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Capturing textual entailment and similarity is one of the most important prob-
lems in natural language processing. This task is related to many applications such
as question answering. To solve this problem, machine learning-based approaches
often use shallow information such as words and characters. However, it is not
clear whether they are capable of accounting for functional meanings such as nega-
tion and quantifier and capturing the whole meaning of a sentence correctly. Con-
versely, logic-based approaches have been successful in capturing functional mean-
ings by using logical semantic representations but their symbolic nature does not
offer graded notions of textual similarity. To achieve advantages over these two
approaches, hybrid approaches have been proposed for learning textual entailment
and similarity. However, a more effective way to combine logic-based approaches
with machine learning-based approaches is desired. In this thesis, I explore a hybrid
approach to capturing semantic relations between two sentences by careful treat-
ment of proof processes. The key idea is that the proof processes reflect some aspects
of semantic textual relations, and they are useful for capturing textual entailment and simi-
larity more precisely. I propose a hybrid approach to learning textual entailment and
similarity by combining shallow features with features extracted from natural de-
duction proofs of bidirectional entailment relations between sentences. I evaluated
my approach with the datasets for two tasks about semantic textual relations: recog-
nizing textual entailment (RTE) and semantic textual similarity (STS). Experiments
showed that my approach outperformed previous logic-based approaches in the STS
task. Furthermore, my approach achieved state-of-the-art performance on the RTE
task. The evaluations indicate that features derived from proof processes are ef-
fective features for learning textual similarity and entailment. The evaluations also
indicate that handling phrase-level semantic relations in logical inference is a crucial
problem in capturing semantic relations between sentences more precisely. To solve
this problem, I propose a phrase abduction mechanism, which detects the lack of
phrasal knowledge in logical inference by the careful management of variable shar-
ing during the proof processes. The experiments showed that the phrase abduction
mechanism compensated for a lack of phrasal knowledge and improved the accu-
racy of logical inference in the RTE task.
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Chapter 1

Introduction

1.1 Prospects of capturing semantic relations

Language is used in everyday life. We use language to communicate with each other.

With the development of information technologies and the availability of large text

datasets, researchers strongly expect that natural languages can be analyzed compu-

tationally. Natural language processing (NLP) is the field that studies how to enable

computers to analyze and understand human languages. In this field, the establish-

ment of a method for calculating whether one sentence is semantically related to

another or not is one of the most important core problems. In this thesis, I consider

how to quantify a semantic relation between sentences computationally.

This core problem is closely related to many NLP applications such as question

answering, information retrieval, and text summarization.

Question answering

This task is to build systems that automatically answer questions asked in nat-

ural languages from text. Given the question “Where was Barack Obama born?”,

the question answering system returns the answer “Barack Obama was born in

Honolulu.” Here, the calculation of a semantic relation between a question and

an answer can be used to validate candidate answers of a question answering

system. Candidate answers can be determined by testing how similar a ques-

tion is to candidate answers, or whether the meaning of a question is included

in candidate answers. Previous studies (Vo, Magnolini, and Popescu, 2015;

Sacaleanu et al., 2008; Harabagiu and Hickl, 2006) have applied the calculation

of semantic relations for question answering systems.
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Information retrieval

This activity is to find material that satisfies an information need from a col-

lection of documents. Recently, retrieval of short texts from a large number of

web documents has become important for many web applications (e.g., web

search and ad matching). Previous works (Clinchant, Goutte, and Gaussier,

2006; Kenter and Rijke, 2015) have used a semantic relation between a target

sentence and a source sentence for information retrieval to evaluate if the re-

trieved document contains the target information.

Text summarization

This task is to create an accurate and fluent summary of a longer text docu-

ment by retaining its important points while avoiding redundancy. Previous

works (Mogren, Kågebäck, and Dubhashi, 2015; Bentivogli et al., 2009) have

applied measurement of semantic relations between sentences in the text to

the task of text summarization.

In summary, capturing a semantic relation between sentences provides a com-

mon generic framework that can be used by these various NLP applications.

1.2 Task description

1.2.1 Entailment and similarity

In NLP tasks, we can capture a semantic relation between sentences from two points

of view: entailment and similarity. Figure 1.1 depicts the conceptual diagram of these

two kinds of semantic relations.

Consider the semantic relations between the sentences below:

(1) a. The boy sings

b. The man sings

If we judge the sentence (1a) to be true, we also judge the sentence (1b) to be true. In

such cases, we say the meaning of the sentence (1a) entails the meaning of the sen-

tence (1b). In this setting, we capture the meaning of a sentence as a set of possible

interpretations. We consider the semantic relation as if the meaning of the sentence
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(1b) includes the meaning of the sentence (1a) as described in the left side of Fig-

ure 1.1. This discrete semantic relation between sentences is called as entailment1.

B:	
  The	
  man	
  sings.	
  

A:	
  The	
  boy	
  sings.	
  

Entailment	
  (Implica9on)	

	
  A⊆B	
  

Similarity	
  (Distance)	
  
d(A,	
  B)	
  

A:	
  The	
  boy	
  sings.	
  

B:	
  The	
  man	
  sings.	
  

C:	
  The	
  girl	
  sings.	
  

D:	
  The	
  woman	
  sings.	
  

FIGURE 1.1: Conceptual diagram of entailment and similarity.

Now let us consider the semantic relation between the sentences (2a) and (2b), in

addition to the semantic relation between the sentences (1a) and (1b):

(2) a. The girl sings

b. The woman sings

We assume the relatedness between the sentence (1a) and the sentence (1b) is the

same as the relatedness between the sentence (2a) and the sentence (2b), i.e., a word

man is a hypernym of a word boy and the same is true of the words woman and girl.

In addition, the meaning of the sentence (1a) comes closer to the meaning of the

sentence (1b) than to that of the sentence (2a). In such cases, we say the meaning of

the sentence (1a) is more similar to the meaning of the sentence (1b) than to that of

the sentence (2a). In this setting, we capture the meaning of a sentence as a vector

in a certain vector space described in the right side of Figure 1.1. We consider the

semantic relation as the distance between the meaning of one sentence and that of

another. This graded semantic relation between sentences is called as similarity.

1An entailment relation is not limited to the relation between two sentences. P1 ∧ . . . ∧ Pn ⊆ C

describes that the meanings of sentences P1 . . . Pn entail the meaning of another sentence C, where

the meanings of multiple sentences are described as the meaning of each sentence connected with a

conjunction (∧).
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1.2.2 Recognizing textual entailment

Recognizing textual entailment (RTE) is the task of judging whether the meaning of

one sentence entails the meaning of another sentence. This task is one of the most

challenging NLP tasks. RTE was first introduced by Dagan and Glickman (2006)

and developed to evaluate systems for natural language inference. In the main RTE

task, two text fragments are given, and we judge whether one text fragment logically

follows from another text fragment automatically (Dagan et al., 2013).

As an example of an RTE problem, let us consider the following four sentences:

(3) a. An onion is being sliced by a man

b. There is no man slicing an onion

c. A man is eating onion slices

d. An onion is being cut by a man

The sentence (3a) entails the meaning of the sentence (3d). In other words, if we

assume the sentence (3d) as a hypothesis H and the sentence (3a) as a text T, the

meaning of H can be inferred by a human from the meaning of T, as interpreted in

the context of T. The sentence (3b) contradicts the meaning of the sentence (3d). This

means the context of T does not lead to any conclusion about H. We cannot judge

both the entailment relation and the contradiction between the sentence (3c) and the

sentence (3d). In this thesis, I refer to this condition as neutral.

RTE tasks are usually considered as classification problems concerned with a

two-class classification, i.e., entailment or not (Dagan, Glickman, and Magnini, 2006;

Giampiccolo et al., 2007), or a three-class classification, i.e., yes (entailment), no (con-

tradiction), or unknown (neutral) (Giampiccolo et al., 2008; Bentivogli et al., 2009;

Bentivogli et al., 2010; Bentivogli et al., 2011). The three-class classification is more

complex, and thus it appears to be a major RTE classification. In this thesis, I con-

sider this three-class classification.

Performance of RTE systems is evaluated using gold-standard datasets and eval-

uation metrics. There are four kinds of evaluation metrics used for RTE systems: ac-

curacy, precision, recall, and F1-score. TP (true positives) and FP (false positives) are

the numbers of pairs that have been correctly or incorrectly, respectively, classified

as entailment or contradiction pairs. TN (true negatives) and FN (false negatives)

are the numbers of pairs that have been correctly or incorrectly, respectively, classi-

fied as neutral pairs. TP + FP is the number of all prediction results and TP + FN is
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the number of all correct (gold) labels. Therefore, in RTE, the precision describes the

proportion of positive predictions that are correct, the recall describes the proportion

of positive problems that are classified correctly, and accuracy describes the ratio be-

tween true predictions and total problems. The F1-score is the harmonic mean of the

precision and the recall. Following previous studies, I use the accuracy as the main

evaluation metric in this thesis.

precision =
TP

TP + FP
(1.1)

recall =
TP

TP + FN
(1.2)

accuracy =
correctly classi f ied pairs

all pairs
(1.3)

F1-score =
2 · precision · recall
precision + recall

(1.4)

1.2.3 Semantic textual similarity

Semantic textual similarity (STS) (Agirre et al., 2012; Agirre et al., 2013) is the task of

capturing a similarity between sentences. This task is one of the most critical tasks

in NLP and information retrieval. STS measures the degree of semantic equivalence

between two sentences. The difference between STS and RTE is that STS considers

symmetric and graded equivalence between the sentences.

For example, let us consider the following two sentences:

(4) a. There are small children

b. There are two children

We cannot judge if the relation between these two sentences is entailment or contra-

diction, while we capture these sentences are similar.

The similarity score is annotated by humans, and its scale is designed to be ac-

cessible by reasonable human judges. Table 1.1 shows one of the annotation guide-

lines (Agirre et al., 2013; Cer et al., 2017). The ordinal scale guides human annotation,

ranging from 0 for no meaning overlap to 5 for meaning equivalence. Intermediate

values reflect interpretable levels of partial overlap in meaning.

As with the evaluation of RTE systems, prediction performance of STS models

is evaluated using gold-standard datasets and evaluation metrics. There are three

major evaluation metrics for STS: the Pearson correlation coefficient γ, Spearman’s
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Similarity Definition Example

5 The two sentences are completely equivalent, The bird is bathing in the sink
as they mean the same thing. Birdie is washing itself in the water basin

4 The two sentences are mostly equivalent, Two boys on a couch are playing video games
but some unimportant details differ. Two boys are playing a video game

3 The two sentences are roughly equivalent, John said he is considered a witness but not a suspect
but some important information differs/missing. “He is not a suspect anymore.” John said

2 The two sentences are not equivalent, They flew out of the nest in groups
but share some details. They flew into the nest together

1 The two sentences are not equivalent, The woman is playing the violin
but are on the same topic. The young lady enjoys listening to the guitar

0 The two sentences are completely dissimilar The black dog is running through the snow
A race car driver is driving his car through the mud

TABLE 1.1: Similarity scores with explanations and English examples
defined in Agirre et al. (2013) and Cer et al. (2017).

rank correlation coefficient ρ, and the mean squared error (MSE) between predicted

semantic textual similarity scores yi and gold scores xi. The definitions of these

evaluation metrics are as follows: di is the pairwise distances of the ranks of the

variables xi and yi, and n is the number of sentence pairs.

r =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2(yi − y)2
(1.5)

ρ = 1 −
6 ∑ d2

i
n(n2 − 1)

(1.6)

MSE =
1
n

n

∑
i=1

(yi − xi)
2 (1.7)

1.3 Problem statement

How can we calculate a semantic relation between sentences computationally? For

example, consider a semantic relation between the following two sentences:

(5) a. There is no child sawing logs in the park

b. No boy is cutting wood outside

In this sentence pair, we judge that the sentence (5a) entails the sentence (5b). We

also judge they are similar sentences. To make these judgements about entailment

and similarity, we assume lexical meanings of content words or phrases. In this

example, child and boy have a hyponym relation. “sawing logs” and “cutting wood” are

paraphrases. Meanwhile, we assume functional meanings of logical or functional

words, e.g., the meaning of the phrase including negation “There is no A . . . ” is

equivalent to the meaning of the phrase “No A is . . . ”.
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As I described above, words can be divided into two broad categories of mean-

ing: content (lexical) words and logical or functional words. In English grammar,

content words are called as open classes and logical or functional words are called

as closed classes (Jurafsky and Martin, 2009). Open classes are those that are con-

tinually coined. For instance, the class of nouns is potentially infinite, since it is

continually being expanded as new scientific discoveries are made, new ideas are

explored, and so on. Due to this characteristic of open classes, lexical meanings of

open classes are generally defined in dictionaries or lexical databases. There are four

major open classes that occur in English: nouns, verbs, adjectives, and adverbs.

By contrast, closed classes are those that have relatively fixed members. For ex-

ample, prepositions (e.g., in, of ) are a closed class because there is a fixed set of

them in English; new prepositions are rarely coined. Functional words are gram-

matical words (e.g., of, it, and), which tend to be very short, occur frequently, and

play an important role in grammar. Logical words are words whose meanings can

be described with logical operators, such as negation and quantifier. Both functional

and logical words compose semantic structures and thus the functional meanings of

closed classes are sensitive to syntactic structures.

In summary, to calculate a semantic relation between sentences computationally,

we should consider how to represent and calculate the meanings of sentences which

is determined by the interactions between the lexical meanings of content words and

the functional meanings of functional or logical words.

To analyze the meanings of sentences computationally, there are mainly two ap-

proaches to representing the meanings of sentences: vector representations and log-

ical formula representations. In the former approach, the meanings of words in a

dataset are represented by vectors and the meanings of sentences are learned by a

supervised model trained with the dataset. Semantic similarity between sentence

vector representations is calculated by the inner product between them. This ap-

proach is called a machine learning-based approach. In the latter approach, the

meanings of sentences are represented as logical formulas and a semantic relation

between the logical formulas is directly calculated by using logical inference. This

approach is called a logic-based approach.

In machine learning-based approaches, vector-based sentence representation mod-

els have been widely used to compare and rank words, phrases, or sentences us-

ing various similarities (Wong and Raghavan, 1984; Mitchell and Lapata, 2010; Le
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and Mikolov, 2014). Recently, neural network-based sentence representation mod-

els (Mueller and Thyagarajan, 2016; Hill, Cho, and Korhonen, 2016; Yin and Schütze,

2017) have been proposed for learning textual entailment and similarity. These mod-

els achieved high accuracy in learning textual entailment and similarity by training

from large datasets. However, these machine learning-based approaches often use

shallow information, such as words and characters, and it is not clear whether they

can account for the functional meaning of logical words such as negation and quan-

tification.

To describe this problem, let us consider the meaning of the following sentence

pair:

(6) a. Tom did not meet some of the players

b. Tom did not meet any of the players

If functional words such as some or any are ignored or represented as the same vector,

then these sentences would be represented by identical vectors. However, the sen-

tence (6a) implies that there is a player who Tom did not meet, whereas the sentence

(6b) means that Tom did not meet anyone. Therefore, the sentences have different

meanings.

By contrast, logic-based approaches have been successful in representing the

meanings of complex sentences (including the functional meanings) as logical for-

mulas, which have had a positive impact on RTE tasks (Mineshima et al., 2015; Mi-

neshima et al., 2016; Abzianidze, 2015; Abzianidze, 2016). However, purely logic-

based approaches only assess an entailment relation or contradiction between sen-

tences, lacking some flexibility for predicting graded notions of semantic textual

similarity.

To achieve advantages over both of logic-based approaches and machine learning-

based approaches, hybrid approaches have been proposed for learning both tex-

tual entailment and similarity. In previous hybrid approaches, The Meaning Fac-

tory (Bjerva et al., 2014) and UTexas (Beltagy et al., 2014) have improved accuracy

by using logic-based features derived from the entailment results of first-order the-

orem proving combined with shallow features such as sentence lengths. These pre-

vious hybrid approaches opened a door to a fusion of logic and machine learning to



1.4. Intended contributions 9

predict both textual similarities and entailments, though there is still room for im-

provement in combining logic-based approaches with machine learning-based ap-

proaches effectively. In this thesis, I develop a hybrid approach to capturing both

textual similarities and entailments.

I tackle two main problems in logic-based approaches to calculating semantic

relations between sentences. The first problem is that logic-based approaches have

difficulty offering graded notions of semantic textual similarity with high accuracy.

As we saw above, purely logic-based approaches only provide a binary semantic

relation (entailment or contradiction) between sentences. More specifically, while

the previous hybrid approaches above attempt to offer graded notions of semantic

textual similarity, they focus only on proof results or logical formulas, which are

only a part of the information obtained from proofs. Machine learning-based ap-

proaches are still much more successful in assessing semantic textual similarity than

logic-based approaches and thus there should be a more effective way for combining

logic-based approaches with machine learning-based approaches.

The second problem is that logic-based approaches have difficulty capturing

phrase-level semantic relations. With genuine logical inference only, logic-based

approaches fail to capture the meaning of content words. Accounting for lexical

relations between content words or phrases when doing logical inference remains

a crucial problem. Many previous logic-based approaches (Mineshima et al., 2015;

Mineshima et al., 2016; Abzianidze, 2015; Bjerva et al., 2014; Beltagy et al., 2014)

use knowledge databases such as WordNet (Miller, 1995) to identify lexical relations

within a sentence pair. While this solution has been successful in handling word-

level paraphrases, its extension to phrase-level semantic relations is still an unsolved

problem.

1.4 Intended contributions

I solve these two problems for calculating semantic relations with a careful treatment

of the theorem proving process. Considering the conception of proof-theoretic seman-

tics (Bekki and Mineshima, 2017), not only the entailment results but also the theorem

proving process can be considered as features for learning both textual entailment and

similarity. That is, by taking into account not only whether a theorem is proved but

also how it is proved, we can capture the semantic relation in more depth. The key
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idea is that the proof processes reflect some aspects of semantic relations between sentences.

This idea contributes to capturing textual entailment and similarity more precisely

than previous approaches.

To solve the first problem of predicting semantic textual similarity with high ac-

curacy, I propose a novel method of learning both textual entailment and similarity

using proof processes. I propose a hybrid approach to learning both textual en-

tailment and similarity by combining shallow features with features extracted from

natural deduction proofs of bidirectional entailment relations between sentences.

Experimental results with two evaluation datasets show that my approach achieved

higher accuracy in predicting semantic textual similarity than previous logic-based

approaches that ignore these proof processes. Furthermore, my approach achieved

state-of-the-art performance in predicting textual entailment. The evaluation results

indicate that features derived from proof processes are effective for learning both

textual entailment and similarity.

To solve the second problem of considering phrasal knowledge in natural lan-

guage inferences, I propose a phrase abduction mechanism. In consideration of

phrasal knowledge in logical inferences, it is important to capture phrase-to-phrase

relations included in a sentence pair. To do that, my method identifies phrase cor-

respondences through natural deduction proofs of semantic relations for a given

sentence pair. Experimental results showed that extracted paraphrases using proof

processes improves the accuracy of the RTE task.

The contributions of this thesis are summarized as follows:

1. I propose a new hybrid approach to learning semantic textual similarity from

proof processes to obtain high performance for the STS task (Yanaka et al.,

2017).

2. I show that my hybrid approach is general and also can be applied to learn-

ing textual entailment, thereby obtaining the highest performance for the RTE

task (Yanaka et al., 2018b).

3. I propose a new method to detect phrase correspondences using proof pro-

cesses of a semantic relation between sentences (Yanaka et al., 2018a).
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1.5 Thesis organization

This thesis is structured as follows.

Chapter 2 provides a common background on how to obtain semantic repre-

sentations of sentences and how to judge their semantic relations using natural de-

duction proofs. First, I introduce previous works on semantic parsing systems and

inference systems and describe the motivation for selecting Combinatory Categorial

Grammar (CCG) (Steedman, 2000) for syntax and higher-order logical formulas for

semantics. Next, I describe how to translate sentences to their logical representations

via CCG syntactic parsing and semantic parsing. Lastly, I explain natural deduction

proofs used for proving semantic relations between sentences.

In Chapter 3, I address my hybrid approach to learning textual entailment and

similarity by combining shallow features with features extracted from natural de-

duction proofs. First, I discuss some related works on learning textual entailment

and similarity. Then, I explain how to conduct proofs and extract features that are

predictive of both textual entailment and similarity in my approach. Lastly, I evalu-

ate my hybrid approach to both STS and RTE tasks and illustrate performance com-

parisons among the extracted features.

In Chapter 4, I address the phrase abduction mechanism to inject phrasal knowl-

edge for natural language inference. First, I discuss previous inference systems com-

bined with lexical knowledge and previous paraphrase identification approaches.

Next, I describe how I attempt a proof with the phrase abduction mechanism. Lastly,

I evaluate the phrase abduction mechanism for the RTE task and present analysis re-

sults of the extracted phrases.

Chapter 5 concludes the thesis with a discussion of open issues and future re-

search.
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Chapter 2

Background

In this chapter, I introduce common background about how to translate sentences

into their semantic representations and how to capture their semantic relations by

using logical inference.

To describe the motivation for selecting logical representations for semantic rep-

resentations, I first introduce two main streams for representing the meaning of nat-

ural languages: distributional semantics and logical semantics. In distributional seman-

tics, which has been studied in computational linguistics, the meaning of a word is

induced based on its usage in large corpora, and the meaning of a sentence is com-

posed of the meanings of the words. On the other hand, in logical semantics, which

has been studied in formal semantics for a long time, the meaning of a sentence is

described using logical formulas. While distributional semantics has been success-

ful in modeling the meanings of content words, logical semantics is necessary to

capture the meaning of functional words.

Considering these two observations, I selected logical representations as seman-

tic representations of sentences for the following two reasons. First, as described

above, logical representations are more expressive in representing the meaning of

natural languages. This is described by Lewis and Steedman (2013):

Semantic operators, such as determiners, negation, conjunctions, modals,

tense, mood, aspect, and plurals are ubiquitous in natural language, and

are crucial for high performance on many practical applications―but

current distributional models struggle to capture even simple examples.

As logical representations can represent the meanings of these logical or functional

operators, they potentially cover the wide variety of natural language phenomena.

The second reason is concerned with logical inference: logical representations easily
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connect to logical inference, which captures semantic relations between sentences

more deeply and robustly.

2.1 Related work about semantic composition

Logical representations for semantic representations have been widely studied in

the fields of both linguistics and natural language processing. Table 2.1 shows com-

parisons with several works about semantic composition based on formal language

theory.

Syntax Semantics Logic Prover Language
Bos and Katja(2005)

CCG ND/DRT FOL FOL provers English
Bjerva et al. (2014)
Beltagy (2016) CCG ND/DRT FOL Resolution (MRS) English
Abzianidze (2015) CCG LLF Natural Logic Tableau English

Mineshima et al. (2015) CCG ND HOL Natural Deduction
English

Japanese
Moot (2010) TLG ND/DRT FOL N/A French

Butler et al. (2012) PCFG D/SCT FOL N/A
English

Japanese

TABLE 2.1: Comparison among semantics.
D: Davidsonian Event Semantics,

ND: Neo-Davidsonian Event Semantics, LLF: Lambda Logical Form.

In previous semantic parsing systems, the semantic parsing system developed by

Moot (2010) is based on Type Logical Grammar (TLG) (Carpenter, 1998) for syntax,

and Discourse Representation Theory (DRT) (Kamp and Reyle, 1993) for semantics.

The supported language of this system is limited to French. Butler and Yoshimoto

(2012)’s system uses Probabilistic Context-Free Grammar (PCFG) (Johnson, 1998) for

syntax and Davidsonian Event Semantics (Davidson, 1967) combined with Scope

Control Theory (SCT) (Butler, 2010) for semantics. This semantic parser is available

for both English and Japanese. In PCFG, a probability is assigned to each production

rule. However, these two semantic parsing systems are not directly connected with

an inference component.

In previous semantic parsing systems connected with specific provers, the infer-

ence system developed by Bos and Markert (2005) and Bjerva et al. (2014) uses the

semantic parsing system Boxer (Bos, 2008) to obtain logical semantic representations

and uses multiple theorem provers and model builders for inference in first-order

logic. In Boxer, CCG is used for syntax and DRT is used for semantics.
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The inference system developed by Beltagy et al. (2016) also uses Boxer for logical

semantic representations. In this system, modified resolution principle (Robinson,

1965) is used for inference in first-order logic.

The inference system of Abzianidze (2015) and Abzianidze (2016) (LangPro) uses

CCG for syntax, natural logic for semantics, and a tableau prover for inference in

higher-order logic. The supported language of this system is English.

The inference system of Mineshima et al. (2015) and Mineshima et al. (2016)

(ccg2lambda) uses CCG for syntax, higher-order logic combined with Neo-Davidsonian

Event Semantics (Parsons, 1990) for semantics, and natural deduction for inference

in higher-order logic. The supported languages of this system include both Japanese

and English.

Regarding an inference system not based on formal language theory, a dependency-

based logical inference system (Tian, Miyao, and Matsuzaki, 2014; Dong, Tian, and

Miyao, 2014) has been proposed. In dependency-based models, a sentence is mapped

to its dependency structure, which is represented by linguistic units (e.g., words)

connected to each other by directed links. Recently, dependency parsers (Chen and

Manning, 2014) have been developed, which enables mapping sentences to their log-

ical forms. However, dependency-based logical forms are less expressive because

they do not capture all the linguistic phenomena that formal semantics introduced

in Table 2.1 can represent. The main limitation of this logical representation is that it

fails to represent any phenomena that require scope such as negation (e.g., not, no)

and relative clauses (wh-clauses). Recent work using dependency parsers (Reddy

et al., 2016a) improved this limitation, but this system needs special rules for the

translation of conjunctions, relative clauses, and wh-questions.

