones. Collecting more representative ceiling images is crucial 

for the CNN model to be more versatile in ceiling damage evaluation and detection. 

2. There are many new deep learning architectures of image recognition in recent years 

and more of them will emerge in the future. Applying these new architectures to the 

ceiling damage recognition models may generate more powerful deep learning models. 

3. In object recognition, there are also more techniques emerging in recent years. 

Applying these techniques may generate better damage recognition approaches. 

4. The idea of ceiling damage detection by interpreting and visualizing the inner 

mechanisms of the CNN models is possible to be applied into more domains such as 

architecture damage detection, medical diagnostic imaging and class-correspondence 

object detection. 
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Appendix A: URLs of the images from internet 

 

URLs of the images from internet: 

 

1. https://tupolecam.pl/sufity-podwieszane/konstrukcja-stelaz/ 

2. https://paslaugos.lt/vaidas-vv385/galerija/376749 

3.http://festivalsalsacali.com/the-outrageous-real-drop-ceiling-ideas-for-basement-ideas/ideas-of-

awesome-basement-ceiling-ideas-3-most-popular-basement-ceiling-that-awesome/ 

4. https://usercontent2.hubstatic.com/4966769_f1024.jpg 

5.http://www.servprocassstjosephcounties.com/FranchiseContent/GalleryPhotos/8714-319c7366-f021-

40c9-948e-c8d244c8ba83.JPG 

6.http://crapimissedit.com/i/2018/02/best-paint-for-ceiling-tiles-how-to-paint-acoustic-ceiling-tiles-

ceiling-paint-spray-can-how-to-repair-ceiling-tiles-with-water-damage.jpg 

7. http://www.troop125ny.org/eagle-nest2/JamesRyan/eg1.jpg 

8.http://www.dailyastorian.com/storyimage/DA/20161018/ARTICLE/161019724/EP/1/1/EP-

161019724.jpg&MaxW=600 

9. https://flaglerlive.com/wp-content/uploads/eoc-tiles.jpg 

10.http://ktva.images.worldnow.com/images/14560502_G.jpg?auto=webp&disable=upscale&height=5

60&fit=bounds 

11. https://cupertinopianogames.files.wordpress.com/2011/12/img_2587.jpg 

12.http://peckdrywallandpainting.com/wp-content/uploads/2013/03/Water-Damaged-Skip-Trowel-

Ceiling-Melbourne.jpg 

13. http://www.emono1.jp/img/kamiyar/20120422223554_img1_5.jpg 

14.https://crapimissedit.com/i/2018/02/how-to-paint-acoustic-ceiling-tiles-best-paint-for-ceiling-tiles-

how-to-repair-ceiling-tiles-with-water-damage-zinsser-covers-up-ceiling-paint-970x728.jpg 

15. http://www.met-s.co.jp/images/material/original_img001.jpg 

16. http://www.e-lmx.com/showcase.html# 

17. http://www.perle-st.co.jp/display_ceiling.html 

18. http://www.leadray.com/comm/upimage/p_151025_04834.jpg 

19. http://blogimg.goo.ne.jp/user_image/38/ee/1cc79efd68b2523e6463ee131e2dde98.jpg 

20.http://safty.sakura.ne.jp/sblo_files/safty-

living/image/E4BD93E882B2E9A4A8E5A4A9E4BA95E890BDE4B88BE58699E79C9F001.jpg 

21. http://www.schoolnews.jp/wp-content/uploads/2015/06/2df269c7fd43000e02d79d1e88188612.jpg 

22. http://www.schoolnews.jp/wp-content/uploads/2015/06/8b23b0ee5d5bee38ffd161e861b30519.jpg 

23. http://www.toyoda-gosei.co.jp/upload/news/436/fcec62f373571adc6f330539dcbb78d9.jpg 

24. http://pyramidgroup.in/wp-content/uploads/sites/1/nggallery/industrial/pyramid-industrial6.jpg 

25.https://www.osaka-c.ed.jp/blog/semboku-

y/katou/images/271109%20%E4%BD%93%E8%82%B2%E9%A4%A8%E7%85%A7%E6%98%8E%

E6%94%B9%E4%BF%AE%E3%83%BC%EF%BC%91%20IMG_2217.jpg 

26.http://www.honmoku-ac-

seikosha.com/news/entry_file_display.php?Name=151ed019529321452d1ffee77c9b5743c1cd695c.jpg

&ID=c086dc97f533b829e6ac027d6d2ffd61341e1847 

27. http://www.healthy-clay.com/wp/wp-content/uploads/59d58d211a8487eec3879f47e92ec00c.jpg 