In consideration of these semantic parsers and logical inference systems, I fol-

low ccg2lambda (Mineshima et al., 2015; Mineshima et al., 2016) and use CCG for

syntax and higher-order logic for semantics in this thesis. There are four motiva-

tions for selecting CCG for syntax. The first motivation is the existence of multiple

robust CCG parsers. The second motivation is the transparency between syntactic

categories and semantic types for semantic composition. The third motivation is the

maintainability of semantic composition with a small number of combinatory rules.

The fourth motivation is the expressive power of CCG for a wide range of linguistic

phenomena.

In terms of semantics, Abzianidze (2016)’s semantic representations are based
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on natural logic. Natural language inference based on natural logic was first elab-

orated by MacCartney and Manning (2007) and developed by MacCartney (2009).

There are three characteristics of natural logic (Lakoff, 1970). The first characteristic

is that natural logic uses formulas that resemble linguistic surface forms. The sec-

ond characteristic is that natural logic is able to express linguistic semantics. The

third characteristic is that natural logic can be used for the valid inference of natural

language. These characteristics show that the reasoning and the grammar of natu-

ral languages are strongly related to each other in natural logic. Thus, natural logic

is capable of directly reasoning about monotonicity. However, the previous natu-

ral logic based system (MacCartney, 2009) was limited to single-premise inference.

The system developed by Abzianidze (2016) addresses this problem and enables se-

mantic representation for a wide range of linguistic phenomena by natural logic.

Although the expressive power of this system is comparable to that of my system,

the natural logic used in this system is in a non-standard form, which causes two

problems. The first problem is that semantic composition is rule-based and a lot of

pre/post-processing for obtaining semantic representations is required in CCG syn-

tactic analysis. The second problem is that the natural logic requires the definition of

new inference rules for each logical or functional word, such as every, all, and no and

for which generic theorem provers are not reusable. Also, the second problem makes

proving processes complex, which is unsuitable for extracting proving processes or

injecting lexical knowledge in my method.

In contrast with the systems developed by Bos (2008), Bjerva et al. (2014), Beltagy

et al. (2016), Moot (2010), and Butler and Yoshimoto (2012), I select higher-order

logical formulas, which are more expressive than first-order logical formulas. As an

example comparison between higher-order logic and first-order logic, consider the

following sentence pair.

(7) a. Some student might come

b. Some student comes

In this example, the text (7a) includes the modal auxiliary expression, might. In such

a case, we have to distinguish modal contexts from actual contexts and we have to
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infer that the text (7a) does not entail the hypothesis (7b). Here, the first-order repre-

sentation1 and higher-order representation of the text (7a) are described as follows:

FOL: ∃x(student(w0, x) ∧ ∃w1(Rw0w1 ∧ come(w1, x))

HOL: ∃x(student(x) ∧ might(come(x)))

The first-order representation and higher-order representation of the hypothesis (7b)

can be described as follows:

FOL: ∃x(student(w0, x) ∧ come(w0, x))

HOL: ∃x(student(x) ∧ come(x))

Compared with the higher-order representation, we can see that the first-order rep-

resentation introduces additional quantifiers and variables, which induces the com-

plexity in its semantic representations and logical inference.

Furthermore, higher-order logic is more expressive than first-order logic in other

linguistic phenomena, e.g., generalized quantifier, veridical and anti-veridical pred-

icates, attitude verbs, and non-affirmative adjectives. Therefore, in the formal se-

mantics of natural language, it is generally assumed that adequate semantic repre-

sentations of natural language demand higher-order logic or type theory (Carpenter,

1998). This expressiveness of higher-order logic also contributes to the possibility of

extracting more features about semantic representations in learning textual entail-

ment and similarity, which I describe in Chapter 3. While it is thought that inference

based on higher-order logic is hopelessly inefficient for practical applications (Bos,

2009), ccg2lambda (Mineshima et al., 2015; Mineshima et al., 2016) uses a proof-

assistant Coq (Bertot and Castran, 2010) for efficient theorem-proving and thus the

inference speed is competitive with first-order logic based inference systems.

In summary, there are two motivations for selecting higher-order logical formu-

las for semantic representations. The first motivation is its maintainability of se-

mantic representation. The second motivation is its adequacy in formal semantics of

natural language.

1Formulas of modal logic can be translated into formulas of first-order logic by standard transla-

tion (Blackburn, Rijke, and Venema, 2001). In this representation, modal operators are described as

world variables (e.g., w0, w1) and its relation R.
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2.2 Syntax and semantics

In this section, I describe how to translate sentences to higher-order logical formulas

via CCG syntactic parsing and semantic parsing by using ccg2lambda (Mineshima et

al., 2015; Mineshima et al., 2016). As a preliminary objective to map sentences to their

semantic representations, syntactic parsing is performed. To convert syntax struc-

tures to logical forms, I assume a transparent interface between syntax and seman-

tics following Montague (1973). To represent the meaning of natural language by

logical representations robustly, I formalize the syntax with CCG (Steedman, 2000)

and the semantics with lambda calculus.

CCG is a modern syntactic theory that provides a completely transparent in-

terface between syntax and semantics. The meaning of natural languages can be

obtained based on a lexicon consisting of triplets of the form (i.e., a word, its CCG

category, and its semantic representation) and a small number of combinatory rules

for CCG trees. Semantic templates give a lexical entry for each word, which consists

of a syntactic category in CCG and a semantic representation described as lambda

terms.

There are two forms of syntactic categories. One is a basic category such as N

(noun), NP (noun phrase), PP (preposition phrase), and S (sentence). The other is a

functional category described as the form of X/Y or X\Y, which defines a functor

with an argument Y and a result X, representing meta-variables over syntactic cate-

gories. X\Y indicates a function that returns X when it is combined with Y from its

left hand side, and X/Y is combined with Y from its right hand side to become X.

Combinatory rules specify the syntactic behaviors of words and compositional

rules for the CCG trees. Figure 2.1 shows some combinatory rules of CCG. For ex-

ample, applying the backward application rule (>), one word, which has X/Y as its

syntactic category and f as its meaning is combined with the other word, which has

Y as its syntactic category and a as its meaning. This gives rise to a word with X as

its syntactic category and f a as its meaning.

As an example of CCG derivation trees, Figure 2.2 shows the CCG derivation

tree of the sentence “A woman sings loudly.” In this CCG derivation tree, “a woman”

has a category NP and “sings loudly” has a category S\NP, which is combined with

NP on the left hand side by applying the forward application rule (<), resulting in

a sentence S.
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X/Y : f Y : a
X : f a

>
Y : a X\Y : f

X : f a
<

f : X/Y g : Y/Z
λx. f (gx) : X/Z

>B
g : Y\Z f : X\Y
λx. f (gx) : X\Z

<B

f : X/Y g : (Y/W)/Z
λz.λw. f (gzw) : (X/W)/Z

>B2
g : (Y\W)\Z f : X\Y

λz.λw. f (gzw) : (X\W)\Z
<B2

f : X/Y g : Y\Z
λx. f (gx) : X\Z

>B×
g : Y/Z f : X\Y
λx. f (gx) : X/Z

<B×

FIGURE 2.1: Some combinatory rules of CCG: forward/backward ap-
plication rules (<,>), forward/backward composition rules (> B,<
B), generalized forward/backward composition rules (>B2,<B2), for-

ward/backward crossed composition rules (>B×,<B×).

A
NP/N

woman
N

NP
>

sings
S\NP

loudly
(S\NP)\(S\NP)

S\NP
<

S
<

FIGURE 2.2: An example of CCG derivation tree.

For parsing sentences into CCG syntactic trees, I use statistical CCG parsers

trained on CCGBank (Hockenmaier and Steedman, 2007), which is a large treebank

of CCG derivations semi-automatically obtained from phrase-structure trees of the

Penn Treebank (Marcus, Marcinkiewicz, and Santorini, 1993). Lexical categories

used in the CCG parsers are derived from those of CCGBank. For example, Sdcl ,

Sng and Spss categories are intended for declarative, gerund and passive sentences,

respectively. While combinatory rules used in the CCG parsers are different from

each other, they commonly use the basic combinatory rules from Steedman (2012): a

forward application rule, a backward application rule, a forward composition rule,

a backward crossed composition rule, a generalized forward composition rule, and

a generalized backward crossed composition rule.

In the development of previous systems for deriving semantic representations

based on CCG (Beltagy et al., 2016; Martínez-Gómez et al., 2017), it has been shown

that the accuracy of CCG parsing can be improved by combining multiple CCG

parsers. In my system, three wide-coverage CCG parsers, C&C (Clark and Curran,

2007), EasyCCG (Lewis and Steedman, 2014) and depccg (Yoshikawa, Noji, and Mat-

sumoto, 2017) are used for converting tokenized sentences into CCG syntactic trees.

While other systems based on CCG use only two CCG parsers, I combine three CCG

parsers and thus I can obtain correct parsing results more robustly.
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After obtaining each parser’s CCG derivation tree, I map it into its semantic

representation. CCG parsers sometimes produce parsing errors due to the wrong

part-of-speech (POS) tag being applied in preprocessing of annotating POS tags to

target sentences. Therefore, I select parsing results that succeed in mapping input

sentences to their semantic representations. When the output of all parsers can be

proved, I select a parsing result following the order of parsing accuracy on CCG-

Bank: depccg, EasyCCG and C&C.

Other alternative syntactic theories include Lexical-Functional Grammar (LFG) (Ka-

plan and Bresnan, 1995), Head-Driven Phrase Structure Grammar (HPSG) (Pollard

and Sag, 1994) and Tree-adjoining Grammars (TAG) (Joshi and Schabes, 1997). How-

ever, compared with CCG, these formalisms are not explored for grounded semantic

parsing, and this can be an obstacle to obtaining semantic representations robustly.

Furthermore, there are two other motivations for selecting CCG as syntax. First,

CCG can handle complex syntactic phenomena such as unbounded and long-range

dependencies, coordination, and non-projective constructions without additional

post-processing steps (Clark, Hockenmaier, and Steedman, 2002). Specifically, with

functional categories and a small number of combinatory rules, CCG can handle a

wide range of bounded and unbounded dependencies, whether a dependency rela-

tion is in the same tensed clause as its head or outside the clause, respectively. Sec-

ond, as each syntactic derivation corresponds directly to a lambda-calculus structure

that represents the meaning of a word, CCG is suitable for semantic composition

from syntactic structures.

Next, I describe the details of semantic parsing used in this thesis. For semantic

representations, I use higher-order logic combined with Neo-Davidsonian Event Se-

mantics (Parsons, 1990). For example, a sentence containing a transitive verb in (8a),

a quantifier in (9a), and a quantifier with negation in (10a) is analyzed as follows:

(8) a. Bob surprised Susan

b. ∃y1(surprise(y1) ∧ (subj(y1) = bob) ∧ (dobj(y1) = susan))

(9) a. Some women are singing loudly

b. ∃x1(woman(x1) ∧ ∃y1(sing(y1) ∧ (subj(y1) = x1) ∧ loudly(y1)))

(10) a. No women are singing loudly

b. ¬∃x1(woman(x1) ∧ ∃y1(sing(y1) ∧ (subj(y1) = x1) ∧ loudly(y1)))
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In these examples, we can see every verb is decomposed into a one-place predi-

cate over events. Adverbs and prepositions are also represented as predicates over

events. In this thesis, I use xi as a variable for entities and yi for events. A set of func-

tional expressions such as the subject (subj) and the direct object (dobj) is related to

the events. For example, I describe the fact that the term x1 is the subject of the verb

represented by the event y1 as subj(y1) = x1. I also describe the fact that the term x2

is the direct object of the verb represented by the event y1 as dobj(y1) = x2. These

functional expressions are called as semantic (thematic) roles, which define relations

between an event and its term. Some definitions about semantic roles between an

event and its term have been proposed (Peter and Wilkins, 1984; Ray, 1990). In this

thesis, I reflect relations which can be detected from CCG derivation trees based on

CCGBank to semantic representations.

This analysis provides a uniform way of capturing the semantic relation (e.g.,

hypernym, synonym) between verbs. Consider the following two sentences and

their semantic representations:

(11) a. A woman boils onions

b. ∃y1(boil(y1) ∧ (subj(y1) = woman) ∧ (dobj(y1) = onion))

(12) a. A woman cooks

b. ∃y1(cook(y1) ∧ (subj(y1) = woman) ∧ (dobj(y1) = onion))

For instance, the hypernym relation between the verb boil and the verb cook is rep-

resented as a simple axiom ∀y(boil(y) → cook(y)). This is possible because both

verbs are analyzed as one-place predicates over events, rather than as predicates

with different arities such as boil(x1, y1) and cook(y1). In addition, both arguments

and adjuncts of verb phrases are analyzed as event predicates in this semantics and

thus Neo-Davidsonian Event Semantics can represent the meaning more flexibly

and expressively than previous Davidsonian Event Semantics (Davidson, 1967). For

these reasons, this semantics is suitable for natural language inference with lexical

knowledge.

A semantic representation of each word is described as lambda terms defined in

semantic templates. Semantic representations of a sentence are obtained by combin-

ing each lambda term of a word in accordance with the combinatory rules specified

in the CCG tree and then by applying β-conversion. As an example of a semantic
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representation, Figure 2.3 shows the CCG derivation tree and semantic representa-

tion of the sentence “No women are singing loudly.”. We can see that the final formula

in Figure 2.3 is equal to the formula (10b).
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Here, I describe how we obtain the semantic representation in Figure 2.3 and its

implementation. The set of semantic templates is defined manually based on formal

semantics in a YAML file. In this thesis, the validation of semantic templates used

for semantic representations was carried out exclusively on the trial split of the SICK

dataset, which is used for the main evaluation (see the details in Section 3.5.1).

The template applies to a node of the CCG derivation tree. Each template has

two required attributes: category and semantics. The attribute category is a CCG

syntactic category, and the attribute semantics is a lambda term in NLTK seman-

tics format (Garrette and Klein, 2009). The example of the semantic template is as

follows:

- category : N

semantics : λE.λx.E(x)

Applying this semantic template to a leaf whose base word is woman and whose

syntactic category is N would produce the expression (λE.λx.E(x))(woman), which

is β-reduced to λx.woman(x). Here, the base form “woman” substitutes all occur-

rences of the variable E in the semantic expression.

When a template is applied to a CCG inner node (i.e., a node with children),

lambda abstraction is applied to the semantics of the children.

- category : NP/N

semantics : λE.λF1.λF2.λF3.¬∃x.(F1(x) ∧ F2(x) ∧ F3(x))

surf : no

In Figure 2.3, the template above produces a rule for the surface word no from N

to negative NP, and when applied to the CCG node whose child’s semantics is

λx1.woman(x1), it will produce, after β-reduction, the formula λF2F3.¬∃x1.(woman(x1)

∧ F2(x) ∧ F3(x1)). Here, the child’s semantics λx1.woman(x1) substitutes all occur-

rences of the variable F1. The newly composed semantic representation λF2F3.¬∃x1.

(woman(x1) ∧ F2(x1) ∧ F3(x1)) now expects another predicate (a verb) as an argu-

ment F (i.e., sing), which will be filled in the next step of the composition.

In this thesis, I assign to determiners a semantic term that has an extra predicate

variable to derive correct truth conditions for quantificational sentences following
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Mineshima et al. (2015). For example, the semantics of a determiner every can be de-

scribed as λFλGλH.∀x(Fx ∧ Gx → Hx), in a way that is similar to the continuation

semantics for event predicates (Champollion, 2015). The extra predicate variable G

can be filled by the semantically empty predicate λx.⊤ (where ⊤ denotes the tautol-

ogy) in a verb phrase.

2.3 Natural deduction

This section introduces how to evaluate the semantic relation between sentences. To

capture the semantic relation between two sentences represented by logical formu-

las, I use logical inference. It remains unclear which logic is expressive enough to

represent accurate natural language inference. For logical inference, I use a Gentzen-

style natural deduction system (Prawitz, 1965; Troelstra and Schwichtenberg, 2000).

The first motivation for using natural deduction is that it can potentially extend to

higher-order logical inference. In formal semantics of natural language, it is gener-

ally assumed that adequate semantic representations of natural language demand

higher-order logic or type theory (Carpenter, 1998). Thus, natural deduction is suit-

able for natural language inference based on standard higher-order logic (type the-

ory). The second motivation is that natural deduction system is suitable for injecting

axioms from external knowledge to fill the gap between a premise and a conclusion

during the theorem-proving process (Martínez-Gómez et al., 2017). When I infer

the semantic relation between sentences, I inject external knowledge such as com-

monsense or lexical knowledge if necessary. Injecting axioms during the theorem-

proving process demonstrates such natural language inference.

In this section, subsection 2.3.1 explains the outline of natural deduction proofs.

Subsection 2.3.2 describes how to implement natural deduction proof. Subsection

2.3.3 introduces inference rules used in my proof strategy. Subsection 2.3.4 describes

proof processes for proving the entailment relation. Finally, subsection 2.3.5 de-

scribes proof processes for proving the contradiction.

2.3.1 Outline of natural deduction

Natural deduction systems, a type of logical systems, retain the “natural form” of

logic and do not restrict themselves to any subset of the connectives nor any normal

form representation (Pelletier, 1999; Pelletier and Hazen, 2012).
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Another characteristic of natural deduction systems is that they have two types

of inference rules: introduction rules and elimination rules. Introduction rules are

the rules for installing new main operators in formulas, while elimination rules are

the rules for reducing the complexity of formulas by stripping off the main logical

operator. For example, the introduction rule and the elimination rule for an implica-

tion → are described in Figure 2.4.

A A → B
B

→E

[A]....
B

A → B
→I

FIGURE 2.4: Introduction rule (I-rule) and elimination rule (E-rule)
for implication (→).

In these two proof trees, material above the horizontal line represents the premises,

and that below represents the conclusion (or goal) of the inference. The elimination

rule for an implication → states that if two premises A and A → B exist, we can

assure B. This rule is also known as modus ponens. The introduction rule for an

implication → states that if we have one temporary assumption A and succeed in

deriving B, then this temporary assumption is closed or “discharged” and the con-

clusion to A → B is made.

In using a natural deduction system for natural language inference, we first map

a sentence pair (T, H) to a pair of logical formulas (T′, H′). T′ is initially set to the

premise P and H′ is set to the goal G to be proved. The typical proving strategy

is to decompose them into a set of subformulas with no logical connectives using

inference rules. The premise P is decomposed into a pool of premises P = {pi(θi) |

i ∈ {1, . . . , m}}, where each pi(θi) is a subformula and θi is a list of terms appearing

in pi(θi). The goal G is also decomposed into a set of sub-goals G = {gj(θ
′
j) | j ∈

{1, . . . , n}}, where θ′j is a list of terms appearing in gj(θ
′
j). The proof is performed by

searching for a premise pi(θi) whose predicate matches that of a sub-goal gj(θ
′
j). If

such a premise is found, then variables in θ′j are unified to those in θi and the sub-

goal gj(θ
′
j) can be removed from G. If all the sub-goals can be removed, we prove

T′ → H′. In the presence of two or more variables with the same predicate, there

might be multiple possible variable unifications. Modern theorem provers explore

these multiple possibilities in search of a configuration that proves a theorem.
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2.3.2 Proof assistant

A proof assistant is a computer system that assists the users to develop formal

proofs. For a natural deduction theorem proving, I use the proof assistant Coq (Bertot

and Castran, 2010), which can be used for efficient theorem-proving for natural

language inference using both first-order and higher-order logic (Mineshima et al.,

2015). I use Coq’s built-in tactics for first-order inference. The additional axioms and

tactics specialized for natural language constructions can be written in Ltac (Dela-

haye, 2000). We can run Coq with full automation by combining a set of pre-defined

tactics with user-defined proof-search tactics and using its interactive mode. This

achieves efficient automatic inference.

2.3.3 Inference rule

In a natural deduction proof, the premise P and the goal G are decomposed accord-

ing to inference rules. Figure 2.5 shows the major inference rules used in this thesis.

As described in Subsection 2.3, inference rules in natural deduction are divided into

two types: introduction rules and elimination rules. In terms of decomposing a

premise and a goal, introduction rules specify how to prove a formula in the goal,

decomposing a goal formula into smaller sub-goals. Elimination rules specify how

to use a premise, decomposing a formula in the pool of premises into smaller ones.

For example, the introduction rule for implication (→-INTRO) states that if the

sub-goal is an implication of the form A → B, this sub-goal A → B can be divided

into one premise A and one sub-goal B.

Note that we have to consider eigenvariable condition in inference rules for univer-

sal quantifier (∀) and existential quantifier (∃) in Figure 2.5. In the ∀-Intro rule, y ≡ x

or y ̸∈ f v(A), and y is not free in any assumption open in the premise, where f v(A)

is the set of free variables in A. Also, in the ∃-Elim rule, y ≡ x or y ̸∈ f v(A), and y

is not free in the goal nor in any assumption open in the premise except in A[x/y].

See Troelstra and Schwichtenberg (2000) for more details on the treatment of other

logical operators.
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G : A∧ B

G1 : A
G2 : B

∧-INTRO
P : A1 ∧A2 ∧ · · · ∧ An

P1 : A1, P2 : A2, . . . , Pn : An

∧-ELIM

G : A → B

P : A
G : B

→-INTRO
P1 : A → B
P2 : A

P : B
→-ELIM

G : ∃xA(x)

G1 : A(t)

∃-INTRO

P : ∃xA(x)

P1 : A(y)

∃-ELIM

P1 : A(t)
P2 : t = u

P : A(u)
=-ELIM

P : C
G : A∨ B

P : C
G1 : A

∨-INTRO

P : C
G : A∨ B

P : C
G2 : B

∨-INTRO

P : A∨ B

P1 : A
P2 : B

∨-ELIM

G : ∀xA(x)

G1 : A(y)

∀-INTRO

P : ∀xA(x)

P1 : A(t)

∀-ELIM

FIGURE 2.5: Inference rules used in natural deduction. P, P1, . . . Pn are
formulas in the premise, while G, G1, G2 are formulas in the goal. The
initial formulas are at the top, with the formulas obtained by applying

the inference rules shown below.
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2.3.4 Proving entailment relation

As an illustration of how my natural deduction proof works for calculating the se-

mantic relation between sentences, consider the case of proving the entailment rela-

tion between the following sentence pair:

(13) a. A man is singing in a bar

b. A man is singing

The sentences (13a) and (13b) are mapped onto logical formulas A′ and B′ based

on event semantics via CCG-based semantic composition, as follows.

A′ : ∃y1∃x1∃x2(man(x1) ∧ sing(y1) ∧ (subj(y1) = x1) ∧ bar(x2) ∧ in(y1, x2))

B′ : ∃y1∃x1(man(x1) ∧ sing(y1) ∧ (subj(y1) = x1))

When we attempt a natural deduction proof of the entailment relation A′ → B′, we

set the logical formula A′ as the premise and the logical formula B′ as the goal of

the proof. Then A′ and B′ are decomposed by using inference rules described in the

previous subsection.

P0 : ∃y1∃x1∃x2(man(x1) ∧ sing(y1) ∧ (subj(y1) = x1) ∧ bar(x2) ∧ in(y1, x2))
G0 : ∃y1∃x1(man(x1) ∧ sing(y1) ∧ (subj(y1) = x1))

P1 : man(x1) ∧ sing(y1) ∧ (subj(y1) = x1) ∧ bar(x2) ∧ in(y1, x2)
G1 : man(x1) ∧ sing(y1) ∧ (subj(y1) = x1)

P2 : man(x1), P3 : sing(y1), P4 : subj(y1) = x1, P5 : bar(x2), P6 : in(y1, x2)
G2 : man(x1), G3 : sing(y1), G4 : subj(y1) = x1

P2 : man(x1), P3 : sing(y1), P4 : subj(y1) = x1, P5 : bar(x2), P6 : in(y1, x2)
G2 : XXXXXman(x1), G3 : XXXXXsing(y1), G4 :

hhhhhhhhsubj(y1) = x1

∧-ELIM (P1)×4, ∧-INTRO (G1)×2

∃-ELIM (P0)×3 , ∃-INTRO (G0)×2

FIGURE 2.6: The proof process for proving an entailment relation.
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The proof process for A′ → B′ is shown in Figure 2.6. Here, A′ is initially set

to the premise P0 and B′ to the goal G0. P0 and G0 are then decomposed using

elimination rules (∧-ELIM, ∃-ELIM) and introduction rules (∧-INTRO, ∃-INTRO). Then

we obtain a set of premise formulas P = {P2, P3, P4, P5, P6} and a set of sub-goals G =

{G2, G3, G4}. The proof is performed by searching for a premise Pi whose predicate

and arguments match those of a given sub-goal Gj. If such a logical premise is found,

the sub-goal is removed. In this example, the sub-goals G2, G3, and G4 match the

premises P2, P3, and P4, respectively. Thus, A′ → B′ can be proved.

2.3.5 Proving contradiction

The proof strategy illustrated here can be straightforwardly applied to proving the

contradiction. In natural deduction, a negative formula of the form ¬A can be de-

fined as A → False (“the formula A implies the contradiction”), by using a proposi-

tional constant False to encode the contradiction. Thus, the inference rules for nega-

tion (¬) can be taken as special cases of implication rules, as shown in Figure 2.7.

G : ¬A

P : A
G1 : False

¬-INTRO
P : ¬A
G : False

G1 : A
¬-ELIM

FIGURE 2.7: Inference rules of negation.

As an illustration of proving the contradiction, let us consider the following sen-

tence pair:

(14) a. No man is singing

b. There is a man singing loudly

Figure 2.8 shows the proof process. The sentences (14a) and (14b) are first mapped to

P0 and P1, respectively, via compositional semantics and the goal G0 is set to False.

Second, by applying the elimination rule for negation to P0, P0 is set to G1. Third, by

decomposing P1 and G1 using elimination rules (∧-ELIM, ∃-ELIM) and introduction

rules (∧-INTRO, ∃-INTRO), we can obtain the set of premises P = {P3, P4, P5, P6} and

the set of sub-goals G = {G3, G4, G5}. Lastly, from P3, P4 and P5, we can remove

these sub-goals and then derive the contradiction.
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P0 : ¬∃y1∃x1(man(x1) ∧ sing(y1) ∧ (subj(y1) = x1))
P1 : ∃y1∃x1(man(x1) ∧ sing(y1) ∧ (subj(y1) = x1) ∧ loudly(y1))
G0 : False

P1 : ∃y1∃x1(man(x1) ∧ sing(y1) ∧ (subj(y1) = x1) ∧ loudly(y1))
G1 : ∃y1∃x1(man(x1) ∧ sing(y1) ∧ (subj(y1) = x1))

P2 : man(x1) ∧ sing(y1) ∧ (subj(y1) = x1) ∧ loudly(y1)
G2 : man(x1) ∧ sing(y1) ∧ (subj(y1) = x1)

P3 : man(x1), P4 : sing(y1), P5 : subj(y1) = x1, P6 : loudly(y1)
G3 : man(x1), G4 : sing(y1), G5 : subj(y1) = x1

P3 : man(x1), P4 : sing(y1), P5 : subj(y1) = x1, P6 : loudly(y1)
G3 : XXXXXman(x1), G4 : XXXXXsing(y1), G5 :

hhhhhhhhsubj(y1) = x1

∧-ELIM (P2)×4, ∧-INTRO (G2)×2

∃-ELIM (P1)×2, ∃-INTRO (G1)×2

¬-ELIM (P0)

FIGURE 2.8: Proof process for proving a contradiction.
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I introduce another example of proving the contradiction. Consider this sentence

pair:

(15) a. The woman is not wearing glasses or a headdress

b. A woman is wearing an Egyptian headdress

Figure 2.9 shows the proof process for proving the contradiction. The sentences

(15a) and (15b) are mapped to P0 and P1, respectively, via compositional semantics

and the goal G0 is set to False. Second, by applying the elimination rule for negation

to P0, P0 is set to G1. By decomposing P1 and G1 using elimination rules (∧-ELIM,

∃-ELIM) and introduction rules (∧-INTRO, ∃-INTRO), we can obtain the set of premises

P = {P3, P4, P5, P6, P7, P8} and the set of sub-goals G = {G3, G4, G5, G6, G7}. From

P3, P4, P7 and P8, we can remove the sub-goals G3, G4, G6 and G7. After applying the

introduction rule for disjunction (∨) to the sub-goal G5, we can remove the sub-goal

G5 and then derive the contradiction. The difference between Figure 2.8 and Figure

2.9 is that Figure 2.9 describes how to treat the disjunctive expression not wearing

glasses or a headdress in the sentence (15a).
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P0 : ¬∃e1∃x1∃x2(woman(x1) ∧ wear(e1) ∧ (glass(x2) ∨
headdress(x2)) ∧ (subj(e1) = x1)) ∧ (obj(e1) = x2))
P1 : ∃e1∃x1∃x2(woman(x1) ∧ wear(e1) ∧ egyptian(x2) ∧
headdress(x2) ∧ (subj(e1) = x1) ∧ (obj(e1) = x2))
————————————————————————————————
G0 : False

P1 : ∃e1∃x1∃x2(woman(x1) ∧ wear(e1) ∧ egyptian(x2) ∧
headdress(x2) ∧ (subj(e1) = x1) ∧ (obj(e1) = x2))
————————————————————————————————
G1 : ∃e1∃x1∃x2(woman(x1)∧wear(e1)∧ (glass(x2)∨ headdress(x2))∧
(subj(e1) = x1)) ∧ (obj(e1) = x2))

P2 : woman(x1) ∧ wear(e1) ∧ egyptian(x2) ∧ headdress(x2) ∧
(subj(e1) = x1) ∧ (obj(e1) = x2)
————————————————————————————————
G2 : woman(x1) ∧ wear(e1) ∧ (glass(x2) ∨ headdress(x2)) ∧
(subj(e1) = x1)) ∧ (obj(e1) = x2)

P3 : woman(x1), P4 : wear(e1), P5 : egyptian(x2)
P6 : headdress(x2), P7 : subj(e1) = x1, P8 : obj(e1) = x2
————————————————————————————————
G3 : woman(x1), G4 : wear(e1), G5 : glass(x2) ∨ headdress(x2),
G6 : subj(e1) = x1, G7 : obj(e1) = x2

P3 : woman(x1), P4 : wear(e1), P5 : egyptian(x2)
P6 : headdress(x2), P7 : subj(e1) = x1, P8 : obj(e1) = x2
————————————————————————————————hhhhhhhhhG3 : woman(x1),

hhhhhhhG4 : wear(e1), G5 : glass(x2) ∨ headdress(x2),hhhhhhhhhhG6 : subj(e1) = x1,
hhhhhhhhhG7 : obj(e1) = x2

P3 : woman(x1), P4 : wear(e1), P5 : egyptian(x2)
P6 : headdress(x2), P7 : subj(e1) = x1, P8 : obj(e1) = x2
————————————————————————————————hhhhhhhhhG3 : woman(x1),

hhhhhhhG4 : wear(e1),
hhhhhhhhhhG5 : headdress(x2)hhhhhhhhhhG6 : subj(e1) = x1,

hhhhhhhhhG7 : obj(e1) = x2

¬-ELIM (P0)

∃-ELIM (P1)×3, ∃-ELIM (G1)×3

∧-ELIM (P2)×5, ∧-INTRO (G2)×4

∨-INTRO (G5)

FIGURE 2.9: Proof process for proving a contradiction including a
disjunctive expression.
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2.4 Word abduction

Sub-goals may remain unproved when T logically does not entail H, i.e., when there

are no premise predicates pi that are matched with gj. In this case, the system at-

tempts on-the-fly word axiom injection, which was first developed by Martínez-

Gómez et al. (2017). I call this word axiom injection mechanism word abduction.

If there is a premise pi(θi) whose predicate has a linguistic relation (according to

external linguistic knowledge) with that of a sub-goal gj(θ
′
j), then variables in θ′j are

unified with those in θi and the sub-goal gj(θ
′
j) can be removed from G. A linguistic

ontology or knowledge database is used for external linguistic knowledge. In the

original word axiom injection mechanism, two linguistic knowledge databases, i.e.,

WordNet (Miller, 1995) and VerbOcean (Chklovski and Pantel, 2004) are used.

As an illustration of this word abduction mechanism, let us consider the follow-

ing sentence pair:

(16) a. A white and brown cat walks

b. A white and brown cat moves

The proof process for proving the entailment relation between these two sentences is

shown in Figure 2.10. Here, the sentence (16a) is initially map to the premise formula

P0 and the sentence (16b) to the goal formula G0. P0 and G0 are then decomposed

using elimination rules (∧-ELIM, ∃-ELIM) and introduction rules (∧-INTRO, ∃-INTRO).

Then we obtain a set of premise formulas P = {P2, P3, P4, P5, P6}, and a set of sub-

goals G = {G2, G3, G4, G5, G6}. The proof is performed by searching for a premise Pi

whose predicate and arguments match those of a given sub-goal Gj. If such a logical

premise is found, the sub-goal is removed. In this example, the sub-goals G2, G3, G4,

and G6 match the premises P2, P3, P4, and P6, respectively.

Here, the sub-goal G5 : move(y1) is still unprovable. One can assume that a

white and brown cat is the subject of both move and walk and that the word move is

the hypernym of the word walk. Thus, the sub-goal G5 : move(y1) and the premise

P5 : walk(y1) share the same variable y1 and there is a linguistic relationship be-

tween their predicates move and walk. In such cases, word abduction takes place

and the axiom ∀x(walk(x) → move(x)) is generated. By applying the axiom, the

entailment relation between the sentence (16a) and the sentence (16b) is proved.

Compared with other proof systems, such as the resolution proof systems (Belt-

agy et al., 2016; Bjerva et al., 2014) and the tableau proof system (Abzianidze, 2016)
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P0 : ∃y1∃x1(white(x1) ∧ brown(x1) ∧ cat(x1) ∧ walk(y1) ∧ (subj(y1) = x1))
G0 : ∃y1∃x1(white(x1) ∧ brown(x1) ∧ cat(x1) ∧ move(y1) ∧ (subj(y1) = x1))

P1 : white(x1) ∧ brown(x1) ∧ cat(x1) ∧ walk(y1) ∧ (subj(y1) = x1)
G1 : white(x1) ∧ brown(x1) ∧ cat(x1) ∧ move(y1) ∧ (subj(y1) = x1)

P2 : white(x1), P3 : brown(x1), P4 : cat(x1), P5 : walk(y1), P6 : subj(y1) = x1
G2 : white(x1), G3 : brown(x1), G4 : cat(x1), G5 : move(y1), G6 : subj(y1) = x1

P2 : white(x1), P3 : brown(x1), P4 : cat(x1), P5 : walk(y1), P6 : subj(y1) = x1

G2 :
XXXXXXwhite(x1), G3 :

XXXXXXbrown(x1), G4 : XXXXcat(x1), G5 : move(y1), G6 :
hhhhhhhhsubj(y1) = x1

P2 : white(x1), P3 : brown(x1), P4 : cat(x1), P5 : walk(y1), P6 : subj(y1) = x1

G2 :
XXXXXXwhite(x1), G3 :

XXXXXXbrown(x1), G4 : XXXXcat(x1), G5 : XXXXXXmove(y1), G6 :
hhhhhhhhsubj(y1) = x1

AXIOM ∀x(walk(x) → move(x))

∧-ELIM (P1)×4, ∧-INTRO (G1)×4

∃-ELIM (P0)×2 , ∃-INTRO (G0)×2

FIGURE 2.10: The proof process for word abduction.

introduced in Section 2.1, the distinction between the premise and the conclusion

to be proved is always clear when carrying out the proof in the natural deduction

system. Thus, the natural deduction system enables the injection of an axiom that

is necessary to fill the gap between the premise and the conclusion during the proof

process on-the-fly.
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Chapter 3

Learning textual entailment and

similarity using proof processes

3.1 Motivation and related work

In this chapter, I describe my research about learning textual entailment and sim-

ilarity. There are three main approaches to capturing semantic relations between

sentences: logic-based approaches, machine learning-based approaches, and hybrid

approaches. First, I introduce previous studies about machine learning-based ap-

proaches, which use supervised learning algorithms. Second, I introduce previous

studies about logic-based approaches, which uses logical inference systems to cap-

ture semantic relations between sentences. Third, I introduce previous studies about

hybrid approaches of logic-based and machine learning-based approaches. Lastly, I

describe the motivation for my hybrid approach to learning textual entailment and

similarity.

3.1.1 Machine learning-based approaches

In machine learning-based approaches, vector-based models of semantic composi-

tion have been widely studied with regards to calculating semantic textual simi-

larity (STS). Mitchell and Lapata (2008) and Mitchell and Lapata (2010) proposed

a sentence vector model involving word vector addition or component-wise multi-

plication. Addition and multiplication are commutative and associative operations

and thus ignore word order. To obtain vector-based semantic representations more

precisely, Polajnar, Rimell, and Clark (2015) proposed a discourse-based sentence

vector model considering extra-intra sentential context. Also, a categorical compo-

sitional distributional semantic model has been developed for recognizing textual
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entailment (RTE) and for calculating STS (Grefenstette and Sadrzadeh, 2011; Kart-

saklis, Kalchbrenner, and Sadrzadeh, 2014; Kartsaklis and Sadrzadeh, 2016). In this

model, the dimensions of the vectors encode model-theoretic structures rather than

observed co-occurrences, even though they are not strictly hybrid systems as they do

not include contextual distributional information. However, these previous studies

are mostly concerned with the structures of basic phrases or sentences and do not

address logical and functional words such as negations and connectives. Grefen-

stette (2013) represents logical constructs using vectors and tensors, but concludes

that they do not adequately capture logical structures, in particular, quantifiers.

Neural network-based models of semantic composition (Mueller and Thyagara-

jan, 2016; Hill, Cho, and Korhonen, 2016; Tai, Socher, and Manning, 2015; Zhou, Liu,

and Pan, 2016; He and Lin, 2016) have also been proposed. Although these neural

network-based models achieve higher performance in both RTE and STS tasks, they

lack three basic and simple capabilities that we get from symbolic representations.

The first missing capability is interpretability; being able to inspect the meaning

representation and interpret how the end task is performed. This is easy in logic-

based approaches because the meanings of sentences are represented by logical for-

mulas and we can detect where the logical inference fails in the middle of proof pro-

cesses. However, it is difficult in deep learning approaches because the meanings

of sentences are represented by vectors of real values. Thus, it is not self-evident

if neural network-based model also can capture logical and functional words like

logical formulas. The end-to-end nature of neural network-based models introduces

challenges in the diagnosis of the reasons that make two sentences to be similar or

dissimilar from each other. These diagnosis capabilities may play an important role

in making the system explainable and also guide future system improvements in a

more precise manner.

The second missing capability is the ability to use existing resources such as

knowledge bases to assist inference. For example, neural network-based models

are known to have difficulties in the detection of antonyms such as big and small.

However, it is easy to identify the antonym relation between big and small using lex-

ical knowledge such as WordNet (Miller, 1995), and we can use this knowledge in

logical inference, instead of having to train on hundreds of training examples with

the words big and small.
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The third missing capability is that neural network-based models cannot be eas-

ily trained on small datasets and little memory. Recently, a large dataset for natural

language inference (Bowman et al., 2015; Williams, Nangia, and Bowman, 2017) has

been proposed for developing neural network-based models. However, considering

that we apply the model to each domain-specific NLP application, we have to pre-

pare large and cleaned domain-specific datasets respectively. In addition, whether

we can prepare a large dataset that covers all linguistic phenomena is still an open

problem.

3.1.2 Logic-based approaches

Purely logic-based approaches such as ccg2lambda (Mineshima et al., 2015; Martínez-

Gómez et al., 2016; Mineshima et al., 2016) and LangPro (Abzianidze, 2015; Abzian-

idze, 2016) introduced in Section 2.1 have been successful in representing the mean-

ings of complex sentences, having had a positive impact for RTE tasks. Another

advantage of logic-based approaches is that the accuracy of logic-based approaches

does not depend on the size of the dataset. That is, logic-based approaches judge the

entailment relations directly through logical inference and they do not require the

training of a model with a large dataset (i.e., logic-based approaches are intrinsically

based on unsupervised learning). Indeed, compared with neural-network-based ap-

proaches, logic-based approaches (Mineshima et al., 2015; Abzianidze, 2016) have

been successful in performing high accuracy with the FraCaS dataset (Cooper et al.,

1994), which includes only about 300 cases.

However, purely logic-based approaches only provide an intrinsically binary

output (i.e., if a statement is true or not), which prevents them from capturing the

graded aspects of meaning in language, such as semantic textual similarity. The

graded aspects of meaning are also discussed in linguistics. As for the graded as-

pects of meaning in language, Edmonds and Hirst (2002) write:

Absolute synonymy, if it exists at all, is quite rare. Absolute synonyms

would be able to be substituted one for the other in any context in which

their common sense is denoted with no change to truth value, commu-

nicative effect, or “meaning” (however “meaning” is defined).

The authors introduce two words, daddy and father, as an example of this claim.

They are known as synonyms, while daddy expresses a stronger feeling of intimacy
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than father. This means the sentence I called, “my daddy” entails the other sentence I

called, “my father” if we assume daddy and father as absolute synonyms, while they

are dissimilar in terms of the emotion of the speaker. This means that the function for

capturing the graded aspects of meanings is necessary in natural language inference.

Also, capturing the graded aspects of meanings is necessary in NLP applications

such as information retrieval. In these applications, huge source texts are compared

with the target text to judge whether they are related or not. Under such a condition,

the semantic textual relation should be handled not as a binary decision (entailment

or contradiction), but as a similarity.

3.1.3 Hybrid approaches

To compensate for the problems associated with logic-based approaches, hybrid ap-

proaches of logic and machine learning have been explored. The hybrid approach

was first developed by Bos and Markert (2005). They translated a text and its hy-

pothesis into first-order logical formulas using Boxer (Bos, 2008), and employed off-

the-shelf inference tools such as a theorem prover and a model builder to detect

entailment relations. Unfortunately, this work also reported that the genuine theo-

rem prover correctly proves less than 6% of the RTE problems. The main reason for

its low performance is a lack of lexical and background knowledge. However, their

experiments showed that the combination of a machine learning classifier and the

features extracted from the inference tools are more successful than the tools alone.

Subsequently, The Meaning Factory (Bjerva et al., 2014) outperformed this previ-

ous work. This system also uses Boxer for their semantic representations and trans-

lates two sentences into first-order logical formulas. In RTE tasks, this system uses

theorem provers and model builders to check if one sentence entails the other, or if

the sentences are contradictory. In STS tasks, the system follows a supervised ap-

proach to solve the regression problem of determining the similarity between each

given sentence pair. The system uses a variety of features, ranging from simpler ones

such as word overlap, to more complex ones in the form of deep semantic features

and features derived from a compositional distributional semantic model. For the

form of deep semantic features, in particular, the proportion of overlap between log-

ical formulas and the judgment output (entailment, contradiction, or neutral) from

the logical inference system are used. These features are used for training a ran-

dom forest regressor model, and this hybrid approach succeeded in obtaining high
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performance in the STS task.

UTexas (Beltagy et al., 2014) uses Markov Logic Networks (MLNs) (Richardson

and Domingos, 2006) for RTE tasks and Probabilistic Soft Logic (PSL) (Broecheler,

Mihalkova, and Getoor, 2010) for STS tasks. This system also uses Boxer for their

logical semantic representations. In this system, each ground atom in the logical

formulas has a probability based on the distributional semantics of a word. The

weights of the logical formulas are calculated from the probabilities of their ground

atoms and are extracted as features. In RTE tasks, the conditional probabilities of

proving an entailment relation or contradiction between sentences are calculated

using these features. These probabilities are then mapped to a final relation by an

SVM classifier. In STS tasks, a probability of each ground atom has a continuous

truth value on the interval [0, 1] rather than a binary truth value as used in MLNs.

These previous studies improved accuracy by using logic-based features derived

from logical formulas and inference results of first-order theorem proving in addi-

tion to using shallow features such as sentence lengths. However, there is still the

open problem of how to effectively combine a logic-based approach with a machine

learning-based approach. As described above, the previous hybrid approaches only

focus on the output from their inference systems, such as the overlap of logical for-

mulas and the (probabilistic) inference results, to assess textual entailment and sim-

ilarity. However, there is much more information that can be obtained from the

inference system other than the inference result. That is, the processes to obtain the

final logical formulas and their inference process are also potentially valuable infor-

mation about the semantic relations between sentences.

3.1.4 Motivation for using proving process

In this thesis, I determine semantic relations between sentences based on the concep-

tion of proof-theoretic semantics (Bekki and Mineshima, 2017). The key idea is that

not only the inference results but also the theorem proving process can represent se-

mantic relations between sentences. That is, by taking into account not only whether

a theorem is proved but also how it is proved, we can capture semantic relations be-

tween sentences in more depth. My hypothesis is that observing proof processes when

testing the semantic relations is useful for capturing textual entailment and similarity more

precisely.
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To illustrate my hypothesis about the relation between semantic relations and

proving processes more concretely, I describe two examples of proving processes for

proving an entailment relation. First, consider the proving process for proving an

entailment relation between the following sentences (17a) and (17b):

(17) a. A man is walking in the rain

b. A man is walking

The sentences (17a) and (17b) are mapped onto logical formulas A′
1 and A′

2 based

on event semantics via CCG-based semantic composition, as follows.

A′
1 : ∃y1∃x1∃x2(man(x1) ∧ walk(y1) ∧ in(y1, x2) ∧ rain(x2) ∧ (subj(y1) = x1))

A′
2 : ∃y1∃x1(man(x1) ∧ walk(y1) ∧ (subj(y1) = x1))

Here, we can see A′
1 entails A′

2. The proving process of the attempted proof A′
1 → A′

2

is described in Figure 3.1. A′
1 is initially set to the premise P0 and A′

2 to the goal G0.

the premise P0 and the goal G0 are then decomposed into the premise P1 and the

sub-goal G1, respectively, using the elimination and introduction rules for existential

quantifier (∃-ELIM, ∃-INTRO). We can remove the sub-goal G1 from the premise P1 and

prove A′
1 → A′

2.

P0 : ∃y1∃x1∃x2(man(x1) ∧ walk(y1) ∧ in(y1, x2) ∧ rain(x2) ∧ (subj(y1) = x1))
G0 : ∃y1∃x1(man(x1) ∧ walk(y1) ∧ (subj(y1) = x1))

P1 : man(x1) ∧ walk(y1) ∧ in(y1, x2) ∧ rain(x2) ∧ (subj(y1) = x1)
G1 : man(x1) ∧ walk(y1) ∧ (subj(y1) = x1)

P1 : man(x1) ∧ walk(y1) ∧ in(y1, x2) ∧ rain(x2) ∧ (subj(y1) = x1)

G1 :

hhhhhhhhhhhhhhhhhhhh
man(x1) ∧ walk(y1) ∧ (subj(y1) = x1)

∃-ELIM (P0)×3, ∃-INTRO (G0)×2

FIGURE 3.1: The proof process for proving the entailment relation
A′

1 → A′
2.
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Next, consider the proving process for proving an entailment relation between

the following sentences (18a) and (18b). Note that the sentence (18a) does not logi-

cally entail the sentence (18b).

(18) a. A man is walking in the rain

b. A man and a woman are singing

Sentences (18a) and (18b) are mapped onto logical formulas A′
1 and A′

3 based on

event semantics via CCG-based semantic composition, as follows.

A′
1 : ∃y1∃x1∃x2(man(x1) ∧ walk(y1) ∧ in(y1, x2) ∧ rain(x2) ∧ (subj(y1) = x1))

A′
3 : ∃y1∃x1(man(x1) ∧ sing(y1) ∧ woman(x2) ∧ sing(y2) ∧ (subj(y1) = x1) ∧ (subj(y2) = x2))

If we attempt the proof A′
1 → A′

3, its proof process can be described in Figure 3.2.

Here, the four sub-goals G3, G4, G5, and G8 remain. However, assuming four axioms

∀y1(walk(y1) → sing(y1)), ∀x1∀x2(man(x1) → woman(x2)), ∀y1∀y2(walk(y1) →

sing(y2)) and ∀x2∀y2(subj(y2) = x2)) can be generated forcibly, despite the fact

that these axioms are not logically or lexically correct, we can prove the entailment

relation between A′
1 and A′

3 forcibly. These two figures show if two sentences are

less similar, we have to add more axioms and apply inference rules to prove their

entailment relation. This demonstrates my hypothesis that not only the proving

results (i.e., entailment, contradiction, or neutral), but also the proving processes

reveal information about semantic relations between sentences.
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P0 : ∃y1∃x1∃x2(man(x1) ∧ walk(y1) ∧ in(y1, x2) ∧ rain(x2) ∧ (subj(y1) = x1))
G0 : ∃y1∃x1(man(x1) ∧ sing(y1)woman(x2) ∧ sing(y2) ∧ (subj(y1) = x1) ∧ (subj(y2) = x2))

P1 : man(x1) ∧ walk(y1) ∧ in(y1, x2) ∧ rain(x2) ∧ (subj(y1) = x1)
G1 : man(x1) ∧ sing(y1) ∧ woman(x2) ∧ sing(y2) ∧ (subj(y1) = x1) ∧ (subj(y2) = x2)

P2 : man(x1), P3 : walk(y1), P4 : in(y1, x2), P5 : rain(x2), P6 : subj(y1) = x1
G2 : man(x1), G3 : sing(y1), G4 : woman(x2), G5 : sing(y2), G6 : subj(y1) = x1, G7 : subj(y2) = x2

P2 : man(x1), P3 : walk(y1), P4 : in(y1, x2), P5 : rain(x2), P6 : subj(y1) = x1
G2 : XXXXXman(x1), G3 : sing(y1), G4 : woman(x2), G5 : sing(y2), G6 :

hhhhhhhhsubj(y1) = x1, G7 : subj(y2) = x2

P2 : man(x1), P3 : walk(y1), P4 : in(y1, x2), P5 : rain(x2), P6 : subj(y1) = x1
G2 : XXXXXman(x1), G3 : XXXXXsing(y1), G4 : hhhhhhhwoman(x2), G5 : XXXXXsing(y2), G6 :

hhhhhhhhsubj(y1) = x1, G7 :
hhhhhhhhsubj(y2) = x2

AXIOMS ∀y1(walk(y1) → sing(y1)),
∀x1∀x2(man(x1) → woman(x2)),
∀y1∀y2(walk(y1) → sing(y2)),
∀x2∀y2(subj(y2) = x2))

∧-ELIM (P1)×4, ∧-INTRO (G1)×5

∃-ELIM (P0)×3, ∃-INTRO (G0)×2

FIGURE 3.2: The proof process for proving the entailment relation
A′

1 → A′
3.
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3.2 System overview

I capture the semantic relation between the sentence pair (A, B) as a function of

the provability of bidirectional entailment relations for (A, B) and combine it with

shallow features. Figure 3.3 shows an overview of my system for learning textual

entailment and similarity from logical proofs. This system is mainly implemented

using Python, except for CCG syntactic parsers and a prover.