28. http://sports-mura.com/images_sisetsu/65_4.jpg 

29. http://www.oiler.co.jp/kensou/img/000002_list_image.jpg 

30. http://www.schoolnews.jp/wp-content/uploads/2015/12/8742dffddaf2dd5ae365ab7642b4f608.jpg 

31. http://www.emono1.jp/img/toei-japan/20160906204043_image_9.jpg 

32. http://www.kobayashi-denko.co.jp/_p/730/images/pc/9f617c30.JPG 

33. http://www.sakcs.jp/wpcms/wp-content/uploads/2014/09/2bc9745e8c83d4d0dac6b74176efee03.jpg 

34. http://www.kobayashi-denko.co.jp/_p/730/images/pc/1be11dbd.JPG 

35. http://www.toprise.co.jp/products/img/03system/system10.jpg 

36. http://www.kumamoto-ymca.or.jp/rifuresu/file/36178.jpg 

37. http://livedoor.blogimg.jp/vsnpnet/imgs/e/7/e7379b3a.jpg 

38. http://www.konkokyo.or.jp/kakudan/osakarescue/wp-content/uploads/2016/04/S_11288587.jpg 



 

190 

 

39. http://www.business-directory.jp/image/service1/3/6404.jpg 

40. http://livedoor.blogimg.jp/tigerhouse/imgs/d/b/dbf97761.jpg 

41. http://jyukanrisystem.com/wp-content/uploads/2017/01/075.jpg 

42. https://goguiltypleasures.files.wordpress.com/2013/11/house-fail-ceiling.jpg 

43.https://images.adsttc.com/media/images/5987/b9da/b22e/3883/6a00/00b9/slideshow/Bamboo_Sport

s_Hall_Panyaden_School_(7).jpg?1502067141 

44. http://www.another-day.co.jp/blog/DSCF3840.JPG 

45. http://www.koyou-m.co.jp/column/img/img164kd4103_1.jpg 

 

 

  

http://www.another-day.co.jp/blog/DSCF3840.JPG
http://www.koyou-m.co.jp/column/img/img164kd4103_1.jpg
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Appendix B: Details of the intermediate outputs by the CNN 

model 

Details of the intermediate outputs by the CNN model: 

 

Table B1 Outputs of the convolutional layers 

  
Input image (Fig. 4.1 (a)), prediction: 0.006 

 

 
CL1 output: (399, 599, 32) 

 

 
CL4 output: (198, 298, 32) 
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CL7 output: (97, 147, 32) 

 

 
CL10 output: (46, 71, 32) 

 

 
CL13 output: (21, 33, 64) 
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Input image (Fig. 4.1 (b)), prediction: 0.673 

 

 
CL1 output: (399, 599, 32) 

 

 
CL4 output: (198, 298, 32) 

 

 
CL7 output: (97, 147, 32) 
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CL10 output: (46, 71, 32) 

 

 
CL13 output: (21, 33, 64) 

 
Input image (Fig. 4.1(c)), prediction: 0.039 
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CL1 output: (399, 599, 32) 

 

 
CL4 output: (198, 298, 32) 

 

 
CL7 output: (97, 147, 32) 

 

 
CL10 output: (46, 71, 32) 
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CL13 output: (21, 33, 64) 

 
Input image (Fig. 4.1(d)), prediction: 0.737 

 

 
CL1 output: (399, 599, 32) 
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CL4 output: (198, 298, 32) 

 

 
CL7 output: (97, 147, 32) 

 

 
CL10 output: (46, 71, 32) 
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CL13 output: (21, 33, 64) 

 
Input image (Fig. 4.1 (e)), prediction: 0.246 

 

 
CL1 output: (399, 599, 32) 

 

 
CL4 output: (198, 298, 32) 

 

 
CL7 output: (97, 147, 32) 
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CL10 output: (46, 71, 32) 

 

 
CL13 output: (21, 33, 64) 

 
Input image (Fig. 4.1 (f)), prediction: 0.620 
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CL1 output: (399, 599, 32) 

 

 
CL4 output: (198, 298, 32) 

 

 
CL7 output: (97, 147, 32) 

 

 
CL10 output: (46, 71, 32) 
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CL13 output: (21, 33, 64) 

 
Input image (Fig. 4.1 (g)), prediction: 0.502 

 

 
CL1 output: (399, 599, 32) 
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CL4 output: (198, 298, 32) 

 

 
CL7 output: (97, 147, 32) 

 

 
CL10 output: (46, 71, 32) 
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CL13 output: (21, 33, 64) 

 
Input image (Fig. 4.1 (h)), prediction: 0.275 

 

 
CL1 output: (399, 599, 32) 

 

 
CL4 output: (198, 298, 32) 

 

 
CL7 output: (97, 147, 32) 
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CL10 output: (46, 71, 32) 

 

 
CL13 output: (21, 33, 64) 
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