Input：sentence	pair�

Random	Forest	

Output： Similarity/RTE �

Higher-order		
logical	formula � Axioms �

Features�

Logical	inference	

Seman?c	parsing	

Syntac?c	parsing	

Lexical	knowledge�

CCG	tree�

FIGURE 3.3: System overview.

First, sentences are parsed into syntactic trees based on CCG. Second, seman-

tic representations are obtained by combining lambda terms in accordance with the

meaning composition rules specified in the CCG tree. Third, after obtaining logical

formulas A′ and B′ from A and B, proofs of the bidirectional entailment relations,

A′ → B′ and B′ → A′ are attempted. There are two intentions for proving the

bidirectional entailment relations. The first intention is to capture both entailment

relations and similarities. Compared with entailment relations, textual similarity is

directionless. Thus, I attempt to prove the bidirectional entailment relations and

capture the textual similarity features. The second intention is to obtain more in-

formation from the proving process than that which can be inferred from a unidi-

rectional entailment proving process. Compared with the proof in one direction,
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we can obtain more information about semantic relations between sentences from

bidirectional proofs.

If the initial natural deduction proofs fail, we rerun the proof process with rele-

vant external axioms. If the proofs fail again, unproved sub-goals are skipped until

the proof is completed. After that, features for learning textual entailment and sim-

ilarity are extracted by quantifying the provability of the bidirectional entailment

relations.

Next, features for learning textual entailment and similarity are extracted from

the proofs during the theorem-proving process. For natural deduction proofs, I use

a proof-assistant Coq as described in Section 2.3.2. When a proof is successful, Coq

outputs the resulting proof (a proof term), from which we can extract detailed in-

formation such as the number of proof steps and the types of inference rules used.

While multiple proof paths can be considered in each successful proof, I simply ex-

tract information from the proof path that Coq outputs1. In addition to the inference

result (i.e., entailment, contradiction, or neutral), information about the proof pro-

cess can be used as features for learning textual entailment and similarity.

Finally, I combine extracted logic-based features with non-logic-based features

and train the model for predicting textual entailment and similarity. I did a pre-

experiment with three regression models: logistic regression, support vector model

and random forest model. I found that random forest model was the most effective,

and the random forest model was therefore selected for learning textual entailment

and similarity, with its hyperparameters being optimized by grid search. In the re-

gression model for STS, the mean squared error (MSE) was used to measure the pre-

diction performance. In the classifier model for RTE, the Gini coefficient was used

to measure the prediction performance.

Regarding the brief description about random forest model (Breiman, 2001), this

model first draws first ntree bootstrap samples from the training data. For each of the

bootstrap samples, an unpruned regression tree is grown by choosing the best split

among all predictors at each node, and the best split is chosen from among those

variables. The test score is predicted by aggregating the predictions of the average

1Coq’s output depends on the depth of proof search and tactics. In this thesis, I consistently set the

number of the depth of proof search to three, and use tactics which are validated by the trial split of

the SICK dataset.
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of ntree trees. There are two characteristics of the random forest model. One charac-

teristic is that this model is robust with respect to noise. The other characteristic is

that this model does not overfit the training data easily. Given these characteristics,

the random forest model is potentially suitable for my hybrid approach, where dif-

ferent types of features, including logic-based features and non-logic-based features,

are used.

3.3 Proof for a hybrid approach

To describe the details of the proof for extracting features about semantic relations,

let us consider the sentence pair A, B:

A : A kitten plays in a house colored in green

B : A young cat plays in a green house

First, through syntactic analysis and semantic composition, we can translate A

and B into logical formulas A′ and B′, as shown below:

A′ : ∃y1∃y2∃x1∃x2∃x3(kitten(x1) ∧ play(y1) ∧ (subj(y1) = x1)

∧ house(x2) ∧ color(y2) ∧ (dobj(y2) = x2) ∧ in(y1, x2) ∧ green(x3) ∧ in(y2, x3))

B′ : ∃y1∃x1∃x2(young(x1) ∧ cat(x1) ∧ play(y1) ∧ (subj(y1) = x1)

∧ green(x2) ∧ house(x2) ∧ in(y1, x2))

Then, we attempt a natural deduction proof without using external axioms, aim-

ing to prove entailment relations, A′ → B′. If both fail, then we check whether A′

contradicts B′, which amounts to proving the negation of the original conclusion,

namely A′ → ¬B′. The motivation for attempting to prove contradiction is that se-

mantic textual similarity tends to be higher when the negation of the conclusion can

be proved, compared with the case where neither the conclusion nor its negation can

be proved. As described in Section 3.5.1, in the Sentences Involving Compositional

Knowledge (SICK) dataset (Marelli et al., 2014), 70% of the sentence pairs annotated

as contradictory are assigned a similarity score in the range [3, 5).

Following the proof process for proving the entailment relation described in Fig-

ure 2.6, we can obtain a set of premises P and a set of unproved sub-goals G. In this
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step, existential quantifiers and conjunctions in A′ and B′ are eliminated by apply-

ing the inference rules and the variables whose predicates of A′are in common with

those of B′ are unified.

P = {kitten(x1), play(y1), subj(y1) = x1,

house(x2), color(y2), dobj(y2) = x2, in(y1, x2), green(x3), in(y2, x3)}

G = {young(x1), cat(x1), green(x2)}

If all sub-goals can be removed from G, we can prove A′ → B′. In this example,

we can see the three sub-goals young(x1), cat(x1), and green(x2) still remain in G,

and we fail to prove A′ → B′. As above, if we fail to prove the entailment relation

or contradiction, that is, if we cannot prove the conclusion or its negation, we can

identify unproved sub-goals that are not matched by any predicate in the premise.

To remove sub-goals that cannot be proved using genuine logical inference alone, it

is necessary to inject axioms that represent the relations between premises and the

target sub-goals from external knowledge. Therefore, in the next step, we attempt to

prove A′ → B′ using axiom injection.

In axiom injection, unproved sub-goals are candidates to form axioms. In the ex-

ample above, the two sub-goals young(x1) and cat(x1) are still unproved. The prob-

lem is to select premise candidates semantically related to these sub-goals. In gen-

erating axioms, I improved a previous word axiom injection mechanism (Martínez-

Gómez et al., 2017). The purpose of improving a word axiom injection mechanism is

to generate axioms more correctly and obtain more accurate proof processes. There

are three points of improvements: improving the rule for selecting axiom candidates,

increasing lexical knowledge with distributed word embeddings and evaluating ax-

iom scores.

First, I describe how to improve the rule for selecting axiom candidates. I focus

only on predicates that share at least one argument with both the premise and the

conclusion. This means that an axiom can be generated only if there is a predicate p

in the pool of premises and a predicate q in a sub-goal and p and q share a variable

in an argument position, possibly with the same semantic role (e.g., subject, direct

object or indirect object). In this example, the two unproved sub-goals young(x1)

and cat(x1) share the same variable x1 with the premise kitten(x1). If we can con-

firm the semantic relation between young cat and kitten from lexical knowledge, we
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can generate the axiom between young cat and kitten.

Second, I describe how to increase lexical knowledge with distributed word em-

beddings. The semantic relationships between the predicates in the premise and

those in the conclusion are checked using lexical knowledge. At first, I check the lin-

guistic relationship using WordNet, a lexical database of words grouped into sets

of synonyms. In addition to grouping synonyms, linguistic relations connecting

groups are listed in WordNet. Linguistic relations between predicates are checked in

the following order: inflections, derivationally related forms, synonyms, antonyms,

hypernyms, hyponyms, and similarities. Table 3.1 shows the examples of each lin-

guistic relation included in WordNet. One advantage of using logical inference is

that it is a powerful representation that can correctly represent these different lin-

guistic relations, such as antonyms and synonyms.

linguistic relation word1 word2
inflections play plays

derived forms short shortness
synonyms short brief
antonyms short long

hypernyms apple fruit
hyponyms food meat
similarities cute pretty

TABLE 3.1: Examples of each linguistic relation included in WordNet.

However, the WordNet database contains only 155,327 words, which is too lim-

ited to cover all linguistic relations between content words. To increase the coverage

of vocabulary, I use distributed word embeddings trained with large corpora, which

is known as Word2Vec (Mikolov et al., 2013). Word2Vec is the neural network model

that takes a text corpus as input and produces word vectors as output. This model

is based on the distributional hypothesis (Harris, 1954), where the meaning for each

word is determined by its nearby words. This model is composed of two algorithms

for computing word representations: continuous bag-of-words (CBOW) and skip-

gram. These two algorithms are complementary. That is, the CBOW architecture

predicts the current word given its context while the continuous skip-gram architec-

ture predicts the context given the current word. As this model is successful in repre-

senting the word meaning as vectors in low dimensional spaces, Word2Vec is widely

used for predicting the similarity of words and phrases (Dumais, 1997; Mitchell and
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Lapata, 2010). Thus, I select Word2Vec to compensate for the lack of lexical knowl-

edge. If the linguistic relationship between the predicates in the premise and those

in the conclusion cannot be found in WordNet, I check the linguistic relationship

using Word2Vec. In this thesis, I compared two large corpora (Google News Corpus

and Wikipedia) in preliminary experiments. I select a 200-dimensional word vec-

tor pre-trained with Google News Corpus. Google News Corpus contains about 3

billion words, which is much larger than the number of words in WordNet.

Third, I describe how to select correct axioms from axiom candidates. I select

plausible axioms by evaluating axiom scores. In this thesis, a similarity score be-

tween predicates is assumed to be an axiom score. The axiom candidates whose scores

are highest are selected as axioms to inject into the proof. Also, if axiom candidates

have scores lower than the threshold, I assume they have no linguistic relationship

and they are not injected into the proof. Both axiom scores take values in the range of

0.0 to 1.0. The threshold of the score of an axiom is set to 0.25. When an axiom is gen-

erated from WordNet, the score of the axiom generated with WordNet is defined as

the inverse of the length of the shortest path that connects the senses in the is-a (hy-

pernym/hyponym) taxonomy in WordNet. When an axiom is generated by using

Word2Vec, the score of the axiom is defined as the cosine similarity between word

vectors represented by Word2Vec. If we fail to prove the entailment relation using

the axiom injection mechanism, we attempt to prove the negation of the conclusion

using the axiom injection mechanism.

In this example, the two unproved sub-goals young(x1) and cat(x1) share the

same variable x1 with the premise kitten(x1). We calculate the similarity between

young and kitten and the similarity between cat and kitten. Both similarities are

over the threshold and thus we can confirm the semantic relation between young

cat and kitten from lexical knowledge. Two axioms ∀x.(kitten(x) → young(x))

and ∀x.(kitten(x) → cat(x)) are generated, and we can thus remove two sub-goals

young(x1) and cat(x1). Regarding the sub-goal green(x2), there are no premises

that share the same variable with this sub-goal. However, the predicate green is in

common with the premise green(x3). In such a special case, we generate the axiom

∀x.(green(x)) and remove the sub-goal green(x2), even if they do not share the

same variable. In summary, the proof process for proving the entailment relation

A′ → B′ is described by Figure 3.4.
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P0 : ∃y1∃y2∃x1∃x2∃x3(kitten(x1) ∧ play(y1) ∧ (subj(y1) = x1)
∧house(x2) ∧ color(y2) ∧ (dobj(y2) = x2) ∧ in(y1, x2) ∧ green(x3) ∧ in(y2, x3))

G0 : ∃y1∃x1∃x2(young(x1) ∧ cat(x1) ∧ play(y1) ∧ (subj(y1) = x1)
∧green(x2) ∧ house(x2) ∧ in(y1, x2))

P1 : kitten(x1) ∧ play(y1) ∧ (subj(y1) = x1)
∧house(x2) ∧ color(y2) ∧ (dobj(y2) = x2) ∧ in(y1, x2) ∧ green(x3) ∧ in(y2, x3))

G1 : young(x1) ∧ cat(x1) ∧ play(y1) ∧ (subj(y1) = x1)
∧green(x2) ∧ house(x2) ∧ in(y1, x2))

P2 : kitten(x1), P3 : play(y1), P4 : (subj(y1) = x1)
P5 : house(x2), P6 : color(y2), P7 : (dobj(y2) = x2), P8 : in(y1, x2), P9 : green(x3), P10 : in(y2, x3)
G2 : young(x1), G3 : cat(x1), G4 : play(y1), G5 : (subj(y1) = x1)
G6 : green(x2), G7 : house(x2), G8 : in(y1, x2)

P2 : kitten(x1), P3 : play(y1), P4 : (subj(y1) = x1)
P5 : house(x2), P6 : color(y2), P7 : (dobj(y2) = x2), P8 : in(y1, x2), P9 : green(x3), P10 : in(y2, x3)
G2 : young(x1), G3 : cat(x1), G4 : XXXXXplay(y1), G5 :

hhhhhhhh(subj(y1) = x1)
G6 : green(x2), G7 :

XXXXXXhouse(x2), G8 : XXXXXin(y1, x2)

P2 : kitten(x1), P3 : play(y1), P4 : (subj(y1) = x1)
P5 : house(x2), P6 : color(y2), P7 : (dobj(y2) = x2), P8 : in(y1, x2), P9 : green(x3), P10 : in(y2, x3)
G2 :

XXXXXXyoung(x1), G3 : XXXXcat(x1), G4 : XXXXXplay(y1), G5 :
hhhhhhhh(subj(y1) = x1)

G6 :
XXXXXXgreen(x2), G7 :

XXXXXXhouse(x2), G8 : XXXXXin(y1, x2)

AXIOMS ∀x(kitten(x) → young(x)), ∀x(kitten(x) → cat(x)), ∀x(green(x))

∧-ELIM (P1)×8, ∧-INTRO (G1)×6

∃-ELIM (P0)×5 , ∃-INTRO (G0)×3

FIGURE 3.4: The proof process for proving the entailment relation
A′ → B′.

Next, we attempt the proof in the opposite direction, i.e., B′ → A′, in the same

way. Here, B′ is set to the premise and A′ is set to the conclusion.

B′ : ∃y1∃x1∃x2(young(x1) ∧ cat(x1) ∧ play(y1) ∧ (subj(y1) = x1)

∧ green(x2) ∧ house(x2) ∧ in(y1, x2))

A′ : ∃y1∃y2∃x1∃x2∃x3(kitten(x1) ∧ play(y1) ∧ (subj(y1) = x1)

∧ house(x2) ∧ color(y2) ∧ (dobj(y2) = x2) ∧ in(y1, x2) ∧ green(x3) ∧ in(y2, x3))

Again, following the proof process described in Figure 2.6, we can obtain the

following set of premises P and a set of unproved sub-goals G:

P = {young(x1), cat(x1), play(y1), subj(y1) = x1, in(y1, x2), green(x2), house(x2)}

G = {kitten(x1), color(y2), in(y2, x3), green(x3), dobj(y2) = x2}
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If all sub-goals can be removed from G, we can prove B′ → A′. We can see five

sub-goals still remain in G and we fail to prove B′ → A′. Thus we attempt to prove

B′ → A′ using word axiom injection similarly. Here, the one sub-goal kitten(x1) and

the two premises young(x1) and cat(x1) share the same variable x1. Thus we calcu-

late the similarity between kitten and young and the similarity between kitten and

cat. Accordingly, the similarity between kitten and cat is higher than that between

kitten and young and we can generate the axiom ∀x.(cat(x) → kitten(x)). Note

that this axiom is not logically correct. Like this case, axioms based on the similar-

ity (i.e., the axiom score) are not always logically correct because semantic similarity

does not have semantic directions. However, the lack of vocabulary is a more crucial

problem and lexical relations are not strictly determined in some cases of natural lan-

guage inference. Thus, I combine a word embedding model with lexical knowledge

for the vocabulary expansion and use an axiom score for selecting correct axioms.

With this axiom, the sub-goal kitten(x1) can be removed. Regarding the sub-

goal green(x3), the predicate green is in common with the premise green(x2). In

that case, we generate the axiom ∀x.(green(x)) and remove the sub-goal green(x3)

exceptionally, even if there are no premises that do not share the same variable with

the sub-goal.

Here, the three sub-goals color(y2), in(y2, x3), and dobj(y2) = x2 do not match

any of the premises, so the attempted proof of B′ → A′ still fails. If the proof by

axiom injection fails because of a lack of lexical knowledge, I obtain information

about semantic relations from partial proofs by simply accepting the unproved sub-

goals and forcibly completing the proof. The intention of forcibly completing the

proof is to obtain information from a partial proof. In this example, we forcibly

complete the proof of B′ → A′ by skipping these three unproved sub-goals. In

summary, the proof process for the proof for the reverse entailment relation B′ → A′

is described by Figure 3.5.

After all bidirectional proofs are completed, the information about the generated

axioms and skipped sub-goals in Figure 3.4 and Figure 3.5 is used to create features.

These proofs are performed by an automated prover implemented in a proof assis-

tant Coq.
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P0 : ∃y1∃x1∃x2(young(x1) ∧ cat(x1) ∧ play(y1) ∧ (subj(y1) = x1)
∧green(x2) ∧ house(x2) ∧ in(y1, x2))

G0 : ∃y1∃y2∃x1∃x2∃x3(kitten(x1) ∧ play(y1) ∧ (subj(y1) = x1)
∧house(x2) ∧ color(y2) ∧ (dobj(y2) = x2) ∧ in(y1, x2) ∧ green(x3) ∧ in(y2, x3))

P1 : young(x1) ∧ cat(x1) ∧ play(y1) ∧ (subj(y1) = x1)
∧green(x2) ∧ house(x2) ∧ in(y1, x2))

G1 : kitten(x1) ∧ play(y1) ∧ (subj(y1) = x1)
∧house(x2) ∧ color(y2) ∧ (dobj(y2) = x2) ∧ in(y1, x2) ∧ green(x3) ∧ in(y2, x3))

P2 : young(x1), P3 : cat(x1), P4 : play(y1), P5 : (subj(y1) = x1)
P6 : green(x2), P7 : house(x2), P8 : in(y1, x2)
G2 : kitten(x1), G3 : play(y1), G4 : (subj(y1) = x1)
G5 : house(x2), G6 : color(y2), G7 : (dobj(y2) = x2), G8 : in(y1, x2), G9 : green(x3), G10 : in(y2, x3)

P2 : young(x1), P3 : cat(x1), P4 : play(y1), P5 : (subj(y1) = x1)
P6 : green(x2), P7 : house(x2), P8 : in(y1, x2)
G2 : kitten(x1), G3 : XXXXXplay(y1), G4 :

hhhhhhhh(subj(y1) = x1)
G5 :

XXXXXXhouse(x2), G6 : color(y2), G7 : (dobj(y2) = x2), G8 : XXXXXin(y1, x2), G9 : green(x3), G10 : in(y2, x3)

P2 : young(x1), P3 : cat(x1), P4 : play(y1), P5 : (subj(y1) = x1)
P6 : green(x2), P7 : house(x2), P8 : in(y1, x2)
G2 :

XXXXXXkitten(x1), G3 : XXXXXplay(y1), G4 :
hhhhhhhh(subj(y1) = x1)

G5 :
XXXXXXhouse(x2), G6 : color(y2), G7 : (dobj(y2) = x2), G8 : XXXXXin(y1, x2), G9 :

XXXXXXgreen(x3), G10 : in(y2, x3)

AXIOMS ∀x(cat(x) → kitten(x)), ∀x(green(x))

∧-ELIM (P1)×6, ∧-INTRO (G1)×8

∃-ELIM (P0)×3 , ∃-INTRO (G0)×5

FIGURE 3.5: The proof process for proving the entailment relation
B′ → A′.
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3.4 Feature selection

To maximize the performance of predicting entailment relations and similarities, I

adopt a hybrid approach where I use both logic-based features extracted from the

natural deduction proof and non-logic-based features. All features are scaled to the

range [0, 1].

3.4.1 Logic-based features

In this thesis, I design 15 logic-based features, 12 of which are derived from the bidi-

rectional natural deduction proofs. That is, six features are extracted from the direct

proof (A′ → B′) and another six from the reverse proof (B′ → A′). The remaining

three features are derived from semantic representations of the sentence pairs. Since

the raw proof paths from Coq’s output included redundant proof paths or noisy

paths, I designed features that characterize natural deduction proofs from the raw

proof paths. These 15 logic-based features are instantiated from the following nine

feature types:

Logical inference result

As described in Section 3.5.1, sentence pairs with the entailment label tend to

be scored much more highly, and sentence pairs with the contradiction label

tend to be scored a little more highly than the average similarity. Consider-

ing this tendency, I include features to distinguish the case where either the

conclusion or its negation can be proved from the case where neither can be

proved. I deal with the logical inference result (i.e., entailment, contradiction,

or neutral) as features with different dimensions respectively. If the logical in-

ference result matches any result, the feature is set to 1.0 in its dimension, and

if not, the feature is set to 0.0.

Score of axioms

I assume the hypothesis that if axiom scores used in the proof are scored highly,

a sentence pair is more similar. Therefore, I use the score of an axiom and the

number of axioms appearing in the proof to create features. As described in the

previous section, the score of an axiom generated with WordNet is defined as

the inverse of the length of the shortest path that connects the senses in the is-a

(hypernym/hyponym) taxonomy in WordNet. The score of an axiom gener-

ated based on the threshold of the word similarity calculated using Word2Vec
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is defined as the word cosine similarity. When multiple axioms are used in the

proof, the average of the scores of the axioms is extracted as a feature. If the

proof can be completed without using axioms, the feature is set to 1.0.

Proved sub-goals

Given that proofs can be obtained either by proving all the sub-goals or skip-

ping unproved sub-goals, I use the proportion of proved sub-goals as a feature.

My assumption is that if there are more unproved sub-goals, then the sentence

pair is less similar. When there are m logical formulas in the premise pool and

n proved sub-goals, I set the feature to n/m. If the theorem can be proved with-

out skipping any sub-goals, the feature is set to 1.0. Here, there are two types

of logical formulas that may remain as sub-goals: predicates (e.g., girl(x1),

on(y1, x3)) and functional relations between terms (e.g., subj(y1) = x1) There-

fore, I count the number of sub-goals by each type of logical formula, and treat

it as a feature of a different dimension. It may be the case that the number

of sub-goals is so large that some sub-goals remain unproved even after ax-

iom injection. Since the proportion of unproved sub-goals decreases by axiom

injection, I use the proportion of unproved sub-goals both with and without

axiom injection as features.

Semantic roles in unproved sub-goals

Subject or object words can strongly affect the similarity of sentence pairs com-

pared with prepositions. Therefore, the number of each semantic role in un-

proved sub-goals, like subj(y1) in Figures 2.6 and 2.8, is used as a feature in a

different dimension respectively. Here, I count three semantic roles: subjective

(subj), direct objective (dobj), and indirect objective (iobj).

Proof steps

As shown in Section 3.1, in general, complex theorems are difficult to prove,

and in such cases, the sentence pairs are considered to be less similar. I there-

fore use the number of Coq’s proof steps, namely the number of inference rule

applications in a given proof, as a feature.

Inference rules

The complexity of a natural deduction proof can be measured in terms of the

inference rules used for each proof step. I therefore extract the relative fre-

quency with which each inference rule is used in the proof as a feature in a
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different dimension respectively. I check seven inference rules used in the nat-

ural deduction proof using Coq (cf. Figure 2.5): introduction and elimination

rules for conjunction (∧-INTRO, ∧-ELIM), implication (→-INTRO, →-ELIM), and

existential quantification (∃-INTRO, ∃-ELIM) and the elimination rule for equal-

ity (=-ELIM).

Predicate overlap

Intuitively, the more predicates that overlap between the premise and the con-

clusion, the more likely it is that the inference can be proved. I therefore use the

proportion of predicates that overlap between the premise and the conclusion

as a feature.

Semantic type overlap

Each semantic representation in higher-order logic has a semantic type, such

as Entity for entities and Prop for propositions. As is the case with the predicate

overlap, the more types that overlap between the premise and the conclusion,

the more likely it is that the inference can be proved. As with predicates, I use

the degree of semantic type overlap between the premise and the conclusion

as a feature.

Existence of negative clauses

Whether or not the premise or conclusion contains negative clauses is an effec-

tive measure of semantic relations between sentences. In semantic representa-

tions, negative clauses are represented by the negation operator ¬, so I check

for negation operators in the premise and the conclusion and set this feature to

1.0 if either contains one.

3.4.2 Non-logic-based features

To capture the semantic relation between sentences more accurately, I combine logic-

based features with non-logic-based features, extracted from surface information or

by using external knowledge. I select the following nine non-logic-based features.

Noun/verb overlap

I assume that sentences tend to be similar if their degrees of overlap of the

noun and verb is high. I extract and lemmatize all nouns and verbs from the
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sentence pairs and use the degrees of overlap of the noun and verb lemmas as

features.

Part-of-speech overlap

It might be the case that the similarity between syntactic structures affects se-

mantic relations between sentences. Therefore, I obtain part-of-speech (POS)

tags for all words in the sentence pairs by first tokenizing them with the Penn

Treebank Project tokenizer2 and then POS tagging them with the C&C POS

tagger (Curran and Clark, 2003). The degree of overlap between the sentences’

POS tags is used as a feature.

Synset overlap

If relatively synonymous words are used in a sentence pair (e.g., woman and

lady), these words will belong to the same synset. Therefore, I have the hy-

pothesis that the textual similarity tends to be high if synset overlap between

sentences is high. For each sentence in the pair, I obtain the set containing

all the synonym lemmas (i.e., the synset) for the words in the sentence. The

degree of overlap between the sentences’ synsets is used as a feature.

Synset distance

For each word in the first sentence, I compute the maximum path similarity

between its synset and the synset of any other word in the second sentence.

Then, I use the average of maximum path similarities as a feature.

Sentence length

If a conclusion is much longer than a premise, there will possibly be many sub-

goals in the proof. If the lengths of both a conclusion and a premise are too

long, there will also possibly be many proof steps in the proof. This means the

average length of the sentence pair and the difference in length affect semantic

relations between the sentences. I therefore use the average of the sentence

lengths and the difference in length between a premise and a conclusion as

features.

String similarity

Especially in the case containing derivation words such as “I comprehend this

phrase” and “I have a comprehension of this phrase,” the string similarity affects

2ftp://ftp.cis.upenn.edu/pub/treebank/public_html/tokenization.html
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the semantic relations between such sentences. Therefore, I use the similarity

of the sequence of characters within the sentence pairs as a feature. The Python

Difflib3 function returns the similarity between two sequences as a floating-

point value in the range [0, 1]. This measure is given by 2.0 ∗ M/T, where

T is the total number of elements in both sequences and M is the number of

matches. This feature is 1.0 if the sequences are identical and 0.0 if they have

no characters in common.

Sentence similarity from vector space models

As introduced in Section 3.1, vector space models are widely used to calcu-

late textual similarity especially in information retrieval applications. In this

model, a sentence is represented using a vector (possibly derived from a count

vector), which is an effective way to calculate the superficial similarity between

sentences. I calculate three kinds of sentence similarity by using three major

vector space models, TF-IDF, latent semantic analysis (LSA) (Deerwester et al.,

1990), and latent Dirichlet allocation (LDA) (Blei, Ng, and Jordan, 2003), and

I use them as features, respectively. The dimension of each sentence vector is

200. I use these cosine similarities as features.

Mapping cost of CCG derivation tree

I have a hypothesis that two sentences are similar if their CCG derivation trees

are similar. Therefore, I compute the mapping cost of their CCG derivation

trees by using a tree-to-tree mapping algorithm proposed by Martínez-Gómez

and Miyao (2016). A value obtained by dividing the mapping cost by the total

number of nodes of the derivation tree of the sentence pair is used as a feature.

Existence of passive clauses

The existence of passive clauses has an influence on textual similarity. For

example, the sentence “The game of basketball consists of a ball being dunked by a

man with a jersey” perfectly entails the sentence “A man with a jersey is dunking

the ball at a basketball game,” while their similarity is annotated as 4.2 in the

SICK dataset. In this example, the topic of the sentence is changed by the use

of passive clauses (i.e., the topic of the first sentence is “a man,” while the topic

of the second sentence is “the game”), affecting the similarity.

3https://docs.python.org/3.5/library/difflib.html



3.5. Experiments 59

In CCG trees, passive clauses are represented using the syntactic category

Spss\NP. I check the occurrence of passive clauses in the premise and con-

clusion, and if either of them contains a passive clause, then the feature is set

to 1.0.

3.5 Experiments

3.5.1 Dataset for evaluation experiments

To evaluate models and systems for learning textual entailment and similarity, datasets

for RTE and STS tasks have been developed. I first introduce some gold-standard

datasets for RTE and STS tasks.

The SemEval-2014 Task1 SICK dataset, which is one of the main evaluation datasets

for this thesis, is a dataset for studying both STS and RTE. It was originally devel-

oped for evaluating compositional distributional semantics, so it contains the lexical,

syntactic, and semantic phenomena that a compositional distributional semantics

framework is expected to account for. Particularly, this dataset contains logically

challenging expressions such as quantifiers, negations, conjunctions, and disjunc-

tions.

The SICK dataset was built starting from two baseline datasets: the 8K Image-

Flickr dataset (Rashtchian et al., 2010) and the SemEval-2012 STS MSR-Video De-

scription dataset (Agirre et al., 2012). These two baseline datasets contain sentences

that describe the same picture or video, and thus contain many paraphrases and

generic terms. First, the original sentences from these baseline datasets were normal-

ized to remove unwanted linguistic phenomena. Then, the normalized sentences

were expanded to obtain up to three new sentences; (i) a sentence with a similar

meaning, (ii) a sentence with a logically contradictory or at least highly contrasting

meaning, and (iii) a sentence that contains most of the same lexical items, but has a

different meaning. Finally, all the sentences generated in the expansion phase were

paired to the normalized sentences in order to obtain the final SICK dataset.

The SICK dataset contains 4, 500 problems for training, 500 for trial and 4, 927 for

testing. These sentence pairs are manually annotated with three types of labels, yes

(entailment), no (contradiction), or unknown (neutral), as well as a semantic similarity

score in the range [1, 5] determined using crowdsourcing. The average number of

words per sentence is 10. Table 3.2 shows some examples in the SICK dataset.
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Sentence Pair Entailment Similarity
A dog is chasing another and is holding a stick in its mouth Yes 4.6A dog is chasing another and is holding a piece of wood in its mouth
There is no dog running and carrying an object in its mouth No 3.5Two dogs are running and carrying an object in their mouths
The girl, who is little, is combing her hair into a pony tail Unknown 1.2A man in a red shirt is doing a trick with the rollerblades
Two men are taking a break from a trip on a snowy road Unknown 3.8Two men are holding bikes and standing on the side of a road covered of snow

TABLE 3.2: Examples in the SICK dataset with different entailment
labels and similarity scores.

Table 3.3 shows the distribution of gold entailment labels and similarity scores

in the whole SICK dataset. Regarding the relation between similarities and gold

entailment labels, sentence pairs whose gold labels are no tend to be scored a little

more highly than the average, whereas those whose labels are unknown have a wide

range of scores. Sentence pairs whose gold labels are yes clearly tend to be scored

more highly. Regarding the distribution of gold entailment labels, the majority of

the problems are labeled as neutral.

Similarity Yes No Unknown Total
[1,2) range 0% 0% 10% 10%
[2,3) range 1% 0% 13% 14%
[3,4) range 10% 1% 28% 39%
[4,5) range 3% 27% 7% 37%

Total 14% 28% 58% 100%

TABLE 3.3: Distribution of gold labels and similarity scores in the
whole SICK dataset.

The SemEval-2012 MSR-vid dataset is the second evaluation dataset I used for

the STS task. This dataset contains 1, 500 sentence pairs with a 750/750 training/test

split. The average number of words per sentence is six, which is fewer than that of

the SICK dataset. All sentence pairs are annotated with similarity scores in the range

[0, 5]. Table 3.4 shows some examples in the MSR dataset.

Sentence Pair Similarity
The man hit the other man with a stick 4.2The man spanked the other man with a stick
There is no man eating some food 2.7A man is playing a flute
A woman is slicing big pepper 0.0A dog is moving its mouth

TABLE 3.4: Examples in the MSR-video dataset.
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The Stanford Natural Language Inference (SNLI) dataset (Bowman et al., 2015)

is a large dataset for the RTE task. It contains over 570K sentence pairs. Hypothe-

ses were written by crowd workers who were given the premise and asked to write

one definitely true sentence, one possibly true sentence, and one definitely false sen-

tence for given premises that were written as hypotheses. However, it is not con-

cerned with logically challenging expressions; the semantic relationships between

a premise and a hypothesis are often limited to synonym/hyponym lexical substi-

tution, replacement of short phrases, or exact word matching. This is because hy-

potheses are often parallel to the premise in structures and vocabularies. A recent

study on the SNLI dataset (Tsuchiya, 2018) reports that this dataset has a hidden bias

which allows prediction of entailment labels from hypothesis sentences even if no

context information is given by a premise.

The Multi-Genre Natural Language Inference (MultiNLI) dataset (Williams, Nan-

gia, and Bowman, 2017) is also a large dataset designed for use in the development

and evaluation of machine learning models for sentence understanding. Compared

with the SNLI dataset, the MultiNLI dataset represents both written and spoken lan-

guage across a range of styles, degrees of formality, and topics. This dataset contains

over 390K sentence pairs. As shown in this sentence pair below, there are many un-

grammatical cases in the MultiNLI dataset, especially the cases derived from spoken

speech:

(19) a. yeah well i’m a hot weather person i’m i can take the heat but i don’t like the cold

b. I do not like warm weather at all

As my method is based on syntactic analysis, such ungrammatical cases are out-of-

scope in this thesis.

The multi premise entailment dataset (Lai, Bisk, and Hockenmaier, 2017) is an

RTE dataset containing multiple premise sentences. This dataset contains 10,000

cases with a 8, 000/1, 000/1, 000 training/development/test split. Each case consists

of four premise sentences (captions from the same 30K ImageFlickr), one hypothesis

sentence (a simplified 30K ImageFlickr caption), and one label (entailment, contra-

diction, or neutral) that indicates the relationship between the set of four premises

and the hypothesis. This label is based on a consensus of five crowdsourced judg-

ments. However, a hypothesis sentence is too simplified (the length of a hypothesis
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sentence is three or four words in many cases) and this dataset is not concerned with

logical expressions.

The FraCaS dataset (Cooper et al., 1994) is a dataset designed to evaluate theories

of formal semantics. The whole dataset is divided into nine sections, each devoted

to linguistically and logically challenging problems. Each problem consists of one

or more premise sentences and one hypothesis sentence. However, it is confined

to genuine logical inference and thus does not contain problems requiring lexical

knowledge. In addition, this dataset contains only 346 cases, which were not de-

signed for machine learning approaches.

For these reasons, I mainly chose two datasets for evaluating my system: the

SICK dataset and the MSR-video dataset.

3.5.2 Experimental setting

I evaluated my system in both RTE and STS tasks using the SemEval-2014 SICK

dataset. I used the training and trial split of the SICK dataset for training the ran-

dom forest model and evaluated the prediction performance of the test split. Regard-

ing the STS task with the SICK dataset, I compared my system with the following

systems: the state-of-the-art neural network-based system Siamese-LSTM (Mueller

and Thyagarajan, 2016); the SemEval-2014 best system (Zhao, Zhu, and Lan, 2014);

and two logic-based systems: namely The Meaning Factory (Bjerva et al., 2014) and

UTexas (Beltagy et al., 2014). As described in Section 1.2.3, I used three standard

evaluation metrics from the SemEval-2014 shared task: Pearson correlation coeffi-

cient γ, Spearman’s rank correlation coefficient ρ, and MSE.

Regarding the RTE task with the SICK dataset, I compared my system with the

following systems: the state-of-the-art neural network-based system GRU (Yin and

Schütze, 2017); the SemEval-2014 best system (Lai and Hockenmaier, 2014); and

three logic-based systems: The Meaning Factory (Bjerva et al., 2014), UTexas (Belt-

agy et al., 2014) and the previous system ccg2lambda with word abduction (Martínez-

Gómez et al., 2017). I used precision, recall and accuracy (described in Section 1.2.2)

as evaluation metrics.

I also evaluated my system in the STS task using the SemEval-2012 MSR-video

dataset to compare my system with the SemEval-2012 best system (Bär et al., 2012)

and the logic-based UTexas system (Beltagy, Erk, and Mooney, 2014). I used the

training split of the MSR-video dataset for training the random forest model and
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evaluated the prediction performance of the test split. I used the standard evaluation

metric from the SemEval-2012 shared task, i.e., Pearson correlation coefficient γ as

the evaluation metric in the STS task with the MSR-video dataset.

3.5.3 Comparison with other systems

Semantic textual similarity

Table 3.5 shows the evaluation results of my experiment with the SICK dataset

on the STS task.

γ ρ MSE
Siamese-LSTM 0.882 0.835 0.229
My system (WordNet) 0.842 0.799 0.299
My system (WordNet+Word2Vec) 0.841 0.798 0.300
My system (Word2Vec) 0.822 0.768 0.329
The Meaning Factory 0.827 0.772 0.322
UTexas 0.714 0.674 0.499

TABLE 3.5: Results of the test split of SICK STS.

Although the state-of-the-art neural network-based system yielded the best results

overall, my system achieved higher scores than SemEval-2014 submissions, includ-

ing the two logic-based systems (i.e., The Meaning Factory and UTexas). As I men-

tioned above, the sentence pairs annotated as unknown produced a wide range of

scores. The Pearson correlation of the unknown portion of the SICK dataset was

0.766, which suggests that my logic-based system can also be applied to sentences

with the neutral label. Regarding the difference in lexical knowledge, my system

provided the best performance when only WordNet was used as lexical knowledge.

Using Word2Vec as linguistic knowledge often causes excessive generation of ax-

ioms and induces incorrect proofs, especially in cases where it is necessary to inject

phrasal knowledge into the proof. I describe the detail of this error phenomena in

the last subsection (error analysis) of this chapter. Also, the Word2Vec model relies

on the distributional hypothesis and cannot distinguish antonyms from synonyms.

This causes generation of wrong axioms.

For example, the correct similarity score of the sentence pair ID 677 in the test

dataset was 3.6 and the prediction score when using WordNet was the same, while

the prediction score when using Word2Vec was 4.1.

A dog, which is black, and a white one are ignoring each other in the street
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A dog, which is black, and a white one are staring at each other in the street

The semantic relation between these sentences is the contradiction because the word

ignore is the antonym of the word stare. When using WordNet, I generated the

antonym axiom ∀x(ignore(x) → stare(x) → False) and prove the contradiction.

Conversely, when using Word2Vec, I wrongly generated only the synonym axiom

∀x(ignore(x) → stare(x)) and prove the entailment relation. For these reasons, the

performance was the best when only WordNet was used as lexical knowledge for

the SICK dataset.

Table 3.6 shows the evaluation results of my experiment with the MSR-video

dataset on the RTE task.

γ

SemEval-2012 Best Score 0.873
My system 0.853
UTexas 0.830

TABLE 3.6: Results of the test split of MSR-video STS.

These results also indicate that my logic-based system achieved higher performance

than the other logic-based systems. Regarding the difference in lexical knowledge,

my system provided the best performance when both WordNet and Word2Vec were

used as lexical knowledge. Compared with the SICK dataset, there are many short

sentence pairs in the MSR-video dataset and there are not many cases where phrasal

knowledge should be considered in logical inferences. Thus, using Word2Vec in

the MSR-video dataset was an effective way to increase vocabulary. This result also

indicates that adequate lexical knowledge depends on the characteristics of the tar-

get dataset. Accordingly, my hybrid system does not depend on types of lexical

knowledge and it is easy to combine with various lexical knowledge such as domain-

specific knowledge.

Recognizing textual entailment

Table 3.7 shows the evaluation result of the experiment with the SICK dataset on the

RTE task. My system achieved the state-of-the-art accuracy on the RTE task when

only WordNet or both WordNet and Word2Vec were used for the lexical knowledge.

As with the evaluation result in the STS task, my system provided the best accuracy

when only WordNet was used for lexical knowledge. The precision increased and

the recall decreased when using both WordNet and Word2Vec since the number of
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proofs of correct entailment relations increased and the number of proofs of correct

contradiction decreased by using Word2Vec.

Precision Recall Accuracy
My system (WordNet) 0.906 0.797 0.877
My system (WordNet+Word2Vec) 0.919 0.775 0.874
My system (Word2Vec) 0.870 0.733 0.841
GRU − − 0.871
SemEval2014 Best Score 0.816 0.819 0.846
ccg2lambda 0.970 0.636 0.831
The Meaning Factory 0.936 0.606 0.816
UTexas − − 0.734

TABLE 3.7: Results of the test split of SICK RTE.

3.5.4 Feature ablation and isolation

Semantic textual similarity

Table 3.8 shows ablation results with the SICK dataset on the STS task. In my ab-

lation study, I removed each feature from all features and trained the model. The

intention of this ablation study is to assess the prediction performance of each fea-

ture. While there was no change in the prediction performance when each feature

was removed, the inference result was the most effective feature of logic-based fea-

tures in the ablation analysis. This result indicates that the similarity of a sentence

pair tends to be higher when the gold label of RTE is entailment or contradiction, as

described in Section 3.5.1. The cosine similarity of vector space models was the most

effective feature of non-logic-based features. This result indicates that the surface

information is more effective for the prediction of textual similarity.

As shown in Table 3.8, when all logic-based features were removed in training,

the performance significantly decreased, compared to the case when all non-logic-

based features were removed. This result indicates that logic-based features have

more effects that improve prediction performance than non-logic-based features.

When the features derived from the process of theorem proving (i.e., proved sub-

goals, semantic roles of unproved sub-goals, proof steps, inference rules, and ax-

iom score) were removed, the prediction performance decreased more significantly,

compared with the case when the features were derived from the logical formulas
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γ ρ MSE
- Logical inference result 0.8355 0.7900 0.3077
- Predicate overlap 0.8376 0.7976 0.3072
- Score of axioms 0.8388 0.7963 0.3044
- Proved sub-goals 0.8407 0.7946 0.3013
- Proof steps 0.8409 0.7982 0.3008
- Semantic type overlap 0.8410 0.7982 0.3007
- Unproved sub-goals’ case 0.8414 0.7995 0.3000
- Negative clauses 0.8420 0.7988 0.2990
- Inference rules 0.8430 0.8005 0.2972
- Vector space model 0.8288 0.7925 0.3208
- Noun/verb overlap 0.8373 0.7934 0.3048
- Passive clauses 0.8396 0.7959 0.3027
- Sentence length 0.8397 0.7978 0.3026
- String similarity 0.8403 0.7970 0.3018
- Synset overlap 0.8405 0.7974 0.3012
- Synset distance 0.8406 0.7982 0.3011
- Tree mapping cost 0.8406 0.7980 0.3013
- Part-of-speech overlap 0.8412 0.7983 0.3003
- Proving Process 0.8326 0.7900 0.3146
- Logical Formulas 0.8375 0.7958 0.3073
- Only logic-based 0.7847 0.7237 0.3937
- Only non logic-based 0.8114 0.7820 0.3483
All 0.8420 0.7988 0.2990

TABLE 3.8: Ablation results on SICK STS.

(i.e., predicate overlap, type overlap, and existence of negation). This result sug-

gests that features extracted from the process of theorem proving contribute to the

performance of predicting textual similarity.

Table 3.9 shows the evaluation results when training the regressor with each fea-

ture group in isolation with the SICK dataset on the STS task. The performance

was the highest when only the feature of predicate overlap was used. This result

indicates that a logical formula represents linguistic information in a sentence more

precisely. In tree mapping cost and passive clauses, the Pearson correlation was al-

most 0. This result indicates that these features have no effect for the prediction of

textual similarity. However, regarding similarity, 76% of sentence pairs in the SICK

dataset are annotated in the range of [3, 5]. This causes the MSE result to be almost

1.0 although the tree mapping cost and passive clauses are not effective features.
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γ ρ MSE
Predicate overlap 0.6818 0.6105 0.5454
Proved sub-goals 0.6302 0.6012 0.6144
Inference rules 0.5611 0.5360 0.6988
Logical inference result 0.5493 0.5425 0.7117
Unproved sub-goals’ case 0.5233 0.4965 0.7402
Proof steps 0.4381 0.4386 0.8296
Score of axioms 0.3787 0.3621 0.8732
Semantic type overlap 0.2333 0.2137 0.9641
Negative clauses 0.1615 0.2061 0.9924
Noun/verb overlap 0.6560 0.5598 0.5805
Vector space model 0.6086 0.5260 0.6602
String similarity 0.4857 0.4786 0.7788
Synset distance 0.4331 0.3953 0.8279
Synset overlap 0.4191 0.3849 0.8422
Part-of-speech overlap 0.3504 0.3484 0.8940
Sentence length 0.2621 0.2685 0.9490
Tree mapping cost 0.0347 0.0208 1.0179
Passive clauses 0.0987 0.1087 1.0092
Only logic-based 0.8114 0.7820 0.3483
Only non logic-based 0.7847 0.7237 0.3937
All 0.8420 0.7988 0.2990

TABLE 3.9: Results when training the regressor with each feature
group in isolation on SICK STS.

Recognizing textual entailment

Table 3.10 shows ablation results with the SICK dataset on the RTE task. As is

the same with ablation results on the STS task, there was no significant fluctuation in

accuracy in the case when each feature was removed alone. This result indicates that

logic-based features have more effects to improve accuracy than non-logic-based fea-

tures. When the features derived from the process of theorem proving (i.e., proved

sub-goals, semantic roles of unproved sub-goals, proof steps, inference rules, and ax-

iom score) were removed, the accuracy decreased more significantly, compared with

the case when the features derived from the logical formulas (i.e., predicate overlap,

type overlap, and existence of negation). This result suggests that features extracted

from the process of theorem proving contribute to the performance of predicting

entailment/contradiction labels.

Among logic-based features, the proof step was the most effective feature in the

ablation result. I discuss this result by comparing the ablation result on RTE task

with that on STS task. Superficial overlap such as cosine similarity between sentence

vectors strongly affects the prediction performance on STS task, while semantic over-

lap such as the proof step strongly effects the accuracy on RTE task. This indicates

the difference between the RTE task and STS task: while the RTE task requires deep
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Precision Recall Accuracy
- Proof steps 0.9176 0.7345 0.8569
- Proved sub-goals 0.9123 0.7782 0.8729
- Inference rule 0.9202 0.7768 0.8755
- Unproved sub-goals’ case 0.9120 0.7853 0.8755
- Negation clauses 0.9155 0.7853 0.8765
- Logical inference result 0.9122 0.7877 0.8767
- Score of axioms 0.9110 0.7905 0.8771
- Semantic type overlap 0.9267 0.8027 0.8771
- Predicate overlap 0.9138 0.7891 0.8778
- Passive clauses 0.9134 0.7745 0.8710
- Vector space model 0.9016 0.7848 0.8712
- String similarity 0.9125 0.7853 0.8753
- Noun/verb overlap 0.9051 0.7947 0.8763
- Part-of-speech overlap 0.9161 0.7863 0.8769
- Tree mapping cost 0.9073 0.7971 0.8780
- Sentence length 0.9145 0.7095 0.8782
- Synset distance 0.9079 0.7980 0.8784
- Synset overlap 0.9069 0.7976 0.8786
- Proving Process 0.9038 0.7247 0.8238
- Logical Formulas 0.9125 0.7900 0.8771
- Only logic-based 0.7618 0.6474 0.7869
- Only non-logic-based 0.9255 0.7491 0.8659
All 0.9058 0.7971 0.8774

TABLE 3.10: Ablation results on SICK RTE.

semantic analysis, the STS task is based on distributional analysis.

Furthermore, the prediction accuracy decreased when the axiom score feature

was removed, whereas accuracy increased when the synset distance feature or the

overlap rate of synsets feature was removed. I consider the reason for this pattern

by comparing the axiom score with synset distances and the overlap rate of synsets.

To calculate the synset distance feature and the overlap rate of synsets feature, I

consider distances or overlap about for possible word pairs in a premise and conclu-

sion. On the other hand, to calculate the axiom score feature, I consider similarities

for word pairs only necessary for logical inference. This indicates that the axiom

score represents the meaning relatedness of content words more correctly than the

synset distance and the overlap rate of synsets. Thus, the axiom score feature is a

more effective feature for predicting entailment/contradiction labels in the RTE task.

Table 3.11 shows the evaluation result when training the classifier with each fea-

ture group in isolation with the SICK dataset on the RTE task. As shown in Ta-

ble 3.11, the accuracy was highest when only the inference result was used as the

feature in training. Regarding the five kinds of features (i.e., type overlap, existence

of passive clauses, part-of-speech overlap, sentence lengths, and mapping cost of
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Precision Recall Accuracy
Logical inference result 0.5628 0.5104 0.7002
Proved sub-goals 0.5995 0.5913 0.7219
Score of axioms 0.7292 0.3512 0.7158
Inference rule 0.6371 0.6026 0.7123
Predicate overlap 0.5628 0.5104 0.7002
Proof steps 0.6465 0.4529 0.6908
Unproved sub-goals’ case 0.7242 0.1620 0.6177
Negation clauses 0.6036 0.2990 0.6110
Semantic type overlap - 0.0000 0.5651
Vector space model 0.5439 0.5400 0.6839
Noun/verb overlap 0.7399 0.6737 0.6544
String similarity 0.4897 0.3701 0.6413
Synset overlap 0.4557 0.2302 0.6075
Synset distance 0.4062 0.2081 0.5911
Passive clauses 0.9211 0.0330 0.5790
Part-of-speech overlap 0.3269 0.0160 0.5661
Sentence length 0.4619 0.0513 0.5649
Tree mapping cost 0.2222 0.0009 0.5645
Only logic-based 0.9255 0.7491 0.8659
Only non logic-based 0.7618 0.6474 0.7869
All 0.9058 0.7971 0.8774

TABLE 3.11: Results when training the regressor with each feature
group in isolation on SICK RTE.

syntactic trees) the recall score was remarkably low, around less than 0.1. In the case

when these features were used in isolation, my system predicted neutral labels in

almost all sentence pairs. This result suggests that these features do not contribute

to accuracy when these features are used in isolation.

3.5.5 Evaluation by each gold label

Semantic textual similarity

Table 3.12 shows the evaluation results for each gold similarity score on SICK STS,

where my proposed method achieved the highest performance in the range [4, 5].

About 80% of sentence pairs whose gold similarity scores are in the range [4, 5] are

annotated as entailment or contradiction in RTE. This fact indicates that my pro-

posed method predicts similarity scores more accurately in sentence pairs that have

logical relations.
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Gold similarity score Cases γ ρ MSE
[1, 2) 300 0.4631 0.4522 0.7203
[2, 3) 800 0.2829 0.2849 0.3980
[3, 4) 2000 0.2280 0.2104 0.2028
[4, 5] 1654 0.6185 0.6408 0.2673
All 4927 0.8420 0.7988 0.2290

TABLE 3.12: Evaluation results for each gold similarity score (SICK
STS).

Recognizing textual entailment

Table 3.13 shows evaluation results for each gold label on SICK RTE. Here I eval-

uated the results based on precision score, recall score, and F1-score in three-class

(i.e., yes, no, or unknown) classification. This result shows that my proposed method

got the highest accuracy in predicting contradiction labels of a sentence pair. In the

SICK dataset, negation expressions are included in many sentence pairs whose gold

labels are annotated as contradiction. Therefore, this result indicates my proposed

method has potential to capture the meaning of negation expressions.

Gold label Cases Precision Recall F1-score
Unknown 2793 0.8597 0.9391 0.8977
No 720 0.9476 0.8075 0.8720
Yes 1414 0.8855 0.7918 0.8360
All 4927 0.8801 0.8774 0.8761

TABLE 3.13: Evaluation results for each gold label (SICK RTE).

3.5.6 Evaluation by linguistic phenomena

For 4927 sentence pairs in the SICK test data, I compared the similarity scores pre-

dicted by my proposed method with those predicted by the state-of-the-art model

based on deep learning (Mueller and Thyagarajan, 2016). My proposed method

predicted similarity scores of 2,666 sentence pairs more accurately. Furthermore, I

classified these 2,666 sentence pairs based on their linguistic phenomena to analyze

which linguistic phenomenon in a sentence pair can be captured by my proposed

method. Table 3.14 shows the result of counting the number of sentence examples,

including negation, quantifier, conjunction, and relative pronouns included in the

whole test data.
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The number of sentence examples for which my proposed method achieved bet-

ter predictions and its percentage divided by the number of examples including

each linguistic phenomena in the whole test data are shown in Table 3.15. This

result shows my method tends to predict similarity scores whose sentences include

negation, quantifiers and conjunctions more accurately than the deep learning-based

model.
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3.5.7 Positive examples and error analysis

Table 3.16 shows some examples for which the prediction score was better when

using logic-based features than when using non-logic-based ones.

For IDs 642 and 1360, one sentence contains a passive clause, while the other

sentence does not. In such cases, the sentence pairs are not superficially similar. By

using logical formulas based on event semantics, my method enabled the sentence

containing the passive clause to be interpreted correctly and judge that the passive

and non-passive sentences are similar to each other.

In ID 891, one sentence contains a negative clause while the other does not. Us-

ing shallow features, the word overlap is small and the prediction score was much

lower than the correct score. My logic-based method, however, interpreted the first

sentence as a negative existential formula of the form ¬∃xP(x) and the second sen-

tence as an existential formula ∃xP ′(x). Thus, it could easily handle the semantic

difference between the positive and negative sentences.

In ID 1158, by contrast, the proportion of word overlap is so high that the pre-

diction score with non-logic-based features was much higher than the correct score.

My method, however, was able to prove the contradiction using an antonym axiom

of the form ∀x(remove(x) → ¬add(x)) from WordNet and thus predict the score

correctly.

In ID 59, the proportion of word overlap is low, so the prediction score with non-

logic-based features was lower than the correct score. My method, however, was

able to prove the partial entailment relations for the sentence pair and thus predict

the score correctly. Here the logic-based method captured the common meaning of

the sentence pair: both sentences refer to kids playing in the leaves.

Finally, in ID 71, the prediction score with non-logic-based features was much

higher than the correct score. There are two reasons for this phenomenon: negations

tend to be omitted in non-logic-based features such as TF-IDF and the proportion of

word overlap is high. However, as logical formulas and proofs can handle negative

clauses correctly, my method was able to predict the score correctly.
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Table 3.17 shows examples where using only logic-based features produced erro-

neous results. In ID 2831, two word axioms ∀x(lady(x) → girl(x)) and ∀x(pencil(x))

were generated but my system failed to prove the entailment relation between the

sentences due to the lack of phrasal knowledge between pencil on eyeshadow and use

an eye pencil on her eyelid.

In ID 3974, the two word axioms ∀x(awaken(x) → wake(x)) and ∀x(awaken(x) →

up(x)) were generated. However, the score of the word axiom ∀x(awaken(x) →

up(x)) was low (0.25), and the prediction score was thus lower than the correct

score. Likewise, in ID 4833, two word axioms were generated but the score of the

word axiom ∀x(file(x)→ do(x)) was very low (0.09), and the prediction score was

thus negatively affected. In these cases, it is necessary to consider phrase-level ax-

ioms and their scores such as ∀x(awaken(x)→wake_up(x)) and ∀x(file_nail(x)→

do_manicure(x)).

In ID 1941, my system wrongly proved bidirectional entailment relations by

adding three word axioms, so the prediction score was much higher than the cor-

rect score. Although I control the word axiom injection by setting an axiom score

threshold, there is a limit to finding the best threshold. Thus, to prevent generating

unnecessary word axioms and to generate correct axioms instead, a mechanism for

detecting the lack of phrasal knowledge in the proof processes is necessary.
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Chapter 4

Phrase Abduction

4.1 Motivation and Related Work

The error analysis in Chapter 3 indicates that handling phrasal knowledge in logical

inferences is a crucial problem. As described in previous sections, it is difficult to

capture the meanings of content words or phrases using genuine logical inference

alone. To account for lexical relations between content words or phrases, previous

logic-based approaches use knowledge databases such as WordNet (Miller, 1995)

to identify lexical relations within a sentence pair. Also, considerable research ef-

forts have been focused on the identification and extraction of paraphrases. Thus, I

first review previous logical inference systems that are combined with lexical knowl-

edge and describe the problem of handling phrasal knowledge in logical inference.

Second, I introduce previous works that have identified and collected paraphrases.

Lastly, I describe the motivation for my proposed method for handling phrasal knowl-

edge in logical inference; I call this method phrase abduction.

4.1.1 RTE systems combined with lexical knowledge

The RTE system developed by Abzianidze (2016) is a purely logic-based RTE system

that uses CCG parsers and a tableaux-based prover. The system uses WordNet as

lexical knowledge and adds missing knowledge manually from the training dataset.

However, this technique requires considerable human effort and is not extended to

handle phrasal knowledge.

Martínez-Gómez et al. (2017) proposed an RTE system with an on-the-fly axiom

injection mechanism guided by a natural deduction theorem prover. Pairs of un-

provable sub-goals and plausible single premises are identified by means of a vari-

able unification routine and then linguistic relations between their logical predicates



78 Chapter 4. Phrase Abduction

are checked using lexical knowledge such as WordNet and VerbOcean (Chklovski

and Pantel, 2004). Although this mechanism succeeds in capturing word-to-word re-

lations in a sentence pair, the proof strategy of selecting only premises that share an

argument with the sub-goal perfectly is not suitable for capturing phrase-to-phrase

or word-to-phrase relations.

To describe this issue, let us consider the proof of the entailment relation between

the following sentences:

(20) a. A band is playing on a stage

b. A band is playing onstage

The sentences (20a) and (20b) are mapped onto logical formulas T′ and H′ based on

event semantics via CCG-based semantic composition, as follows.

T′ : ∃y1∃x1∃x2(band(x1) ∧ play(y1) ∧ (subj(y1) = x1) ∧ on(y1, x2) ∧ stage(x2))

H′ : ∃y1∃x1(band(x1) ∧ play(y1) ∧ (subj(y1) = x1) ∧ (onstage(y1))

We attempt to prove the entailment relation T′ → H′. By applying inference rules of

a natural deduction proof, we obtain the following sets of premises P and sub-goals

G:

P = {P1 : band(x1), P2 : play(y1), P3 : on(y1, x2), P4 : stage(x2)}

G = {G1 : onstage(y1)}

In this proof, the sub-goal onstage(y1) remains. Next, in the previous word axiom

injection mechanism with lexical knowledge, we search for a premise that shares

the same argument with the sub-goal. In this example, people assume the sub-goal

onstage(y1) is the paraphrase of the premise on(y1, x2) ∧ stage(x2)). To capture

this paraphrase, we have to detect the relation between on(y1, x2) ∧ stage(x2)) in

the premise and onstage(y1) in the sub-goal. However, as the premise on(y1, x2)

does not match the argument with the sub-goal onstage(y1), it fails to generate this

phrasal axiom.
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Bjerva et al. (2014) proposed an RTE system where WordNet relations are trans-

lated to logical formulas and used as axioms for word-to-word knowledge in theo-

rem proving. For phrasal knowledge, PPDB (Ganitkevitch, Van Durme, and Callison-

Burch, 2013) is used to rephrase an input sentence pair instead of translating para-

phrases into axioms. However, this solution ignores logical contexts that might be

necessary when applying phrasal knowledge. Moreover, it does not apply to dis-

continuous phrases.

For example, consider the following sentence pair:

(21) a. A hurdle is being leapt by a horse that has a rider on its back

b. A horse and its rider are leaping over a barrier

If we prove the entailment relation between these sentences, we have to capture the

paraphrase X leap a hurdle and X leap over a barrier. To capture this paraphrase, we

need to translate the original phrase A hurdle is being leapt to the normalized phrase

leap a hurdle by applying normalization between passive voices and active voices.

Consider another example below:

(22) a. A black dog and a small white and black dog are looking up at a kitchen counter-

top

b. A large dog and a small dog are standing next to the kitchen counter and are

investigating

If we prove the entailment relation between these sentences, we have to capture the

paraphrase X look up at Y and X stand next to Y and investigate, which is difficult

to rephrase by simply checking phrasal knowledge such as PPDB. In this thesis, I

refer to paraphrases for which normalization is necessary for capturing discontinuous

paraphrases.

The RTE system developed by Beltagy et al. (2016) is based on probabilistic

logic. This system assigns distributional similarity scores to any words in a sen-

tence pair. This system also uses WordNet and PPDB as lexical knowledge. To in-

crease their coverage of phrasal knowledge, this system uses a resolution strategy

to align clauses and literals in a sentence pair. These alignments also constrain how

the unaligned fragments of a sentence pair may correspond to each other, reducing

the problem to a word or phrasal entailment recognition using a statistical classifier.



80 Chapter 4. Phrase Abduction

However, this strategy only considers one possible set of alignments between frag-

ments of a sentence pair, which causes a lack of coverage when there are repetitions

of content words and meta-predicates.

Consider the following sentences:

(23) a. Soccer players are kicking a soccer ball into the goal

b. There are no soccer players kicking a soccer ball into the goal

To prove the entailment relation between the sentences, we have to make alignments

by distinguishing the first word soccer (used in the phrase soccer players) in the sen-

tence (23a) and (23b) from the second word soccer (used in the phrase soccer ball),

respectively, which may fail in single one alignment.

4.1.2 Paraphrase identification

In this subsection, I introduce previous studies about the identification and extrac-

tion of paraphrases. One successful technique is associated with bilingual pivot-

ing (Bannard and Callison-Burch, 2005; Zhao et al., 2008), in which alternative phrase

translations are used as paraphrases at a certain probability. However, this technique

requires large bilingual parallel corpora; moreover, word alignment errors likely

cause noisy paraphrases. Another strategy is to extract paraphrases is monolingual

phrase alignment between syntactic trees (Arase and Tsujii, 2017). This method iden-

tifies syntactic paraphrases under linguistically motivated grammar. The main dif-

ference between previous studies and my method is that they typically attempted an

alignment between words or syntactic trees, whereas my method performs an align-

ment between meaning representations, which enables the acquisition of more gen-

eral paraphrases by distinguishing functional words from content words. This point

is important in distinguishing among different semantic relations (e.g., antonyms

and synonyms). In addition, word and syntactic alignments potentially ignore coref-

erences, making it difficult to find relations between many-to-many sentences. Se-

mantic alignments enable this because coreferences must refer to the same variable

as the original entity.

The second way to extract paraphrases is to calculate the similarity between

phrases using an additive composition model and selecting the phrase pair whose

with maximum similarity paraphrases. Additive composition models (Mitchell and

Lapata, 2010) present a method for computing meanings of phrases that utilizes
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the average of vector representations of the constituent words. In this model, dis-

tributional vector representations are used to combine word vectors to obtain the

meanings of compositional phrases (Socher et al., 2011). Currently, however, the

additive composition model is theoretically limited to representing short phrases

(i.e., phrases composed of two or three words) (Tian, Okazaki, and Inui, 2016; Tian,

Okazaki, and Inui, 2017). In addition, it is also difficult to distinguish antonyms

from synonyms in this model.

4.1.3 Motivation for phrase abduction

There are three main difficulties that prevent effective identification and use of phrasal

linguistic knowledge in logical inference. The first difficulty is the presence of out-

of-context phrase relations in popular databases such as the Paraphrase Database

(PPDB) (Ganitkevitch, Van Durme, and Callison-Burch, 2013). PPDB may suggest

paraphrases that do not adhere to the context of the relevant text segments nor to

their semantic structure, which might be problematic.

The second difficulty is finding semantic phrase correspondences between the

relevant text segments. Typical approaches only rely on surface (Beltagy et al., 2013)

or syntactic correspondences (Arase and Tsujii, 2017), often producing inaccurate

alignments that significantly impact logical inference capabilities. Instead, a mech-

anism to compute semantic phrase correspondences could potentially produce, if

available, more coherent phrase pairs and solve the recurring issue of discontinuity.

The third difficulty is the intrinsic lack of coverage of databases for logical infer-

ence despite their large size. Whereas there is a relatively small number of possible

word-to-word correspondences and thus their semantic relations can be enumer-

ated, the same is not true for all phrase pairs that might be of interest. One alterna-

tive is to use functions of the infinite domain (e.g., cosine similarity) between phrase

representations (Tian, Okazaki, and Inui, 2016), but these techniques are still under

development, and we have not seen definitive successful applications when com-

bined with logical inference systems.

In this chapter, I tackle these three problems. I propose an automatic phrase ab-

duction mechanism to inject phrasal knowledge during the proof construction pro-

cess. In addition, I consider multiple alignments by backtracking the decisions on

variable and predicate unifications, which is a more flexible strategy. I represent log-

ical formulas using graphs since this is a general formalism that is easy to visualize



82 Chapter 4. Phrase Abduction

and analyze. However, I use natural deduction (see Section 2.3) as a proof system in-

stead of Markov Logic Networks for inference. In addition, I extract phrasal knowl-

edge only from the natural deduction proof, not using supervised classification.

Some research has investigated graph operations for semantic parsing (Reddy, La-

pata, and Steedman, 2014; Reddy et al., 2016b) and abstractive summarization (Liu

et al., 2015); I contribute to these ideas by proposing a subgraph mapping algorithm

that is useful for performing natural language inference.

4.2 Phrase abduction

4.2.1 Logical formulas and graph representations

I formalize the phrase abduction mechanism by describing proof processes using

graphs. In this subsection, I describe some definitions for corresponding logical se-

mantic representations with graph representations.

For instance, the sentence A girl is skipping rope on a sidewalk can be analyzed as

the following logical formula in Neo-Davidsonian Event Semantics.

∃x1∃x2∃x3∃y1(girl(x1) ∧ rope(x2) ∧ sidewalk(x3) ∧ skip(y1)

∧ (subj(y1)= x1) ∧ (dobj(y1)= x2) ∧ on(y1, x3))

In this semantics, all content words (e.g., girl and skip) are represented as one-place

predicates, e.g., girl(x1) and skip(y1). For functional words, a preposition like on is

represented as a two-place predicate, e.g., on(y1, x3). A small set of semantic roles

such as subj and obj is used as functional terms and equality (=) is used to connect

an event and its participant, as in subj(y1)= x1.

To be precise, the set of atomic formulas A in this event semantics is defined by

the rule

A ::= F(t) | G(t, u) | t = u (4.1)

where F(t) is a one-place predicate (for content words), G(t, u) is a two-place pred-

icate (for prepositions), and t and u are terms. A term is defined as a constant, a

variable, or a functional term of the form f (t), where f is a semantic role and t is a

term. I call F(t) and G(t, u) basic predicates.
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I call a formula constructed by conjunctions (∧) and existential quantifiers (∃) a

basic formula in event semantics. Thus, a set of basic formulas φ in event semantics

is defined as:

φ ::= A | φ ∧ φ | ∃t φ (4.2)

The first example shows an instance of a basic formula, which captures the predicate-

argument structure of a sentence.

On top of the system of basic formulas, we have a full language of event seman-

tics with negation (¬), disjunction (∨), implication (→), and universal quantifier

(∀). These operators are used to represent additional logical features.

There is a natural correspondence between basic formulas constructed in terms

of ∧ and ∃ in event semantics and directed acyclic graphs (DAGs). Figure 4.1 shows

an example. See Liang, Jordan, and Klein (2011) and Jones (2016) for some variants

of graphical representations of logical formulas.

y1skip

x1 girl

x2 rope

x3 sidewalk

subj

dobj

on

FIGURE 4.1: A graph for the event semantics formula.

In the graph representation, constants and variables correspond to vertices; both

two-place predicates for prepositions (e.g., on(y1, x1)) and functional terms for se-

mantic roles (e.g., subj(y1) = x1) are represented as edges. A one-place predicate

F(t) in a logical formula can be represented as a functional relation isa(t, F), where

isa is an expression relating a term t and a predicate F represented as a vertex. The

isa edges are unlabeled for simplicity. Here, bound variables (e.g., x1) correspond to

vertices and functional relations (e.g., subj(y1)= x1, dobj(y1)= x2 and on(y1, x3)) to

edges. A one-place predicate F(t) in a logical formula can be understood as a func-

tional relation isa(t, F), where isa is an expression relating a variable and a predicate

represented as a vertex. The isa edges are unlabeled for simplicity.
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4.2.2 Graph-based formulation of a theorem proving routine

To describe the phrase abduction mechanism, let us consider the proof T → H in the

following sentence pair:

T : A lady is cutting up some meat precisely

H : Some meat is being cut into pieces by a woman

Figure 4.2 gives an outline of my graph-based formulation of a theorem proving

routine. The first step is to obtain the graphical meaning representations of T′ and

H′. To begin with, the input sentence pair (T, H) is mapped onto a pair of formulas,

(T′, H′) through CCG syntactic parsing and semantic composition. T′ is initially set

to the premise P, and H′ to the goal G. Note that these are basic formulas, and they

are thus decomposed to the following sets of formulas P and G, respectively:

P = {lady(x1), meat(x2), cut(y1), up(y1), precisely(y1), subj(y1)= x1, obj(y1)= x2}

G = {woman(x3), meat(x4), cut(y2), piece(x5), into(y2, x5), subj(y2)= x3, obj(y2)= x4}

Steps 1 to 3 in Figure 4.2 demonstrate the variable unification routine and word ax-

iom injection using graphs. In the graph representations, vertices are variables (e.g.,

entities xi or events yj) or predicates (e.g., lady, woman) and edges are semantic

roles (e.g., subj, obj) or prepositions (e.g., into). Note that in step 1, all variables in

formulas in P or G are initially different.

In step 2, we run a theorem proving mechanism that uses graph terminal vertices

as anchors to unify variables between formulas in P and those in G. The premise

meat(x2) in P matches the predicate meat of the sub-goal meat(x4) in G and the

variable unification x4 := x2 is applied (and similarly for the sub-goal cut(y2) in G

with the variable unification y2 := y1). Then, a set of formulas in G is updated as

follows:

P = {lady(x1), meat(x2), cut(y1), up(y1), precisely(y1), subj(y1)= x1, obj(y1)= x2}

G = {woman(x3),
XXXXXmeat(x2),XXXXcut(y1), piece(x5), into(y1, x5), subj(y1)= x3,hhhhhhhobj(y1)= x2}

In step 3, we use the previously described variable unification on y1, the subj
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y1

cut
up

precisely

x1 x2lady meat

subj obj

y2

cut

x3 x4

x5

woman meat

piece

subj obj

into

T: A lady is cutting up some meat precisely H: Some meat is being cut into pieces by a woman

T′ : ∃x1∃x2∃y1(lady(x1) ∧
meat(x2) ∧ cut(y1) ∧ up(y1) ∧

precisely(y1) ∧ subj(y1, x1) ∧ obj(y1, x2))

H′ : ∃x3∃x4∃x5∃y2(meat(x4) ∧
woman(x3) ∧ cut(y2) ∧ piece(x5) ∧

into(y2, x5) ∧ subj(y2, x3) ∧ obj(y2, x4))

Step 1:
Make graphs

from formulas.

y1

cut
up

precisely

x1 x2lady meat

subj obj

y1

cut

x3 x2

x5

woman meat

piece

subj obj

into

Step 2:
Anchor terminal

vertices and unify
variables x4 := x2

and y2 := y1.

y1

cut
up

precisely

x1 x2lady meat

subj obj

y1

cut

x1 x2

x5

woman meat

piece

subj obj

into

Step 3:
Use graph

constraints and
knowledge (lady
is a woman) to
unify x3 := x1.

y1

cut
up

precisely

x1 x2lady meat

subj obj

y1

cut

x1 x2

x5

woman meat

piece

subj obj

into

Step 4:
Induce subgraph
alignment with

non-unified
variable x5.

FIGURE 4.2: A graph representation of a theorem proving routine
on basic formulas and variable unification. Dotted circles represent
non-unified variables at each step, whereas edges without labels are
attributes. The graph on the left side shows the set of premises P ,
and the graph on the right side shows the set of sub-goals G. Colored
subgraphs represent a word or a phrase to which the axiom injection

mechanism applies.

edge in P and G and the axiom ∀x.lady(x) → woman(x) from external lexical knowl-

edge to infer that x3 := x1. Then, a set of formulas in G is updated as follows:

P = {lady(x1), meat(x2), cut(y1), up(y1), precisely(y1), subj(y1)= x1, obj(y1)= x2}

G = {hhhhhhhwoman(x1),
XXXXXmeat(x2),XXXXcut(y1), piece(x5), into(y1, x5),

hhhhhhhsubj(y1)= x1,hhhhhhhobj(y1)= x2}
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4.2.3 Problem of phrase pair detection

There is one critical reason that the word-to-word axiom injection described in Sec-

tion 2.3 fails to detect phrase-to-phrase correspondences. That is, the natural deduc-

tion mechanism decomposes the goal G into atomic sub-goals that are then proved

one-by-one (word-by-word), independent of each other except for the variable unifi-

cation effect. This mechanism is particularly problematic when we attempt to prove

phrases that resist decomposition, two-place predicates (e.g., into(x, y)), or failures

in variable unification (e.g., due to inaccurate semantics). Thus, I propose a method

to detect phrase-to-phrase correspondence through natural deduction proofs.

I detect phrase-to-phrase entailing relations between T and H by finding align-

ments between the subgraphs of their meaning representations when T′ → H′

or T′ → ¬H′ hold. Finding subgraph alignments is a generalization of the sub-

graph isomorphism problem, which is NP-complete (Emmert-Streib, Dehmer, and

Shi (2016), provides a good overview). I approximate a solution to this problem

by using a combination of a backtracking variable unification1 and a deterministic

graph search of the neighborhood of non-unified variables.

Using the running example in Figure 4.2, step 4 displays the subgraph alignment.

Here, the set of premises and sub-goals P ,G are as follows:

P = {lady(x1), meat(x2), cut(y1), up(y1), precisely(y1), subj(y1)= x1, obj(y1)= x2}

G = {hhhhhhhwoman(x1),
XXXXXmeat(x2),XXXXcut(y1), piece(x5), into(y1, x5),

hhhhhhhsubj(y1)= x1,hhhhhhhobj(y1)= x2}

The variable x5 in the graph of G cannot be unified with any variable in the graph

of P . This is a very common case in natural language inference, as there might be

concepts in H that are not directly supported by concepts in T.

In this research, I propose spanning a subgraph starting at non-unified variables

(e.g., x5 in G) whose boundaries are semantic roles (e.g., subj, obj). Its candidate

semantics from P are then the attributes of its corresponding unified variables from

G (e.g., cut up precisely → cut into pieces).

1A variable unification can be seen as a variable renaming (or vertex relabeling, in the context of

graphs), as implemented in most modern theorem provers.
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4.2.4 Graph-based formulation for phrase abduction

To formalize this solution I introduce some graph notation. Let V = Vu ∪ V ū ∪ L be

the set of vertices, where Vu is the set of unified variables (e.g. x1, x2, y1), V ū is the set

of non-unified variables (e.g. x5), and L is a set of predicates (e.g., lady, woman). Let

E be the set of labeled, directed edges ⟨v, l, v′⟩, where v, v′ ∈ V, and l are labels that

may represent a functional relation isa, a preposition, or a semantic role. I denote

a set of two-place predicates for prepositions as PREP and a set of functional terms

for semantic roles as ARGS; e.g., ARGS = {subj, obj}. A graph that represents P is

then a tuple GP = ⟨VP , EP ⟩, and similarly, for G, GG = ⟨VG , EG⟩.

I define a function to span a subgraph in the neighborhood of non-unified vari-

ables v ∈ V ū
G in the graph of G. I call a connected set of edges in which no semantic

roles appear a phrase set. A phrase set is defined as follows:

{
⟨v, l, v′⟩ | l ̸∈ ARGS

}
(4.3)

Let E(x) be the phrase set in E such that each vertex is connected to x with an in-

coming or outgoing edge, that is,

E(x) = {(vi, l, vk) ∈ E | (x = vi ∨ x = vk) ∧ l ̸∈ ARGS} (4.4)

Note that E(x) induces a subgraph in a given graph G and the condition l /∈ ARGS

sets the boundaries of the subgraph by excluding the semantic roles of verb phrases.

Given two phrase sets E and E′, I say E′ is reachable from E, written E ∼ E′, if E

and E′ share at least one variable vertex, that is, f v(E) ∩ f v(E′) ̸= ∅. Let ∼∗ be the

transitive closure of ∼. Given a set of edges EG and a variable v, I define the extended

phrase set, written Reach(v), as follows:

Reach(v) = {e ∈ E | EG(v) ∼∗ E} (4.5)

That is, Reach(v) is the set of edges e that can be reached from v without crossing an

edge with a semantic role label. This function defines a partition or equivalence class

for non-unified variables v ∈ V ū
G , and each of these partitions induces a (possibly

discontinuous) phrase in G that remains unproved.

The corresponding subgraph in P to each of these partitions is given by the ver-

tices and edges connected with a path of length one to the unified variables that
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appear in Reach(v). That is,

Corr(v) =
{

e ∈ EP (v′), v′ ∈ V [v]
G ∩ VP

}
(4.6)

where V [v]
G denotes the vertices in the subgraph of G induced by the partition Reach(v).

A subgraph alignment between P and G is given by the pair of ⟨Corr(v), Reach(v)⟩

for all v ∈ V ū
G , where the phrases can be read from the predicates in the vertices and

edges labeled with prepositions.

I define a mapping (·)• from a labeled edge ⟨v, l, v′⟩ to an atomic formula as

follows.

⟨
v, l, v′

⟩•
=


v′(v) if l is isa

l(v, v′) if l ∈ PREP

l(v) = v′ if l ∈ ARGS

(4.7)

Let E be a set of labeled edges, and let E• be
{
⟨v, l, v′⟩• | ⟨v, l, v′⟩ ∈ E

}
. The phrasal

axiom generated for each non-unified variable v ∈ V ū
G is defined as

∀θC.(
∧

Corr(v)• → ∃θR. (
∧

Reach(v)•)) (4.8)

where θC is a set of free variables appearing in Corr(v)• (which includes v) and θR is

a set of free variables appearing in Reach(v)• but not in Corr(v)•.

In Figure 4.2, the only non-unified variable in the sub-goal in step 4 is x5, that is,

V ū
G = {x5}. Then, starting from the variable x5, Reach(x5) is

{⟨y1, into, x5⟩ , ⟨x5, isa, piece⟩} .

Now V [x5]
G = {y1, x5}, and thus Corr(x5) is

{⟨y1, isa, cut⟩ , ⟨y1, isa, up⟩ , ⟨y1, isa, precisely⟩} .
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Finally, the following is the axiom generated from ⟨Corr(x5), Reach(x5)⟩2.

∀y1(cut(y1) ∧ up(y1) ∧ precisely(y1) → ∃x5(into(y1, x5) ∧ piece(x5))).

4.2.5 Another formulation for phrase abduction

The phrase abduction mechanism can be generally applied to logical inference, and

it can thus also be formalized without graphs. In this subsection, I describe another

way to formalize phrase abduction. Here, I define a set of basic predicates including

variable x in a pool of premises P and sub-goals G as a phrase set. f v(φ) is a set of

free variables included in basic predicates φ, ψ.

Px
de f
≡ {φ ∈ P | x ∈ f v(φ)} Gx

de f
≡ {ψ ∈ G | x ∈ f v(ψ)} (4.9)

Next, I call Φ ∼ Ψ, as Φ can reach Ψ. That means a phrase set Ψ and Φ shares a

free variable. If Φ is a set of logical formulas, I define f v(Φ)
de f
≡ ∪

φ∈Φ f v(φ).

Φ ∼ Ψ
de f
≡ f v(Φ) ∩ f v(Ψ) ̸= ∅ (4.10)

∼∗ is a transitive closure of ∼. I define an extended phrase set including a variable

x in a pool of premises P and sub-goals G as follows:

P∗
x

de f
≡ {φ ∈ Φ | Px ∼∗ Φ} G∗

x
de f
≡ {ψ ∈ Ψ | Gx ∼∗ Ψ} (4.11)

Considering a pair of P∗
x and G∗

x for each variable x included in f v(G) , a phrase-

to-phrase axiom candidate is determined as the formula (4.12) by calculating U =

f v(P∗
x ), V = f v(G∗

x )− f v(P∗
x ) , where U = u1, . . . , um, V = v1, . . . , vn

∀u1, . . . , um ((
∧P∗

x ) → ∃v1 . . . vn (
∧ G∗

x )) (4.12)

In step 4 of Figure 4.2, the variable x5 in G cannot unify to any variable in P .

Consider a phrase set and an enhanced phrase set for each variable included in

f v(G) = {y1, x5}. Here, Gy1 can reach Gx5 , and the enhanced phrase set G∗
y1

,G∗
x5

is

2 Note that this axiom is logically equivalent to

∀y1(cut(y1) ∧ up(y1) ∧ precisely(y1) → ∃x5(cut(y1) ∧ into(y1, x5) ∧ piece(x5)))

indicated in the colored subgraphs in step 4 of Figure 4.2.
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represented as Gy1 ∪ Gx5 .

Gy1 = {into(y1, x5)}

Gx5 = G∗
x5
= G∗

y1
= {into(y1, x5), piece(x5)}

Py1 = P∗
y1

= {cut(y1), up(y1), precisely(y1)}

Hence, the phrasal axiom about variables f v(G) = {y1, x5} can be detected as fol-

lows:

∀y1(cut(y1) ∧ up(y1) ∧ precisely(y1) → ∃x5(into(y1, x5) ∧ piece(x5))).

4.2.6 Non-basic formulas

If formulas P and G are not basic formulas (i.e., they contain logical operators other

than conjunction (∧) and existential quantifiers (∃)), they are decomposed according

to inference rules of natural deduction. As described in Section 2.3.3, there are two

types of inference rules: introduction rules decompose a goal formula into smaller

sub-goals and elimination rules decompose a formula in the pool of premises into

smaller ones. By applying inference rules described in Figure 2.5, a proof of non-

basic formulas appearing in sub-goals can be decomposed into a set of subproofs

that only have basic formulas in sub-goals. If a universal quantifier appears in

premises, it is treated in the same way as other premises.

For example, consider the following sentence pair with the gold label “no” (con-

tradiction):

T : A man is not cutting a potato

H : A man is slicing a potato into pieces

Figure 4.3 shows the proof process of T′ → ¬H′. To prove the contradiction, the

formulas T′ and ¬H′ are set to P and G, respectively. Then, the negation in G is

removed by applying the introduction rule (¬-INTRO) to G. Here, False is the

propositional constant denoting the contradiction. In the second stage of the proof,

the goal is to prove False in G0 from the two premises P and P0. By applying the

elimination rule (¬-ELIM) to P, we can eliminate the negation from P, resulting in

the new goal G1.
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As both the premise P0 and the sub-goal G1 are basic formulas, the procedure

described in the previous sections applies to the pair (P0, G1); these basic formulas

are decomposed into atomic ones, and then word-to-word abduction generates the

desired axiom ∀y1(cut(y1)→ slice(y1)). Finally, the graph alignment applies in the

same way as described in Figure 4.2, which generates the phrasal axiom:

∀y1(cut(y1) → ∃x5(into(y1, x5) ∧ piece(x5)))

Using this axiom, one can complete the proof of the contradiction between T′ and

H′.

P : ¬∃y1∃x1(man(x1) ∧ cut(y1) ∧ potato(x2)
∧(subj(y1) = x1) ∧ (obj(y1) = x2))

G : ¬∃y1∃x1∃x2∃x3(man(x1) ∧ slice(y1) ∧ potato(x2)
∧into(y1, x3) ∧ piece(x3) ∧ (subj(y1) = x1) ∧ (obj(y1) = x2)

P : ¬∃y1∃x1(man(x1) ∧ cut(y1) ∧ potato(x2)
∧(subj(y1) = x1) ∧ (obj(y1) = x2)

P0 : ∃y1∃x1∃x2∃x3(man(x1) ∧ slice(y1) ∧ potato(x2)
∧into(y1, x3) ∧ piece(x3) ∧ (subj(y1) = x1) ∧ (obj(y1) = x2)

G0 : False

P0 : ∃y1∃x1∃x2∃x3(man(x1) ∧ slice(y1) ∧ potato(x2)
∧into(y1, x3) ∧ piece(x3) ∧ (subj(y1) = x1) ∧ (obj(y1) = x2)

G1 : ∃y1∃x1(man(x1) ∧ cut(y1) ∧ potato(x2)
∧(subj(y1) = x1) ∧ (obj(y1) = x2)

¬-ELIM (P)

¬-INTRO (G0)

FIGURE 4.3: Contradiction proof process for non-basic formulas.

4.3 Experiments

4.3.1 Experimental setting

To evaluate the utility of the phrase abduction mechanism in logical inference, I

evaluated my method with the RTE dataset. For an RTE dataset, I selected the

SICK dataset, which contains logically challenging problems involving quantifiers,

negation, conjunction, and disjunction, as well as inferences with lexical and phrasal

knowledge.
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I first attempted the proof using the training and trial split of the SICK dataset

and extracted phrasal knowledge. In RTE tasks, we need to consider a directional se-

mantic relation between words such as hypernym and hyponym to prove an entail-

ment relation or contradiction. Hence, to extract phrasal knowledge for RTE tasks,

I used the training and trial split of the dataset whose gold label is entailment or

contradiction, excluding those having the neutral label. Next, I evaluated the system

performance using the test split of the SICK dataset with the phrasal knowledge

extracted from the training and trial split.

I compared phrase abduction with different experimental conditions. No ax-

ioms is my system without axiom injection. W2W is my system with the previous

word abduction (Martínez-Gómez et al., 2017). P2P is my system with phrase ab-

duction; W2W+P2P combines phrase abduction with word abduction. W2W+RF is

my hybrid system using logical inference and the random forest model described in

Chapter 3.

In addition, I compared my system with three purely logic-based (unsupervised)

approaches: The Meaning Factory (Bjerva et al., 2014), LangPro (Abzianidze, 2015),

and UTexas (Beltagy et al., 2014). I also compared my system with machine learning-

based approaches: the current state-of-the-art deep learning model GRU (Yin and

Schütze, 2017), a log-linear regression model SemEval-2014 best (Lai and Hocken-

maier, 2014), and a hybrid system combining a logistic regression model and proba-

bilistic logic PL+eclassif (Beltagy et al., 2016).

4.3.2 Extracted paraphrases

I extracted 9,445 axioms from the training and trial split of the SICK dataset. The

proving time average to extract phrasal axioms was only 3.0 seconds in per sentence

pair. My phrase-pair identification is a polynomial-time instance of the graph match-

ing problem where the vertex cover set (maximum number of variables in a phrase)

is bounded to a small constant (I ignored phrases with more than five predicates).

Regarding the complexity of variable unification, I only do first-order proving in the

SICK dataset, which is computationally fast. However, efficient higher-order theo-

rem proving is also possible if I restrict the higher-order constructions as described

by Huet (1975) and Mineshima et al. (2015).

Table 4.1 shows some examples of paraphrases I extracted from the natural de-

duction proof. In particular, the examples of verb phrases show my method has



4.3. Experiments 93

potential for capturing long paraphrases. Each paraphrase in Table 4.1 is not con-

tained in WordNet and PPDB. There are many instances of non-contiguous phrases

in the SICK dataset, in particular, verb-particle phrases. As shown in Table 4.1, my

semantic method can identify non-contiguous phrases through the variable unifi-

cation process, which is one of the main advantages over other shallow/syntactic

methods. In addition, Table 4.1 shows my method is not limited to hypernym or

hyponym relations, but is capable of detecting antonym phrases.
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4.3.3 Comparison with other systems

Table 4.2 shows the experimental results.

Prec. Rec. Acc.
W2W+RF 0.906 0.797 0.877
GRU − − 0.871
PL+eclassif − − 0.851
SemEval2014 Best Score 0.816 0.819 0.846
The Meaning Factory 0.936 0.606 0.816
LangPro 0.980 0.581 0.814
UTexas − − 0.804
W2W+P2P 0.842 0.773 0.843
W2W 0.971 0.636 0.831
P2P 0.856 0.721 0.830
No axioms 0.989 0.465 0.767

TABLE 4.2: RTE results on the SICK dataset.

The results show that combination of word abduction and phrase abduction im-

proved the accuracy. When the W2W+P2P result is substituted for the W2W result,

there is a 0.011 increase in accuracy (from 0.831 to 0.843). The accuracy of P2P is

almost equal to that of W2W. This is because the recall improves from 0.636 to 0.721,

while the precision decreases from 0.971 to 0.856. The increase in false positive cases

appeared to cause this result; some details of false positive cases are described in the

next subsection. W2W+P2P outperformed other purely logic-based systems. The

machine learning-based approaches including my hybrid system W2W+RF outper-

formed W2W+P2P. Unlike these approaches, parameter estimation is not used in

my phrase abduction method. This suggests that my method has the potential to

increase accuracy by combining my hybrid system described in Chapter 3 with my

phrase abduction.

4.3.4 Positive examples and error analysis

Table 4.3 shows some positive and negative examples on RTE with the SICK dataset.

For ID 9491, the sentence pair requires the paraphrase from a field of brown grass

to a grassy area. This relation is not included in previous lexical knowledge bases.

The phrasal axiom injection can correctly generate this paraphrase from a natural

deduction proof and the system correctly proves the entailment relation.

ID 2367 is also a positive example of phrasal axiom injection. The phrasal axiom

between set fire to cameras and burn cameras with a blow torch was extracted from the
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following sentence pair with the entailment label:

T1 : Some cameras are being burned by a person with a blow torch

H1 : The person is setting fire to the cameras

This example shows that the semantic alignment succeeds in acquiring a general

paraphrase by separating logical expressions such as some from content words and

also by taking into account syntactic structures such as the passive-active alterna-

tion.

For ID 3628, the axiom shown in Table 4.3 was extracted from the following sen-

tence pair with the entailment label:

T1 : A woman is putting meat in a pan

H1 : Someone is dropping the meat into a pan

However, the phrase drop over does not entail the phrase drop into, and a proof for the

inference is over-generated in ID 3628. I extracted all possible phrasal axioms from

the training and trial split of the SICK dataset, so noisy axioms can be extracted as a

consequence of multiple factors, such as parsing errors or potential disambiguation

in the SICK dataset. One possible solution for decreasing such noisy axioms would

be to use additive composition models (Tian, Okazaki, and Inui, 2016) and asym-

metric learnable scoring functions to calculate the confidence of these asymmetric

entailing relations between phrases.

ID 96 is also an example of over-generation of axioms. The first axiom, ∀y1(jump(y1)

→ ∃x1(in(y1, x1) ∧ air(x1))) was extracted from the proof of T1 → H1:

T1 : A child in a red outfit is jumping on a trampoline

H1 : A little boy in red clothes is jumping in the air

The second axiom ∀y1(man(y1) → biker(y1)) was extracted from the proof of T2 →

H2:

T2 : A man on a yellow sport bike is doing a wheelie and a friend on a black bike is catching up

H2 : A biker on a yellow sport bike is doing a wheelie and a friend on a black bike is catching up
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Although these axioms play a role in the proofs of T1 → H1 and T2 → H2, the wrong

axiom ∀y1(man(y1) → biker(y1)) causes the over-generation of a proof for the in-

ference in ID 96. The correct axiom would instead be ∀x1∀y1(man(y1) ∧ on(y1, x1) ∧

bike(x1) → biker(y1)). In this case, it is necessary to bundle predicates in a noun-

phrase by specifying the types of a variable (i.e., entity or event) when making

phrase alignments.

For ID 408, the word explorer is not contained in the training and trial split and

hence the relevant axiom ∀x1(explorer(x1) → people(x1)) was not generated. While

my logic-based method enables identification of semantic phrase correspondences

in a sentence pair in an unsupervised way, the next step is to predict unseen para-

phrases of this type.
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Chapter 5

Conclusion

5.1 Summary of thesis

In this thesis, I explored how to calculate textual entailment and similarity between

sentences using natural deduction proofs. My hypothesis is that observing proof pro-

cesses when testing the semantic relations is useful for capturing textual entailment and

similarity more precisely.

In Chapter 3, I developed a new hybrid approach to learning textual entailment

and similarity by using proof processes. I attempted a natural deduction proof with

my logical inference system, aiming to prove bidirectional entailment relations be-

tween sentences. Then, I combined logic-based features extracted from proof pro-

cesses for proving the bidirectional entailment relations with non-logic-based fea-

tures.

In Chapter 4, I developed a phrasal abduction mechanism with a careful treat-

ment of the theorem proving process. I proposed an automatic phrase abduction

mechanism to inject phrasal knowledge during the proof construction process. In

addition, I considered multiple alignments by backtracking the decisions on vari-

able and predicate unifications, which is a more flexible strategy. I represented log-

ical formulas using directed acyclic graphs, since this is a general formalism that

is easy to visualize and analyze. Then, I formalized a theorem proof routine and

variable unification using graphs. I detected phrase-to-phrase semantic relations be-

tween the sentences by finding alignments between the subgraphs of their meaning

representations when the proofs of an entailment relation or contradiction hold.

I summarize the findings of this thesis as follows:

1. Proof processes help to capture syntactic structures and logical relations in sen-

tences.



100 Chapter 5. Conclusion

2. Proof processes are effective features for STS and RTE tasks.

3. Proof processes can be useful for sentences with the neutral label.

4. Proof processes help to detect various phrasal knowledge.

Proof processes help to capture syntactic structures and logical relations

Experiment results showed that my hybrid approach to learning textual simi-

larity from proof processes achieved competitive performance on the semantic

textual similarity (STS) task. Experiment results also showed that my hybrid

approach could be applied to the recognizing textual entailment (RTE) task

and achieved state-of-the-art performance on the RTE task. The case analysis

indicates that my approach has the capability of reflecting the syntactic struc-

tures or logical relations in sentences, which outperformed state-of-the-art per-

formance.

Proof processes are effective features for STS and RTE tasks

The feature ablation study for both STS and RTE tasks showed that my pro-

posed logic-based features have more impact on improving the accuracy than

non-logic-based features. In particular, the evaluation results indicate that

proof processes are effective features for learning textual similarity and en-

tailment.

Proof processes can be useful for sentences with the neutral label

Experiments showed that the Pearson correlation of the “neutral” portion of

the SICK dataset was 0.766, which suggests that my hybrid approach can be

applied not only to sentence pairs with entailment/contradiction labels but

also to sentence pairs with neutral labels.

Proof processes help to detect various phrasal knowledge

Experiment results demonstrated that my phrasal abduction mechanism auto-

matically detects various phrase correspondences including antonym phrases

and non-contiguous phrases, which is one of the main advantages over other

shallow/syntactic methods. Experiment results also showed that the phrasal

abduction mechanism compensated for the lack of phrasal knowledge in logi-

cal inference and achieved the best performance in the RTE task among purely

logic-based approaches.
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5.2 Future work

In this section, I list future work directions related to this thesis.

Combination of a hybrid approach and a phrase abduction mechanism

One direction of the future work is to explore how to combine my hybrid ap-

proach described in Chapter 3 with phrase abduction described in Chapter 4.

To do that, we have to consider how to calculate the score of a phrasal axiom.

As shown in section 4.1, an additive composition model (Mitchell and Lap-

ata, 2010) is used for calculating the lexical similarity between phrases, though

this model is theoretically limited in that it only represents short phrases or

contiguous phrases (Tian, Okazaki, and Inui, 2016; Tian, Okazaki, and Inui,

2017). Thus, it is necessary to establish a precise method for calculating the

lexical similarity between various phrases, including long phrases and non-

contiguous phrases.

Expansion of language coverage

While the supported language of my hybrid approach is English, the orig-

inal inference system ccg2lambda also supports Japanese (Mineshima et al.,

2016). Thus, my hybrid approach can be enhanced to support Japanese with-

out difficulty. Also, the semantic representation is theoretically independent

of languages and another direction of the future work is to expand the list of

supported languages of my approach.

Improvement of a hybrid approach using neural network

In my hybrid approach, I manually implemented functions for extracting fea-

tures from proof processes. However, with the recent development of neural

network-based approaches, feature learning can be used for extracting features

from proof processes. Thus, another direction of the future work is to improve

feature extraction from proof processes using neural network.

Modification of a hybrid approach for other NLP applications

On the other hand, compared with neural network-based approaches, there

are two advantages of my hybrid approach: interpretability and customizabil-

ity. Regarding interpretability, my approach not only can assess the relevancy

of sentences but also explain the sources of similarity/entailment by referring

to information on sub-goals in the proof. Regarding customizability, we can
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easily customize each component of my hybrid approach (i.e., semantic pars-

ing, inference and knowledge injection) for many NLP applications; consider

applying my approach to a domain-specific sentence. We can reflect domain

characteristics into logical semantic representations by modifying semantic

templates. In addition, my axiom injection mechanism is available regardless

of kinds of lexical knowledge databases, and thus it is capable of injecting do-

main knowledge as axioms in logical inference. While machine learning-based

approaches generally require a large annotated dataset, my approach can do

these customizations regardless of the size of a dataset.

Given these two capabilities of interpretation and customization of my ap-

proach, another direction of the future work is to refine my method so that

it can be used in other NLP applications such as question answering, informa-

tion retrieval and text summarization. My approach potentially enables calcu-

lation of the semantic relations among multiple sentences, which may benefit

these applications. To apply my approach to question answering, we have to

consider how to map interrogative sentences to logical formulas. Interrogative

sentences can be also analyzed by CCG parsers and thus my approach can be

applicable to question answering systems by modifying semantic templates.

Regarding information retrieval and text summarization, my approach might

be applied by adding some functions for splitting long sentences into short

sentences or ranking the importance of sentences in the target text.



103

Acknowledgements

During work on my thesis, there were many people who helped and supported

me, both inside and outside my academic life. Here I would like to thank them.

My deepest appreciation goes to my supervisors, Prof. Seiichi Koshizuka and Prof.

Daisuke Bekki. They formed a great advising team, and I am grateful for their con-

tinuous intellectual and personal support. Their joint support was truly vital for my

research.

I would like to thank the members of my advising committee, Prof. Kazuhiro

Aoyama, Prof. Kiyoshi Izumi, and Prof. Taro Kanno. This thesis benefitted from our

discussions and their thoughtful comments. I also would like to thank Prof. Koji

Mineshima and researcher Pascual Martínez-Gómez. Without their persistent help,

this thesis would not have been possible. I also thank all the members of Bekki Lab-

oratory and Koshizuka-Shibata Laboratory for their great friendship and immense

assistance.

I appreciated the educational and financial support from JST CREST Grant Num-

ber JPMJCR1301 and AIP Challenge Program, Japan. All the fantastic experiences

that I had would not have been possible without this support. I also would like to

offer my special thanks to Prof. Sadao Kurohashi and Prof. Kentaro Inui. I have had

the strong support and encouragement from them.

Special thanks to researcher Masashi Yoshikawa, who gave me insightful com-

ments in my thesis. I also thank to researcher Kimitaka Asatani, who gave me con-

structive advices and warm encouragement. I would like to thank Prof. Yukio Oh-

sawa. Lastly, I deeply appreciate my family for encouraging me to step onto a brand

new path to success.





105

Bibliography

Abzianidze, Lasha (2015). “A Tableau Prover for Natural Logic and Language”. In:

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Process-

ing, pp. 2492–2502.

— (2016). “Natural Solution to FraCaS Entailment Problems”. In: Proceedings of the

5th Joint Conference on Lexical and Computational Semantics, pp. 64–74.

Agirre, Eneko et al. (2012). “SemEval-2012 Task 6: A Pilot on Semantic Textual Sim-

ilarity”. In: Proceedings of the 6th International Workshop on Semantic Evaluation

(SemEval-2012), pp. 385–393.

Agirre, Eneko et al. (2013). “*SEM 2013 shared task: Semantic Textual Similarity”. In:

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1:

Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity,

pp. 32–43.

Arase, Yuki and Jun’ichi Tsujii (2017). “Monolingual Phrase Alignment on Parse

Forests”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-

guage Processing, pp. 1–11.

Bannard, Colin and Chris Callison-Burch (2005). “Paraphrasing with Bilingual Par-

allel Corpora”. In: Proceedings of the 43rd Annual Meeting on Association for Com-

putational Linguistics, pp. 597–604.

Bär, Daniel et al. (2012). “UKP: Computing Semantic Textual Similarity by Combin-

ing Multiple Content Similarity Measures”. In: Proceedings of the 6th International

Workshop on Semantic Evaluation (SemEval-2012), pp. 435–440.

Bekki, Daisuke and Koji Mineshima (2017). “Context-Passing and Underspecifica-

tion in Dependent Type Semantics”. In: Modern Perspectives in Type Theoretical Se-

mantics. Ed. by Stergios Chatzikyriakidis and Zhaohui Luo. Studies of Linguistics

and Philosophy. Springer, pp. 11–41.

Beltagy, Islam, Katrin Erk, and Raymond Mooney (2014). “Probabilistic Soft Logic

for Semantic Textual Similarity”. In: Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics, pp. 1210–1219.



106 BIBLIOGRAPHY

Beltagy, Islam et al. (2013). “Montague Meets Markov: Deep Semantics with Proba-

bilistic Logical Form”. In: pp. 11–21.

Beltagy, Islam et al. (2014). “UTexas: Natural Language Semantics using Distribu-

tional Semantics and Probabilistic Logic”. In: Proceedings of the 8th International

Workshop on Semantic Evaluation (SemEval-2014), pp. 796–801.

Beltagy, Islam et al. (2016). “Representing Meaning with a Combination of Logical

and Distributional Models”. In: Computational Linguistics 42.4, pp. 763–808.

Bentivogli, Luisa et al. (2009). “The Fifth PASCAL Recognizing Textual Entailment

Challenge”. In: Proceedings of the Second Text Analysis Conference, TAC.

Bentivogli, Luisa et al. (2010). “The Sixth PASCAL Recognizing Textual Entailment

Challenge”. In: Proceedings of the Third Text Analysis Conference, TAC.

— (2011). “The Seventh PASCAL Recognizing Textual Entailment Challenge”. In:

Proceedings of the Fourth Text Analysis Conference, TAC.

Bertot, Yves and Pierre Castran (2010). Interactive Theorem Proving and Program Devel-

opment: Coq’Art The Calculus of Inductive Constructions. New York, USA: Springer.

Bjerva, Johannes et al. (2014). “The Meaning Factory: Formal Semantics for Recog-

nizing Textual Entailment and Determining Semantic Similarity”. In: Proceedings

of the 8th International Workshop on Semantic Evaluation (SemEval-2014), pp. 642–

646.

Blackburn, Patrick, Maarten de Rijke, and Yde Venema (2001). Modal Logic. New

York, NY, USA: Cambridge University Press.

Blei, David M., Andrew Y. Ng, and Michael I. Jordan (2003). “Latent Dirichlet Allo-

cation”. In: Journal of Machine Learning 3, pp. 993–1022.

Bos, Johan (2008). “Wide-Coverage Semantic Analysis with Boxer”. In: Semantics in

Text Processing. STEP 2008 Conference Proceedings. Ed. by Johan Bos and Rodolfo

Delmonte. Vol. 1. Research in Computational Semantics. College Publications,

pp. 277–286.

— (2009). “Applying automated deduction to natural language understanding”. In:

Journal of Applied Logic 7.1, pp. 100 –112.

Bos, Johan and Katja Markert (2005). “Recognising Textual Entailment with Logi-

cal Inference”. In: Proceedings of the Conference on Human Language Technology and

Empirical Methods in Natural Language Processing, pp. 628–635.



BIBLIOGRAPHY 107

Bowman, Samuel R. et al. (2015). “A large annotated corpus for learning natural

language inference”. In: Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, pp. 632–642.

Breiman, Leo (2001). “Random Forests”. In: Machine Learning 45, pp. 5–32.

Broecheler, Matthias, Lilyana Mihalkova, and Lise Getoor (2010). “Probabilistic Sim-

ilarity Logic”. In: Uncertainty in Artificial Intelligence.

Butler, Alastair (2010). “Current Research in the Semantics/Pragmatics Interface,

Vol.23”. In: Bingley: Emerald. Chap. The Semantics of Grammatical Dependen-

cies.

Butler, Alastair and Kei Yoshimoto (2012). “Banking Meaning Representations from

Treebanks”. In: Linguistic Issues in Language Technology 7, pp. 1–22.

Carpenter, Bob (1998). Type-logical Semantics. Cambridge, MA, USA: MIT Press.

Cer, Daniel et al. (2017). “SemEval-2017 Task 1: Semantic Textual Similarity Multi-

lingual and Crosslingual Focused Evaluation”. In: Proceedings of the 11th Interna-

tional Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14.

Champollion, Lucas (2015). “The interaction of compositional semantics and event

semantics”. In: Linguistics and Philosophy 38.1, pp. 31–66.

Chen, Danqi and Christopher D. Manning (2014). “A Fast and Accurate Dependency

Parser using Neural Networks.” In: Proceedings of the 52th Annual Meeting on As-

sociation for Computational Linguistics, pp. 740–750.

Chklovski, Timothy and Patrick Pantel (2004). “VerbOcean: Mining the Web for Fine-

Grained Semantic Verb Relations”. In: Proceedings of the 2004 Conference on Empir-

ical Methods in Natural Language Processing, pp. 33–40.

Clark, Stephen and James R. Curran (2007). “Wide-coverage efficient statistical pars-

ing with CCG and log-linear models”. In: Computational Linguistics 33.4, pp. 493–

552.

Clark, Stephen, Julia Hockenmaier, and Mark Steedman (2002). “Building Deep De-

pendency Structures with a Wide-coverage CCG Parser”. In: Proceedings of the

40th Annual Meeting on Association for Computational Linguistics, pp. 327–334.

Clinchant, Stéphane, Cyril Goutte, and Eric Gaussier (2006). “Lexical Entailment for

Information Retrieval”. In: Advances in Information Retrieval. Ed. by Mounia Lal-

mas et al.

Cooper, Robin et al. (1994). “FraCaS–A Framework for Computational Semantics”.

In: Deliverable D6.



108 BIBLIOGRAPHY

Curran, James R and Stephen Clark (2003). “Investigating GIS and smoothing for

maximum entropy taggers”. In: Proceedings of the tenth conference on European

chapter of the Association for Computational Linguistics-Volume 1, pp. 91–98.

Dagan, Ido and Bernardo Glickman Orenand Magnini (2006). “The PASCAL Recog-

nising Textual Entailment Challenge”. In: Machine Learning Challenges. Evaluating

Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entail-

ment, pp. 177–190.

Dagan, Ido, Oren Glickman, and Bernardo Magnini (2006). “The PASCAL Recognis-

ing Textual Entailment Challenge”. In: Proceedings of the First International Confer-

ence on Machine Learning Challenges: Evaluating Predictive Uncertainty Visual Object

Classification, and Recognizing Textual Entailment, pp. 177–190.

Dagan, Ido et al. (2013). Recognizing Textual Entailment: Models and Applications. Syn-

thesis Lectures on Human Language Technologies. Morgan & Claypool Publish-

ers.

Davidson, Donald (1967). “The Logical Form of Action Sentences”. In: The Logic of

Decision and Action. Ed. by Nicholas Rescher. Reprinted in Davidson80 pages

105–148. Pittsburgh, PA: University of Pittsburgh Press, pp. 81–95.

Deerwester, Scott et al. (1990). “Indexing by latent semantic analysis”. In: Journal of

the American Society for Information Science 41.6, pp. 391–407.

Delahaye, David (2000). “A Tactic Language for the System Coq”. In: Logic for Pro-

gramming and Automated Reasoning, pp. 85–95.

Dong, Yubing, Ran Tian, and Yusuke Miyao (2014). “Encoding Generalized Quanti-

fiers in Dependency-based Compositional Semantics”. In: Proceedings of the 28th

Pacific Asia Conference on Language, Information, and Computation, pp. 585–594.

Dumais, Susan (1997). “A Solution to Plato’s Problem: The Latent Semantic Analysis

Theory of Acquisition, Induction and Representation of Knowledge”. In: 104(2),

pp. 211–240.

Edmonds, Philip and Graeme Hirst (2002). “Near-synonymy and Lexical Choice”.

In: Computational Linguistics 28.2, pp. 105–144.

Emmert-Streib, Frank, Matthias Dehmer, and Yongtang Shi (2016). “Fifty years of

graph matching, network alignment and network comparison”. In: Information

Sciences 346-347.Supplement C, pp. 180–197.



BIBLIOGRAPHY 109

Ganitkevitch, Juri, Benjamin Van Durme, and Chris Callison-Burch (2013). “PPDB:

The Paraphrase Database”. In: Proceedings of the 2013 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language Tech-

nologie, pp. 758–764.

Garrette, Dan and Ewan Klein (2009). “An Extensible Toolkit for Computational Se-

mantics”. In: Proceedings of the Eighth International Conference on Computational Se-

mantics, pp. 116–127.

Giampiccolo, Danilo et al. (2007). “The Third PASCAL Recognizing Textual Entail-

ment Challenge”. In: Proceedings of the ACL-PASCAL Workshop on Textual Entail-

ment and Paraphrasing, pp. 1–9.

Giampiccolo, Danilo et al. (2008). “The Fourth PASCAL Recognizing Textual Entail-

ment Challenge”. In: Proceedings of the First Text Analysis Conference, TAC.

Grefenstette, Edward (2013). “Towards a Formal Distributional Semantics: Simulat-

ing Logical Calculi with Tensors”. In: Second Joint Conference on Lexical and Com-

putational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the

Shared Task: Semantic Textual Similarity, pp. 1–10.

Grefenstette, Edward and Mehrnoosh Sadrzadeh (2011). “Experimental Support for

a Categorical Compositional Distributional Model of Meaning”. In: Proceedings of

the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 1394–

1404.

Harabagiu, Sanda and Andrew Hickl (2006). “Methods for Using Textual Entailment

in Open-domain Question Answering”. In: Proceedings of the 21st International

Conference on Computational Linguistics and the 44th Annual Meeting of the Associa-

tion for Computational Linguistics, pp. 905–912.

Harris, Zellig (1954). “Distributional structure”. In: 10.23, pp. 146–162.

He, Hua and Jimmy Lin (2016). “Pairwise Word Interaction Modeling with Deep

Neural Networks for Semantic Similarity Measurement”. In: Proceedings of the

2016 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pp. 937–948.

Hill, Felix, Kyunghyun Cho, and Anna Korhonen (2016). “Learning Distributed Rep-

resentations of Sentences from Unlabelled Data”. In: Proceedings of the 2016 Con-

ference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pp. 1367–1377.



110 BIBLIOGRAPHY

Hockenmaier, Julia and Mark Steedman (2007). “CCGbank: A corpus of CCG deriva-

tions and dependency structures extracted from the penn treebank”. In: Compu-

tational Linguistics 33.3, pp. 355–396.

Huet, Gérard Pierre (1975). “A Unification Algorithm for Typed lambda-Calculus”.

In: Theoretical Computer Science 1, pp. 27–57.

Johnson, Mark (1998). “PCFG Models of Linguistic Tree Representations”. In: Com-

putational. Linguistics 24.4, pp. 613–632.

Jones, Bevan Keeley (2016). “Learning words and syntactic cues in highly ambiguous

contexts”. PhD thesis. The University of Edinburgh.

Joshi, Aravind K. and Yves Schabes (1997). “Handbook of Formal Languages, Vol. 3”.

In: ed. by Grzegorz Rozenberg and Arto Salomaa. New York, NY, USA: Springer-

Verlag New York, Inc. Chap. Tree-adjoining Grammars, pp. 69–123.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing (2Nd

Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Kamp, Hans and Uwe Reyle (1993). From Discourse to Logic. Introduction to Modelthe-

oretic Semantics of Natural Language, Formal Logic and Discourse Representation The-

ory. Dordrecht: Kluwer.

Kaplan, Ronald M. and Joan Bresnan (1995). Lexical-Functional Grammar: A Formal

System for Grammatical Representation.

Kartsaklis, Dimitri, Nal Kalchbrenner, and Mehrnoosh Sadrzadeh (2014). “Resolving

Lexical Ambiguity in Tensor Regression Models of Meaning”. In: Proceedings of

the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 212–

217.

Kartsaklis, Dimitri and Mehrnoosh Sadrzadeh (2016). “Distributional Inclusion Hy-

pothesis for Tensor-based Composition”. In: Proceedings of the 26th International

Conference on Computational Linguistics: Technical Papers, pp. 2849–2860.

Kenter, Tom and Maarten de Rijke (2015). “Short Text Similarity with Word Embed-

dings”. In: Proceedings of the 24th ACM International on Conference on Information

and Knowledge Management, pp. 1411–1420.

Lai, Alice, Yonatan Bisk, and Julia Hockenmaier (2017). “Natural Language Inference

from Multiple Premises”. In: Proceedings of the Eighth International Joint Conference

on Natural Language Processing (Volume 1: Long Papers), pp. 100–109.



BIBLIOGRAPHY 111

Lai, Alice and Julia Hockenmaier (2014). “Illinois-LH: A Denotational and Distribu-

tional Approach to Semantics”. In: Proceedings of the 8th International Workshop on

Semantic Evaluation (SemEval 2014), pp. 329–334.

Lakoff, George (1970). “Linguistics and natural logic”. In: Synthese 22.1, pp. 151–271.

Le, Quoc V. and Tomas Mikolov (2014). “Distributed Representations of Sentences

and Documents”. In: Proceedings of the 31th International Conference on Machine

Learning, pp. 1188–1196.

Lewis, Mike and Mark Steedman (2013). “Combined Distributional and Logical Se-

mantics.” In: Transactions of the Association for Computational Linguistics 1, pp. 179–

192.

— (2014). “A* CCG Parsing with a Supertag-factored Model”. In: Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing, pp. 990–1000.

Liang, Percy, Michael I Jordan, and Dan Klein (2011). “Learning dependency-based

compositional semantics”. In: Proceedings of the 49th Annual Meeting of the Associa-

tion for Computational Linguistics: Human Language Technologies-Volume 1, pp. 590–

599.

Liu, Fei et al. (2015). “Toward Abstractive Summarization Using Semantic Represen-

tations.” In: Proceedings of the 2015 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, pp. 1077–

1086.

MacCartney, Bill (2009). Natural language inference. Ph.D. thesis.

MacCartney, Bill and Christopher D. Manning (2007). “Natural Logic for Textual

Inference”. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and

Paraphrasing, pp. 193–200.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini (1993). “Build-

ing a Large Annotated Corpus of English: The Penn Treebank”. In: Computational.

Linguistics 19.2, pp. 313–330.

Marelli, Marco et al. (2014). “A SICK Cure for The Evaluation of Compositional Dis-

tributional Semantic Models”. In: Proceedings of the 9th International Conference on

Language Resources and Evaluation, pp. 216–223.

Martínez-Gómez, Pascual and Yusuke Miyao (2016). “Rule Extraction for Tree-to-

Tree Transducers by Cost Minimization”. In: Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, pp. 12–22.



112 BIBLIOGRAPHY

Martínez-Gómez, Pascual et al. (2016). “ccg2lambda: A Compositional Semantics

System”. In: Proceedings of the 2016 System Demonstrations of the Association for

Computational Linguistics, pp. 85–90.

— (2017). “On-demand Injection of Lexical Knowledge for Recognising Textual En-

tailment”. In: Proceedings of the 15th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics, pp. 710–720.

Mikolov, Tomas et al. (2013). “Distributed Representations of Words and Phrases and

their Compositionality”. In: Advances in Neural Information Processing Systems 26.

Ed. by C. J. C. Burges et al. Curran Associates, Inc., pp. 3111–3119.

Miller, George A. (1995). “WordNet: A Lexical Database for English”. In: Communi-

cations of the ACM 38.11, pp. 39–41.

Mineshima, Koji et al. (2015). “Higher-order logical inference with compositional

semantics”. In: Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing, pp. 2055–2061.

Mineshima, Koji et al. (2016). “Building compositional semantics and higher-order

inference system for a wide-coverage Japanese CCG parser.” In: Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2236–

2242.

Mitchell, Jeff and Mirella Lapata (2008). “Vector-based Models of Semantic Composi-

tion”. In: Proceedings of the 46th Annual Meeting of the Association for Computational

Linguistics, pp. 236–244.

— (2010). “Composition in distributional models of semantics”. In: Cognitive Science

34.8, pp. 1388–1429.

Mogren, Olof, Mikael Kågebäck, and Devdatt Dubhashi (2015). “Extractive Summa-

rization by Aggregating Multiple Similarities”. In: Proceedings of the International

Conference Recent Advances in Natural Language Processing, pp. 451–457.

Montague, Richard (1973). “The Proper Treatment of Quantification in Ordinary En-

glish”. In: Approaches to Natural Language. Ed. by K. J. J. Hintikka, J. Moravcsic,

and P. Suppes. Dordrecht: Reidel, pp. 221–242.

Moot, Richard (2010). “Wide-Coverage French Syntax and Semantics using Grail”.

In: TALN 2010.

Mueller, Jonas and Aditya Thyagarajan (2016). “Siamese Recurrent Architectures for

Learning Sentence Similarity”. In: Proceedings of the 30th AAAI Conference on Arti-

ficial Intelligence, pp. 2786–2792.



BIBLIOGRAPHY 113

Parsons, Terence (1990). Events in The Semantics of English: a Study in Subatomic Se-

mantics. Cambridge, USA: MIT Press.

Pelletier, Francis Jeffry (1999). “A Brief History of Natural Deduction”. In: History

and Philosophy of Logic 20, pp. 1–31.

Pelletier, Francis Jeffry and Allen P. Hazen (2012). “A History of Natural Deduction”.

In: Logic: A History of its Central Concepts. Ed. by Dov M. Gabbay, Francis Jeffry

Pelletier, and John Woods. Vol. 11. Handbook of the History of Logic. North-

Holland, pp. 341–414.

Peter, W. Culicover and Wendy K. Wilkins (1984). Locality in linguistic theory. Florida,

USA: Academic Press.

Polajnar, Tamara, Laura Rimell, and Stephen Clark (2015). “An Exploration of Discourse-

Based Sentence Spaces for Compositional Distributional Semantics”. In: Proceed-

ings of the 1st Workshop on Linking Computational Models of Lexical, Sentential and

Discourse-level Semantics, pp. 1–11.

Pollard, Carl and Ivan A. Sag (1994). Head-Driven Phrase Structure Grammar. Chicago:

The University of Chicago Press.

Prawitz, Dag (1965). Natural Deduction – A Proof-Theoretical Study. Stockholm, Swe-

den: Almqvist & Wiksell.

Rashtchian, Cyrus et al. (2010). “Collecting Image Annotations Using Amazon’s Me-

chanical Turk”. In: Proceedings of the NAACL HLT 2010 Workshop on Creating Speech

and Language Data with Amazon’s Mechanical Turk, pp. 139–147.

Ray, Jackendo (1990). Semantic Structures. Cambridge, USA: The MIT Press.

Reddy, Siva, Mirella Lapata, and Mark Steedman (2014). “Large-scale Semantic Pars-

ing without Question-Answer Pairs”. In: Transactions of the Association for Compu-

tational Linguistics 2, pp. 377–392.

Reddy, Siva et al. (2016a). “Transforming Dependency Structures to Logical Forms

for Semantic Parsing”. In: Transactions of the Association of Computational Linguis-

tics 4, pp. 127–141.

— (2016b). “Transforming Dependency Structures to Logical Forms for Semantic

Parsing”. In: Transactions of the Association for Computational Linguistics 4, pp. 127–

140.

Richardson, Matthew and Pedro Domingos (2006). “Markov Logic Networks”. In:

Machine Learning 62, pp. 107–136.



114 BIBLIOGRAPHY

Robinson, John A. (1965). “A Machine-Oriented Logic Based on the Resolution Prin-

ciple”. In: Journal of the ACM 12.1, pp. 23–41.

Sacaleanu, Bogdan et al. (2008). “Entailment-based Question Answering for Struc-

tured Data”. In: Coling 2008: Companion volume: Demonstrations, pp. 173–176.

Socher, Richard et al. (2011). “Dynamic Pooling and Unfolding Recursive Autoen-

coders for Paraphrase Detection”. In: Advances in Neural Information Processing

Systems 24. Curran Associates, Inc., pp. 801–809.

Steedman, Mark (2000). The Syntactic Process. Cambridge, USA: MIT Press.

— (2012). Taking Scope: The Natural Semantics of Quantifiers. Cambridge, USA: MIT

Press.

Tai, Kai Sheng, Richard Socher, and Christopher D. Manning (2015). “Improved Se-

mantic Representations From Tree-Structured Long Short-Term Memory Net-

works”. In: Proceedings of the 53rd Annual Meeting of the Association for Compu-

tational Linguistics and the 7th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pp. 1556–1566.

Tian, Ran, Yusuke Miyao, and Takuya Matsuzaki (2014). “Logical Inference on Dependency-

based Compositional Semantics”. In: Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pp. 79–89.

Tian, Ran, Naoaki Okazaki, and Kentaro Inui (2016). “Learning Semantically and

Additively Compositional Distributional Representations”. In: Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics, pp. 1277–1287.

— (2017). “The mechanism of additive composition”. In: Machine Learning 106.7,

pp. 1083–1130.

Troelstra, Anne and Helmut Schwichtenberg (2000). Basic Proof Theory. Cambridge

University Press.

Tsuchiya, Masatoshi (2018). “Performance Impact Caused by Hidden Bias of Train-

ing Data for Recognizing Textual Entailment”. In: Proceedings of the 11th Interna-

tional Conference on Language Resources and Evaluation.

Vo, Ngoc Phuoc An, Simone Magnolini, and Octavian Popescu (2015). “FBK-HLT:

An Application of Semantic Textual Similarity for Answer Selection in Commu-

nity Question Answering”. In: Proceedings of the 9th International Workshop on Se-

mantic Evaluation (SemEval 2015), pp. 231–235.



BIBLIOGRAPHY 115

Williams, Adina, Nikita Nangia, and Samuel R. Bowman (2017). “A Broad-Coverage

Challenge Corpus for Sentence Understanding through Inference”. In: CoRR abs/1704.05426.

URL: http://arxiv.org/abs/1704.05426.

Wong, S. K. M. and Vijay V. Raghavan (1984). “Vector Space Model of Information

Retrieval: A Reevaluation”. In: Proceedings of the 7th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pp. 167–

185.

Yanaka, Hitomi et al. (2017). “Determining Semantic Textual Similarity using Natu-

ral Deduction Proofs”. In: Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pp. 692–702.

— (2018a). “Acquisition of Phrase Correspondences using Natural Deduction Proof”.

In: Proceedings of The 16th Annual Conference of North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies.

— (2018b). “Learning Semantic Textual Relatedness using a Natural Deduction Proofs”.

In: Journal of Natural Language Processing 25.3.

Yin, Wenpeng and Hinrich Schütze (2017). “Task-Specific Attentive Pooling of Phrase

Alignments Contributes to Sentence Matching”. In: Proceedings of the 15th Confer-

ence of the European Chapter of the Association for Computational Linguistics: Volume

1, Long Papers, pp. 699–709.

Yoshikawa, Masashi, Hiroshi Noji, and Yuji Matsumoto (2017). “A* CCG Parsing

with a Supertag and Dependency Factored Model”. In: Proceedings of the 55nd

Annual Meeting of the Association for Computational Linguistics, pp. 277–287.

Zhao, Jiang, Tiantian Zhu, and Man Lan (2014). “ECNU: One Stone Two Birds: En-

semble of Heterogenous Measures for Semantic Relatedness and Textual En-

tailment”. In: Proceedings of the 8th International Workshop on Semantic Evaluation

(SemEval-2014), pp. 271–277.

Zhao, Shiqi et al. (2008). “Combining Multiple Resources to Improve SMT-based

Paraphrasing Model”. In: Proceedings of the 46rd Annual Meeting on Association for

Computational Linguistics, pp. 1021–1029.

Zhou, Yao, Cong Liu, and Yan Pan (2016). “Modelling Sentence Pairs with Tree-

structured Attentive Encoder”. In: Proceedings of the 26th International Conference

on Computational Linguistics, pp. 2912–2922.

http://arxiv.org/abs/1704.05426

	Abstract
	Introduction
	Prospects of capturing semantic relations
	Task description
	Entailment and similarity
	Recognizing textual entailment
	Semantic textual similarity

	Problem statement
	Intended contributions
	Thesis organization

	Background
	Related work about semantic composition
	Syntax and semantics
	Natural deduction
	Outline of natural deduction
	Proof assistant
	Inference rule
	Proving entailment relation
	Proving contradiction

	Word abduction

	Learning textual entailment and similarity using proof processes
	Motivation and related work
	Machine learning-based approaches
	Logic-based approaches
	Hybrid approaches
	Motivation for using proving process

	System overview
	Proof for a hybrid approach
	Feature selection
	Logic-based features
	Non-logic-based features

	Experiments
	Dataset for evaluation experiments
	Experimental setting
	Comparison with other systems
	Feature ablation and isolation
	Evaluation by each gold label
	Evaluation by linguistic phenomena
	Positive examples and error analysis


	Phrase Abduction
	Motivation and Related Work
	RTE systems combined with lexical knowledge
	Paraphrase identification
	Motivation for phrase abduction

	Phrase abduction
	Logical formulas and graph representations
	Graph-based formulation of a theorem proving routine
	Problem of phrase pair detection
	Graph-based formulation for phrase abduction
	Another formulation for phrase abduction
	Non-basic formulas

	Experiments
	Experimental setting
	Extracted paraphrases
	Comparison with other systems
	Positive examples and error analysis


	Conclusion
	Summary of thesis
	Future work

	Acknowledgements
	Bibliography

